2 * QEMU Floppy disk emulator (Intel 82078)
4 * Copyright (c) 2003, 2007 Jocelyn Mayer
5 * Copyright (c) 2008 Hervé Poussineau
7 * Permission is hereby granted, free of charge, to any person obtaining a copy
8 * of this software and associated documentation files (the "Software"), to deal
9 * in the Software without restriction, including without limitation the rights
10 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
11 * copies of the Software, and to permit persons to whom the Software is
12 * furnished to do so, subject to the following conditions:
14 * The above copyright notice and this permission notice shall be included in
15 * all copies or substantial portions of the Software.
17 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
18 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
19 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
20 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
21 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
22 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
26 * The controller is used in Sun4m systems in a slightly different
27 * way. There are changes in DOR register and DMA is not available.
30 #include "qemu/osdep.h"
32 #include "hw/block/fdc.h"
33 #include "qapi/error.h"
34 #include "qemu/error-report.h"
35 #include "qemu/timer.h"
36 #include "hw/isa/isa.h"
37 #include "hw/sysbus.h"
38 #include "hw/block/block.h"
39 #include "sysemu/block-backend.h"
40 #include "sysemu/blockdev.h"
41 #include "sysemu/sysemu.h"
44 /********************************************************/
45 /* debug Floppy devices */
47 #define DEBUG_FLOPPY 0
49 #define FLOPPY_DPRINTF(fmt, ...) \
52 fprintf(stderr, "FLOPPY: " fmt , ## __VA_ARGS__); \
57 /********************************************************/
60 #define TYPE_FLOPPY_BUS "floppy-bus"
61 #define FLOPPY_BUS(obj) OBJECT_CHECK(FloppyBus, (obj), TYPE_FLOPPY_BUS)
63 typedef struct FDCtrl FDCtrl
;
64 typedef struct FDrive FDrive
;
65 static FDrive
*get_drv(FDCtrl
*fdctrl
, int unit
);
67 typedef struct FloppyBus
{
72 static const TypeInfo floppy_bus_info
= {
73 .name
= TYPE_FLOPPY_BUS
,
75 .instance_size
= sizeof(FloppyBus
),
78 static void floppy_bus_create(FDCtrl
*fdc
, FloppyBus
*bus
, DeviceState
*dev
)
80 qbus_create_inplace(bus
, sizeof(FloppyBus
), TYPE_FLOPPY_BUS
, dev
, NULL
);
85 /********************************************************/
86 /* Floppy drive emulation */
88 typedef enum FDriveRate
{
89 FDRIVE_RATE_500K
= 0x00, /* 500 Kbps */
90 FDRIVE_RATE_300K
= 0x01, /* 300 Kbps */
91 FDRIVE_RATE_250K
= 0x02, /* 250 Kbps */
92 FDRIVE_RATE_1M
= 0x03, /* 1 Mbps */
95 typedef enum FDriveSize
{
101 typedef struct FDFormat
{
102 FloppyDriveType drive
;
109 /* In many cases, the total sector size of a format is enough to uniquely
110 * identify it. However, there are some total sector collisions between
111 * formats of different physical size, and these are noted below by
112 * highlighting the total sector size for entries with collisions. */
113 static const FDFormat fd_formats
[] = {
114 /* First entry is default format */
115 /* 1.44 MB 3"1/2 floppy disks */
116 { FLOPPY_DRIVE_TYPE_144
, 18, 80, 1, FDRIVE_RATE_500K
, }, /* 3.5" 2880 */
117 { FLOPPY_DRIVE_TYPE_144
, 20, 80, 1, FDRIVE_RATE_500K
, }, /* 3.5" 3200 */
118 { FLOPPY_DRIVE_TYPE_144
, 21, 80, 1, FDRIVE_RATE_500K
, },
119 { FLOPPY_DRIVE_TYPE_144
, 21, 82, 1, FDRIVE_RATE_500K
, },
120 { FLOPPY_DRIVE_TYPE_144
, 21, 83, 1, FDRIVE_RATE_500K
, },
121 { FLOPPY_DRIVE_TYPE_144
, 22, 80, 1, FDRIVE_RATE_500K
, },
122 { FLOPPY_DRIVE_TYPE_144
, 23, 80, 1, FDRIVE_RATE_500K
, },
123 { FLOPPY_DRIVE_TYPE_144
, 24, 80, 1, FDRIVE_RATE_500K
, },
124 /* 2.88 MB 3"1/2 floppy disks */
125 { FLOPPY_DRIVE_TYPE_288
, 36, 80, 1, FDRIVE_RATE_1M
, },
126 { FLOPPY_DRIVE_TYPE_288
, 39, 80, 1, FDRIVE_RATE_1M
, },
127 { FLOPPY_DRIVE_TYPE_288
, 40, 80, 1, FDRIVE_RATE_1M
, },
128 { FLOPPY_DRIVE_TYPE_288
, 44, 80, 1, FDRIVE_RATE_1M
, },
129 { FLOPPY_DRIVE_TYPE_288
, 48, 80, 1, FDRIVE_RATE_1M
, },
130 /* 720 kB 3"1/2 floppy disks */
131 { FLOPPY_DRIVE_TYPE_144
, 9, 80, 1, FDRIVE_RATE_250K
, }, /* 3.5" 1440 */
132 { FLOPPY_DRIVE_TYPE_144
, 10, 80, 1, FDRIVE_RATE_250K
, },
133 { FLOPPY_DRIVE_TYPE_144
, 10, 82, 1, FDRIVE_RATE_250K
, },
134 { FLOPPY_DRIVE_TYPE_144
, 10, 83, 1, FDRIVE_RATE_250K
, },
135 { FLOPPY_DRIVE_TYPE_144
, 13, 80, 1, FDRIVE_RATE_250K
, },
136 { FLOPPY_DRIVE_TYPE_144
, 14, 80, 1, FDRIVE_RATE_250K
, },
137 /* 1.2 MB 5"1/4 floppy disks */
138 { FLOPPY_DRIVE_TYPE_120
, 15, 80, 1, FDRIVE_RATE_500K
, },
139 { FLOPPY_DRIVE_TYPE_120
, 18, 80, 1, FDRIVE_RATE_500K
, }, /* 5.25" 2880 */
140 { FLOPPY_DRIVE_TYPE_120
, 18, 82, 1, FDRIVE_RATE_500K
, },
141 { FLOPPY_DRIVE_TYPE_120
, 18, 83, 1, FDRIVE_RATE_500K
, },
142 { FLOPPY_DRIVE_TYPE_120
, 20, 80, 1, FDRIVE_RATE_500K
, }, /* 5.25" 3200 */
143 /* 720 kB 5"1/4 floppy disks */
144 { FLOPPY_DRIVE_TYPE_120
, 9, 80, 1, FDRIVE_RATE_250K
, }, /* 5.25" 1440 */
145 { FLOPPY_DRIVE_TYPE_120
, 11, 80, 1, FDRIVE_RATE_250K
, },
146 /* 360 kB 5"1/4 floppy disks */
147 { FLOPPY_DRIVE_TYPE_120
, 9, 40, 1, FDRIVE_RATE_300K
, }, /* 5.25" 720 */
148 { FLOPPY_DRIVE_TYPE_120
, 9, 40, 0, FDRIVE_RATE_300K
, },
149 { FLOPPY_DRIVE_TYPE_120
, 10, 41, 1, FDRIVE_RATE_300K
, },
150 { FLOPPY_DRIVE_TYPE_120
, 10, 42, 1, FDRIVE_RATE_300K
, },
151 /* 320 kB 5"1/4 floppy disks */
152 { FLOPPY_DRIVE_TYPE_120
, 8, 40, 1, FDRIVE_RATE_250K
, },
153 { FLOPPY_DRIVE_TYPE_120
, 8, 40, 0, FDRIVE_RATE_250K
, },
154 /* 360 kB must match 5"1/4 better than 3"1/2... */
155 { FLOPPY_DRIVE_TYPE_144
, 9, 80, 0, FDRIVE_RATE_250K
, }, /* 3.5" 720 */
157 { FLOPPY_DRIVE_TYPE_NONE
, -1, -1, 0, 0, },
160 static FDriveSize
drive_size(FloppyDriveType drive
)
163 case FLOPPY_DRIVE_TYPE_120
:
164 return FDRIVE_SIZE_525
;
165 case FLOPPY_DRIVE_TYPE_144
:
166 case FLOPPY_DRIVE_TYPE_288
:
167 return FDRIVE_SIZE_350
;
169 return FDRIVE_SIZE_UNKNOWN
;
173 #define GET_CUR_DRV(fdctrl) ((fdctrl)->cur_drv)
174 #define SET_CUR_DRV(fdctrl, drive) ((fdctrl)->cur_drv = (drive))
176 /* Will always be a fixed parameter for us */
177 #define FD_SECTOR_LEN 512
178 #define FD_SECTOR_SC 2 /* Sector size code */
179 #define FD_RESET_SENSEI_COUNT 4 /* Number of sense interrupts on RESET */
181 /* Floppy disk drive emulation */
182 typedef enum FDiskFlags
{
183 FDISK_DBL_SIDES
= 0x01,
191 FloppyDriveType drive
; /* CMOS drive type */
192 uint8_t perpendicular
; /* 2.88 MB access mode */
198 FloppyDriveType disk
; /* Current disk type */
200 uint8_t last_sect
; /* Nb sector per track */
201 uint8_t max_track
; /* Nb of tracks */
202 uint16_t bps
; /* Bytes per sector */
203 uint8_t ro
; /* Is read-only */
204 uint8_t media_changed
; /* Is media changed */
205 uint8_t media_rate
; /* Data rate of medium */
207 bool media_validated
; /* Have we validated the media? */
211 static FloppyDriveType
get_fallback_drive_type(FDrive
*drv
);
213 /* Hack: FD_SEEK is expected to work on empty drives. However, QEMU
214 * currently goes through some pains to keep seeks within the bounds
215 * established by last_sect and max_track. Correcting this is difficult,
216 * as refactoring FDC code tends to expose nasty bugs in the Linux kernel.
218 * For now: allow empty drives to have large bounds so we can seek around,
219 * with the understanding that when a diskette is inserted, the bounds will
220 * properly tighten to match the geometry of that inserted medium.
222 static void fd_empty_seek_hack(FDrive
*drv
)
224 drv
->last_sect
= 0xFF;
225 drv
->max_track
= 0xFF;
228 static void fd_init(FDrive
*drv
)
231 drv
->perpendicular
= 0;
233 drv
->disk
= FLOPPY_DRIVE_TYPE_NONE
;
237 drv
->media_changed
= 1;
240 #define NUM_SIDES(drv) ((drv)->flags & FDISK_DBL_SIDES ? 2 : 1)
242 static int fd_sector_calc(uint8_t head
, uint8_t track
, uint8_t sect
,
243 uint8_t last_sect
, uint8_t num_sides
)
245 return (((track
* num_sides
) + head
) * last_sect
) + sect
- 1;
248 /* Returns current position, in sectors, for given drive */
249 static int fd_sector(FDrive
*drv
)
251 return fd_sector_calc(drv
->head
, drv
->track
, drv
->sect
, drv
->last_sect
,
255 /* Returns current position, in bytes, for given drive */
256 static int fd_offset(FDrive
*drv
)
258 g_assert(fd_sector(drv
) < INT_MAX
>> BDRV_SECTOR_BITS
);
259 return fd_sector(drv
) << BDRV_SECTOR_BITS
;
262 /* Seek to a new position:
263 * returns 0 if already on right track
264 * returns 1 if track changed
265 * returns 2 if track is invalid
266 * returns 3 if sector is invalid
267 * returns 4 if seek is disabled
269 static int fd_seek(FDrive
*drv
, uint8_t head
, uint8_t track
, uint8_t sect
,
275 if (track
> drv
->max_track
||
276 (head
!= 0 && (drv
->flags
& FDISK_DBL_SIDES
) == 0)) {
277 FLOPPY_DPRINTF("try to read %d %02x %02x (max=%d %d %02x %02x)\n",
278 head
, track
, sect
, 1,
279 (drv
->flags
& FDISK_DBL_SIDES
) == 0 ? 0 : 1,
280 drv
->max_track
, drv
->last_sect
);
283 if (sect
> drv
->last_sect
) {
284 FLOPPY_DPRINTF("try to read %d %02x %02x (max=%d %d %02x %02x)\n",
285 head
, track
, sect
, 1,
286 (drv
->flags
& FDISK_DBL_SIDES
) == 0 ? 0 : 1,
287 drv
->max_track
, drv
->last_sect
);
290 sector
= fd_sector_calc(head
, track
, sect
, drv
->last_sect
, NUM_SIDES(drv
));
292 if (sector
!= fd_sector(drv
)) {
295 FLOPPY_DPRINTF("error: no implicit seek %d %02x %02x"
296 " (max=%d %02x %02x)\n",
297 head
, track
, sect
, 1, drv
->max_track
,
303 if (drv
->track
!= track
) {
304 if (drv
->blk
!= NULL
&& blk_is_inserted(drv
->blk
)) {
305 drv
->media_changed
= 0;
313 if (drv
->blk
== NULL
|| !blk_is_inserted(drv
->blk
)) {
320 /* Set drive back to track 0 */
321 static void fd_recalibrate(FDrive
*drv
)
323 FLOPPY_DPRINTF("recalibrate\n");
324 fd_seek(drv
, 0, 0, 1, 1);
328 * Determine geometry based on inserted diskette.
329 * Will not operate on an empty drive.
331 * @return: 0 on success, -1 if the drive is empty.
333 static int pick_geometry(FDrive
*drv
)
335 BlockBackend
*blk
= drv
->blk
;
336 const FDFormat
*parse
;
337 uint64_t nb_sectors
, size
;
339 int match
, size_match
, type_match
;
340 bool magic
= drv
->drive
== FLOPPY_DRIVE_TYPE_AUTO
;
342 /* We can only pick a geometry if we have a diskette. */
343 if (!drv
->blk
|| !blk_is_inserted(drv
->blk
) ||
344 drv
->drive
== FLOPPY_DRIVE_TYPE_NONE
)
349 /* We need to determine the likely geometry of the inserted medium.
350 * In order of preference, we look for:
351 * (1) The same drive type and number of sectors,
352 * (2) The same diskette size and number of sectors,
353 * (3) The same drive type.
355 * In all cases, matches that occur higher in the drive table will take
356 * precedence over matches that occur later in the table.
358 blk_get_geometry(blk
, &nb_sectors
);
359 match
= size_match
= type_match
= -1;
361 parse
= &fd_formats
[i
];
362 if (parse
->drive
== FLOPPY_DRIVE_TYPE_NONE
) {
365 size
= (parse
->max_head
+ 1) * parse
->max_track
* parse
->last_sect
;
366 if (nb_sectors
== size
) {
367 if (magic
|| parse
->drive
== drv
->drive
) {
368 /* (1) perfect match -- nb_sectors and drive type */
370 } else if (drive_size(parse
->drive
) == drive_size(drv
->drive
)) {
371 /* (2) size match -- nb_sectors and physical medium size */
372 match
= (match
== -1) ? i
: match
;
374 /* This is suspicious -- Did the user misconfigure? */
375 size_match
= (size_match
== -1) ? i
: size_match
;
377 } else if (type_match
== -1) {
378 if ((parse
->drive
== drv
->drive
) ||
379 (magic
&& (parse
->drive
== get_fallback_drive_type(drv
)))) {
380 /* (3) type match -- nb_sectors mismatch, but matches the type
381 * specified explicitly by the user, or matches the fallback
382 * default type when using the drive autodetect mechanism */
388 /* No exact match found */
390 if (size_match
!= -1) {
391 parse
= &fd_formats
[size_match
];
392 FLOPPY_DPRINTF("User requested floppy drive type '%s', "
393 "but inserted medium appears to be a "
394 "%"PRId64
" sector '%s' type\n",
395 FloppyDriveType_str(drv
->drive
),
397 FloppyDriveType_str(parse
->drive
));
402 /* No match of any kind found -- fd_format is misconfigured, abort. */
404 error_setg(&error_abort
, "No candidate geometries present in table "
405 " for floppy drive type '%s'",
406 FloppyDriveType_str(drv
->drive
));
409 parse
= &(fd_formats
[match
]);
412 if (parse
->max_head
== 0) {
413 drv
->flags
&= ~FDISK_DBL_SIDES
;
415 drv
->flags
|= FDISK_DBL_SIDES
;
417 drv
->max_track
= parse
->max_track
;
418 drv
->last_sect
= parse
->last_sect
;
419 drv
->disk
= parse
->drive
;
420 drv
->media_rate
= parse
->rate
;
424 static void pick_drive_type(FDrive
*drv
)
426 if (drv
->drive
!= FLOPPY_DRIVE_TYPE_AUTO
) {
430 if (pick_geometry(drv
) == 0) {
431 drv
->drive
= drv
->disk
;
433 drv
->drive
= get_fallback_drive_type(drv
);
436 g_assert(drv
->drive
!= FLOPPY_DRIVE_TYPE_AUTO
);
439 /* Revalidate a disk drive after a disk change */
440 static void fd_revalidate(FDrive
*drv
)
444 FLOPPY_DPRINTF("revalidate\n");
445 if (drv
->blk
!= NULL
) {
446 drv
->ro
= blk_is_read_only(drv
->blk
);
447 if (!blk_is_inserted(drv
->blk
)) {
448 FLOPPY_DPRINTF("No disk in drive\n");
449 drv
->disk
= FLOPPY_DRIVE_TYPE_NONE
;
450 fd_empty_seek_hack(drv
);
451 } else if (!drv
->media_validated
) {
452 rc
= pick_geometry(drv
);
454 FLOPPY_DPRINTF("Could not validate floppy drive media");
456 drv
->media_validated
= true;
457 FLOPPY_DPRINTF("Floppy disk (%d h %d t %d s) %s\n",
458 (drv
->flags
& FDISK_DBL_SIDES
) ? 2 : 1,
459 drv
->max_track
, drv
->last_sect
,
460 drv
->ro
? "ro" : "rw");
464 FLOPPY_DPRINTF("No drive connected\n");
467 drv
->flags
&= ~FDISK_DBL_SIDES
;
468 drv
->drive
= FLOPPY_DRIVE_TYPE_NONE
;
469 drv
->disk
= FLOPPY_DRIVE_TYPE_NONE
;
473 static void fd_change_cb(void *opaque
, bool load
, Error
**errp
)
475 FDrive
*drive
= opaque
;
476 Error
*local_err
= NULL
;
479 blk_set_perm(drive
->blk
, 0, BLK_PERM_ALL
, &error_abort
);
481 blkconf_apply_backend_options(drive
->conf
,
482 blk_is_read_only(drive
->blk
), false,
485 error_propagate(errp
, local_err
);
490 drive
->media_changed
= 1;
491 drive
->media_validated
= false;
492 fd_revalidate(drive
);
495 static const BlockDevOps fd_block_ops
= {
496 .change_media_cb
= fd_change_cb
,
500 #define TYPE_FLOPPY_DRIVE "floppy"
501 #define FLOPPY_DRIVE(obj) \
502 OBJECT_CHECK(FloppyDrive, (obj), TYPE_FLOPPY_DRIVE)
504 typedef struct FloppyDrive
{
508 FloppyDriveType type
;
511 static Property floppy_drive_properties
[] = {
512 DEFINE_PROP_UINT32("unit", FloppyDrive
, unit
, -1),
513 DEFINE_BLOCK_PROPERTIES(FloppyDrive
, conf
),
514 DEFINE_PROP_SIGNED("drive-type", FloppyDrive
, type
,
515 FLOPPY_DRIVE_TYPE_AUTO
, qdev_prop_fdc_drive_type
,
517 DEFINE_PROP_END_OF_LIST(),
520 static void floppy_drive_realize(DeviceState
*qdev
, Error
**errp
)
522 FloppyDrive
*dev
= FLOPPY_DRIVE(qdev
);
523 FloppyBus
*bus
= FLOPPY_BUS(qdev
->parent_bus
);
525 Error
*local_err
= NULL
;
528 if (dev
->unit
== -1) {
529 for (dev
->unit
= 0; dev
->unit
< MAX_FD
; dev
->unit
++) {
530 drive
= get_drv(bus
->fdc
, dev
->unit
);
537 if (dev
->unit
>= MAX_FD
) {
538 error_setg(errp
, "Can't create floppy unit %d, bus supports "
539 "only %d units", dev
->unit
, MAX_FD
);
543 drive
= get_drv(bus
->fdc
, dev
->unit
);
545 error_setg(errp
, "Floppy unit %d is in use", dev
->unit
);
549 if (!dev
->conf
.blk
) {
550 /* Anonymous BlockBackend for an empty drive */
551 dev
->conf
.blk
= blk_new(0, BLK_PERM_ALL
);
552 ret
= blk_attach_dev(dev
->conf
.blk
, qdev
);
556 blkconf_blocksizes(&dev
->conf
);
557 if (dev
->conf
.logical_block_size
!= 512 ||
558 dev
->conf
.physical_block_size
!= 512)
560 error_setg(errp
, "Physical and logical block size must "
561 "be 512 for floppy");
565 /* rerror/werror aren't supported by fdc and therefore not even registered
566 * with qdev. So set the defaults manually before they are used in
567 * blkconf_apply_backend_options(). */
568 dev
->conf
.rerror
= BLOCKDEV_ON_ERROR_AUTO
;
569 dev
->conf
.werror
= BLOCKDEV_ON_ERROR_AUTO
;
571 blkconf_apply_backend_options(&dev
->conf
, blk_is_read_only(dev
->conf
.blk
),
574 error_propagate(errp
, local_err
);
578 /* 'enospc' is the default for -drive, 'report' is what blk_new() gives us
579 * for empty drives. */
580 if (blk_get_on_error(dev
->conf
.blk
, 0) != BLOCKDEV_ON_ERROR_ENOSPC
&&
581 blk_get_on_error(dev
->conf
.blk
, 0) != BLOCKDEV_ON_ERROR_REPORT
) {
582 error_setg(errp
, "fdc doesn't support drive option werror");
585 if (blk_get_on_error(dev
->conf
.blk
, 1) != BLOCKDEV_ON_ERROR_REPORT
) {
586 error_setg(errp
, "fdc doesn't support drive option rerror");
590 drive
->conf
= &dev
->conf
;
591 drive
->blk
= dev
->conf
.blk
;
592 drive
->fdctrl
= bus
->fdc
;
595 blk_set_dev_ops(drive
->blk
, &fd_block_ops
, drive
);
597 /* Keep 'type' qdev property and FDrive->drive in sync */
598 drive
->drive
= dev
->type
;
599 pick_drive_type(drive
);
600 dev
->type
= drive
->drive
;
602 fd_revalidate(drive
);
605 static void floppy_drive_class_init(ObjectClass
*klass
, void *data
)
607 DeviceClass
*k
= DEVICE_CLASS(klass
);
608 k
->realize
= floppy_drive_realize
;
609 set_bit(DEVICE_CATEGORY_STORAGE
, k
->categories
);
610 k
->bus_type
= TYPE_FLOPPY_BUS
;
611 k
->props
= floppy_drive_properties
;
612 k
->desc
= "virtual floppy drive";
615 static const TypeInfo floppy_drive_info
= {
616 .name
= TYPE_FLOPPY_DRIVE
,
617 .parent
= TYPE_DEVICE
,
618 .instance_size
= sizeof(FloppyDrive
),
619 .class_init
= floppy_drive_class_init
,
622 /********************************************************/
623 /* Intel 82078 floppy disk controller emulation */
625 static void fdctrl_reset(FDCtrl
*fdctrl
, int do_irq
);
626 static void fdctrl_to_command_phase(FDCtrl
*fdctrl
);
627 static int fdctrl_transfer_handler (void *opaque
, int nchan
,
628 int dma_pos
, int dma_len
);
629 static void fdctrl_raise_irq(FDCtrl
*fdctrl
);
630 static FDrive
*get_cur_drv(FDCtrl
*fdctrl
);
632 static uint32_t fdctrl_read_statusA(FDCtrl
*fdctrl
);
633 static uint32_t fdctrl_read_statusB(FDCtrl
*fdctrl
);
634 static uint32_t fdctrl_read_dor(FDCtrl
*fdctrl
);
635 static void fdctrl_write_dor(FDCtrl
*fdctrl
, uint32_t value
);
636 static uint32_t fdctrl_read_tape(FDCtrl
*fdctrl
);
637 static void fdctrl_write_tape(FDCtrl
*fdctrl
, uint32_t value
);
638 static uint32_t fdctrl_read_main_status(FDCtrl
*fdctrl
);
639 static void fdctrl_write_rate(FDCtrl
*fdctrl
, uint32_t value
);
640 static uint32_t fdctrl_read_data(FDCtrl
*fdctrl
);
641 static void fdctrl_write_data(FDCtrl
*fdctrl
, uint32_t value
);
642 static uint32_t fdctrl_read_dir(FDCtrl
*fdctrl
);
643 static void fdctrl_write_ccr(FDCtrl
*fdctrl
, uint32_t value
);
655 FD_STATE_MULTI
= 0x01, /* multi track flag */
656 FD_STATE_FORMAT
= 0x02, /* format flag */
672 FD_CMD_READ_TRACK
= 0x02,
673 FD_CMD_SPECIFY
= 0x03,
674 FD_CMD_SENSE_DRIVE_STATUS
= 0x04,
677 FD_CMD_RECALIBRATE
= 0x07,
678 FD_CMD_SENSE_INTERRUPT_STATUS
= 0x08,
679 FD_CMD_WRITE_DELETED
= 0x09,
680 FD_CMD_READ_ID
= 0x0a,
681 FD_CMD_READ_DELETED
= 0x0c,
682 FD_CMD_FORMAT_TRACK
= 0x0d,
683 FD_CMD_DUMPREG
= 0x0e,
685 FD_CMD_VERSION
= 0x10,
686 FD_CMD_SCAN_EQUAL
= 0x11,
687 FD_CMD_PERPENDICULAR_MODE
= 0x12,
688 FD_CMD_CONFIGURE
= 0x13,
690 FD_CMD_VERIFY
= 0x16,
691 FD_CMD_POWERDOWN_MODE
= 0x17,
692 FD_CMD_PART_ID
= 0x18,
693 FD_CMD_SCAN_LOW_OR_EQUAL
= 0x19,
694 FD_CMD_SCAN_HIGH_OR_EQUAL
= 0x1d,
696 FD_CMD_OPTION
= 0x33,
697 FD_CMD_RESTORE
= 0x4e,
698 FD_CMD_DRIVE_SPECIFICATION_COMMAND
= 0x8e,
699 FD_CMD_RELATIVE_SEEK_OUT
= 0x8f,
700 FD_CMD_FORMAT_AND_WRITE
= 0xcd,
701 FD_CMD_RELATIVE_SEEK_IN
= 0xcf,
705 FD_CONFIG_PRETRK
= 0xff, /* Pre-compensation set to track 0 */
706 FD_CONFIG_FIFOTHR
= 0x0f, /* FIFO threshold set to 1 byte */
707 FD_CONFIG_POLL
= 0x10, /* Poll enabled */
708 FD_CONFIG_EFIFO
= 0x20, /* FIFO disabled */
709 FD_CONFIG_EIS
= 0x40, /* No implied seeks */
718 FD_SR0_ABNTERM
= 0x40,
719 FD_SR0_INVCMD
= 0x80,
720 FD_SR0_RDYCHG
= 0xc0,
724 FD_SR1_MA
= 0x01, /* Missing address mark */
725 FD_SR1_NW
= 0x02, /* Not writable */
726 FD_SR1_EC
= 0x80, /* End of cylinder */
730 FD_SR2_SNS
= 0x04, /* Scan not satisfied */
731 FD_SR2_SEH
= 0x08, /* Scan equal hit */
742 FD_SRA_INTPEND
= 0x80,
756 FD_DOR_SELMASK
= 0x03,
758 FD_DOR_SELMASK
= 0x01,
760 FD_DOR_nRESET
= 0x04,
762 FD_DOR_MOTEN0
= 0x10,
763 FD_DOR_MOTEN1
= 0x20,
764 FD_DOR_MOTEN2
= 0x40,
765 FD_DOR_MOTEN3
= 0x80,
770 FD_TDR_BOOTSEL
= 0x0c,
772 FD_TDR_BOOTSEL
= 0x04,
777 FD_DSR_DRATEMASK
= 0x03,
778 FD_DSR_PWRDOWN
= 0x40,
779 FD_DSR_SWRESET
= 0x80,
783 FD_MSR_DRV0BUSY
= 0x01,
784 FD_MSR_DRV1BUSY
= 0x02,
785 FD_MSR_DRV2BUSY
= 0x04,
786 FD_MSR_DRV3BUSY
= 0x08,
787 FD_MSR_CMDBUSY
= 0x10,
788 FD_MSR_NONDMA
= 0x20,
794 FD_DIR_DSKCHG
= 0x80,
798 * See chapter 5.0 "Controller phases" of the spec:
801 * The host writes a command and its parameters into the FIFO. The command
802 * phase is completed when all parameters for the command have been supplied,
803 * and execution phase is entered.
806 * Data transfers, either DMA or non-DMA. For non-DMA transfers, the FIFO
807 * contains the payload now, otherwise it's unused. When all bytes of the
808 * required data have been transferred, the state is switched to either result
809 * phase (if the command produces status bytes) or directly back into the
810 * command phase for the next command.
813 * The host reads out the FIFO, which contains one or more result bytes now.
816 /* Only for migration: reconstruct phase from registers like qemu 2.3 */
817 FD_PHASE_RECONSTRUCT
= 0,
819 FD_PHASE_COMMAND
= 1,
820 FD_PHASE_EXECUTION
= 2,
824 #define FD_MULTI_TRACK(state) ((state) & FD_STATE_MULTI)
825 #define FD_FORMAT_CMD(state) ((state) & FD_STATE_FORMAT)
830 /* Controller state */
831 QEMUTimer
*result_timer
;
835 /* Controller's identification */
841 uint8_t dor_vmstate
; /* only used as temp during vmstate */
856 uint8_t eot
; /* last wanted sector */
857 /* States kept only to be returned back */
858 /* precompensation */
862 /* Power down config (also with status regB access mode */
866 uint8_t num_floppies
;
867 FDrive drives
[MAX_FD
];
870 FloppyDriveType type
;
871 } qdev_for_drives
[MAX_FD
];
873 uint32_t check_media_rate
;
874 FloppyDriveType fallback
; /* type=auto failure fallback */
878 PortioList portio_list
;
881 static FloppyDriveType
get_fallback_drive_type(FDrive
*drv
)
883 return drv
->fdctrl
->fallback
;
886 #define TYPE_SYSBUS_FDC "base-sysbus-fdc"
887 #define SYSBUS_FDC(obj) OBJECT_CHECK(FDCtrlSysBus, (obj), TYPE_SYSBUS_FDC)
889 typedef struct FDCtrlSysBus
{
891 SysBusDevice parent_obj
;
897 #define ISA_FDC(obj) OBJECT_CHECK(FDCtrlISABus, (obj), TYPE_ISA_FDC)
899 typedef struct FDCtrlISABus
{
900 ISADevice parent_obj
;
910 static uint32_t fdctrl_read (void *opaque
, uint32_t reg
)
912 FDCtrl
*fdctrl
= opaque
;
918 retval
= fdctrl_read_statusA(fdctrl
);
921 retval
= fdctrl_read_statusB(fdctrl
);
924 retval
= fdctrl_read_dor(fdctrl
);
927 retval
= fdctrl_read_tape(fdctrl
);
930 retval
= fdctrl_read_main_status(fdctrl
);
933 retval
= fdctrl_read_data(fdctrl
);
936 retval
= fdctrl_read_dir(fdctrl
);
939 retval
= (uint32_t)(-1);
942 FLOPPY_DPRINTF("read reg%d: 0x%02x\n", reg
& 7, retval
);
947 static void fdctrl_write (void *opaque
, uint32_t reg
, uint32_t value
)
949 FDCtrl
*fdctrl
= opaque
;
951 FLOPPY_DPRINTF("write reg%d: 0x%02x\n", reg
& 7, value
);
956 fdctrl_write_dor(fdctrl
, value
);
959 fdctrl_write_tape(fdctrl
, value
);
962 fdctrl_write_rate(fdctrl
, value
);
965 fdctrl_write_data(fdctrl
, value
);
968 fdctrl_write_ccr(fdctrl
, value
);
975 static uint64_t fdctrl_read_mem (void *opaque
, hwaddr reg
,
978 return fdctrl_read(opaque
, (uint32_t)reg
);
981 static void fdctrl_write_mem (void *opaque
, hwaddr reg
,
982 uint64_t value
, unsigned size
)
984 fdctrl_write(opaque
, (uint32_t)reg
, value
);
987 static const MemoryRegionOps fdctrl_mem_ops
= {
988 .read
= fdctrl_read_mem
,
989 .write
= fdctrl_write_mem
,
990 .endianness
= DEVICE_NATIVE_ENDIAN
,
993 static const MemoryRegionOps fdctrl_mem_strict_ops
= {
994 .read
= fdctrl_read_mem
,
995 .write
= fdctrl_write_mem
,
996 .endianness
= DEVICE_NATIVE_ENDIAN
,
998 .min_access_size
= 1,
999 .max_access_size
= 1,
1003 static bool fdrive_media_changed_needed(void *opaque
)
1005 FDrive
*drive
= opaque
;
1007 return (drive
->blk
!= NULL
&& drive
->media_changed
!= 1);
1010 static const VMStateDescription vmstate_fdrive_media_changed
= {
1011 .name
= "fdrive/media_changed",
1013 .minimum_version_id
= 1,
1014 .needed
= fdrive_media_changed_needed
,
1015 .fields
= (VMStateField
[]) {
1016 VMSTATE_UINT8(media_changed
, FDrive
),
1017 VMSTATE_END_OF_LIST()
1021 static bool fdrive_media_rate_needed(void *opaque
)
1023 FDrive
*drive
= opaque
;
1025 return drive
->fdctrl
->check_media_rate
;
1028 static const VMStateDescription vmstate_fdrive_media_rate
= {
1029 .name
= "fdrive/media_rate",
1031 .minimum_version_id
= 1,
1032 .needed
= fdrive_media_rate_needed
,
1033 .fields
= (VMStateField
[]) {
1034 VMSTATE_UINT8(media_rate
, FDrive
),
1035 VMSTATE_END_OF_LIST()
1039 static bool fdrive_perpendicular_needed(void *opaque
)
1041 FDrive
*drive
= opaque
;
1043 return drive
->perpendicular
!= 0;
1046 static const VMStateDescription vmstate_fdrive_perpendicular
= {
1047 .name
= "fdrive/perpendicular",
1049 .minimum_version_id
= 1,
1050 .needed
= fdrive_perpendicular_needed
,
1051 .fields
= (VMStateField
[]) {
1052 VMSTATE_UINT8(perpendicular
, FDrive
),
1053 VMSTATE_END_OF_LIST()
1057 static int fdrive_post_load(void *opaque
, int version_id
)
1059 fd_revalidate(opaque
);
1063 static const VMStateDescription vmstate_fdrive
= {
1066 .minimum_version_id
= 1,
1067 .post_load
= fdrive_post_load
,
1068 .fields
= (VMStateField
[]) {
1069 VMSTATE_UINT8(head
, FDrive
),
1070 VMSTATE_UINT8(track
, FDrive
),
1071 VMSTATE_UINT8(sect
, FDrive
),
1072 VMSTATE_END_OF_LIST()
1074 .subsections
= (const VMStateDescription
*[]) {
1075 &vmstate_fdrive_media_changed
,
1076 &vmstate_fdrive_media_rate
,
1077 &vmstate_fdrive_perpendicular
,
1083 * Reconstructs the phase from register values according to the logic that was
1084 * implemented in qemu 2.3. This is the default value that is used if the phase
1085 * subsection is not present on migration.
1087 * Don't change this function to reflect newer qemu versions, it is part of
1088 * the migration ABI.
1090 static int reconstruct_phase(FDCtrl
*fdctrl
)
1092 if (fdctrl
->msr
& FD_MSR_NONDMA
) {
1093 return FD_PHASE_EXECUTION
;
1094 } else if ((fdctrl
->msr
& FD_MSR_RQM
) == 0) {
1095 /* qemu 2.3 disabled RQM only during DMA transfers */
1096 return FD_PHASE_EXECUTION
;
1097 } else if (fdctrl
->msr
& FD_MSR_DIO
) {
1098 return FD_PHASE_RESULT
;
1100 return FD_PHASE_COMMAND
;
1104 static int fdc_pre_save(void *opaque
)
1108 s
->dor_vmstate
= s
->dor
| GET_CUR_DRV(s
);
1113 static int fdc_pre_load(void *opaque
)
1116 s
->phase
= FD_PHASE_RECONSTRUCT
;
1120 static int fdc_post_load(void *opaque
, int version_id
)
1124 SET_CUR_DRV(s
, s
->dor_vmstate
& FD_DOR_SELMASK
);
1125 s
->dor
= s
->dor_vmstate
& ~FD_DOR_SELMASK
;
1127 if (s
->phase
== FD_PHASE_RECONSTRUCT
) {
1128 s
->phase
= reconstruct_phase(s
);
1134 static bool fdc_reset_sensei_needed(void *opaque
)
1138 return s
->reset_sensei
!= 0;
1141 static const VMStateDescription vmstate_fdc_reset_sensei
= {
1142 .name
= "fdc/reset_sensei",
1144 .minimum_version_id
= 1,
1145 .needed
= fdc_reset_sensei_needed
,
1146 .fields
= (VMStateField
[]) {
1147 VMSTATE_INT32(reset_sensei
, FDCtrl
),
1148 VMSTATE_END_OF_LIST()
1152 static bool fdc_result_timer_needed(void *opaque
)
1156 return timer_pending(s
->result_timer
);
1159 static const VMStateDescription vmstate_fdc_result_timer
= {
1160 .name
= "fdc/result_timer",
1162 .minimum_version_id
= 1,
1163 .needed
= fdc_result_timer_needed
,
1164 .fields
= (VMStateField
[]) {
1165 VMSTATE_TIMER_PTR(result_timer
, FDCtrl
),
1166 VMSTATE_END_OF_LIST()
1170 static bool fdc_phase_needed(void *opaque
)
1172 FDCtrl
*fdctrl
= opaque
;
1174 return reconstruct_phase(fdctrl
) != fdctrl
->phase
;
1177 static const VMStateDescription vmstate_fdc_phase
= {
1178 .name
= "fdc/phase",
1180 .minimum_version_id
= 1,
1181 .needed
= fdc_phase_needed
,
1182 .fields
= (VMStateField
[]) {
1183 VMSTATE_UINT8(phase
, FDCtrl
),
1184 VMSTATE_END_OF_LIST()
1188 static const VMStateDescription vmstate_fdc
= {
1191 .minimum_version_id
= 2,
1192 .pre_save
= fdc_pre_save
,
1193 .pre_load
= fdc_pre_load
,
1194 .post_load
= fdc_post_load
,
1195 .fields
= (VMStateField
[]) {
1196 /* Controller State */
1197 VMSTATE_UINT8(sra
, FDCtrl
),
1198 VMSTATE_UINT8(srb
, FDCtrl
),
1199 VMSTATE_UINT8(dor_vmstate
, FDCtrl
),
1200 VMSTATE_UINT8(tdr
, FDCtrl
),
1201 VMSTATE_UINT8(dsr
, FDCtrl
),
1202 VMSTATE_UINT8(msr
, FDCtrl
),
1203 VMSTATE_UINT8(status0
, FDCtrl
),
1204 VMSTATE_UINT8(status1
, FDCtrl
),
1205 VMSTATE_UINT8(status2
, FDCtrl
),
1207 VMSTATE_VARRAY_INT32(fifo
, FDCtrl
, fifo_size
, 0, vmstate_info_uint8
,
1209 VMSTATE_UINT32(data_pos
, FDCtrl
),
1210 VMSTATE_UINT32(data_len
, FDCtrl
),
1211 VMSTATE_UINT8(data_state
, FDCtrl
),
1212 VMSTATE_UINT8(data_dir
, FDCtrl
),
1213 VMSTATE_UINT8(eot
, FDCtrl
),
1214 /* States kept only to be returned back */
1215 VMSTATE_UINT8(timer0
, FDCtrl
),
1216 VMSTATE_UINT8(timer1
, FDCtrl
),
1217 VMSTATE_UINT8(precomp_trk
, FDCtrl
),
1218 VMSTATE_UINT8(config
, FDCtrl
),
1219 VMSTATE_UINT8(lock
, FDCtrl
),
1220 VMSTATE_UINT8(pwrd
, FDCtrl
),
1221 VMSTATE_UINT8_EQUAL(num_floppies
, FDCtrl
, NULL
),
1222 VMSTATE_STRUCT_ARRAY(drives
, FDCtrl
, MAX_FD
, 1,
1223 vmstate_fdrive
, FDrive
),
1224 VMSTATE_END_OF_LIST()
1226 .subsections
= (const VMStateDescription
*[]) {
1227 &vmstate_fdc_reset_sensei
,
1228 &vmstate_fdc_result_timer
,
1234 static void fdctrl_external_reset_sysbus(DeviceState
*d
)
1236 FDCtrlSysBus
*sys
= SYSBUS_FDC(d
);
1237 FDCtrl
*s
= &sys
->state
;
1242 static void fdctrl_external_reset_isa(DeviceState
*d
)
1244 FDCtrlISABus
*isa
= ISA_FDC(d
);
1245 FDCtrl
*s
= &isa
->state
;
1250 static void fdctrl_handle_tc(void *opaque
, int irq
, int level
)
1252 //FDCtrl *s = opaque;
1256 FLOPPY_DPRINTF("TC pulsed\n");
1260 /* Change IRQ state */
1261 static void fdctrl_reset_irq(FDCtrl
*fdctrl
)
1263 fdctrl
->status0
= 0;
1264 if (!(fdctrl
->sra
& FD_SRA_INTPEND
))
1266 FLOPPY_DPRINTF("Reset interrupt\n");
1267 qemu_set_irq(fdctrl
->irq
, 0);
1268 fdctrl
->sra
&= ~FD_SRA_INTPEND
;
1271 static void fdctrl_raise_irq(FDCtrl
*fdctrl
)
1273 if (!(fdctrl
->sra
& FD_SRA_INTPEND
)) {
1274 qemu_set_irq(fdctrl
->irq
, 1);
1275 fdctrl
->sra
|= FD_SRA_INTPEND
;
1278 fdctrl
->reset_sensei
= 0;
1279 FLOPPY_DPRINTF("Set interrupt status to 0x%02x\n", fdctrl
->status0
);
1282 /* Reset controller */
1283 static void fdctrl_reset(FDCtrl
*fdctrl
, int do_irq
)
1287 FLOPPY_DPRINTF("reset controller\n");
1288 fdctrl_reset_irq(fdctrl
);
1289 /* Initialise controller */
1292 if (!fdctrl
->drives
[1].blk
) {
1293 fdctrl
->sra
|= FD_SRA_nDRV2
;
1295 fdctrl
->cur_drv
= 0;
1296 fdctrl
->dor
= FD_DOR_nRESET
;
1297 fdctrl
->dor
|= (fdctrl
->dma_chann
!= -1) ? FD_DOR_DMAEN
: 0;
1298 fdctrl
->msr
= FD_MSR_RQM
;
1299 fdctrl
->reset_sensei
= 0;
1300 timer_del(fdctrl
->result_timer
);
1302 fdctrl
->data_pos
= 0;
1303 fdctrl
->data_len
= 0;
1304 fdctrl
->data_state
= 0;
1305 fdctrl
->data_dir
= FD_DIR_WRITE
;
1306 for (i
= 0; i
< MAX_FD
; i
++)
1307 fd_recalibrate(&fdctrl
->drives
[i
]);
1308 fdctrl_to_command_phase(fdctrl
);
1310 fdctrl
->status0
|= FD_SR0_RDYCHG
;
1311 fdctrl_raise_irq(fdctrl
);
1312 fdctrl
->reset_sensei
= FD_RESET_SENSEI_COUNT
;
1316 static inline FDrive
*drv0(FDCtrl
*fdctrl
)
1318 return &fdctrl
->drives
[(fdctrl
->tdr
& FD_TDR_BOOTSEL
) >> 2];
1321 static inline FDrive
*drv1(FDCtrl
*fdctrl
)
1323 if ((fdctrl
->tdr
& FD_TDR_BOOTSEL
) < (1 << 2))
1324 return &fdctrl
->drives
[1];
1326 return &fdctrl
->drives
[0];
1330 static inline FDrive
*drv2(FDCtrl
*fdctrl
)
1332 if ((fdctrl
->tdr
& FD_TDR_BOOTSEL
) < (2 << 2))
1333 return &fdctrl
->drives
[2];
1335 return &fdctrl
->drives
[1];
1338 static inline FDrive
*drv3(FDCtrl
*fdctrl
)
1340 if ((fdctrl
->tdr
& FD_TDR_BOOTSEL
) < (3 << 2))
1341 return &fdctrl
->drives
[3];
1343 return &fdctrl
->drives
[2];
1347 static FDrive
*get_drv(FDCtrl
*fdctrl
, int unit
)
1350 case 0: return drv0(fdctrl
);
1351 case 1: return drv1(fdctrl
);
1353 case 2: return drv2(fdctrl
);
1354 case 3: return drv3(fdctrl
);
1356 default: return NULL
;
1360 static FDrive
*get_cur_drv(FDCtrl
*fdctrl
)
1362 return get_drv(fdctrl
, fdctrl
->cur_drv
);
1365 /* Status A register : 0x00 (read-only) */
1366 static uint32_t fdctrl_read_statusA(FDCtrl
*fdctrl
)
1368 uint32_t retval
= fdctrl
->sra
;
1370 FLOPPY_DPRINTF("status register A: 0x%02x\n", retval
);
1375 /* Status B register : 0x01 (read-only) */
1376 static uint32_t fdctrl_read_statusB(FDCtrl
*fdctrl
)
1378 uint32_t retval
= fdctrl
->srb
;
1380 FLOPPY_DPRINTF("status register B: 0x%02x\n", retval
);
1385 /* Digital output register : 0x02 */
1386 static uint32_t fdctrl_read_dor(FDCtrl
*fdctrl
)
1388 uint32_t retval
= fdctrl
->dor
;
1390 /* Selected drive */
1391 retval
|= fdctrl
->cur_drv
;
1392 FLOPPY_DPRINTF("digital output register: 0x%02x\n", retval
);
1397 static void fdctrl_write_dor(FDCtrl
*fdctrl
, uint32_t value
)
1399 FLOPPY_DPRINTF("digital output register set to 0x%02x\n", value
);
1402 if (value
& FD_DOR_MOTEN0
)
1403 fdctrl
->srb
|= FD_SRB_MTR0
;
1405 fdctrl
->srb
&= ~FD_SRB_MTR0
;
1406 if (value
& FD_DOR_MOTEN1
)
1407 fdctrl
->srb
|= FD_SRB_MTR1
;
1409 fdctrl
->srb
&= ~FD_SRB_MTR1
;
1413 fdctrl
->srb
|= FD_SRB_DR0
;
1415 fdctrl
->srb
&= ~FD_SRB_DR0
;
1418 if (!(value
& FD_DOR_nRESET
)) {
1419 if (fdctrl
->dor
& FD_DOR_nRESET
) {
1420 FLOPPY_DPRINTF("controller enter RESET state\n");
1423 if (!(fdctrl
->dor
& FD_DOR_nRESET
)) {
1424 FLOPPY_DPRINTF("controller out of RESET state\n");
1425 fdctrl_reset(fdctrl
, 1);
1426 fdctrl
->dsr
&= ~FD_DSR_PWRDOWN
;
1429 /* Selected drive */
1430 fdctrl
->cur_drv
= value
& FD_DOR_SELMASK
;
1432 fdctrl
->dor
= value
;
1435 /* Tape drive register : 0x03 */
1436 static uint32_t fdctrl_read_tape(FDCtrl
*fdctrl
)
1438 uint32_t retval
= fdctrl
->tdr
;
1440 FLOPPY_DPRINTF("tape drive register: 0x%02x\n", retval
);
1445 static void fdctrl_write_tape(FDCtrl
*fdctrl
, uint32_t value
)
1448 if (!(fdctrl
->dor
& FD_DOR_nRESET
)) {
1449 FLOPPY_DPRINTF("Floppy controller in RESET state !\n");
1452 FLOPPY_DPRINTF("tape drive register set to 0x%02x\n", value
);
1453 /* Disk boot selection indicator */
1454 fdctrl
->tdr
= value
& FD_TDR_BOOTSEL
;
1455 /* Tape indicators: never allow */
1458 /* Main status register : 0x04 (read) */
1459 static uint32_t fdctrl_read_main_status(FDCtrl
*fdctrl
)
1461 uint32_t retval
= fdctrl
->msr
;
1463 fdctrl
->dsr
&= ~FD_DSR_PWRDOWN
;
1464 fdctrl
->dor
|= FD_DOR_nRESET
;
1466 FLOPPY_DPRINTF("main status register: 0x%02x\n", retval
);
1471 /* Data select rate register : 0x04 (write) */
1472 static void fdctrl_write_rate(FDCtrl
*fdctrl
, uint32_t value
)
1475 if (!(fdctrl
->dor
& FD_DOR_nRESET
)) {
1476 FLOPPY_DPRINTF("Floppy controller in RESET state !\n");
1479 FLOPPY_DPRINTF("select rate register set to 0x%02x\n", value
);
1480 /* Reset: autoclear */
1481 if (value
& FD_DSR_SWRESET
) {
1482 fdctrl
->dor
&= ~FD_DOR_nRESET
;
1483 fdctrl_reset(fdctrl
, 1);
1484 fdctrl
->dor
|= FD_DOR_nRESET
;
1486 if (value
& FD_DSR_PWRDOWN
) {
1487 fdctrl_reset(fdctrl
, 1);
1489 fdctrl
->dsr
= value
;
1492 /* Configuration control register: 0x07 (write) */
1493 static void fdctrl_write_ccr(FDCtrl
*fdctrl
, uint32_t value
)
1496 if (!(fdctrl
->dor
& FD_DOR_nRESET
)) {
1497 FLOPPY_DPRINTF("Floppy controller in RESET state !\n");
1500 FLOPPY_DPRINTF("configuration control register set to 0x%02x\n", value
);
1502 /* Only the rate selection bits used in AT mode, and we
1503 * store those in the DSR.
1505 fdctrl
->dsr
= (fdctrl
->dsr
& ~FD_DSR_DRATEMASK
) |
1506 (value
& FD_DSR_DRATEMASK
);
1509 static int fdctrl_media_changed(FDrive
*drv
)
1511 return drv
->media_changed
;
1514 /* Digital input register : 0x07 (read-only) */
1515 static uint32_t fdctrl_read_dir(FDCtrl
*fdctrl
)
1517 uint32_t retval
= 0;
1519 if (fdctrl_media_changed(get_cur_drv(fdctrl
))) {
1520 retval
|= FD_DIR_DSKCHG
;
1523 FLOPPY_DPRINTF("Floppy digital input register: 0x%02x\n", retval
);
1529 /* Clear the FIFO and update the state for receiving the next command */
1530 static void fdctrl_to_command_phase(FDCtrl
*fdctrl
)
1532 fdctrl
->phase
= FD_PHASE_COMMAND
;
1533 fdctrl
->data_dir
= FD_DIR_WRITE
;
1534 fdctrl
->data_pos
= 0;
1535 fdctrl
->data_len
= 1; /* Accept command byte, adjust for params later */
1536 fdctrl
->msr
&= ~(FD_MSR_CMDBUSY
| FD_MSR_DIO
);
1537 fdctrl
->msr
|= FD_MSR_RQM
;
1540 /* Update the state to allow the guest to read out the command status.
1541 * @fifo_len is the number of result bytes to be read out. */
1542 static void fdctrl_to_result_phase(FDCtrl
*fdctrl
, int fifo_len
)
1544 fdctrl
->phase
= FD_PHASE_RESULT
;
1545 fdctrl
->data_dir
= FD_DIR_READ
;
1546 fdctrl
->data_len
= fifo_len
;
1547 fdctrl
->data_pos
= 0;
1548 fdctrl
->msr
|= FD_MSR_CMDBUSY
| FD_MSR_RQM
| FD_MSR_DIO
;
1551 /* Set an error: unimplemented/unknown command */
1552 static void fdctrl_unimplemented(FDCtrl
*fdctrl
, int direction
)
1554 qemu_log_mask(LOG_UNIMP
, "fdc: unimplemented command 0x%02x\n",
1556 fdctrl
->fifo
[0] = FD_SR0_INVCMD
;
1557 fdctrl_to_result_phase(fdctrl
, 1);
1560 /* Seek to next sector
1561 * returns 0 when end of track reached (for DBL_SIDES on head 1)
1562 * otherwise returns 1
1564 static int fdctrl_seek_to_next_sect(FDCtrl
*fdctrl
, FDrive
*cur_drv
)
1566 FLOPPY_DPRINTF("seek to next sector (%d %02x %02x => %d)\n",
1567 cur_drv
->head
, cur_drv
->track
, cur_drv
->sect
,
1568 fd_sector(cur_drv
));
1569 /* XXX: cur_drv->sect >= cur_drv->last_sect should be an
1571 uint8_t new_head
= cur_drv
->head
;
1572 uint8_t new_track
= cur_drv
->track
;
1573 uint8_t new_sect
= cur_drv
->sect
;
1577 if (new_sect
>= cur_drv
->last_sect
||
1578 new_sect
== fdctrl
->eot
) {
1580 if (FD_MULTI_TRACK(fdctrl
->data_state
)) {
1581 if (new_head
== 0 &&
1582 (cur_drv
->flags
& FDISK_DBL_SIDES
) != 0) {
1587 fdctrl
->status0
|= FD_SR0_SEEK
;
1588 if ((cur_drv
->flags
& FDISK_DBL_SIDES
) == 0) {
1593 fdctrl
->status0
|= FD_SR0_SEEK
;
1598 FLOPPY_DPRINTF("seek to next track (%d %02x %02x => %d)\n",
1599 new_head
, new_track
, new_sect
, fd_sector(cur_drv
));
1604 fd_seek(cur_drv
, new_head
, new_track
, new_sect
, 1);
1608 /* Callback for transfer end (stop or abort) */
1609 static void fdctrl_stop_transfer(FDCtrl
*fdctrl
, uint8_t status0
,
1610 uint8_t status1
, uint8_t status2
)
1613 cur_drv
= get_cur_drv(fdctrl
);
1615 fdctrl
->status0
&= ~(FD_SR0_DS0
| FD_SR0_DS1
| FD_SR0_HEAD
);
1616 fdctrl
->status0
|= GET_CUR_DRV(fdctrl
);
1617 if (cur_drv
->head
) {
1618 fdctrl
->status0
|= FD_SR0_HEAD
;
1620 fdctrl
->status0
|= status0
;
1622 FLOPPY_DPRINTF("transfer status: %02x %02x %02x (%02x)\n",
1623 status0
, status1
, status2
, fdctrl
->status0
);
1624 fdctrl
->fifo
[0] = fdctrl
->status0
;
1625 fdctrl
->fifo
[1] = status1
;
1626 fdctrl
->fifo
[2] = status2
;
1627 fdctrl
->fifo
[3] = cur_drv
->track
;
1628 fdctrl
->fifo
[4] = cur_drv
->head
;
1629 fdctrl
->fifo
[5] = cur_drv
->sect
;
1630 fdctrl
->fifo
[6] = FD_SECTOR_SC
;
1631 fdctrl
->data_dir
= FD_DIR_READ
;
1632 if (!(fdctrl
->msr
& FD_MSR_NONDMA
)) {
1633 IsaDmaClass
*k
= ISADMA_GET_CLASS(fdctrl
->dma
);
1634 k
->release_DREQ(fdctrl
->dma
, fdctrl
->dma_chann
);
1636 fdctrl
->msr
|= FD_MSR_RQM
| FD_MSR_DIO
;
1637 fdctrl
->msr
&= ~FD_MSR_NONDMA
;
1639 fdctrl_to_result_phase(fdctrl
, 7);
1640 fdctrl_raise_irq(fdctrl
);
1643 /* Prepare a data transfer (either DMA or FIFO) */
1644 static void fdctrl_start_transfer(FDCtrl
*fdctrl
, int direction
)
1649 SET_CUR_DRV(fdctrl
, fdctrl
->fifo
[1] & FD_DOR_SELMASK
);
1650 cur_drv
= get_cur_drv(fdctrl
);
1651 kt
= fdctrl
->fifo
[2];
1652 kh
= fdctrl
->fifo
[3];
1653 ks
= fdctrl
->fifo
[4];
1654 FLOPPY_DPRINTF("Start transfer at %d %d %02x %02x (%d)\n",
1655 GET_CUR_DRV(fdctrl
), kh
, kt
, ks
,
1656 fd_sector_calc(kh
, kt
, ks
, cur_drv
->last_sect
,
1657 NUM_SIDES(cur_drv
)));
1658 switch (fd_seek(cur_drv
, kh
, kt
, ks
, fdctrl
->config
& FD_CONFIG_EIS
)) {
1661 fdctrl_stop_transfer(fdctrl
, FD_SR0_ABNTERM
, 0x00, 0x00);
1662 fdctrl
->fifo
[3] = kt
;
1663 fdctrl
->fifo
[4] = kh
;
1664 fdctrl
->fifo
[5] = ks
;
1668 fdctrl_stop_transfer(fdctrl
, FD_SR0_ABNTERM
, FD_SR1_EC
, 0x00);
1669 fdctrl
->fifo
[3] = kt
;
1670 fdctrl
->fifo
[4] = kh
;
1671 fdctrl
->fifo
[5] = ks
;
1674 /* No seek enabled */
1675 fdctrl_stop_transfer(fdctrl
, FD_SR0_ABNTERM
, 0x00, 0x00);
1676 fdctrl
->fifo
[3] = kt
;
1677 fdctrl
->fifo
[4] = kh
;
1678 fdctrl
->fifo
[5] = ks
;
1681 fdctrl
->status0
|= FD_SR0_SEEK
;
1687 /* Check the data rate. If the programmed data rate does not match
1688 * the currently inserted medium, the operation has to fail. */
1689 if (fdctrl
->check_media_rate
&&
1690 (fdctrl
->dsr
& FD_DSR_DRATEMASK
) != cur_drv
->media_rate
) {
1691 FLOPPY_DPRINTF("data rate mismatch (fdc=%d, media=%d)\n",
1692 fdctrl
->dsr
& FD_DSR_DRATEMASK
, cur_drv
->media_rate
);
1693 fdctrl_stop_transfer(fdctrl
, FD_SR0_ABNTERM
, FD_SR1_MA
, 0x00);
1694 fdctrl
->fifo
[3] = kt
;
1695 fdctrl
->fifo
[4] = kh
;
1696 fdctrl
->fifo
[5] = ks
;
1700 /* Set the FIFO state */
1701 fdctrl
->data_dir
= direction
;
1702 fdctrl
->data_pos
= 0;
1703 assert(fdctrl
->msr
& FD_MSR_CMDBUSY
);
1704 if (fdctrl
->fifo
[0] & 0x80)
1705 fdctrl
->data_state
|= FD_STATE_MULTI
;
1707 fdctrl
->data_state
&= ~FD_STATE_MULTI
;
1708 if (fdctrl
->fifo
[5] == 0) {
1709 fdctrl
->data_len
= fdctrl
->fifo
[8];
1712 fdctrl
->data_len
= 128 << (fdctrl
->fifo
[5] > 7 ? 7 : fdctrl
->fifo
[5]);
1713 tmp
= (fdctrl
->fifo
[6] - ks
+ 1);
1714 if (fdctrl
->fifo
[0] & 0x80)
1715 tmp
+= fdctrl
->fifo
[6];
1716 fdctrl
->data_len
*= tmp
;
1718 fdctrl
->eot
= fdctrl
->fifo
[6];
1719 if (fdctrl
->dor
& FD_DOR_DMAEN
) {
1720 IsaDmaTransferMode dma_mode
;
1721 IsaDmaClass
*k
= ISADMA_GET_CLASS(fdctrl
->dma
);
1723 /* DMA transfer are enabled. Check if DMA channel is well programmed */
1724 dma_mode
= k
->get_transfer_mode(fdctrl
->dma
, fdctrl
->dma_chann
);
1725 FLOPPY_DPRINTF("dma_mode=%d direction=%d (%d - %d)\n",
1726 dma_mode
, direction
,
1727 (128 << fdctrl
->fifo
[5]) *
1728 (cur_drv
->last_sect
- ks
+ 1), fdctrl
->data_len
);
1729 switch (direction
) {
1733 dma_mode_ok
= (dma_mode
== ISADMA_TRANSFER_VERIFY
);
1736 dma_mode_ok
= (dma_mode
== ISADMA_TRANSFER_WRITE
);
1739 dma_mode_ok
= (dma_mode
== ISADMA_TRANSFER_READ
);
1745 dma_mode_ok
= false;
1749 /* No access is allowed until DMA transfer has completed */
1750 fdctrl
->msr
&= ~FD_MSR_RQM
;
1751 if (direction
!= FD_DIR_VERIFY
) {
1752 /* Now, we just have to wait for the DMA controller to
1755 k
->hold_DREQ(fdctrl
->dma
, fdctrl
->dma_chann
);
1756 k
->schedule(fdctrl
->dma
);
1758 /* Start transfer */
1759 fdctrl_transfer_handler(fdctrl
, fdctrl
->dma_chann
, 0,
1764 FLOPPY_DPRINTF("bad dma_mode=%d direction=%d\n", dma_mode
,
1768 FLOPPY_DPRINTF("start non-DMA transfer\n");
1769 fdctrl
->msr
|= FD_MSR_NONDMA
| FD_MSR_RQM
;
1770 if (direction
!= FD_DIR_WRITE
)
1771 fdctrl
->msr
|= FD_MSR_DIO
;
1772 /* IO based transfer: calculate len */
1773 fdctrl_raise_irq(fdctrl
);
1776 /* Prepare a transfer of deleted data */
1777 static void fdctrl_start_transfer_del(FDCtrl
*fdctrl
, int direction
)
1779 qemu_log_mask(LOG_UNIMP
, "fdctrl_start_transfer_del() unimplemented\n");
1781 /* We don't handle deleted data,
1782 * so we don't return *ANYTHING*
1784 fdctrl_stop_transfer(fdctrl
, FD_SR0_ABNTERM
| FD_SR0_SEEK
, 0x00, 0x00);
1787 /* handlers for DMA transfers */
1788 static int fdctrl_transfer_handler (void *opaque
, int nchan
,
1789 int dma_pos
, int dma_len
)
1793 int len
, start_pos
, rel_pos
;
1794 uint8_t status0
= 0x00, status1
= 0x00, status2
= 0x00;
1798 if (fdctrl
->msr
& FD_MSR_RQM
) {
1799 FLOPPY_DPRINTF("Not in DMA transfer mode !\n");
1802 k
= ISADMA_GET_CLASS(fdctrl
->dma
);
1803 cur_drv
= get_cur_drv(fdctrl
);
1804 if (fdctrl
->data_dir
== FD_DIR_SCANE
|| fdctrl
->data_dir
== FD_DIR_SCANL
||
1805 fdctrl
->data_dir
== FD_DIR_SCANH
)
1806 status2
= FD_SR2_SNS
;
1807 if (dma_len
> fdctrl
->data_len
)
1808 dma_len
= fdctrl
->data_len
;
1809 if (cur_drv
->blk
== NULL
) {
1810 if (fdctrl
->data_dir
== FD_DIR_WRITE
)
1811 fdctrl_stop_transfer(fdctrl
, FD_SR0_ABNTERM
| FD_SR0_SEEK
, 0x00, 0x00);
1813 fdctrl_stop_transfer(fdctrl
, FD_SR0_ABNTERM
, 0x00, 0x00);
1815 goto transfer_error
;
1817 rel_pos
= fdctrl
->data_pos
% FD_SECTOR_LEN
;
1818 for (start_pos
= fdctrl
->data_pos
; fdctrl
->data_pos
< dma_len
;) {
1819 len
= dma_len
- fdctrl
->data_pos
;
1820 if (len
+ rel_pos
> FD_SECTOR_LEN
)
1821 len
= FD_SECTOR_LEN
- rel_pos
;
1822 FLOPPY_DPRINTF("copy %d bytes (%d %d %d) %d pos %d %02x "
1823 "(%d-0x%08x 0x%08x)\n", len
, dma_len
, fdctrl
->data_pos
,
1824 fdctrl
->data_len
, GET_CUR_DRV(fdctrl
), cur_drv
->head
,
1825 cur_drv
->track
, cur_drv
->sect
, fd_sector(cur_drv
),
1826 fd_sector(cur_drv
) * FD_SECTOR_LEN
);
1827 if (fdctrl
->data_dir
!= FD_DIR_WRITE
||
1828 len
< FD_SECTOR_LEN
|| rel_pos
!= 0) {
1829 /* READ & SCAN commands and realign to a sector for WRITE */
1830 if (blk_pread(cur_drv
->blk
, fd_offset(cur_drv
),
1831 fdctrl
->fifo
, BDRV_SECTOR_SIZE
) < 0) {
1832 FLOPPY_DPRINTF("Floppy: error getting sector %d\n",
1833 fd_sector(cur_drv
));
1834 /* Sure, image size is too small... */
1835 memset(fdctrl
->fifo
, 0, FD_SECTOR_LEN
);
1838 switch (fdctrl
->data_dir
) {
1841 k
->write_memory(fdctrl
->dma
, nchan
, fdctrl
->fifo
+ rel_pos
,
1842 fdctrl
->data_pos
, len
);
1845 /* WRITE commands */
1847 /* Handle readonly medium early, no need to do DMA, touch the
1848 * LED or attempt any writes. A real floppy doesn't attempt
1849 * to write to readonly media either. */
1850 fdctrl_stop_transfer(fdctrl
,
1851 FD_SR0_ABNTERM
| FD_SR0_SEEK
, FD_SR1_NW
,
1853 goto transfer_error
;
1856 k
->read_memory(fdctrl
->dma
, nchan
, fdctrl
->fifo
+ rel_pos
,
1857 fdctrl
->data_pos
, len
);
1858 if (blk_pwrite(cur_drv
->blk
, fd_offset(cur_drv
),
1859 fdctrl
->fifo
, BDRV_SECTOR_SIZE
, 0) < 0) {
1860 FLOPPY_DPRINTF("error writing sector %d\n",
1861 fd_sector(cur_drv
));
1862 fdctrl_stop_transfer(fdctrl
, FD_SR0_ABNTERM
| FD_SR0_SEEK
, 0x00, 0x00);
1863 goto transfer_error
;
1867 /* VERIFY commands */
1872 uint8_t tmpbuf
[FD_SECTOR_LEN
];
1874 k
->read_memory(fdctrl
->dma
, nchan
, tmpbuf
, fdctrl
->data_pos
,
1876 ret
= memcmp(tmpbuf
, fdctrl
->fifo
+ rel_pos
, len
);
1878 status2
= FD_SR2_SEH
;
1881 if ((ret
< 0 && fdctrl
->data_dir
== FD_DIR_SCANL
) ||
1882 (ret
> 0 && fdctrl
->data_dir
== FD_DIR_SCANH
)) {
1889 fdctrl
->data_pos
+= len
;
1890 rel_pos
= fdctrl
->data_pos
% FD_SECTOR_LEN
;
1892 /* Seek to next sector */
1893 if (!fdctrl_seek_to_next_sect(fdctrl
, cur_drv
))
1898 len
= fdctrl
->data_pos
- start_pos
;
1899 FLOPPY_DPRINTF("end transfer %d %d %d\n",
1900 fdctrl
->data_pos
, len
, fdctrl
->data_len
);
1901 if (fdctrl
->data_dir
== FD_DIR_SCANE
||
1902 fdctrl
->data_dir
== FD_DIR_SCANL
||
1903 fdctrl
->data_dir
== FD_DIR_SCANH
)
1904 status2
= FD_SR2_SEH
;
1905 fdctrl
->data_len
-= len
;
1906 fdctrl_stop_transfer(fdctrl
, status0
, status1
, status2
);
1912 /* Data register : 0x05 */
1913 static uint32_t fdctrl_read_data(FDCtrl
*fdctrl
)
1916 uint32_t retval
= 0;
1919 cur_drv
= get_cur_drv(fdctrl
);
1920 fdctrl
->dsr
&= ~FD_DSR_PWRDOWN
;
1921 if (!(fdctrl
->msr
& FD_MSR_RQM
) || !(fdctrl
->msr
& FD_MSR_DIO
)) {
1922 FLOPPY_DPRINTF("error: controller not ready for reading\n");
1926 /* If data_len spans multiple sectors, the current position in the FIFO
1927 * wraps around while fdctrl->data_pos is the real position in the whole
1929 pos
= fdctrl
->data_pos
;
1930 pos
%= FD_SECTOR_LEN
;
1932 switch (fdctrl
->phase
) {
1933 case FD_PHASE_EXECUTION
:
1934 assert(fdctrl
->msr
& FD_MSR_NONDMA
);
1936 if (fdctrl
->data_pos
!= 0)
1937 if (!fdctrl_seek_to_next_sect(fdctrl
, cur_drv
)) {
1938 FLOPPY_DPRINTF("error seeking to next sector %d\n",
1939 fd_sector(cur_drv
));
1942 if (blk_pread(cur_drv
->blk
, fd_offset(cur_drv
), fdctrl
->fifo
,
1945 FLOPPY_DPRINTF("error getting sector %d\n",
1946 fd_sector(cur_drv
));
1947 /* Sure, image size is too small... */
1948 memset(fdctrl
->fifo
, 0, FD_SECTOR_LEN
);
1952 if (++fdctrl
->data_pos
== fdctrl
->data_len
) {
1953 fdctrl
->msr
&= ~FD_MSR_RQM
;
1954 fdctrl_stop_transfer(fdctrl
, 0x00, 0x00, 0x00);
1958 case FD_PHASE_RESULT
:
1959 assert(!(fdctrl
->msr
& FD_MSR_NONDMA
));
1960 if (++fdctrl
->data_pos
== fdctrl
->data_len
) {
1961 fdctrl
->msr
&= ~FD_MSR_RQM
;
1962 fdctrl_to_command_phase(fdctrl
);
1963 fdctrl_reset_irq(fdctrl
);
1967 case FD_PHASE_COMMAND
:
1972 retval
= fdctrl
->fifo
[pos
];
1973 FLOPPY_DPRINTF("data register: 0x%02x\n", retval
);
1978 static void fdctrl_format_sector(FDCtrl
*fdctrl
)
1983 SET_CUR_DRV(fdctrl
, fdctrl
->fifo
[1] & FD_DOR_SELMASK
);
1984 cur_drv
= get_cur_drv(fdctrl
);
1985 kt
= fdctrl
->fifo
[6];
1986 kh
= fdctrl
->fifo
[7];
1987 ks
= fdctrl
->fifo
[8];
1988 FLOPPY_DPRINTF("format sector at %d %d %02x %02x (%d)\n",
1989 GET_CUR_DRV(fdctrl
), kh
, kt
, ks
,
1990 fd_sector_calc(kh
, kt
, ks
, cur_drv
->last_sect
,
1991 NUM_SIDES(cur_drv
)));
1992 switch (fd_seek(cur_drv
, kh
, kt
, ks
, fdctrl
->config
& FD_CONFIG_EIS
)) {
1995 fdctrl_stop_transfer(fdctrl
, FD_SR0_ABNTERM
, 0x00, 0x00);
1996 fdctrl
->fifo
[3] = kt
;
1997 fdctrl
->fifo
[4] = kh
;
1998 fdctrl
->fifo
[5] = ks
;
2002 fdctrl_stop_transfer(fdctrl
, FD_SR0_ABNTERM
, FD_SR1_EC
, 0x00);
2003 fdctrl
->fifo
[3] = kt
;
2004 fdctrl
->fifo
[4] = kh
;
2005 fdctrl
->fifo
[5] = ks
;
2008 /* No seek enabled */
2009 fdctrl_stop_transfer(fdctrl
, FD_SR0_ABNTERM
, 0x00, 0x00);
2010 fdctrl
->fifo
[3] = kt
;
2011 fdctrl
->fifo
[4] = kh
;
2012 fdctrl
->fifo
[5] = ks
;
2015 fdctrl
->status0
|= FD_SR0_SEEK
;
2020 memset(fdctrl
->fifo
, 0, FD_SECTOR_LEN
);
2021 if (cur_drv
->blk
== NULL
||
2022 blk_pwrite(cur_drv
->blk
, fd_offset(cur_drv
), fdctrl
->fifo
,
2023 BDRV_SECTOR_SIZE
, 0) < 0) {
2024 FLOPPY_DPRINTF("error formatting sector %d\n", fd_sector(cur_drv
));
2025 fdctrl_stop_transfer(fdctrl
, FD_SR0_ABNTERM
| FD_SR0_SEEK
, 0x00, 0x00);
2027 if (cur_drv
->sect
== cur_drv
->last_sect
) {
2028 fdctrl
->data_state
&= ~FD_STATE_FORMAT
;
2029 /* Last sector done */
2030 fdctrl_stop_transfer(fdctrl
, 0x00, 0x00, 0x00);
2033 fdctrl
->data_pos
= 0;
2034 fdctrl
->data_len
= 4;
2039 static void fdctrl_handle_lock(FDCtrl
*fdctrl
, int direction
)
2041 fdctrl
->lock
= (fdctrl
->fifo
[0] & 0x80) ? 1 : 0;
2042 fdctrl
->fifo
[0] = fdctrl
->lock
<< 4;
2043 fdctrl_to_result_phase(fdctrl
, 1);
2046 static void fdctrl_handle_dumpreg(FDCtrl
*fdctrl
, int direction
)
2048 FDrive
*cur_drv
= get_cur_drv(fdctrl
);
2050 /* Drives position */
2051 fdctrl
->fifo
[0] = drv0(fdctrl
)->track
;
2052 fdctrl
->fifo
[1] = drv1(fdctrl
)->track
;
2054 fdctrl
->fifo
[2] = drv2(fdctrl
)->track
;
2055 fdctrl
->fifo
[3] = drv3(fdctrl
)->track
;
2057 fdctrl
->fifo
[2] = 0;
2058 fdctrl
->fifo
[3] = 0;
2061 fdctrl
->fifo
[4] = fdctrl
->timer0
;
2062 fdctrl
->fifo
[5] = (fdctrl
->timer1
<< 1) | (fdctrl
->dor
& FD_DOR_DMAEN
? 1 : 0);
2063 fdctrl
->fifo
[6] = cur_drv
->last_sect
;
2064 fdctrl
->fifo
[7] = (fdctrl
->lock
<< 7) |
2065 (cur_drv
->perpendicular
<< 2);
2066 fdctrl
->fifo
[8] = fdctrl
->config
;
2067 fdctrl
->fifo
[9] = fdctrl
->precomp_trk
;
2068 fdctrl_to_result_phase(fdctrl
, 10);
2071 static void fdctrl_handle_version(FDCtrl
*fdctrl
, int direction
)
2073 /* Controller's version */
2074 fdctrl
->fifo
[0] = fdctrl
->version
;
2075 fdctrl_to_result_phase(fdctrl
, 1);
2078 static void fdctrl_handle_partid(FDCtrl
*fdctrl
, int direction
)
2080 fdctrl
->fifo
[0] = 0x41; /* Stepping 1 */
2081 fdctrl_to_result_phase(fdctrl
, 1);
2084 static void fdctrl_handle_restore(FDCtrl
*fdctrl
, int direction
)
2086 FDrive
*cur_drv
= get_cur_drv(fdctrl
);
2088 /* Drives position */
2089 drv0(fdctrl
)->track
= fdctrl
->fifo
[3];
2090 drv1(fdctrl
)->track
= fdctrl
->fifo
[4];
2092 drv2(fdctrl
)->track
= fdctrl
->fifo
[5];
2093 drv3(fdctrl
)->track
= fdctrl
->fifo
[6];
2096 fdctrl
->timer0
= fdctrl
->fifo
[7];
2097 fdctrl
->timer1
= fdctrl
->fifo
[8];
2098 cur_drv
->last_sect
= fdctrl
->fifo
[9];
2099 fdctrl
->lock
= fdctrl
->fifo
[10] >> 7;
2100 cur_drv
->perpendicular
= (fdctrl
->fifo
[10] >> 2) & 0xF;
2101 fdctrl
->config
= fdctrl
->fifo
[11];
2102 fdctrl
->precomp_trk
= fdctrl
->fifo
[12];
2103 fdctrl
->pwrd
= fdctrl
->fifo
[13];
2104 fdctrl_to_command_phase(fdctrl
);
2107 static void fdctrl_handle_save(FDCtrl
*fdctrl
, int direction
)
2109 FDrive
*cur_drv
= get_cur_drv(fdctrl
);
2111 fdctrl
->fifo
[0] = 0;
2112 fdctrl
->fifo
[1] = 0;
2113 /* Drives position */
2114 fdctrl
->fifo
[2] = drv0(fdctrl
)->track
;
2115 fdctrl
->fifo
[3] = drv1(fdctrl
)->track
;
2117 fdctrl
->fifo
[4] = drv2(fdctrl
)->track
;
2118 fdctrl
->fifo
[5] = drv3(fdctrl
)->track
;
2120 fdctrl
->fifo
[4] = 0;
2121 fdctrl
->fifo
[5] = 0;
2124 fdctrl
->fifo
[6] = fdctrl
->timer0
;
2125 fdctrl
->fifo
[7] = fdctrl
->timer1
;
2126 fdctrl
->fifo
[8] = cur_drv
->last_sect
;
2127 fdctrl
->fifo
[9] = (fdctrl
->lock
<< 7) |
2128 (cur_drv
->perpendicular
<< 2);
2129 fdctrl
->fifo
[10] = fdctrl
->config
;
2130 fdctrl
->fifo
[11] = fdctrl
->precomp_trk
;
2131 fdctrl
->fifo
[12] = fdctrl
->pwrd
;
2132 fdctrl
->fifo
[13] = 0;
2133 fdctrl
->fifo
[14] = 0;
2134 fdctrl_to_result_phase(fdctrl
, 15);
2137 static void fdctrl_handle_readid(FDCtrl
*fdctrl
, int direction
)
2139 FDrive
*cur_drv
= get_cur_drv(fdctrl
);
2141 cur_drv
->head
= (fdctrl
->fifo
[1] >> 2) & 1;
2142 timer_mod(fdctrl
->result_timer
, qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL
) +
2143 (NANOSECONDS_PER_SECOND
/ 50));
2146 static void fdctrl_handle_format_track(FDCtrl
*fdctrl
, int direction
)
2150 SET_CUR_DRV(fdctrl
, fdctrl
->fifo
[1] & FD_DOR_SELMASK
);
2151 cur_drv
= get_cur_drv(fdctrl
);
2152 fdctrl
->data_state
|= FD_STATE_FORMAT
;
2153 if (fdctrl
->fifo
[0] & 0x80)
2154 fdctrl
->data_state
|= FD_STATE_MULTI
;
2156 fdctrl
->data_state
&= ~FD_STATE_MULTI
;
2158 fdctrl
->fifo
[2] > 7 ? 16384 : 128 << fdctrl
->fifo
[2];
2160 cur_drv
->last_sect
=
2161 cur_drv
->flags
& FDISK_DBL_SIDES
? fdctrl
->fifo
[3] :
2162 fdctrl
->fifo
[3] / 2;
2164 cur_drv
->last_sect
= fdctrl
->fifo
[3];
2166 /* TODO: implement format using DMA expected by the Bochs BIOS
2167 * and Linux fdformat (read 3 bytes per sector via DMA and fill
2168 * the sector with the specified fill byte
2170 fdctrl
->data_state
&= ~FD_STATE_FORMAT
;
2171 fdctrl_stop_transfer(fdctrl
, 0x00, 0x00, 0x00);
2174 static void fdctrl_handle_specify(FDCtrl
*fdctrl
, int direction
)
2176 fdctrl
->timer0
= (fdctrl
->fifo
[1] >> 4) & 0xF;
2177 fdctrl
->timer1
= fdctrl
->fifo
[2] >> 1;
2178 if (fdctrl
->fifo
[2] & 1)
2179 fdctrl
->dor
&= ~FD_DOR_DMAEN
;
2181 fdctrl
->dor
|= FD_DOR_DMAEN
;
2182 /* No result back */
2183 fdctrl_to_command_phase(fdctrl
);
2186 static void fdctrl_handle_sense_drive_status(FDCtrl
*fdctrl
, int direction
)
2190 SET_CUR_DRV(fdctrl
, fdctrl
->fifo
[1] & FD_DOR_SELMASK
);
2191 cur_drv
= get_cur_drv(fdctrl
);
2192 cur_drv
->head
= (fdctrl
->fifo
[1] >> 2) & 1;
2193 /* 1 Byte status back */
2194 fdctrl
->fifo
[0] = (cur_drv
->ro
<< 6) |
2195 (cur_drv
->track
== 0 ? 0x10 : 0x00) |
2196 (cur_drv
->head
<< 2) |
2197 GET_CUR_DRV(fdctrl
) |
2199 fdctrl_to_result_phase(fdctrl
, 1);
2202 static void fdctrl_handle_recalibrate(FDCtrl
*fdctrl
, int direction
)
2206 SET_CUR_DRV(fdctrl
, fdctrl
->fifo
[1] & FD_DOR_SELMASK
);
2207 cur_drv
= get_cur_drv(fdctrl
);
2208 fd_recalibrate(cur_drv
);
2209 fdctrl_to_command_phase(fdctrl
);
2210 /* Raise Interrupt */
2211 fdctrl
->status0
|= FD_SR0_SEEK
;
2212 fdctrl_raise_irq(fdctrl
);
2215 static void fdctrl_handle_sense_interrupt_status(FDCtrl
*fdctrl
, int direction
)
2217 FDrive
*cur_drv
= get_cur_drv(fdctrl
);
2219 if (fdctrl
->reset_sensei
> 0) {
2221 FD_SR0_RDYCHG
+ FD_RESET_SENSEI_COUNT
- fdctrl
->reset_sensei
;
2222 fdctrl
->reset_sensei
--;
2223 } else if (!(fdctrl
->sra
& FD_SRA_INTPEND
)) {
2224 fdctrl
->fifo
[0] = FD_SR0_INVCMD
;
2225 fdctrl_to_result_phase(fdctrl
, 1);
2229 (fdctrl
->status0
& ~(FD_SR0_HEAD
| FD_SR0_DS1
| FD_SR0_DS0
))
2230 | GET_CUR_DRV(fdctrl
);
2233 fdctrl
->fifo
[1] = cur_drv
->track
;
2234 fdctrl_to_result_phase(fdctrl
, 2);
2235 fdctrl_reset_irq(fdctrl
);
2236 fdctrl
->status0
= FD_SR0_RDYCHG
;
2239 static void fdctrl_handle_seek(FDCtrl
*fdctrl
, int direction
)
2243 SET_CUR_DRV(fdctrl
, fdctrl
->fifo
[1] & FD_DOR_SELMASK
);
2244 cur_drv
= get_cur_drv(fdctrl
);
2245 fdctrl_to_command_phase(fdctrl
);
2246 /* The seek command just sends step pulses to the drive and doesn't care if
2247 * there is a medium inserted of if it's banging the head against the drive.
2249 fd_seek(cur_drv
, cur_drv
->head
, fdctrl
->fifo
[2], cur_drv
->sect
, 1);
2250 /* Raise Interrupt */
2251 fdctrl
->status0
|= FD_SR0_SEEK
;
2252 fdctrl_raise_irq(fdctrl
);
2255 static void fdctrl_handle_perpendicular_mode(FDCtrl
*fdctrl
, int direction
)
2257 FDrive
*cur_drv
= get_cur_drv(fdctrl
);
2259 if (fdctrl
->fifo
[1] & 0x80)
2260 cur_drv
->perpendicular
= fdctrl
->fifo
[1] & 0x7;
2261 /* No result back */
2262 fdctrl_to_command_phase(fdctrl
);
2265 static void fdctrl_handle_configure(FDCtrl
*fdctrl
, int direction
)
2267 fdctrl
->config
= fdctrl
->fifo
[2];
2268 fdctrl
->precomp_trk
= fdctrl
->fifo
[3];
2269 /* No result back */
2270 fdctrl_to_command_phase(fdctrl
);
2273 static void fdctrl_handle_powerdown_mode(FDCtrl
*fdctrl
, int direction
)
2275 fdctrl
->pwrd
= fdctrl
->fifo
[1];
2276 fdctrl
->fifo
[0] = fdctrl
->fifo
[1];
2277 fdctrl_to_result_phase(fdctrl
, 1);
2280 static void fdctrl_handle_option(FDCtrl
*fdctrl
, int direction
)
2282 /* No result back */
2283 fdctrl_to_command_phase(fdctrl
);
2286 static void fdctrl_handle_drive_specification_command(FDCtrl
*fdctrl
, int direction
)
2288 FDrive
*cur_drv
= get_cur_drv(fdctrl
);
2291 pos
= fdctrl
->data_pos
- 1;
2292 pos
%= FD_SECTOR_LEN
;
2293 if (fdctrl
->fifo
[pos
] & 0x80) {
2294 /* Command parameters done */
2295 if (fdctrl
->fifo
[pos
] & 0x40) {
2296 fdctrl
->fifo
[0] = fdctrl
->fifo
[1];
2297 fdctrl
->fifo
[2] = 0;
2298 fdctrl
->fifo
[3] = 0;
2299 fdctrl_to_result_phase(fdctrl
, 4);
2301 fdctrl_to_command_phase(fdctrl
);
2303 } else if (fdctrl
->data_len
> 7) {
2305 fdctrl
->fifo
[0] = 0x80 |
2306 (cur_drv
->head
<< 2) | GET_CUR_DRV(fdctrl
);
2307 fdctrl_to_result_phase(fdctrl
, 1);
2311 static void fdctrl_handle_relative_seek_in(FDCtrl
*fdctrl
, int direction
)
2315 SET_CUR_DRV(fdctrl
, fdctrl
->fifo
[1] & FD_DOR_SELMASK
);
2316 cur_drv
= get_cur_drv(fdctrl
);
2317 if (fdctrl
->fifo
[2] + cur_drv
->track
>= cur_drv
->max_track
) {
2318 fd_seek(cur_drv
, cur_drv
->head
, cur_drv
->max_track
- 1,
2321 fd_seek(cur_drv
, cur_drv
->head
,
2322 cur_drv
->track
+ fdctrl
->fifo
[2], cur_drv
->sect
, 1);
2324 fdctrl_to_command_phase(fdctrl
);
2325 /* Raise Interrupt */
2326 fdctrl
->status0
|= FD_SR0_SEEK
;
2327 fdctrl_raise_irq(fdctrl
);
2330 static void fdctrl_handle_relative_seek_out(FDCtrl
*fdctrl
, int direction
)
2334 SET_CUR_DRV(fdctrl
, fdctrl
->fifo
[1] & FD_DOR_SELMASK
);
2335 cur_drv
= get_cur_drv(fdctrl
);
2336 if (fdctrl
->fifo
[2] > cur_drv
->track
) {
2337 fd_seek(cur_drv
, cur_drv
->head
, 0, cur_drv
->sect
, 1);
2339 fd_seek(cur_drv
, cur_drv
->head
,
2340 cur_drv
->track
- fdctrl
->fifo
[2], cur_drv
->sect
, 1);
2342 fdctrl_to_command_phase(fdctrl
);
2343 /* Raise Interrupt */
2344 fdctrl
->status0
|= FD_SR0_SEEK
;
2345 fdctrl_raise_irq(fdctrl
);
2349 * Handlers for the execution phase of each command
2351 typedef struct FDCtrlCommand
{
2356 void (*handler
)(FDCtrl
*fdctrl
, int direction
);
2360 static const FDCtrlCommand handlers
[] = {
2361 { FD_CMD_READ
, 0x1f, "READ", 8, fdctrl_start_transfer
, FD_DIR_READ
},
2362 { FD_CMD_WRITE
, 0x3f, "WRITE", 8, fdctrl_start_transfer
, FD_DIR_WRITE
},
2363 { FD_CMD_SEEK
, 0xff, "SEEK", 2, fdctrl_handle_seek
},
2364 { FD_CMD_SENSE_INTERRUPT_STATUS
, 0xff, "SENSE INTERRUPT STATUS", 0, fdctrl_handle_sense_interrupt_status
},
2365 { FD_CMD_RECALIBRATE
, 0xff, "RECALIBRATE", 1, fdctrl_handle_recalibrate
},
2366 { FD_CMD_FORMAT_TRACK
, 0xbf, "FORMAT TRACK", 5, fdctrl_handle_format_track
},
2367 { FD_CMD_READ_TRACK
, 0xbf, "READ TRACK", 8, fdctrl_start_transfer
, FD_DIR_READ
},
2368 { FD_CMD_RESTORE
, 0xff, "RESTORE", 17, fdctrl_handle_restore
}, /* part of READ DELETED DATA */
2369 { FD_CMD_SAVE
, 0xff, "SAVE", 0, fdctrl_handle_save
}, /* part of READ DELETED DATA */
2370 { FD_CMD_READ_DELETED
, 0x1f, "READ DELETED DATA", 8, fdctrl_start_transfer_del
, FD_DIR_READ
},
2371 { FD_CMD_SCAN_EQUAL
, 0x1f, "SCAN EQUAL", 8, fdctrl_start_transfer
, FD_DIR_SCANE
},
2372 { FD_CMD_VERIFY
, 0x1f, "VERIFY", 8, fdctrl_start_transfer
, FD_DIR_VERIFY
},
2373 { FD_CMD_SCAN_LOW_OR_EQUAL
, 0x1f, "SCAN LOW OR EQUAL", 8, fdctrl_start_transfer
, FD_DIR_SCANL
},
2374 { FD_CMD_SCAN_HIGH_OR_EQUAL
, 0x1f, "SCAN HIGH OR EQUAL", 8, fdctrl_start_transfer
, FD_DIR_SCANH
},
2375 { FD_CMD_WRITE_DELETED
, 0x3f, "WRITE DELETED DATA", 8, fdctrl_start_transfer_del
, FD_DIR_WRITE
},
2376 { FD_CMD_READ_ID
, 0xbf, "READ ID", 1, fdctrl_handle_readid
},
2377 { FD_CMD_SPECIFY
, 0xff, "SPECIFY", 2, fdctrl_handle_specify
},
2378 { FD_CMD_SENSE_DRIVE_STATUS
, 0xff, "SENSE DRIVE STATUS", 1, fdctrl_handle_sense_drive_status
},
2379 { FD_CMD_PERPENDICULAR_MODE
, 0xff, "PERPENDICULAR MODE", 1, fdctrl_handle_perpendicular_mode
},
2380 { FD_CMD_CONFIGURE
, 0xff, "CONFIGURE", 3, fdctrl_handle_configure
},
2381 { FD_CMD_POWERDOWN_MODE
, 0xff, "POWERDOWN MODE", 2, fdctrl_handle_powerdown_mode
},
2382 { FD_CMD_OPTION
, 0xff, "OPTION", 1, fdctrl_handle_option
},
2383 { FD_CMD_DRIVE_SPECIFICATION_COMMAND
, 0xff, "DRIVE SPECIFICATION COMMAND", 5, fdctrl_handle_drive_specification_command
},
2384 { FD_CMD_RELATIVE_SEEK_OUT
, 0xff, "RELATIVE SEEK OUT", 2, fdctrl_handle_relative_seek_out
},
2385 { FD_CMD_FORMAT_AND_WRITE
, 0xff, "FORMAT AND WRITE", 10, fdctrl_unimplemented
},
2386 { FD_CMD_RELATIVE_SEEK_IN
, 0xff, "RELATIVE SEEK IN", 2, fdctrl_handle_relative_seek_in
},
2387 { FD_CMD_LOCK
, 0x7f, "LOCK", 0, fdctrl_handle_lock
},
2388 { FD_CMD_DUMPREG
, 0xff, "DUMPREG", 0, fdctrl_handle_dumpreg
},
2389 { FD_CMD_VERSION
, 0xff, "VERSION", 0, fdctrl_handle_version
},
2390 { FD_CMD_PART_ID
, 0xff, "PART ID", 0, fdctrl_handle_partid
},
2391 { FD_CMD_WRITE
, 0x1f, "WRITE (BeOS)", 8, fdctrl_start_transfer
, FD_DIR_WRITE
}, /* not in specification ; BeOS 4.5 bug */
2392 { 0, 0, "unknown", 0, fdctrl_unimplemented
}, /* default handler */
2394 /* Associate command to an index in the 'handlers' array */
2395 static uint8_t command_to_handler
[256];
2397 static const FDCtrlCommand
*get_command(uint8_t cmd
)
2401 idx
= command_to_handler
[cmd
];
2402 FLOPPY_DPRINTF("%s command\n", handlers
[idx
].name
);
2403 return &handlers
[idx
];
2406 static void fdctrl_write_data(FDCtrl
*fdctrl
, uint32_t value
)
2409 const FDCtrlCommand
*cmd
;
2413 if (!(fdctrl
->dor
& FD_DOR_nRESET
)) {
2414 FLOPPY_DPRINTF("Floppy controller in RESET state !\n");
2417 if (!(fdctrl
->msr
& FD_MSR_RQM
) || (fdctrl
->msr
& FD_MSR_DIO
)) {
2418 FLOPPY_DPRINTF("error: controller not ready for writing\n");
2421 fdctrl
->dsr
&= ~FD_DSR_PWRDOWN
;
2423 FLOPPY_DPRINTF("%s: %02x\n", __func__
, value
);
2425 /* If data_len spans multiple sectors, the current position in the FIFO
2426 * wraps around while fdctrl->data_pos is the real position in the whole
2428 pos
= fdctrl
->data_pos
++;
2429 pos
%= FD_SECTOR_LEN
;
2430 fdctrl
->fifo
[pos
] = value
;
2432 if (fdctrl
->data_pos
== fdctrl
->data_len
) {
2433 fdctrl
->msr
&= ~FD_MSR_RQM
;
2436 switch (fdctrl
->phase
) {
2437 case FD_PHASE_EXECUTION
:
2438 /* For DMA requests, RQM should be cleared during execution phase, so
2439 * we would have errored out above. */
2440 assert(fdctrl
->msr
& FD_MSR_NONDMA
);
2442 /* FIFO data write */
2443 if (pos
== FD_SECTOR_LEN
- 1 ||
2444 fdctrl
->data_pos
== fdctrl
->data_len
) {
2445 cur_drv
= get_cur_drv(fdctrl
);
2446 if (blk_pwrite(cur_drv
->blk
, fd_offset(cur_drv
), fdctrl
->fifo
,
2447 BDRV_SECTOR_SIZE
, 0) < 0) {
2448 FLOPPY_DPRINTF("error writing sector %d\n",
2449 fd_sector(cur_drv
));
2452 if (!fdctrl_seek_to_next_sect(fdctrl
, cur_drv
)) {
2453 FLOPPY_DPRINTF("error seeking to next sector %d\n",
2454 fd_sector(cur_drv
));
2459 /* Switch to result phase when done with the transfer */
2460 if (fdctrl
->data_pos
== fdctrl
->data_len
) {
2461 fdctrl_stop_transfer(fdctrl
, 0x00, 0x00, 0x00);
2465 case FD_PHASE_COMMAND
:
2466 assert(!(fdctrl
->msr
& FD_MSR_NONDMA
));
2467 assert(fdctrl
->data_pos
< FD_SECTOR_LEN
);
2470 /* The first byte specifies the command. Now we start reading
2471 * as many parameters as this command requires. */
2472 cmd
= get_command(value
);
2473 fdctrl
->data_len
= cmd
->parameters
+ 1;
2474 if (cmd
->parameters
) {
2475 fdctrl
->msr
|= FD_MSR_RQM
;
2477 fdctrl
->msr
|= FD_MSR_CMDBUSY
;
2480 if (fdctrl
->data_pos
== fdctrl
->data_len
) {
2481 /* We have all parameters now, execute the command */
2482 fdctrl
->phase
= FD_PHASE_EXECUTION
;
2484 if (fdctrl
->data_state
& FD_STATE_FORMAT
) {
2485 fdctrl_format_sector(fdctrl
);
2489 cmd
= get_command(fdctrl
->fifo
[0]);
2490 FLOPPY_DPRINTF("Calling handler for '%s'\n", cmd
->name
);
2491 cmd
->handler(fdctrl
, cmd
->direction
);
2495 case FD_PHASE_RESULT
:
2501 static void fdctrl_result_timer(void *opaque
)
2503 FDCtrl
*fdctrl
= opaque
;
2504 FDrive
*cur_drv
= get_cur_drv(fdctrl
);
2506 /* Pretend we are spinning.
2507 * This is needed for Coherent, which uses READ ID to check for
2508 * sector interleaving.
2510 if (cur_drv
->last_sect
!= 0) {
2511 cur_drv
->sect
= (cur_drv
->sect
% cur_drv
->last_sect
) + 1;
2513 /* READ_ID can't automatically succeed! */
2514 if (fdctrl
->check_media_rate
&&
2515 (fdctrl
->dsr
& FD_DSR_DRATEMASK
) != cur_drv
->media_rate
) {
2516 FLOPPY_DPRINTF("read id rate mismatch (fdc=%d, media=%d)\n",
2517 fdctrl
->dsr
& FD_DSR_DRATEMASK
, cur_drv
->media_rate
);
2518 fdctrl_stop_transfer(fdctrl
, FD_SR0_ABNTERM
, FD_SR1_MA
, 0x00);
2520 fdctrl_stop_transfer(fdctrl
, 0x00, 0x00, 0x00);
2524 /* Init functions */
2525 static void fdctrl_connect_drives(FDCtrl
*fdctrl
, DeviceState
*fdc_dev
,
2532 Error
*local_err
= NULL
;
2534 for (i
= 0; i
< MAX_FD
; i
++) {
2535 drive
= &fdctrl
->drives
[i
];
2536 drive
->fdctrl
= fdctrl
;
2538 /* If the drive is not present, we skip creating the qdev device, but
2539 * still have to initialise the controller. */
2540 blk
= fdctrl
->qdev_for_drives
[i
].blk
;
2543 fd_revalidate(drive
);
2547 dev
= qdev_create(&fdctrl
->bus
.bus
, "floppy");
2548 qdev_prop_set_uint32(dev
, "unit", i
);
2549 qdev_prop_set_enum(dev
, "drive-type", fdctrl
->qdev_for_drives
[i
].type
);
2552 blk_detach_dev(blk
, fdc_dev
);
2553 fdctrl
->qdev_for_drives
[i
].blk
= NULL
;
2554 qdev_prop_set_drive(dev
, "drive", blk
, &local_err
);
2558 error_propagate(errp
, local_err
);
2562 object_property_set_bool(OBJECT(dev
), true, "realized", &local_err
);
2564 error_propagate(errp
, local_err
);
2570 ISADevice
*fdctrl_init_isa(ISABus
*bus
, DriveInfo
**fds
)
2575 isadev
= isa_try_create(bus
, TYPE_ISA_FDC
);
2579 dev
= DEVICE(isadev
);
2582 qdev_prop_set_drive(dev
, "driveA", blk_by_legacy_dinfo(fds
[0]),
2586 qdev_prop_set_drive(dev
, "driveB", blk_by_legacy_dinfo(fds
[1]),
2589 qdev_init_nofail(dev
);
2594 void fdctrl_init_sysbus(qemu_irq irq
, int dma_chann
,
2595 hwaddr mmio_base
, DriveInfo
**fds
)
2602 dev
= qdev_create(NULL
, "sysbus-fdc");
2603 sys
= SYSBUS_FDC(dev
);
2604 fdctrl
= &sys
->state
;
2605 fdctrl
->dma_chann
= dma_chann
; /* FIXME */
2607 qdev_prop_set_drive(dev
, "driveA", blk_by_legacy_dinfo(fds
[0]),
2611 qdev_prop_set_drive(dev
, "driveB", blk_by_legacy_dinfo(fds
[1]),
2614 qdev_init_nofail(dev
);
2615 sbd
= SYS_BUS_DEVICE(dev
);
2616 sysbus_connect_irq(sbd
, 0, irq
);
2617 sysbus_mmio_map(sbd
, 0, mmio_base
);
2620 void sun4m_fdctrl_init(qemu_irq irq
, hwaddr io_base
,
2621 DriveInfo
**fds
, qemu_irq
*fdc_tc
)
2626 dev
= qdev_create(NULL
, "SUNW,fdtwo");
2628 qdev_prop_set_drive(dev
, "drive", blk_by_legacy_dinfo(fds
[0]),
2631 qdev_init_nofail(dev
);
2632 sys
= SYSBUS_FDC(dev
);
2633 sysbus_connect_irq(SYS_BUS_DEVICE(sys
), 0, irq
);
2634 sysbus_mmio_map(SYS_BUS_DEVICE(sys
), 0, io_base
);
2635 *fdc_tc
= qdev_get_gpio_in(dev
, 0);
2638 static void fdctrl_realize_common(DeviceState
*dev
, FDCtrl
*fdctrl
,
2642 static int command_tables_inited
= 0;
2644 if (fdctrl
->fallback
== FLOPPY_DRIVE_TYPE_AUTO
) {
2645 error_setg(errp
, "Cannot choose a fallback FDrive type of 'auto'");
2648 /* Fill 'command_to_handler' lookup table */
2649 if (!command_tables_inited
) {
2650 command_tables_inited
= 1;
2651 for (i
= ARRAY_SIZE(handlers
) - 1; i
>= 0; i
--) {
2652 for (j
= 0; j
< sizeof(command_to_handler
); j
++) {
2653 if ((j
& handlers
[i
].mask
) == handlers
[i
].value
) {
2654 command_to_handler
[j
] = i
;
2660 FLOPPY_DPRINTF("init controller\n");
2661 fdctrl
->fifo
= qemu_memalign(512, FD_SECTOR_LEN
);
2662 fdctrl
->fifo_size
= 512;
2663 fdctrl
->result_timer
= timer_new_ns(QEMU_CLOCK_VIRTUAL
,
2664 fdctrl_result_timer
, fdctrl
);
2666 fdctrl
->version
= 0x90; /* Intel 82078 controller */
2667 fdctrl
->config
= FD_CONFIG_EIS
| FD_CONFIG_EFIFO
; /* Implicit seek, polling & FIFO enabled */
2668 fdctrl
->num_floppies
= MAX_FD
;
2670 if (fdctrl
->dma_chann
!= -1) {
2672 assert(fdctrl
->dma
);
2673 k
= ISADMA_GET_CLASS(fdctrl
->dma
);
2674 k
->register_channel(fdctrl
->dma
, fdctrl
->dma_chann
,
2675 &fdctrl_transfer_handler
, fdctrl
);
2678 floppy_bus_create(fdctrl
, &fdctrl
->bus
, dev
);
2679 fdctrl_connect_drives(fdctrl
, dev
, errp
);
2682 static const MemoryRegionPortio fdc_portio_list
[] = {
2683 { 1, 5, 1, .read
= fdctrl_read
, .write
= fdctrl_write
},
2684 { 7, 1, 1, .read
= fdctrl_read
, .write
= fdctrl_write
},
2685 PORTIO_END_OF_LIST(),
2688 static void isabus_fdc_realize(DeviceState
*dev
, Error
**errp
)
2690 ISADevice
*isadev
= ISA_DEVICE(dev
);
2691 FDCtrlISABus
*isa
= ISA_FDC(dev
);
2692 FDCtrl
*fdctrl
= &isa
->state
;
2695 isa_register_portio_list(isadev
, &fdctrl
->portio_list
,
2696 isa
->iobase
, fdc_portio_list
, fdctrl
,
2699 isa_init_irq(isadev
, &fdctrl
->irq
, isa
->irq
);
2700 fdctrl
->dma_chann
= isa
->dma
;
2701 if (fdctrl
->dma_chann
!= -1) {
2702 fdctrl
->dma
= isa_get_dma(isa_bus_from_device(isadev
), isa
->dma
);
2703 assert(fdctrl
->dma
);
2706 qdev_set_legacy_instance_id(dev
, isa
->iobase
, 2);
2707 fdctrl_realize_common(dev
, fdctrl
, &err
);
2709 error_propagate(errp
, err
);
2714 static void sysbus_fdc_initfn(Object
*obj
)
2716 SysBusDevice
*sbd
= SYS_BUS_DEVICE(obj
);
2717 FDCtrlSysBus
*sys
= SYSBUS_FDC(obj
);
2718 FDCtrl
*fdctrl
= &sys
->state
;
2720 fdctrl
->dma_chann
= -1;
2722 memory_region_init_io(&fdctrl
->iomem
, obj
, &fdctrl_mem_ops
, fdctrl
,
2724 sysbus_init_mmio(sbd
, &fdctrl
->iomem
);
2727 static void sun4m_fdc_initfn(Object
*obj
)
2729 SysBusDevice
*sbd
= SYS_BUS_DEVICE(obj
);
2730 FDCtrlSysBus
*sys
= SYSBUS_FDC(obj
);
2731 FDCtrl
*fdctrl
= &sys
->state
;
2733 fdctrl
->dma_chann
= -1;
2735 memory_region_init_io(&fdctrl
->iomem
, obj
, &fdctrl_mem_strict_ops
,
2736 fdctrl
, "fdctrl", 0x08);
2737 sysbus_init_mmio(sbd
, &fdctrl
->iomem
);
2740 static void sysbus_fdc_common_initfn(Object
*obj
)
2742 DeviceState
*dev
= DEVICE(obj
);
2743 SysBusDevice
*sbd
= SYS_BUS_DEVICE(dev
);
2744 FDCtrlSysBus
*sys
= SYSBUS_FDC(obj
);
2745 FDCtrl
*fdctrl
= &sys
->state
;
2747 qdev_set_legacy_instance_id(dev
, 0 /* io */, 2); /* FIXME */
2749 sysbus_init_irq(sbd
, &fdctrl
->irq
);
2750 qdev_init_gpio_in(dev
, fdctrl_handle_tc
, 1);
2753 static void sysbus_fdc_common_realize(DeviceState
*dev
, Error
**errp
)
2755 FDCtrlSysBus
*sys
= SYSBUS_FDC(dev
);
2756 FDCtrl
*fdctrl
= &sys
->state
;
2758 fdctrl_realize_common(dev
, fdctrl
, errp
);
2761 FloppyDriveType
isa_fdc_get_drive_type(ISADevice
*fdc
, int i
)
2763 FDCtrlISABus
*isa
= ISA_FDC(fdc
);
2765 return isa
->state
.drives
[i
].drive
;
2768 void isa_fdc_get_drive_max_chs(FloppyDriveType type
,
2769 uint8_t *maxc
, uint8_t *maxh
, uint8_t *maxs
)
2771 const FDFormat
*fdf
;
2773 *maxc
= *maxh
= *maxs
= 0;
2774 for (fdf
= fd_formats
; fdf
->drive
!= FLOPPY_DRIVE_TYPE_NONE
; fdf
++) {
2775 if (fdf
->drive
!= type
) {
2778 if (*maxc
< fdf
->max_track
) {
2779 *maxc
= fdf
->max_track
;
2781 if (*maxh
< fdf
->max_head
) {
2782 *maxh
= fdf
->max_head
;
2784 if (*maxs
< fdf
->last_sect
) {
2785 *maxs
= fdf
->last_sect
;
2791 static const VMStateDescription vmstate_isa_fdc
={
2794 .minimum_version_id
= 2,
2795 .fields
= (VMStateField
[]) {
2796 VMSTATE_STRUCT(state
, FDCtrlISABus
, 0, vmstate_fdc
, FDCtrl
),
2797 VMSTATE_END_OF_LIST()
2801 static Property isa_fdc_properties
[] = {
2802 DEFINE_PROP_UINT32("iobase", FDCtrlISABus
, iobase
, 0x3f0),
2803 DEFINE_PROP_UINT32("irq", FDCtrlISABus
, irq
, 6),
2804 DEFINE_PROP_UINT32("dma", FDCtrlISABus
, dma
, 2),
2805 DEFINE_PROP_DRIVE("driveA", FDCtrlISABus
, state
.qdev_for_drives
[0].blk
),
2806 DEFINE_PROP_DRIVE("driveB", FDCtrlISABus
, state
.qdev_for_drives
[1].blk
),
2807 DEFINE_PROP_BIT("check_media_rate", FDCtrlISABus
, state
.check_media_rate
,
2809 DEFINE_PROP_SIGNED("fdtypeA", FDCtrlISABus
, state
.qdev_for_drives
[0].type
,
2810 FLOPPY_DRIVE_TYPE_AUTO
, qdev_prop_fdc_drive_type
,
2812 DEFINE_PROP_SIGNED("fdtypeB", FDCtrlISABus
, state
.qdev_for_drives
[1].type
,
2813 FLOPPY_DRIVE_TYPE_AUTO
, qdev_prop_fdc_drive_type
,
2815 DEFINE_PROP_SIGNED("fallback", FDCtrlISABus
, state
.fallback
,
2816 FLOPPY_DRIVE_TYPE_288
, qdev_prop_fdc_drive_type
,
2818 DEFINE_PROP_END_OF_LIST(),
2821 static void isabus_fdc_class_init(ObjectClass
*klass
, void *data
)
2823 DeviceClass
*dc
= DEVICE_CLASS(klass
);
2825 dc
->realize
= isabus_fdc_realize
;
2826 dc
->fw_name
= "fdc";
2827 dc
->reset
= fdctrl_external_reset_isa
;
2828 dc
->vmsd
= &vmstate_isa_fdc
;
2829 dc
->props
= isa_fdc_properties
;
2830 set_bit(DEVICE_CATEGORY_STORAGE
, dc
->categories
);
2833 static void isabus_fdc_instance_init(Object
*obj
)
2835 FDCtrlISABus
*isa
= ISA_FDC(obj
);
2837 device_add_bootindex_property(obj
, &isa
->bootindexA
,
2838 "bootindexA", "/floppy@0",
2840 device_add_bootindex_property(obj
, &isa
->bootindexB
,
2841 "bootindexB", "/floppy@1",
2845 static const TypeInfo isa_fdc_info
= {
2846 .name
= TYPE_ISA_FDC
,
2847 .parent
= TYPE_ISA_DEVICE
,
2848 .instance_size
= sizeof(FDCtrlISABus
),
2849 .class_init
= isabus_fdc_class_init
,
2850 .instance_init
= isabus_fdc_instance_init
,
2853 static const VMStateDescription vmstate_sysbus_fdc
={
2856 .minimum_version_id
= 2,
2857 .fields
= (VMStateField
[]) {
2858 VMSTATE_STRUCT(state
, FDCtrlSysBus
, 0, vmstate_fdc
, FDCtrl
),
2859 VMSTATE_END_OF_LIST()
2863 static Property sysbus_fdc_properties
[] = {
2864 DEFINE_PROP_DRIVE("driveA", FDCtrlSysBus
, state
.qdev_for_drives
[0].blk
),
2865 DEFINE_PROP_DRIVE("driveB", FDCtrlSysBus
, state
.qdev_for_drives
[1].blk
),
2866 DEFINE_PROP_SIGNED("fdtypeA", FDCtrlSysBus
, state
.qdev_for_drives
[0].type
,
2867 FLOPPY_DRIVE_TYPE_AUTO
, qdev_prop_fdc_drive_type
,
2869 DEFINE_PROP_SIGNED("fdtypeB", FDCtrlSysBus
, state
.qdev_for_drives
[1].type
,
2870 FLOPPY_DRIVE_TYPE_AUTO
, qdev_prop_fdc_drive_type
,
2872 DEFINE_PROP_SIGNED("fallback", FDCtrlISABus
, state
.fallback
,
2873 FLOPPY_DRIVE_TYPE_144
, qdev_prop_fdc_drive_type
,
2875 DEFINE_PROP_END_OF_LIST(),
2878 static void sysbus_fdc_class_init(ObjectClass
*klass
, void *data
)
2880 DeviceClass
*dc
= DEVICE_CLASS(klass
);
2882 dc
->props
= sysbus_fdc_properties
;
2883 set_bit(DEVICE_CATEGORY_STORAGE
, dc
->categories
);
2886 static const TypeInfo sysbus_fdc_info
= {
2887 .name
= "sysbus-fdc",
2888 .parent
= TYPE_SYSBUS_FDC
,
2889 .instance_init
= sysbus_fdc_initfn
,
2890 .class_init
= sysbus_fdc_class_init
,
2893 static Property sun4m_fdc_properties
[] = {
2894 DEFINE_PROP_DRIVE("drive", FDCtrlSysBus
, state
.qdev_for_drives
[0].blk
),
2895 DEFINE_PROP_SIGNED("fdtype", FDCtrlSysBus
, state
.qdev_for_drives
[0].type
,
2896 FLOPPY_DRIVE_TYPE_AUTO
, qdev_prop_fdc_drive_type
,
2898 DEFINE_PROP_SIGNED("fallback", FDCtrlISABus
, state
.fallback
,
2899 FLOPPY_DRIVE_TYPE_144
, qdev_prop_fdc_drive_type
,
2901 DEFINE_PROP_END_OF_LIST(),
2904 static void sun4m_fdc_class_init(ObjectClass
*klass
, void *data
)
2906 DeviceClass
*dc
= DEVICE_CLASS(klass
);
2908 dc
->props
= sun4m_fdc_properties
;
2909 set_bit(DEVICE_CATEGORY_STORAGE
, dc
->categories
);
2912 static const TypeInfo sun4m_fdc_info
= {
2913 .name
= "SUNW,fdtwo",
2914 .parent
= TYPE_SYSBUS_FDC
,
2915 .instance_init
= sun4m_fdc_initfn
,
2916 .class_init
= sun4m_fdc_class_init
,
2919 static void sysbus_fdc_common_class_init(ObjectClass
*klass
, void *data
)
2921 DeviceClass
*dc
= DEVICE_CLASS(klass
);
2923 dc
->realize
= sysbus_fdc_common_realize
;
2924 dc
->reset
= fdctrl_external_reset_sysbus
;
2925 dc
->vmsd
= &vmstate_sysbus_fdc
;
2928 static const TypeInfo sysbus_fdc_type_info
= {
2929 .name
= TYPE_SYSBUS_FDC
,
2930 .parent
= TYPE_SYS_BUS_DEVICE
,
2931 .instance_size
= sizeof(FDCtrlSysBus
),
2932 .instance_init
= sysbus_fdc_common_initfn
,
2934 .class_init
= sysbus_fdc_common_class_init
,
2937 static void fdc_register_types(void)
2939 type_register_static(&isa_fdc_info
);
2940 type_register_static(&sysbus_fdc_type_info
);
2941 type_register_static(&sysbus_fdc_info
);
2942 type_register_static(&sun4m_fdc_info
);
2943 type_register_static(&floppy_bus_info
);
2944 type_register_static(&floppy_drive_info
);
2947 type_init(fdc_register_types
)