Merge remote-tracking branch 'remotes/mst/tags/for_upstream' into staging
[qemu/ar7.git] / hw / misc / milkymist-pfpu.c
blob08b604f13f4be40d94e2608d72fe813082f8969f
1 /*
2 * QEMU model of the Milkymist programmable FPU.
4 * Copyright (c) 2010 Michael Walle <michael@walle.cc>
6 * This library is free software; you can redistribute it and/or
7 * modify it under the terms of the GNU Lesser General Public
8 * License as published by the Free Software Foundation; either
9 * version 2 of the License, or (at your option) any later version.
11 * This library is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
14 * Lesser General Public License for more details.
16 * You should have received a copy of the GNU Lesser General Public
17 * License along with this library; if not, see <http://www.gnu.org/licenses/>.
20 * Specification available at:
21 * http://www.milkymist.org/socdoc/pfpu.pdf
25 #include "hw/hw.h"
26 #include "hw/sysbus.h"
27 #include "trace.h"
28 #include "qemu/log.h"
29 #include "qemu/error-report.h"
30 #include <math.h>
32 /* #define TRACE_EXEC */
34 #ifdef TRACE_EXEC
35 # define D_EXEC(x) x
36 #else
37 # define D_EXEC(x)
38 #endif
40 enum {
41 R_CTL = 0,
42 R_MESHBASE,
43 R_HMESHLAST,
44 R_VMESHLAST,
45 R_CODEPAGE,
46 R_VERTICES,
47 R_COLLISIONS,
48 R_STRAYWRITES,
49 R_LASTDMA,
50 R_PC,
51 R_DREGBASE,
52 R_CODEBASE,
53 R_MAX
56 enum {
57 CTL_START_BUSY = (1<<0),
60 enum {
61 OP_NOP = 0,
62 OP_FADD,
63 OP_FSUB,
64 OP_FMUL,
65 OP_FABS,
66 OP_F2I,
67 OP_I2F,
68 OP_VECTOUT,
69 OP_SIN,
70 OP_COS,
71 OP_ABOVE,
72 OP_EQUAL,
73 OP_COPY,
74 OP_IF,
75 OP_TSIGN,
76 OP_QUAKE,
79 enum {
80 GPR_X = 0,
81 GPR_Y = 1,
82 GPR_FLAGS = 2,
85 enum {
86 LATENCY_FADD = 5,
87 LATENCY_FSUB = 5,
88 LATENCY_FMUL = 7,
89 LATENCY_FABS = 2,
90 LATENCY_F2I = 2,
91 LATENCY_I2F = 3,
92 LATENCY_VECTOUT = 0,
93 LATENCY_SIN = 4,
94 LATENCY_COS = 4,
95 LATENCY_ABOVE = 2,
96 LATENCY_EQUAL = 2,
97 LATENCY_COPY = 2,
98 LATENCY_IF = 2,
99 LATENCY_TSIGN = 2,
100 LATENCY_QUAKE = 2,
101 MAX_LATENCY = 7
104 #define GPR_BEGIN 0x100
105 #define GPR_END 0x17f
106 #define MICROCODE_BEGIN 0x200
107 #define MICROCODE_END 0x3ff
108 #define MICROCODE_WORDS 2048
110 #define REINTERPRET_CAST(type, val) (*((type *)&(val)))
112 #ifdef TRACE_EXEC
113 static const char *opcode_to_str[] = {
114 "NOP", "FADD", "FSUB", "FMUL", "FABS", "F2I", "I2F", "VECTOUT",
115 "SIN", "COS", "ABOVE", "EQUAL", "COPY", "IF", "TSIGN", "QUAKE",
117 #endif
119 #define TYPE_MILKYMIST_PFPU "milkymist-pfpu"
120 #define MILKYMIST_PFPU(obj) \
121 OBJECT_CHECK(MilkymistPFPUState, (obj), TYPE_MILKYMIST_PFPU)
123 struct MilkymistPFPUState {
124 SysBusDevice parent_obj;
126 MemoryRegion regs_region;
127 CharDriverState *chr;
128 qemu_irq irq;
130 uint32_t regs[R_MAX];
131 uint32_t gp_regs[128];
132 uint32_t microcode[MICROCODE_WORDS];
134 int output_queue_pos;
135 uint32_t output_queue[MAX_LATENCY];
137 typedef struct MilkymistPFPUState MilkymistPFPUState;
139 static inline hwaddr
140 get_dma_address(uint32_t base, uint32_t x, uint32_t y)
142 return base + 8 * (128 * y + x);
145 static inline void
146 output_queue_insert(MilkymistPFPUState *s, uint32_t val, int pos)
148 s->output_queue[(s->output_queue_pos + pos) % MAX_LATENCY] = val;
151 static inline uint32_t
152 output_queue_remove(MilkymistPFPUState *s)
154 return s->output_queue[s->output_queue_pos];
157 static inline void
158 output_queue_advance(MilkymistPFPUState *s)
160 s->output_queue[s->output_queue_pos] = 0;
161 s->output_queue_pos = (s->output_queue_pos + 1) % MAX_LATENCY;
164 static int pfpu_decode_insn(MilkymistPFPUState *s)
166 uint32_t pc = s->regs[R_PC];
167 uint32_t insn = s->microcode[pc];
168 uint32_t reg_a = (insn >> 18) & 0x7f;
169 uint32_t reg_b = (insn >> 11) & 0x7f;
170 uint32_t op = (insn >> 7) & 0xf;
171 uint32_t reg_d = insn & 0x7f;
172 uint32_t r = 0;
173 int latency = 0;
175 switch (op) {
176 case OP_NOP:
177 break;
178 case OP_FADD:
180 float a = REINTERPRET_CAST(float, s->gp_regs[reg_a]);
181 float b = REINTERPRET_CAST(float, s->gp_regs[reg_b]);
182 float t = a + b;
183 r = REINTERPRET_CAST(uint32_t, t);
184 latency = LATENCY_FADD;
185 D_EXEC(qemu_log("ADD a=%f b=%f t=%f, r=%08x\n", a, b, t, r));
186 } break;
187 case OP_FSUB:
189 float a = REINTERPRET_CAST(float, s->gp_regs[reg_a]);
190 float b = REINTERPRET_CAST(float, s->gp_regs[reg_b]);
191 float t = a - b;
192 r = REINTERPRET_CAST(uint32_t, t);
193 latency = LATENCY_FSUB;
194 D_EXEC(qemu_log("SUB a=%f b=%f t=%f, r=%08x\n", a, b, t, r));
195 } break;
196 case OP_FMUL:
198 float a = REINTERPRET_CAST(float, s->gp_regs[reg_a]);
199 float b = REINTERPRET_CAST(float, s->gp_regs[reg_b]);
200 float t = a * b;
201 r = REINTERPRET_CAST(uint32_t, t);
202 latency = LATENCY_FMUL;
203 D_EXEC(qemu_log("MUL a=%f b=%f t=%f, r=%08x\n", a, b, t, r));
204 } break;
205 case OP_FABS:
207 float a = REINTERPRET_CAST(float, s->gp_regs[reg_a]);
208 float t = fabsf(a);
209 r = REINTERPRET_CAST(uint32_t, t);
210 latency = LATENCY_FABS;
211 D_EXEC(qemu_log("ABS a=%f t=%f, r=%08x\n", a, t, r));
212 } break;
213 case OP_F2I:
215 float a = REINTERPRET_CAST(float, s->gp_regs[reg_a]);
216 int32_t t = a;
217 r = REINTERPRET_CAST(uint32_t, t);
218 latency = LATENCY_F2I;
219 D_EXEC(qemu_log("F2I a=%f t=%d, r=%08x\n", a, t, r));
220 } break;
221 case OP_I2F:
223 int32_t a = REINTERPRET_CAST(int32_t, s->gp_regs[reg_a]);
224 float t = a;
225 r = REINTERPRET_CAST(uint32_t, t);
226 latency = LATENCY_I2F;
227 D_EXEC(qemu_log("I2F a=%08x t=%f, r=%08x\n", a, t, r));
228 } break;
229 case OP_VECTOUT:
231 uint32_t a = cpu_to_be32(s->gp_regs[reg_a]);
232 uint32_t b = cpu_to_be32(s->gp_regs[reg_b]);
233 hwaddr dma_ptr =
234 get_dma_address(s->regs[R_MESHBASE],
235 s->gp_regs[GPR_X], s->gp_regs[GPR_Y]);
236 cpu_physical_memory_write(dma_ptr, &a, 4);
237 cpu_physical_memory_write(dma_ptr + 4, &b, 4);
238 s->regs[R_LASTDMA] = dma_ptr + 4;
239 D_EXEC(qemu_log("VECTOUT a=%08x b=%08x dma=%08x\n", a, b, dma_ptr));
240 trace_milkymist_pfpu_vectout(a, b, dma_ptr);
241 } break;
242 case OP_SIN:
244 int32_t a = REINTERPRET_CAST(int32_t, s->gp_regs[reg_a]);
245 float t = sinf(a * (1.0f / (M_PI * 4096.0f)));
246 r = REINTERPRET_CAST(uint32_t, t);
247 latency = LATENCY_SIN;
248 D_EXEC(qemu_log("SIN a=%d t=%f, r=%08x\n", a, t, r));
249 } break;
250 case OP_COS:
252 int32_t a = REINTERPRET_CAST(int32_t, s->gp_regs[reg_a]);
253 float t = cosf(a * (1.0f / (M_PI * 4096.0f)));
254 r = REINTERPRET_CAST(uint32_t, t);
255 latency = LATENCY_COS;
256 D_EXEC(qemu_log("COS a=%d t=%f, r=%08x\n", a, t, r));
257 } break;
258 case OP_ABOVE:
260 float a = REINTERPRET_CAST(float, s->gp_regs[reg_a]);
261 float b = REINTERPRET_CAST(float, s->gp_regs[reg_b]);
262 float t = (a > b) ? 1.0f : 0.0f;
263 r = REINTERPRET_CAST(uint32_t, t);
264 latency = LATENCY_ABOVE;
265 D_EXEC(qemu_log("ABOVE a=%f b=%f t=%f, r=%08x\n", a, b, t, r));
266 } break;
267 case OP_EQUAL:
269 float a = REINTERPRET_CAST(float, s->gp_regs[reg_a]);
270 float b = REINTERPRET_CAST(float, s->gp_regs[reg_b]);
271 float t = (a == b) ? 1.0f : 0.0f;
272 r = REINTERPRET_CAST(uint32_t, t);
273 latency = LATENCY_EQUAL;
274 D_EXEC(qemu_log("EQUAL a=%f b=%f t=%f, r=%08x\n", a, b, t, r));
275 } break;
276 case OP_COPY:
278 r = s->gp_regs[reg_a];
279 latency = LATENCY_COPY;
280 D_EXEC(qemu_log("COPY"));
281 } break;
282 case OP_IF:
284 float a = REINTERPRET_CAST(float, s->gp_regs[reg_a]);
285 float b = REINTERPRET_CAST(float, s->gp_regs[reg_b]);
286 uint32_t f = s->gp_regs[GPR_FLAGS];
287 float t = (f != 0) ? a : b;
288 r = REINTERPRET_CAST(uint32_t, t);
289 latency = LATENCY_IF;
290 D_EXEC(qemu_log("IF f=%u a=%f b=%f t=%f, r=%08x\n", f, a, b, t, r));
291 } break;
292 case OP_TSIGN:
294 float a = REINTERPRET_CAST(float, s->gp_regs[reg_a]);
295 float b = REINTERPRET_CAST(float, s->gp_regs[reg_b]);
296 float t = (b < 0) ? -a : a;
297 r = REINTERPRET_CAST(uint32_t, t);
298 latency = LATENCY_TSIGN;
299 D_EXEC(qemu_log("TSIGN a=%f b=%f t=%f, r=%08x\n", a, b, t, r));
300 } break;
301 case OP_QUAKE:
303 uint32_t a = s->gp_regs[reg_a];
304 r = 0x5f3759df - (a >> 1);
305 latency = LATENCY_QUAKE;
306 D_EXEC(qemu_log("QUAKE a=%d r=%08x\n", a, r));
307 } break;
309 default:
310 error_report("milkymist_pfpu: unknown opcode %d", op);
311 break;
314 if (!reg_d) {
315 D_EXEC(qemu_log("%04d %8s R%03d, R%03d <L=%d, E=%04d>\n",
316 s->regs[R_PC], opcode_to_str[op], reg_a, reg_b, latency,
317 s->regs[R_PC] + latency));
318 } else {
319 D_EXEC(qemu_log("%04d %8s R%03d, R%03d <L=%d, E=%04d> -> R%03d\n",
320 s->regs[R_PC], opcode_to_str[op], reg_a, reg_b, latency,
321 s->regs[R_PC] + latency, reg_d));
324 if (op == OP_VECTOUT) {
325 return 0;
328 /* store output for this cycle */
329 if (reg_d) {
330 uint32_t val = output_queue_remove(s);
331 D_EXEC(qemu_log("R%03d <- 0x%08x\n", reg_d, val));
332 s->gp_regs[reg_d] = val;
335 output_queue_advance(s);
337 /* store op output */
338 if (op != OP_NOP) {
339 output_queue_insert(s, r, latency-1);
342 /* advance PC */
343 s->regs[R_PC]++;
345 return 1;
348 static void pfpu_start(MilkymistPFPUState *s)
350 int x, y;
351 int i;
353 for (y = 0; y <= s->regs[R_VMESHLAST]; y++) {
354 for (x = 0; x <= s->regs[R_HMESHLAST]; x++) {
355 D_EXEC(qemu_log("\nprocessing x=%d y=%d\n", x, y));
357 /* set current position */
358 s->gp_regs[GPR_X] = x;
359 s->gp_regs[GPR_Y] = y;
361 /* run microcode on this position */
362 i = 0;
363 while (pfpu_decode_insn(s)) {
364 /* decode at most MICROCODE_WORDS instructions */
365 if (++i >= MICROCODE_WORDS) {
366 error_report("milkymist_pfpu: too many instructions "
367 "executed in microcode. No VECTOUT?");
368 break;
372 /* reset pc for next run */
373 s->regs[R_PC] = 0;
377 s->regs[R_VERTICES] = x * y;
379 trace_milkymist_pfpu_pulse_irq();
380 qemu_irq_pulse(s->irq);
383 static inline int get_microcode_address(MilkymistPFPUState *s, uint32_t addr)
385 return (512 * s->regs[R_CODEPAGE]) + addr - MICROCODE_BEGIN;
388 static uint64_t pfpu_read(void *opaque, hwaddr addr,
389 unsigned size)
391 MilkymistPFPUState *s = opaque;
392 uint32_t r = 0;
394 addr >>= 2;
395 switch (addr) {
396 case R_CTL:
397 case R_MESHBASE:
398 case R_HMESHLAST:
399 case R_VMESHLAST:
400 case R_CODEPAGE:
401 case R_VERTICES:
402 case R_COLLISIONS:
403 case R_STRAYWRITES:
404 case R_LASTDMA:
405 case R_PC:
406 case R_DREGBASE:
407 case R_CODEBASE:
408 r = s->regs[addr];
409 break;
410 case GPR_BEGIN ... GPR_END:
411 r = s->gp_regs[addr - GPR_BEGIN];
412 break;
413 case MICROCODE_BEGIN ... MICROCODE_END:
414 r = s->microcode[get_microcode_address(s, addr)];
415 break;
417 default:
418 error_report("milkymist_pfpu: read access to unknown register 0x"
419 TARGET_FMT_plx, addr << 2);
420 break;
423 trace_milkymist_pfpu_memory_read(addr << 2, r);
425 return r;
428 static void pfpu_write(void *opaque, hwaddr addr, uint64_t value,
429 unsigned size)
431 MilkymistPFPUState *s = opaque;
433 trace_milkymist_pfpu_memory_write(addr, value);
435 addr >>= 2;
436 switch (addr) {
437 case R_CTL:
438 if (value & CTL_START_BUSY) {
439 pfpu_start(s);
441 break;
442 case R_MESHBASE:
443 case R_HMESHLAST:
444 case R_VMESHLAST:
445 case R_CODEPAGE:
446 case R_VERTICES:
447 case R_COLLISIONS:
448 case R_STRAYWRITES:
449 case R_LASTDMA:
450 case R_PC:
451 case R_DREGBASE:
452 case R_CODEBASE:
453 s->regs[addr] = value;
454 break;
455 case GPR_BEGIN ... GPR_END:
456 s->gp_regs[addr - GPR_BEGIN] = value;
457 break;
458 case MICROCODE_BEGIN ... MICROCODE_END:
459 s->microcode[get_microcode_address(s, addr)] = value;
460 break;
462 default:
463 error_report("milkymist_pfpu: write access to unknown register 0x"
464 TARGET_FMT_plx, addr << 2);
465 break;
469 static const MemoryRegionOps pfpu_mmio_ops = {
470 .read = pfpu_read,
471 .write = pfpu_write,
472 .valid = {
473 .min_access_size = 4,
474 .max_access_size = 4,
476 .endianness = DEVICE_NATIVE_ENDIAN,
479 static void milkymist_pfpu_reset(DeviceState *d)
481 MilkymistPFPUState *s = MILKYMIST_PFPU(d);
482 int i;
484 for (i = 0; i < R_MAX; i++) {
485 s->regs[i] = 0;
487 for (i = 0; i < 128; i++) {
488 s->gp_regs[i] = 0;
490 for (i = 0; i < MICROCODE_WORDS; i++) {
491 s->microcode[i] = 0;
493 s->output_queue_pos = 0;
494 for (i = 0; i < MAX_LATENCY; i++) {
495 s->output_queue[i] = 0;
499 static int milkymist_pfpu_init(SysBusDevice *dev)
501 MilkymistPFPUState *s = MILKYMIST_PFPU(dev);
503 sysbus_init_irq(dev, &s->irq);
505 memory_region_init_io(&s->regs_region, OBJECT(dev), &pfpu_mmio_ops, s,
506 "milkymist-pfpu", MICROCODE_END * 4);
507 sysbus_init_mmio(dev, &s->regs_region);
509 return 0;
512 static const VMStateDescription vmstate_milkymist_pfpu = {
513 .name = "milkymist-pfpu",
514 .version_id = 1,
515 .minimum_version_id = 1,
516 .fields = (VMStateField[]) {
517 VMSTATE_UINT32_ARRAY(regs, MilkymistPFPUState, R_MAX),
518 VMSTATE_UINT32_ARRAY(gp_regs, MilkymistPFPUState, 128),
519 VMSTATE_UINT32_ARRAY(microcode, MilkymistPFPUState, MICROCODE_WORDS),
520 VMSTATE_INT32(output_queue_pos, MilkymistPFPUState),
521 VMSTATE_UINT32_ARRAY(output_queue, MilkymistPFPUState, MAX_LATENCY),
522 VMSTATE_END_OF_LIST()
526 static void milkymist_pfpu_class_init(ObjectClass *klass, void *data)
528 DeviceClass *dc = DEVICE_CLASS(klass);
529 SysBusDeviceClass *k = SYS_BUS_DEVICE_CLASS(klass);
531 k->init = milkymist_pfpu_init;
532 dc->reset = milkymist_pfpu_reset;
533 dc->vmsd = &vmstate_milkymist_pfpu;
536 static const TypeInfo milkymist_pfpu_info = {
537 .name = TYPE_MILKYMIST_PFPU,
538 .parent = TYPE_SYS_BUS_DEVICE,
539 .instance_size = sizeof(MilkymistPFPUState),
540 .class_init = milkymist_pfpu_class_init,
543 static void milkymist_pfpu_register_types(void)
545 type_register_static(&milkymist_pfpu_info);
548 type_init(milkymist_pfpu_register_types)