target/mips/rel6_translate: Change license to GNU LGPL v2.1 (or later)
[qemu/ar7.git] / docs / devel / tcg-plugins.rst
blob18c6581d85cfc14d14d79222e5ebb2a062683165
1 ..
2    Copyright (C) 2017, Emilio G. Cota <cota@braap.org>
3    Copyright (c) 2019, Linaro Limited
4    Written by Emilio Cota and Alex Bennée
6 ================
7 QEMU TCG Plugins
8 ================
10 QEMU TCG plugins provide a way for users to run experiments taking
11 advantage of the total system control emulation can have over a guest.
12 It provides a mechanism for plugins to subscribe to events during
13 translation and execution and optionally callback into the plugin
14 during these events. TCG plugins are unable to change the system state
15 only monitor it passively. However they can do this down to an
16 individual instruction granularity including potentially subscribing
17 to all load and store operations.
19 API Stability
20 =============
22 This is a new feature for QEMU and it does allow people to develop
23 out-of-tree plugins that can be dynamically linked into a running QEMU
24 process. However the project reserves the right to change or break the
25 API should it need to do so. The best way to avoid this is to submit
26 your plugin upstream so they can be updated if/when the API changes.
28 API versioning
29 --------------
31 All plugins need to declare a symbol which exports the plugin API
32 version they were built against. This can be done simply by::
34   QEMU_PLUGIN_EXPORT int qemu_plugin_version = QEMU_PLUGIN_VERSION;
36 The core code will refuse to load a plugin that doesn't export a
37 `qemu_plugin_version` symbol or if plugin version is outside of QEMU's
38 supported range of API versions.
40 Additionally the `qemu_info_t` structure which is passed to the
41 `qemu_plugin_install` method of a plugin will detail the minimum and
42 current API versions supported by QEMU. The API version will be
43 incremented if new APIs are added. The minimum API version will be
44 incremented if existing APIs are changed or removed.
46 Exposure of QEMU internals
47 --------------------------
49 The plugin architecture actively avoids leaking implementation details
50 about how QEMU's translation works to the plugins. While there are
51 conceptions such as translation time and translation blocks the
52 details are opaque to plugins. The plugin is able to query select
53 details of instructions and system configuration only through the
54 exported *qemu_plugin* functions.
56 Query Handle Lifetime
57 ---------------------
59 Each callback provides an opaque anonymous information handle which
60 can usually be further queried to find out information about a
61 translation, instruction or operation. The handles themselves are only
62 valid during the lifetime of the callback so it is important that any
63 information that is needed is extracted during the callback and saved
64 by the plugin.
66 API
67 ===
69 .. kernel-doc:: include/qemu/qemu-plugin.h
71 Usage
72 =====
74 The QEMU binary needs to be compiled for plugin support::
76   configure --enable-plugins
78 Once built a program can be run with multiple plugins loaded each with
79 their own arguments::
81   $QEMU $OTHER_QEMU_ARGS \
82       -plugin tests/plugin/libhowvec.so,arg=inline,arg=hint \
83       -plugin tests/plugin/libhotblocks.so
85 Arguments are plugin specific and can be used to modify their
86 behaviour. In this case the howvec plugin is being asked to use inline
87 ops to count and break down the hint instructions by type.
89 Plugin Life cycle
90 =================
92 First the plugin is loaded and the public qemu_plugin_install function
93 is called. The plugin will then register callbacks for various plugin
94 events. Generally plugins will register a handler for the *atexit*
95 if they want to dump a summary of collected information once the
96 program/system has finished running.
98 When a registered event occurs the plugin callback is invoked. The
99 callbacks may provide additional information. In the case of a
100 translation event the plugin has an option to enumerate the
101 instructions in a block of instructions and optionally register
102 callbacks to some or all instructions when they are executed.
104 There is also a facility to add an inline event where code to
105 increment a counter can be directly inlined with the translation.
106 Currently only a simple increment is supported. This is not atomic so
107 can miss counts. If you want absolute precision you should use a
108 callback which can then ensure atomicity itself.
110 Finally when QEMU exits all the registered *atexit* callbacks are
111 invoked.
113 Internals
114 =========
116 Locking
117 -------
119 We have to ensure we cannot deadlock, particularly under MTTCG. For
120 this we acquire a lock when called from plugin code. We also keep the
121 list of callbacks under RCU so that we do not have to hold the lock
122 when calling the callbacks. This is also for performance, since some
123 callbacks (e.g. memory access callbacks) might be called very
124 frequently.
126   * A consequence of this is that we keep our own list of CPUs, so that
127     we do not have to worry about locking order wrt cpu_list_lock.
128   * Use a recursive lock, since we can get registration calls from
129     callbacks.
131 As a result registering/unregistering callbacks is "slow", since it
132 takes a lock. But this is very infrequent; we want performance when
133 calling (or not calling) callbacks, not when registering them. Using
134 RCU is great for this.
136 We support the uninstallation of a plugin at any time (e.g. from
137 plugin callbacks). This allows plugins to remove themselves if they no
138 longer want to instrument the code. This operation is asynchronous
139 which means callbacks may still occur after the uninstall operation is
140 requested. The plugin isn't completely uninstalled until the safe work
141 has executed while all vCPUs are quiescent.
143 Example Plugins
144 ===============
146 There are a number of plugins included with QEMU and you are
147 encouraged to contribute your own plugins plugins upstream. There is a
148 `contrib/plugins` directory where they can go.
150 - tests/plugins
152 These are some basic plugins that are used to test and exercise the
153 API during the `make check-tcg` target.
155 - contrib/plugins/hotblocks.c
157 The hotblocks plugin allows you to examine the where hot paths of
158 execution are in your program. Once the program has finished you will
159 get a sorted list of blocks reporting the starting PC, translation
160 count, number of instructions and execution count. This will work best
161 with linux-user execution as system emulation tends to generate
162 re-translations as blocks from different programs get swapped in and
163 out of system memory.
165 If your program is single-threaded you can use the `inline` option for
166 slightly faster (but not thread safe) counters.
168 Example::
170   ./aarch64-linux-user/qemu-aarch64 \
171     -plugin contrib/plugins/libhotblocks.so -d plugin \
172     ./tests/tcg/aarch64-linux-user/sha1
173   SHA1=15dd99a1991e0b3826fede3deffc1feba42278e6
174   collected 903 entries in the hash table
175   pc, tcount, icount, ecount
176   0x0000000041ed10, 1, 5, 66087
177   0x000000004002b0, 1, 4, 66087
178   ...
180 - contrib/plugins/hotpages.c
182 Similar to hotblocks but this time tracks memory accesses::
184   ./aarch64-linux-user/qemu-aarch64 \
185     -plugin contrib/plugins/libhotpages.so -d plugin \
186     ./tests/tcg/aarch64-linux-user/sha1
187   SHA1=15dd99a1991e0b3826fede3deffc1feba42278e6
188   Addr, RCPUs, Reads, WCPUs, Writes
189   0x000055007fe000, 0x0001, 31747952, 0x0001, 8835161
190   0x000055007ff000, 0x0001, 29001054, 0x0001, 8780625
191   0x00005500800000, 0x0001, 687465, 0x0001, 335857
192   0x0000000048b000, 0x0001, 130594, 0x0001, 355
193   0x0000000048a000, 0x0001, 1826, 0x0001, 11
195 - contrib/plugins/howvec.c
197 This is an instruction classifier so can be used to count different
198 types of instructions. It has a number of options to refine which get
199 counted. You can give an argument for a class of instructions to break
200 it down fully, so for example to see all the system registers
201 accesses::
203   ./aarch64-softmmu/qemu-system-aarch64 $(QEMU_ARGS) \
204     -append "root=/dev/sda2 systemd.unit=benchmark.service" \
205     -smp 4 -plugin ./contrib/plugins/libhowvec.so,arg=sreg -d plugin
207 which will lead to a sorted list after the class breakdown::
209   Instruction Classes:
210   Class:   UDEF                   not counted
211   Class:   SVE                    (68 hits)
212   Class:   PCrel addr             (47789483 hits)
213   Class:   Add/Sub (imm)          (192817388 hits)
214   Class:   Logical (imm)          (93852565 hits)
215   Class:   Move Wide (imm)        (76398116 hits)
216   Class:   Bitfield               (44706084 hits)
217   Class:   Extract                (5499257 hits)
218   Class:   Cond Branch (imm)      (147202932 hits)
219   Class:   Exception Gen          (193581 hits)
220   Class:     NOP                  not counted
221   Class:   Hints                  (6652291 hits)
222   Class:   Barriers               (8001661 hits)
223   Class:   PSTATE                 (1801695 hits)
224   Class:   System Insn            (6385349 hits)
225   Class:   System Reg             counted individually
226   Class:   Branch (reg)           (69497127 hits)
227   Class:   Branch (imm)           (84393665 hits)
228   Class:   Cmp & Branch           (110929659 hits)
229   Class:   Tst & Branch           (44681442 hits)
230   Class:   AdvSimd ldstmult       (736 hits)
231   Class:   ldst excl              (9098783 hits)
232   Class:   Load Reg (lit)         (87189424 hits)
233   Class:   ldst noalloc pair      (3264433 hits)
234   Class:   ldst pair              (412526434 hits)
235   Class:   ldst reg (imm)         (314734576 hits)
236   Class: Loads & Stores           (2117774 hits)
237   Class: Data Proc Reg            (223519077 hits)
238   Class: Scalar FP                (31657954 hits)
239   Individual Instructions:
240   Instr: mrs x0, sp_el0           (2682661 hits)  (op=0xd5384100/  System Reg)
241   Instr: mrs x1, tpidr_el2        (1789339 hits)  (op=0xd53cd041/  System Reg)
242   Instr: mrs x2, tpidr_el2        (1513494 hits)  (op=0xd53cd042/  System Reg)
243   Instr: mrs x0, tpidr_el2        (1490823 hits)  (op=0xd53cd040/  System Reg)
244   Instr: mrs x1, sp_el0           (933793 hits)   (op=0xd5384101/  System Reg)
245   Instr: mrs x2, sp_el0           (699516 hits)   (op=0xd5384102/  System Reg)
246   Instr: mrs x4, tpidr_el2        (528437 hits)   (op=0xd53cd044/  System Reg)
247   Instr: mrs x30, ttbr1_el1       (480776 hits)   (op=0xd538203e/  System Reg)
248   Instr: msr ttbr1_el1, x30       (480713 hits)   (op=0xd518203e/  System Reg)
249   Instr: msr vbar_el1, x30        (480671 hits)   (op=0xd518c01e/  System Reg)
250   ...
252 To find the argument shorthand for the class you need to examine the
253 source code of the plugin at the moment, specifically the `*opt`
254 argument in the InsnClassExecCount tables.
256 - contrib/plugins/lockstep.c
258 This is a debugging tool for developers who want to find out when and
259 where execution diverges after a subtle change to TCG code generation.
260 It is not an exact science and results are likely to be mixed once
261 asynchronous events are introduced. While the use of -icount can
262 introduce determinism to the execution flow it doesn't always follow
263 the translation sequence will be exactly the same. Typically this is
264 caused by a timer firing to service the GUI causing a block to end
265 early. However in some cases it has proved to be useful in pointing
266 people at roughly where execution diverges. The only argument you need
267 for the plugin is a path for the socket the two instances will
268 communicate over::
271   ./sparc-softmmu/qemu-system-sparc -monitor none -parallel none \
272     -net none -M SS-20 -m 256 -kernel day11/zImage.elf \
273     -plugin ./contrib/plugins/liblockstep.so,arg=lockstep-sparc.sock \
274   -d plugin,nochain
276 which will eventually report::
278   qemu-system-sparc: warning: nic lance.0 has no peer
279   @ 0x000000ffd06678 vs 0x000000ffd001e0 (2/1 since last)
280   @ 0x000000ffd07d9c vs 0x000000ffd06678 (3/1 since last)
281   Δ insn_count @ 0x000000ffd07d9c (809900609) vs 0x000000ffd06678 (809900612)
282     previously @ 0x000000ffd06678/10 (809900609 insns)
283     previously @ 0x000000ffd001e0/4 (809900599 insns)
284     previously @ 0x000000ffd080ac/2 (809900595 insns)
285     previously @ 0x000000ffd08098/5 (809900593 insns)
286     previously @ 0x000000ffd080c0/1 (809900588 insns)
288 - contrib/plugins/hwprofile
290 The hwprofile tool can only be used with system emulation and allows
291 the user to see what hardware is accessed how often. It has a number of options:
293  * arg=read or arg=write
295  By default the plugin tracks both reads and writes. You can use one
296  of these options to limit the tracking to just one class of accesses.
298  * arg=source
300  Will include a detailed break down of what the guest PC that made the
301  access was. Not compatible with arg=pattern. Example output::
303    cirrus-low-memory @ 0xfffffd00000a0000
304     pc:fffffc0000005cdc, 1, 256
305     pc:fffffc0000005ce8, 1, 256
306     pc:fffffc0000005cec, 1, 256
308  * arg=pattern
310  Instead break down the accesses based on the offset into the HW
311  region. This can be useful for seeing the most used registers of a
312  device. Example output::
314     pci0-conf @ 0xfffffd01fe000000
315       off:00000004, 1, 1
316       off:00000010, 1, 3
317       off:00000014, 1, 3
318       off:00000018, 1, 2
319       off:0000001c, 1, 2
320       off:00000020, 1, 2
321       ...