hw/sd/sdcard: Simplify cmd_valid_while_locked()
[qemu/ar7.git] / hw / ppc / spapr.c
blob63315f2d0fa90221a6d2a034b591e49806c14f2c
1 /*
2 * QEMU PowerPC pSeries Logical Partition (aka sPAPR) hardware System Emulator
4 * Copyright (c) 2004-2007 Fabrice Bellard
5 * Copyright (c) 2007 Jocelyn Mayer
6 * Copyright (c) 2010 David Gibson, IBM Corporation.
8 * Permission is hereby granted, free of charge, to any person obtaining a copy
9 * of this software and associated documentation files (the "Software"), to deal
10 * in the Software without restriction, including without limitation the rights
11 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
12 * copies of the Software, and to permit persons to whom the Software is
13 * furnished to do so, subject to the following conditions:
15 * The above copyright notice and this permission notice shall be included in
16 * all copies or substantial portions of the Software.
18 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
19 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
20 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
21 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
22 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
23 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
24 * THE SOFTWARE.
27 #include "qemu/osdep.h"
28 #include "qemu-common.h"
29 #include "qapi/error.h"
30 #include "qapi/visitor.h"
31 #include "sysemu/sysemu.h"
32 #include "sysemu/hostmem.h"
33 #include "sysemu/numa.h"
34 #include "sysemu/qtest.h"
35 #include "sysemu/reset.h"
36 #include "sysemu/runstate.h"
37 #include "qemu/log.h"
38 #include "hw/fw-path-provider.h"
39 #include "elf.h"
40 #include "net/net.h"
41 #include "sysemu/device_tree.h"
42 #include "sysemu/cpus.h"
43 #include "sysemu/hw_accel.h"
44 #include "kvm_ppc.h"
45 #include "migration/misc.h"
46 #include "migration/qemu-file-types.h"
47 #include "migration/global_state.h"
48 #include "migration/register.h"
49 #include "migration/blocker.h"
50 #include "mmu-hash64.h"
51 #include "mmu-book3s-v3.h"
52 #include "cpu-models.h"
53 #include "hw/core/cpu.h"
55 #include "hw/boards.h"
56 #include "hw/ppc/ppc.h"
57 #include "hw/loader.h"
59 #include "hw/ppc/fdt.h"
60 #include "hw/ppc/spapr.h"
61 #include "hw/ppc/spapr_vio.h"
62 #include "hw/qdev-properties.h"
63 #include "hw/pci-host/spapr.h"
64 #include "hw/pci/msi.h"
66 #include "hw/pci/pci.h"
67 #include "hw/scsi/scsi.h"
68 #include "hw/virtio/virtio-scsi.h"
69 #include "hw/virtio/vhost-scsi-common.h"
71 #include "exec/address-spaces.h"
72 #include "exec/ram_addr.h"
73 #include "hw/usb.h"
74 #include "qemu/config-file.h"
75 #include "qemu/error-report.h"
76 #include "trace.h"
77 #include "hw/nmi.h"
78 #include "hw/intc/intc.h"
80 #include "hw/ppc/spapr_cpu_core.h"
81 #include "hw/mem/memory-device.h"
82 #include "hw/ppc/spapr_tpm_proxy.h"
83 #include "hw/ppc/spapr_nvdimm.h"
84 #include "hw/ppc/spapr_numa.h"
86 #include "monitor/monitor.h"
88 #include <libfdt.h>
90 /* SLOF memory layout:
92 * SLOF raw image loaded at 0, copies its romfs right below the flat
93 * device-tree, then position SLOF itself 31M below that
95 * So we set FW_OVERHEAD to 40MB which should account for all of that
96 * and more
98 * We load our kernel at 4M, leaving space for SLOF initial image
100 #define RTAS_MAX_ADDR 0x80000000 /* RTAS must stay below that */
101 #define FW_MAX_SIZE 0x400000
102 #define FW_FILE_NAME "slof.bin"
103 #define FW_OVERHEAD 0x2800000
104 #define KERNEL_LOAD_ADDR FW_MAX_SIZE
106 #define MIN_RMA_SLOF (128 * MiB)
108 #define PHANDLE_INTC 0x00001111
110 /* These two functions implement the VCPU id numbering: one to compute them
111 * all and one to identify thread 0 of a VCORE. Any change to the first one
112 * is likely to have an impact on the second one, so let's keep them close.
114 static int spapr_vcpu_id(SpaprMachineState *spapr, int cpu_index)
116 MachineState *ms = MACHINE(spapr);
117 unsigned int smp_threads = ms->smp.threads;
119 assert(spapr->vsmt);
120 return
121 (cpu_index / smp_threads) * spapr->vsmt + cpu_index % smp_threads;
123 static bool spapr_is_thread0_in_vcore(SpaprMachineState *spapr,
124 PowerPCCPU *cpu)
126 assert(spapr->vsmt);
127 return spapr_get_vcpu_id(cpu) % spapr->vsmt == 0;
130 static bool pre_2_10_vmstate_dummy_icp_needed(void *opaque)
132 /* Dummy entries correspond to unused ICPState objects in older QEMUs,
133 * and newer QEMUs don't even have them. In both cases, we don't want
134 * to send anything on the wire.
136 return false;
139 static const VMStateDescription pre_2_10_vmstate_dummy_icp = {
140 .name = "icp/server",
141 .version_id = 1,
142 .minimum_version_id = 1,
143 .needed = pre_2_10_vmstate_dummy_icp_needed,
144 .fields = (VMStateField[]) {
145 VMSTATE_UNUSED(4), /* uint32_t xirr */
146 VMSTATE_UNUSED(1), /* uint8_t pending_priority */
147 VMSTATE_UNUSED(1), /* uint8_t mfrr */
148 VMSTATE_END_OF_LIST()
152 static void pre_2_10_vmstate_register_dummy_icp(int i)
154 vmstate_register(NULL, i, &pre_2_10_vmstate_dummy_icp,
155 (void *)(uintptr_t) i);
158 static void pre_2_10_vmstate_unregister_dummy_icp(int i)
160 vmstate_unregister(NULL, &pre_2_10_vmstate_dummy_icp,
161 (void *)(uintptr_t) i);
164 int spapr_max_server_number(SpaprMachineState *spapr)
166 MachineState *ms = MACHINE(spapr);
168 assert(spapr->vsmt);
169 return DIV_ROUND_UP(ms->smp.max_cpus * spapr->vsmt, ms->smp.threads);
172 static int spapr_fixup_cpu_smt_dt(void *fdt, int offset, PowerPCCPU *cpu,
173 int smt_threads)
175 int i, ret = 0;
176 uint32_t servers_prop[smt_threads];
177 uint32_t gservers_prop[smt_threads * 2];
178 int index = spapr_get_vcpu_id(cpu);
180 if (cpu->compat_pvr) {
181 ret = fdt_setprop_cell(fdt, offset, "cpu-version", cpu->compat_pvr);
182 if (ret < 0) {
183 return ret;
187 /* Build interrupt servers and gservers properties */
188 for (i = 0; i < smt_threads; i++) {
189 servers_prop[i] = cpu_to_be32(index + i);
190 /* Hack, direct the group queues back to cpu 0 */
191 gservers_prop[i*2] = cpu_to_be32(index + i);
192 gservers_prop[i*2 + 1] = 0;
194 ret = fdt_setprop(fdt, offset, "ibm,ppc-interrupt-server#s",
195 servers_prop, sizeof(servers_prop));
196 if (ret < 0) {
197 return ret;
199 ret = fdt_setprop(fdt, offset, "ibm,ppc-interrupt-gserver#s",
200 gservers_prop, sizeof(gservers_prop));
202 return ret;
205 static void spapr_dt_pa_features(SpaprMachineState *spapr,
206 PowerPCCPU *cpu,
207 void *fdt, int offset)
209 uint8_t pa_features_206[] = { 6, 0,
210 0xf6, 0x1f, 0xc7, 0x00, 0x80, 0xc0 };
211 uint8_t pa_features_207[] = { 24, 0,
212 0xf6, 0x1f, 0xc7, 0xc0, 0x80, 0xf0,
213 0x80, 0x00, 0x00, 0x00, 0x00, 0x00,
214 0x00, 0x00, 0x00, 0x00, 0x80, 0x00,
215 0x80, 0x00, 0x80, 0x00, 0x00, 0x00 };
216 uint8_t pa_features_300[] = { 66, 0,
217 /* 0: MMU|FPU|SLB|RUN|DABR|NX, 1: fri[nzpm]|DABRX|SPRG3|SLB0|PP110 */
218 /* 2: VPM|DS205|PPR|DS202|DS206, 3: LSD|URG, SSO, 5: LE|CFAR|EB|LSQ */
219 0xf6, 0x1f, 0xc7, 0xc0, 0x80, 0xf0, /* 0 - 5 */
220 /* 6: DS207 */
221 0x80, 0x00, 0x00, 0x00, 0x00, 0x00, /* 6 - 11 */
222 /* 16: Vector */
223 0x00, 0x00, 0x00, 0x00, 0x80, 0x00, /* 12 - 17 */
224 /* 18: Vec. Scalar, 20: Vec. XOR, 22: HTM */
225 0x80, 0x00, 0x80, 0x00, 0x00, 0x00, /* 18 - 23 */
226 /* 24: Ext. Dec, 26: 64 bit ftrs, 28: PM ftrs */
227 0x80, 0x00, 0x80, 0x00, 0x80, 0x00, /* 24 - 29 */
228 /* 30: MMR, 32: LE atomic, 34: EBB + ext EBB */
229 0x80, 0x00, 0x80, 0x00, 0xC0, 0x00, /* 30 - 35 */
230 /* 36: SPR SO, 38: Copy/Paste, 40: Radix MMU */
231 0x80, 0x00, 0x80, 0x00, 0x80, 0x00, /* 36 - 41 */
232 /* 42: PM, 44: PC RA, 46: SC vec'd */
233 0x80, 0x00, 0x80, 0x00, 0x80, 0x00, /* 42 - 47 */
234 /* 48: SIMD, 50: QP BFP, 52: String */
235 0x80, 0x00, 0x80, 0x00, 0x80, 0x00, /* 48 - 53 */
236 /* 54: DecFP, 56: DecI, 58: SHA */
237 0x80, 0x00, 0x80, 0x00, 0x80, 0x00, /* 54 - 59 */
238 /* 60: NM atomic, 62: RNG */
239 0x80, 0x00, 0x80, 0x00, 0x00, 0x00, /* 60 - 65 */
241 uint8_t *pa_features = NULL;
242 size_t pa_size;
244 if (ppc_check_compat(cpu, CPU_POWERPC_LOGICAL_2_06, 0, cpu->compat_pvr)) {
245 pa_features = pa_features_206;
246 pa_size = sizeof(pa_features_206);
248 if (ppc_check_compat(cpu, CPU_POWERPC_LOGICAL_2_07, 0, cpu->compat_pvr)) {
249 pa_features = pa_features_207;
250 pa_size = sizeof(pa_features_207);
252 if (ppc_check_compat(cpu, CPU_POWERPC_LOGICAL_3_00, 0, cpu->compat_pvr)) {
253 pa_features = pa_features_300;
254 pa_size = sizeof(pa_features_300);
256 if (!pa_features) {
257 return;
260 if (ppc_hash64_has(cpu, PPC_HASH64_CI_LARGEPAGE)) {
262 * Note: we keep CI large pages off by default because a 64K capable
263 * guest provisioned with large pages might otherwise try to map a qemu
264 * framebuffer (or other kind of memory mapped PCI BAR) using 64K pages
265 * even if that qemu runs on a 4k host.
266 * We dd this bit back here if we are confident this is not an issue
268 pa_features[3] |= 0x20;
270 if ((spapr_get_cap(spapr, SPAPR_CAP_HTM) != 0) && pa_size > 24) {
271 pa_features[24] |= 0x80; /* Transactional memory support */
273 if (spapr->cas_pre_isa3_guest && pa_size > 40) {
274 /* Workaround for broken kernels that attempt (guest) radix
275 * mode when they can't handle it, if they see the radix bit set
276 * in pa-features. So hide it from them. */
277 pa_features[40 + 2] &= ~0x80; /* Radix MMU */
280 _FDT((fdt_setprop(fdt, offset, "ibm,pa-features", pa_features, pa_size)));
283 static hwaddr spapr_node0_size(MachineState *machine)
285 if (machine->numa_state->num_nodes) {
286 int i;
287 for (i = 0; i < machine->numa_state->num_nodes; ++i) {
288 if (machine->numa_state->nodes[i].node_mem) {
289 return MIN(pow2floor(machine->numa_state->nodes[i].node_mem),
290 machine->ram_size);
294 return machine->ram_size;
297 bool spapr_machine_using_legacy_numa(SpaprMachineState *spapr)
299 MachineState *machine = MACHINE(spapr);
300 SpaprMachineClass *smc = SPAPR_MACHINE_GET_CLASS(machine);
302 return smc->pre_5_2_numa_associativity ||
303 machine->numa_state->num_nodes <= 1;
306 static void add_str(GString *s, const gchar *s1)
308 g_string_append_len(s, s1, strlen(s1) + 1);
311 static int spapr_dt_memory_node(SpaprMachineState *spapr, void *fdt, int nodeid,
312 hwaddr start, hwaddr size)
314 char mem_name[32];
315 uint64_t mem_reg_property[2];
316 int off;
318 mem_reg_property[0] = cpu_to_be64(start);
319 mem_reg_property[1] = cpu_to_be64(size);
321 sprintf(mem_name, "memory@%" HWADDR_PRIx, start);
322 off = fdt_add_subnode(fdt, 0, mem_name);
323 _FDT(off);
324 _FDT((fdt_setprop_string(fdt, off, "device_type", "memory")));
325 _FDT((fdt_setprop(fdt, off, "reg", mem_reg_property,
326 sizeof(mem_reg_property))));
327 spapr_numa_write_associativity_dt(spapr, fdt, off, nodeid);
328 return off;
331 static uint32_t spapr_pc_dimm_node(MemoryDeviceInfoList *list, ram_addr_t addr)
333 MemoryDeviceInfoList *info;
335 for (info = list; info; info = info->next) {
336 MemoryDeviceInfo *value = info->value;
338 if (value && value->type == MEMORY_DEVICE_INFO_KIND_DIMM) {
339 PCDIMMDeviceInfo *pcdimm_info = value->u.dimm.data;
341 if (addr >= pcdimm_info->addr &&
342 addr < (pcdimm_info->addr + pcdimm_info->size)) {
343 return pcdimm_info->node;
348 return -1;
351 struct sPAPRDrconfCellV2 {
352 uint32_t seq_lmbs;
353 uint64_t base_addr;
354 uint32_t drc_index;
355 uint32_t aa_index;
356 uint32_t flags;
357 } QEMU_PACKED;
359 typedef struct DrconfCellQueue {
360 struct sPAPRDrconfCellV2 cell;
361 QSIMPLEQ_ENTRY(DrconfCellQueue) entry;
362 } DrconfCellQueue;
364 static DrconfCellQueue *
365 spapr_get_drconf_cell(uint32_t seq_lmbs, uint64_t base_addr,
366 uint32_t drc_index, uint32_t aa_index,
367 uint32_t flags)
369 DrconfCellQueue *elem;
371 elem = g_malloc0(sizeof(*elem));
372 elem->cell.seq_lmbs = cpu_to_be32(seq_lmbs);
373 elem->cell.base_addr = cpu_to_be64(base_addr);
374 elem->cell.drc_index = cpu_to_be32(drc_index);
375 elem->cell.aa_index = cpu_to_be32(aa_index);
376 elem->cell.flags = cpu_to_be32(flags);
378 return elem;
381 static int spapr_dt_dynamic_memory_v2(SpaprMachineState *spapr, void *fdt,
382 int offset, MemoryDeviceInfoList *dimms)
384 MachineState *machine = MACHINE(spapr);
385 uint8_t *int_buf, *cur_index;
386 int ret;
387 uint64_t lmb_size = SPAPR_MEMORY_BLOCK_SIZE;
388 uint64_t addr, cur_addr, size;
389 uint32_t nr_boot_lmbs = (machine->device_memory->base / lmb_size);
390 uint64_t mem_end = machine->device_memory->base +
391 memory_region_size(&machine->device_memory->mr);
392 uint32_t node, buf_len, nr_entries = 0;
393 SpaprDrc *drc;
394 DrconfCellQueue *elem, *next;
395 MemoryDeviceInfoList *info;
396 QSIMPLEQ_HEAD(, DrconfCellQueue) drconf_queue
397 = QSIMPLEQ_HEAD_INITIALIZER(drconf_queue);
399 /* Entry to cover RAM and the gap area */
400 elem = spapr_get_drconf_cell(nr_boot_lmbs, 0, 0, -1,
401 SPAPR_LMB_FLAGS_RESERVED |
402 SPAPR_LMB_FLAGS_DRC_INVALID);
403 QSIMPLEQ_INSERT_TAIL(&drconf_queue, elem, entry);
404 nr_entries++;
406 cur_addr = machine->device_memory->base;
407 for (info = dimms; info; info = info->next) {
408 PCDIMMDeviceInfo *di = info->value->u.dimm.data;
410 addr = di->addr;
411 size = di->size;
412 node = di->node;
415 * The NVDIMM area is hotpluggable after the NVDIMM is unplugged. The
416 * area is marked hotpluggable in the next iteration for the bigger
417 * chunk including the NVDIMM occupied area.
419 if (info->value->type == MEMORY_DEVICE_INFO_KIND_NVDIMM)
420 continue;
422 /* Entry for hot-pluggable area */
423 if (cur_addr < addr) {
424 drc = spapr_drc_by_id(TYPE_SPAPR_DRC_LMB, cur_addr / lmb_size);
425 g_assert(drc);
426 elem = spapr_get_drconf_cell((addr - cur_addr) / lmb_size,
427 cur_addr, spapr_drc_index(drc), -1, 0);
428 QSIMPLEQ_INSERT_TAIL(&drconf_queue, elem, entry);
429 nr_entries++;
432 /* Entry for DIMM */
433 drc = spapr_drc_by_id(TYPE_SPAPR_DRC_LMB, addr / lmb_size);
434 g_assert(drc);
435 elem = spapr_get_drconf_cell(size / lmb_size, addr,
436 spapr_drc_index(drc), node,
437 (SPAPR_LMB_FLAGS_ASSIGNED |
438 SPAPR_LMB_FLAGS_HOTREMOVABLE));
439 QSIMPLEQ_INSERT_TAIL(&drconf_queue, elem, entry);
440 nr_entries++;
441 cur_addr = addr + size;
444 /* Entry for remaining hotpluggable area */
445 if (cur_addr < mem_end) {
446 drc = spapr_drc_by_id(TYPE_SPAPR_DRC_LMB, cur_addr / lmb_size);
447 g_assert(drc);
448 elem = spapr_get_drconf_cell((mem_end - cur_addr) / lmb_size,
449 cur_addr, spapr_drc_index(drc), -1, 0);
450 QSIMPLEQ_INSERT_TAIL(&drconf_queue, elem, entry);
451 nr_entries++;
454 buf_len = nr_entries * sizeof(struct sPAPRDrconfCellV2) + sizeof(uint32_t);
455 int_buf = cur_index = g_malloc0(buf_len);
456 *(uint32_t *)int_buf = cpu_to_be32(nr_entries);
457 cur_index += sizeof(nr_entries);
459 QSIMPLEQ_FOREACH_SAFE(elem, &drconf_queue, entry, next) {
460 memcpy(cur_index, &elem->cell, sizeof(elem->cell));
461 cur_index += sizeof(elem->cell);
462 QSIMPLEQ_REMOVE(&drconf_queue, elem, DrconfCellQueue, entry);
463 g_free(elem);
466 ret = fdt_setprop(fdt, offset, "ibm,dynamic-memory-v2", int_buf, buf_len);
467 g_free(int_buf);
468 if (ret < 0) {
469 return -1;
471 return 0;
474 static int spapr_dt_dynamic_memory(SpaprMachineState *spapr, void *fdt,
475 int offset, MemoryDeviceInfoList *dimms)
477 MachineState *machine = MACHINE(spapr);
478 int i, ret;
479 uint64_t lmb_size = SPAPR_MEMORY_BLOCK_SIZE;
480 uint32_t device_lmb_start = machine->device_memory->base / lmb_size;
481 uint32_t nr_lmbs = (machine->device_memory->base +
482 memory_region_size(&machine->device_memory->mr)) /
483 lmb_size;
484 uint32_t *int_buf, *cur_index, buf_len;
487 * Allocate enough buffer size to fit in ibm,dynamic-memory
489 buf_len = (nr_lmbs * SPAPR_DR_LMB_LIST_ENTRY_SIZE + 1) * sizeof(uint32_t);
490 cur_index = int_buf = g_malloc0(buf_len);
491 int_buf[0] = cpu_to_be32(nr_lmbs);
492 cur_index++;
493 for (i = 0; i < nr_lmbs; i++) {
494 uint64_t addr = i * lmb_size;
495 uint32_t *dynamic_memory = cur_index;
497 if (i >= device_lmb_start) {
498 SpaprDrc *drc;
500 drc = spapr_drc_by_id(TYPE_SPAPR_DRC_LMB, i);
501 g_assert(drc);
503 dynamic_memory[0] = cpu_to_be32(addr >> 32);
504 dynamic_memory[1] = cpu_to_be32(addr & 0xffffffff);
505 dynamic_memory[2] = cpu_to_be32(spapr_drc_index(drc));
506 dynamic_memory[3] = cpu_to_be32(0); /* reserved */
507 dynamic_memory[4] = cpu_to_be32(spapr_pc_dimm_node(dimms, addr));
508 if (memory_region_present(get_system_memory(), addr)) {
509 dynamic_memory[5] = cpu_to_be32(SPAPR_LMB_FLAGS_ASSIGNED);
510 } else {
511 dynamic_memory[5] = cpu_to_be32(0);
513 } else {
515 * LMB information for RMA, boot time RAM and gap b/n RAM and
516 * device memory region -- all these are marked as reserved
517 * and as having no valid DRC.
519 dynamic_memory[0] = cpu_to_be32(addr >> 32);
520 dynamic_memory[1] = cpu_to_be32(addr & 0xffffffff);
521 dynamic_memory[2] = cpu_to_be32(0);
522 dynamic_memory[3] = cpu_to_be32(0); /* reserved */
523 dynamic_memory[4] = cpu_to_be32(-1);
524 dynamic_memory[5] = cpu_to_be32(SPAPR_LMB_FLAGS_RESERVED |
525 SPAPR_LMB_FLAGS_DRC_INVALID);
528 cur_index += SPAPR_DR_LMB_LIST_ENTRY_SIZE;
530 ret = fdt_setprop(fdt, offset, "ibm,dynamic-memory", int_buf, buf_len);
531 g_free(int_buf);
532 if (ret < 0) {
533 return -1;
535 return 0;
539 * Adds ibm,dynamic-reconfiguration-memory node.
540 * Refer to docs/specs/ppc-spapr-hotplug.txt for the documentation
541 * of this device tree node.
543 static int spapr_dt_dynamic_reconfiguration_memory(SpaprMachineState *spapr,
544 void *fdt)
546 MachineState *machine = MACHINE(spapr);
547 int ret, offset;
548 uint64_t lmb_size = SPAPR_MEMORY_BLOCK_SIZE;
549 uint32_t prop_lmb_size[] = {cpu_to_be32(lmb_size >> 32),
550 cpu_to_be32(lmb_size & 0xffffffff)};
551 MemoryDeviceInfoList *dimms = NULL;
554 * Don't create the node if there is no device memory
556 if (machine->ram_size == machine->maxram_size) {
557 return 0;
560 offset = fdt_add_subnode(fdt, 0, "ibm,dynamic-reconfiguration-memory");
562 ret = fdt_setprop(fdt, offset, "ibm,lmb-size", prop_lmb_size,
563 sizeof(prop_lmb_size));
564 if (ret < 0) {
565 return ret;
568 ret = fdt_setprop_cell(fdt, offset, "ibm,memory-flags-mask", 0xff);
569 if (ret < 0) {
570 return ret;
573 ret = fdt_setprop_cell(fdt, offset, "ibm,memory-preservation-time", 0x0);
574 if (ret < 0) {
575 return ret;
578 /* ibm,dynamic-memory or ibm,dynamic-memory-v2 */
579 dimms = qmp_memory_device_list();
580 if (spapr_ovec_test(spapr->ov5_cas, OV5_DRMEM_V2)) {
581 ret = spapr_dt_dynamic_memory_v2(spapr, fdt, offset, dimms);
582 } else {
583 ret = spapr_dt_dynamic_memory(spapr, fdt, offset, dimms);
585 qapi_free_MemoryDeviceInfoList(dimms);
587 if (ret < 0) {
588 return ret;
591 ret = spapr_numa_write_assoc_lookup_arrays(spapr, fdt, offset);
593 return ret;
596 static int spapr_dt_memory(SpaprMachineState *spapr, void *fdt)
598 MachineState *machine = MACHINE(spapr);
599 SpaprMachineClass *smc = SPAPR_MACHINE_GET_CLASS(spapr);
600 hwaddr mem_start, node_size;
601 int i, nb_nodes = machine->numa_state->num_nodes;
602 NodeInfo *nodes = machine->numa_state->nodes;
604 for (i = 0, mem_start = 0; i < nb_nodes; ++i) {
605 if (!nodes[i].node_mem) {
606 continue;
608 if (mem_start >= machine->ram_size) {
609 node_size = 0;
610 } else {
611 node_size = nodes[i].node_mem;
612 if (node_size > machine->ram_size - mem_start) {
613 node_size = machine->ram_size - mem_start;
616 if (!mem_start) {
617 /* spapr_machine_init() checks for rma_size <= node0_size
618 * already */
619 spapr_dt_memory_node(spapr, fdt, i, 0, spapr->rma_size);
620 mem_start += spapr->rma_size;
621 node_size -= spapr->rma_size;
623 for ( ; node_size; ) {
624 hwaddr sizetmp = pow2floor(node_size);
626 /* mem_start != 0 here */
627 if (ctzl(mem_start) < ctzl(sizetmp)) {
628 sizetmp = 1ULL << ctzl(mem_start);
631 spapr_dt_memory_node(spapr, fdt, i, mem_start, sizetmp);
632 node_size -= sizetmp;
633 mem_start += sizetmp;
637 /* Generate ibm,dynamic-reconfiguration-memory node if required */
638 if (spapr_ovec_test(spapr->ov5_cas, OV5_DRCONF_MEMORY)) {
639 int ret;
641 g_assert(smc->dr_lmb_enabled);
642 ret = spapr_dt_dynamic_reconfiguration_memory(spapr, fdt);
643 if (ret) {
644 return ret;
648 return 0;
651 static void spapr_dt_cpu(CPUState *cs, void *fdt, int offset,
652 SpaprMachineState *spapr)
654 MachineState *ms = MACHINE(spapr);
655 PowerPCCPU *cpu = POWERPC_CPU(cs);
656 CPUPPCState *env = &cpu->env;
657 PowerPCCPUClass *pcc = POWERPC_CPU_GET_CLASS(cs);
658 int index = spapr_get_vcpu_id(cpu);
659 uint32_t segs[] = {cpu_to_be32(28), cpu_to_be32(40),
660 0xffffffff, 0xffffffff};
661 uint32_t tbfreq = kvm_enabled() ? kvmppc_get_tbfreq()
662 : SPAPR_TIMEBASE_FREQ;
663 uint32_t cpufreq = kvm_enabled() ? kvmppc_get_clockfreq() : 1000000000;
664 uint32_t page_sizes_prop[64];
665 size_t page_sizes_prop_size;
666 unsigned int smp_threads = ms->smp.threads;
667 uint32_t vcpus_per_socket = smp_threads * ms->smp.cores;
668 uint32_t pft_size_prop[] = {0, cpu_to_be32(spapr->htab_shift)};
669 int compat_smt = MIN(smp_threads, ppc_compat_max_vthreads(cpu));
670 SpaprDrc *drc;
671 int drc_index;
672 uint32_t radix_AP_encodings[PPC_PAGE_SIZES_MAX_SZ];
673 int i;
675 drc = spapr_drc_by_id(TYPE_SPAPR_DRC_CPU, index);
676 if (drc) {
677 drc_index = spapr_drc_index(drc);
678 _FDT((fdt_setprop_cell(fdt, offset, "ibm,my-drc-index", drc_index)));
681 _FDT((fdt_setprop_cell(fdt, offset, "reg", index)));
682 _FDT((fdt_setprop_string(fdt, offset, "device_type", "cpu")));
684 _FDT((fdt_setprop_cell(fdt, offset, "cpu-version", env->spr[SPR_PVR])));
685 _FDT((fdt_setprop_cell(fdt, offset, "d-cache-block-size",
686 env->dcache_line_size)));
687 _FDT((fdt_setprop_cell(fdt, offset, "d-cache-line-size",
688 env->dcache_line_size)));
689 _FDT((fdt_setprop_cell(fdt, offset, "i-cache-block-size",
690 env->icache_line_size)));
691 _FDT((fdt_setprop_cell(fdt, offset, "i-cache-line-size",
692 env->icache_line_size)));
694 if (pcc->l1_dcache_size) {
695 _FDT((fdt_setprop_cell(fdt, offset, "d-cache-size",
696 pcc->l1_dcache_size)));
697 } else {
698 warn_report("Unknown L1 dcache size for cpu");
700 if (pcc->l1_icache_size) {
701 _FDT((fdt_setprop_cell(fdt, offset, "i-cache-size",
702 pcc->l1_icache_size)));
703 } else {
704 warn_report("Unknown L1 icache size for cpu");
707 _FDT((fdt_setprop_cell(fdt, offset, "timebase-frequency", tbfreq)));
708 _FDT((fdt_setprop_cell(fdt, offset, "clock-frequency", cpufreq)));
709 _FDT((fdt_setprop_cell(fdt, offset, "slb-size", cpu->hash64_opts->slb_size)));
710 _FDT((fdt_setprop_cell(fdt, offset, "ibm,slb-size", cpu->hash64_opts->slb_size)));
711 _FDT((fdt_setprop_string(fdt, offset, "status", "okay")));
712 _FDT((fdt_setprop(fdt, offset, "64-bit", NULL, 0)));
714 if (env->spr_cb[SPR_PURR].oea_read) {
715 _FDT((fdt_setprop_cell(fdt, offset, "ibm,purr", 1)));
717 if (env->spr_cb[SPR_SPURR].oea_read) {
718 _FDT((fdt_setprop_cell(fdt, offset, "ibm,spurr", 1)));
721 if (ppc_hash64_has(cpu, PPC_HASH64_1TSEG)) {
722 _FDT((fdt_setprop(fdt, offset, "ibm,processor-segment-sizes",
723 segs, sizeof(segs))));
726 /* Advertise VSX (vector extensions) if available
727 * 1 == VMX / Altivec available
728 * 2 == VSX available
730 * Only CPUs for which we create core types in spapr_cpu_core.c
731 * are possible, and all of those have VMX */
732 if (spapr_get_cap(spapr, SPAPR_CAP_VSX) != 0) {
733 _FDT((fdt_setprop_cell(fdt, offset, "ibm,vmx", 2)));
734 } else {
735 _FDT((fdt_setprop_cell(fdt, offset, "ibm,vmx", 1)));
738 /* Advertise DFP (Decimal Floating Point) if available
739 * 0 / no property == no DFP
740 * 1 == DFP available */
741 if (spapr_get_cap(spapr, SPAPR_CAP_DFP) != 0) {
742 _FDT((fdt_setprop_cell(fdt, offset, "ibm,dfp", 1)));
745 page_sizes_prop_size = ppc_create_page_sizes_prop(cpu, page_sizes_prop,
746 sizeof(page_sizes_prop));
747 if (page_sizes_prop_size) {
748 _FDT((fdt_setprop(fdt, offset, "ibm,segment-page-sizes",
749 page_sizes_prop, page_sizes_prop_size)));
752 spapr_dt_pa_features(spapr, cpu, fdt, offset);
754 _FDT((fdt_setprop_cell(fdt, offset, "ibm,chip-id",
755 cs->cpu_index / vcpus_per_socket)));
757 _FDT((fdt_setprop(fdt, offset, "ibm,pft-size",
758 pft_size_prop, sizeof(pft_size_prop))));
760 if (ms->numa_state->num_nodes > 1) {
761 _FDT(spapr_numa_fixup_cpu_dt(spapr, fdt, offset, cpu));
764 _FDT(spapr_fixup_cpu_smt_dt(fdt, offset, cpu, compat_smt));
766 if (pcc->radix_page_info) {
767 for (i = 0; i < pcc->radix_page_info->count; i++) {
768 radix_AP_encodings[i] =
769 cpu_to_be32(pcc->radix_page_info->entries[i]);
771 _FDT((fdt_setprop(fdt, offset, "ibm,processor-radix-AP-encodings",
772 radix_AP_encodings,
773 pcc->radix_page_info->count *
774 sizeof(radix_AP_encodings[0]))));
778 * We set this property to let the guest know that it can use the large
779 * decrementer and its width in bits.
781 if (spapr_get_cap(spapr, SPAPR_CAP_LARGE_DECREMENTER) != SPAPR_CAP_OFF)
782 _FDT((fdt_setprop_u32(fdt, offset, "ibm,dec-bits",
783 pcc->lrg_decr_bits)));
786 static void spapr_dt_cpus(void *fdt, SpaprMachineState *spapr)
788 CPUState **rev;
789 CPUState *cs;
790 int n_cpus;
791 int cpus_offset;
792 char *nodename;
793 int i;
795 cpus_offset = fdt_add_subnode(fdt, 0, "cpus");
796 _FDT(cpus_offset);
797 _FDT((fdt_setprop_cell(fdt, cpus_offset, "#address-cells", 0x1)));
798 _FDT((fdt_setprop_cell(fdt, cpus_offset, "#size-cells", 0x0)));
801 * We walk the CPUs in reverse order to ensure that CPU DT nodes
802 * created by fdt_add_subnode() end up in the right order in FDT
803 * for the guest kernel the enumerate the CPUs correctly.
805 * The CPU list cannot be traversed in reverse order, so we need
806 * to do extra work.
808 n_cpus = 0;
809 rev = NULL;
810 CPU_FOREACH(cs) {
811 rev = g_renew(CPUState *, rev, n_cpus + 1);
812 rev[n_cpus++] = cs;
815 for (i = n_cpus - 1; i >= 0; i--) {
816 CPUState *cs = rev[i];
817 PowerPCCPU *cpu = POWERPC_CPU(cs);
818 int index = spapr_get_vcpu_id(cpu);
819 DeviceClass *dc = DEVICE_GET_CLASS(cs);
820 int offset;
822 if (!spapr_is_thread0_in_vcore(spapr, cpu)) {
823 continue;
826 nodename = g_strdup_printf("%s@%x", dc->fw_name, index);
827 offset = fdt_add_subnode(fdt, cpus_offset, nodename);
828 g_free(nodename);
829 _FDT(offset);
830 spapr_dt_cpu(cs, fdt, offset, spapr);
833 g_free(rev);
836 static int spapr_dt_rng(void *fdt)
838 int node;
839 int ret;
841 node = qemu_fdt_add_subnode(fdt, "/ibm,platform-facilities");
842 if (node <= 0) {
843 return -1;
845 ret = fdt_setprop_string(fdt, node, "device_type",
846 "ibm,platform-facilities");
847 ret |= fdt_setprop_cell(fdt, node, "#address-cells", 0x1);
848 ret |= fdt_setprop_cell(fdt, node, "#size-cells", 0x0);
850 node = fdt_add_subnode(fdt, node, "ibm,random-v1");
851 if (node <= 0) {
852 return -1;
854 ret |= fdt_setprop_string(fdt, node, "compatible", "ibm,random");
856 return ret ? -1 : 0;
859 static void spapr_dt_rtas(SpaprMachineState *spapr, void *fdt)
861 MachineState *ms = MACHINE(spapr);
862 int rtas;
863 GString *hypertas = g_string_sized_new(256);
864 GString *qemu_hypertas = g_string_sized_new(256);
865 uint64_t max_device_addr = MACHINE(spapr)->device_memory->base +
866 memory_region_size(&MACHINE(spapr)->device_memory->mr);
867 uint32_t lrdr_capacity[] = {
868 cpu_to_be32(max_device_addr >> 32),
869 cpu_to_be32(max_device_addr & 0xffffffff),
870 cpu_to_be32(SPAPR_MEMORY_BLOCK_SIZE >> 32),
871 cpu_to_be32(SPAPR_MEMORY_BLOCK_SIZE & 0xffffffff),
872 cpu_to_be32(ms->smp.max_cpus / ms->smp.threads),
875 _FDT(rtas = fdt_add_subnode(fdt, 0, "rtas"));
877 /* hypertas */
878 add_str(hypertas, "hcall-pft");
879 add_str(hypertas, "hcall-term");
880 add_str(hypertas, "hcall-dabr");
881 add_str(hypertas, "hcall-interrupt");
882 add_str(hypertas, "hcall-tce");
883 add_str(hypertas, "hcall-vio");
884 add_str(hypertas, "hcall-splpar");
885 add_str(hypertas, "hcall-join");
886 add_str(hypertas, "hcall-bulk");
887 add_str(hypertas, "hcall-set-mode");
888 add_str(hypertas, "hcall-sprg0");
889 add_str(hypertas, "hcall-copy");
890 add_str(hypertas, "hcall-debug");
891 add_str(hypertas, "hcall-vphn");
892 add_str(qemu_hypertas, "hcall-memop1");
894 if (!kvm_enabled() || kvmppc_spapr_use_multitce()) {
895 add_str(hypertas, "hcall-multi-tce");
898 if (spapr->resize_hpt != SPAPR_RESIZE_HPT_DISABLED) {
899 add_str(hypertas, "hcall-hpt-resize");
902 _FDT(fdt_setprop(fdt, rtas, "ibm,hypertas-functions",
903 hypertas->str, hypertas->len));
904 g_string_free(hypertas, TRUE);
905 _FDT(fdt_setprop(fdt, rtas, "qemu,hypertas-functions",
906 qemu_hypertas->str, qemu_hypertas->len));
907 g_string_free(qemu_hypertas, TRUE);
909 spapr_numa_write_rtas_dt(spapr, fdt, rtas);
912 * FWNMI reserves RTAS_ERROR_LOG_MAX for the machine check error log,
913 * and 16 bytes per CPU for system reset error log plus an extra 8 bytes.
915 * The system reset requirements are driven by existing Linux and PowerVM
916 * implementation which (contrary to PAPR) saves r3 in the error log
917 * structure like machine check, so Linux expects to find the saved r3
918 * value at the address in r3 upon FWNMI-enabled sreset interrupt (and
919 * does not look at the error value).
921 * System reset interrupts are not subject to interlock like machine
922 * check, so this memory area could be corrupted if the sreset is
923 * interrupted by a machine check (or vice versa) if it was shared. To
924 * prevent this, system reset uses per-CPU areas for the sreset save
925 * area. A system reset that interrupts a system reset handler could
926 * still overwrite this area, but Linux doesn't try to recover in that
927 * case anyway.
929 * The extra 8 bytes is required because Linux's FWNMI error log check
930 * is off-by-one.
932 _FDT(fdt_setprop_cell(fdt, rtas, "rtas-size", RTAS_ERROR_LOG_MAX +
933 ms->smp.max_cpus * sizeof(uint64_t)*2 + sizeof(uint64_t)));
934 _FDT(fdt_setprop_cell(fdt, rtas, "rtas-error-log-max",
935 RTAS_ERROR_LOG_MAX));
936 _FDT(fdt_setprop_cell(fdt, rtas, "rtas-event-scan-rate",
937 RTAS_EVENT_SCAN_RATE));
939 g_assert(msi_nonbroken);
940 _FDT(fdt_setprop(fdt, rtas, "ibm,change-msix-capable", NULL, 0));
943 * According to PAPR, rtas ibm,os-term does not guarantee a return
944 * back to the guest cpu.
946 * While an additional ibm,extended-os-term property indicates
947 * that rtas call return will always occur. Set this property.
949 _FDT(fdt_setprop(fdt, rtas, "ibm,extended-os-term", NULL, 0));
951 _FDT(fdt_setprop(fdt, rtas, "ibm,lrdr-capacity",
952 lrdr_capacity, sizeof(lrdr_capacity)));
954 spapr_dt_rtas_tokens(fdt, rtas);
958 * Prepare ibm,arch-vec-5-platform-support, which indicates the MMU
959 * and the XIVE features that the guest may request and thus the valid
960 * values for bytes 23..26 of option vector 5:
962 static void spapr_dt_ov5_platform_support(SpaprMachineState *spapr, void *fdt,
963 int chosen)
965 PowerPCCPU *first_ppc_cpu = POWERPC_CPU(first_cpu);
967 char val[2 * 4] = {
968 23, 0x00, /* XICS / XIVE mode */
969 24, 0x00, /* Hash/Radix, filled in below. */
970 25, 0x00, /* Hash options: Segment Tables == no, GTSE == no. */
971 26, 0x40, /* Radix options: GTSE == yes. */
974 if (spapr->irq->xics && spapr->irq->xive) {
975 val[1] = SPAPR_OV5_XIVE_BOTH;
976 } else if (spapr->irq->xive) {
977 val[1] = SPAPR_OV5_XIVE_EXPLOIT;
978 } else {
979 assert(spapr->irq->xics);
980 val[1] = SPAPR_OV5_XIVE_LEGACY;
983 if (!ppc_check_compat(first_ppc_cpu, CPU_POWERPC_LOGICAL_3_00, 0,
984 first_ppc_cpu->compat_pvr)) {
986 * If we're in a pre POWER9 compat mode then the guest should
987 * do hash and use the legacy interrupt mode
989 val[1] = SPAPR_OV5_XIVE_LEGACY; /* XICS */
990 val[3] = 0x00; /* Hash */
991 } else if (kvm_enabled()) {
992 if (kvmppc_has_cap_mmu_radix() && kvmppc_has_cap_mmu_hash_v3()) {
993 val[3] = 0x80; /* OV5_MMU_BOTH */
994 } else if (kvmppc_has_cap_mmu_radix()) {
995 val[3] = 0x40; /* OV5_MMU_RADIX_300 */
996 } else {
997 val[3] = 0x00; /* Hash */
999 } else {
1000 /* V3 MMU supports both hash and radix in tcg (with dynamic switching) */
1001 val[3] = 0xC0;
1003 _FDT(fdt_setprop(fdt, chosen, "ibm,arch-vec-5-platform-support",
1004 val, sizeof(val)));
1007 static void spapr_dt_chosen(SpaprMachineState *spapr, void *fdt, bool reset)
1009 MachineState *machine = MACHINE(spapr);
1010 SpaprMachineClass *smc = SPAPR_MACHINE_GET_CLASS(machine);
1011 int chosen;
1013 _FDT(chosen = fdt_add_subnode(fdt, 0, "chosen"));
1015 if (reset) {
1016 const char *boot_device = machine->boot_order;
1017 char *stdout_path = spapr_vio_stdout_path(spapr->vio_bus);
1018 size_t cb = 0;
1019 char *bootlist = get_boot_devices_list(&cb);
1021 if (machine->kernel_cmdline && machine->kernel_cmdline[0]) {
1022 _FDT(fdt_setprop_string(fdt, chosen, "bootargs",
1023 machine->kernel_cmdline));
1026 if (spapr->initrd_size) {
1027 _FDT(fdt_setprop_cell(fdt, chosen, "linux,initrd-start",
1028 spapr->initrd_base));
1029 _FDT(fdt_setprop_cell(fdt, chosen, "linux,initrd-end",
1030 spapr->initrd_base + spapr->initrd_size));
1033 if (spapr->kernel_size) {
1034 uint64_t kprop[2] = { cpu_to_be64(spapr->kernel_addr),
1035 cpu_to_be64(spapr->kernel_size) };
1037 _FDT(fdt_setprop(fdt, chosen, "qemu,boot-kernel",
1038 &kprop, sizeof(kprop)));
1039 if (spapr->kernel_le) {
1040 _FDT(fdt_setprop(fdt, chosen, "qemu,boot-kernel-le", NULL, 0));
1043 if (boot_menu) {
1044 _FDT((fdt_setprop_cell(fdt, chosen, "qemu,boot-menu", boot_menu)));
1046 _FDT(fdt_setprop_cell(fdt, chosen, "qemu,graphic-width", graphic_width));
1047 _FDT(fdt_setprop_cell(fdt, chosen, "qemu,graphic-height", graphic_height));
1048 _FDT(fdt_setprop_cell(fdt, chosen, "qemu,graphic-depth", graphic_depth));
1050 if (cb && bootlist) {
1051 int i;
1053 for (i = 0; i < cb; i++) {
1054 if (bootlist[i] == '\n') {
1055 bootlist[i] = ' ';
1058 _FDT(fdt_setprop_string(fdt, chosen, "qemu,boot-list", bootlist));
1061 if (boot_device && strlen(boot_device)) {
1062 _FDT(fdt_setprop_string(fdt, chosen, "qemu,boot-device", boot_device));
1065 if (!spapr->has_graphics && stdout_path) {
1067 * "linux,stdout-path" and "stdout" properties are
1068 * deprecated by linux kernel. New platforms should only
1069 * use the "stdout-path" property. Set the new property
1070 * and continue using older property to remain compatible
1071 * with the existing firmware.
1073 _FDT(fdt_setprop_string(fdt, chosen, "linux,stdout-path", stdout_path));
1074 _FDT(fdt_setprop_string(fdt, chosen, "stdout-path", stdout_path));
1078 * We can deal with BAR reallocation just fine, advertise it
1079 * to the guest
1081 if (smc->linux_pci_probe) {
1082 _FDT(fdt_setprop_cell(fdt, chosen, "linux,pci-probe-only", 0));
1085 spapr_dt_ov5_platform_support(spapr, fdt, chosen);
1087 g_free(stdout_path);
1088 g_free(bootlist);
1091 _FDT(spapr_dt_ovec(fdt, chosen, spapr->ov5_cas, "ibm,architecture-vec-5"));
1094 static void spapr_dt_hypervisor(SpaprMachineState *spapr, void *fdt)
1096 /* The /hypervisor node isn't in PAPR - this is a hack to allow PR
1097 * KVM to work under pHyp with some guest co-operation */
1098 int hypervisor;
1099 uint8_t hypercall[16];
1101 _FDT(hypervisor = fdt_add_subnode(fdt, 0, "hypervisor"));
1102 /* indicate KVM hypercall interface */
1103 _FDT(fdt_setprop_string(fdt, hypervisor, "compatible", "linux,kvm"));
1104 if (kvmppc_has_cap_fixup_hcalls()) {
1106 * Older KVM versions with older guest kernels were broken
1107 * with the magic page, don't allow the guest to map it.
1109 if (!kvmppc_get_hypercall(first_cpu->env_ptr, hypercall,
1110 sizeof(hypercall))) {
1111 _FDT(fdt_setprop(fdt, hypervisor, "hcall-instructions",
1112 hypercall, sizeof(hypercall)));
1117 void *spapr_build_fdt(SpaprMachineState *spapr, bool reset, size_t space)
1119 MachineState *machine = MACHINE(spapr);
1120 MachineClass *mc = MACHINE_GET_CLASS(machine);
1121 SpaprMachineClass *smc = SPAPR_MACHINE_GET_CLASS(machine);
1122 int ret;
1123 void *fdt;
1124 SpaprPhbState *phb;
1125 char *buf;
1127 fdt = g_malloc0(space);
1128 _FDT((fdt_create_empty_tree(fdt, space)));
1130 /* Root node */
1131 _FDT(fdt_setprop_string(fdt, 0, "device_type", "chrp"));
1132 _FDT(fdt_setprop_string(fdt, 0, "model", "IBM pSeries (emulated by qemu)"));
1133 _FDT(fdt_setprop_string(fdt, 0, "compatible", "qemu,pseries"));
1135 /* Guest UUID & Name*/
1136 buf = qemu_uuid_unparse_strdup(&qemu_uuid);
1137 _FDT(fdt_setprop_string(fdt, 0, "vm,uuid", buf));
1138 if (qemu_uuid_set) {
1139 _FDT(fdt_setprop_string(fdt, 0, "system-id", buf));
1141 g_free(buf);
1143 if (qemu_get_vm_name()) {
1144 _FDT(fdt_setprop_string(fdt, 0, "ibm,partition-name",
1145 qemu_get_vm_name()));
1148 /* Host Model & Serial Number */
1149 if (spapr->host_model) {
1150 _FDT(fdt_setprop_string(fdt, 0, "host-model", spapr->host_model));
1151 } else if (smc->broken_host_serial_model && kvmppc_get_host_model(&buf)) {
1152 _FDT(fdt_setprop_string(fdt, 0, "host-model", buf));
1153 g_free(buf);
1156 if (spapr->host_serial) {
1157 _FDT(fdt_setprop_string(fdt, 0, "host-serial", spapr->host_serial));
1158 } else if (smc->broken_host_serial_model && kvmppc_get_host_serial(&buf)) {
1159 _FDT(fdt_setprop_string(fdt, 0, "host-serial", buf));
1160 g_free(buf);
1163 _FDT(fdt_setprop_cell(fdt, 0, "#address-cells", 2));
1164 _FDT(fdt_setprop_cell(fdt, 0, "#size-cells", 2));
1166 /* /interrupt controller */
1167 spapr_irq_dt(spapr, spapr_max_server_number(spapr), fdt, PHANDLE_INTC);
1169 ret = spapr_dt_memory(spapr, fdt);
1170 if (ret < 0) {
1171 error_report("couldn't setup memory nodes in fdt");
1172 exit(1);
1175 /* /vdevice */
1176 spapr_dt_vdevice(spapr->vio_bus, fdt);
1178 if (object_resolve_path_type("", TYPE_SPAPR_RNG, NULL)) {
1179 ret = spapr_dt_rng(fdt);
1180 if (ret < 0) {
1181 error_report("could not set up rng device in the fdt");
1182 exit(1);
1186 QLIST_FOREACH(phb, &spapr->phbs, list) {
1187 ret = spapr_dt_phb(spapr, phb, PHANDLE_INTC, fdt, NULL);
1188 if (ret < 0) {
1189 error_report("couldn't setup PCI devices in fdt");
1190 exit(1);
1194 spapr_dt_cpus(fdt, spapr);
1196 if (smc->dr_lmb_enabled) {
1197 _FDT(spapr_dt_drc(fdt, 0, NULL, SPAPR_DR_CONNECTOR_TYPE_LMB));
1200 if (mc->has_hotpluggable_cpus) {
1201 int offset = fdt_path_offset(fdt, "/cpus");
1202 ret = spapr_dt_drc(fdt, offset, NULL, SPAPR_DR_CONNECTOR_TYPE_CPU);
1203 if (ret < 0) {
1204 error_report("Couldn't set up CPU DR device tree properties");
1205 exit(1);
1209 /* /event-sources */
1210 spapr_dt_events(spapr, fdt);
1212 /* /rtas */
1213 spapr_dt_rtas(spapr, fdt);
1215 /* /chosen */
1216 spapr_dt_chosen(spapr, fdt, reset);
1218 /* /hypervisor */
1219 if (kvm_enabled()) {
1220 spapr_dt_hypervisor(spapr, fdt);
1223 /* Build memory reserve map */
1224 if (reset) {
1225 if (spapr->kernel_size) {
1226 _FDT((fdt_add_mem_rsv(fdt, spapr->kernel_addr,
1227 spapr->kernel_size)));
1229 if (spapr->initrd_size) {
1230 _FDT((fdt_add_mem_rsv(fdt, spapr->initrd_base,
1231 spapr->initrd_size)));
1235 if (smc->dr_phb_enabled) {
1236 ret = spapr_dt_drc(fdt, 0, NULL, SPAPR_DR_CONNECTOR_TYPE_PHB);
1237 if (ret < 0) {
1238 error_report("Couldn't set up PHB DR device tree properties");
1239 exit(1);
1243 /* NVDIMM devices */
1244 if (mc->nvdimm_supported) {
1245 spapr_dt_persistent_memory(spapr, fdt);
1248 return fdt;
1251 static uint64_t translate_kernel_address(void *opaque, uint64_t addr)
1253 SpaprMachineState *spapr = opaque;
1255 return (addr & 0x0fffffff) + spapr->kernel_addr;
1258 static void emulate_spapr_hypercall(PPCVirtualHypervisor *vhyp,
1259 PowerPCCPU *cpu)
1261 CPUPPCState *env = &cpu->env;
1263 /* The TCG path should also be holding the BQL at this point */
1264 g_assert(qemu_mutex_iothread_locked());
1266 if (msr_pr) {
1267 hcall_dprintf("Hypercall made with MSR[PR]=1\n");
1268 env->gpr[3] = H_PRIVILEGE;
1269 } else {
1270 env->gpr[3] = spapr_hypercall(cpu, env->gpr[3], &env->gpr[4]);
1274 struct LPCRSyncState {
1275 target_ulong value;
1276 target_ulong mask;
1279 static void do_lpcr_sync(CPUState *cs, run_on_cpu_data arg)
1281 struct LPCRSyncState *s = arg.host_ptr;
1282 PowerPCCPU *cpu = POWERPC_CPU(cs);
1283 CPUPPCState *env = &cpu->env;
1284 target_ulong lpcr;
1286 cpu_synchronize_state(cs);
1287 lpcr = env->spr[SPR_LPCR];
1288 lpcr &= ~s->mask;
1289 lpcr |= s->value;
1290 ppc_store_lpcr(cpu, lpcr);
1293 void spapr_set_all_lpcrs(target_ulong value, target_ulong mask)
1295 CPUState *cs;
1296 struct LPCRSyncState s = {
1297 .value = value,
1298 .mask = mask
1300 CPU_FOREACH(cs) {
1301 run_on_cpu(cs, do_lpcr_sync, RUN_ON_CPU_HOST_PTR(&s));
1305 static void spapr_get_pate(PPCVirtualHypervisor *vhyp, ppc_v3_pate_t *entry)
1307 SpaprMachineState *spapr = SPAPR_MACHINE(vhyp);
1309 /* Copy PATE1:GR into PATE0:HR */
1310 entry->dw0 = spapr->patb_entry & PATE0_HR;
1311 entry->dw1 = spapr->patb_entry;
1314 #define HPTE(_table, _i) (void *)(((uint64_t *)(_table)) + ((_i) * 2))
1315 #define HPTE_VALID(_hpte) (tswap64(*((uint64_t *)(_hpte))) & HPTE64_V_VALID)
1316 #define HPTE_DIRTY(_hpte) (tswap64(*((uint64_t *)(_hpte))) & HPTE64_V_HPTE_DIRTY)
1317 #define CLEAN_HPTE(_hpte) ((*(uint64_t *)(_hpte)) &= tswap64(~HPTE64_V_HPTE_DIRTY))
1318 #define DIRTY_HPTE(_hpte) ((*(uint64_t *)(_hpte)) |= tswap64(HPTE64_V_HPTE_DIRTY))
1321 * Get the fd to access the kernel htab, re-opening it if necessary
1323 static int get_htab_fd(SpaprMachineState *spapr)
1325 Error *local_err = NULL;
1327 if (spapr->htab_fd >= 0) {
1328 return spapr->htab_fd;
1331 spapr->htab_fd = kvmppc_get_htab_fd(false, 0, &local_err);
1332 if (spapr->htab_fd < 0) {
1333 error_report_err(local_err);
1336 return spapr->htab_fd;
1339 void close_htab_fd(SpaprMachineState *spapr)
1341 if (spapr->htab_fd >= 0) {
1342 close(spapr->htab_fd);
1344 spapr->htab_fd = -1;
1347 static hwaddr spapr_hpt_mask(PPCVirtualHypervisor *vhyp)
1349 SpaprMachineState *spapr = SPAPR_MACHINE(vhyp);
1351 return HTAB_SIZE(spapr) / HASH_PTEG_SIZE_64 - 1;
1354 static target_ulong spapr_encode_hpt_for_kvm_pr(PPCVirtualHypervisor *vhyp)
1356 SpaprMachineState *spapr = SPAPR_MACHINE(vhyp);
1358 assert(kvm_enabled());
1360 if (!spapr->htab) {
1361 return 0;
1364 return (target_ulong)(uintptr_t)spapr->htab | (spapr->htab_shift - 18);
1367 static const ppc_hash_pte64_t *spapr_map_hptes(PPCVirtualHypervisor *vhyp,
1368 hwaddr ptex, int n)
1370 SpaprMachineState *spapr = SPAPR_MACHINE(vhyp);
1371 hwaddr pte_offset = ptex * HASH_PTE_SIZE_64;
1373 if (!spapr->htab) {
1375 * HTAB is controlled by KVM. Fetch into temporary buffer
1377 ppc_hash_pte64_t *hptes = g_malloc(n * HASH_PTE_SIZE_64);
1378 kvmppc_read_hptes(hptes, ptex, n);
1379 return hptes;
1383 * HTAB is controlled by QEMU. Just point to the internally
1384 * accessible PTEG.
1386 return (const ppc_hash_pte64_t *)(spapr->htab + pte_offset);
1389 static void spapr_unmap_hptes(PPCVirtualHypervisor *vhyp,
1390 const ppc_hash_pte64_t *hptes,
1391 hwaddr ptex, int n)
1393 SpaprMachineState *spapr = SPAPR_MACHINE(vhyp);
1395 if (!spapr->htab) {
1396 g_free((void *)hptes);
1399 /* Nothing to do for qemu managed HPT */
1402 void spapr_store_hpte(PowerPCCPU *cpu, hwaddr ptex,
1403 uint64_t pte0, uint64_t pte1)
1405 SpaprMachineState *spapr = SPAPR_MACHINE(cpu->vhyp);
1406 hwaddr offset = ptex * HASH_PTE_SIZE_64;
1408 if (!spapr->htab) {
1409 kvmppc_write_hpte(ptex, pte0, pte1);
1410 } else {
1411 if (pte0 & HPTE64_V_VALID) {
1412 stq_p(spapr->htab + offset + HASH_PTE_SIZE_64 / 2, pte1);
1414 * When setting valid, we write PTE1 first. This ensures
1415 * proper synchronization with the reading code in
1416 * ppc_hash64_pteg_search()
1418 smp_wmb();
1419 stq_p(spapr->htab + offset, pte0);
1420 } else {
1421 stq_p(spapr->htab + offset, pte0);
1423 * When clearing it we set PTE0 first. This ensures proper
1424 * synchronization with the reading code in
1425 * ppc_hash64_pteg_search()
1427 smp_wmb();
1428 stq_p(spapr->htab + offset + HASH_PTE_SIZE_64 / 2, pte1);
1433 static void spapr_hpte_set_c(PPCVirtualHypervisor *vhyp, hwaddr ptex,
1434 uint64_t pte1)
1436 hwaddr offset = ptex * HASH_PTE_SIZE_64 + 15;
1437 SpaprMachineState *spapr = SPAPR_MACHINE(vhyp);
1439 if (!spapr->htab) {
1440 /* There should always be a hash table when this is called */
1441 error_report("spapr_hpte_set_c called with no hash table !");
1442 return;
1445 /* The HW performs a non-atomic byte update */
1446 stb_p(spapr->htab + offset, (pte1 & 0xff) | 0x80);
1449 static void spapr_hpte_set_r(PPCVirtualHypervisor *vhyp, hwaddr ptex,
1450 uint64_t pte1)
1452 hwaddr offset = ptex * HASH_PTE_SIZE_64 + 14;
1453 SpaprMachineState *spapr = SPAPR_MACHINE(vhyp);
1455 if (!spapr->htab) {
1456 /* There should always be a hash table when this is called */
1457 error_report("spapr_hpte_set_r called with no hash table !");
1458 return;
1461 /* The HW performs a non-atomic byte update */
1462 stb_p(spapr->htab + offset, ((pte1 >> 8) & 0xff) | 0x01);
1465 int spapr_hpt_shift_for_ramsize(uint64_t ramsize)
1467 int shift;
1469 /* We aim for a hash table of size 1/128 the size of RAM (rounded
1470 * up). The PAPR recommendation is actually 1/64 of RAM size, but
1471 * that's much more than is needed for Linux guests */
1472 shift = ctz64(pow2ceil(ramsize)) - 7;
1473 shift = MAX(shift, 18); /* Minimum architected size */
1474 shift = MIN(shift, 46); /* Maximum architected size */
1475 return shift;
1478 void spapr_free_hpt(SpaprMachineState *spapr)
1480 g_free(spapr->htab);
1481 spapr->htab = NULL;
1482 spapr->htab_shift = 0;
1483 close_htab_fd(spapr);
1486 void spapr_reallocate_hpt(SpaprMachineState *spapr, int shift,
1487 Error **errp)
1489 long rc;
1491 /* Clean up any HPT info from a previous boot */
1492 spapr_free_hpt(spapr);
1494 rc = kvmppc_reset_htab(shift);
1496 if (rc == -EOPNOTSUPP) {
1497 error_setg(errp, "HPT not supported in nested guests");
1498 return;
1501 if (rc < 0) {
1502 /* kernel-side HPT needed, but couldn't allocate one */
1503 error_setg_errno(errp, errno,
1504 "Failed to allocate KVM HPT of order %d (try smaller maxmem?)",
1505 shift);
1506 /* This is almost certainly fatal, but if the caller really
1507 * wants to carry on with shift == 0, it's welcome to try */
1508 } else if (rc > 0) {
1509 /* kernel-side HPT allocated */
1510 if (rc != shift) {
1511 error_setg(errp,
1512 "Requested order %d HPT, but kernel allocated order %ld (try smaller maxmem?)",
1513 shift, rc);
1516 spapr->htab_shift = shift;
1517 spapr->htab = NULL;
1518 } else {
1519 /* kernel-side HPT not needed, allocate in userspace instead */
1520 size_t size = 1ULL << shift;
1521 int i;
1523 spapr->htab = qemu_memalign(size, size);
1524 if (!spapr->htab) {
1525 error_setg_errno(errp, errno,
1526 "Could not allocate HPT of order %d", shift);
1527 return;
1530 memset(spapr->htab, 0, size);
1531 spapr->htab_shift = shift;
1533 for (i = 0; i < size / HASH_PTE_SIZE_64; i++) {
1534 DIRTY_HPTE(HPTE(spapr->htab, i));
1537 /* We're setting up a hash table, so that means we're not radix */
1538 spapr->patb_entry = 0;
1539 spapr_set_all_lpcrs(0, LPCR_HR | LPCR_UPRT);
1542 void spapr_setup_hpt(SpaprMachineState *spapr)
1544 int hpt_shift;
1546 if (spapr->resize_hpt == SPAPR_RESIZE_HPT_DISABLED) {
1547 hpt_shift = spapr_hpt_shift_for_ramsize(MACHINE(spapr)->maxram_size);
1548 } else {
1549 uint64_t current_ram_size;
1551 current_ram_size = MACHINE(spapr)->ram_size + get_plugged_memory_size();
1552 hpt_shift = spapr_hpt_shift_for_ramsize(current_ram_size);
1554 spapr_reallocate_hpt(spapr, hpt_shift, &error_fatal);
1556 if (kvm_enabled()) {
1557 hwaddr vrma_limit = kvmppc_vrma_limit(spapr->htab_shift);
1559 /* Check our RMA fits in the possible VRMA */
1560 if (vrma_limit < spapr->rma_size) {
1561 error_report("Unable to create %" HWADDR_PRIu
1562 "MiB RMA (VRMA only allows %" HWADDR_PRIu "MiB",
1563 spapr->rma_size / MiB, vrma_limit / MiB);
1564 exit(EXIT_FAILURE);
1569 static int spapr_reset_drcs(Object *child, void *opaque)
1571 SpaprDrc *drc =
1572 (SpaprDrc *) object_dynamic_cast(child,
1573 TYPE_SPAPR_DR_CONNECTOR);
1575 if (drc) {
1576 spapr_drc_reset(drc);
1579 return 0;
1582 static void spapr_machine_reset(MachineState *machine)
1584 SpaprMachineState *spapr = SPAPR_MACHINE(machine);
1585 PowerPCCPU *first_ppc_cpu;
1586 hwaddr fdt_addr;
1587 void *fdt;
1588 int rc;
1590 kvmppc_svm_off(&error_fatal);
1591 spapr_caps_apply(spapr);
1593 first_ppc_cpu = POWERPC_CPU(first_cpu);
1594 if (kvm_enabled() && kvmppc_has_cap_mmu_radix() &&
1595 ppc_type_check_compat(machine->cpu_type, CPU_POWERPC_LOGICAL_3_00, 0,
1596 spapr->max_compat_pvr)) {
1598 * If using KVM with radix mode available, VCPUs can be started
1599 * without a HPT because KVM will start them in radix mode.
1600 * Set the GR bit in PATE so that we know there is no HPT.
1602 spapr->patb_entry = PATE1_GR;
1603 spapr_set_all_lpcrs(LPCR_HR | LPCR_UPRT, LPCR_HR | LPCR_UPRT);
1604 } else {
1605 spapr_setup_hpt(spapr);
1608 qemu_devices_reset();
1610 spapr_ovec_cleanup(spapr->ov5_cas);
1611 spapr->ov5_cas = spapr_ovec_new();
1613 ppc_set_compat_all(spapr->max_compat_pvr, &error_fatal);
1616 * This is fixing some of the default configuration of the XIVE
1617 * devices. To be called after the reset of the machine devices.
1619 spapr_irq_reset(spapr, &error_fatal);
1622 * There is no CAS under qtest. Simulate one to please the code that
1623 * depends on spapr->ov5_cas. This is especially needed to test device
1624 * unplug, so we do that before resetting the DRCs.
1626 if (qtest_enabled()) {
1627 spapr_ovec_cleanup(spapr->ov5_cas);
1628 spapr->ov5_cas = spapr_ovec_clone(spapr->ov5);
1631 /* DRC reset may cause a device to be unplugged. This will cause troubles
1632 * if this device is used by another device (eg, a running vhost backend
1633 * will crash QEMU if the DIMM holding the vring goes away). To avoid such
1634 * situations, we reset DRCs after all devices have been reset.
1636 object_child_foreach_recursive(object_get_root(), spapr_reset_drcs, NULL);
1638 spapr_clear_pending_events(spapr);
1641 * We place the device tree and RTAS just below either the top of the RMA,
1642 * or just below 2GB, whichever is lower, so that it can be
1643 * processed with 32-bit real mode code if necessary
1645 fdt_addr = MIN(spapr->rma_size, RTAS_MAX_ADDR) - FDT_MAX_SIZE;
1647 fdt = spapr_build_fdt(spapr, true, FDT_MAX_SIZE);
1649 rc = fdt_pack(fdt);
1651 /* Should only fail if we've built a corrupted tree */
1652 assert(rc == 0);
1654 /* Load the fdt */
1655 qemu_fdt_dumpdtb(fdt, fdt_totalsize(fdt));
1656 cpu_physical_memory_write(fdt_addr, fdt, fdt_totalsize(fdt));
1657 g_free(spapr->fdt_blob);
1658 spapr->fdt_size = fdt_totalsize(fdt);
1659 spapr->fdt_initial_size = spapr->fdt_size;
1660 spapr->fdt_blob = fdt;
1662 /* Set up the entry state */
1663 spapr_cpu_set_entry_state(first_ppc_cpu, SPAPR_ENTRY_POINT, 0, fdt_addr, 0);
1664 first_ppc_cpu->env.gpr[5] = 0;
1666 spapr->fwnmi_system_reset_addr = -1;
1667 spapr->fwnmi_machine_check_addr = -1;
1668 spapr->fwnmi_machine_check_interlock = -1;
1670 /* Signal all vCPUs waiting on this condition */
1671 qemu_cond_broadcast(&spapr->fwnmi_machine_check_interlock_cond);
1673 migrate_del_blocker(spapr->fwnmi_migration_blocker);
1676 static void spapr_create_nvram(SpaprMachineState *spapr)
1678 DeviceState *dev = qdev_new("spapr-nvram");
1679 DriveInfo *dinfo = drive_get(IF_PFLASH, 0, 0);
1681 if (dinfo) {
1682 qdev_prop_set_drive_err(dev, "drive", blk_by_legacy_dinfo(dinfo),
1683 &error_fatal);
1686 qdev_realize_and_unref(dev, &spapr->vio_bus->bus, &error_fatal);
1688 spapr->nvram = (struct SpaprNvram *)dev;
1691 static void spapr_rtc_create(SpaprMachineState *spapr)
1693 object_initialize_child_with_props(OBJECT(spapr), "rtc", &spapr->rtc,
1694 sizeof(spapr->rtc), TYPE_SPAPR_RTC,
1695 &error_fatal, NULL);
1696 qdev_realize(DEVICE(&spapr->rtc), NULL, &error_fatal);
1697 object_property_add_alias(OBJECT(spapr), "rtc-time", OBJECT(&spapr->rtc),
1698 "date");
1701 /* Returns whether we want to use VGA or not */
1702 static bool spapr_vga_init(PCIBus *pci_bus, Error **errp)
1704 switch (vga_interface_type) {
1705 case VGA_NONE:
1706 return false;
1707 case VGA_DEVICE:
1708 return true;
1709 case VGA_STD:
1710 case VGA_VIRTIO:
1711 case VGA_CIRRUS:
1712 return pci_vga_init(pci_bus) != NULL;
1713 default:
1714 error_setg(errp,
1715 "Unsupported VGA mode, only -vga std or -vga virtio is supported");
1716 return false;
1720 static int spapr_pre_load(void *opaque)
1722 int rc;
1724 rc = spapr_caps_pre_load(opaque);
1725 if (rc) {
1726 return rc;
1729 return 0;
1732 static int spapr_post_load(void *opaque, int version_id)
1734 SpaprMachineState *spapr = (SpaprMachineState *)opaque;
1735 int err = 0;
1737 err = spapr_caps_post_migration(spapr);
1738 if (err) {
1739 return err;
1743 * In earlier versions, there was no separate qdev for the PAPR
1744 * RTC, so the RTC offset was stored directly in sPAPREnvironment.
1745 * So when migrating from those versions, poke the incoming offset
1746 * value into the RTC device
1748 if (version_id < 3) {
1749 err = spapr_rtc_import_offset(&spapr->rtc, spapr->rtc_offset);
1750 if (err) {
1751 return err;
1755 if (kvm_enabled() && spapr->patb_entry) {
1756 PowerPCCPU *cpu = POWERPC_CPU(first_cpu);
1757 bool radix = !!(spapr->patb_entry & PATE1_GR);
1758 bool gtse = !!(cpu->env.spr[SPR_LPCR] & LPCR_GTSE);
1761 * Update LPCR:HR and UPRT as they may not be set properly in
1762 * the stream
1764 spapr_set_all_lpcrs(radix ? (LPCR_HR | LPCR_UPRT) : 0,
1765 LPCR_HR | LPCR_UPRT);
1767 err = kvmppc_configure_v3_mmu(cpu, radix, gtse, spapr->patb_entry);
1768 if (err) {
1769 error_report("Process table config unsupported by the host");
1770 return -EINVAL;
1774 err = spapr_irq_post_load(spapr, version_id);
1775 if (err) {
1776 return err;
1779 return err;
1782 static int spapr_pre_save(void *opaque)
1784 int rc;
1786 rc = spapr_caps_pre_save(opaque);
1787 if (rc) {
1788 return rc;
1791 return 0;
1794 static bool version_before_3(void *opaque, int version_id)
1796 return version_id < 3;
1799 static bool spapr_pending_events_needed(void *opaque)
1801 SpaprMachineState *spapr = (SpaprMachineState *)opaque;
1802 return !QTAILQ_EMPTY(&spapr->pending_events);
1805 static const VMStateDescription vmstate_spapr_event_entry = {
1806 .name = "spapr_event_log_entry",
1807 .version_id = 1,
1808 .minimum_version_id = 1,
1809 .fields = (VMStateField[]) {
1810 VMSTATE_UINT32(summary, SpaprEventLogEntry),
1811 VMSTATE_UINT32(extended_length, SpaprEventLogEntry),
1812 VMSTATE_VBUFFER_ALLOC_UINT32(extended_log, SpaprEventLogEntry, 0,
1813 NULL, extended_length),
1814 VMSTATE_END_OF_LIST()
1818 static const VMStateDescription vmstate_spapr_pending_events = {
1819 .name = "spapr_pending_events",
1820 .version_id = 1,
1821 .minimum_version_id = 1,
1822 .needed = spapr_pending_events_needed,
1823 .fields = (VMStateField[]) {
1824 VMSTATE_QTAILQ_V(pending_events, SpaprMachineState, 1,
1825 vmstate_spapr_event_entry, SpaprEventLogEntry, next),
1826 VMSTATE_END_OF_LIST()
1830 static bool spapr_ov5_cas_needed(void *opaque)
1832 SpaprMachineState *spapr = opaque;
1833 SpaprOptionVector *ov5_mask = spapr_ovec_new();
1834 bool cas_needed;
1836 /* Prior to the introduction of SpaprOptionVector, we had two option
1837 * vectors we dealt with: OV5_FORM1_AFFINITY, and OV5_DRCONF_MEMORY.
1838 * Both of these options encode machine topology into the device-tree
1839 * in such a way that the now-booted OS should still be able to interact
1840 * appropriately with QEMU regardless of what options were actually
1841 * negotiatied on the source side.
1843 * As such, we can avoid migrating the CAS-negotiated options if these
1844 * are the only options available on the current machine/platform.
1845 * Since these are the only options available for pseries-2.7 and
1846 * earlier, this allows us to maintain old->new/new->old migration
1847 * compatibility.
1849 * For QEMU 2.8+, there are additional CAS-negotiatable options available
1850 * via default pseries-2.8 machines and explicit command-line parameters.
1851 * Some of these options, like OV5_HP_EVT, *do* require QEMU to be aware
1852 * of the actual CAS-negotiated values to continue working properly. For
1853 * example, availability of memory unplug depends on knowing whether
1854 * OV5_HP_EVT was negotiated via CAS.
1856 * Thus, for any cases where the set of available CAS-negotiatable
1857 * options extends beyond OV5_FORM1_AFFINITY and OV5_DRCONF_MEMORY, we
1858 * include the CAS-negotiated options in the migration stream, unless
1859 * if they affect boot time behaviour only.
1861 spapr_ovec_set(ov5_mask, OV5_FORM1_AFFINITY);
1862 spapr_ovec_set(ov5_mask, OV5_DRCONF_MEMORY);
1863 spapr_ovec_set(ov5_mask, OV5_DRMEM_V2);
1865 /* We need extra information if we have any bits outside the mask
1866 * defined above */
1867 cas_needed = !spapr_ovec_subset(spapr->ov5, ov5_mask);
1869 spapr_ovec_cleanup(ov5_mask);
1871 return cas_needed;
1874 static const VMStateDescription vmstate_spapr_ov5_cas = {
1875 .name = "spapr_option_vector_ov5_cas",
1876 .version_id = 1,
1877 .minimum_version_id = 1,
1878 .needed = spapr_ov5_cas_needed,
1879 .fields = (VMStateField[]) {
1880 VMSTATE_STRUCT_POINTER_V(ov5_cas, SpaprMachineState, 1,
1881 vmstate_spapr_ovec, SpaprOptionVector),
1882 VMSTATE_END_OF_LIST()
1886 static bool spapr_patb_entry_needed(void *opaque)
1888 SpaprMachineState *spapr = opaque;
1890 return !!spapr->patb_entry;
1893 static const VMStateDescription vmstate_spapr_patb_entry = {
1894 .name = "spapr_patb_entry",
1895 .version_id = 1,
1896 .minimum_version_id = 1,
1897 .needed = spapr_patb_entry_needed,
1898 .fields = (VMStateField[]) {
1899 VMSTATE_UINT64(patb_entry, SpaprMachineState),
1900 VMSTATE_END_OF_LIST()
1904 static bool spapr_irq_map_needed(void *opaque)
1906 SpaprMachineState *spapr = opaque;
1908 return spapr->irq_map && !bitmap_empty(spapr->irq_map, spapr->irq_map_nr);
1911 static const VMStateDescription vmstate_spapr_irq_map = {
1912 .name = "spapr_irq_map",
1913 .version_id = 1,
1914 .minimum_version_id = 1,
1915 .needed = spapr_irq_map_needed,
1916 .fields = (VMStateField[]) {
1917 VMSTATE_BITMAP(irq_map, SpaprMachineState, 0, irq_map_nr),
1918 VMSTATE_END_OF_LIST()
1922 static bool spapr_dtb_needed(void *opaque)
1924 SpaprMachineClass *smc = SPAPR_MACHINE_GET_CLASS(opaque);
1926 return smc->update_dt_enabled;
1929 static int spapr_dtb_pre_load(void *opaque)
1931 SpaprMachineState *spapr = (SpaprMachineState *)opaque;
1933 g_free(spapr->fdt_blob);
1934 spapr->fdt_blob = NULL;
1935 spapr->fdt_size = 0;
1937 return 0;
1940 static const VMStateDescription vmstate_spapr_dtb = {
1941 .name = "spapr_dtb",
1942 .version_id = 1,
1943 .minimum_version_id = 1,
1944 .needed = spapr_dtb_needed,
1945 .pre_load = spapr_dtb_pre_load,
1946 .fields = (VMStateField[]) {
1947 VMSTATE_UINT32(fdt_initial_size, SpaprMachineState),
1948 VMSTATE_UINT32(fdt_size, SpaprMachineState),
1949 VMSTATE_VBUFFER_ALLOC_UINT32(fdt_blob, SpaprMachineState, 0, NULL,
1950 fdt_size),
1951 VMSTATE_END_OF_LIST()
1955 static bool spapr_fwnmi_needed(void *opaque)
1957 SpaprMachineState *spapr = (SpaprMachineState *)opaque;
1959 return spapr->fwnmi_machine_check_addr != -1;
1962 static int spapr_fwnmi_pre_save(void *opaque)
1964 SpaprMachineState *spapr = (SpaprMachineState *)opaque;
1967 * Check if machine check handling is in progress and print a
1968 * warning message.
1970 if (spapr->fwnmi_machine_check_interlock != -1) {
1971 warn_report("A machine check is being handled during migration. The"
1972 "handler may run and log hardware error on the destination");
1975 return 0;
1978 static const VMStateDescription vmstate_spapr_fwnmi = {
1979 .name = "spapr_fwnmi",
1980 .version_id = 1,
1981 .minimum_version_id = 1,
1982 .needed = spapr_fwnmi_needed,
1983 .pre_save = spapr_fwnmi_pre_save,
1984 .fields = (VMStateField[]) {
1985 VMSTATE_UINT64(fwnmi_system_reset_addr, SpaprMachineState),
1986 VMSTATE_UINT64(fwnmi_machine_check_addr, SpaprMachineState),
1987 VMSTATE_INT32(fwnmi_machine_check_interlock, SpaprMachineState),
1988 VMSTATE_END_OF_LIST()
1992 static const VMStateDescription vmstate_spapr = {
1993 .name = "spapr",
1994 .version_id = 3,
1995 .minimum_version_id = 1,
1996 .pre_load = spapr_pre_load,
1997 .post_load = spapr_post_load,
1998 .pre_save = spapr_pre_save,
1999 .fields = (VMStateField[]) {
2000 /* used to be @next_irq */
2001 VMSTATE_UNUSED_BUFFER(version_before_3, 0, 4),
2003 /* RTC offset */
2004 VMSTATE_UINT64_TEST(rtc_offset, SpaprMachineState, version_before_3),
2006 VMSTATE_PPC_TIMEBASE_V(tb, SpaprMachineState, 2),
2007 VMSTATE_END_OF_LIST()
2009 .subsections = (const VMStateDescription*[]) {
2010 &vmstate_spapr_ov5_cas,
2011 &vmstate_spapr_patb_entry,
2012 &vmstate_spapr_pending_events,
2013 &vmstate_spapr_cap_htm,
2014 &vmstate_spapr_cap_vsx,
2015 &vmstate_spapr_cap_dfp,
2016 &vmstate_spapr_cap_cfpc,
2017 &vmstate_spapr_cap_sbbc,
2018 &vmstate_spapr_cap_ibs,
2019 &vmstate_spapr_cap_hpt_maxpagesize,
2020 &vmstate_spapr_irq_map,
2021 &vmstate_spapr_cap_nested_kvm_hv,
2022 &vmstate_spapr_dtb,
2023 &vmstate_spapr_cap_large_decr,
2024 &vmstate_spapr_cap_ccf_assist,
2025 &vmstate_spapr_cap_fwnmi,
2026 &vmstate_spapr_fwnmi,
2027 NULL
2031 static int htab_save_setup(QEMUFile *f, void *opaque)
2033 SpaprMachineState *spapr = opaque;
2035 /* "Iteration" header */
2036 if (!spapr->htab_shift) {
2037 qemu_put_be32(f, -1);
2038 } else {
2039 qemu_put_be32(f, spapr->htab_shift);
2042 if (spapr->htab) {
2043 spapr->htab_save_index = 0;
2044 spapr->htab_first_pass = true;
2045 } else {
2046 if (spapr->htab_shift) {
2047 assert(kvm_enabled());
2052 return 0;
2055 static void htab_save_chunk(QEMUFile *f, SpaprMachineState *spapr,
2056 int chunkstart, int n_valid, int n_invalid)
2058 qemu_put_be32(f, chunkstart);
2059 qemu_put_be16(f, n_valid);
2060 qemu_put_be16(f, n_invalid);
2061 qemu_put_buffer(f, HPTE(spapr->htab, chunkstart),
2062 HASH_PTE_SIZE_64 * n_valid);
2065 static void htab_save_end_marker(QEMUFile *f)
2067 qemu_put_be32(f, 0);
2068 qemu_put_be16(f, 0);
2069 qemu_put_be16(f, 0);
2072 static void htab_save_first_pass(QEMUFile *f, SpaprMachineState *spapr,
2073 int64_t max_ns)
2075 bool has_timeout = max_ns != -1;
2076 int htabslots = HTAB_SIZE(spapr) / HASH_PTE_SIZE_64;
2077 int index = spapr->htab_save_index;
2078 int64_t starttime = qemu_clock_get_ns(QEMU_CLOCK_REALTIME);
2080 assert(spapr->htab_first_pass);
2082 do {
2083 int chunkstart;
2085 /* Consume invalid HPTEs */
2086 while ((index < htabslots)
2087 && !HPTE_VALID(HPTE(spapr->htab, index))) {
2088 CLEAN_HPTE(HPTE(spapr->htab, index));
2089 index++;
2092 /* Consume valid HPTEs */
2093 chunkstart = index;
2094 while ((index < htabslots) && (index - chunkstart < USHRT_MAX)
2095 && HPTE_VALID(HPTE(spapr->htab, index))) {
2096 CLEAN_HPTE(HPTE(spapr->htab, index));
2097 index++;
2100 if (index > chunkstart) {
2101 int n_valid = index - chunkstart;
2103 htab_save_chunk(f, spapr, chunkstart, n_valid, 0);
2105 if (has_timeout &&
2106 (qemu_clock_get_ns(QEMU_CLOCK_REALTIME) - starttime) > max_ns) {
2107 break;
2110 } while ((index < htabslots) && !qemu_file_rate_limit(f));
2112 if (index >= htabslots) {
2113 assert(index == htabslots);
2114 index = 0;
2115 spapr->htab_first_pass = false;
2117 spapr->htab_save_index = index;
2120 static int htab_save_later_pass(QEMUFile *f, SpaprMachineState *spapr,
2121 int64_t max_ns)
2123 bool final = max_ns < 0;
2124 int htabslots = HTAB_SIZE(spapr) / HASH_PTE_SIZE_64;
2125 int examined = 0, sent = 0;
2126 int index = spapr->htab_save_index;
2127 int64_t starttime = qemu_clock_get_ns(QEMU_CLOCK_REALTIME);
2129 assert(!spapr->htab_first_pass);
2131 do {
2132 int chunkstart, invalidstart;
2134 /* Consume non-dirty HPTEs */
2135 while ((index < htabslots)
2136 && !HPTE_DIRTY(HPTE(spapr->htab, index))) {
2137 index++;
2138 examined++;
2141 chunkstart = index;
2142 /* Consume valid dirty HPTEs */
2143 while ((index < htabslots) && (index - chunkstart < USHRT_MAX)
2144 && HPTE_DIRTY(HPTE(spapr->htab, index))
2145 && HPTE_VALID(HPTE(spapr->htab, index))) {
2146 CLEAN_HPTE(HPTE(spapr->htab, index));
2147 index++;
2148 examined++;
2151 invalidstart = index;
2152 /* Consume invalid dirty HPTEs */
2153 while ((index < htabslots) && (index - invalidstart < USHRT_MAX)
2154 && HPTE_DIRTY(HPTE(spapr->htab, index))
2155 && !HPTE_VALID(HPTE(spapr->htab, index))) {
2156 CLEAN_HPTE(HPTE(spapr->htab, index));
2157 index++;
2158 examined++;
2161 if (index > chunkstart) {
2162 int n_valid = invalidstart - chunkstart;
2163 int n_invalid = index - invalidstart;
2165 htab_save_chunk(f, spapr, chunkstart, n_valid, n_invalid);
2166 sent += index - chunkstart;
2168 if (!final && (qemu_clock_get_ns(QEMU_CLOCK_REALTIME) - starttime) > max_ns) {
2169 break;
2173 if (examined >= htabslots) {
2174 break;
2177 if (index >= htabslots) {
2178 assert(index == htabslots);
2179 index = 0;
2181 } while ((examined < htabslots) && (!qemu_file_rate_limit(f) || final));
2183 if (index >= htabslots) {
2184 assert(index == htabslots);
2185 index = 0;
2188 spapr->htab_save_index = index;
2190 return (examined >= htabslots) && (sent == 0) ? 1 : 0;
2193 #define MAX_ITERATION_NS 5000000 /* 5 ms */
2194 #define MAX_KVM_BUF_SIZE 2048
2196 static int htab_save_iterate(QEMUFile *f, void *opaque)
2198 SpaprMachineState *spapr = opaque;
2199 int fd;
2200 int rc = 0;
2202 /* Iteration header */
2203 if (!spapr->htab_shift) {
2204 qemu_put_be32(f, -1);
2205 return 1;
2206 } else {
2207 qemu_put_be32(f, 0);
2210 if (!spapr->htab) {
2211 assert(kvm_enabled());
2213 fd = get_htab_fd(spapr);
2214 if (fd < 0) {
2215 return fd;
2218 rc = kvmppc_save_htab(f, fd, MAX_KVM_BUF_SIZE, MAX_ITERATION_NS);
2219 if (rc < 0) {
2220 return rc;
2222 } else if (spapr->htab_first_pass) {
2223 htab_save_first_pass(f, spapr, MAX_ITERATION_NS);
2224 } else {
2225 rc = htab_save_later_pass(f, spapr, MAX_ITERATION_NS);
2228 htab_save_end_marker(f);
2230 return rc;
2233 static int htab_save_complete(QEMUFile *f, void *opaque)
2235 SpaprMachineState *spapr = opaque;
2236 int fd;
2238 /* Iteration header */
2239 if (!spapr->htab_shift) {
2240 qemu_put_be32(f, -1);
2241 return 0;
2242 } else {
2243 qemu_put_be32(f, 0);
2246 if (!spapr->htab) {
2247 int rc;
2249 assert(kvm_enabled());
2251 fd = get_htab_fd(spapr);
2252 if (fd < 0) {
2253 return fd;
2256 rc = kvmppc_save_htab(f, fd, MAX_KVM_BUF_SIZE, -1);
2257 if (rc < 0) {
2258 return rc;
2260 } else {
2261 if (spapr->htab_first_pass) {
2262 htab_save_first_pass(f, spapr, -1);
2264 htab_save_later_pass(f, spapr, -1);
2267 /* End marker */
2268 htab_save_end_marker(f);
2270 return 0;
2273 static int htab_load(QEMUFile *f, void *opaque, int version_id)
2275 SpaprMachineState *spapr = opaque;
2276 uint32_t section_hdr;
2277 int fd = -1;
2278 Error *local_err = NULL;
2280 if (version_id < 1 || version_id > 1) {
2281 error_report("htab_load() bad version");
2282 return -EINVAL;
2285 section_hdr = qemu_get_be32(f);
2287 if (section_hdr == -1) {
2288 spapr_free_hpt(spapr);
2289 return 0;
2292 if (section_hdr) {
2293 /* First section gives the htab size */
2294 spapr_reallocate_hpt(spapr, section_hdr, &local_err);
2295 if (local_err) {
2296 error_report_err(local_err);
2297 return -EINVAL;
2299 return 0;
2302 if (!spapr->htab) {
2303 assert(kvm_enabled());
2305 fd = kvmppc_get_htab_fd(true, 0, &local_err);
2306 if (fd < 0) {
2307 error_report_err(local_err);
2308 return fd;
2312 while (true) {
2313 uint32_t index;
2314 uint16_t n_valid, n_invalid;
2316 index = qemu_get_be32(f);
2317 n_valid = qemu_get_be16(f);
2318 n_invalid = qemu_get_be16(f);
2320 if ((index == 0) && (n_valid == 0) && (n_invalid == 0)) {
2321 /* End of Stream */
2322 break;
2325 if ((index + n_valid + n_invalid) >
2326 (HTAB_SIZE(spapr) / HASH_PTE_SIZE_64)) {
2327 /* Bad index in stream */
2328 error_report(
2329 "htab_load() bad index %d (%hd+%hd entries) in htab stream (htab_shift=%d)",
2330 index, n_valid, n_invalid, spapr->htab_shift);
2331 return -EINVAL;
2334 if (spapr->htab) {
2335 if (n_valid) {
2336 qemu_get_buffer(f, HPTE(spapr->htab, index),
2337 HASH_PTE_SIZE_64 * n_valid);
2339 if (n_invalid) {
2340 memset(HPTE(spapr->htab, index + n_valid), 0,
2341 HASH_PTE_SIZE_64 * n_invalid);
2343 } else {
2344 int rc;
2346 assert(fd >= 0);
2348 rc = kvmppc_load_htab_chunk(f, fd, index, n_valid, n_invalid);
2349 if (rc < 0) {
2350 return rc;
2355 if (!spapr->htab) {
2356 assert(fd >= 0);
2357 close(fd);
2360 return 0;
2363 static void htab_save_cleanup(void *opaque)
2365 SpaprMachineState *spapr = opaque;
2367 close_htab_fd(spapr);
2370 static SaveVMHandlers savevm_htab_handlers = {
2371 .save_setup = htab_save_setup,
2372 .save_live_iterate = htab_save_iterate,
2373 .save_live_complete_precopy = htab_save_complete,
2374 .save_cleanup = htab_save_cleanup,
2375 .load_state = htab_load,
2378 static void spapr_boot_set(void *opaque, const char *boot_device,
2379 Error **errp)
2381 MachineState *machine = MACHINE(opaque);
2382 machine->boot_order = g_strdup(boot_device);
2385 static void spapr_create_lmb_dr_connectors(SpaprMachineState *spapr)
2387 MachineState *machine = MACHINE(spapr);
2388 uint64_t lmb_size = SPAPR_MEMORY_BLOCK_SIZE;
2389 uint32_t nr_lmbs = (machine->maxram_size - machine->ram_size)/lmb_size;
2390 int i;
2392 for (i = 0; i < nr_lmbs; i++) {
2393 uint64_t addr;
2395 addr = i * lmb_size + machine->device_memory->base;
2396 spapr_dr_connector_new(OBJECT(spapr), TYPE_SPAPR_DRC_LMB,
2397 addr / lmb_size);
2402 * If RAM size, maxmem size and individual node mem sizes aren't aligned
2403 * to SPAPR_MEMORY_BLOCK_SIZE(256MB), then refuse to start the guest
2404 * since we can't support such unaligned sizes with DRCONF_MEMORY.
2406 static void spapr_validate_node_memory(MachineState *machine, Error **errp)
2408 int i;
2410 if (machine->ram_size % SPAPR_MEMORY_BLOCK_SIZE) {
2411 error_setg(errp, "Memory size 0x" RAM_ADDR_FMT
2412 " is not aligned to %" PRIu64 " MiB",
2413 machine->ram_size,
2414 SPAPR_MEMORY_BLOCK_SIZE / MiB);
2415 return;
2418 if (machine->maxram_size % SPAPR_MEMORY_BLOCK_SIZE) {
2419 error_setg(errp, "Maximum memory size 0x" RAM_ADDR_FMT
2420 " is not aligned to %" PRIu64 " MiB",
2421 machine->ram_size,
2422 SPAPR_MEMORY_BLOCK_SIZE / MiB);
2423 return;
2426 for (i = 0; i < machine->numa_state->num_nodes; i++) {
2427 if (machine->numa_state->nodes[i].node_mem % SPAPR_MEMORY_BLOCK_SIZE) {
2428 error_setg(errp,
2429 "Node %d memory size 0x%" PRIx64
2430 " is not aligned to %" PRIu64 " MiB",
2431 i, machine->numa_state->nodes[i].node_mem,
2432 SPAPR_MEMORY_BLOCK_SIZE / MiB);
2433 return;
2438 /* find cpu slot in machine->possible_cpus by core_id */
2439 static CPUArchId *spapr_find_cpu_slot(MachineState *ms, uint32_t id, int *idx)
2441 int index = id / ms->smp.threads;
2443 if (index >= ms->possible_cpus->len) {
2444 return NULL;
2446 if (idx) {
2447 *idx = index;
2449 return &ms->possible_cpus->cpus[index];
2452 static void spapr_set_vsmt_mode(SpaprMachineState *spapr, Error **errp)
2454 MachineState *ms = MACHINE(spapr);
2455 SpaprMachineClass *smc = SPAPR_MACHINE_GET_CLASS(spapr);
2456 Error *local_err = NULL;
2457 bool vsmt_user = !!spapr->vsmt;
2458 int kvm_smt = kvmppc_smt_threads();
2459 int ret;
2460 unsigned int smp_threads = ms->smp.threads;
2462 if (!kvm_enabled() && (smp_threads > 1)) {
2463 error_setg(errp, "TCG cannot support more than 1 thread/core "
2464 "on a pseries machine");
2465 return;
2467 if (!is_power_of_2(smp_threads)) {
2468 error_setg(errp, "Cannot support %d threads/core on a pseries "
2469 "machine because it must be a power of 2", smp_threads);
2470 return;
2473 /* Detemine the VSMT mode to use: */
2474 if (vsmt_user) {
2475 if (spapr->vsmt < smp_threads) {
2476 error_setg(errp, "Cannot support VSMT mode %d"
2477 " because it must be >= threads/core (%d)",
2478 spapr->vsmt, smp_threads);
2479 return;
2481 /* In this case, spapr->vsmt has been set by the command line */
2482 } else if (!smc->smp_threads_vsmt) {
2484 * Default VSMT value is tricky, because we need it to be as
2485 * consistent as possible (for migration), but this requires
2486 * changing it for at least some existing cases. We pick 8 as
2487 * the value that we'd get with KVM on POWER8, the
2488 * overwhelmingly common case in production systems.
2490 spapr->vsmt = MAX(8, smp_threads);
2491 } else {
2492 spapr->vsmt = smp_threads;
2495 /* KVM: If necessary, set the SMT mode: */
2496 if (kvm_enabled() && (spapr->vsmt != kvm_smt)) {
2497 ret = kvmppc_set_smt_threads(spapr->vsmt);
2498 if (ret) {
2499 /* Looks like KVM isn't able to change VSMT mode */
2500 error_setg(&local_err,
2501 "Failed to set KVM's VSMT mode to %d (errno %d)",
2502 spapr->vsmt, ret);
2503 /* We can live with that if the default one is big enough
2504 * for the number of threads, and a submultiple of the one
2505 * we want. In this case we'll waste some vcpu ids, but
2506 * behaviour will be correct */
2507 if ((kvm_smt >= smp_threads) && ((spapr->vsmt % kvm_smt) == 0)) {
2508 warn_report_err(local_err);
2509 } else {
2510 if (!vsmt_user) {
2511 error_append_hint(&local_err,
2512 "On PPC, a VM with %d threads/core"
2513 " on a host with %d threads/core"
2514 " requires the use of VSMT mode %d.\n",
2515 smp_threads, kvm_smt, spapr->vsmt);
2517 kvmppc_error_append_smt_possible_hint(&local_err);
2518 error_propagate(errp, local_err);
2522 /* else TCG: nothing to do currently */
2525 static void spapr_init_cpus(SpaprMachineState *spapr)
2527 MachineState *machine = MACHINE(spapr);
2528 MachineClass *mc = MACHINE_GET_CLASS(machine);
2529 SpaprMachineClass *smc = SPAPR_MACHINE_GET_CLASS(machine);
2530 const char *type = spapr_get_cpu_core_type(machine->cpu_type);
2531 const CPUArchIdList *possible_cpus;
2532 unsigned int smp_cpus = machine->smp.cpus;
2533 unsigned int smp_threads = machine->smp.threads;
2534 unsigned int max_cpus = machine->smp.max_cpus;
2535 int boot_cores_nr = smp_cpus / smp_threads;
2536 int i;
2538 possible_cpus = mc->possible_cpu_arch_ids(machine);
2539 if (mc->has_hotpluggable_cpus) {
2540 if (smp_cpus % smp_threads) {
2541 error_report("smp_cpus (%u) must be multiple of threads (%u)",
2542 smp_cpus, smp_threads);
2543 exit(1);
2545 if (max_cpus % smp_threads) {
2546 error_report("max_cpus (%u) must be multiple of threads (%u)",
2547 max_cpus, smp_threads);
2548 exit(1);
2550 } else {
2551 if (max_cpus != smp_cpus) {
2552 error_report("This machine version does not support CPU hotplug");
2553 exit(1);
2555 boot_cores_nr = possible_cpus->len;
2558 if (smc->pre_2_10_has_unused_icps) {
2559 int i;
2561 for (i = 0; i < spapr_max_server_number(spapr); i++) {
2562 /* Dummy entries get deregistered when real ICPState objects
2563 * are registered during CPU core hotplug.
2565 pre_2_10_vmstate_register_dummy_icp(i);
2569 for (i = 0; i < possible_cpus->len; i++) {
2570 int core_id = i * smp_threads;
2572 if (mc->has_hotpluggable_cpus) {
2573 spapr_dr_connector_new(OBJECT(spapr), TYPE_SPAPR_DRC_CPU,
2574 spapr_vcpu_id(spapr, core_id));
2577 if (i < boot_cores_nr) {
2578 Object *core = object_new(type);
2579 int nr_threads = smp_threads;
2581 /* Handle the partially filled core for older machine types */
2582 if ((i + 1) * smp_threads >= smp_cpus) {
2583 nr_threads = smp_cpus - i * smp_threads;
2586 object_property_set_int(core, "nr-threads", nr_threads,
2587 &error_fatal);
2588 object_property_set_int(core, CPU_CORE_PROP_CORE_ID, core_id,
2589 &error_fatal);
2590 qdev_realize(DEVICE(core), NULL, &error_fatal);
2592 object_unref(core);
2597 static PCIHostState *spapr_create_default_phb(void)
2599 DeviceState *dev;
2601 dev = qdev_new(TYPE_SPAPR_PCI_HOST_BRIDGE);
2602 qdev_prop_set_uint32(dev, "index", 0);
2603 sysbus_realize_and_unref(SYS_BUS_DEVICE(dev), &error_fatal);
2605 return PCI_HOST_BRIDGE(dev);
2608 static hwaddr spapr_rma_size(SpaprMachineState *spapr, Error **errp)
2610 MachineState *machine = MACHINE(spapr);
2611 SpaprMachineClass *smc = SPAPR_MACHINE_GET_CLASS(spapr);
2612 hwaddr rma_size = machine->ram_size;
2613 hwaddr node0_size = spapr_node0_size(machine);
2615 /* RMA has to fit in the first NUMA node */
2616 rma_size = MIN(rma_size, node0_size);
2619 * VRMA access is via a special 1TiB SLB mapping, so the RMA can
2620 * never exceed that
2622 rma_size = MIN(rma_size, 1 * TiB);
2625 * Clamp the RMA size based on machine type. This is for
2626 * migration compatibility with older qemu versions, which limited
2627 * the RMA size for complicated and mostly bad reasons.
2629 if (smc->rma_limit) {
2630 rma_size = MIN(rma_size, smc->rma_limit);
2633 if (rma_size < MIN_RMA_SLOF) {
2634 error_setg(errp,
2635 "pSeries SLOF firmware requires >= %" HWADDR_PRIx
2636 "ldMiB guest RMA (Real Mode Area memory)",
2637 MIN_RMA_SLOF / MiB);
2638 return 0;
2641 return rma_size;
2644 /* pSeries LPAR / sPAPR hardware init */
2645 static void spapr_machine_init(MachineState *machine)
2647 SpaprMachineState *spapr = SPAPR_MACHINE(machine);
2648 SpaprMachineClass *smc = SPAPR_MACHINE_GET_CLASS(machine);
2649 MachineClass *mc = MACHINE_GET_CLASS(machine);
2650 const char *kernel_filename = machine->kernel_filename;
2651 const char *initrd_filename = machine->initrd_filename;
2652 PCIHostState *phb;
2653 int i;
2654 MemoryRegion *sysmem = get_system_memory();
2655 long load_limit, fw_size;
2656 char *filename;
2657 Error *resize_hpt_err = NULL;
2659 msi_nonbroken = true;
2661 QLIST_INIT(&spapr->phbs);
2662 QTAILQ_INIT(&spapr->pending_dimm_unplugs);
2664 /* Determine capabilities to run with */
2665 spapr_caps_init(spapr);
2667 kvmppc_check_papr_resize_hpt(&resize_hpt_err);
2668 if (spapr->resize_hpt == SPAPR_RESIZE_HPT_DEFAULT) {
2670 * If the user explicitly requested a mode we should either
2671 * supply it, or fail completely (which we do below). But if
2672 * it's not set explicitly, we reset our mode to something
2673 * that works
2675 if (resize_hpt_err) {
2676 spapr->resize_hpt = SPAPR_RESIZE_HPT_DISABLED;
2677 error_free(resize_hpt_err);
2678 resize_hpt_err = NULL;
2679 } else {
2680 spapr->resize_hpt = smc->resize_hpt_default;
2684 assert(spapr->resize_hpt != SPAPR_RESIZE_HPT_DEFAULT);
2686 if ((spapr->resize_hpt != SPAPR_RESIZE_HPT_DISABLED) && resize_hpt_err) {
2688 * User requested HPT resize, but this host can't supply it. Bail out
2690 error_report_err(resize_hpt_err);
2691 exit(1);
2693 error_free(resize_hpt_err);
2695 spapr->rma_size = spapr_rma_size(spapr, &error_fatal);
2697 /* Setup a load limit for the ramdisk leaving room for SLOF and FDT */
2698 load_limit = MIN(spapr->rma_size, RTAS_MAX_ADDR) - FW_OVERHEAD;
2701 * VSMT must be set in order to be able to compute VCPU ids, ie to
2702 * call spapr_max_server_number() or spapr_vcpu_id().
2704 spapr_set_vsmt_mode(spapr, &error_fatal);
2706 /* Set up Interrupt Controller before we create the VCPUs */
2707 spapr_irq_init(spapr, &error_fatal);
2709 /* Set up containers for ibm,client-architecture-support negotiated options
2711 spapr->ov5 = spapr_ovec_new();
2712 spapr->ov5_cas = spapr_ovec_new();
2714 if (smc->dr_lmb_enabled) {
2715 spapr_ovec_set(spapr->ov5, OV5_DRCONF_MEMORY);
2716 spapr_validate_node_memory(machine, &error_fatal);
2719 spapr_ovec_set(spapr->ov5, OV5_FORM1_AFFINITY);
2721 /* advertise support for dedicated HP event source to guests */
2722 if (spapr->use_hotplug_event_source) {
2723 spapr_ovec_set(spapr->ov5, OV5_HP_EVT);
2726 /* advertise support for HPT resizing */
2727 if (spapr->resize_hpt != SPAPR_RESIZE_HPT_DISABLED) {
2728 spapr_ovec_set(spapr->ov5, OV5_HPT_RESIZE);
2731 /* advertise support for ibm,dyamic-memory-v2 */
2732 spapr_ovec_set(spapr->ov5, OV5_DRMEM_V2);
2734 /* advertise XIVE on POWER9 machines */
2735 if (spapr->irq->xive) {
2736 spapr_ovec_set(spapr->ov5, OV5_XIVE_EXPLOIT);
2739 /* init CPUs */
2740 spapr_init_cpus(spapr);
2743 * check we don't have a memory-less/cpu-less NUMA node
2744 * Firmware relies on the existing memory/cpu topology to provide the
2745 * NUMA topology to the kernel.
2746 * And the linux kernel needs to know the NUMA topology at start
2747 * to be able to hotplug CPUs later.
2749 if (machine->numa_state->num_nodes) {
2750 for (i = 0; i < machine->numa_state->num_nodes; ++i) {
2751 /* check for memory-less node */
2752 if (machine->numa_state->nodes[i].node_mem == 0) {
2753 CPUState *cs;
2754 int found = 0;
2755 /* check for cpu-less node */
2756 CPU_FOREACH(cs) {
2757 PowerPCCPU *cpu = POWERPC_CPU(cs);
2758 if (cpu->node_id == i) {
2759 found = 1;
2760 break;
2763 /* memory-less and cpu-less node */
2764 if (!found) {
2765 error_report(
2766 "Memory-less/cpu-less nodes are not supported (node %d)",
2768 exit(1);
2776 * NVLink2-connected GPU RAM needs to be placed on a separate NUMA node.
2777 * We assign a new numa ID per GPU in spapr_pci_collect_nvgpu() which is
2778 * called from vPHB reset handler so we initialize the counter here.
2779 * If no NUMA is configured from the QEMU side, we start from 1 as GPU RAM
2780 * must be equally distant from any other node.
2781 * The final value of spapr->gpu_numa_id is going to be written to
2782 * max-associativity-domains in spapr_build_fdt().
2784 spapr->gpu_numa_id = MAX(1, machine->numa_state->num_nodes);
2786 /* Init numa_assoc_array */
2787 spapr_numa_associativity_init(spapr, machine);
2789 if ((!kvm_enabled() || kvmppc_has_cap_mmu_radix()) &&
2790 ppc_type_check_compat(machine->cpu_type, CPU_POWERPC_LOGICAL_3_00, 0,
2791 spapr->max_compat_pvr)) {
2792 spapr_ovec_set(spapr->ov5, OV5_MMU_RADIX_300);
2793 /* KVM and TCG always allow GTSE with radix... */
2794 spapr_ovec_set(spapr->ov5, OV5_MMU_RADIX_GTSE);
2796 /* ... but not with hash (currently). */
2798 if (kvm_enabled()) {
2799 /* Enable H_LOGICAL_CI_* so SLOF can talk to in-kernel devices */
2800 kvmppc_enable_logical_ci_hcalls();
2801 kvmppc_enable_set_mode_hcall();
2803 /* H_CLEAR_MOD/_REF are mandatory in PAPR, but off by default */
2804 kvmppc_enable_clear_ref_mod_hcalls();
2806 /* Enable H_PAGE_INIT */
2807 kvmppc_enable_h_page_init();
2810 /* map RAM */
2811 memory_region_add_subregion(sysmem, 0, machine->ram);
2813 /* always allocate the device memory information */
2814 machine->device_memory = g_malloc0(sizeof(*machine->device_memory));
2816 /* initialize hotplug memory address space */
2817 if (machine->ram_size < machine->maxram_size) {
2818 ram_addr_t device_mem_size = machine->maxram_size - machine->ram_size;
2820 * Limit the number of hotpluggable memory slots to half the number
2821 * slots that KVM supports, leaving the other half for PCI and other
2822 * devices. However ensure that number of slots doesn't drop below 32.
2824 int max_memslots = kvm_enabled() ? kvm_get_max_memslots() / 2 :
2825 SPAPR_MAX_RAM_SLOTS;
2827 if (max_memslots < SPAPR_MAX_RAM_SLOTS) {
2828 max_memslots = SPAPR_MAX_RAM_SLOTS;
2830 if (machine->ram_slots > max_memslots) {
2831 error_report("Specified number of memory slots %"
2832 PRIu64" exceeds max supported %d",
2833 machine->ram_slots, max_memslots);
2834 exit(1);
2837 machine->device_memory->base = ROUND_UP(machine->ram_size,
2838 SPAPR_DEVICE_MEM_ALIGN);
2839 memory_region_init(&machine->device_memory->mr, OBJECT(spapr),
2840 "device-memory", device_mem_size);
2841 memory_region_add_subregion(sysmem, machine->device_memory->base,
2842 &machine->device_memory->mr);
2845 if (smc->dr_lmb_enabled) {
2846 spapr_create_lmb_dr_connectors(spapr);
2849 if (spapr_get_cap(spapr, SPAPR_CAP_FWNMI) == SPAPR_CAP_ON) {
2850 /* Create the error string for live migration blocker */
2851 error_setg(&spapr->fwnmi_migration_blocker,
2852 "A machine check is being handled during migration. The handler"
2853 "may run and log hardware error on the destination");
2856 if (mc->nvdimm_supported) {
2857 spapr_create_nvdimm_dr_connectors(spapr);
2860 /* Set up RTAS event infrastructure */
2861 spapr_events_init(spapr);
2863 /* Set up the RTC RTAS interfaces */
2864 spapr_rtc_create(spapr);
2866 /* Set up VIO bus */
2867 spapr->vio_bus = spapr_vio_bus_init();
2869 for (i = 0; i < serial_max_hds(); i++) {
2870 if (serial_hd(i)) {
2871 spapr_vty_create(spapr->vio_bus, serial_hd(i));
2875 /* We always have at least the nvram device on VIO */
2876 spapr_create_nvram(spapr);
2879 * Setup hotplug / dynamic-reconfiguration connectors. top-level
2880 * connectors (described in root DT node's "ibm,drc-types" property)
2881 * are pre-initialized here. additional child connectors (such as
2882 * connectors for a PHBs PCI slots) are added as needed during their
2883 * parent's realization.
2885 if (smc->dr_phb_enabled) {
2886 for (i = 0; i < SPAPR_MAX_PHBS; i++) {
2887 spapr_dr_connector_new(OBJECT(machine), TYPE_SPAPR_DRC_PHB, i);
2891 /* Set up PCI */
2892 spapr_pci_rtas_init();
2894 phb = spapr_create_default_phb();
2896 for (i = 0; i < nb_nics; i++) {
2897 NICInfo *nd = &nd_table[i];
2899 if (!nd->model) {
2900 nd->model = g_strdup("spapr-vlan");
2903 if (g_str_equal(nd->model, "spapr-vlan") ||
2904 g_str_equal(nd->model, "ibmveth")) {
2905 spapr_vlan_create(spapr->vio_bus, nd);
2906 } else {
2907 pci_nic_init_nofail(&nd_table[i], phb->bus, nd->model, NULL);
2911 for (i = 0; i <= drive_get_max_bus(IF_SCSI); i++) {
2912 spapr_vscsi_create(spapr->vio_bus);
2915 /* Graphics */
2916 if (spapr_vga_init(phb->bus, &error_fatal)) {
2917 spapr->has_graphics = true;
2918 machine->usb |= defaults_enabled() && !machine->usb_disabled;
2921 if (machine->usb) {
2922 if (smc->use_ohci_by_default) {
2923 pci_create_simple(phb->bus, -1, "pci-ohci");
2924 } else {
2925 pci_create_simple(phb->bus, -1, "nec-usb-xhci");
2928 if (spapr->has_graphics) {
2929 USBBus *usb_bus = usb_bus_find(-1);
2931 usb_create_simple(usb_bus, "usb-kbd");
2932 usb_create_simple(usb_bus, "usb-mouse");
2936 if (kernel_filename) {
2937 spapr->kernel_size = load_elf(kernel_filename, NULL,
2938 translate_kernel_address, spapr,
2939 NULL, NULL, NULL, NULL, 1,
2940 PPC_ELF_MACHINE, 0, 0);
2941 if (spapr->kernel_size == ELF_LOAD_WRONG_ENDIAN) {
2942 spapr->kernel_size = load_elf(kernel_filename, NULL,
2943 translate_kernel_address, spapr,
2944 NULL, NULL, NULL, NULL, 0,
2945 PPC_ELF_MACHINE, 0, 0);
2946 spapr->kernel_le = spapr->kernel_size > 0;
2948 if (spapr->kernel_size < 0) {
2949 error_report("error loading %s: %s", kernel_filename,
2950 load_elf_strerror(spapr->kernel_size));
2951 exit(1);
2954 /* load initrd */
2955 if (initrd_filename) {
2956 /* Try to locate the initrd in the gap between the kernel
2957 * and the firmware. Add a bit of space just in case
2959 spapr->initrd_base = (spapr->kernel_addr + spapr->kernel_size
2960 + 0x1ffff) & ~0xffff;
2961 spapr->initrd_size = load_image_targphys(initrd_filename,
2962 spapr->initrd_base,
2963 load_limit
2964 - spapr->initrd_base);
2965 if (spapr->initrd_size < 0) {
2966 error_report("could not load initial ram disk '%s'",
2967 initrd_filename);
2968 exit(1);
2973 if (bios_name == NULL) {
2974 bios_name = FW_FILE_NAME;
2976 filename = qemu_find_file(QEMU_FILE_TYPE_BIOS, bios_name);
2977 if (!filename) {
2978 error_report("Could not find LPAR firmware '%s'", bios_name);
2979 exit(1);
2981 fw_size = load_image_targphys(filename, 0, FW_MAX_SIZE);
2982 if (fw_size <= 0) {
2983 error_report("Could not load LPAR firmware '%s'", filename);
2984 exit(1);
2986 g_free(filename);
2988 /* FIXME: Should register things through the MachineState's qdev
2989 * interface, this is a legacy from the sPAPREnvironment structure
2990 * which predated MachineState but had a similar function */
2991 vmstate_register(NULL, 0, &vmstate_spapr, spapr);
2992 register_savevm_live("spapr/htab", VMSTATE_INSTANCE_ID_ANY, 1,
2993 &savevm_htab_handlers, spapr);
2995 qbus_set_hotplug_handler(sysbus_get_default(), OBJECT(machine));
2997 qemu_register_boot_set(spapr_boot_set, spapr);
3000 * Nothing needs to be done to resume a suspended guest because
3001 * suspending does not change the machine state, so no need for
3002 * a ->wakeup method.
3004 qemu_register_wakeup_support();
3006 if (kvm_enabled()) {
3007 /* to stop and start vmclock */
3008 qemu_add_vm_change_state_handler(cpu_ppc_clock_vm_state_change,
3009 &spapr->tb);
3011 kvmppc_spapr_enable_inkernel_multitce();
3014 qemu_cond_init(&spapr->fwnmi_machine_check_interlock_cond);
3017 static int spapr_kvm_type(MachineState *machine, const char *vm_type)
3019 if (!vm_type) {
3020 return 0;
3023 if (!strcmp(vm_type, "HV")) {
3024 return 1;
3027 if (!strcmp(vm_type, "PR")) {
3028 return 2;
3031 error_report("Unknown kvm-type specified '%s'", vm_type);
3032 exit(1);
3036 * Implementation of an interface to adjust firmware path
3037 * for the bootindex property handling.
3039 static char *spapr_get_fw_dev_path(FWPathProvider *p, BusState *bus,
3040 DeviceState *dev)
3042 #define CAST(type, obj, name) \
3043 ((type *)object_dynamic_cast(OBJECT(obj), (name)))
3044 SCSIDevice *d = CAST(SCSIDevice, dev, TYPE_SCSI_DEVICE);
3045 SpaprPhbState *phb = CAST(SpaprPhbState, dev, TYPE_SPAPR_PCI_HOST_BRIDGE);
3046 VHostSCSICommon *vsc = CAST(VHostSCSICommon, dev, TYPE_VHOST_SCSI_COMMON);
3048 if (d) {
3049 void *spapr = CAST(void, bus->parent, "spapr-vscsi");
3050 VirtIOSCSI *virtio = CAST(VirtIOSCSI, bus->parent, TYPE_VIRTIO_SCSI);
3051 USBDevice *usb = CAST(USBDevice, bus->parent, TYPE_USB_DEVICE);
3053 if (spapr) {
3055 * Replace "channel@0/disk@0,0" with "disk@8000000000000000":
3056 * In the top 16 bits of the 64-bit LUN, we use SRP luns of the form
3057 * 0x8000 | (target << 8) | (bus << 5) | lun
3058 * (see the "Logical unit addressing format" table in SAM5)
3060 unsigned id = 0x8000 | (d->id << 8) | (d->channel << 5) | d->lun;
3061 return g_strdup_printf("%s@%"PRIX64, qdev_fw_name(dev),
3062 (uint64_t)id << 48);
3063 } else if (virtio) {
3065 * We use SRP luns of the form 01000000 | (target << 8) | lun
3066 * in the top 32 bits of the 64-bit LUN
3067 * Note: the quote above is from SLOF and it is wrong,
3068 * the actual binding is:
3069 * swap 0100 or 10 << or 20 << ( target lun-id -- srplun )
3071 unsigned id = 0x1000000 | (d->id << 16) | d->lun;
3072 if (d->lun >= 256) {
3073 /* Use the LUN "flat space addressing method" */
3074 id |= 0x4000;
3076 return g_strdup_printf("%s@%"PRIX64, qdev_fw_name(dev),
3077 (uint64_t)id << 32);
3078 } else if (usb) {
3080 * We use SRP luns of the form 01000000 | (usb-port << 16) | lun
3081 * in the top 32 bits of the 64-bit LUN
3083 unsigned usb_port = atoi(usb->port->path);
3084 unsigned id = 0x1000000 | (usb_port << 16) | d->lun;
3085 return g_strdup_printf("%s@%"PRIX64, qdev_fw_name(dev),
3086 (uint64_t)id << 32);
3091 * SLOF probes the USB devices, and if it recognizes that the device is a
3092 * storage device, it changes its name to "storage" instead of "usb-host",
3093 * and additionally adds a child node for the SCSI LUN, so the correct
3094 * boot path in SLOF is something like .../storage@1/disk@xxx" instead.
3096 if (strcmp("usb-host", qdev_fw_name(dev)) == 0) {
3097 USBDevice *usbdev = CAST(USBDevice, dev, TYPE_USB_DEVICE);
3098 if (usb_host_dev_is_scsi_storage(usbdev)) {
3099 return g_strdup_printf("storage@%s/disk", usbdev->port->path);
3103 if (phb) {
3104 /* Replace "pci" with "pci@800000020000000" */
3105 return g_strdup_printf("pci@%"PRIX64, phb->buid);
3108 if (vsc) {
3109 /* Same logic as virtio above */
3110 unsigned id = 0x1000000 | (vsc->target << 16) | vsc->lun;
3111 return g_strdup_printf("disk@%"PRIX64, (uint64_t)id << 32);
3114 if (g_str_equal("pci-bridge", qdev_fw_name(dev))) {
3115 /* SLOF uses "pci" instead of "pci-bridge" for PCI bridges */
3116 PCIDevice *pcidev = CAST(PCIDevice, dev, TYPE_PCI_DEVICE);
3117 return g_strdup_printf("pci@%x", PCI_SLOT(pcidev->devfn));
3120 return NULL;
3123 static char *spapr_get_kvm_type(Object *obj, Error **errp)
3125 SpaprMachineState *spapr = SPAPR_MACHINE(obj);
3127 return g_strdup(spapr->kvm_type);
3130 static void spapr_set_kvm_type(Object *obj, const char *value, Error **errp)
3132 SpaprMachineState *spapr = SPAPR_MACHINE(obj);
3134 g_free(spapr->kvm_type);
3135 spapr->kvm_type = g_strdup(value);
3138 static bool spapr_get_modern_hotplug_events(Object *obj, Error **errp)
3140 SpaprMachineState *spapr = SPAPR_MACHINE(obj);
3142 return spapr->use_hotplug_event_source;
3145 static void spapr_set_modern_hotplug_events(Object *obj, bool value,
3146 Error **errp)
3148 SpaprMachineState *spapr = SPAPR_MACHINE(obj);
3150 spapr->use_hotplug_event_source = value;
3153 static bool spapr_get_msix_emulation(Object *obj, Error **errp)
3155 return true;
3158 static char *spapr_get_resize_hpt(Object *obj, Error **errp)
3160 SpaprMachineState *spapr = SPAPR_MACHINE(obj);
3162 switch (spapr->resize_hpt) {
3163 case SPAPR_RESIZE_HPT_DEFAULT:
3164 return g_strdup("default");
3165 case SPAPR_RESIZE_HPT_DISABLED:
3166 return g_strdup("disabled");
3167 case SPAPR_RESIZE_HPT_ENABLED:
3168 return g_strdup("enabled");
3169 case SPAPR_RESIZE_HPT_REQUIRED:
3170 return g_strdup("required");
3172 g_assert_not_reached();
3175 static void spapr_set_resize_hpt(Object *obj, const char *value, Error **errp)
3177 SpaprMachineState *spapr = SPAPR_MACHINE(obj);
3179 if (strcmp(value, "default") == 0) {
3180 spapr->resize_hpt = SPAPR_RESIZE_HPT_DEFAULT;
3181 } else if (strcmp(value, "disabled") == 0) {
3182 spapr->resize_hpt = SPAPR_RESIZE_HPT_DISABLED;
3183 } else if (strcmp(value, "enabled") == 0) {
3184 spapr->resize_hpt = SPAPR_RESIZE_HPT_ENABLED;
3185 } else if (strcmp(value, "required") == 0) {
3186 spapr->resize_hpt = SPAPR_RESIZE_HPT_REQUIRED;
3187 } else {
3188 error_setg(errp, "Bad value for \"resize-hpt\" property");
3192 static char *spapr_get_ic_mode(Object *obj, Error **errp)
3194 SpaprMachineState *spapr = SPAPR_MACHINE(obj);
3196 if (spapr->irq == &spapr_irq_xics_legacy) {
3197 return g_strdup("legacy");
3198 } else if (spapr->irq == &spapr_irq_xics) {
3199 return g_strdup("xics");
3200 } else if (spapr->irq == &spapr_irq_xive) {
3201 return g_strdup("xive");
3202 } else if (spapr->irq == &spapr_irq_dual) {
3203 return g_strdup("dual");
3205 g_assert_not_reached();
3208 static void spapr_set_ic_mode(Object *obj, const char *value, Error **errp)
3210 SpaprMachineState *spapr = SPAPR_MACHINE(obj);
3212 if (SPAPR_MACHINE_GET_CLASS(spapr)->legacy_irq_allocation) {
3213 error_setg(errp, "This machine only uses the legacy XICS backend, don't pass ic-mode");
3214 return;
3217 /* The legacy IRQ backend can not be set */
3218 if (strcmp(value, "xics") == 0) {
3219 spapr->irq = &spapr_irq_xics;
3220 } else if (strcmp(value, "xive") == 0) {
3221 spapr->irq = &spapr_irq_xive;
3222 } else if (strcmp(value, "dual") == 0) {
3223 spapr->irq = &spapr_irq_dual;
3224 } else {
3225 error_setg(errp, "Bad value for \"ic-mode\" property");
3229 static char *spapr_get_host_model(Object *obj, Error **errp)
3231 SpaprMachineState *spapr = SPAPR_MACHINE(obj);
3233 return g_strdup(spapr->host_model);
3236 static void spapr_set_host_model(Object *obj, const char *value, Error **errp)
3238 SpaprMachineState *spapr = SPAPR_MACHINE(obj);
3240 g_free(spapr->host_model);
3241 spapr->host_model = g_strdup(value);
3244 static char *spapr_get_host_serial(Object *obj, Error **errp)
3246 SpaprMachineState *spapr = SPAPR_MACHINE(obj);
3248 return g_strdup(spapr->host_serial);
3251 static void spapr_set_host_serial(Object *obj, const char *value, Error **errp)
3253 SpaprMachineState *spapr = SPAPR_MACHINE(obj);
3255 g_free(spapr->host_serial);
3256 spapr->host_serial = g_strdup(value);
3259 static void spapr_instance_init(Object *obj)
3261 SpaprMachineState *spapr = SPAPR_MACHINE(obj);
3262 SpaprMachineClass *smc = SPAPR_MACHINE_GET_CLASS(spapr);
3264 spapr->htab_fd = -1;
3265 spapr->use_hotplug_event_source = true;
3266 object_property_add_str(obj, "kvm-type",
3267 spapr_get_kvm_type, spapr_set_kvm_type);
3268 object_property_set_description(obj, "kvm-type",
3269 "Specifies the KVM virtualization mode (HV, PR)");
3270 object_property_add_bool(obj, "modern-hotplug-events",
3271 spapr_get_modern_hotplug_events,
3272 spapr_set_modern_hotplug_events);
3273 object_property_set_description(obj, "modern-hotplug-events",
3274 "Use dedicated hotplug event mechanism in"
3275 " place of standard EPOW events when possible"
3276 " (required for memory hot-unplug support)");
3277 ppc_compat_add_property(obj, "max-cpu-compat", &spapr->max_compat_pvr,
3278 "Maximum permitted CPU compatibility mode");
3280 object_property_add_str(obj, "resize-hpt",
3281 spapr_get_resize_hpt, spapr_set_resize_hpt);
3282 object_property_set_description(obj, "resize-hpt",
3283 "Resizing of the Hash Page Table (enabled, disabled, required)");
3284 object_property_add_uint32_ptr(obj, "vsmt",
3285 &spapr->vsmt, OBJ_PROP_FLAG_READWRITE);
3286 object_property_set_description(obj, "vsmt",
3287 "Virtual SMT: KVM behaves as if this were"
3288 " the host's SMT mode");
3290 object_property_add_bool(obj, "vfio-no-msix-emulation",
3291 spapr_get_msix_emulation, NULL);
3293 object_property_add_uint64_ptr(obj, "kernel-addr",
3294 &spapr->kernel_addr, OBJ_PROP_FLAG_READWRITE);
3295 object_property_set_description(obj, "kernel-addr",
3296 stringify(KERNEL_LOAD_ADDR)
3297 " for -kernel is the default");
3298 spapr->kernel_addr = KERNEL_LOAD_ADDR;
3299 /* The machine class defines the default interrupt controller mode */
3300 spapr->irq = smc->irq;
3301 object_property_add_str(obj, "ic-mode", spapr_get_ic_mode,
3302 spapr_set_ic_mode);
3303 object_property_set_description(obj, "ic-mode",
3304 "Specifies the interrupt controller mode (xics, xive, dual)");
3306 object_property_add_str(obj, "host-model",
3307 spapr_get_host_model, spapr_set_host_model);
3308 object_property_set_description(obj, "host-model",
3309 "Host model to advertise in guest device tree");
3310 object_property_add_str(obj, "host-serial",
3311 spapr_get_host_serial, spapr_set_host_serial);
3312 object_property_set_description(obj, "host-serial",
3313 "Host serial number to advertise in guest device tree");
3316 static void spapr_machine_finalizefn(Object *obj)
3318 SpaprMachineState *spapr = SPAPR_MACHINE(obj);
3320 g_free(spapr->kvm_type);
3323 void spapr_do_system_reset_on_cpu(CPUState *cs, run_on_cpu_data arg)
3325 SpaprMachineState *spapr = SPAPR_MACHINE(qdev_get_machine());
3326 PowerPCCPU *cpu = POWERPC_CPU(cs);
3327 CPUPPCState *env = &cpu->env;
3329 cpu_synchronize_state(cs);
3330 /* If FWNMI is inactive, addr will be -1, which will deliver to 0x100 */
3331 if (spapr->fwnmi_system_reset_addr != -1) {
3332 uint64_t rtas_addr, addr;
3334 /* get rtas addr from fdt */
3335 rtas_addr = spapr_get_rtas_addr();
3336 if (!rtas_addr) {
3337 qemu_system_guest_panicked(NULL);
3338 return;
3341 addr = rtas_addr + RTAS_ERROR_LOG_MAX + cs->cpu_index * sizeof(uint64_t)*2;
3342 stq_be_phys(&address_space_memory, addr, env->gpr[3]);
3343 stq_be_phys(&address_space_memory, addr + sizeof(uint64_t), 0);
3344 env->gpr[3] = addr;
3346 ppc_cpu_do_system_reset(cs);
3347 if (spapr->fwnmi_system_reset_addr != -1) {
3348 env->nip = spapr->fwnmi_system_reset_addr;
3352 static void spapr_nmi(NMIState *n, int cpu_index, Error **errp)
3354 CPUState *cs;
3356 CPU_FOREACH(cs) {
3357 async_run_on_cpu(cs, spapr_do_system_reset_on_cpu, RUN_ON_CPU_NULL);
3361 int spapr_lmb_dt_populate(SpaprDrc *drc, SpaprMachineState *spapr,
3362 void *fdt, int *fdt_start_offset, Error **errp)
3364 uint64_t addr;
3365 uint32_t node;
3367 addr = spapr_drc_index(drc) * SPAPR_MEMORY_BLOCK_SIZE;
3368 node = object_property_get_uint(OBJECT(drc->dev), PC_DIMM_NODE_PROP,
3369 &error_abort);
3370 *fdt_start_offset = spapr_dt_memory_node(spapr, fdt, node, addr,
3371 SPAPR_MEMORY_BLOCK_SIZE);
3372 return 0;
3375 static void spapr_add_lmbs(DeviceState *dev, uint64_t addr_start, uint64_t size,
3376 bool dedicated_hp_event_source, Error **errp)
3378 SpaprDrc *drc;
3379 uint32_t nr_lmbs = size/SPAPR_MEMORY_BLOCK_SIZE;
3380 int i;
3381 uint64_t addr = addr_start;
3382 bool hotplugged = spapr_drc_hotplugged(dev);
3384 for (i = 0; i < nr_lmbs; i++) {
3385 drc = spapr_drc_by_id(TYPE_SPAPR_DRC_LMB,
3386 addr / SPAPR_MEMORY_BLOCK_SIZE);
3387 g_assert(drc);
3389 if (!spapr_drc_attach(drc, dev, errp)) {
3390 while (addr > addr_start) {
3391 addr -= SPAPR_MEMORY_BLOCK_SIZE;
3392 drc = spapr_drc_by_id(TYPE_SPAPR_DRC_LMB,
3393 addr / SPAPR_MEMORY_BLOCK_SIZE);
3394 spapr_drc_detach(drc);
3396 return;
3398 if (!hotplugged) {
3399 spapr_drc_reset(drc);
3401 addr += SPAPR_MEMORY_BLOCK_SIZE;
3403 /* send hotplug notification to the
3404 * guest only in case of hotplugged memory
3406 if (hotplugged) {
3407 if (dedicated_hp_event_source) {
3408 drc = spapr_drc_by_id(TYPE_SPAPR_DRC_LMB,
3409 addr_start / SPAPR_MEMORY_BLOCK_SIZE);
3410 spapr_hotplug_req_add_by_count_indexed(SPAPR_DR_CONNECTOR_TYPE_LMB,
3411 nr_lmbs,
3412 spapr_drc_index(drc));
3413 } else {
3414 spapr_hotplug_req_add_by_count(SPAPR_DR_CONNECTOR_TYPE_LMB,
3415 nr_lmbs);
3420 static void spapr_memory_plug(HotplugHandler *hotplug_dev, DeviceState *dev,
3421 Error **errp)
3423 Error *local_err = NULL;
3424 SpaprMachineState *ms = SPAPR_MACHINE(hotplug_dev);
3425 PCDIMMDevice *dimm = PC_DIMM(dev);
3426 uint64_t size, addr, slot;
3427 bool is_nvdimm = object_dynamic_cast(OBJECT(dev), TYPE_NVDIMM);
3429 size = memory_device_get_region_size(MEMORY_DEVICE(dev), &error_abort);
3431 pc_dimm_plug(dimm, MACHINE(ms), &local_err);
3432 if (local_err) {
3433 goto out;
3436 if (!is_nvdimm) {
3437 addr = object_property_get_uint(OBJECT(dimm),
3438 PC_DIMM_ADDR_PROP, &local_err);
3439 if (local_err) {
3440 goto out_unplug;
3442 spapr_add_lmbs(dev, addr, size,
3443 spapr_ovec_test(ms->ov5_cas, OV5_HP_EVT),
3444 &local_err);
3445 } else {
3446 slot = object_property_get_uint(OBJECT(dimm),
3447 PC_DIMM_SLOT_PROP, &local_err);
3448 if (local_err) {
3449 goto out_unplug;
3451 spapr_add_nvdimm(dev, slot, &local_err);
3454 if (local_err) {
3455 goto out_unplug;
3458 return;
3460 out_unplug:
3461 pc_dimm_unplug(dimm, MACHINE(ms));
3462 out:
3463 error_propagate(errp, local_err);
3466 static void spapr_memory_pre_plug(HotplugHandler *hotplug_dev, DeviceState *dev,
3467 Error **errp)
3469 const SpaprMachineClass *smc = SPAPR_MACHINE_GET_CLASS(hotplug_dev);
3470 SpaprMachineState *spapr = SPAPR_MACHINE(hotplug_dev);
3471 bool is_nvdimm = object_dynamic_cast(OBJECT(dev), TYPE_NVDIMM);
3472 PCDIMMDevice *dimm = PC_DIMM(dev);
3473 Error *local_err = NULL;
3474 uint64_t size;
3475 Object *memdev;
3476 hwaddr pagesize;
3478 if (!smc->dr_lmb_enabled) {
3479 error_setg(errp, "Memory hotplug not supported for this machine");
3480 return;
3483 size = memory_device_get_region_size(MEMORY_DEVICE(dimm), &local_err);
3484 if (local_err) {
3485 error_propagate(errp, local_err);
3486 return;
3489 if (is_nvdimm) {
3490 if (!spapr_nvdimm_validate(hotplug_dev, NVDIMM(dev), size, errp)) {
3491 return;
3493 } else if (size % SPAPR_MEMORY_BLOCK_SIZE) {
3494 error_setg(errp, "Hotplugged memory size must be a multiple of "
3495 "%" PRIu64 " MB", SPAPR_MEMORY_BLOCK_SIZE / MiB);
3496 return;
3499 memdev = object_property_get_link(OBJECT(dimm), PC_DIMM_MEMDEV_PROP,
3500 &error_abort);
3501 pagesize = host_memory_backend_pagesize(MEMORY_BACKEND(memdev));
3502 if (!spapr_check_pagesize(spapr, pagesize, errp)) {
3503 return;
3506 pc_dimm_pre_plug(dimm, MACHINE(hotplug_dev), NULL, errp);
3509 struct SpaprDimmState {
3510 PCDIMMDevice *dimm;
3511 uint32_t nr_lmbs;
3512 QTAILQ_ENTRY(SpaprDimmState) next;
3515 static SpaprDimmState *spapr_pending_dimm_unplugs_find(SpaprMachineState *s,
3516 PCDIMMDevice *dimm)
3518 SpaprDimmState *dimm_state = NULL;
3520 QTAILQ_FOREACH(dimm_state, &s->pending_dimm_unplugs, next) {
3521 if (dimm_state->dimm == dimm) {
3522 break;
3525 return dimm_state;
3528 static SpaprDimmState *spapr_pending_dimm_unplugs_add(SpaprMachineState *spapr,
3529 uint32_t nr_lmbs,
3530 PCDIMMDevice *dimm)
3532 SpaprDimmState *ds = NULL;
3535 * If this request is for a DIMM whose removal had failed earlier
3536 * (due to guest's refusal to remove the LMBs), we would have this
3537 * dimm already in the pending_dimm_unplugs list. In that
3538 * case don't add again.
3540 ds = spapr_pending_dimm_unplugs_find(spapr, dimm);
3541 if (!ds) {
3542 ds = g_malloc0(sizeof(SpaprDimmState));
3543 ds->nr_lmbs = nr_lmbs;
3544 ds->dimm = dimm;
3545 QTAILQ_INSERT_HEAD(&spapr->pending_dimm_unplugs, ds, next);
3547 return ds;
3550 static void spapr_pending_dimm_unplugs_remove(SpaprMachineState *spapr,
3551 SpaprDimmState *dimm_state)
3553 QTAILQ_REMOVE(&spapr->pending_dimm_unplugs, dimm_state, next);
3554 g_free(dimm_state);
3557 static SpaprDimmState *spapr_recover_pending_dimm_state(SpaprMachineState *ms,
3558 PCDIMMDevice *dimm)
3560 SpaprDrc *drc;
3561 uint64_t size = memory_device_get_region_size(MEMORY_DEVICE(dimm),
3562 &error_abort);
3563 uint32_t nr_lmbs = size / SPAPR_MEMORY_BLOCK_SIZE;
3564 uint32_t avail_lmbs = 0;
3565 uint64_t addr_start, addr;
3566 int i;
3568 addr_start = object_property_get_int(OBJECT(dimm), PC_DIMM_ADDR_PROP,
3569 &error_abort);
3571 addr = addr_start;
3572 for (i = 0; i < nr_lmbs; i++) {
3573 drc = spapr_drc_by_id(TYPE_SPAPR_DRC_LMB,
3574 addr / SPAPR_MEMORY_BLOCK_SIZE);
3575 g_assert(drc);
3576 if (drc->dev) {
3577 avail_lmbs++;
3579 addr += SPAPR_MEMORY_BLOCK_SIZE;
3582 return spapr_pending_dimm_unplugs_add(ms, avail_lmbs, dimm);
3585 /* Callback to be called during DRC release. */
3586 void spapr_lmb_release(DeviceState *dev)
3588 HotplugHandler *hotplug_ctrl = qdev_get_hotplug_handler(dev);
3589 SpaprMachineState *spapr = SPAPR_MACHINE(hotplug_ctrl);
3590 SpaprDimmState *ds = spapr_pending_dimm_unplugs_find(spapr, PC_DIMM(dev));
3592 /* This information will get lost if a migration occurs
3593 * during the unplug process. In this case recover it. */
3594 if (ds == NULL) {
3595 ds = spapr_recover_pending_dimm_state(spapr, PC_DIMM(dev));
3596 g_assert(ds);
3597 /* The DRC being examined by the caller at least must be counted */
3598 g_assert(ds->nr_lmbs);
3601 if (--ds->nr_lmbs) {
3602 return;
3606 * Now that all the LMBs have been removed by the guest, call the
3607 * unplug handler chain. This can never fail.
3609 hotplug_handler_unplug(hotplug_ctrl, dev, &error_abort);
3610 object_unparent(OBJECT(dev));
3613 static void spapr_memory_unplug(HotplugHandler *hotplug_dev, DeviceState *dev)
3615 SpaprMachineState *spapr = SPAPR_MACHINE(hotplug_dev);
3616 SpaprDimmState *ds = spapr_pending_dimm_unplugs_find(spapr, PC_DIMM(dev));
3618 pc_dimm_unplug(PC_DIMM(dev), MACHINE(hotplug_dev));
3619 qdev_unrealize(dev);
3620 spapr_pending_dimm_unplugs_remove(spapr, ds);
3623 static void spapr_memory_unplug_request(HotplugHandler *hotplug_dev,
3624 DeviceState *dev, Error **errp)
3626 SpaprMachineState *spapr = SPAPR_MACHINE(hotplug_dev);
3627 Error *local_err = NULL;
3628 PCDIMMDevice *dimm = PC_DIMM(dev);
3629 uint32_t nr_lmbs;
3630 uint64_t size, addr_start, addr;
3631 int i;
3632 SpaprDrc *drc;
3634 if (object_dynamic_cast(OBJECT(dev), TYPE_NVDIMM)) {
3635 error_setg(errp, "nvdimm device hot unplug is not supported yet.");
3636 return;
3639 size = memory_device_get_region_size(MEMORY_DEVICE(dimm), &error_abort);
3640 nr_lmbs = size / SPAPR_MEMORY_BLOCK_SIZE;
3642 addr_start = object_property_get_uint(OBJECT(dimm), PC_DIMM_ADDR_PROP,
3643 &local_err);
3644 if (local_err) {
3645 error_propagate(errp, local_err);
3646 return;
3650 * An existing pending dimm state for this DIMM means that there is an
3651 * unplug operation in progress, waiting for the spapr_lmb_release
3652 * callback to complete the job (BQL can't cover that far). In this case,
3653 * bail out to avoid detaching DRCs that were already released.
3655 if (spapr_pending_dimm_unplugs_find(spapr, dimm)) {
3656 error_setg(errp, "Memory unplug already in progress for device %s",
3657 dev->id);
3658 return;
3661 spapr_pending_dimm_unplugs_add(spapr, nr_lmbs, dimm);
3663 addr = addr_start;
3664 for (i = 0; i < nr_lmbs; i++) {
3665 drc = spapr_drc_by_id(TYPE_SPAPR_DRC_LMB,
3666 addr / SPAPR_MEMORY_BLOCK_SIZE);
3667 g_assert(drc);
3669 spapr_drc_detach(drc);
3670 addr += SPAPR_MEMORY_BLOCK_SIZE;
3673 drc = spapr_drc_by_id(TYPE_SPAPR_DRC_LMB,
3674 addr_start / SPAPR_MEMORY_BLOCK_SIZE);
3675 spapr_hotplug_req_remove_by_count_indexed(SPAPR_DR_CONNECTOR_TYPE_LMB,
3676 nr_lmbs, spapr_drc_index(drc));
3679 /* Callback to be called during DRC release. */
3680 void spapr_core_release(DeviceState *dev)
3682 HotplugHandler *hotplug_ctrl = qdev_get_hotplug_handler(dev);
3684 /* Call the unplug handler chain. This can never fail. */
3685 hotplug_handler_unplug(hotplug_ctrl, dev, &error_abort);
3686 object_unparent(OBJECT(dev));
3689 static void spapr_core_unplug(HotplugHandler *hotplug_dev, DeviceState *dev)
3691 MachineState *ms = MACHINE(hotplug_dev);
3692 SpaprMachineClass *smc = SPAPR_MACHINE_GET_CLASS(ms);
3693 CPUCore *cc = CPU_CORE(dev);
3694 CPUArchId *core_slot = spapr_find_cpu_slot(ms, cc->core_id, NULL);
3696 if (smc->pre_2_10_has_unused_icps) {
3697 SpaprCpuCore *sc = SPAPR_CPU_CORE(OBJECT(dev));
3698 int i;
3700 for (i = 0; i < cc->nr_threads; i++) {
3701 CPUState *cs = CPU(sc->threads[i]);
3703 pre_2_10_vmstate_register_dummy_icp(cs->cpu_index);
3707 assert(core_slot);
3708 core_slot->cpu = NULL;
3709 qdev_unrealize(dev);
3712 static
3713 void spapr_core_unplug_request(HotplugHandler *hotplug_dev, DeviceState *dev,
3714 Error **errp)
3716 SpaprMachineState *spapr = SPAPR_MACHINE(OBJECT(hotplug_dev));
3717 int index;
3718 SpaprDrc *drc;
3719 CPUCore *cc = CPU_CORE(dev);
3721 if (!spapr_find_cpu_slot(MACHINE(hotplug_dev), cc->core_id, &index)) {
3722 error_setg(errp, "Unable to find CPU core with core-id: %d",
3723 cc->core_id);
3724 return;
3726 if (index == 0) {
3727 error_setg(errp, "Boot CPU core may not be unplugged");
3728 return;
3731 drc = spapr_drc_by_id(TYPE_SPAPR_DRC_CPU,
3732 spapr_vcpu_id(spapr, cc->core_id));
3733 g_assert(drc);
3735 if (!spapr_drc_unplug_requested(drc)) {
3736 spapr_drc_detach(drc);
3737 spapr_hotplug_req_remove_by_index(drc);
3741 int spapr_core_dt_populate(SpaprDrc *drc, SpaprMachineState *spapr,
3742 void *fdt, int *fdt_start_offset, Error **errp)
3744 SpaprCpuCore *core = SPAPR_CPU_CORE(drc->dev);
3745 CPUState *cs = CPU(core->threads[0]);
3746 PowerPCCPU *cpu = POWERPC_CPU(cs);
3747 DeviceClass *dc = DEVICE_GET_CLASS(cs);
3748 int id = spapr_get_vcpu_id(cpu);
3749 char *nodename;
3750 int offset;
3752 nodename = g_strdup_printf("%s@%x", dc->fw_name, id);
3753 offset = fdt_add_subnode(fdt, 0, nodename);
3754 g_free(nodename);
3756 spapr_dt_cpu(cs, fdt, offset, spapr);
3758 *fdt_start_offset = offset;
3759 return 0;
3762 static void spapr_core_plug(HotplugHandler *hotplug_dev, DeviceState *dev,
3763 Error **errp)
3765 SpaprMachineState *spapr = SPAPR_MACHINE(OBJECT(hotplug_dev));
3766 MachineClass *mc = MACHINE_GET_CLASS(spapr);
3767 SpaprMachineClass *smc = SPAPR_MACHINE_CLASS(mc);
3768 SpaprCpuCore *core = SPAPR_CPU_CORE(OBJECT(dev));
3769 CPUCore *cc = CPU_CORE(dev);
3770 CPUState *cs;
3771 SpaprDrc *drc;
3772 CPUArchId *core_slot;
3773 int index;
3774 bool hotplugged = spapr_drc_hotplugged(dev);
3775 int i;
3777 core_slot = spapr_find_cpu_slot(MACHINE(hotplug_dev), cc->core_id, &index);
3778 if (!core_slot) {
3779 error_setg(errp, "Unable to find CPU core with core-id: %d",
3780 cc->core_id);
3781 return;
3783 drc = spapr_drc_by_id(TYPE_SPAPR_DRC_CPU,
3784 spapr_vcpu_id(spapr, cc->core_id));
3786 g_assert(drc || !mc->has_hotpluggable_cpus);
3788 if (drc) {
3789 if (!spapr_drc_attach(drc, dev, errp)) {
3790 return;
3793 if (hotplugged) {
3795 * Send hotplug notification interrupt to the guest only
3796 * in case of hotplugged CPUs.
3798 spapr_hotplug_req_add_by_index(drc);
3799 } else {
3800 spapr_drc_reset(drc);
3804 core_slot->cpu = OBJECT(dev);
3806 if (smc->pre_2_10_has_unused_icps) {
3807 for (i = 0; i < cc->nr_threads; i++) {
3808 cs = CPU(core->threads[i]);
3809 pre_2_10_vmstate_unregister_dummy_icp(cs->cpu_index);
3814 * Set compatibility mode to match the boot CPU, which was either set
3815 * by the machine reset code or by CAS.
3817 if (hotplugged) {
3818 for (i = 0; i < cc->nr_threads; i++) {
3819 if (ppc_set_compat(core->threads[i],
3820 POWERPC_CPU(first_cpu)->compat_pvr,
3821 errp) < 0) {
3822 return;
3828 static void spapr_core_pre_plug(HotplugHandler *hotplug_dev, DeviceState *dev,
3829 Error **errp)
3831 MachineState *machine = MACHINE(OBJECT(hotplug_dev));
3832 MachineClass *mc = MACHINE_GET_CLASS(hotplug_dev);
3833 CPUCore *cc = CPU_CORE(dev);
3834 const char *base_core_type = spapr_get_cpu_core_type(machine->cpu_type);
3835 const char *type = object_get_typename(OBJECT(dev));
3836 CPUArchId *core_slot;
3837 int index;
3838 unsigned int smp_threads = machine->smp.threads;
3840 if (dev->hotplugged && !mc->has_hotpluggable_cpus) {
3841 error_setg(errp, "CPU hotplug not supported for this machine");
3842 return;
3845 if (strcmp(base_core_type, type)) {
3846 error_setg(errp, "CPU core type should be %s", base_core_type);
3847 return;
3850 if (cc->core_id % smp_threads) {
3851 error_setg(errp, "invalid core id %d", cc->core_id);
3852 return;
3856 * In general we should have homogeneous threads-per-core, but old
3857 * (pre hotplug support) machine types allow the last core to have
3858 * reduced threads as a compatibility hack for when we allowed
3859 * total vcpus not a multiple of threads-per-core.
3861 if (mc->has_hotpluggable_cpus && (cc->nr_threads != smp_threads)) {
3862 error_setg(errp, "invalid nr-threads %d, must be %d", cc->nr_threads,
3863 smp_threads);
3864 return;
3867 core_slot = spapr_find_cpu_slot(MACHINE(hotplug_dev), cc->core_id, &index);
3868 if (!core_slot) {
3869 error_setg(errp, "core id %d out of range", cc->core_id);
3870 return;
3873 if (core_slot->cpu) {
3874 error_setg(errp, "core %d already populated", cc->core_id);
3875 return;
3878 numa_cpu_pre_plug(core_slot, dev, errp);
3881 int spapr_phb_dt_populate(SpaprDrc *drc, SpaprMachineState *spapr,
3882 void *fdt, int *fdt_start_offset, Error **errp)
3884 SpaprPhbState *sphb = SPAPR_PCI_HOST_BRIDGE(drc->dev);
3885 int intc_phandle;
3887 intc_phandle = spapr_irq_get_phandle(spapr, spapr->fdt_blob, errp);
3888 if (intc_phandle <= 0) {
3889 return -1;
3892 if (spapr_dt_phb(spapr, sphb, intc_phandle, fdt, fdt_start_offset)) {
3893 error_setg(errp, "unable to create FDT node for PHB %d", sphb->index);
3894 return -1;
3897 /* generally SLOF creates these, for hotplug it's up to QEMU */
3898 _FDT(fdt_setprop_string(fdt, *fdt_start_offset, "name", "pci"));
3900 return 0;
3903 static void spapr_phb_pre_plug(HotplugHandler *hotplug_dev, DeviceState *dev,
3904 Error **errp)
3906 SpaprMachineState *spapr = SPAPR_MACHINE(OBJECT(hotplug_dev));
3907 SpaprPhbState *sphb = SPAPR_PCI_HOST_BRIDGE(dev);
3908 SpaprMachineClass *smc = SPAPR_MACHINE_GET_CLASS(spapr);
3909 const unsigned windows_supported = spapr_phb_windows_supported(sphb);
3911 if (dev->hotplugged && !smc->dr_phb_enabled) {
3912 error_setg(errp, "PHB hotplug not supported for this machine");
3913 return;
3916 if (sphb->index == (uint32_t)-1) {
3917 error_setg(errp, "\"index\" for PAPR PHB is mandatory");
3918 return;
3922 * This will check that sphb->index doesn't exceed the maximum number of
3923 * PHBs for the current machine type.
3925 smc->phb_placement(spapr, sphb->index,
3926 &sphb->buid, &sphb->io_win_addr,
3927 &sphb->mem_win_addr, &sphb->mem64_win_addr,
3928 windows_supported, sphb->dma_liobn,
3929 &sphb->nv2_gpa_win_addr, &sphb->nv2_atsd_win_addr,
3930 errp);
3933 static void spapr_phb_plug(HotplugHandler *hotplug_dev, DeviceState *dev,
3934 Error **errp)
3936 SpaprMachineState *spapr = SPAPR_MACHINE(OBJECT(hotplug_dev));
3937 SpaprMachineClass *smc = SPAPR_MACHINE_GET_CLASS(spapr);
3938 SpaprPhbState *sphb = SPAPR_PCI_HOST_BRIDGE(dev);
3939 SpaprDrc *drc;
3940 bool hotplugged = spapr_drc_hotplugged(dev);
3942 if (!smc->dr_phb_enabled) {
3943 return;
3946 drc = spapr_drc_by_id(TYPE_SPAPR_DRC_PHB, sphb->index);
3947 /* hotplug hooks should check it's enabled before getting this far */
3948 assert(drc);
3950 if (!spapr_drc_attach(drc, dev, errp)) {
3951 return;
3954 if (hotplugged) {
3955 spapr_hotplug_req_add_by_index(drc);
3956 } else {
3957 spapr_drc_reset(drc);
3961 void spapr_phb_release(DeviceState *dev)
3963 HotplugHandler *hotplug_ctrl = qdev_get_hotplug_handler(dev);
3965 hotplug_handler_unplug(hotplug_ctrl, dev, &error_abort);
3966 object_unparent(OBJECT(dev));
3969 static void spapr_phb_unplug(HotplugHandler *hotplug_dev, DeviceState *dev)
3971 qdev_unrealize(dev);
3974 static void spapr_phb_unplug_request(HotplugHandler *hotplug_dev,
3975 DeviceState *dev, Error **errp)
3977 SpaprPhbState *sphb = SPAPR_PCI_HOST_BRIDGE(dev);
3978 SpaprDrc *drc;
3980 drc = spapr_drc_by_id(TYPE_SPAPR_DRC_PHB, sphb->index);
3981 assert(drc);
3983 if (!spapr_drc_unplug_requested(drc)) {
3984 spapr_drc_detach(drc);
3985 spapr_hotplug_req_remove_by_index(drc);
3989 static void spapr_tpm_proxy_plug(HotplugHandler *hotplug_dev, DeviceState *dev,
3990 Error **errp)
3992 SpaprMachineState *spapr = SPAPR_MACHINE(OBJECT(hotplug_dev));
3993 SpaprTpmProxy *tpm_proxy = SPAPR_TPM_PROXY(dev);
3995 if (spapr->tpm_proxy != NULL) {
3996 error_setg(errp, "Only one TPM proxy can be specified for this machine");
3997 return;
4000 spapr->tpm_proxy = tpm_proxy;
4003 static void spapr_tpm_proxy_unplug(HotplugHandler *hotplug_dev, DeviceState *dev)
4005 SpaprMachineState *spapr = SPAPR_MACHINE(OBJECT(hotplug_dev));
4007 qdev_unrealize(dev);
4008 object_unparent(OBJECT(dev));
4009 spapr->tpm_proxy = NULL;
4012 static void spapr_machine_device_plug(HotplugHandler *hotplug_dev,
4013 DeviceState *dev, Error **errp)
4015 if (object_dynamic_cast(OBJECT(dev), TYPE_PC_DIMM)) {
4016 spapr_memory_plug(hotplug_dev, dev, errp);
4017 } else if (object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_CPU_CORE)) {
4018 spapr_core_plug(hotplug_dev, dev, errp);
4019 } else if (object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_PCI_HOST_BRIDGE)) {
4020 spapr_phb_plug(hotplug_dev, dev, errp);
4021 } else if (object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_TPM_PROXY)) {
4022 spapr_tpm_proxy_plug(hotplug_dev, dev, errp);
4026 static void spapr_machine_device_unplug(HotplugHandler *hotplug_dev,
4027 DeviceState *dev, Error **errp)
4029 if (object_dynamic_cast(OBJECT(dev), TYPE_PC_DIMM)) {
4030 spapr_memory_unplug(hotplug_dev, dev);
4031 } else if (object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_CPU_CORE)) {
4032 spapr_core_unplug(hotplug_dev, dev);
4033 } else if (object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_PCI_HOST_BRIDGE)) {
4034 spapr_phb_unplug(hotplug_dev, dev);
4035 } else if (object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_TPM_PROXY)) {
4036 spapr_tpm_proxy_unplug(hotplug_dev, dev);
4040 static void spapr_machine_device_unplug_request(HotplugHandler *hotplug_dev,
4041 DeviceState *dev, Error **errp)
4043 SpaprMachineState *sms = SPAPR_MACHINE(OBJECT(hotplug_dev));
4044 MachineClass *mc = MACHINE_GET_CLASS(sms);
4045 SpaprMachineClass *smc = SPAPR_MACHINE_CLASS(mc);
4047 if (object_dynamic_cast(OBJECT(dev), TYPE_PC_DIMM)) {
4048 if (spapr_ovec_test(sms->ov5_cas, OV5_HP_EVT)) {
4049 spapr_memory_unplug_request(hotplug_dev, dev, errp);
4050 } else {
4051 /* NOTE: this means there is a window after guest reset, prior to
4052 * CAS negotiation, where unplug requests will fail due to the
4053 * capability not being detected yet. This is a bit different than
4054 * the case with PCI unplug, where the events will be queued and
4055 * eventually handled by the guest after boot
4057 error_setg(errp, "Memory hot unplug not supported for this guest");
4059 } else if (object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_CPU_CORE)) {
4060 if (!mc->has_hotpluggable_cpus) {
4061 error_setg(errp, "CPU hot unplug not supported on this machine");
4062 return;
4064 spapr_core_unplug_request(hotplug_dev, dev, errp);
4065 } else if (object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_PCI_HOST_BRIDGE)) {
4066 if (!smc->dr_phb_enabled) {
4067 error_setg(errp, "PHB hot unplug not supported on this machine");
4068 return;
4070 spapr_phb_unplug_request(hotplug_dev, dev, errp);
4071 } else if (object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_TPM_PROXY)) {
4072 spapr_tpm_proxy_unplug(hotplug_dev, dev);
4076 static void spapr_machine_device_pre_plug(HotplugHandler *hotplug_dev,
4077 DeviceState *dev, Error **errp)
4079 if (object_dynamic_cast(OBJECT(dev), TYPE_PC_DIMM)) {
4080 spapr_memory_pre_plug(hotplug_dev, dev, errp);
4081 } else if (object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_CPU_CORE)) {
4082 spapr_core_pre_plug(hotplug_dev, dev, errp);
4083 } else if (object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_PCI_HOST_BRIDGE)) {
4084 spapr_phb_pre_plug(hotplug_dev, dev, errp);
4088 static HotplugHandler *spapr_get_hotplug_handler(MachineState *machine,
4089 DeviceState *dev)
4091 if (object_dynamic_cast(OBJECT(dev), TYPE_PC_DIMM) ||
4092 object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_CPU_CORE) ||
4093 object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_PCI_HOST_BRIDGE) ||
4094 object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_TPM_PROXY)) {
4095 return HOTPLUG_HANDLER(machine);
4097 if (object_dynamic_cast(OBJECT(dev), TYPE_PCI_DEVICE)) {
4098 PCIDevice *pcidev = PCI_DEVICE(dev);
4099 PCIBus *root = pci_device_root_bus(pcidev);
4100 SpaprPhbState *phb =
4101 (SpaprPhbState *)object_dynamic_cast(OBJECT(BUS(root)->parent),
4102 TYPE_SPAPR_PCI_HOST_BRIDGE);
4104 if (phb) {
4105 return HOTPLUG_HANDLER(phb);
4108 return NULL;
4111 static CpuInstanceProperties
4112 spapr_cpu_index_to_props(MachineState *machine, unsigned cpu_index)
4114 CPUArchId *core_slot;
4115 MachineClass *mc = MACHINE_GET_CLASS(machine);
4117 /* make sure possible_cpu are intialized */
4118 mc->possible_cpu_arch_ids(machine);
4119 /* get CPU core slot containing thread that matches cpu_index */
4120 core_slot = spapr_find_cpu_slot(machine, cpu_index, NULL);
4121 assert(core_slot);
4122 return core_slot->props;
4125 static int64_t spapr_get_default_cpu_node_id(const MachineState *ms, int idx)
4127 return idx / ms->smp.cores % ms->numa_state->num_nodes;
4130 static const CPUArchIdList *spapr_possible_cpu_arch_ids(MachineState *machine)
4132 int i;
4133 unsigned int smp_threads = machine->smp.threads;
4134 unsigned int smp_cpus = machine->smp.cpus;
4135 const char *core_type;
4136 int spapr_max_cores = machine->smp.max_cpus / smp_threads;
4137 MachineClass *mc = MACHINE_GET_CLASS(machine);
4139 if (!mc->has_hotpluggable_cpus) {
4140 spapr_max_cores = QEMU_ALIGN_UP(smp_cpus, smp_threads) / smp_threads;
4142 if (machine->possible_cpus) {
4143 assert(machine->possible_cpus->len == spapr_max_cores);
4144 return machine->possible_cpus;
4147 core_type = spapr_get_cpu_core_type(machine->cpu_type);
4148 if (!core_type) {
4149 error_report("Unable to find sPAPR CPU Core definition");
4150 exit(1);
4153 machine->possible_cpus = g_malloc0(sizeof(CPUArchIdList) +
4154 sizeof(CPUArchId) * spapr_max_cores);
4155 machine->possible_cpus->len = spapr_max_cores;
4156 for (i = 0; i < machine->possible_cpus->len; i++) {
4157 int core_id = i * smp_threads;
4159 machine->possible_cpus->cpus[i].type = core_type;
4160 machine->possible_cpus->cpus[i].vcpus_count = smp_threads;
4161 machine->possible_cpus->cpus[i].arch_id = core_id;
4162 machine->possible_cpus->cpus[i].props.has_core_id = true;
4163 machine->possible_cpus->cpus[i].props.core_id = core_id;
4165 return machine->possible_cpus;
4168 static void spapr_phb_placement(SpaprMachineState *spapr, uint32_t index,
4169 uint64_t *buid, hwaddr *pio,
4170 hwaddr *mmio32, hwaddr *mmio64,
4171 unsigned n_dma, uint32_t *liobns,
4172 hwaddr *nv2gpa, hwaddr *nv2atsd, Error **errp)
4175 * New-style PHB window placement.
4177 * Goals: Gives large (1TiB), naturally aligned 64-bit MMIO window
4178 * for each PHB, in addition to 2GiB 32-bit MMIO and 64kiB PIO
4179 * windows.
4181 * Some guest kernels can't work with MMIO windows above 1<<46
4182 * (64TiB), so we place up to 31 PHBs in the area 32TiB..64TiB
4184 * 32TiB..(33TiB+1984kiB) contains the 64kiB PIO windows for each
4185 * PHB stacked together. (32TiB+2GiB)..(32TiB+64GiB) contains the
4186 * 2GiB 32-bit MMIO windows for each PHB. Then 33..64TiB has the
4187 * 1TiB 64-bit MMIO windows for each PHB.
4189 const uint64_t base_buid = 0x800000020000000ULL;
4190 int i;
4192 /* Sanity check natural alignments */
4193 QEMU_BUILD_BUG_ON((SPAPR_PCI_BASE % SPAPR_PCI_MEM64_WIN_SIZE) != 0);
4194 QEMU_BUILD_BUG_ON((SPAPR_PCI_LIMIT % SPAPR_PCI_MEM64_WIN_SIZE) != 0);
4195 QEMU_BUILD_BUG_ON((SPAPR_PCI_MEM64_WIN_SIZE % SPAPR_PCI_MEM32_WIN_SIZE) != 0);
4196 QEMU_BUILD_BUG_ON((SPAPR_PCI_MEM32_WIN_SIZE % SPAPR_PCI_IO_WIN_SIZE) != 0);
4197 /* Sanity check bounds */
4198 QEMU_BUILD_BUG_ON((SPAPR_MAX_PHBS * SPAPR_PCI_IO_WIN_SIZE) >
4199 SPAPR_PCI_MEM32_WIN_SIZE);
4200 QEMU_BUILD_BUG_ON((SPAPR_MAX_PHBS * SPAPR_PCI_MEM32_WIN_SIZE) >
4201 SPAPR_PCI_MEM64_WIN_SIZE);
4203 if (index >= SPAPR_MAX_PHBS) {
4204 error_setg(errp, "\"index\" for PAPR PHB is too large (max %llu)",
4205 SPAPR_MAX_PHBS - 1);
4206 return;
4209 *buid = base_buid + index;
4210 for (i = 0; i < n_dma; ++i) {
4211 liobns[i] = SPAPR_PCI_LIOBN(index, i);
4214 *pio = SPAPR_PCI_BASE + index * SPAPR_PCI_IO_WIN_SIZE;
4215 *mmio32 = SPAPR_PCI_BASE + (index + 1) * SPAPR_PCI_MEM32_WIN_SIZE;
4216 *mmio64 = SPAPR_PCI_BASE + (index + 1) * SPAPR_PCI_MEM64_WIN_SIZE;
4218 *nv2gpa = SPAPR_PCI_NV2RAM64_WIN_BASE + index * SPAPR_PCI_NV2RAM64_WIN_SIZE;
4219 *nv2atsd = SPAPR_PCI_NV2ATSD_WIN_BASE + index * SPAPR_PCI_NV2ATSD_WIN_SIZE;
4222 static ICSState *spapr_ics_get(XICSFabric *dev, int irq)
4224 SpaprMachineState *spapr = SPAPR_MACHINE(dev);
4226 return ics_valid_irq(spapr->ics, irq) ? spapr->ics : NULL;
4229 static void spapr_ics_resend(XICSFabric *dev)
4231 SpaprMachineState *spapr = SPAPR_MACHINE(dev);
4233 ics_resend(spapr->ics);
4236 static ICPState *spapr_icp_get(XICSFabric *xi, int vcpu_id)
4238 PowerPCCPU *cpu = spapr_find_cpu(vcpu_id);
4240 return cpu ? spapr_cpu_state(cpu)->icp : NULL;
4243 static void spapr_pic_print_info(InterruptStatsProvider *obj,
4244 Monitor *mon)
4246 SpaprMachineState *spapr = SPAPR_MACHINE(obj);
4248 spapr_irq_print_info(spapr, mon);
4249 monitor_printf(mon, "irqchip: %s\n",
4250 kvm_irqchip_in_kernel() ? "in-kernel" : "emulated");
4254 * This is a XIVE only operation
4256 static int spapr_match_nvt(XiveFabric *xfb, uint8_t format,
4257 uint8_t nvt_blk, uint32_t nvt_idx,
4258 bool cam_ignore, uint8_t priority,
4259 uint32_t logic_serv, XiveTCTXMatch *match)
4261 SpaprMachineState *spapr = SPAPR_MACHINE(xfb);
4262 XivePresenter *xptr = XIVE_PRESENTER(spapr->active_intc);
4263 XivePresenterClass *xpc = XIVE_PRESENTER_GET_CLASS(xptr);
4264 int count;
4266 count = xpc->match_nvt(xptr, format, nvt_blk, nvt_idx, cam_ignore,
4267 priority, logic_serv, match);
4268 if (count < 0) {
4269 return count;
4273 * When we implement the save and restore of the thread interrupt
4274 * contexts in the enter/exit CPU handlers of the machine and the
4275 * escalations in QEMU, we should be able to handle non dispatched
4276 * vCPUs.
4278 * Until this is done, the sPAPR machine should find at least one
4279 * matching context always.
4281 if (count == 0) {
4282 qemu_log_mask(LOG_GUEST_ERROR, "XIVE: NVT %x/%x is not dispatched\n",
4283 nvt_blk, nvt_idx);
4286 return count;
4289 int spapr_get_vcpu_id(PowerPCCPU *cpu)
4291 return cpu->vcpu_id;
4294 bool spapr_set_vcpu_id(PowerPCCPU *cpu, int cpu_index, Error **errp)
4296 SpaprMachineState *spapr = SPAPR_MACHINE(qdev_get_machine());
4297 MachineState *ms = MACHINE(spapr);
4298 int vcpu_id;
4300 vcpu_id = spapr_vcpu_id(spapr, cpu_index);
4302 if (kvm_enabled() && !kvm_vcpu_id_is_valid(vcpu_id)) {
4303 error_setg(errp, "Can't create CPU with id %d in KVM", vcpu_id);
4304 error_append_hint(errp, "Adjust the number of cpus to %d "
4305 "or try to raise the number of threads per core\n",
4306 vcpu_id * ms->smp.threads / spapr->vsmt);
4307 return false;
4310 cpu->vcpu_id = vcpu_id;
4311 return true;
4314 PowerPCCPU *spapr_find_cpu(int vcpu_id)
4316 CPUState *cs;
4318 CPU_FOREACH(cs) {
4319 PowerPCCPU *cpu = POWERPC_CPU(cs);
4321 if (spapr_get_vcpu_id(cpu) == vcpu_id) {
4322 return cpu;
4326 return NULL;
4329 static void spapr_cpu_exec_enter(PPCVirtualHypervisor *vhyp, PowerPCCPU *cpu)
4331 SpaprCpuState *spapr_cpu = spapr_cpu_state(cpu);
4333 /* These are only called by TCG, KVM maintains dispatch state */
4335 spapr_cpu->prod = false;
4336 if (spapr_cpu->vpa_addr) {
4337 CPUState *cs = CPU(cpu);
4338 uint32_t dispatch;
4340 dispatch = ldl_be_phys(cs->as,
4341 spapr_cpu->vpa_addr + VPA_DISPATCH_COUNTER);
4342 dispatch++;
4343 if ((dispatch & 1) != 0) {
4344 qemu_log_mask(LOG_GUEST_ERROR,
4345 "VPA: incorrect dispatch counter value for "
4346 "dispatched partition %u, correcting.\n", dispatch);
4347 dispatch++;
4349 stl_be_phys(cs->as,
4350 spapr_cpu->vpa_addr + VPA_DISPATCH_COUNTER, dispatch);
4354 static void spapr_cpu_exec_exit(PPCVirtualHypervisor *vhyp, PowerPCCPU *cpu)
4356 SpaprCpuState *spapr_cpu = spapr_cpu_state(cpu);
4358 if (spapr_cpu->vpa_addr) {
4359 CPUState *cs = CPU(cpu);
4360 uint32_t dispatch;
4362 dispatch = ldl_be_phys(cs->as,
4363 spapr_cpu->vpa_addr + VPA_DISPATCH_COUNTER);
4364 dispatch++;
4365 if ((dispatch & 1) != 1) {
4366 qemu_log_mask(LOG_GUEST_ERROR,
4367 "VPA: incorrect dispatch counter value for "
4368 "preempted partition %u, correcting.\n", dispatch);
4369 dispatch++;
4371 stl_be_phys(cs->as,
4372 spapr_cpu->vpa_addr + VPA_DISPATCH_COUNTER, dispatch);
4376 static void spapr_machine_class_init(ObjectClass *oc, void *data)
4378 MachineClass *mc = MACHINE_CLASS(oc);
4379 SpaprMachineClass *smc = SPAPR_MACHINE_CLASS(oc);
4380 FWPathProviderClass *fwc = FW_PATH_PROVIDER_CLASS(oc);
4381 NMIClass *nc = NMI_CLASS(oc);
4382 HotplugHandlerClass *hc = HOTPLUG_HANDLER_CLASS(oc);
4383 PPCVirtualHypervisorClass *vhc = PPC_VIRTUAL_HYPERVISOR_CLASS(oc);
4384 XICSFabricClass *xic = XICS_FABRIC_CLASS(oc);
4385 InterruptStatsProviderClass *ispc = INTERRUPT_STATS_PROVIDER_CLASS(oc);
4386 XiveFabricClass *xfc = XIVE_FABRIC_CLASS(oc);
4388 mc->desc = "pSeries Logical Partition (PAPR compliant)";
4389 mc->ignore_boot_device_suffixes = true;
4392 * We set up the default / latest behaviour here. The class_init
4393 * functions for the specific versioned machine types can override
4394 * these details for backwards compatibility
4396 mc->init = spapr_machine_init;
4397 mc->reset = spapr_machine_reset;
4398 mc->block_default_type = IF_SCSI;
4399 mc->max_cpus = 1024;
4400 mc->no_parallel = 1;
4401 mc->default_boot_order = "";
4402 mc->default_ram_size = 512 * MiB;
4403 mc->default_ram_id = "ppc_spapr.ram";
4404 mc->default_display = "std";
4405 mc->kvm_type = spapr_kvm_type;
4406 machine_class_allow_dynamic_sysbus_dev(mc, TYPE_SPAPR_PCI_HOST_BRIDGE);
4407 mc->pci_allow_0_address = true;
4408 assert(!mc->get_hotplug_handler);
4409 mc->get_hotplug_handler = spapr_get_hotplug_handler;
4410 hc->pre_plug = spapr_machine_device_pre_plug;
4411 hc->plug = spapr_machine_device_plug;
4412 mc->cpu_index_to_instance_props = spapr_cpu_index_to_props;
4413 mc->get_default_cpu_node_id = spapr_get_default_cpu_node_id;
4414 mc->possible_cpu_arch_ids = spapr_possible_cpu_arch_ids;
4415 hc->unplug_request = spapr_machine_device_unplug_request;
4416 hc->unplug = spapr_machine_device_unplug;
4418 smc->dr_lmb_enabled = true;
4419 smc->update_dt_enabled = true;
4420 mc->default_cpu_type = POWERPC_CPU_TYPE_NAME("power9_v2.0");
4421 mc->has_hotpluggable_cpus = true;
4422 mc->nvdimm_supported = true;
4423 smc->resize_hpt_default = SPAPR_RESIZE_HPT_ENABLED;
4424 fwc->get_dev_path = spapr_get_fw_dev_path;
4425 nc->nmi_monitor_handler = spapr_nmi;
4426 smc->phb_placement = spapr_phb_placement;
4427 vhc->hypercall = emulate_spapr_hypercall;
4428 vhc->hpt_mask = spapr_hpt_mask;
4429 vhc->map_hptes = spapr_map_hptes;
4430 vhc->unmap_hptes = spapr_unmap_hptes;
4431 vhc->hpte_set_c = spapr_hpte_set_c;
4432 vhc->hpte_set_r = spapr_hpte_set_r;
4433 vhc->get_pate = spapr_get_pate;
4434 vhc->encode_hpt_for_kvm_pr = spapr_encode_hpt_for_kvm_pr;
4435 vhc->cpu_exec_enter = spapr_cpu_exec_enter;
4436 vhc->cpu_exec_exit = spapr_cpu_exec_exit;
4437 xic->ics_get = spapr_ics_get;
4438 xic->ics_resend = spapr_ics_resend;
4439 xic->icp_get = spapr_icp_get;
4440 ispc->print_info = spapr_pic_print_info;
4441 /* Force NUMA node memory size to be a multiple of
4442 * SPAPR_MEMORY_BLOCK_SIZE (256M) since that's the granularity
4443 * in which LMBs are represented and hot-added
4445 mc->numa_mem_align_shift = 28;
4446 mc->auto_enable_numa = true;
4448 smc->default_caps.caps[SPAPR_CAP_HTM] = SPAPR_CAP_OFF;
4449 smc->default_caps.caps[SPAPR_CAP_VSX] = SPAPR_CAP_ON;
4450 smc->default_caps.caps[SPAPR_CAP_DFP] = SPAPR_CAP_ON;
4451 smc->default_caps.caps[SPAPR_CAP_CFPC] = SPAPR_CAP_WORKAROUND;
4452 smc->default_caps.caps[SPAPR_CAP_SBBC] = SPAPR_CAP_WORKAROUND;
4453 smc->default_caps.caps[SPAPR_CAP_IBS] = SPAPR_CAP_WORKAROUND;
4454 smc->default_caps.caps[SPAPR_CAP_HPT_MAXPAGESIZE] = 16; /* 64kiB */
4455 smc->default_caps.caps[SPAPR_CAP_NESTED_KVM_HV] = SPAPR_CAP_OFF;
4456 smc->default_caps.caps[SPAPR_CAP_LARGE_DECREMENTER] = SPAPR_CAP_ON;
4457 smc->default_caps.caps[SPAPR_CAP_CCF_ASSIST] = SPAPR_CAP_ON;
4458 smc->default_caps.caps[SPAPR_CAP_FWNMI] = SPAPR_CAP_ON;
4459 spapr_caps_add_properties(smc);
4460 smc->irq = &spapr_irq_dual;
4461 smc->dr_phb_enabled = true;
4462 smc->linux_pci_probe = true;
4463 smc->smp_threads_vsmt = true;
4464 smc->nr_xirqs = SPAPR_NR_XIRQS;
4465 xfc->match_nvt = spapr_match_nvt;
4468 static const TypeInfo spapr_machine_info = {
4469 .name = TYPE_SPAPR_MACHINE,
4470 .parent = TYPE_MACHINE,
4471 .abstract = true,
4472 .instance_size = sizeof(SpaprMachineState),
4473 .instance_init = spapr_instance_init,
4474 .instance_finalize = spapr_machine_finalizefn,
4475 .class_size = sizeof(SpaprMachineClass),
4476 .class_init = spapr_machine_class_init,
4477 .interfaces = (InterfaceInfo[]) {
4478 { TYPE_FW_PATH_PROVIDER },
4479 { TYPE_NMI },
4480 { TYPE_HOTPLUG_HANDLER },
4481 { TYPE_PPC_VIRTUAL_HYPERVISOR },
4482 { TYPE_XICS_FABRIC },
4483 { TYPE_INTERRUPT_STATS_PROVIDER },
4484 { TYPE_XIVE_FABRIC },
4489 static void spapr_machine_latest_class_options(MachineClass *mc)
4491 mc->alias = "pseries";
4492 mc->is_default = true;
4495 #define DEFINE_SPAPR_MACHINE(suffix, verstr, latest) \
4496 static void spapr_machine_##suffix##_class_init(ObjectClass *oc, \
4497 void *data) \
4499 MachineClass *mc = MACHINE_CLASS(oc); \
4500 spapr_machine_##suffix##_class_options(mc); \
4501 if (latest) { \
4502 spapr_machine_latest_class_options(mc); \
4505 static const TypeInfo spapr_machine_##suffix##_info = { \
4506 .name = MACHINE_TYPE_NAME("pseries-" verstr), \
4507 .parent = TYPE_SPAPR_MACHINE, \
4508 .class_init = spapr_machine_##suffix##_class_init, \
4509 }; \
4510 static void spapr_machine_register_##suffix(void) \
4512 type_register(&spapr_machine_##suffix##_info); \
4514 type_init(spapr_machine_register_##suffix)
4517 * pseries-5.2
4519 static void spapr_machine_5_2_class_options(MachineClass *mc)
4521 /* Defaults for the latest behaviour inherited from the base class */
4524 DEFINE_SPAPR_MACHINE(5_2, "5.2", true);
4527 * pseries-5.1
4529 static void spapr_machine_5_1_class_options(MachineClass *mc)
4531 SpaprMachineClass *smc = SPAPR_MACHINE_CLASS(mc);
4533 spapr_machine_5_2_class_options(mc);
4534 compat_props_add(mc->compat_props, hw_compat_5_1, hw_compat_5_1_len);
4535 smc->pre_5_2_numa_associativity = true;
4538 DEFINE_SPAPR_MACHINE(5_1, "5.1", false);
4541 * pseries-5.0
4543 static void spapr_machine_5_0_class_options(MachineClass *mc)
4545 SpaprMachineClass *smc = SPAPR_MACHINE_CLASS(mc);
4546 static GlobalProperty compat[] = {
4547 { TYPE_SPAPR_PCI_HOST_BRIDGE, "pre-5.1-associativity", "on" },
4550 spapr_machine_5_1_class_options(mc);
4551 compat_props_add(mc->compat_props, hw_compat_5_0, hw_compat_5_0_len);
4552 compat_props_add(mc->compat_props, compat, G_N_ELEMENTS(compat));
4553 mc->numa_mem_supported = true;
4554 smc->pre_5_1_assoc_refpoints = true;
4557 DEFINE_SPAPR_MACHINE(5_0, "5.0", false);
4560 * pseries-4.2
4562 static void spapr_machine_4_2_class_options(MachineClass *mc)
4564 SpaprMachineClass *smc = SPAPR_MACHINE_CLASS(mc);
4566 spapr_machine_5_0_class_options(mc);
4567 compat_props_add(mc->compat_props, hw_compat_4_2, hw_compat_4_2_len);
4568 smc->default_caps.caps[SPAPR_CAP_CCF_ASSIST] = SPAPR_CAP_OFF;
4569 smc->default_caps.caps[SPAPR_CAP_FWNMI] = SPAPR_CAP_OFF;
4570 smc->rma_limit = 16 * GiB;
4571 mc->nvdimm_supported = false;
4574 DEFINE_SPAPR_MACHINE(4_2, "4.2", false);
4577 * pseries-4.1
4579 static void spapr_machine_4_1_class_options(MachineClass *mc)
4581 SpaprMachineClass *smc = SPAPR_MACHINE_CLASS(mc);
4582 static GlobalProperty compat[] = {
4583 /* Only allow 4kiB and 64kiB IOMMU pagesizes */
4584 { TYPE_SPAPR_PCI_HOST_BRIDGE, "pgsz", "0x11000" },
4587 spapr_machine_4_2_class_options(mc);
4588 smc->linux_pci_probe = false;
4589 smc->smp_threads_vsmt = false;
4590 compat_props_add(mc->compat_props, hw_compat_4_1, hw_compat_4_1_len);
4591 compat_props_add(mc->compat_props, compat, G_N_ELEMENTS(compat));
4594 DEFINE_SPAPR_MACHINE(4_1, "4.1", false);
4597 * pseries-4.0
4599 static void phb_placement_4_0(SpaprMachineState *spapr, uint32_t index,
4600 uint64_t *buid, hwaddr *pio,
4601 hwaddr *mmio32, hwaddr *mmio64,
4602 unsigned n_dma, uint32_t *liobns,
4603 hwaddr *nv2gpa, hwaddr *nv2atsd, Error **errp)
4605 spapr_phb_placement(spapr, index, buid, pio, mmio32, mmio64, n_dma, liobns,
4606 nv2gpa, nv2atsd, errp);
4607 *nv2gpa = 0;
4608 *nv2atsd = 0;
4611 static void spapr_machine_4_0_class_options(MachineClass *mc)
4613 SpaprMachineClass *smc = SPAPR_MACHINE_CLASS(mc);
4615 spapr_machine_4_1_class_options(mc);
4616 compat_props_add(mc->compat_props, hw_compat_4_0, hw_compat_4_0_len);
4617 smc->phb_placement = phb_placement_4_0;
4618 smc->irq = &spapr_irq_xics;
4619 smc->pre_4_1_migration = true;
4622 DEFINE_SPAPR_MACHINE(4_0, "4.0", false);
4625 * pseries-3.1
4627 static void spapr_machine_3_1_class_options(MachineClass *mc)
4629 SpaprMachineClass *smc = SPAPR_MACHINE_CLASS(mc);
4631 spapr_machine_4_0_class_options(mc);
4632 compat_props_add(mc->compat_props, hw_compat_3_1, hw_compat_3_1_len);
4634 mc->default_cpu_type = POWERPC_CPU_TYPE_NAME("power8_v2.0");
4635 smc->update_dt_enabled = false;
4636 smc->dr_phb_enabled = false;
4637 smc->broken_host_serial_model = true;
4638 smc->default_caps.caps[SPAPR_CAP_CFPC] = SPAPR_CAP_BROKEN;
4639 smc->default_caps.caps[SPAPR_CAP_SBBC] = SPAPR_CAP_BROKEN;
4640 smc->default_caps.caps[SPAPR_CAP_IBS] = SPAPR_CAP_BROKEN;
4641 smc->default_caps.caps[SPAPR_CAP_LARGE_DECREMENTER] = SPAPR_CAP_OFF;
4644 DEFINE_SPAPR_MACHINE(3_1, "3.1", false);
4647 * pseries-3.0
4650 static void spapr_machine_3_0_class_options(MachineClass *mc)
4652 SpaprMachineClass *smc = SPAPR_MACHINE_CLASS(mc);
4654 spapr_machine_3_1_class_options(mc);
4655 compat_props_add(mc->compat_props, hw_compat_3_0, hw_compat_3_0_len);
4657 smc->legacy_irq_allocation = true;
4658 smc->nr_xirqs = 0x400;
4659 smc->irq = &spapr_irq_xics_legacy;
4662 DEFINE_SPAPR_MACHINE(3_0, "3.0", false);
4665 * pseries-2.12
4667 static void spapr_machine_2_12_class_options(MachineClass *mc)
4669 SpaprMachineClass *smc = SPAPR_MACHINE_CLASS(mc);
4670 static GlobalProperty compat[] = {
4671 { TYPE_POWERPC_CPU, "pre-3.0-migration", "on" },
4672 { TYPE_SPAPR_CPU_CORE, "pre-3.0-migration", "on" },
4675 spapr_machine_3_0_class_options(mc);
4676 compat_props_add(mc->compat_props, hw_compat_2_12, hw_compat_2_12_len);
4677 compat_props_add(mc->compat_props, compat, G_N_ELEMENTS(compat));
4679 /* We depend on kvm_enabled() to choose a default value for the
4680 * hpt-max-page-size capability. Of course we can't do it here
4681 * because this is too early and the HW accelerator isn't initialzed
4682 * yet. Postpone this to machine init (see default_caps_with_cpu()).
4684 smc->default_caps.caps[SPAPR_CAP_HPT_MAXPAGESIZE] = 0;
4687 DEFINE_SPAPR_MACHINE(2_12, "2.12", false);
4689 static void spapr_machine_2_12_sxxm_class_options(MachineClass *mc)
4691 SpaprMachineClass *smc = SPAPR_MACHINE_CLASS(mc);
4693 spapr_machine_2_12_class_options(mc);
4694 smc->default_caps.caps[SPAPR_CAP_CFPC] = SPAPR_CAP_WORKAROUND;
4695 smc->default_caps.caps[SPAPR_CAP_SBBC] = SPAPR_CAP_WORKAROUND;
4696 smc->default_caps.caps[SPAPR_CAP_IBS] = SPAPR_CAP_FIXED_CCD;
4699 DEFINE_SPAPR_MACHINE(2_12_sxxm, "2.12-sxxm", false);
4702 * pseries-2.11
4705 static void spapr_machine_2_11_class_options(MachineClass *mc)
4707 SpaprMachineClass *smc = SPAPR_MACHINE_CLASS(mc);
4709 spapr_machine_2_12_class_options(mc);
4710 smc->default_caps.caps[SPAPR_CAP_HTM] = SPAPR_CAP_ON;
4711 compat_props_add(mc->compat_props, hw_compat_2_11, hw_compat_2_11_len);
4714 DEFINE_SPAPR_MACHINE(2_11, "2.11", false);
4717 * pseries-2.10
4720 static void spapr_machine_2_10_class_options(MachineClass *mc)
4722 spapr_machine_2_11_class_options(mc);
4723 compat_props_add(mc->compat_props, hw_compat_2_10, hw_compat_2_10_len);
4726 DEFINE_SPAPR_MACHINE(2_10, "2.10", false);
4729 * pseries-2.9
4732 static void spapr_machine_2_9_class_options(MachineClass *mc)
4734 SpaprMachineClass *smc = SPAPR_MACHINE_CLASS(mc);
4735 static GlobalProperty compat[] = {
4736 { TYPE_POWERPC_CPU, "pre-2.10-migration", "on" },
4739 spapr_machine_2_10_class_options(mc);
4740 compat_props_add(mc->compat_props, hw_compat_2_9, hw_compat_2_9_len);
4741 compat_props_add(mc->compat_props, compat, G_N_ELEMENTS(compat));
4742 smc->pre_2_10_has_unused_icps = true;
4743 smc->resize_hpt_default = SPAPR_RESIZE_HPT_DISABLED;
4746 DEFINE_SPAPR_MACHINE(2_9, "2.9", false);
4749 * pseries-2.8
4752 static void spapr_machine_2_8_class_options(MachineClass *mc)
4754 static GlobalProperty compat[] = {
4755 { TYPE_SPAPR_PCI_HOST_BRIDGE, "pcie-extended-configuration-space", "off" },
4758 spapr_machine_2_9_class_options(mc);
4759 compat_props_add(mc->compat_props, hw_compat_2_8, hw_compat_2_8_len);
4760 compat_props_add(mc->compat_props, compat, G_N_ELEMENTS(compat));
4761 mc->numa_mem_align_shift = 23;
4764 DEFINE_SPAPR_MACHINE(2_8, "2.8", false);
4767 * pseries-2.7
4770 static void phb_placement_2_7(SpaprMachineState *spapr, uint32_t index,
4771 uint64_t *buid, hwaddr *pio,
4772 hwaddr *mmio32, hwaddr *mmio64,
4773 unsigned n_dma, uint32_t *liobns,
4774 hwaddr *nv2gpa, hwaddr *nv2atsd, Error **errp)
4776 /* Legacy PHB placement for pseries-2.7 and earlier machine types */
4777 const uint64_t base_buid = 0x800000020000000ULL;
4778 const hwaddr phb_spacing = 0x1000000000ULL; /* 64 GiB */
4779 const hwaddr mmio_offset = 0xa0000000; /* 2 GiB + 512 MiB */
4780 const hwaddr pio_offset = 0x80000000; /* 2 GiB */
4781 const uint32_t max_index = 255;
4782 const hwaddr phb0_alignment = 0x10000000000ULL; /* 1 TiB */
4784 uint64_t ram_top = MACHINE(spapr)->ram_size;
4785 hwaddr phb0_base, phb_base;
4786 int i;
4788 /* Do we have device memory? */
4789 if (MACHINE(spapr)->maxram_size > ram_top) {
4790 /* Can't just use maxram_size, because there may be an
4791 * alignment gap between normal and device memory regions
4793 ram_top = MACHINE(spapr)->device_memory->base +
4794 memory_region_size(&MACHINE(spapr)->device_memory->mr);
4797 phb0_base = QEMU_ALIGN_UP(ram_top, phb0_alignment);
4799 if (index > max_index) {
4800 error_setg(errp, "\"index\" for PAPR PHB is too large (max %u)",
4801 max_index);
4802 return;
4805 *buid = base_buid + index;
4806 for (i = 0; i < n_dma; ++i) {
4807 liobns[i] = SPAPR_PCI_LIOBN(index, i);
4810 phb_base = phb0_base + index * phb_spacing;
4811 *pio = phb_base + pio_offset;
4812 *mmio32 = phb_base + mmio_offset;
4814 * We don't set the 64-bit MMIO window, relying on the PHB's
4815 * fallback behaviour of automatically splitting a large "32-bit"
4816 * window into contiguous 32-bit and 64-bit windows
4819 *nv2gpa = 0;
4820 *nv2atsd = 0;
4823 static void spapr_machine_2_7_class_options(MachineClass *mc)
4825 SpaprMachineClass *smc = SPAPR_MACHINE_CLASS(mc);
4826 static GlobalProperty compat[] = {
4827 { TYPE_SPAPR_PCI_HOST_BRIDGE, "mem_win_size", "0xf80000000", },
4828 { TYPE_SPAPR_PCI_HOST_BRIDGE, "mem64_win_size", "0", },
4829 { TYPE_POWERPC_CPU, "pre-2.8-migration", "on", },
4830 { TYPE_SPAPR_PCI_HOST_BRIDGE, "pre-2.8-migration", "on", },
4833 spapr_machine_2_8_class_options(mc);
4834 mc->default_cpu_type = POWERPC_CPU_TYPE_NAME("power7_v2.3");
4835 mc->default_machine_opts = "modern-hotplug-events=off";
4836 compat_props_add(mc->compat_props, hw_compat_2_7, hw_compat_2_7_len);
4837 compat_props_add(mc->compat_props, compat, G_N_ELEMENTS(compat));
4838 smc->phb_placement = phb_placement_2_7;
4841 DEFINE_SPAPR_MACHINE(2_7, "2.7", false);
4844 * pseries-2.6
4847 static void spapr_machine_2_6_class_options(MachineClass *mc)
4849 static GlobalProperty compat[] = {
4850 { TYPE_SPAPR_PCI_HOST_BRIDGE, "ddw", "off" },
4853 spapr_machine_2_7_class_options(mc);
4854 mc->has_hotpluggable_cpus = false;
4855 compat_props_add(mc->compat_props, hw_compat_2_6, hw_compat_2_6_len);
4856 compat_props_add(mc->compat_props, compat, G_N_ELEMENTS(compat));
4859 DEFINE_SPAPR_MACHINE(2_6, "2.6", false);
4862 * pseries-2.5
4865 static void spapr_machine_2_5_class_options(MachineClass *mc)
4867 SpaprMachineClass *smc = SPAPR_MACHINE_CLASS(mc);
4868 static GlobalProperty compat[] = {
4869 { "spapr-vlan", "use-rx-buffer-pools", "off" },
4872 spapr_machine_2_6_class_options(mc);
4873 smc->use_ohci_by_default = true;
4874 compat_props_add(mc->compat_props, hw_compat_2_5, hw_compat_2_5_len);
4875 compat_props_add(mc->compat_props, compat, G_N_ELEMENTS(compat));
4878 DEFINE_SPAPR_MACHINE(2_5, "2.5", false);
4881 * pseries-2.4
4884 static void spapr_machine_2_4_class_options(MachineClass *mc)
4886 SpaprMachineClass *smc = SPAPR_MACHINE_CLASS(mc);
4888 spapr_machine_2_5_class_options(mc);
4889 smc->dr_lmb_enabled = false;
4890 compat_props_add(mc->compat_props, hw_compat_2_4, hw_compat_2_4_len);
4893 DEFINE_SPAPR_MACHINE(2_4, "2.4", false);
4896 * pseries-2.3
4899 static void spapr_machine_2_3_class_options(MachineClass *mc)
4901 static GlobalProperty compat[] = {
4902 { "spapr-pci-host-bridge", "dynamic-reconfiguration", "off" },
4904 spapr_machine_2_4_class_options(mc);
4905 compat_props_add(mc->compat_props, hw_compat_2_3, hw_compat_2_3_len);
4906 compat_props_add(mc->compat_props, compat, G_N_ELEMENTS(compat));
4908 DEFINE_SPAPR_MACHINE(2_3, "2.3", false);
4911 * pseries-2.2
4914 static void spapr_machine_2_2_class_options(MachineClass *mc)
4916 static GlobalProperty compat[] = {
4917 { TYPE_SPAPR_PCI_HOST_BRIDGE, "mem_win_size", "0x20000000" },
4920 spapr_machine_2_3_class_options(mc);
4921 compat_props_add(mc->compat_props, hw_compat_2_2, hw_compat_2_2_len);
4922 compat_props_add(mc->compat_props, compat, G_N_ELEMENTS(compat));
4923 mc->default_machine_opts = "modern-hotplug-events=off,suppress-vmdesc=on";
4925 DEFINE_SPAPR_MACHINE(2_2, "2.2", false);
4928 * pseries-2.1
4931 static void spapr_machine_2_1_class_options(MachineClass *mc)
4933 spapr_machine_2_2_class_options(mc);
4934 compat_props_add(mc->compat_props, hw_compat_2_1, hw_compat_2_1_len);
4936 DEFINE_SPAPR_MACHINE(2_1, "2.1", false);
4938 static void spapr_machine_register_types(void)
4940 type_register_static(&spapr_machine_info);
4943 type_init(spapr_machine_register_types)