virtio: split vhost vsock bits from virtio-pci
[qemu/ar7.git] / hw / intc / arm_gic_common.c
blob57569a4e590a440dac7aa01447998b27d009e26f
1 /*
2 * ARM GIC support - common bits of emulated and KVM kernel model
4 * Copyright (c) 2012 Linaro Limited
5 * Written by Peter Maydell
7 * This program is free software; you can redistribute it and/or modify
8 * it under the terms of the GNU General Public License as published by
9 * the Free Software Foundation, either version 2 of the License, or
10 * (at your option) any later version.
12 * This program is distributed in the hope that it will be useful,
13 * but WITHOUT ANY WARRANTY; without even the implied warranty of
14 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 * GNU General Public License for more details.
17 * You should have received a copy of the GNU General Public License along
18 * with this program; if not, see <http://www.gnu.org/licenses/>.
21 #include "qemu/osdep.h"
22 #include "qapi/error.h"
23 #include "gic_internal.h"
24 #include "hw/arm/linux-boot-if.h"
26 static int gic_pre_save(void *opaque)
28 GICState *s = (GICState *)opaque;
29 ARMGICCommonClass *c = ARM_GIC_COMMON_GET_CLASS(s);
31 if (c->pre_save) {
32 c->pre_save(s);
35 return 0;
38 static int gic_post_load(void *opaque, int version_id)
40 GICState *s = (GICState *)opaque;
41 ARMGICCommonClass *c = ARM_GIC_COMMON_GET_CLASS(s);
43 if (c->post_load) {
44 c->post_load(s);
46 return 0;
49 static bool gic_virt_state_needed(void *opaque)
51 GICState *s = (GICState *)opaque;
53 return s->virt_extn;
56 static const VMStateDescription vmstate_gic_irq_state = {
57 .name = "arm_gic_irq_state",
58 .version_id = 1,
59 .minimum_version_id = 1,
60 .fields = (VMStateField[]) {
61 VMSTATE_UINT8(enabled, gic_irq_state),
62 VMSTATE_UINT8(pending, gic_irq_state),
63 VMSTATE_UINT8(active, gic_irq_state),
64 VMSTATE_UINT8(level, gic_irq_state),
65 VMSTATE_BOOL(model, gic_irq_state),
66 VMSTATE_BOOL(edge_trigger, gic_irq_state),
67 VMSTATE_UINT8(group, gic_irq_state),
68 VMSTATE_END_OF_LIST()
72 static const VMStateDescription vmstate_gic_virt_state = {
73 .name = "arm_gic_virt_state",
74 .version_id = 1,
75 .minimum_version_id = 1,
76 .needed = gic_virt_state_needed,
77 .fields = (VMStateField[]) {
78 /* Virtual interface */
79 VMSTATE_UINT32_ARRAY(h_hcr, GICState, GIC_NCPU),
80 VMSTATE_UINT32_ARRAY(h_misr, GICState, GIC_NCPU),
81 VMSTATE_UINT32_2DARRAY(h_lr, GICState, GIC_MAX_LR, GIC_NCPU),
82 VMSTATE_UINT32_ARRAY(h_apr, GICState, GIC_NCPU),
84 /* Virtual CPU interfaces */
85 VMSTATE_UINT32_SUB_ARRAY(cpu_ctlr, GICState, GIC_NCPU, GIC_NCPU),
86 VMSTATE_UINT16_SUB_ARRAY(priority_mask, GICState, GIC_NCPU, GIC_NCPU),
87 VMSTATE_UINT16_SUB_ARRAY(running_priority, GICState, GIC_NCPU, GIC_NCPU),
88 VMSTATE_UINT16_SUB_ARRAY(current_pending, GICState, GIC_NCPU, GIC_NCPU),
89 VMSTATE_UINT8_SUB_ARRAY(bpr, GICState, GIC_NCPU, GIC_NCPU),
90 VMSTATE_UINT8_SUB_ARRAY(abpr, GICState, GIC_NCPU, GIC_NCPU),
92 VMSTATE_END_OF_LIST()
96 static const VMStateDescription vmstate_gic = {
97 .name = "arm_gic",
98 .version_id = 12,
99 .minimum_version_id = 12,
100 .pre_save = gic_pre_save,
101 .post_load = gic_post_load,
102 .fields = (VMStateField[]) {
103 VMSTATE_UINT32(ctlr, GICState),
104 VMSTATE_UINT32_SUB_ARRAY(cpu_ctlr, GICState, 0, GIC_NCPU),
105 VMSTATE_STRUCT_ARRAY(irq_state, GICState, GIC_MAXIRQ, 1,
106 vmstate_gic_irq_state, gic_irq_state),
107 VMSTATE_UINT8_ARRAY(irq_target, GICState, GIC_MAXIRQ),
108 VMSTATE_UINT8_2DARRAY(priority1, GICState, GIC_INTERNAL, GIC_NCPU),
109 VMSTATE_UINT8_ARRAY(priority2, GICState, GIC_MAXIRQ - GIC_INTERNAL),
110 VMSTATE_UINT8_2DARRAY(sgi_pending, GICState, GIC_NR_SGIS, GIC_NCPU),
111 VMSTATE_UINT16_SUB_ARRAY(priority_mask, GICState, 0, GIC_NCPU),
112 VMSTATE_UINT16_SUB_ARRAY(running_priority, GICState, 0, GIC_NCPU),
113 VMSTATE_UINT16_SUB_ARRAY(current_pending, GICState, 0, GIC_NCPU),
114 VMSTATE_UINT8_SUB_ARRAY(bpr, GICState, 0, GIC_NCPU),
115 VMSTATE_UINT8_SUB_ARRAY(abpr, GICState, 0, GIC_NCPU),
116 VMSTATE_UINT32_2DARRAY(apr, GICState, GIC_NR_APRS, GIC_NCPU),
117 VMSTATE_UINT32_2DARRAY(nsapr, GICState, GIC_NR_APRS, GIC_NCPU),
118 VMSTATE_END_OF_LIST()
120 .subsections = (const VMStateDescription * []) {
121 &vmstate_gic_virt_state,
122 NULL
126 void gic_init_irqs_and_mmio(GICState *s, qemu_irq_handler handler,
127 const MemoryRegionOps *ops,
128 const MemoryRegionOps *virt_ops)
130 SysBusDevice *sbd = SYS_BUS_DEVICE(s);
131 int i = s->num_irq - GIC_INTERNAL;
133 /* For the GIC, also expose incoming GPIO lines for PPIs for each CPU.
134 * GPIO array layout is thus:
135 * [0..N-1] SPIs
136 * [N..N+31] PPIs for CPU 0
137 * [N+32..N+63] PPIs for CPU 1
138 * ...
140 i += (GIC_INTERNAL * s->num_cpu);
141 qdev_init_gpio_in(DEVICE(s), handler, i);
143 for (i = 0; i < s->num_cpu; i++) {
144 sysbus_init_irq(sbd, &s->parent_irq[i]);
146 for (i = 0; i < s->num_cpu; i++) {
147 sysbus_init_irq(sbd, &s->parent_fiq[i]);
149 for (i = 0; i < s->num_cpu; i++) {
150 sysbus_init_irq(sbd, &s->parent_virq[i]);
152 for (i = 0; i < s->num_cpu; i++) {
153 sysbus_init_irq(sbd, &s->parent_vfiq[i]);
155 if (s->virt_extn) {
156 for (i = 0; i < s->num_cpu; i++) {
157 sysbus_init_irq(sbd, &s->maintenance_irq[i]);
161 /* Distributor */
162 memory_region_init_io(&s->iomem, OBJECT(s), ops, s, "gic_dist", 0x1000);
163 sysbus_init_mmio(sbd, &s->iomem);
165 /* This is the main CPU interface "for this core". It is always
166 * present because it is required by both software emulation and KVM.
168 memory_region_init_io(&s->cpuiomem[0], OBJECT(s), ops ? &ops[1] : NULL,
169 s, "gic_cpu", s->revision == 2 ? 0x2000 : 0x100);
170 sysbus_init_mmio(sbd, &s->cpuiomem[0]);
172 if (s->virt_extn) {
173 memory_region_init_io(&s->vifaceiomem[0], OBJECT(s), virt_ops,
174 s, "gic_viface", 0x1000);
175 sysbus_init_mmio(sbd, &s->vifaceiomem[0]);
177 memory_region_init_io(&s->vcpuiomem, OBJECT(s),
178 virt_ops ? &virt_ops[1] : NULL,
179 s, "gic_vcpu", 0x2000);
180 sysbus_init_mmio(sbd, &s->vcpuiomem);
184 static void arm_gic_common_realize(DeviceState *dev, Error **errp)
186 GICState *s = ARM_GIC_COMMON(dev);
187 int num_irq = s->num_irq;
189 if (s->num_cpu > GIC_NCPU) {
190 error_setg(errp, "requested %u CPUs exceeds GIC maximum %d",
191 s->num_cpu, GIC_NCPU);
192 return;
194 if (s->num_irq > GIC_MAXIRQ) {
195 error_setg(errp,
196 "requested %u interrupt lines exceeds GIC maximum %d",
197 num_irq, GIC_MAXIRQ);
198 return;
200 /* ITLinesNumber is represented as (N / 32) - 1 (see
201 * gic_dist_readb) so this is an implementation imposed
202 * restriction, not an architectural one:
204 if (s->num_irq < 32 || (s->num_irq % 32)) {
205 error_setg(errp,
206 "%d interrupt lines unsupported: not divisible by 32",
207 num_irq);
208 return;
211 if (s->security_extn &&
212 (s->revision == REV_11MPCORE)) {
213 error_setg(errp, "this GIC revision does not implement "
214 "the security extensions");
215 return;
218 if (s->virt_extn) {
219 if (s->revision != 2) {
220 error_setg(errp, "GIC virtualization extensions are only "
221 "supported by revision 2");
222 return;
225 /* For now, set the number of implemented LRs to 4, as found in most
226 * real GICv2. This could be promoted as a QOM property if we need to
227 * emulate a variant with another num_lrs.
229 s->num_lrs = 4;
233 static inline void arm_gic_common_reset_irq_state(GICState *s, int first_cpu,
234 int resetprio)
236 int i, j;
238 for (i = first_cpu; i < first_cpu + s->num_cpu; i++) {
239 if (s->revision == REV_11MPCORE) {
240 s->priority_mask[i] = 0xf0;
241 } else {
242 s->priority_mask[i] = resetprio;
244 s->current_pending[i] = 1023;
245 s->running_priority[i] = 0x100;
246 s->cpu_ctlr[i] = 0;
247 s->bpr[i] = gic_is_vcpu(i) ? GIC_VIRT_MIN_BPR : GIC_MIN_BPR;
248 s->abpr[i] = gic_is_vcpu(i) ? GIC_VIRT_MIN_ABPR : GIC_MIN_ABPR;
250 if (!gic_is_vcpu(i)) {
251 for (j = 0; j < GIC_INTERNAL; j++) {
252 s->priority1[j][i] = resetprio;
254 for (j = 0; j < GIC_NR_SGIS; j++) {
255 s->sgi_pending[j][i] = 0;
261 static void arm_gic_common_reset(DeviceState *dev)
263 GICState *s = ARM_GIC_COMMON(dev);
264 int i, j;
265 int resetprio;
267 /* If we're resetting a TZ-aware GIC as if secure firmware
268 * had set it up ready to start a kernel in non-secure,
269 * we need to set interrupt priorities to a "zero for the
270 * NS view" value. This is particularly critical for the
271 * priority_mask[] values, because if they are zero then NS
272 * code cannot ever rewrite the priority to anything else.
274 if (s->security_extn && s->irq_reset_nonsecure) {
275 resetprio = 0x80;
276 } else {
277 resetprio = 0;
280 memset(s->irq_state, 0, GIC_MAXIRQ * sizeof(gic_irq_state));
281 arm_gic_common_reset_irq_state(s, 0, resetprio);
283 if (s->virt_extn) {
284 /* vCPU states are stored at indexes GIC_NCPU .. GIC_NCPU+num_cpu.
285 * The exposed vCPU interface does not have security extensions.
287 arm_gic_common_reset_irq_state(s, GIC_NCPU, 0);
290 for (i = 0; i < GIC_NR_SGIS; i++) {
291 GIC_DIST_SET_ENABLED(i, ALL_CPU_MASK);
292 GIC_DIST_SET_EDGE_TRIGGER(i);
295 for (i = 0; i < ARRAY_SIZE(s->priority2); i++) {
296 s->priority2[i] = resetprio;
299 for (i = 0; i < GIC_MAXIRQ; i++) {
300 /* For uniprocessor GICs all interrupts always target the sole CPU */
301 if (s->num_cpu == 1) {
302 s->irq_target[i] = 1;
303 } else {
304 s->irq_target[i] = 0;
307 if (s->security_extn && s->irq_reset_nonsecure) {
308 for (i = 0; i < GIC_MAXIRQ; i++) {
309 GIC_DIST_SET_GROUP(i, ALL_CPU_MASK);
313 if (s->virt_extn) {
314 for (i = 0; i < s->num_lrs; i++) {
315 for (j = 0; j < s->num_cpu; j++) {
316 s->h_lr[i][j] = 0;
320 for (i = 0; i < s->num_cpu; i++) {
321 s->h_hcr[i] = 0;
322 s->h_misr[i] = 0;
326 s->ctlr = 0;
329 static void arm_gic_common_linux_init(ARMLinuxBootIf *obj,
330 bool secure_boot)
332 GICState *s = ARM_GIC_COMMON(obj);
334 if (s->security_extn && !secure_boot) {
335 /* We're directly booting a kernel into NonSecure. If this GIC
336 * implements the security extensions then we must configure it
337 * to have all the interrupts be NonSecure (this is a job that
338 * is done by the Secure boot firmware in real hardware, and in
339 * this mode QEMU is acting as a minimalist firmware-and-bootloader
340 * equivalent).
342 s->irq_reset_nonsecure = true;
346 static Property arm_gic_common_properties[] = {
347 DEFINE_PROP_UINT32("num-cpu", GICState, num_cpu, 1),
348 DEFINE_PROP_UINT32("num-irq", GICState, num_irq, 32),
349 /* Revision can be 1 or 2 for GIC architecture specification
350 * versions 1 or 2, or 0 to indicate the legacy 11MPCore GIC.
352 DEFINE_PROP_UINT32("revision", GICState, revision, 1),
353 /* True if the GIC should implement the security extensions */
354 DEFINE_PROP_BOOL("has-security-extensions", GICState, security_extn, 0),
355 /* True if the GIC should implement the virtualization extensions */
356 DEFINE_PROP_BOOL("has-virtualization-extensions", GICState, virt_extn, 0),
357 DEFINE_PROP_END_OF_LIST(),
360 static void arm_gic_common_class_init(ObjectClass *klass, void *data)
362 DeviceClass *dc = DEVICE_CLASS(klass);
363 ARMLinuxBootIfClass *albifc = ARM_LINUX_BOOT_IF_CLASS(klass);
365 dc->reset = arm_gic_common_reset;
366 dc->realize = arm_gic_common_realize;
367 dc->props = arm_gic_common_properties;
368 dc->vmsd = &vmstate_gic;
369 albifc->arm_linux_init = arm_gic_common_linux_init;
372 static const TypeInfo arm_gic_common_type = {
373 .name = TYPE_ARM_GIC_COMMON,
374 .parent = TYPE_SYS_BUS_DEVICE,
375 .instance_size = sizeof(GICState),
376 .class_size = sizeof(ARMGICCommonClass),
377 .class_init = arm_gic_common_class_init,
378 .abstract = true,
379 .interfaces = (InterfaceInfo []) {
380 { TYPE_ARM_LINUX_BOOT_IF },
381 { },
385 static void register_types(void)
387 type_register_static(&arm_gic_common_type);
390 type_init(register_types)