3 #include "exec/gdbstub.h"
4 #include "exec/helper-proto.h"
5 #include "qemu/host-utils.h"
6 #include "sysemu/arch_init.h"
7 #include "sysemu/sysemu.h"
8 #include "qemu/bitops.h"
9 #include "qemu/crc32c.h"
10 #include "exec/cpu_ldst.h"
12 #include <zlib.h> /* For crc32 */
13 #include "exec/semihost.h"
15 #ifndef CONFIG_USER_ONLY
16 static inline bool get_phys_addr(CPUARMState
*env
, target_ulong address
,
17 int access_type
, ARMMMUIdx mmu_idx
,
18 hwaddr
*phys_ptr
, MemTxAttrs
*attrs
, int *prot
,
19 target_ulong
*page_size
, uint32_t *fsr
);
21 /* Definitions for the PMCCNTR and PMCR registers */
27 static int vfp_gdb_get_reg(CPUARMState
*env
, uint8_t *buf
, int reg
)
31 /* VFP data registers are always little-endian. */
32 nregs
= arm_feature(env
, ARM_FEATURE_VFP3
) ? 32 : 16;
34 stfq_le_p(buf
, env
->vfp
.regs
[reg
]);
37 if (arm_feature(env
, ARM_FEATURE_NEON
)) {
38 /* Aliases for Q regs. */
41 stfq_le_p(buf
, env
->vfp
.regs
[(reg
- 32) * 2]);
42 stfq_le_p(buf
+ 8, env
->vfp
.regs
[(reg
- 32) * 2 + 1]);
46 switch (reg
- nregs
) {
47 case 0: stl_p(buf
, env
->vfp
.xregs
[ARM_VFP_FPSID
]); return 4;
48 case 1: stl_p(buf
, env
->vfp
.xregs
[ARM_VFP_FPSCR
]); return 4;
49 case 2: stl_p(buf
, env
->vfp
.xregs
[ARM_VFP_FPEXC
]); return 4;
54 static int vfp_gdb_set_reg(CPUARMState
*env
, uint8_t *buf
, int reg
)
58 nregs
= arm_feature(env
, ARM_FEATURE_VFP3
) ? 32 : 16;
60 env
->vfp
.regs
[reg
] = ldfq_le_p(buf
);
63 if (arm_feature(env
, ARM_FEATURE_NEON
)) {
66 env
->vfp
.regs
[(reg
- 32) * 2] = ldfq_le_p(buf
);
67 env
->vfp
.regs
[(reg
- 32) * 2 + 1] = ldfq_le_p(buf
+ 8);
71 switch (reg
- nregs
) {
72 case 0: env
->vfp
.xregs
[ARM_VFP_FPSID
] = ldl_p(buf
); return 4;
73 case 1: env
->vfp
.xregs
[ARM_VFP_FPSCR
] = ldl_p(buf
); return 4;
74 case 2: env
->vfp
.xregs
[ARM_VFP_FPEXC
] = ldl_p(buf
) & (1 << 30); return 4;
79 static int aarch64_fpu_gdb_get_reg(CPUARMState
*env
, uint8_t *buf
, int reg
)
83 /* 128 bit FP register */
84 stfq_le_p(buf
, env
->vfp
.regs
[reg
* 2]);
85 stfq_le_p(buf
+ 8, env
->vfp
.regs
[reg
* 2 + 1]);
89 stl_p(buf
, vfp_get_fpsr(env
));
93 stl_p(buf
, vfp_get_fpcr(env
));
100 static int aarch64_fpu_gdb_set_reg(CPUARMState
*env
, uint8_t *buf
, int reg
)
104 /* 128 bit FP register */
105 env
->vfp
.regs
[reg
* 2] = ldfq_le_p(buf
);
106 env
->vfp
.regs
[reg
* 2 + 1] = ldfq_le_p(buf
+ 8);
110 vfp_set_fpsr(env
, ldl_p(buf
));
114 vfp_set_fpcr(env
, ldl_p(buf
));
121 static uint64_t raw_read(CPUARMState
*env
, const ARMCPRegInfo
*ri
)
123 assert(ri
->fieldoffset
);
124 if (cpreg_field_is_64bit(ri
)) {
125 return CPREG_FIELD64(env
, ri
);
127 return CPREG_FIELD32(env
, ri
);
131 static void raw_write(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
134 assert(ri
->fieldoffset
);
135 if (cpreg_field_is_64bit(ri
)) {
136 CPREG_FIELD64(env
, ri
) = value
;
138 CPREG_FIELD32(env
, ri
) = value
;
142 static void *raw_ptr(CPUARMState
*env
, const ARMCPRegInfo
*ri
)
144 return (char *)env
+ ri
->fieldoffset
;
147 uint64_t read_raw_cp_reg(CPUARMState
*env
, const ARMCPRegInfo
*ri
)
149 /* Raw read of a coprocessor register (as needed for migration, etc). */
150 if (ri
->type
& ARM_CP_CONST
) {
151 return ri
->resetvalue
;
152 } else if (ri
->raw_readfn
) {
153 return ri
->raw_readfn(env
, ri
);
154 } else if (ri
->readfn
) {
155 return ri
->readfn(env
, ri
);
157 return raw_read(env
, ri
);
161 static void write_raw_cp_reg(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
164 /* Raw write of a coprocessor register (as needed for migration, etc).
165 * Note that constant registers are treated as write-ignored; the
166 * caller should check for success by whether a readback gives the
169 if (ri
->type
& ARM_CP_CONST
) {
171 } else if (ri
->raw_writefn
) {
172 ri
->raw_writefn(env
, ri
, v
);
173 } else if (ri
->writefn
) {
174 ri
->writefn(env
, ri
, v
);
176 raw_write(env
, ri
, v
);
180 static bool raw_accessors_invalid(const ARMCPRegInfo
*ri
)
182 /* Return true if the regdef would cause an assertion if you called
183 * read_raw_cp_reg() or write_raw_cp_reg() on it (ie if it is a
184 * program bug for it not to have the NO_RAW flag).
185 * NB that returning false here doesn't necessarily mean that calling
186 * read/write_raw_cp_reg() is safe, because we can't distinguish "has
187 * read/write access functions which are safe for raw use" from "has
188 * read/write access functions which have side effects but has forgotten
189 * to provide raw access functions".
190 * The tests here line up with the conditions in read/write_raw_cp_reg()
191 * and assertions in raw_read()/raw_write().
193 if ((ri
->type
& ARM_CP_CONST
) ||
195 ((ri
->raw_writefn
|| ri
->writefn
) && (ri
->raw_readfn
|| ri
->readfn
))) {
201 bool write_cpustate_to_list(ARMCPU
*cpu
)
203 /* Write the coprocessor state from cpu->env to the (index,value) list. */
207 for (i
= 0; i
< cpu
->cpreg_array_len
; i
++) {
208 uint32_t regidx
= kvm_to_cpreg_id(cpu
->cpreg_indexes
[i
]);
209 const ARMCPRegInfo
*ri
;
211 ri
= get_arm_cp_reginfo(cpu
->cp_regs
, regidx
);
216 if (ri
->type
& ARM_CP_NO_RAW
) {
219 cpu
->cpreg_values
[i
] = read_raw_cp_reg(&cpu
->env
, ri
);
224 bool write_list_to_cpustate(ARMCPU
*cpu
)
229 for (i
= 0; i
< cpu
->cpreg_array_len
; i
++) {
230 uint32_t regidx
= kvm_to_cpreg_id(cpu
->cpreg_indexes
[i
]);
231 uint64_t v
= cpu
->cpreg_values
[i
];
232 const ARMCPRegInfo
*ri
;
234 ri
= get_arm_cp_reginfo(cpu
->cp_regs
, regidx
);
239 if (ri
->type
& ARM_CP_NO_RAW
) {
242 /* Write value and confirm it reads back as written
243 * (to catch read-only registers and partially read-only
244 * registers where the incoming migration value doesn't match)
246 write_raw_cp_reg(&cpu
->env
, ri
, v
);
247 if (read_raw_cp_reg(&cpu
->env
, ri
) != v
) {
254 static void add_cpreg_to_list(gpointer key
, gpointer opaque
)
256 ARMCPU
*cpu
= opaque
;
258 const ARMCPRegInfo
*ri
;
260 regidx
= *(uint32_t *)key
;
261 ri
= get_arm_cp_reginfo(cpu
->cp_regs
, regidx
);
263 if (!(ri
->type
& (ARM_CP_NO_RAW
|ARM_CP_ALIAS
))) {
264 cpu
->cpreg_indexes
[cpu
->cpreg_array_len
] = cpreg_to_kvm_id(regidx
);
265 /* The value array need not be initialized at this point */
266 cpu
->cpreg_array_len
++;
270 static void count_cpreg(gpointer key
, gpointer opaque
)
272 ARMCPU
*cpu
= opaque
;
274 const ARMCPRegInfo
*ri
;
276 regidx
= *(uint32_t *)key
;
277 ri
= get_arm_cp_reginfo(cpu
->cp_regs
, regidx
);
279 if (!(ri
->type
& (ARM_CP_NO_RAW
|ARM_CP_ALIAS
))) {
280 cpu
->cpreg_array_len
++;
284 static gint
cpreg_key_compare(gconstpointer a
, gconstpointer b
)
286 uint64_t aidx
= cpreg_to_kvm_id(*(uint32_t *)a
);
287 uint64_t bidx
= cpreg_to_kvm_id(*(uint32_t *)b
);
298 void init_cpreg_list(ARMCPU
*cpu
)
300 /* Initialise the cpreg_tuples[] array based on the cp_regs hash.
301 * Note that we require cpreg_tuples[] to be sorted by key ID.
306 keys
= g_hash_table_get_keys(cpu
->cp_regs
);
307 keys
= g_list_sort(keys
, cpreg_key_compare
);
309 cpu
->cpreg_array_len
= 0;
311 g_list_foreach(keys
, count_cpreg
, cpu
);
313 arraylen
= cpu
->cpreg_array_len
;
314 cpu
->cpreg_indexes
= g_new(uint64_t, arraylen
);
315 cpu
->cpreg_values
= g_new(uint64_t, arraylen
);
316 cpu
->cpreg_vmstate_indexes
= g_new(uint64_t, arraylen
);
317 cpu
->cpreg_vmstate_values
= g_new(uint64_t, arraylen
);
318 cpu
->cpreg_vmstate_array_len
= cpu
->cpreg_array_len
;
319 cpu
->cpreg_array_len
= 0;
321 g_list_foreach(keys
, add_cpreg_to_list
, cpu
);
323 assert(cpu
->cpreg_array_len
== arraylen
);
328 static void dacr_write(CPUARMState
*env
, const ARMCPRegInfo
*ri
, uint64_t value
)
330 ARMCPU
*cpu
= arm_env_get_cpu(env
);
332 raw_write(env
, ri
, value
);
333 tlb_flush(CPU(cpu
), 1); /* Flush TLB as domain not tracked in TLB */
336 static void fcse_write(CPUARMState
*env
, const ARMCPRegInfo
*ri
, uint64_t value
)
338 ARMCPU
*cpu
= arm_env_get_cpu(env
);
340 if (raw_read(env
, ri
) != value
) {
341 /* Unlike real hardware the qemu TLB uses virtual addresses,
342 * not modified virtual addresses, so this causes a TLB flush.
344 tlb_flush(CPU(cpu
), 1);
345 raw_write(env
, ri
, value
);
349 static void contextidr_write(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
352 ARMCPU
*cpu
= arm_env_get_cpu(env
);
354 if (raw_read(env
, ri
) != value
&& !arm_feature(env
, ARM_FEATURE_MPU
)
355 && !extended_addresses_enabled(env
)) {
356 /* For VMSA (when not using the LPAE long descriptor page table
357 * format) this register includes the ASID, so do a TLB flush.
358 * For PMSA it is purely a process ID and no action is needed.
360 tlb_flush(CPU(cpu
), 1);
362 raw_write(env
, ri
, value
);
365 static void tlbiall_write(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
368 /* Invalidate all (TLBIALL) */
369 ARMCPU
*cpu
= arm_env_get_cpu(env
);
371 tlb_flush(CPU(cpu
), 1);
374 static void tlbimva_write(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
377 /* Invalidate single TLB entry by MVA and ASID (TLBIMVA) */
378 ARMCPU
*cpu
= arm_env_get_cpu(env
);
380 tlb_flush_page(CPU(cpu
), value
& TARGET_PAGE_MASK
);
383 static void tlbiasid_write(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
386 /* Invalidate by ASID (TLBIASID) */
387 ARMCPU
*cpu
= arm_env_get_cpu(env
);
389 tlb_flush(CPU(cpu
), value
== 0);
392 static void tlbimvaa_write(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
395 /* Invalidate single entry by MVA, all ASIDs (TLBIMVAA) */
396 ARMCPU
*cpu
= arm_env_get_cpu(env
);
398 tlb_flush_page(CPU(cpu
), value
& TARGET_PAGE_MASK
);
401 /* IS variants of TLB operations must affect all cores */
402 static void tlbiall_is_write(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
407 CPU_FOREACH(other_cs
) {
408 tlb_flush(other_cs
, 1);
412 static void tlbiasid_is_write(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
417 CPU_FOREACH(other_cs
) {
418 tlb_flush(other_cs
, value
== 0);
422 static void tlbimva_is_write(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
427 CPU_FOREACH(other_cs
) {
428 tlb_flush_page(other_cs
, value
& TARGET_PAGE_MASK
);
432 static void tlbimvaa_is_write(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
437 CPU_FOREACH(other_cs
) {
438 tlb_flush_page(other_cs
, value
& TARGET_PAGE_MASK
);
442 static const ARMCPRegInfo cp_reginfo
[] = {
443 /* Define the secure and non-secure FCSE identifier CP registers
444 * separately because there is no secure bank in V8 (no _EL3). This allows
445 * the secure register to be properly reset and migrated. There is also no
446 * v8 EL1 version of the register so the non-secure instance stands alone.
448 { .name
= "FCSEIDR(NS)",
449 .cp
= 15, .opc1
= 0, .crn
= 13, .crm
= 0, .opc2
= 0,
450 .access
= PL1_RW
, .secure
= ARM_CP_SECSTATE_NS
,
451 .fieldoffset
= offsetof(CPUARMState
, cp15
.fcseidr_ns
),
452 .resetvalue
= 0, .writefn
= fcse_write
, .raw_writefn
= raw_write
, },
453 { .name
= "FCSEIDR(S)",
454 .cp
= 15, .opc1
= 0, .crn
= 13, .crm
= 0, .opc2
= 0,
455 .access
= PL1_RW
, .secure
= ARM_CP_SECSTATE_S
,
456 .fieldoffset
= offsetof(CPUARMState
, cp15
.fcseidr_s
),
457 .resetvalue
= 0, .writefn
= fcse_write
, .raw_writefn
= raw_write
, },
458 /* Define the secure and non-secure context identifier CP registers
459 * separately because there is no secure bank in V8 (no _EL3). This allows
460 * the secure register to be properly reset and migrated. In the
461 * non-secure case, the 32-bit register will have reset and migration
462 * disabled during registration as it is handled by the 64-bit instance.
464 { .name
= "CONTEXTIDR_EL1", .state
= ARM_CP_STATE_BOTH
,
465 .opc0
= 3, .opc1
= 0, .crn
= 13, .crm
= 0, .opc2
= 1,
466 .access
= PL1_RW
, .secure
= ARM_CP_SECSTATE_NS
,
467 .fieldoffset
= offsetof(CPUARMState
, cp15
.contextidr_el
[1]),
468 .resetvalue
= 0, .writefn
= contextidr_write
, .raw_writefn
= raw_write
, },
469 { .name
= "CONTEXTIDR(S)", .state
= ARM_CP_STATE_AA32
,
470 .cp
= 15, .opc1
= 0, .crn
= 13, .crm
= 0, .opc2
= 1,
471 .access
= PL1_RW
, .secure
= ARM_CP_SECSTATE_S
,
472 .fieldoffset
= offsetof(CPUARMState
, cp15
.contextidr_s
),
473 .resetvalue
= 0, .writefn
= contextidr_write
, .raw_writefn
= raw_write
, },
477 static const ARMCPRegInfo not_v8_cp_reginfo
[] = {
478 /* NB: Some of these registers exist in v8 but with more precise
479 * definitions that don't use CP_ANY wildcards (mostly in v8_cp_reginfo[]).
481 /* MMU Domain access control / MPU write buffer control */
483 .cp
= 15, .opc1
= CP_ANY
, .crn
= 3, .crm
= CP_ANY
, .opc2
= CP_ANY
,
484 .access
= PL1_RW
, .resetvalue
= 0,
485 .writefn
= dacr_write
, .raw_writefn
= raw_write
,
486 .bank_fieldoffsets
= { offsetoflow32(CPUARMState
, cp15
.dacr_s
),
487 offsetoflow32(CPUARMState
, cp15
.dacr_ns
) } },
488 /* ARMv7 allocates a range of implementation defined TLB LOCKDOWN regs.
489 * For v6 and v5, these mappings are overly broad.
491 { .name
= "TLB_LOCKDOWN", .cp
= 15, .crn
= 10, .crm
= 0,
492 .opc1
= CP_ANY
, .opc2
= CP_ANY
, .access
= PL1_RW
, .type
= ARM_CP_NOP
},
493 { .name
= "TLB_LOCKDOWN", .cp
= 15, .crn
= 10, .crm
= 1,
494 .opc1
= CP_ANY
, .opc2
= CP_ANY
, .access
= PL1_RW
, .type
= ARM_CP_NOP
},
495 { .name
= "TLB_LOCKDOWN", .cp
= 15, .crn
= 10, .crm
= 4,
496 .opc1
= CP_ANY
, .opc2
= CP_ANY
, .access
= PL1_RW
, .type
= ARM_CP_NOP
},
497 { .name
= "TLB_LOCKDOWN", .cp
= 15, .crn
= 10, .crm
= 8,
498 .opc1
= CP_ANY
, .opc2
= CP_ANY
, .access
= PL1_RW
, .type
= ARM_CP_NOP
},
499 /* Cache maintenance ops; some of this space may be overridden later. */
500 { .name
= "CACHEMAINT", .cp
= 15, .crn
= 7, .crm
= CP_ANY
,
501 .opc1
= 0, .opc2
= CP_ANY
, .access
= PL1_W
,
502 .type
= ARM_CP_NOP
| ARM_CP_OVERRIDE
},
506 static const ARMCPRegInfo not_v6_cp_reginfo
[] = {
507 /* Not all pre-v6 cores implemented this WFI, so this is slightly
510 { .name
= "WFI_v5", .cp
= 15, .crn
= 7, .crm
= 8, .opc1
= 0, .opc2
= 2,
511 .access
= PL1_W
, .type
= ARM_CP_WFI
},
515 static const ARMCPRegInfo not_v7_cp_reginfo
[] = {
516 /* Standard v6 WFI (also used in some pre-v6 cores); not in v7 (which
517 * is UNPREDICTABLE; we choose to NOP as most implementations do).
519 { .name
= "WFI_v6", .cp
= 15, .crn
= 7, .crm
= 0, .opc1
= 0, .opc2
= 4,
520 .access
= PL1_W
, .type
= ARM_CP_WFI
},
521 /* L1 cache lockdown. Not architectural in v6 and earlier but in practice
522 * implemented in 926, 946, 1026, 1136, 1176 and 11MPCore. StrongARM and
523 * OMAPCP will override this space.
525 { .name
= "DLOCKDOWN", .cp
= 15, .crn
= 9, .crm
= 0, .opc1
= 0, .opc2
= 0,
526 .access
= PL1_RW
, .fieldoffset
= offsetof(CPUARMState
, cp15
.c9_data
),
528 { .name
= "ILOCKDOWN", .cp
= 15, .crn
= 9, .crm
= 0, .opc1
= 0, .opc2
= 1,
529 .access
= PL1_RW
, .fieldoffset
= offsetof(CPUARMState
, cp15
.c9_insn
),
531 /* v6 doesn't have the cache ID registers but Linux reads them anyway */
532 { .name
= "DUMMY", .cp
= 15, .crn
= 0, .crm
= 0, .opc1
= 1, .opc2
= CP_ANY
,
533 .access
= PL1_R
, .type
= ARM_CP_CONST
| ARM_CP_NO_RAW
,
535 /* We don't implement pre-v7 debug but most CPUs had at least a DBGDIDR;
536 * implementing it as RAZ means the "debug architecture version" bits
537 * will read as a reserved value, which should cause Linux to not try
538 * to use the debug hardware.
540 { .name
= "DBGDIDR", .cp
= 14, .crn
= 0, .crm
= 0, .opc1
= 0, .opc2
= 0,
541 .access
= PL0_R
, .type
= ARM_CP_CONST
, .resetvalue
= 0 },
542 /* MMU TLB control. Note that the wildcarding means we cover not just
543 * the unified TLB ops but also the dside/iside/inner-shareable variants.
545 { .name
= "TLBIALL", .cp
= 15, .crn
= 8, .crm
= CP_ANY
,
546 .opc1
= CP_ANY
, .opc2
= 0, .access
= PL1_W
, .writefn
= tlbiall_write
,
547 .type
= ARM_CP_NO_RAW
},
548 { .name
= "TLBIMVA", .cp
= 15, .crn
= 8, .crm
= CP_ANY
,
549 .opc1
= CP_ANY
, .opc2
= 1, .access
= PL1_W
, .writefn
= tlbimva_write
,
550 .type
= ARM_CP_NO_RAW
},
551 { .name
= "TLBIASID", .cp
= 15, .crn
= 8, .crm
= CP_ANY
,
552 .opc1
= CP_ANY
, .opc2
= 2, .access
= PL1_W
, .writefn
= tlbiasid_write
,
553 .type
= ARM_CP_NO_RAW
},
554 { .name
= "TLBIMVAA", .cp
= 15, .crn
= 8, .crm
= CP_ANY
,
555 .opc1
= CP_ANY
, .opc2
= 3, .access
= PL1_W
, .writefn
= tlbimvaa_write
,
556 .type
= ARM_CP_NO_RAW
},
557 { .name
= "PRRR", .cp
= 15, .crn
= 10, .crm
= 2,
558 .opc1
= 0, .opc2
= 0, .access
= PL1_RW
, .type
= ARM_CP_NOP
},
559 { .name
= "NMRR", .cp
= 15, .crn
= 10, .crm
= 2,
560 .opc1
= 0, .opc2
= 1, .access
= PL1_RW
, .type
= ARM_CP_NOP
},
564 static void cpacr_write(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
569 /* In ARMv8 most bits of CPACR_EL1 are RES0. */
570 if (!arm_feature(env
, ARM_FEATURE_V8
)) {
571 /* ARMv7 defines bits for unimplemented coprocessors as RAZ/WI.
572 * ASEDIS [31] and D32DIS [30] are both UNK/SBZP without VFP.
573 * TRCDIS [28] is RAZ/WI since we do not implement a trace macrocell.
575 if (arm_feature(env
, ARM_FEATURE_VFP
)) {
576 /* VFP coprocessor: cp10 & cp11 [23:20] */
577 mask
|= (1 << 31) | (1 << 30) | (0xf << 20);
579 if (!arm_feature(env
, ARM_FEATURE_NEON
)) {
580 /* ASEDIS [31] bit is RAO/WI */
584 /* VFPv3 and upwards with NEON implement 32 double precision
585 * registers (D0-D31).
587 if (!arm_feature(env
, ARM_FEATURE_NEON
) ||
588 !arm_feature(env
, ARM_FEATURE_VFP3
)) {
589 /* D32DIS [30] is RAO/WI if D16-31 are not implemented. */
595 env
->cp15
.cpacr_el1
= value
;
598 static CPAccessResult
cpacr_access(CPUARMState
*env
, const ARMCPRegInfo
*ri
)
600 if (arm_feature(env
, ARM_FEATURE_V8
)) {
601 /* Check if CPACR accesses are to be trapped to EL2 */
602 if (arm_current_el(env
) == 1 &&
603 (env
->cp15
.cptr_el
[2] & CPTR_TCPAC
) && !arm_is_secure(env
)) {
604 return CP_ACCESS_TRAP_EL2
;
605 /* Check if CPACR accesses are to be trapped to EL3 */
606 } else if (arm_current_el(env
) < 3 &&
607 (env
->cp15
.cptr_el
[3] & CPTR_TCPAC
)) {
608 return CP_ACCESS_TRAP_EL3
;
615 static CPAccessResult
cptr_access(CPUARMState
*env
, const ARMCPRegInfo
*ri
)
617 /* Check if CPTR accesses are set to trap to EL3 */
618 if (arm_current_el(env
) == 2 && (env
->cp15
.cptr_el
[3] & CPTR_TCPAC
)) {
619 return CP_ACCESS_TRAP_EL3
;
625 static const ARMCPRegInfo v6_cp_reginfo
[] = {
626 /* prefetch by MVA in v6, NOP in v7 */
627 { .name
= "MVA_prefetch",
628 .cp
= 15, .crn
= 7, .crm
= 13, .opc1
= 0, .opc2
= 1,
629 .access
= PL1_W
, .type
= ARM_CP_NOP
},
630 { .name
= "ISB", .cp
= 15, .crn
= 7, .crm
= 5, .opc1
= 0, .opc2
= 4,
631 .access
= PL0_W
, .type
= ARM_CP_NOP
},
632 { .name
= "DSB", .cp
= 15, .crn
= 7, .crm
= 10, .opc1
= 0, .opc2
= 4,
633 .access
= PL0_W
, .type
= ARM_CP_NOP
},
634 { .name
= "DMB", .cp
= 15, .crn
= 7, .crm
= 10, .opc1
= 0, .opc2
= 5,
635 .access
= PL0_W
, .type
= ARM_CP_NOP
},
636 { .name
= "IFAR", .cp
= 15, .crn
= 6, .crm
= 0, .opc1
= 0, .opc2
= 2,
638 .bank_fieldoffsets
= { offsetof(CPUARMState
, cp15
.ifar_s
),
639 offsetof(CPUARMState
, cp15
.ifar_ns
) },
641 /* Watchpoint Fault Address Register : should actually only be present
642 * for 1136, 1176, 11MPCore.
644 { .name
= "WFAR", .cp
= 15, .crn
= 6, .crm
= 0, .opc1
= 0, .opc2
= 1,
645 .access
= PL1_RW
, .type
= ARM_CP_CONST
, .resetvalue
= 0, },
646 { .name
= "CPACR", .state
= ARM_CP_STATE_BOTH
, .opc0
= 3,
647 .crn
= 1, .crm
= 0, .opc1
= 0, .opc2
= 2, .accessfn
= cpacr_access
,
648 .access
= PL1_RW
, .fieldoffset
= offsetof(CPUARMState
, cp15
.cpacr_el1
),
649 .resetvalue
= 0, .writefn
= cpacr_write
},
653 static CPAccessResult
pmreg_access(CPUARMState
*env
, const ARMCPRegInfo
*ri
)
655 /* Performance monitor registers user accessibility is controlled
658 if (arm_current_el(env
) == 0 && !env
->cp15
.c9_pmuserenr
) {
659 return CP_ACCESS_TRAP
;
664 #ifndef CONFIG_USER_ONLY
666 static inline bool arm_ccnt_enabled(CPUARMState
*env
)
668 /* This does not support checking PMCCFILTR_EL0 register */
670 if (!(env
->cp15
.c9_pmcr
& PMCRE
)) {
677 void pmccntr_sync(CPUARMState
*env
)
681 temp_ticks
= muldiv64(qemu_clock_get_us(QEMU_CLOCK_VIRTUAL
),
682 get_ticks_per_sec(), 1000000);
684 if (env
->cp15
.c9_pmcr
& PMCRD
) {
685 /* Increment once every 64 processor clock cycles */
689 if (arm_ccnt_enabled(env
)) {
690 env
->cp15
.c15_ccnt
= temp_ticks
- env
->cp15
.c15_ccnt
;
694 static void pmcr_write(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
700 /* The counter has been reset */
701 env
->cp15
.c15_ccnt
= 0;
704 /* only the DP, X, D and E bits are writable */
705 env
->cp15
.c9_pmcr
&= ~0x39;
706 env
->cp15
.c9_pmcr
|= (value
& 0x39);
711 static uint64_t pmccntr_read(CPUARMState
*env
, const ARMCPRegInfo
*ri
)
713 uint64_t total_ticks
;
715 if (!arm_ccnt_enabled(env
)) {
716 /* Counter is disabled, do not change value */
717 return env
->cp15
.c15_ccnt
;
720 total_ticks
= muldiv64(qemu_clock_get_us(QEMU_CLOCK_VIRTUAL
),
721 get_ticks_per_sec(), 1000000);
723 if (env
->cp15
.c9_pmcr
& PMCRD
) {
724 /* Increment once every 64 processor clock cycles */
727 return total_ticks
- env
->cp15
.c15_ccnt
;
730 static void pmccntr_write(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
733 uint64_t total_ticks
;
735 if (!arm_ccnt_enabled(env
)) {
736 /* Counter is disabled, set the absolute value */
737 env
->cp15
.c15_ccnt
= value
;
741 total_ticks
= muldiv64(qemu_clock_get_us(QEMU_CLOCK_VIRTUAL
),
742 get_ticks_per_sec(), 1000000);
744 if (env
->cp15
.c9_pmcr
& PMCRD
) {
745 /* Increment once every 64 processor clock cycles */
748 env
->cp15
.c15_ccnt
= total_ticks
- value
;
751 static void pmccntr_write32(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
754 uint64_t cur_val
= pmccntr_read(env
, NULL
);
756 pmccntr_write(env
, ri
, deposit64(cur_val
, 0, 32, value
));
759 #else /* CONFIG_USER_ONLY */
761 void pmccntr_sync(CPUARMState
*env
)
767 static void pmccfiltr_write(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
771 env
->cp15
.pmccfiltr_el0
= value
& 0x7E000000;
775 static void pmcntenset_write(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
779 env
->cp15
.c9_pmcnten
|= value
;
782 static void pmcntenclr_write(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
786 env
->cp15
.c9_pmcnten
&= ~value
;
789 static void pmovsr_write(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
792 env
->cp15
.c9_pmovsr
&= ~value
;
795 static void pmxevtyper_write(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
798 env
->cp15
.c9_pmxevtyper
= value
& 0xff;
801 static void pmuserenr_write(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
804 env
->cp15
.c9_pmuserenr
= value
& 1;
807 static void pmintenset_write(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
810 /* We have no event counters so only the C bit can be changed */
812 env
->cp15
.c9_pminten
|= value
;
815 static void pmintenclr_write(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
819 env
->cp15
.c9_pminten
&= ~value
;
822 static void vbar_write(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
825 /* Note that even though the AArch64 view of this register has bits
826 * [10:0] all RES0 we can only mask the bottom 5, to comply with the
827 * architectural requirements for bits which are RES0 only in some
828 * contexts. (ARMv8 would permit us to do no masking at all, but ARMv7
829 * requires the bottom five bits to be RAZ/WI because they're UNK/SBZP.)
831 raw_write(env
, ri
, value
& ~0x1FULL
);
834 static void scr_write(CPUARMState
*env
, const ARMCPRegInfo
*ri
, uint64_t value
)
836 /* We only mask off bits that are RES0 both for AArch64 and AArch32.
837 * For bits that vary between AArch32/64, code needs to check the
838 * current execution mode before directly using the feature bit.
840 uint32_t valid_mask
= SCR_AARCH64_MASK
| SCR_AARCH32_MASK
;
842 if (!arm_feature(env
, ARM_FEATURE_EL2
)) {
843 valid_mask
&= ~SCR_HCE
;
845 /* On ARMv7, SMD (or SCD as it is called in v7) is only
846 * supported if EL2 exists. The bit is UNK/SBZP when
847 * EL2 is unavailable. In QEMU ARMv7, we force it to always zero
848 * when EL2 is unavailable.
849 * On ARMv8, this bit is always available.
851 if (arm_feature(env
, ARM_FEATURE_V7
) &&
852 !arm_feature(env
, ARM_FEATURE_V8
)) {
853 valid_mask
&= ~SCR_SMD
;
857 /* Clear all-context RES0 bits. */
859 raw_write(env
, ri
, value
);
862 static uint64_t ccsidr_read(CPUARMState
*env
, const ARMCPRegInfo
*ri
)
864 ARMCPU
*cpu
= arm_env_get_cpu(env
);
866 /* Acquire the CSSELR index from the bank corresponding to the CCSIDR
869 uint32_t index
= A32_BANKED_REG_GET(env
, csselr
,
870 ri
->secure
& ARM_CP_SECSTATE_S
);
872 return cpu
->ccsidr
[index
];
875 static void csselr_write(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
878 raw_write(env
, ri
, value
& 0xf);
881 static uint64_t isr_read(CPUARMState
*env
, const ARMCPRegInfo
*ri
)
883 CPUState
*cs
= ENV_GET_CPU(env
);
886 if (cs
->interrupt_request
& CPU_INTERRUPT_HARD
) {
889 if (cs
->interrupt_request
& CPU_INTERRUPT_FIQ
) {
892 /* External aborts are not possible in QEMU so A bit is always clear */
896 static const ARMCPRegInfo v7_cp_reginfo
[] = {
897 /* the old v6 WFI, UNPREDICTABLE in v7 but we choose to NOP */
898 { .name
= "NOP", .cp
= 15, .crn
= 7, .crm
= 0, .opc1
= 0, .opc2
= 4,
899 .access
= PL1_W
, .type
= ARM_CP_NOP
},
900 /* Performance monitors are implementation defined in v7,
901 * but with an ARM recommended set of registers, which we
902 * follow (although we don't actually implement any counters)
904 * Performance registers fall into three categories:
905 * (a) always UNDEF in PL0, RW in PL1 (PMINTENSET, PMINTENCLR)
906 * (b) RO in PL0 (ie UNDEF on write), RW in PL1 (PMUSERENR)
907 * (c) UNDEF in PL0 if PMUSERENR.EN==0, otherwise accessible (all others)
908 * For the cases controlled by PMUSERENR we must set .access to PL0_RW
909 * or PL0_RO as appropriate and then check PMUSERENR in the helper fn.
911 { .name
= "PMCNTENSET", .cp
= 15, .crn
= 9, .crm
= 12, .opc1
= 0, .opc2
= 1,
912 .access
= PL0_RW
, .type
= ARM_CP_ALIAS
,
913 .fieldoffset
= offsetoflow32(CPUARMState
, cp15
.c9_pmcnten
),
914 .writefn
= pmcntenset_write
,
915 .accessfn
= pmreg_access
,
916 .raw_writefn
= raw_write
},
917 { .name
= "PMCNTENSET_EL0", .state
= ARM_CP_STATE_AA64
,
918 .opc0
= 3, .opc1
= 3, .crn
= 9, .crm
= 12, .opc2
= 1,
919 .access
= PL0_RW
, .accessfn
= pmreg_access
,
920 .fieldoffset
= offsetof(CPUARMState
, cp15
.c9_pmcnten
), .resetvalue
= 0,
921 .writefn
= pmcntenset_write
, .raw_writefn
= raw_write
},
922 { .name
= "PMCNTENCLR", .cp
= 15, .crn
= 9, .crm
= 12, .opc1
= 0, .opc2
= 2,
924 .fieldoffset
= offsetoflow32(CPUARMState
, cp15
.c9_pmcnten
),
925 .accessfn
= pmreg_access
,
926 .writefn
= pmcntenclr_write
,
927 .type
= ARM_CP_ALIAS
},
928 { .name
= "PMCNTENCLR_EL0", .state
= ARM_CP_STATE_AA64
,
929 .opc0
= 3, .opc1
= 3, .crn
= 9, .crm
= 12, .opc2
= 2,
930 .access
= PL0_RW
, .accessfn
= pmreg_access
,
931 .type
= ARM_CP_ALIAS
,
932 .fieldoffset
= offsetof(CPUARMState
, cp15
.c9_pmcnten
),
933 .writefn
= pmcntenclr_write
},
934 { .name
= "PMOVSR", .cp
= 15, .crn
= 9, .crm
= 12, .opc1
= 0, .opc2
= 3,
935 .access
= PL0_RW
, .fieldoffset
= offsetof(CPUARMState
, cp15
.c9_pmovsr
),
936 .accessfn
= pmreg_access
,
937 .writefn
= pmovsr_write
,
938 .raw_writefn
= raw_write
},
939 /* Unimplemented so WI. */
940 { .name
= "PMSWINC", .cp
= 15, .crn
= 9, .crm
= 12, .opc1
= 0, .opc2
= 4,
941 .access
= PL0_W
, .accessfn
= pmreg_access
, .type
= ARM_CP_NOP
},
942 /* Since we don't implement any events, writing to PMSELR is UNPREDICTABLE.
943 * We choose to RAZ/WI.
945 { .name
= "PMSELR", .cp
= 15, .crn
= 9, .crm
= 12, .opc1
= 0, .opc2
= 5,
946 .access
= PL0_RW
, .type
= ARM_CP_CONST
, .resetvalue
= 0,
947 .accessfn
= pmreg_access
},
948 #ifndef CONFIG_USER_ONLY
949 { .name
= "PMCCNTR", .cp
= 15, .crn
= 9, .crm
= 13, .opc1
= 0, .opc2
= 0,
950 .access
= PL0_RW
, .resetvalue
= 0, .type
= ARM_CP_IO
,
951 .readfn
= pmccntr_read
, .writefn
= pmccntr_write32
,
952 .accessfn
= pmreg_access
},
953 { .name
= "PMCCNTR_EL0", .state
= ARM_CP_STATE_AA64
,
954 .opc0
= 3, .opc1
= 3, .crn
= 9, .crm
= 13, .opc2
= 0,
955 .access
= PL0_RW
, .accessfn
= pmreg_access
,
957 .readfn
= pmccntr_read
, .writefn
= pmccntr_write
, },
959 { .name
= "PMCCFILTR_EL0", .state
= ARM_CP_STATE_AA64
,
960 .opc0
= 3, .opc1
= 3, .crn
= 14, .crm
= 15, .opc2
= 7,
961 .writefn
= pmccfiltr_write
,
962 .access
= PL0_RW
, .accessfn
= pmreg_access
,
964 .fieldoffset
= offsetof(CPUARMState
, cp15
.pmccfiltr_el0
),
966 { .name
= "PMXEVTYPER", .cp
= 15, .crn
= 9, .crm
= 13, .opc1
= 0, .opc2
= 1,
968 .fieldoffset
= offsetof(CPUARMState
, cp15
.c9_pmxevtyper
),
969 .accessfn
= pmreg_access
, .writefn
= pmxevtyper_write
,
970 .raw_writefn
= raw_write
},
971 /* Unimplemented, RAZ/WI. */
972 { .name
= "PMXEVCNTR", .cp
= 15, .crn
= 9, .crm
= 13, .opc1
= 0, .opc2
= 2,
973 .access
= PL0_RW
, .type
= ARM_CP_CONST
, .resetvalue
= 0,
974 .accessfn
= pmreg_access
},
975 { .name
= "PMUSERENR", .cp
= 15, .crn
= 9, .crm
= 14, .opc1
= 0, .opc2
= 0,
976 .access
= PL0_R
| PL1_RW
,
977 .fieldoffset
= offsetof(CPUARMState
, cp15
.c9_pmuserenr
),
979 .writefn
= pmuserenr_write
, .raw_writefn
= raw_write
},
980 { .name
= "PMINTENSET", .cp
= 15, .crn
= 9, .crm
= 14, .opc1
= 0, .opc2
= 1,
982 .fieldoffset
= offsetof(CPUARMState
, cp15
.c9_pminten
),
984 .writefn
= pmintenset_write
, .raw_writefn
= raw_write
},
985 { .name
= "PMINTENCLR", .cp
= 15, .crn
= 9, .crm
= 14, .opc1
= 0, .opc2
= 2,
986 .access
= PL1_RW
, .type
= ARM_CP_ALIAS
,
987 .fieldoffset
= offsetof(CPUARMState
, cp15
.c9_pminten
),
988 .writefn
= pmintenclr_write
, },
989 { .name
= "VBAR", .state
= ARM_CP_STATE_BOTH
,
990 .opc0
= 3, .crn
= 12, .crm
= 0, .opc1
= 0, .opc2
= 0,
991 .access
= PL1_RW
, .writefn
= vbar_write
,
992 .bank_fieldoffsets
= { offsetof(CPUARMState
, cp15
.vbar_s
),
993 offsetof(CPUARMState
, cp15
.vbar_ns
) },
995 { .name
= "CCSIDR", .state
= ARM_CP_STATE_BOTH
,
996 .opc0
= 3, .crn
= 0, .crm
= 0, .opc1
= 1, .opc2
= 0,
997 .access
= PL1_R
, .readfn
= ccsidr_read
, .type
= ARM_CP_NO_RAW
},
998 { .name
= "CSSELR", .state
= ARM_CP_STATE_BOTH
,
999 .opc0
= 3, .crn
= 0, .crm
= 0, .opc1
= 2, .opc2
= 0,
1000 .access
= PL1_RW
, .writefn
= csselr_write
, .resetvalue
= 0,
1001 .bank_fieldoffsets
= { offsetof(CPUARMState
, cp15
.csselr_s
),
1002 offsetof(CPUARMState
, cp15
.csselr_ns
) } },
1003 /* Auxiliary ID register: this actually has an IMPDEF value but for now
1004 * just RAZ for all cores:
1006 { .name
= "AIDR", .state
= ARM_CP_STATE_BOTH
,
1007 .opc0
= 3, .opc1
= 1, .crn
= 0, .crm
= 0, .opc2
= 7,
1008 .access
= PL1_R
, .type
= ARM_CP_CONST
, .resetvalue
= 0 },
1009 /* Auxiliary fault status registers: these also are IMPDEF, and we
1010 * choose to RAZ/WI for all cores.
1012 { .name
= "AFSR0_EL1", .state
= ARM_CP_STATE_BOTH
,
1013 .opc0
= 3, .opc1
= 0, .crn
= 5, .crm
= 1, .opc2
= 0,
1014 .access
= PL1_RW
, .type
= ARM_CP_CONST
, .resetvalue
= 0 },
1015 { .name
= "AFSR1_EL1", .state
= ARM_CP_STATE_BOTH
,
1016 .opc0
= 3, .opc1
= 0, .crn
= 5, .crm
= 1, .opc2
= 1,
1017 .access
= PL1_RW
, .type
= ARM_CP_CONST
, .resetvalue
= 0 },
1018 /* MAIR can just read-as-written because we don't implement caches
1019 * and so don't need to care about memory attributes.
1021 { .name
= "MAIR_EL1", .state
= ARM_CP_STATE_AA64
,
1022 .opc0
= 3, .opc1
= 0, .crn
= 10, .crm
= 2, .opc2
= 0,
1023 .access
= PL1_RW
, .fieldoffset
= offsetof(CPUARMState
, cp15
.mair_el
[1]),
1025 { .name
= "MAIR_EL3", .state
= ARM_CP_STATE_AA64
,
1026 .opc0
= 3, .opc1
= 6, .crn
= 10, .crm
= 2, .opc2
= 0,
1027 .access
= PL3_RW
, .fieldoffset
= offsetof(CPUARMState
, cp15
.mair_el
[3]),
1029 /* For non-long-descriptor page tables these are PRRR and NMRR;
1030 * regardless they still act as reads-as-written for QEMU.
1032 /* MAIR0/1 are defined separately from their 64-bit counterpart which
1033 * allows them to assign the correct fieldoffset based on the endianness
1034 * handled in the field definitions.
1036 { .name
= "MAIR0", .state
= ARM_CP_STATE_AA32
,
1037 .cp
= 15, .opc1
= 0, .crn
= 10, .crm
= 2, .opc2
= 0, .access
= PL1_RW
,
1038 .bank_fieldoffsets
= { offsetof(CPUARMState
, cp15
.mair0_s
),
1039 offsetof(CPUARMState
, cp15
.mair0_ns
) },
1040 .resetfn
= arm_cp_reset_ignore
},
1041 { .name
= "MAIR1", .state
= ARM_CP_STATE_AA32
,
1042 .cp
= 15, .opc1
= 0, .crn
= 10, .crm
= 2, .opc2
= 1, .access
= PL1_RW
,
1043 .bank_fieldoffsets
= { offsetof(CPUARMState
, cp15
.mair1_s
),
1044 offsetof(CPUARMState
, cp15
.mair1_ns
) },
1045 .resetfn
= arm_cp_reset_ignore
},
1046 { .name
= "ISR_EL1", .state
= ARM_CP_STATE_BOTH
,
1047 .opc0
= 3, .opc1
= 0, .crn
= 12, .crm
= 1, .opc2
= 0,
1048 .type
= ARM_CP_NO_RAW
, .access
= PL1_R
, .readfn
= isr_read
},
1049 /* 32 bit ITLB invalidates */
1050 { .name
= "ITLBIALL", .cp
= 15, .opc1
= 0, .crn
= 8, .crm
= 5, .opc2
= 0,
1051 .type
= ARM_CP_NO_RAW
, .access
= PL1_W
, .writefn
= tlbiall_write
},
1052 { .name
= "ITLBIMVA", .cp
= 15, .opc1
= 0, .crn
= 8, .crm
= 5, .opc2
= 1,
1053 .type
= ARM_CP_NO_RAW
, .access
= PL1_W
, .writefn
= tlbimva_write
},
1054 { .name
= "ITLBIASID", .cp
= 15, .opc1
= 0, .crn
= 8, .crm
= 5, .opc2
= 2,
1055 .type
= ARM_CP_NO_RAW
, .access
= PL1_W
, .writefn
= tlbiasid_write
},
1056 /* 32 bit DTLB invalidates */
1057 { .name
= "DTLBIALL", .cp
= 15, .opc1
= 0, .crn
= 8, .crm
= 6, .opc2
= 0,
1058 .type
= ARM_CP_NO_RAW
, .access
= PL1_W
, .writefn
= tlbiall_write
},
1059 { .name
= "DTLBIMVA", .cp
= 15, .opc1
= 0, .crn
= 8, .crm
= 6, .opc2
= 1,
1060 .type
= ARM_CP_NO_RAW
, .access
= PL1_W
, .writefn
= tlbimva_write
},
1061 { .name
= "DTLBIASID", .cp
= 15, .opc1
= 0, .crn
= 8, .crm
= 6, .opc2
= 2,
1062 .type
= ARM_CP_NO_RAW
, .access
= PL1_W
, .writefn
= tlbiasid_write
},
1063 /* 32 bit TLB invalidates */
1064 { .name
= "TLBIALL", .cp
= 15, .opc1
= 0, .crn
= 8, .crm
= 7, .opc2
= 0,
1065 .type
= ARM_CP_NO_RAW
, .access
= PL1_W
, .writefn
= tlbiall_write
},
1066 { .name
= "TLBIMVA", .cp
= 15, .opc1
= 0, .crn
= 8, .crm
= 7, .opc2
= 1,
1067 .type
= ARM_CP_NO_RAW
, .access
= PL1_W
, .writefn
= tlbimva_write
},
1068 { .name
= "TLBIASID", .cp
= 15, .opc1
= 0, .crn
= 8, .crm
= 7, .opc2
= 2,
1069 .type
= ARM_CP_NO_RAW
, .access
= PL1_W
, .writefn
= tlbiasid_write
},
1070 { .name
= "TLBIMVAA", .cp
= 15, .opc1
= 0, .crn
= 8, .crm
= 7, .opc2
= 3,
1071 .type
= ARM_CP_NO_RAW
, .access
= PL1_W
, .writefn
= tlbimvaa_write
},
1075 static const ARMCPRegInfo v7mp_cp_reginfo
[] = {
1076 /* 32 bit TLB invalidates, Inner Shareable */
1077 { .name
= "TLBIALLIS", .cp
= 15, .opc1
= 0, .crn
= 8, .crm
= 3, .opc2
= 0,
1078 .type
= ARM_CP_NO_RAW
, .access
= PL1_W
, .writefn
= tlbiall_is_write
},
1079 { .name
= "TLBIMVAIS", .cp
= 15, .opc1
= 0, .crn
= 8, .crm
= 3, .opc2
= 1,
1080 .type
= ARM_CP_NO_RAW
, .access
= PL1_W
, .writefn
= tlbimva_is_write
},
1081 { .name
= "TLBIASIDIS", .cp
= 15, .opc1
= 0, .crn
= 8, .crm
= 3, .opc2
= 2,
1082 .type
= ARM_CP_NO_RAW
, .access
= PL1_W
,
1083 .writefn
= tlbiasid_is_write
},
1084 { .name
= "TLBIMVAAIS", .cp
= 15, .opc1
= 0, .crn
= 8, .crm
= 3, .opc2
= 3,
1085 .type
= ARM_CP_NO_RAW
, .access
= PL1_W
,
1086 .writefn
= tlbimvaa_is_write
},
1090 static void teecr_write(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
1097 static CPAccessResult
teehbr_access(CPUARMState
*env
, const ARMCPRegInfo
*ri
)
1099 if (arm_current_el(env
) == 0 && (env
->teecr
& 1)) {
1100 return CP_ACCESS_TRAP
;
1102 return CP_ACCESS_OK
;
1105 static const ARMCPRegInfo t2ee_cp_reginfo
[] = {
1106 { .name
= "TEECR", .cp
= 14, .crn
= 0, .crm
= 0, .opc1
= 6, .opc2
= 0,
1107 .access
= PL1_RW
, .fieldoffset
= offsetof(CPUARMState
, teecr
),
1109 .writefn
= teecr_write
},
1110 { .name
= "TEEHBR", .cp
= 14, .crn
= 1, .crm
= 0, .opc1
= 6, .opc2
= 0,
1111 .access
= PL0_RW
, .fieldoffset
= offsetof(CPUARMState
, teehbr
),
1112 .accessfn
= teehbr_access
, .resetvalue
= 0 },
1116 static const ARMCPRegInfo v6k_cp_reginfo
[] = {
1117 { .name
= "TPIDR_EL0", .state
= ARM_CP_STATE_AA64
,
1118 .opc0
= 3, .opc1
= 3, .opc2
= 2, .crn
= 13, .crm
= 0,
1120 .fieldoffset
= offsetof(CPUARMState
, cp15
.tpidr_el
[0]), .resetvalue
= 0 },
1121 { .name
= "TPIDRURW", .cp
= 15, .crn
= 13, .crm
= 0, .opc1
= 0, .opc2
= 2,
1123 .bank_fieldoffsets
= { offsetoflow32(CPUARMState
, cp15
.tpidrurw_s
),
1124 offsetoflow32(CPUARMState
, cp15
.tpidrurw_ns
) },
1125 .resetfn
= arm_cp_reset_ignore
},
1126 { .name
= "TPIDRRO_EL0", .state
= ARM_CP_STATE_AA64
,
1127 .opc0
= 3, .opc1
= 3, .opc2
= 3, .crn
= 13, .crm
= 0,
1128 .access
= PL0_R
|PL1_W
,
1129 .fieldoffset
= offsetof(CPUARMState
, cp15
.tpidrro_el
[0]),
1131 { .name
= "TPIDRURO", .cp
= 15, .crn
= 13, .crm
= 0, .opc1
= 0, .opc2
= 3,
1132 .access
= PL0_R
|PL1_W
,
1133 .bank_fieldoffsets
= { offsetoflow32(CPUARMState
, cp15
.tpidruro_s
),
1134 offsetoflow32(CPUARMState
, cp15
.tpidruro_ns
) },
1135 .resetfn
= arm_cp_reset_ignore
},
1136 { .name
= "TPIDR_EL1", .state
= ARM_CP_STATE_AA64
,
1137 .opc0
= 3, .opc1
= 0, .opc2
= 4, .crn
= 13, .crm
= 0,
1139 .fieldoffset
= offsetof(CPUARMState
, cp15
.tpidr_el
[1]), .resetvalue
= 0 },
1140 { .name
= "TPIDRPRW", .opc1
= 0, .cp
= 15, .crn
= 13, .crm
= 0, .opc2
= 4,
1142 .bank_fieldoffsets
= { offsetoflow32(CPUARMState
, cp15
.tpidrprw_s
),
1143 offsetoflow32(CPUARMState
, cp15
.tpidrprw_ns
) },
1148 #ifndef CONFIG_USER_ONLY
1150 static CPAccessResult
gt_cntfrq_access(CPUARMState
*env
, const ARMCPRegInfo
*ri
)
1152 /* CNTFRQ: not visible from PL0 if both PL0PCTEN and PL0VCTEN are zero */
1153 if (arm_current_el(env
) == 0 && !extract32(env
->cp15
.c14_cntkctl
, 0, 2)) {
1154 return CP_ACCESS_TRAP
;
1156 return CP_ACCESS_OK
;
1159 static CPAccessResult
gt_counter_access(CPUARMState
*env
, int timeridx
)
1161 unsigned int cur_el
= arm_current_el(env
);
1162 bool secure
= arm_is_secure(env
);
1164 /* CNT[PV]CT: not visible from PL0 if ELO[PV]CTEN is zero */
1166 !extract32(env
->cp15
.c14_cntkctl
, timeridx
, 1)) {
1167 return CP_ACCESS_TRAP
;
1170 if (arm_feature(env
, ARM_FEATURE_EL2
) &&
1171 timeridx
== GTIMER_PHYS
&& !secure
&& cur_el
< 2 &&
1172 !extract32(env
->cp15
.cnthctl_el2
, 0, 1)) {
1173 return CP_ACCESS_TRAP_EL2
;
1175 return CP_ACCESS_OK
;
1178 static CPAccessResult
gt_timer_access(CPUARMState
*env
, int timeridx
)
1180 unsigned int cur_el
= arm_current_el(env
);
1181 bool secure
= arm_is_secure(env
);
1183 /* CNT[PV]_CVAL, CNT[PV]_CTL, CNT[PV]_TVAL: not visible from PL0 if
1184 * EL0[PV]TEN is zero.
1187 !extract32(env
->cp15
.c14_cntkctl
, 9 - timeridx
, 1)) {
1188 return CP_ACCESS_TRAP
;
1191 if (arm_feature(env
, ARM_FEATURE_EL2
) &&
1192 timeridx
== GTIMER_PHYS
&& !secure
&& cur_el
< 2 &&
1193 !extract32(env
->cp15
.cnthctl_el2
, 1, 1)) {
1194 return CP_ACCESS_TRAP_EL2
;
1196 return CP_ACCESS_OK
;
1199 static CPAccessResult
gt_pct_access(CPUARMState
*env
,
1200 const ARMCPRegInfo
*ri
)
1202 return gt_counter_access(env
, GTIMER_PHYS
);
1205 static CPAccessResult
gt_vct_access(CPUARMState
*env
,
1206 const ARMCPRegInfo
*ri
)
1208 return gt_counter_access(env
, GTIMER_VIRT
);
1211 static CPAccessResult
gt_ptimer_access(CPUARMState
*env
, const ARMCPRegInfo
*ri
)
1213 return gt_timer_access(env
, GTIMER_PHYS
);
1216 static CPAccessResult
gt_vtimer_access(CPUARMState
*env
, const ARMCPRegInfo
*ri
)
1218 return gt_timer_access(env
, GTIMER_VIRT
);
1221 static CPAccessResult
gt_stimer_access(CPUARMState
*env
,
1222 const ARMCPRegInfo
*ri
)
1224 /* The AArch64 register view of the secure physical timer is
1225 * always accessible from EL3, and configurably accessible from
1228 switch (arm_current_el(env
)) {
1230 if (!arm_is_secure(env
)) {
1231 return CP_ACCESS_TRAP
;
1233 if (!(env
->cp15
.scr_el3
& SCR_ST
)) {
1234 return CP_ACCESS_TRAP_EL3
;
1236 return CP_ACCESS_OK
;
1239 return CP_ACCESS_TRAP
;
1241 return CP_ACCESS_OK
;
1243 g_assert_not_reached();
1247 static uint64_t gt_get_countervalue(CPUARMState
*env
)
1249 return qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL
) / GTIMER_SCALE
;
1252 static void gt_recalc_timer(ARMCPU
*cpu
, int timeridx
)
1254 ARMGenericTimer
*gt
= &cpu
->env
.cp15
.c14_timer
[timeridx
];
1257 /* Timer enabled: calculate and set current ISTATUS, irq, and
1258 * reset timer to when ISTATUS next has to change
1260 uint64_t offset
= timeridx
== GTIMER_VIRT
?
1261 cpu
->env
.cp15
.cntvoff_el2
: 0;
1262 uint64_t count
= gt_get_countervalue(&cpu
->env
);
1263 /* Note that this must be unsigned 64 bit arithmetic: */
1264 int istatus
= count
- offset
>= gt
->cval
;
1267 gt
->ctl
= deposit32(gt
->ctl
, 2, 1, istatus
);
1268 qemu_set_irq(cpu
->gt_timer_outputs
[timeridx
],
1269 (istatus
&& !(gt
->ctl
& 2)));
1271 /* Next transition is when count rolls back over to zero */
1272 nexttick
= UINT64_MAX
;
1274 /* Next transition is when we hit cval */
1275 nexttick
= gt
->cval
+ offset
;
1277 /* Note that the desired next expiry time might be beyond the
1278 * signed-64-bit range of a QEMUTimer -- in this case we just
1279 * set the timer for as far in the future as possible. When the
1280 * timer expires we will reset the timer for any remaining period.
1282 if (nexttick
> INT64_MAX
/ GTIMER_SCALE
) {
1283 nexttick
= INT64_MAX
/ GTIMER_SCALE
;
1285 timer_mod(cpu
->gt_timer
[timeridx
], nexttick
);
1287 /* Timer disabled: ISTATUS and timer output always clear */
1289 qemu_set_irq(cpu
->gt_timer_outputs
[timeridx
], 0);
1290 timer_del(cpu
->gt_timer
[timeridx
]);
1294 static void gt_timer_reset(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
1297 ARMCPU
*cpu
= arm_env_get_cpu(env
);
1299 timer_del(cpu
->gt_timer
[timeridx
]);
1302 static uint64_t gt_cnt_read(CPUARMState
*env
, const ARMCPRegInfo
*ri
)
1304 return gt_get_countervalue(env
);
1307 static uint64_t gt_virt_cnt_read(CPUARMState
*env
, const ARMCPRegInfo
*ri
)
1309 return gt_get_countervalue(env
) - env
->cp15
.cntvoff_el2
;
1312 static void gt_cval_write(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
1316 env
->cp15
.c14_timer
[timeridx
].cval
= value
;
1317 gt_recalc_timer(arm_env_get_cpu(env
), timeridx
);
1320 static uint64_t gt_tval_read(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
1323 uint64_t offset
= timeridx
== GTIMER_VIRT
? env
->cp15
.cntvoff_el2
: 0;
1325 return (uint32_t)(env
->cp15
.c14_timer
[timeridx
].cval
-
1326 (gt_get_countervalue(env
) - offset
));
1329 static void gt_tval_write(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
1333 uint64_t offset
= timeridx
== GTIMER_VIRT
? env
->cp15
.cntvoff_el2
: 0;
1335 env
->cp15
.c14_timer
[timeridx
].cval
= gt_get_countervalue(env
) - offset
+
1336 sextract64(value
, 0, 32);
1337 gt_recalc_timer(arm_env_get_cpu(env
), timeridx
);
1340 static void gt_ctl_write(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
1344 ARMCPU
*cpu
= arm_env_get_cpu(env
);
1345 uint32_t oldval
= env
->cp15
.c14_timer
[timeridx
].ctl
;
1347 env
->cp15
.c14_timer
[timeridx
].ctl
= deposit64(oldval
, 0, 2, value
);
1348 if ((oldval
^ value
) & 1) {
1349 /* Enable toggled */
1350 gt_recalc_timer(cpu
, timeridx
);
1351 } else if ((oldval
^ value
) & 2) {
1352 /* IMASK toggled: don't need to recalculate,
1353 * just set the interrupt line based on ISTATUS
1355 qemu_set_irq(cpu
->gt_timer_outputs
[timeridx
],
1356 (oldval
& 4) && !(value
& 2));
1360 static void gt_phys_timer_reset(CPUARMState
*env
, const ARMCPRegInfo
*ri
)
1362 gt_timer_reset(env
, ri
, GTIMER_PHYS
);
1365 static void gt_phys_cval_write(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
1368 gt_cval_write(env
, ri
, GTIMER_PHYS
, value
);
1371 static uint64_t gt_phys_tval_read(CPUARMState
*env
, const ARMCPRegInfo
*ri
)
1373 return gt_tval_read(env
, ri
, GTIMER_PHYS
);
1376 static void gt_phys_tval_write(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
1379 gt_tval_write(env
, ri
, GTIMER_PHYS
, value
);
1382 static void gt_phys_ctl_write(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
1385 gt_ctl_write(env
, ri
, GTIMER_PHYS
, value
);
1388 static void gt_virt_timer_reset(CPUARMState
*env
, const ARMCPRegInfo
*ri
)
1390 gt_timer_reset(env
, ri
, GTIMER_VIRT
);
1393 static void gt_virt_cval_write(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
1396 gt_cval_write(env
, ri
, GTIMER_VIRT
, value
);
1399 static uint64_t gt_virt_tval_read(CPUARMState
*env
, const ARMCPRegInfo
*ri
)
1401 return gt_tval_read(env
, ri
, GTIMER_VIRT
);
1404 static void gt_virt_tval_write(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
1407 gt_tval_write(env
, ri
, GTIMER_VIRT
, value
);
1410 static void gt_virt_ctl_write(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
1413 gt_ctl_write(env
, ri
, GTIMER_VIRT
, value
);
1416 static void gt_cntvoff_write(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
1419 ARMCPU
*cpu
= arm_env_get_cpu(env
);
1421 raw_write(env
, ri
, value
);
1422 gt_recalc_timer(cpu
, GTIMER_VIRT
);
1425 static void gt_hyp_timer_reset(CPUARMState
*env
, const ARMCPRegInfo
*ri
)
1427 gt_timer_reset(env
, ri
, GTIMER_HYP
);
1430 static void gt_hyp_cval_write(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
1433 gt_cval_write(env
, ri
, GTIMER_HYP
, value
);
1436 static uint64_t gt_hyp_tval_read(CPUARMState
*env
, const ARMCPRegInfo
*ri
)
1438 return gt_tval_read(env
, ri
, GTIMER_HYP
);
1441 static void gt_hyp_tval_write(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
1444 gt_tval_write(env
, ri
, GTIMER_HYP
, value
);
1447 static void gt_hyp_ctl_write(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
1450 gt_ctl_write(env
, ri
, GTIMER_HYP
, value
);
1453 static void gt_sec_timer_reset(CPUARMState
*env
, const ARMCPRegInfo
*ri
)
1455 gt_timer_reset(env
, ri
, GTIMER_SEC
);
1458 static void gt_sec_cval_write(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
1461 gt_cval_write(env
, ri
, GTIMER_SEC
, value
);
1464 static uint64_t gt_sec_tval_read(CPUARMState
*env
, const ARMCPRegInfo
*ri
)
1466 return gt_tval_read(env
, ri
, GTIMER_SEC
);
1469 static void gt_sec_tval_write(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
1472 gt_tval_write(env
, ri
, GTIMER_SEC
, value
);
1475 static void gt_sec_ctl_write(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
1478 gt_ctl_write(env
, ri
, GTIMER_SEC
, value
);
1481 void arm_gt_ptimer_cb(void *opaque
)
1483 ARMCPU
*cpu
= opaque
;
1485 gt_recalc_timer(cpu
, GTIMER_PHYS
);
1488 void arm_gt_vtimer_cb(void *opaque
)
1490 ARMCPU
*cpu
= opaque
;
1492 gt_recalc_timer(cpu
, GTIMER_VIRT
);
1495 void arm_gt_htimer_cb(void *opaque
)
1497 ARMCPU
*cpu
= opaque
;
1499 gt_recalc_timer(cpu
, GTIMER_HYP
);
1502 void arm_gt_stimer_cb(void *opaque
)
1504 ARMCPU
*cpu
= opaque
;
1506 gt_recalc_timer(cpu
, GTIMER_SEC
);
1509 static const ARMCPRegInfo generic_timer_cp_reginfo
[] = {
1510 /* Note that CNTFRQ is purely reads-as-written for the benefit
1511 * of software; writing it doesn't actually change the timer frequency.
1512 * Our reset value matches the fixed frequency we implement the timer at.
1514 { .name
= "CNTFRQ", .cp
= 15, .crn
= 14, .crm
= 0, .opc1
= 0, .opc2
= 0,
1515 .type
= ARM_CP_ALIAS
,
1516 .access
= PL1_RW
| PL0_R
, .accessfn
= gt_cntfrq_access
,
1517 .fieldoffset
= offsetoflow32(CPUARMState
, cp15
.c14_cntfrq
),
1519 { .name
= "CNTFRQ_EL0", .state
= ARM_CP_STATE_AA64
,
1520 .opc0
= 3, .opc1
= 3, .crn
= 14, .crm
= 0, .opc2
= 0,
1521 .access
= PL1_RW
| PL0_R
, .accessfn
= gt_cntfrq_access
,
1522 .fieldoffset
= offsetof(CPUARMState
, cp15
.c14_cntfrq
),
1523 .resetvalue
= (1000 * 1000 * 1000) / GTIMER_SCALE
,
1525 /* overall control: mostly access permissions */
1526 { .name
= "CNTKCTL", .state
= ARM_CP_STATE_BOTH
,
1527 .opc0
= 3, .opc1
= 0, .crn
= 14, .crm
= 1, .opc2
= 0,
1529 .fieldoffset
= offsetof(CPUARMState
, cp15
.c14_cntkctl
),
1532 /* per-timer control */
1533 { .name
= "CNTP_CTL", .cp
= 15, .crn
= 14, .crm
= 2, .opc1
= 0, .opc2
= 1,
1534 .secure
= ARM_CP_SECSTATE_NS
,
1535 .type
= ARM_CP_IO
| ARM_CP_ALIAS
, .access
= PL1_RW
| PL0_R
,
1536 .accessfn
= gt_ptimer_access
,
1537 .fieldoffset
= offsetoflow32(CPUARMState
,
1538 cp15
.c14_timer
[GTIMER_PHYS
].ctl
),
1539 .writefn
= gt_phys_ctl_write
, .raw_writefn
= raw_write
,
1541 { .name
= "CNTP_CTL(S)",
1542 .cp
= 15, .crn
= 14, .crm
= 2, .opc1
= 0, .opc2
= 1,
1543 .secure
= ARM_CP_SECSTATE_S
,
1544 .type
= ARM_CP_IO
| ARM_CP_ALIAS
, .access
= PL1_RW
| PL0_R
,
1545 .accessfn
= gt_ptimer_access
,
1546 .fieldoffset
= offsetoflow32(CPUARMState
,
1547 cp15
.c14_timer
[GTIMER_SEC
].ctl
),
1548 .writefn
= gt_sec_ctl_write
, .raw_writefn
= raw_write
,
1550 { .name
= "CNTP_CTL_EL0", .state
= ARM_CP_STATE_AA64
,
1551 .opc0
= 3, .opc1
= 3, .crn
= 14, .crm
= 2, .opc2
= 1,
1552 .type
= ARM_CP_IO
, .access
= PL1_RW
| PL0_R
,
1553 .accessfn
= gt_ptimer_access
,
1554 .fieldoffset
= offsetof(CPUARMState
, cp15
.c14_timer
[GTIMER_PHYS
].ctl
),
1556 .writefn
= gt_phys_ctl_write
, .raw_writefn
= raw_write
,
1558 { .name
= "CNTV_CTL", .cp
= 15, .crn
= 14, .crm
= 3, .opc1
= 0, .opc2
= 1,
1559 .type
= ARM_CP_IO
| ARM_CP_ALIAS
, .access
= PL1_RW
| PL0_R
,
1560 .accessfn
= gt_vtimer_access
,
1561 .fieldoffset
= offsetoflow32(CPUARMState
,
1562 cp15
.c14_timer
[GTIMER_VIRT
].ctl
),
1563 .writefn
= gt_virt_ctl_write
, .raw_writefn
= raw_write
,
1565 { .name
= "CNTV_CTL_EL0", .state
= ARM_CP_STATE_AA64
,
1566 .opc0
= 3, .opc1
= 3, .crn
= 14, .crm
= 3, .opc2
= 1,
1567 .type
= ARM_CP_IO
, .access
= PL1_RW
| PL0_R
,
1568 .accessfn
= gt_vtimer_access
,
1569 .fieldoffset
= offsetof(CPUARMState
, cp15
.c14_timer
[GTIMER_VIRT
].ctl
),
1571 .writefn
= gt_virt_ctl_write
, .raw_writefn
= raw_write
,
1573 /* TimerValue views: a 32 bit downcounting view of the underlying state */
1574 { .name
= "CNTP_TVAL", .cp
= 15, .crn
= 14, .crm
= 2, .opc1
= 0, .opc2
= 0,
1575 .secure
= ARM_CP_SECSTATE_NS
,
1576 .type
= ARM_CP_NO_RAW
| ARM_CP_IO
, .access
= PL1_RW
| PL0_R
,
1577 .accessfn
= gt_ptimer_access
,
1578 .readfn
= gt_phys_tval_read
, .writefn
= gt_phys_tval_write
,
1580 { .name
= "CNTP_TVAL(S)",
1581 .cp
= 15, .crn
= 14, .crm
= 2, .opc1
= 0, .opc2
= 0,
1582 .secure
= ARM_CP_SECSTATE_S
,
1583 .type
= ARM_CP_NO_RAW
| ARM_CP_IO
, .access
= PL1_RW
| PL0_R
,
1584 .accessfn
= gt_ptimer_access
,
1585 .readfn
= gt_sec_tval_read
, .writefn
= gt_sec_tval_write
,
1587 { .name
= "CNTP_TVAL_EL0", .state
= ARM_CP_STATE_AA64
,
1588 .opc0
= 3, .opc1
= 3, .crn
= 14, .crm
= 2, .opc2
= 0,
1589 .type
= ARM_CP_NO_RAW
| ARM_CP_IO
, .access
= PL1_RW
| PL0_R
,
1590 .accessfn
= gt_ptimer_access
, .resetfn
= gt_phys_timer_reset
,
1591 .readfn
= gt_phys_tval_read
, .writefn
= gt_phys_tval_write
,
1593 { .name
= "CNTV_TVAL", .cp
= 15, .crn
= 14, .crm
= 3, .opc1
= 0, .opc2
= 0,
1594 .type
= ARM_CP_NO_RAW
| ARM_CP_IO
, .access
= PL1_RW
| PL0_R
,
1595 .accessfn
= gt_vtimer_access
,
1596 .readfn
= gt_virt_tval_read
, .writefn
= gt_virt_tval_write
,
1598 { .name
= "CNTV_TVAL_EL0", .state
= ARM_CP_STATE_AA64
,
1599 .opc0
= 3, .opc1
= 3, .crn
= 14, .crm
= 3, .opc2
= 0,
1600 .type
= ARM_CP_NO_RAW
| ARM_CP_IO
, .access
= PL1_RW
| PL0_R
,
1601 .accessfn
= gt_vtimer_access
, .resetfn
= gt_virt_timer_reset
,
1602 .readfn
= gt_virt_tval_read
, .writefn
= gt_virt_tval_write
,
1604 /* The counter itself */
1605 { .name
= "CNTPCT", .cp
= 15, .crm
= 14, .opc1
= 0,
1606 .access
= PL0_R
, .type
= ARM_CP_64BIT
| ARM_CP_NO_RAW
| ARM_CP_IO
,
1607 .accessfn
= gt_pct_access
,
1608 .readfn
= gt_cnt_read
, .resetfn
= arm_cp_reset_ignore
,
1610 { .name
= "CNTPCT_EL0", .state
= ARM_CP_STATE_AA64
,
1611 .opc0
= 3, .opc1
= 3, .crn
= 14, .crm
= 0, .opc2
= 1,
1612 .access
= PL0_R
, .type
= ARM_CP_NO_RAW
| ARM_CP_IO
,
1613 .accessfn
= gt_pct_access
, .readfn
= gt_cnt_read
,
1615 { .name
= "CNTVCT", .cp
= 15, .crm
= 14, .opc1
= 1,
1616 .access
= PL0_R
, .type
= ARM_CP_64BIT
| ARM_CP_NO_RAW
| ARM_CP_IO
,
1617 .accessfn
= gt_vct_access
,
1618 .readfn
= gt_virt_cnt_read
, .resetfn
= arm_cp_reset_ignore
,
1620 { .name
= "CNTVCT_EL0", .state
= ARM_CP_STATE_AA64
,
1621 .opc0
= 3, .opc1
= 3, .crn
= 14, .crm
= 0, .opc2
= 2,
1622 .access
= PL0_R
, .type
= ARM_CP_NO_RAW
| ARM_CP_IO
,
1623 .accessfn
= gt_vct_access
, .readfn
= gt_virt_cnt_read
,
1625 /* Comparison value, indicating when the timer goes off */
1626 { .name
= "CNTP_CVAL", .cp
= 15, .crm
= 14, .opc1
= 2,
1627 .secure
= ARM_CP_SECSTATE_NS
,
1628 .access
= PL1_RW
| PL0_R
,
1629 .type
= ARM_CP_64BIT
| ARM_CP_IO
| ARM_CP_ALIAS
,
1630 .fieldoffset
= offsetof(CPUARMState
, cp15
.c14_timer
[GTIMER_PHYS
].cval
),
1631 .accessfn
= gt_ptimer_access
,
1632 .writefn
= gt_phys_cval_write
, .raw_writefn
= raw_write
,
1634 { .name
= "CNTP_CVAL(S)", .cp
= 15, .crm
= 14, .opc1
= 2,
1635 .secure
= ARM_CP_SECSTATE_S
,
1636 .access
= PL1_RW
| PL0_R
,
1637 .type
= ARM_CP_64BIT
| ARM_CP_IO
| ARM_CP_ALIAS
,
1638 .fieldoffset
= offsetof(CPUARMState
, cp15
.c14_timer
[GTIMER_SEC
].cval
),
1639 .accessfn
= gt_ptimer_access
,
1640 .writefn
= gt_sec_cval_write
, .raw_writefn
= raw_write
,
1642 { .name
= "CNTP_CVAL_EL0", .state
= ARM_CP_STATE_AA64
,
1643 .opc0
= 3, .opc1
= 3, .crn
= 14, .crm
= 2, .opc2
= 2,
1644 .access
= PL1_RW
| PL0_R
,
1646 .fieldoffset
= offsetof(CPUARMState
, cp15
.c14_timer
[GTIMER_PHYS
].cval
),
1647 .resetvalue
= 0, .accessfn
= gt_ptimer_access
,
1648 .writefn
= gt_phys_cval_write
, .raw_writefn
= raw_write
,
1650 { .name
= "CNTV_CVAL", .cp
= 15, .crm
= 14, .opc1
= 3,
1651 .access
= PL1_RW
| PL0_R
,
1652 .type
= ARM_CP_64BIT
| ARM_CP_IO
| ARM_CP_ALIAS
,
1653 .fieldoffset
= offsetof(CPUARMState
, cp15
.c14_timer
[GTIMER_VIRT
].cval
),
1654 .accessfn
= gt_vtimer_access
,
1655 .writefn
= gt_virt_cval_write
, .raw_writefn
= raw_write
,
1657 { .name
= "CNTV_CVAL_EL0", .state
= ARM_CP_STATE_AA64
,
1658 .opc0
= 3, .opc1
= 3, .crn
= 14, .crm
= 3, .opc2
= 2,
1659 .access
= PL1_RW
| PL0_R
,
1661 .fieldoffset
= offsetof(CPUARMState
, cp15
.c14_timer
[GTIMER_VIRT
].cval
),
1662 .resetvalue
= 0, .accessfn
= gt_vtimer_access
,
1663 .writefn
= gt_virt_cval_write
, .raw_writefn
= raw_write
,
1665 /* Secure timer -- this is actually restricted to only EL3
1666 * and configurably Secure-EL1 via the accessfn.
1668 { .name
= "CNTPS_TVAL_EL1", .state
= ARM_CP_STATE_AA64
,
1669 .opc0
= 3, .opc1
= 7, .crn
= 14, .crm
= 2, .opc2
= 0,
1670 .type
= ARM_CP_NO_RAW
| ARM_CP_IO
, .access
= PL1_RW
,
1671 .accessfn
= gt_stimer_access
,
1672 .readfn
= gt_sec_tval_read
,
1673 .writefn
= gt_sec_tval_write
,
1674 .resetfn
= gt_sec_timer_reset
,
1676 { .name
= "CNTPS_CTL_EL1", .state
= ARM_CP_STATE_AA64
,
1677 .opc0
= 3, .opc1
= 7, .crn
= 14, .crm
= 2, .opc2
= 1,
1678 .type
= ARM_CP_IO
, .access
= PL1_RW
,
1679 .accessfn
= gt_stimer_access
,
1680 .fieldoffset
= offsetof(CPUARMState
, cp15
.c14_timer
[GTIMER_SEC
].ctl
),
1682 .writefn
= gt_sec_ctl_write
, .raw_writefn
= raw_write
,
1684 { .name
= "CNTPS_CVAL_EL1", .state
= ARM_CP_STATE_AA64
,
1685 .opc0
= 3, .opc1
= 7, .crn
= 14, .crm
= 2, .opc2
= 2,
1686 .type
= ARM_CP_IO
, .access
= PL1_RW
,
1687 .accessfn
= gt_stimer_access
,
1688 .fieldoffset
= offsetof(CPUARMState
, cp15
.c14_timer
[GTIMER_SEC
].cval
),
1689 .writefn
= gt_sec_cval_write
, .raw_writefn
= raw_write
,
1695 /* In user-mode none of the generic timer registers are accessible,
1696 * and their implementation depends on QEMU_CLOCK_VIRTUAL and qdev gpio outputs,
1697 * so instead just don't register any of them.
1699 static const ARMCPRegInfo generic_timer_cp_reginfo
[] = {
1705 static void par_write(CPUARMState
*env
, const ARMCPRegInfo
*ri
, uint64_t value
)
1707 if (arm_feature(env
, ARM_FEATURE_LPAE
)) {
1708 raw_write(env
, ri
, value
);
1709 } else if (arm_feature(env
, ARM_FEATURE_V7
)) {
1710 raw_write(env
, ri
, value
& 0xfffff6ff);
1712 raw_write(env
, ri
, value
& 0xfffff1ff);
1716 #ifndef CONFIG_USER_ONLY
1717 /* get_phys_addr() isn't present for user-mode-only targets */
1719 static CPAccessResult
ats_access(CPUARMState
*env
, const ARMCPRegInfo
*ri
)
1722 /* The ATS12NSO* operations must trap to EL3 if executed in
1723 * Secure EL1 (which can only happen if EL3 is AArch64).
1724 * They are simply UNDEF if executed from NS EL1.
1725 * They function normally from EL2 or EL3.
1727 if (arm_current_el(env
) == 1) {
1728 if (arm_is_secure_below_el3(env
)) {
1729 return CP_ACCESS_TRAP_UNCATEGORIZED_EL3
;
1731 return CP_ACCESS_TRAP_UNCATEGORIZED
;
1734 return CP_ACCESS_OK
;
1737 static uint64_t do_ats_write(CPUARMState
*env
, uint64_t value
,
1738 int access_type
, ARMMMUIdx mmu_idx
)
1741 target_ulong page_size
;
1746 MemTxAttrs attrs
= {};
1748 ret
= get_phys_addr(env
, value
, access_type
, mmu_idx
,
1749 &phys_addr
, &attrs
, &prot
, &page_size
, &fsr
);
1750 if (extended_addresses_enabled(env
)) {
1751 /* fsr is a DFSR/IFSR value for the long descriptor
1752 * translation table format, but with WnR always clear.
1753 * Convert it to a 64-bit PAR.
1755 par64
= (1 << 11); /* LPAE bit always set */
1757 par64
|= phys_addr
& ~0xfffULL
;
1758 if (!attrs
.secure
) {
1759 par64
|= (1 << 9); /* NS */
1761 /* We don't set the ATTR or SH fields in the PAR. */
1764 par64
|= (fsr
& 0x3f) << 1; /* FS */
1765 /* Note that S2WLK and FSTAGE are always zero, because we don't
1766 * implement virtualization and therefore there can't be a stage 2
1771 /* fsr is a DFSR/IFSR value for the short descriptor
1772 * translation table format (with WnR always clear).
1773 * Convert it to a 32-bit PAR.
1776 /* We do not set any attribute bits in the PAR */
1777 if (page_size
== (1 << 24)
1778 && arm_feature(env
, ARM_FEATURE_V7
)) {
1779 par64
= (phys_addr
& 0xff000000) | (1 << 1);
1781 par64
= phys_addr
& 0xfffff000;
1783 if (!attrs
.secure
) {
1784 par64
|= (1 << 9); /* NS */
1787 par64
= ((fsr
& (1 << 10)) >> 5) | ((fsr
& (1 << 12)) >> 6) |
1788 ((fsr
& 0xf) << 1) | 1;
1794 static void ats_write(CPUARMState
*env
, const ARMCPRegInfo
*ri
, uint64_t value
)
1796 int access_type
= ri
->opc2
& 1;
1799 int el
= arm_current_el(env
);
1800 bool secure
= arm_is_secure_below_el3(env
);
1802 switch (ri
->opc2
& 6) {
1804 /* stage 1 current state PL1: ATS1CPR, ATS1CPW */
1807 mmu_idx
= ARMMMUIdx_S1E3
;
1810 mmu_idx
= ARMMMUIdx_S1NSE1
;
1813 mmu_idx
= secure
? ARMMMUIdx_S1SE1
: ARMMMUIdx_S1NSE1
;
1816 g_assert_not_reached();
1820 /* stage 1 current state PL0: ATS1CUR, ATS1CUW */
1823 mmu_idx
= ARMMMUIdx_S1SE0
;
1826 mmu_idx
= ARMMMUIdx_S1NSE0
;
1829 mmu_idx
= secure
? ARMMMUIdx_S1SE0
: ARMMMUIdx_S1NSE0
;
1832 g_assert_not_reached();
1836 /* stage 1+2 NonSecure PL1: ATS12NSOPR, ATS12NSOPW */
1837 mmu_idx
= ARMMMUIdx_S12NSE1
;
1840 /* stage 1+2 NonSecure PL0: ATS12NSOUR, ATS12NSOUW */
1841 mmu_idx
= ARMMMUIdx_S12NSE0
;
1844 g_assert_not_reached();
1847 par64
= do_ats_write(env
, value
, access_type
, mmu_idx
);
1849 A32_BANKED_CURRENT_REG_SET(env
, par
, par64
);
1852 static void ats1h_write(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
1855 int access_type
= ri
->opc2
& 1;
1858 par64
= do_ats_write(env
, value
, access_type
, ARMMMUIdx_S2NS
);
1860 A32_BANKED_CURRENT_REG_SET(env
, par
, par64
);
1863 static CPAccessResult
at_s1e2_access(CPUARMState
*env
, const ARMCPRegInfo
*ri
)
1865 if (arm_current_el(env
) == 3 && !(env
->cp15
.scr_el3
& SCR_NS
)) {
1866 return CP_ACCESS_TRAP
;
1868 return CP_ACCESS_OK
;
1871 static void ats_write64(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
1874 int access_type
= ri
->opc2
& 1;
1876 int secure
= arm_is_secure_below_el3(env
);
1878 switch (ri
->opc2
& 6) {
1881 case 0: /* AT S1E1R, AT S1E1W */
1882 mmu_idx
= secure
? ARMMMUIdx_S1SE1
: ARMMMUIdx_S1NSE1
;
1884 case 4: /* AT S1E2R, AT S1E2W */
1885 mmu_idx
= ARMMMUIdx_S1E2
;
1887 case 6: /* AT S1E3R, AT S1E3W */
1888 mmu_idx
= ARMMMUIdx_S1E3
;
1891 g_assert_not_reached();
1894 case 2: /* AT S1E0R, AT S1E0W */
1895 mmu_idx
= secure
? ARMMMUIdx_S1SE0
: ARMMMUIdx_S1NSE0
;
1897 case 4: /* AT S12E1R, AT S12E1W */
1898 mmu_idx
= secure
? ARMMMUIdx_S1SE1
: ARMMMUIdx_S12NSE1
;
1900 case 6: /* AT S12E0R, AT S12E0W */
1901 mmu_idx
= secure
? ARMMMUIdx_S1SE0
: ARMMMUIdx_S12NSE0
;
1904 g_assert_not_reached();
1907 env
->cp15
.par_el
[1] = do_ats_write(env
, value
, access_type
, mmu_idx
);
1911 static const ARMCPRegInfo vapa_cp_reginfo
[] = {
1912 { .name
= "PAR", .cp
= 15, .crn
= 7, .crm
= 4, .opc1
= 0, .opc2
= 0,
1913 .access
= PL1_RW
, .resetvalue
= 0,
1914 .bank_fieldoffsets
= { offsetoflow32(CPUARMState
, cp15
.par_s
),
1915 offsetoflow32(CPUARMState
, cp15
.par_ns
) },
1916 .writefn
= par_write
},
1917 #ifndef CONFIG_USER_ONLY
1918 /* This underdecoding is safe because the reginfo is NO_RAW. */
1919 { .name
= "ATS", .cp
= 15, .crn
= 7, .crm
= 8, .opc1
= 0, .opc2
= CP_ANY
,
1920 .access
= PL1_W
, .accessfn
= ats_access
,
1921 .writefn
= ats_write
, .type
= ARM_CP_NO_RAW
},
1926 /* Return basic MPU access permission bits. */
1927 static uint32_t simple_mpu_ap_bits(uint32_t val
)
1934 for (i
= 0; i
< 16; i
+= 2) {
1935 ret
|= (val
>> i
) & mask
;
1941 /* Pad basic MPU access permission bits to extended format. */
1942 static uint32_t extended_mpu_ap_bits(uint32_t val
)
1949 for (i
= 0; i
< 16; i
+= 2) {
1950 ret
|= (val
& mask
) << i
;
1956 static void pmsav5_data_ap_write(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
1959 env
->cp15
.pmsav5_data_ap
= extended_mpu_ap_bits(value
);
1962 static uint64_t pmsav5_data_ap_read(CPUARMState
*env
, const ARMCPRegInfo
*ri
)
1964 return simple_mpu_ap_bits(env
->cp15
.pmsav5_data_ap
);
1967 static void pmsav5_insn_ap_write(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
1970 env
->cp15
.pmsav5_insn_ap
= extended_mpu_ap_bits(value
);
1973 static uint64_t pmsav5_insn_ap_read(CPUARMState
*env
, const ARMCPRegInfo
*ri
)
1975 return simple_mpu_ap_bits(env
->cp15
.pmsav5_insn_ap
);
1978 static uint64_t pmsav7_read(CPUARMState
*env
, const ARMCPRegInfo
*ri
)
1980 uint32_t *u32p
= *(uint32_t **)raw_ptr(env
, ri
);
1986 u32p
+= env
->cp15
.c6_rgnr
;
1990 static void pmsav7_write(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
1993 ARMCPU
*cpu
= arm_env_get_cpu(env
);
1994 uint32_t *u32p
= *(uint32_t **)raw_ptr(env
, ri
);
2000 u32p
+= env
->cp15
.c6_rgnr
;
2001 tlb_flush(CPU(cpu
), 1); /* Mappings may have changed - purge! */
2005 static void pmsav7_reset(CPUARMState
*env
, const ARMCPRegInfo
*ri
)
2007 ARMCPU
*cpu
= arm_env_get_cpu(env
);
2008 uint32_t *u32p
= *(uint32_t **)raw_ptr(env
, ri
);
2014 memset(u32p
, 0, sizeof(*u32p
) * cpu
->pmsav7_dregion
);
2017 static void pmsav7_rgnr_write(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
2020 ARMCPU
*cpu
= arm_env_get_cpu(env
);
2021 uint32_t nrgs
= cpu
->pmsav7_dregion
;
2023 if (value
>= nrgs
) {
2024 qemu_log_mask(LOG_GUEST_ERROR
,
2025 "PMSAv7 RGNR write >= # supported regions, %" PRIu32
2026 " > %" PRIu32
"\n", (uint32_t)value
, nrgs
);
2030 raw_write(env
, ri
, value
);
2033 static const ARMCPRegInfo pmsav7_cp_reginfo
[] = {
2034 { .name
= "DRBAR", .cp
= 15, .crn
= 6, .opc1
= 0, .crm
= 1, .opc2
= 0,
2035 .access
= PL1_RW
, .type
= ARM_CP_NO_RAW
,
2036 .fieldoffset
= offsetof(CPUARMState
, pmsav7
.drbar
),
2037 .readfn
= pmsav7_read
, .writefn
= pmsav7_write
, .resetfn
= pmsav7_reset
},
2038 { .name
= "DRSR", .cp
= 15, .crn
= 6, .opc1
= 0, .crm
= 1, .opc2
= 2,
2039 .access
= PL1_RW
, .type
= ARM_CP_NO_RAW
,
2040 .fieldoffset
= offsetof(CPUARMState
, pmsav7
.drsr
),
2041 .readfn
= pmsav7_read
, .writefn
= pmsav7_write
, .resetfn
= pmsav7_reset
},
2042 { .name
= "DRACR", .cp
= 15, .crn
= 6, .opc1
= 0, .crm
= 1, .opc2
= 4,
2043 .access
= PL1_RW
, .type
= ARM_CP_NO_RAW
,
2044 .fieldoffset
= offsetof(CPUARMState
, pmsav7
.dracr
),
2045 .readfn
= pmsav7_read
, .writefn
= pmsav7_write
, .resetfn
= pmsav7_reset
},
2046 { .name
= "RGNR", .cp
= 15, .crn
= 6, .opc1
= 0, .crm
= 2, .opc2
= 0,
2048 .fieldoffset
= offsetof(CPUARMState
, cp15
.c6_rgnr
),
2049 .writefn
= pmsav7_rgnr_write
},
2053 static const ARMCPRegInfo pmsav5_cp_reginfo
[] = {
2054 { .name
= "DATA_AP", .cp
= 15, .crn
= 5, .crm
= 0, .opc1
= 0, .opc2
= 0,
2055 .access
= PL1_RW
, .type
= ARM_CP_ALIAS
,
2056 .fieldoffset
= offsetof(CPUARMState
, cp15
.pmsav5_data_ap
),
2057 .readfn
= pmsav5_data_ap_read
, .writefn
= pmsav5_data_ap_write
, },
2058 { .name
= "INSN_AP", .cp
= 15, .crn
= 5, .crm
= 0, .opc1
= 0, .opc2
= 1,
2059 .access
= PL1_RW
, .type
= ARM_CP_ALIAS
,
2060 .fieldoffset
= offsetof(CPUARMState
, cp15
.pmsav5_insn_ap
),
2061 .readfn
= pmsav5_insn_ap_read
, .writefn
= pmsav5_insn_ap_write
, },
2062 { .name
= "DATA_EXT_AP", .cp
= 15, .crn
= 5, .crm
= 0, .opc1
= 0, .opc2
= 2,
2064 .fieldoffset
= offsetof(CPUARMState
, cp15
.pmsav5_data_ap
),
2066 { .name
= "INSN_EXT_AP", .cp
= 15, .crn
= 5, .crm
= 0, .opc1
= 0, .opc2
= 3,
2068 .fieldoffset
= offsetof(CPUARMState
, cp15
.pmsav5_insn_ap
),
2070 { .name
= "DCACHE_CFG", .cp
= 15, .crn
= 2, .crm
= 0, .opc1
= 0, .opc2
= 0,
2072 .fieldoffset
= offsetof(CPUARMState
, cp15
.c2_data
), .resetvalue
= 0, },
2073 { .name
= "ICACHE_CFG", .cp
= 15, .crn
= 2, .crm
= 0, .opc1
= 0, .opc2
= 1,
2075 .fieldoffset
= offsetof(CPUARMState
, cp15
.c2_insn
), .resetvalue
= 0, },
2076 /* Protection region base and size registers */
2077 { .name
= "946_PRBS0", .cp
= 15, .crn
= 6, .crm
= 0, .opc1
= 0,
2078 .opc2
= CP_ANY
, .access
= PL1_RW
, .resetvalue
= 0,
2079 .fieldoffset
= offsetof(CPUARMState
, cp15
.c6_region
[0]) },
2080 { .name
= "946_PRBS1", .cp
= 15, .crn
= 6, .crm
= 1, .opc1
= 0,
2081 .opc2
= CP_ANY
, .access
= PL1_RW
, .resetvalue
= 0,
2082 .fieldoffset
= offsetof(CPUARMState
, cp15
.c6_region
[1]) },
2083 { .name
= "946_PRBS2", .cp
= 15, .crn
= 6, .crm
= 2, .opc1
= 0,
2084 .opc2
= CP_ANY
, .access
= PL1_RW
, .resetvalue
= 0,
2085 .fieldoffset
= offsetof(CPUARMState
, cp15
.c6_region
[2]) },
2086 { .name
= "946_PRBS3", .cp
= 15, .crn
= 6, .crm
= 3, .opc1
= 0,
2087 .opc2
= CP_ANY
, .access
= PL1_RW
, .resetvalue
= 0,
2088 .fieldoffset
= offsetof(CPUARMState
, cp15
.c6_region
[3]) },
2089 { .name
= "946_PRBS4", .cp
= 15, .crn
= 6, .crm
= 4, .opc1
= 0,
2090 .opc2
= CP_ANY
, .access
= PL1_RW
, .resetvalue
= 0,
2091 .fieldoffset
= offsetof(CPUARMState
, cp15
.c6_region
[4]) },
2092 { .name
= "946_PRBS5", .cp
= 15, .crn
= 6, .crm
= 5, .opc1
= 0,
2093 .opc2
= CP_ANY
, .access
= PL1_RW
, .resetvalue
= 0,
2094 .fieldoffset
= offsetof(CPUARMState
, cp15
.c6_region
[5]) },
2095 { .name
= "946_PRBS6", .cp
= 15, .crn
= 6, .crm
= 6, .opc1
= 0,
2096 .opc2
= CP_ANY
, .access
= PL1_RW
, .resetvalue
= 0,
2097 .fieldoffset
= offsetof(CPUARMState
, cp15
.c6_region
[6]) },
2098 { .name
= "946_PRBS7", .cp
= 15, .crn
= 6, .crm
= 7, .opc1
= 0,
2099 .opc2
= CP_ANY
, .access
= PL1_RW
, .resetvalue
= 0,
2100 .fieldoffset
= offsetof(CPUARMState
, cp15
.c6_region
[7]) },
2104 static void vmsa_ttbcr_raw_write(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
2107 TCR
*tcr
= raw_ptr(env
, ri
);
2108 int maskshift
= extract32(value
, 0, 3);
2110 if (!arm_feature(env
, ARM_FEATURE_V8
)) {
2111 if (arm_feature(env
, ARM_FEATURE_LPAE
) && (value
& TTBCR_EAE
)) {
2112 /* Pre ARMv8 bits [21:19], [15:14] and [6:3] are UNK/SBZP when
2113 * using Long-desciptor translation table format */
2114 value
&= ~((7 << 19) | (3 << 14) | (0xf << 3));
2115 } else if (arm_feature(env
, ARM_FEATURE_EL3
)) {
2116 /* In an implementation that includes the Security Extensions
2117 * TTBCR has additional fields PD0 [4] and PD1 [5] for
2118 * Short-descriptor translation table format.
2120 value
&= TTBCR_PD1
| TTBCR_PD0
| TTBCR_N
;
2126 /* Update the masks corresponding to the TCR bank being written
2127 * Note that we always calculate mask and base_mask, but
2128 * they are only used for short-descriptor tables (ie if EAE is 0);
2129 * for long-descriptor tables the TCR fields are used differently
2130 * and the mask and base_mask values are meaningless.
2132 tcr
->raw_tcr
= value
;
2133 tcr
->mask
= ~(((uint32_t)0xffffffffu
) >> maskshift
);
2134 tcr
->base_mask
= ~((uint32_t)0x3fffu
>> maskshift
);
2137 static void vmsa_ttbcr_write(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
2140 ARMCPU
*cpu
= arm_env_get_cpu(env
);
2142 if (arm_feature(env
, ARM_FEATURE_LPAE
)) {
2143 /* With LPAE the TTBCR could result in a change of ASID
2144 * via the TTBCR.A1 bit, so do a TLB flush.
2146 tlb_flush(CPU(cpu
), 1);
2148 vmsa_ttbcr_raw_write(env
, ri
, value
);
2151 static void vmsa_ttbcr_reset(CPUARMState
*env
, const ARMCPRegInfo
*ri
)
2153 TCR
*tcr
= raw_ptr(env
, ri
);
2155 /* Reset both the TCR as well as the masks corresponding to the bank of
2156 * the TCR being reset.
2160 tcr
->base_mask
= 0xffffc000u
;
2163 static void vmsa_tcr_el1_write(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
2166 ARMCPU
*cpu
= arm_env_get_cpu(env
);
2167 TCR
*tcr
= raw_ptr(env
, ri
);
2169 /* For AArch64 the A1 bit could result in a change of ASID, so TLB flush. */
2170 tlb_flush(CPU(cpu
), 1);
2171 tcr
->raw_tcr
= value
;
2174 static void vmsa_ttbr_write(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
2177 /* 64 bit accesses to the TTBRs can change the ASID and so we
2178 * must flush the TLB.
2180 if (cpreg_field_is_64bit(ri
)) {
2181 ARMCPU
*cpu
= arm_env_get_cpu(env
);
2183 tlb_flush(CPU(cpu
), 1);
2185 raw_write(env
, ri
, value
);
2188 static const ARMCPRegInfo vmsa_pmsa_cp_reginfo
[] = {
2189 { .name
= "DFSR", .cp
= 15, .crn
= 5, .crm
= 0, .opc1
= 0, .opc2
= 0,
2190 .access
= PL1_RW
, .type
= ARM_CP_ALIAS
,
2191 .bank_fieldoffsets
= { offsetoflow32(CPUARMState
, cp15
.dfsr_s
),
2192 offsetoflow32(CPUARMState
, cp15
.dfsr_ns
) }, },
2193 { .name
= "IFSR", .cp
= 15, .crn
= 5, .crm
= 0, .opc1
= 0, .opc2
= 1,
2194 .access
= PL1_RW
, .resetvalue
= 0,
2195 .bank_fieldoffsets
= { offsetoflow32(CPUARMState
, cp15
.ifsr_s
),
2196 offsetoflow32(CPUARMState
, cp15
.ifsr_ns
) } },
2197 { .name
= "DFAR", .cp
= 15, .opc1
= 0, .crn
= 6, .crm
= 0, .opc2
= 0,
2198 .access
= PL1_RW
, .resetvalue
= 0,
2199 .bank_fieldoffsets
= { offsetof(CPUARMState
, cp15
.dfar_s
),
2200 offsetof(CPUARMState
, cp15
.dfar_ns
) } },
2201 { .name
= "FAR_EL1", .state
= ARM_CP_STATE_AA64
,
2202 .opc0
= 3, .crn
= 6, .crm
= 0, .opc1
= 0, .opc2
= 0,
2203 .access
= PL1_RW
, .fieldoffset
= offsetof(CPUARMState
, cp15
.far_el
[1]),
2208 static const ARMCPRegInfo vmsa_cp_reginfo
[] = {
2209 { .name
= "ESR_EL1", .state
= ARM_CP_STATE_AA64
,
2210 .opc0
= 3, .crn
= 5, .crm
= 2, .opc1
= 0, .opc2
= 0,
2212 .fieldoffset
= offsetof(CPUARMState
, cp15
.esr_el
[1]), .resetvalue
= 0, },
2213 { .name
= "TTBR0_EL1", .state
= ARM_CP_STATE_BOTH
,
2214 .opc0
= 3, .opc1
= 0, .crn
= 2, .crm
= 0, .opc2
= 0,
2215 .access
= PL1_RW
, .writefn
= vmsa_ttbr_write
, .resetvalue
= 0,
2216 .bank_fieldoffsets
= { offsetof(CPUARMState
, cp15
.ttbr0_s
),
2217 offsetof(CPUARMState
, cp15
.ttbr0_ns
) } },
2218 { .name
= "TTBR1_EL1", .state
= ARM_CP_STATE_BOTH
,
2219 .opc0
= 3, .opc1
= 0, .crn
= 2, .crm
= 0, .opc2
= 1,
2220 .access
= PL1_RW
, .writefn
= vmsa_ttbr_write
, .resetvalue
= 0,
2221 .bank_fieldoffsets
= { offsetof(CPUARMState
, cp15
.ttbr1_s
),
2222 offsetof(CPUARMState
, cp15
.ttbr1_ns
) } },
2223 { .name
= "TCR_EL1", .state
= ARM_CP_STATE_AA64
,
2224 .opc0
= 3, .crn
= 2, .crm
= 0, .opc1
= 0, .opc2
= 2,
2225 .access
= PL1_RW
, .writefn
= vmsa_tcr_el1_write
,
2226 .resetfn
= vmsa_ttbcr_reset
, .raw_writefn
= raw_write
,
2227 .fieldoffset
= offsetof(CPUARMState
, cp15
.tcr_el
[1]) },
2228 { .name
= "TTBCR", .cp
= 15, .crn
= 2, .crm
= 0, .opc1
= 0, .opc2
= 2,
2229 .access
= PL1_RW
, .type
= ARM_CP_ALIAS
, .writefn
= vmsa_ttbcr_write
,
2230 .raw_writefn
= vmsa_ttbcr_raw_write
,
2231 .bank_fieldoffsets
= { offsetoflow32(CPUARMState
, cp15
.tcr_el
[3]),
2232 offsetoflow32(CPUARMState
, cp15
.tcr_el
[1])} },
2236 static void omap_ticonfig_write(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
2239 env
->cp15
.c15_ticonfig
= value
& 0xe7;
2240 /* The OS_TYPE bit in this register changes the reported CPUID! */
2241 env
->cp15
.c0_cpuid
= (value
& (1 << 5)) ?
2242 ARM_CPUID_TI915T
: ARM_CPUID_TI925T
;
2245 static void omap_threadid_write(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
2248 env
->cp15
.c15_threadid
= value
& 0xffff;
2251 static void omap_wfi_write(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
2254 /* Wait-for-interrupt (deprecated) */
2255 cpu_interrupt(CPU(arm_env_get_cpu(env
)), CPU_INTERRUPT_HALT
);
2258 static void omap_cachemaint_write(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
2261 /* On OMAP there are registers indicating the max/min index of dcache lines
2262 * containing a dirty line; cache flush operations have to reset these.
2264 env
->cp15
.c15_i_max
= 0x000;
2265 env
->cp15
.c15_i_min
= 0xff0;
2268 static const ARMCPRegInfo omap_cp_reginfo
[] = {
2269 { .name
= "DFSR", .cp
= 15, .crn
= 5, .crm
= CP_ANY
,
2270 .opc1
= CP_ANY
, .opc2
= CP_ANY
, .access
= PL1_RW
, .type
= ARM_CP_OVERRIDE
,
2271 .fieldoffset
= offsetoflow32(CPUARMState
, cp15
.esr_el
[1]),
2273 { .name
= "", .cp
= 15, .crn
= 15, .crm
= 0, .opc1
= 0, .opc2
= 0,
2274 .access
= PL1_RW
, .type
= ARM_CP_NOP
},
2275 { .name
= "TICONFIG", .cp
= 15, .crn
= 15, .crm
= 1, .opc1
= 0, .opc2
= 0,
2277 .fieldoffset
= offsetof(CPUARMState
, cp15
.c15_ticonfig
), .resetvalue
= 0,
2278 .writefn
= omap_ticonfig_write
},
2279 { .name
= "IMAX", .cp
= 15, .crn
= 15, .crm
= 2, .opc1
= 0, .opc2
= 0,
2281 .fieldoffset
= offsetof(CPUARMState
, cp15
.c15_i_max
), .resetvalue
= 0, },
2282 { .name
= "IMIN", .cp
= 15, .crn
= 15, .crm
= 3, .opc1
= 0, .opc2
= 0,
2283 .access
= PL1_RW
, .resetvalue
= 0xff0,
2284 .fieldoffset
= offsetof(CPUARMState
, cp15
.c15_i_min
) },
2285 { .name
= "THREADID", .cp
= 15, .crn
= 15, .crm
= 4, .opc1
= 0, .opc2
= 0,
2287 .fieldoffset
= offsetof(CPUARMState
, cp15
.c15_threadid
), .resetvalue
= 0,
2288 .writefn
= omap_threadid_write
},
2289 { .name
= "TI925T_STATUS", .cp
= 15, .crn
= 15,
2290 .crm
= 8, .opc1
= 0, .opc2
= 0, .access
= PL1_RW
,
2291 .type
= ARM_CP_NO_RAW
,
2292 .readfn
= arm_cp_read_zero
, .writefn
= omap_wfi_write
, },
2293 /* TODO: Peripheral port remap register:
2294 * On OMAP2 mcr p15, 0, rn, c15, c2, 4 sets up the interrupt controller
2295 * base address at $rn & ~0xfff and map size of 0x200 << ($rn & 0xfff),
2298 { .name
= "OMAP_CACHEMAINT", .cp
= 15, .crn
= 7, .crm
= CP_ANY
,
2299 .opc1
= 0, .opc2
= CP_ANY
, .access
= PL1_W
,
2300 .type
= ARM_CP_OVERRIDE
| ARM_CP_NO_RAW
,
2301 .writefn
= omap_cachemaint_write
},
2302 { .name
= "C9", .cp
= 15, .crn
= 9,
2303 .crm
= CP_ANY
, .opc1
= CP_ANY
, .opc2
= CP_ANY
, .access
= PL1_RW
,
2304 .type
= ARM_CP_CONST
| ARM_CP_OVERRIDE
, .resetvalue
= 0 },
2308 static void xscale_cpar_write(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
2311 env
->cp15
.c15_cpar
= value
& 0x3fff;
2314 static const ARMCPRegInfo xscale_cp_reginfo
[] = {
2315 { .name
= "XSCALE_CPAR",
2316 .cp
= 15, .crn
= 15, .crm
= 1, .opc1
= 0, .opc2
= 0, .access
= PL1_RW
,
2317 .fieldoffset
= offsetof(CPUARMState
, cp15
.c15_cpar
), .resetvalue
= 0,
2318 .writefn
= xscale_cpar_write
, },
2319 { .name
= "XSCALE_AUXCR",
2320 .cp
= 15, .crn
= 1, .crm
= 0, .opc1
= 0, .opc2
= 1, .access
= PL1_RW
,
2321 .fieldoffset
= offsetof(CPUARMState
, cp15
.c1_xscaleauxcr
),
2323 /* XScale specific cache-lockdown: since we have no cache we NOP these
2324 * and hope the guest does not really rely on cache behaviour.
2326 { .name
= "XSCALE_LOCK_ICACHE_LINE",
2327 .cp
= 15, .opc1
= 0, .crn
= 9, .crm
= 1, .opc2
= 0,
2328 .access
= PL1_W
, .type
= ARM_CP_NOP
},
2329 { .name
= "XSCALE_UNLOCK_ICACHE",
2330 .cp
= 15, .opc1
= 0, .crn
= 9, .crm
= 1, .opc2
= 1,
2331 .access
= PL1_W
, .type
= ARM_CP_NOP
},
2332 { .name
= "XSCALE_DCACHE_LOCK",
2333 .cp
= 15, .opc1
= 0, .crn
= 9, .crm
= 2, .opc2
= 0,
2334 .access
= PL1_RW
, .type
= ARM_CP_NOP
},
2335 { .name
= "XSCALE_UNLOCK_DCACHE",
2336 .cp
= 15, .opc1
= 0, .crn
= 9, .crm
= 2, .opc2
= 1,
2337 .access
= PL1_W
, .type
= ARM_CP_NOP
},
2341 static const ARMCPRegInfo dummy_c15_cp_reginfo
[] = {
2342 /* RAZ/WI the whole crn=15 space, when we don't have a more specific
2343 * implementation of this implementation-defined space.
2344 * Ideally this should eventually disappear in favour of actually
2345 * implementing the correct behaviour for all cores.
2347 { .name
= "C15_IMPDEF", .cp
= 15, .crn
= 15,
2348 .crm
= CP_ANY
, .opc1
= CP_ANY
, .opc2
= CP_ANY
,
2350 .type
= ARM_CP_CONST
| ARM_CP_NO_RAW
| ARM_CP_OVERRIDE
,
2355 static const ARMCPRegInfo cache_dirty_status_cp_reginfo
[] = {
2356 /* Cache status: RAZ because we have no cache so it's always clean */
2357 { .name
= "CDSR", .cp
= 15, .crn
= 7, .crm
= 10, .opc1
= 0, .opc2
= 6,
2358 .access
= PL1_R
, .type
= ARM_CP_CONST
| ARM_CP_NO_RAW
,
2363 static const ARMCPRegInfo cache_block_ops_cp_reginfo
[] = {
2364 /* We never have a a block transfer operation in progress */
2365 { .name
= "BXSR", .cp
= 15, .crn
= 7, .crm
= 12, .opc1
= 0, .opc2
= 4,
2366 .access
= PL0_R
, .type
= ARM_CP_CONST
| ARM_CP_NO_RAW
,
2368 /* The cache ops themselves: these all NOP for QEMU */
2369 { .name
= "IICR", .cp
= 15, .crm
= 5, .opc1
= 0,
2370 .access
= PL1_W
, .type
= ARM_CP_NOP
|ARM_CP_64BIT
},
2371 { .name
= "IDCR", .cp
= 15, .crm
= 6, .opc1
= 0,
2372 .access
= PL1_W
, .type
= ARM_CP_NOP
|ARM_CP_64BIT
},
2373 { .name
= "CDCR", .cp
= 15, .crm
= 12, .opc1
= 0,
2374 .access
= PL0_W
, .type
= ARM_CP_NOP
|ARM_CP_64BIT
},
2375 { .name
= "PIR", .cp
= 15, .crm
= 12, .opc1
= 1,
2376 .access
= PL0_W
, .type
= ARM_CP_NOP
|ARM_CP_64BIT
},
2377 { .name
= "PDR", .cp
= 15, .crm
= 12, .opc1
= 2,
2378 .access
= PL0_W
, .type
= ARM_CP_NOP
|ARM_CP_64BIT
},
2379 { .name
= "CIDCR", .cp
= 15, .crm
= 14, .opc1
= 0,
2380 .access
= PL1_W
, .type
= ARM_CP_NOP
|ARM_CP_64BIT
},
2384 static const ARMCPRegInfo cache_test_clean_cp_reginfo
[] = {
2385 /* The cache test-and-clean instructions always return (1 << 30)
2386 * to indicate that there are no dirty cache lines.
2388 { .name
= "TC_DCACHE", .cp
= 15, .crn
= 7, .crm
= 10, .opc1
= 0, .opc2
= 3,
2389 .access
= PL0_R
, .type
= ARM_CP_CONST
| ARM_CP_NO_RAW
,
2390 .resetvalue
= (1 << 30) },
2391 { .name
= "TCI_DCACHE", .cp
= 15, .crn
= 7, .crm
= 14, .opc1
= 0, .opc2
= 3,
2392 .access
= PL0_R
, .type
= ARM_CP_CONST
| ARM_CP_NO_RAW
,
2393 .resetvalue
= (1 << 30) },
2397 static const ARMCPRegInfo strongarm_cp_reginfo
[] = {
2398 /* Ignore ReadBuffer accesses */
2399 { .name
= "C9_READBUFFER", .cp
= 15, .crn
= 9,
2400 .crm
= CP_ANY
, .opc1
= CP_ANY
, .opc2
= CP_ANY
,
2401 .access
= PL1_RW
, .resetvalue
= 0,
2402 .type
= ARM_CP_CONST
| ARM_CP_OVERRIDE
| ARM_CP_NO_RAW
},
2406 static uint64_t mpidr_read(CPUARMState
*env
, const ARMCPRegInfo
*ri
)
2408 ARMCPU
*cpu
= ARM_CPU(arm_env_get_cpu(env
));
2409 uint64_t mpidr
= cpu
->mp_affinity
;
2411 if (arm_feature(env
, ARM_FEATURE_V7MP
)) {
2412 mpidr
|= (1U << 31);
2413 /* Cores which are uniprocessor (non-coherent)
2414 * but still implement the MP extensions set
2415 * bit 30. (For instance, Cortex-R5).
2417 if (cpu
->mp_is_up
) {
2418 mpidr
|= (1u << 30);
2424 static const ARMCPRegInfo mpidr_cp_reginfo
[] = {
2425 { .name
= "MPIDR", .state
= ARM_CP_STATE_BOTH
,
2426 .opc0
= 3, .crn
= 0, .crm
= 0, .opc1
= 0, .opc2
= 5,
2427 .access
= PL1_R
, .readfn
= mpidr_read
, .type
= ARM_CP_NO_RAW
},
2431 static const ARMCPRegInfo lpae_cp_reginfo
[] = {
2433 { .name
= "AMAIR0", .state
= ARM_CP_STATE_BOTH
,
2434 .opc0
= 3, .crn
= 10, .crm
= 3, .opc1
= 0, .opc2
= 0,
2435 .access
= PL1_RW
, .type
= ARM_CP_CONST
,
2437 /* AMAIR1 is mapped to AMAIR_EL1[63:32] */
2438 { .name
= "AMAIR1", .cp
= 15, .crn
= 10, .crm
= 3, .opc1
= 0, .opc2
= 1,
2439 .access
= PL1_RW
, .type
= ARM_CP_CONST
,
2441 { .name
= "PAR", .cp
= 15, .crm
= 7, .opc1
= 0,
2442 .access
= PL1_RW
, .type
= ARM_CP_64BIT
, .resetvalue
= 0,
2443 .bank_fieldoffsets
= { offsetof(CPUARMState
, cp15
.par_s
),
2444 offsetof(CPUARMState
, cp15
.par_ns
)} },
2445 { .name
= "TTBR0", .cp
= 15, .crm
= 2, .opc1
= 0,
2446 .access
= PL1_RW
, .type
= ARM_CP_64BIT
| ARM_CP_ALIAS
,
2447 .bank_fieldoffsets
= { offsetof(CPUARMState
, cp15
.ttbr0_s
),
2448 offsetof(CPUARMState
, cp15
.ttbr0_ns
) },
2449 .writefn
= vmsa_ttbr_write
, },
2450 { .name
= "TTBR1", .cp
= 15, .crm
= 2, .opc1
= 1,
2451 .access
= PL1_RW
, .type
= ARM_CP_64BIT
| ARM_CP_ALIAS
,
2452 .bank_fieldoffsets
= { offsetof(CPUARMState
, cp15
.ttbr1_s
),
2453 offsetof(CPUARMState
, cp15
.ttbr1_ns
) },
2454 .writefn
= vmsa_ttbr_write
, },
2458 static uint64_t aa64_fpcr_read(CPUARMState
*env
, const ARMCPRegInfo
*ri
)
2460 return vfp_get_fpcr(env
);
2463 static void aa64_fpcr_write(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
2466 vfp_set_fpcr(env
, value
);
2469 static uint64_t aa64_fpsr_read(CPUARMState
*env
, const ARMCPRegInfo
*ri
)
2471 return vfp_get_fpsr(env
);
2474 static void aa64_fpsr_write(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
2477 vfp_set_fpsr(env
, value
);
2480 static CPAccessResult
aa64_daif_access(CPUARMState
*env
, const ARMCPRegInfo
*ri
)
2482 if (arm_current_el(env
) == 0 && !(env
->cp15
.sctlr_el
[1] & SCTLR_UMA
)) {
2483 return CP_ACCESS_TRAP
;
2485 return CP_ACCESS_OK
;
2488 static void aa64_daif_write(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
2491 env
->daif
= value
& PSTATE_DAIF
;
2494 static CPAccessResult
aa64_cacheop_access(CPUARMState
*env
,
2495 const ARMCPRegInfo
*ri
)
2497 /* Cache invalidate/clean: NOP, but EL0 must UNDEF unless
2498 * SCTLR_EL1.UCI is set.
2500 if (arm_current_el(env
) == 0 && !(env
->cp15
.sctlr_el
[1] & SCTLR_UCI
)) {
2501 return CP_ACCESS_TRAP
;
2503 return CP_ACCESS_OK
;
2506 /* See: D4.7.2 TLB maintenance requirements and the TLB maintenance instructions
2507 * Page D4-1736 (DDI0487A.b)
2510 static void tlbi_aa64_vmalle1_write(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
2513 ARMCPU
*cpu
= arm_env_get_cpu(env
);
2514 CPUState
*cs
= CPU(cpu
);
2516 if (arm_is_secure_below_el3(env
)) {
2517 tlb_flush_by_mmuidx(cs
, ARMMMUIdx_S1SE1
, ARMMMUIdx_S1SE0
, -1);
2519 tlb_flush_by_mmuidx(cs
, ARMMMUIdx_S12NSE1
, ARMMMUIdx_S12NSE0
, -1);
2523 static void tlbi_aa64_vmalle1is_write(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
2526 bool sec
= arm_is_secure_below_el3(env
);
2529 CPU_FOREACH(other_cs
) {
2531 tlb_flush_by_mmuidx(other_cs
, ARMMMUIdx_S1SE1
, ARMMMUIdx_S1SE0
, -1);
2533 tlb_flush_by_mmuidx(other_cs
, ARMMMUIdx_S12NSE1
,
2534 ARMMMUIdx_S12NSE0
, -1);
2539 static void tlbi_aa64_alle1_write(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
2542 /* Note that the 'ALL' scope must invalidate both stage 1 and
2543 * stage 2 translations, whereas most other scopes only invalidate
2544 * stage 1 translations.
2546 ARMCPU
*cpu
= arm_env_get_cpu(env
);
2547 CPUState
*cs
= CPU(cpu
);
2549 if (arm_is_secure_below_el3(env
)) {
2550 tlb_flush_by_mmuidx(cs
, ARMMMUIdx_S1SE1
, ARMMMUIdx_S1SE0
, -1);
2552 if (arm_feature(env
, ARM_FEATURE_EL2
)) {
2553 tlb_flush_by_mmuidx(cs
, ARMMMUIdx_S12NSE1
, ARMMMUIdx_S12NSE0
,
2554 ARMMMUIdx_S2NS
, -1);
2556 tlb_flush_by_mmuidx(cs
, ARMMMUIdx_S12NSE1
, ARMMMUIdx_S12NSE0
, -1);
2561 static void tlbi_aa64_alle2_write(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
2564 ARMCPU
*cpu
= arm_env_get_cpu(env
);
2565 CPUState
*cs
= CPU(cpu
);
2567 tlb_flush_by_mmuidx(cs
, ARMMMUIdx_S1E2
, -1);
2570 static void tlbi_aa64_alle3_write(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
2573 ARMCPU
*cpu
= arm_env_get_cpu(env
);
2574 CPUState
*cs
= CPU(cpu
);
2576 tlb_flush_by_mmuidx(cs
, ARMMMUIdx_S1E3
, -1);
2579 static void tlbi_aa64_alle1is_write(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
2582 /* Note that the 'ALL' scope must invalidate both stage 1 and
2583 * stage 2 translations, whereas most other scopes only invalidate
2584 * stage 1 translations.
2586 bool sec
= arm_is_secure_below_el3(env
);
2587 bool has_el2
= arm_feature(env
, ARM_FEATURE_EL2
);
2590 CPU_FOREACH(other_cs
) {
2592 tlb_flush_by_mmuidx(other_cs
, ARMMMUIdx_S1SE1
, ARMMMUIdx_S1SE0
, -1);
2593 } else if (has_el2
) {
2594 tlb_flush_by_mmuidx(other_cs
, ARMMMUIdx_S12NSE1
,
2595 ARMMMUIdx_S12NSE0
, ARMMMUIdx_S2NS
, -1);
2597 tlb_flush_by_mmuidx(other_cs
, ARMMMUIdx_S12NSE1
,
2598 ARMMMUIdx_S12NSE0
, -1);
2603 static void tlbi_aa64_alle2is_write(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
2608 CPU_FOREACH(other_cs
) {
2609 tlb_flush_by_mmuidx(other_cs
, ARMMMUIdx_S1E2
, -1);
2613 static void tlbi_aa64_alle3is_write(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
2618 CPU_FOREACH(other_cs
) {
2619 tlb_flush_by_mmuidx(other_cs
, ARMMMUIdx_S1E3
, -1);
2623 static void tlbi_aa64_vae1_write(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
2626 /* Invalidate by VA, EL1&0 (AArch64 version).
2627 * Currently handles all of VAE1, VAAE1, VAALE1 and VALE1,
2628 * since we don't support flush-for-specific-ASID-only or
2629 * flush-last-level-only.
2631 ARMCPU
*cpu
= arm_env_get_cpu(env
);
2632 CPUState
*cs
= CPU(cpu
);
2633 uint64_t pageaddr
= sextract64(value
<< 12, 0, 56);
2635 if (arm_is_secure_below_el3(env
)) {
2636 tlb_flush_page_by_mmuidx(cs
, pageaddr
, ARMMMUIdx_S1SE1
,
2637 ARMMMUIdx_S1SE0
, -1);
2639 tlb_flush_page_by_mmuidx(cs
, pageaddr
, ARMMMUIdx_S12NSE1
,
2640 ARMMMUIdx_S12NSE0
, -1);
2644 static void tlbi_aa64_vae2_write(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
2647 /* Invalidate by VA, EL2
2648 * Currently handles both VAE2 and VALE2, since we don't support
2649 * flush-last-level-only.
2651 ARMCPU
*cpu
= arm_env_get_cpu(env
);
2652 CPUState
*cs
= CPU(cpu
);
2653 uint64_t pageaddr
= sextract64(value
<< 12, 0, 56);
2655 tlb_flush_page_by_mmuidx(cs
, pageaddr
, ARMMMUIdx_S1E2
, -1);
2658 static void tlbi_aa64_vae3_write(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
2661 /* Invalidate by VA, EL3
2662 * Currently handles both VAE3 and VALE3, since we don't support
2663 * flush-last-level-only.
2665 ARMCPU
*cpu
= arm_env_get_cpu(env
);
2666 CPUState
*cs
= CPU(cpu
);
2667 uint64_t pageaddr
= sextract64(value
<< 12, 0, 56);
2669 tlb_flush_page_by_mmuidx(cs
, pageaddr
, ARMMMUIdx_S1E3
, -1);
2672 static void tlbi_aa64_vae1is_write(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
2675 bool sec
= arm_is_secure_below_el3(env
);
2677 uint64_t pageaddr
= sextract64(value
<< 12, 0, 56);
2679 CPU_FOREACH(other_cs
) {
2681 tlb_flush_page_by_mmuidx(other_cs
, pageaddr
, ARMMMUIdx_S1SE1
,
2682 ARMMMUIdx_S1SE0
, -1);
2684 tlb_flush_page_by_mmuidx(other_cs
, pageaddr
, ARMMMUIdx_S12NSE1
,
2685 ARMMMUIdx_S12NSE0
, -1);
2690 static void tlbi_aa64_vae2is_write(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
2694 uint64_t pageaddr
= sextract64(value
<< 12, 0, 56);
2696 CPU_FOREACH(other_cs
) {
2697 tlb_flush_page_by_mmuidx(other_cs
, pageaddr
, ARMMMUIdx_S1E2
, -1);
2701 static void tlbi_aa64_vae3is_write(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
2705 uint64_t pageaddr
= sextract64(value
<< 12, 0, 56);
2707 CPU_FOREACH(other_cs
) {
2708 tlb_flush_page_by_mmuidx(other_cs
, pageaddr
, ARMMMUIdx_S1E3
, -1);
2712 static void tlbi_aa64_ipas2e1_write(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
2715 /* Invalidate by IPA. This has to invalidate any structures that
2716 * contain only stage 2 translation information, but does not need
2717 * to apply to structures that contain combined stage 1 and stage 2
2718 * translation information.
2719 * This must NOP if EL2 isn't implemented or SCR_EL3.NS is zero.
2721 ARMCPU
*cpu
= arm_env_get_cpu(env
);
2722 CPUState
*cs
= CPU(cpu
);
2725 if (!arm_feature(env
, ARM_FEATURE_EL2
) || !(env
->cp15
.scr_el3
& SCR_NS
)) {
2729 pageaddr
= sextract64(value
<< 12, 0, 48);
2731 tlb_flush_page_by_mmuidx(cs
, pageaddr
, ARMMMUIdx_S2NS
, -1);
2734 static void tlbi_aa64_ipas2e1is_write(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
2740 if (!arm_feature(env
, ARM_FEATURE_EL2
) || !(env
->cp15
.scr_el3
& SCR_NS
)) {
2744 pageaddr
= sextract64(value
<< 12, 0, 48);
2746 CPU_FOREACH(other_cs
) {
2747 tlb_flush_page_by_mmuidx(other_cs
, pageaddr
, ARMMMUIdx_S2NS
, -1);
2751 static CPAccessResult
aa64_zva_access(CPUARMState
*env
, const ARMCPRegInfo
*ri
)
2753 /* We don't implement EL2, so the only control on DC ZVA is the
2754 * bit in the SCTLR which can prohibit access for EL0.
2756 if (arm_current_el(env
) == 0 && !(env
->cp15
.sctlr_el
[1] & SCTLR_DZE
)) {
2757 return CP_ACCESS_TRAP
;
2759 return CP_ACCESS_OK
;
2762 static uint64_t aa64_dczid_read(CPUARMState
*env
, const ARMCPRegInfo
*ri
)
2764 ARMCPU
*cpu
= arm_env_get_cpu(env
);
2765 int dzp_bit
= 1 << 4;
2767 /* DZP indicates whether DC ZVA access is allowed */
2768 if (aa64_zva_access(env
, NULL
) == CP_ACCESS_OK
) {
2771 return cpu
->dcz_blocksize
| dzp_bit
;
2774 static CPAccessResult
sp_el0_access(CPUARMState
*env
, const ARMCPRegInfo
*ri
)
2776 if (!(env
->pstate
& PSTATE_SP
)) {
2777 /* Access to SP_EL0 is undefined if it's being used as
2778 * the stack pointer.
2780 return CP_ACCESS_TRAP_UNCATEGORIZED
;
2782 return CP_ACCESS_OK
;
2785 static uint64_t spsel_read(CPUARMState
*env
, const ARMCPRegInfo
*ri
)
2787 return env
->pstate
& PSTATE_SP
;
2790 static void spsel_write(CPUARMState
*env
, const ARMCPRegInfo
*ri
, uint64_t val
)
2792 update_spsel(env
, val
);
2795 static void sctlr_write(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
2798 ARMCPU
*cpu
= arm_env_get_cpu(env
);
2800 if (raw_read(env
, ri
) == value
) {
2801 /* Skip the TLB flush if nothing actually changed; Linux likes
2802 * to do a lot of pointless SCTLR writes.
2807 raw_write(env
, ri
, value
);
2808 /* ??? Lots of these bits are not implemented. */
2809 /* This may enable/disable the MMU, so do a TLB flush. */
2810 tlb_flush(CPU(cpu
), 1);
2813 static const ARMCPRegInfo v8_cp_reginfo
[] = {
2814 /* Minimal set of EL0-visible registers. This will need to be expanded
2815 * significantly for system emulation of AArch64 CPUs.
2817 { .name
= "NZCV", .state
= ARM_CP_STATE_AA64
,
2818 .opc0
= 3, .opc1
= 3, .opc2
= 0, .crn
= 4, .crm
= 2,
2819 .access
= PL0_RW
, .type
= ARM_CP_NZCV
},
2820 { .name
= "DAIF", .state
= ARM_CP_STATE_AA64
,
2821 .opc0
= 3, .opc1
= 3, .opc2
= 1, .crn
= 4, .crm
= 2,
2822 .type
= ARM_CP_NO_RAW
,
2823 .access
= PL0_RW
, .accessfn
= aa64_daif_access
,
2824 .fieldoffset
= offsetof(CPUARMState
, daif
),
2825 .writefn
= aa64_daif_write
, .resetfn
= arm_cp_reset_ignore
},
2826 { .name
= "FPCR", .state
= ARM_CP_STATE_AA64
,
2827 .opc0
= 3, .opc1
= 3, .opc2
= 0, .crn
= 4, .crm
= 4,
2828 .access
= PL0_RW
, .readfn
= aa64_fpcr_read
, .writefn
= aa64_fpcr_write
},
2829 { .name
= "FPSR", .state
= ARM_CP_STATE_AA64
,
2830 .opc0
= 3, .opc1
= 3, .opc2
= 1, .crn
= 4, .crm
= 4,
2831 .access
= PL0_RW
, .readfn
= aa64_fpsr_read
, .writefn
= aa64_fpsr_write
},
2832 { .name
= "DCZID_EL0", .state
= ARM_CP_STATE_AA64
,
2833 .opc0
= 3, .opc1
= 3, .opc2
= 7, .crn
= 0, .crm
= 0,
2834 .access
= PL0_R
, .type
= ARM_CP_NO_RAW
,
2835 .readfn
= aa64_dczid_read
},
2836 { .name
= "DC_ZVA", .state
= ARM_CP_STATE_AA64
,
2837 .opc0
= 1, .opc1
= 3, .crn
= 7, .crm
= 4, .opc2
= 1,
2838 .access
= PL0_W
, .type
= ARM_CP_DC_ZVA
,
2839 #ifndef CONFIG_USER_ONLY
2840 /* Avoid overhead of an access check that always passes in user-mode */
2841 .accessfn
= aa64_zva_access
,
2844 { .name
= "CURRENTEL", .state
= ARM_CP_STATE_AA64
,
2845 .opc0
= 3, .opc1
= 0, .opc2
= 2, .crn
= 4, .crm
= 2,
2846 .access
= PL1_R
, .type
= ARM_CP_CURRENTEL
},
2847 /* Cache ops: all NOPs since we don't emulate caches */
2848 { .name
= "IC_IALLUIS", .state
= ARM_CP_STATE_AA64
,
2849 .opc0
= 1, .opc1
= 0, .crn
= 7, .crm
= 1, .opc2
= 0,
2850 .access
= PL1_W
, .type
= ARM_CP_NOP
},
2851 { .name
= "IC_IALLU", .state
= ARM_CP_STATE_AA64
,
2852 .opc0
= 1, .opc1
= 0, .crn
= 7, .crm
= 5, .opc2
= 0,
2853 .access
= PL1_W
, .type
= ARM_CP_NOP
},
2854 { .name
= "IC_IVAU", .state
= ARM_CP_STATE_AA64
,
2855 .opc0
= 1, .opc1
= 3, .crn
= 7, .crm
= 5, .opc2
= 1,
2856 .access
= PL0_W
, .type
= ARM_CP_NOP
,
2857 .accessfn
= aa64_cacheop_access
},
2858 { .name
= "DC_IVAC", .state
= ARM_CP_STATE_AA64
,
2859 .opc0
= 1, .opc1
= 0, .crn
= 7, .crm
= 6, .opc2
= 1,
2860 .access
= PL1_W
, .type
= ARM_CP_NOP
},
2861 { .name
= "DC_ISW", .state
= ARM_CP_STATE_AA64
,
2862 .opc0
= 1, .opc1
= 0, .crn
= 7, .crm
= 6, .opc2
= 2,
2863 .access
= PL1_W
, .type
= ARM_CP_NOP
},
2864 { .name
= "DC_CVAC", .state
= ARM_CP_STATE_AA64
,
2865 .opc0
= 1, .opc1
= 3, .crn
= 7, .crm
= 10, .opc2
= 1,
2866 .access
= PL0_W
, .type
= ARM_CP_NOP
,
2867 .accessfn
= aa64_cacheop_access
},
2868 { .name
= "DC_CSW", .state
= ARM_CP_STATE_AA64
,
2869 .opc0
= 1, .opc1
= 0, .crn
= 7, .crm
= 10, .opc2
= 2,
2870 .access
= PL1_W
, .type
= ARM_CP_NOP
},
2871 { .name
= "DC_CVAU", .state
= ARM_CP_STATE_AA64
,
2872 .opc0
= 1, .opc1
= 3, .crn
= 7, .crm
= 11, .opc2
= 1,
2873 .access
= PL0_W
, .type
= ARM_CP_NOP
,
2874 .accessfn
= aa64_cacheop_access
},
2875 { .name
= "DC_CIVAC", .state
= ARM_CP_STATE_AA64
,
2876 .opc0
= 1, .opc1
= 3, .crn
= 7, .crm
= 14, .opc2
= 1,
2877 .access
= PL0_W
, .type
= ARM_CP_NOP
,
2878 .accessfn
= aa64_cacheop_access
},
2879 { .name
= "DC_CISW", .state
= ARM_CP_STATE_AA64
,
2880 .opc0
= 1, .opc1
= 0, .crn
= 7, .crm
= 14, .opc2
= 2,
2881 .access
= PL1_W
, .type
= ARM_CP_NOP
},
2882 /* TLBI operations */
2883 { .name
= "TLBI_VMALLE1IS", .state
= ARM_CP_STATE_AA64
,
2884 .opc0
= 1, .opc1
= 0, .crn
= 8, .crm
= 3, .opc2
= 0,
2885 .access
= PL1_W
, .type
= ARM_CP_NO_RAW
,
2886 .writefn
= tlbi_aa64_vmalle1is_write
},
2887 { .name
= "TLBI_VAE1IS", .state
= ARM_CP_STATE_AA64
,
2888 .opc0
= 1, .opc1
= 0, .crn
= 8, .crm
= 3, .opc2
= 1,
2889 .access
= PL1_W
, .type
= ARM_CP_NO_RAW
,
2890 .writefn
= tlbi_aa64_vae1is_write
},
2891 { .name
= "TLBI_ASIDE1IS", .state
= ARM_CP_STATE_AA64
,
2892 .opc0
= 1, .opc1
= 0, .crn
= 8, .crm
= 3, .opc2
= 2,
2893 .access
= PL1_W
, .type
= ARM_CP_NO_RAW
,
2894 .writefn
= tlbi_aa64_vmalle1is_write
},
2895 { .name
= "TLBI_VAAE1IS", .state
= ARM_CP_STATE_AA64
,
2896 .opc0
= 1, .opc1
= 0, .crn
= 8, .crm
= 3, .opc2
= 3,
2897 .access
= PL1_W
, .type
= ARM_CP_NO_RAW
,
2898 .writefn
= tlbi_aa64_vae1is_write
},
2899 { .name
= "TLBI_VALE1IS", .state
= ARM_CP_STATE_AA64
,
2900 .opc0
= 1, .opc1
= 0, .crn
= 8, .crm
= 3, .opc2
= 5,
2901 .access
= PL1_W
, .type
= ARM_CP_NO_RAW
,
2902 .writefn
= tlbi_aa64_vae1is_write
},
2903 { .name
= "TLBI_VAALE1IS", .state
= ARM_CP_STATE_AA64
,
2904 .opc0
= 1, .opc1
= 0, .crn
= 8, .crm
= 3, .opc2
= 7,
2905 .access
= PL1_W
, .type
= ARM_CP_NO_RAW
,
2906 .writefn
= tlbi_aa64_vae1is_write
},
2907 { .name
= "TLBI_VMALLE1", .state
= ARM_CP_STATE_AA64
,
2908 .opc0
= 1, .opc1
= 0, .crn
= 8, .crm
= 7, .opc2
= 0,
2909 .access
= PL1_W
, .type
= ARM_CP_NO_RAW
,
2910 .writefn
= tlbi_aa64_vmalle1_write
},
2911 { .name
= "TLBI_VAE1", .state
= ARM_CP_STATE_AA64
,
2912 .opc0
= 1, .opc1
= 0, .crn
= 8, .crm
= 7, .opc2
= 1,
2913 .access
= PL1_W
, .type
= ARM_CP_NO_RAW
,
2914 .writefn
= tlbi_aa64_vae1_write
},
2915 { .name
= "TLBI_ASIDE1", .state
= ARM_CP_STATE_AA64
,
2916 .opc0
= 1, .opc1
= 0, .crn
= 8, .crm
= 7, .opc2
= 2,
2917 .access
= PL1_W
, .type
= ARM_CP_NO_RAW
,
2918 .writefn
= tlbi_aa64_vmalle1_write
},
2919 { .name
= "TLBI_VAAE1", .state
= ARM_CP_STATE_AA64
,
2920 .opc0
= 1, .opc1
= 0, .crn
= 8, .crm
= 7, .opc2
= 3,
2921 .access
= PL1_W
, .type
= ARM_CP_NO_RAW
,
2922 .writefn
= tlbi_aa64_vae1_write
},
2923 { .name
= "TLBI_VALE1", .state
= ARM_CP_STATE_AA64
,
2924 .opc0
= 1, .opc1
= 0, .crn
= 8, .crm
= 7, .opc2
= 5,
2925 .access
= PL1_W
, .type
= ARM_CP_NO_RAW
,
2926 .writefn
= tlbi_aa64_vae1_write
},
2927 { .name
= "TLBI_VAALE1", .state
= ARM_CP_STATE_AA64
,
2928 .opc0
= 1, .opc1
= 0, .crn
= 8, .crm
= 7, .opc2
= 7,
2929 .access
= PL1_W
, .type
= ARM_CP_NO_RAW
,
2930 .writefn
= tlbi_aa64_vae1_write
},
2931 { .name
= "TLBI_IPAS2E1IS", .state
= ARM_CP_STATE_AA64
,
2932 .opc0
= 1, .opc1
= 4, .crn
= 8, .crm
= 0, .opc2
= 1,
2933 .access
= PL2_W
, .type
= ARM_CP_NO_RAW
,
2934 .writefn
= tlbi_aa64_ipas2e1is_write
},
2935 { .name
= "TLBI_IPAS2LE1IS", .state
= ARM_CP_STATE_AA64
,
2936 .opc0
= 1, .opc1
= 4, .crn
= 8, .crm
= 0, .opc2
= 5,
2937 .access
= PL2_W
, .type
= ARM_CP_NO_RAW
,
2938 .writefn
= tlbi_aa64_ipas2e1is_write
},
2939 { .name
= "TLBI_ALLE1IS", .state
= ARM_CP_STATE_AA64
,
2940 .opc0
= 1, .opc1
= 4, .crn
= 8, .crm
= 3, .opc2
= 4,
2941 .access
= PL2_W
, .type
= ARM_CP_NO_RAW
,
2942 .writefn
= tlbi_aa64_alle1is_write
},
2943 { .name
= "TLBI_VMALLS12E1IS", .state
= ARM_CP_STATE_AA64
,
2944 .opc0
= 1, .opc1
= 4, .crn
= 8, .crm
= 3, .opc2
= 6,
2945 .access
= PL2_W
, .type
= ARM_CP_NO_RAW
,
2946 .writefn
= tlbi_aa64_alle1is_write
},
2947 { .name
= "TLBI_IPAS2E1", .state
= ARM_CP_STATE_AA64
,
2948 .opc0
= 1, .opc1
= 4, .crn
= 8, .crm
= 4, .opc2
= 1,
2949 .access
= PL2_W
, .type
= ARM_CP_NO_RAW
,
2950 .writefn
= tlbi_aa64_ipas2e1_write
},
2951 { .name
= "TLBI_IPAS2LE1", .state
= ARM_CP_STATE_AA64
,
2952 .opc0
= 1, .opc1
= 4, .crn
= 8, .crm
= 4, .opc2
= 5,
2953 .access
= PL2_W
, .type
= ARM_CP_NO_RAW
,
2954 .writefn
= tlbi_aa64_ipas2e1_write
},
2955 { .name
= "TLBI_ALLE1", .state
= ARM_CP_STATE_AA64
,
2956 .opc0
= 1, .opc1
= 4, .crn
= 8, .crm
= 7, .opc2
= 4,
2957 .access
= PL2_W
, .type
= ARM_CP_NO_RAW
,
2958 .writefn
= tlbi_aa64_alle1_write
},
2959 { .name
= "TLBI_VMALLS12E1", .state
= ARM_CP_STATE_AA64
,
2960 .opc0
= 1, .opc1
= 4, .crn
= 8, .crm
= 7, .opc2
= 6,
2961 .access
= PL2_W
, .type
= ARM_CP_NO_RAW
,
2962 .writefn
= tlbi_aa64_alle1is_write
},
2963 #ifndef CONFIG_USER_ONLY
2964 /* 64 bit address translation operations */
2965 { .name
= "AT_S1E1R", .state
= ARM_CP_STATE_AA64
,
2966 .opc0
= 1, .opc1
= 0, .crn
= 7, .crm
= 8, .opc2
= 0,
2967 .access
= PL1_W
, .type
= ARM_CP_NO_RAW
, .writefn
= ats_write64
},
2968 { .name
= "AT_S1E1W", .state
= ARM_CP_STATE_AA64
,
2969 .opc0
= 1, .opc1
= 0, .crn
= 7, .crm
= 8, .opc2
= 1,
2970 .access
= PL1_W
, .type
= ARM_CP_NO_RAW
, .writefn
= ats_write64
},
2971 { .name
= "AT_S1E0R", .state
= ARM_CP_STATE_AA64
,
2972 .opc0
= 1, .opc1
= 0, .crn
= 7, .crm
= 8, .opc2
= 2,
2973 .access
= PL1_W
, .type
= ARM_CP_NO_RAW
, .writefn
= ats_write64
},
2974 { .name
= "AT_S1E0W", .state
= ARM_CP_STATE_AA64
,
2975 .opc0
= 1, .opc1
= 0, .crn
= 7, .crm
= 8, .opc2
= 3,
2976 .access
= PL1_W
, .type
= ARM_CP_NO_RAW
, .writefn
= ats_write64
},
2977 { .name
= "AT_S12E1R", .state
= ARM_CP_STATE_AA64
,
2978 .opc0
= 1, .opc1
= 4, .crn
= 7, .crm
= 8, .opc2
= 4,
2979 .access
= PL2_W
, .type
= ARM_CP_NO_RAW
, .writefn
= ats_write64
},
2980 { .name
= "AT_S12E1W", .state
= ARM_CP_STATE_AA64
,
2981 .opc0
= 1, .opc1
= 4, .crn
= 7, .crm
= 8, .opc2
= 5,
2982 .access
= PL2_W
, .type
= ARM_CP_NO_RAW
, .writefn
= ats_write64
},
2983 { .name
= "AT_S12E0R", .state
= ARM_CP_STATE_AA64
,
2984 .opc0
= 1, .opc1
= 4, .crn
= 7, .crm
= 8, .opc2
= 6,
2985 .access
= PL2_W
, .type
= ARM_CP_NO_RAW
, .writefn
= ats_write64
},
2986 { .name
= "AT_S12E0W", .state
= ARM_CP_STATE_AA64
,
2987 .opc0
= 1, .opc1
= 4, .crn
= 7, .crm
= 8, .opc2
= 7,
2988 .access
= PL2_W
, .type
= ARM_CP_NO_RAW
, .writefn
= ats_write64
},
2989 /* AT S1E2* are elsewhere as they UNDEF from EL3 if EL2 is not present */
2990 { .name
= "AT_S1E3R", .state
= ARM_CP_STATE_AA64
,
2991 .opc0
= 1, .opc1
= 6, .crn
= 7, .crm
= 8, .opc2
= 0,
2992 .access
= PL3_W
, .type
= ARM_CP_NO_RAW
, .writefn
= ats_write64
},
2993 { .name
= "AT_S1E3W", .state
= ARM_CP_STATE_AA64
,
2994 .opc0
= 1, .opc1
= 6, .crn
= 7, .crm
= 8, .opc2
= 1,
2995 .access
= PL3_W
, .type
= ARM_CP_NO_RAW
, .writefn
= ats_write64
},
2996 { .name
= "PAR_EL1", .state
= ARM_CP_STATE_AA64
,
2997 .type
= ARM_CP_ALIAS
,
2998 .opc0
= 3, .opc1
= 0, .crn
= 7, .crm
= 4, .opc2
= 0,
2999 .access
= PL1_RW
, .resetvalue
= 0,
3000 .fieldoffset
= offsetof(CPUARMState
, cp15
.par_el
[1]),
3001 .writefn
= par_write
},
3003 /* TLB invalidate last level of translation table walk */
3004 { .name
= "TLBIMVALIS", .cp
= 15, .opc1
= 0, .crn
= 8, .crm
= 3, .opc2
= 5,
3005 .type
= ARM_CP_NO_RAW
, .access
= PL1_W
, .writefn
= tlbimva_is_write
},
3006 { .name
= "TLBIMVAALIS", .cp
= 15, .opc1
= 0, .crn
= 8, .crm
= 3, .opc2
= 7,
3007 .type
= ARM_CP_NO_RAW
, .access
= PL1_W
,
3008 .writefn
= tlbimvaa_is_write
},
3009 { .name
= "TLBIMVAL", .cp
= 15, .opc1
= 0, .crn
= 8, .crm
= 7, .opc2
= 5,
3010 .type
= ARM_CP_NO_RAW
, .access
= PL1_W
, .writefn
= tlbimva_write
},
3011 { .name
= "TLBIMVAAL", .cp
= 15, .opc1
= 0, .crn
= 8, .crm
= 7, .opc2
= 7,
3012 .type
= ARM_CP_NO_RAW
, .access
= PL1_W
, .writefn
= tlbimvaa_write
},
3013 /* 32 bit cache operations */
3014 { .name
= "ICIALLUIS", .cp
= 15, .opc1
= 0, .crn
= 7, .crm
= 1, .opc2
= 0,
3015 .type
= ARM_CP_NOP
, .access
= PL1_W
},
3016 { .name
= "BPIALLUIS", .cp
= 15, .opc1
= 0, .crn
= 7, .crm
= 1, .opc2
= 6,
3017 .type
= ARM_CP_NOP
, .access
= PL1_W
},
3018 { .name
= "ICIALLU", .cp
= 15, .opc1
= 0, .crn
= 7, .crm
= 5, .opc2
= 0,
3019 .type
= ARM_CP_NOP
, .access
= PL1_W
},
3020 { .name
= "ICIMVAU", .cp
= 15, .opc1
= 0, .crn
= 7, .crm
= 5, .opc2
= 1,
3021 .type
= ARM_CP_NOP
, .access
= PL1_W
},
3022 { .name
= "BPIALL", .cp
= 15, .opc1
= 0, .crn
= 7, .crm
= 5, .opc2
= 6,
3023 .type
= ARM_CP_NOP
, .access
= PL1_W
},
3024 { .name
= "BPIMVA", .cp
= 15, .opc1
= 0, .crn
= 7, .crm
= 5, .opc2
= 7,
3025 .type
= ARM_CP_NOP
, .access
= PL1_W
},
3026 { .name
= "DCIMVAC", .cp
= 15, .opc1
= 0, .crn
= 7, .crm
= 6, .opc2
= 1,
3027 .type
= ARM_CP_NOP
, .access
= PL1_W
},
3028 { .name
= "DCISW", .cp
= 15, .opc1
= 0, .crn
= 7, .crm
= 6, .opc2
= 2,
3029 .type
= ARM_CP_NOP
, .access
= PL1_W
},
3030 { .name
= "DCCMVAC", .cp
= 15, .opc1
= 0, .crn
= 7, .crm
= 10, .opc2
= 1,
3031 .type
= ARM_CP_NOP
, .access
= PL1_W
},
3032 { .name
= "DCCSW", .cp
= 15, .opc1
= 0, .crn
= 7, .crm
= 10, .opc2
= 2,
3033 .type
= ARM_CP_NOP
, .access
= PL1_W
},
3034 { .name
= "DCCMVAU", .cp
= 15, .opc1
= 0, .crn
= 7, .crm
= 11, .opc2
= 1,
3035 .type
= ARM_CP_NOP
, .access
= PL1_W
},
3036 { .name
= "DCCIMVAC", .cp
= 15, .opc1
= 0, .crn
= 7, .crm
= 14, .opc2
= 1,
3037 .type
= ARM_CP_NOP
, .access
= PL1_W
},
3038 { .name
= "DCCISW", .cp
= 15, .opc1
= 0, .crn
= 7, .crm
= 14, .opc2
= 2,
3039 .type
= ARM_CP_NOP
, .access
= PL1_W
},
3040 /* MMU Domain access control / MPU write buffer control */
3041 { .name
= "DACR", .cp
= 15, .opc1
= 0, .crn
= 3, .crm
= 0, .opc2
= 0,
3042 .access
= PL1_RW
, .resetvalue
= 0,
3043 .writefn
= dacr_write
, .raw_writefn
= raw_write
,
3044 .bank_fieldoffsets
= { offsetoflow32(CPUARMState
, cp15
.dacr_s
),
3045 offsetoflow32(CPUARMState
, cp15
.dacr_ns
) } },
3046 { .name
= "ELR_EL1", .state
= ARM_CP_STATE_AA64
,
3047 .type
= ARM_CP_ALIAS
,
3048 .opc0
= 3, .opc1
= 0, .crn
= 4, .crm
= 0, .opc2
= 1,
3050 .fieldoffset
= offsetof(CPUARMState
, elr_el
[1]) },
3051 { .name
= "SPSR_EL1", .state
= ARM_CP_STATE_AA64
,
3052 .type
= ARM_CP_ALIAS
,
3053 .opc0
= 3, .opc1
= 0, .crn
= 4, .crm
= 0, .opc2
= 0,
3054 .access
= PL1_RW
, .fieldoffset
= offsetof(CPUARMState
, banked_spsr
[1]) },
3055 /* We rely on the access checks not allowing the guest to write to the
3056 * state field when SPSel indicates that it's being used as the stack
3059 { .name
= "SP_EL0", .state
= ARM_CP_STATE_AA64
,
3060 .opc0
= 3, .opc1
= 0, .crn
= 4, .crm
= 1, .opc2
= 0,
3061 .access
= PL1_RW
, .accessfn
= sp_el0_access
,
3062 .type
= ARM_CP_ALIAS
,
3063 .fieldoffset
= offsetof(CPUARMState
, sp_el
[0]) },
3064 { .name
= "SP_EL1", .state
= ARM_CP_STATE_AA64
,
3065 .opc0
= 3, .opc1
= 4, .crn
= 4, .crm
= 1, .opc2
= 0,
3066 .access
= PL2_RW
, .type
= ARM_CP_ALIAS
,
3067 .fieldoffset
= offsetof(CPUARMState
, sp_el
[1]) },
3068 { .name
= "SPSel", .state
= ARM_CP_STATE_AA64
,
3069 .opc0
= 3, .opc1
= 0, .crn
= 4, .crm
= 2, .opc2
= 0,
3070 .type
= ARM_CP_NO_RAW
,
3071 .access
= PL1_RW
, .readfn
= spsel_read
, .writefn
= spsel_write
},
3075 /* Used to describe the behaviour of EL2 regs when EL2 does not exist. */
3076 static const ARMCPRegInfo el3_no_el2_cp_reginfo
[] = {
3077 { .name
= "VBAR_EL2", .state
= ARM_CP_STATE_AA64
,
3078 .opc0
= 3, .opc1
= 4, .crn
= 12, .crm
= 0, .opc2
= 0,
3080 .readfn
= arm_cp_read_zero
, .writefn
= arm_cp_write_ignore
},
3081 { .name
= "HCR_EL2", .state
= ARM_CP_STATE_AA64
,
3082 .type
= ARM_CP_NO_RAW
,
3083 .opc0
= 3, .opc1
= 4, .crn
= 1, .crm
= 1, .opc2
= 0,
3085 .readfn
= arm_cp_read_zero
, .writefn
= arm_cp_write_ignore
},
3086 { .name
= "CPTR_EL2", .state
= ARM_CP_STATE_BOTH
,
3087 .opc0
= 3, .opc1
= 4, .crn
= 1, .crm
= 1, .opc2
= 2,
3088 .access
= PL2_RW
, .type
= ARM_CP_CONST
, .resetvalue
= 0 },
3089 { .name
= "MAIR_EL2", .state
= ARM_CP_STATE_BOTH
,
3090 .opc0
= 3, .opc1
= 4, .crn
= 10, .crm
= 2, .opc2
= 0,
3091 .access
= PL2_RW
, .type
= ARM_CP_CONST
,
3093 { .name
= "HMAIR1", .state
= ARM_CP_STATE_AA32
,
3094 .opc1
= 4, .crn
= 10, .crm
= 2, .opc2
= 1,
3095 .access
= PL2_RW
, .type
= ARM_CP_CONST
, .resetvalue
= 0 },
3096 { .name
= "AMAIR_EL2", .state
= ARM_CP_STATE_BOTH
,
3097 .opc0
= 3, .opc1
= 4, .crn
= 10, .crm
= 3, .opc2
= 0,
3098 .access
= PL2_RW
, .type
= ARM_CP_CONST
,
3100 { .name
= "HMAIR1", .state
= ARM_CP_STATE_AA32
,
3101 .opc1
= 4, .crn
= 10, .crm
= 3, .opc2
= 1,
3102 .access
= PL2_RW
, .type
= ARM_CP_CONST
,
3104 { .name
= "AFSR0_EL2", .state
= ARM_CP_STATE_BOTH
,
3105 .opc0
= 3, .opc1
= 4, .crn
= 5, .crm
= 1, .opc2
= 0,
3106 .access
= PL2_RW
, .type
= ARM_CP_CONST
,
3108 { .name
= "AFSR1_EL2", .state
= ARM_CP_STATE_BOTH
,
3109 .opc0
= 3, .opc1
= 4, .crn
= 5, .crm
= 1, .opc2
= 1,
3110 .access
= PL2_RW
, .type
= ARM_CP_CONST
,
3112 { .name
= "TCR_EL2", .state
= ARM_CP_STATE_BOTH
,
3113 .opc0
= 3, .opc1
= 4, .crn
= 2, .crm
= 0, .opc2
= 2,
3114 .access
= PL2_RW
, .type
= ARM_CP_CONST
, .resetvalue
= 0 },
3115 { .name
= "SCTLR_EL2", .state
= ARM_CP_STATE_BOTH
,
3116 .opc0
= 3, .opc1
= 4, .crn
= 1, .crm
= 0, .opc2
= 0,
3117 .access
= PL2_RW
, .type
= ARM_CP_CONST
, .resetvalue
= 0 },
3118 { .name
= "TPIDR_EL2", .state
= ARM_CP_STATE_BOTH
,
3119 .opc0
= 3, .opc1
= 4, .crn
= 13, .crm
= 0, .opc2
= 2,
3120 .access
= PL2_RW
, .type
= ARM_CP_CONST
, .resetvalue
= 0 },
3121 { .name
= "TTBR0_EL2", .state
= ARM_CP_STATE_AA64
,
3122 .opc0
= 3, .opc1
= 4, .crn
= 2, .crm
= 0, .opc2
= 0,
3123 .access
= PL2_RW
, .type
= ARM_CP_CONST
, .resetvalue
= 0 },
3124 { .name
= "HTTBR", .cp
= 15, .opc1
= 4, .crm
= 2,
3125 .access
= PL2_RW
, .type
= ARM_CP_64BIT
| ARM_CP_CONST
,
3127 { .name
= "CNTHCTL_EL2", .state
= ARM_CP_STATE_BOTH
,
3128 .opc0
= 3, .opc1
= 4, .crn
= 14, .crm
= 1, .opc2
= 0,
3129 .access
= PL2_RW
, .type
= ARM_CP_CONST
, .resetvalue
= 0 },
3130 { .name
= "CNTVOFF_EL2", .state
= ARM_CP_STATE_AA64
,
3131 .opc0
= 3, .opc1
= 4, .crn
= 14, .crm
= 0, .opc2
= 3,
3132 .access
= PL2_RW
, .type
= ARM_CP_CONST
, .resetvalue
= 0 },
3133 { .name
= "CNTVOFF", .cp
= 15, .opc1
= 4, .crm
= 14,
3134 .access
= PL2_RW
, .type
= ARM_CP_64BIT
| ARM_CP_CONST
,
3136 { .name
= "CNTHP_CVAL_EL2", .state
= ARM_CP_STATE_AA64
,
3137 .opc0
= 3, .opc1
= 4, .crn
= 14, .crm
= 2, .opc2
= 2,
3138 .access
= PL2_RW
, .type
= ARM_CP_CONST
, .resetvalue
= 0 },
3139 { .name
= "CNTHP_CVAL", .cp
= 15, .opc1
= 6, .crm
= 14,
3140 .access
= PL2_RW
, .type
= ARM_CP_64BIT
| ARM_CP_CONST
,
3142 { .name
= "CNTHP_TVAL_EL2", .state
= ARM_CP_STATE_BOTH
,
3143 .opc0
= 3, .opc1
= 4, .crn
= 14, .crm
= 2, .opc2
= 0,
3144 .access
= PL2_RW
, .type
= ARM_CP_CONST
, .resetvalue
= 0 },
3145 { .name
= "CNTHP_CTL_EL2", .state
= ARM_CP_STATE_BOTH
,
3146 .opc0
= 3, .opc1
= 4, .crn
= 14, .crm
= 2, .opc2
= 1,
3147 .access
= PL2_RW
, .type
= ARM_CP_CONST
, .resetvalue
= 0 },
3151 static void hcr_write(CPUARMState
*env
, const ARMCPRegInfo
*ri
, uint64_t value
)
3153 ARMCPU
*cpu
= arm_env_get_cpu(env
);
3154 uint64_t valid_mask
= HCR_MASK
;
3156 if (arm_feature(env
, ARM_FEATURE_EL3
)) {
3157 valid_mask
&= ~HCR_HCD
;
3159 valid_mask
&= ~HCR_TSC
;
3162 /* Clear RES0 bits. */
3163 value
&= valid_mask
;
3165 /* These bits change the MMU setup:
3166 * HCR_VM enables stage 2 translation
3167 * HCR_PTW forbids certain page-table setups
3168 * HCR_DC Disables stage1 and enables stage2 translation
3170 if ((raw_read(env
, ri
) ^ value
) & (HCR_VM
| HCR_PTW
| HCR_DC
)) {
3171 tlb_flush(CPU(cpu
), 1);
3173 raw_write(env
, ri
, value
);
3176 static const ARMCPRegInfo el2_cp_reginfo
[] = {
3177 { .name
= "HCR_EL2", .state
= ARM_CP_STATE_AA64
,
3178 .opc0
= 3, .opc1
= 4, .crn
= 1, .crm
= 1, .opc2
= 0,
3179 .access
= PL2_RW
, .fieldoffset
= offsetof(CPUARMState
, cp15
.hcr_el2
),
3180 .writefn
= hcr_write
},
3181 { .name
= "DACR32_EL2", .state
= ARM_CP_STATE_AA64
,
3182 .opc0
= 3, .opc1
= 4, .crn
= 3, .crm
= 0, .opc2
= 0,
3183 .access
= PL2_RW
, .resetvalue
= 0,
3184 .writefn
= dacr_write
, .raw_writefn
= raw_write
,
3185 .fieldoffset
= offsetof(CPUARMState
, cp15
.dacr32_el2
) },
3186 { .name
= "ELR_EL2", .state
= ARM_CP_STATE_AA64
,
3187 .type
= ARM_CP_ALIAS
,
3188 .opc0
= 3, .opc1
= 4, .crn
= 4, .crm
= 0, .opc2
= 1,
3190 .fieldoffset
= offsetof(CPUARMState
, elr_el
[2]) },
3191 { .name
= "ESR_EL2", .state
= ARM_CP_STATE_AA64
,
3192 .type
= ARM_CP_ALIAS
,
3193 .opc0
= 3, .opc1
= 4, .crn
= 5, .crm
= 2, .opc2
= 0,
3194 .access
= PL2_RW
, .fieldoffset
= offsetof(CPUARMState
, cp15
.esr_el
[2]) },
3195 { .name
= "IFSR32_EL2", .state
= ARM_CP_STATE_AA64
,
3196 .opc0
= 3, .opc1
= 4, .crn
= 5, .crm
= 0, .opc2
= 1,
3197 .access
= PL2_RW
, .resetvalue
= 0,
3198 .fieldoffset
= offsetof(CPUARMState
, cp15
.ifsr32_el2
) },
3199 { .name
= "FAR_EL2", .state
= ARM_CP_STATE_AA64
,
3200 .opc0
= 3, .opc1
= 4, .crn
= 6, .crm
= 0, .opc2
= 0,
3201 .access
= PL2_RW
, .fieldoffset
= offsetof(CPUARMState
, cp15
.far_el
[2]) },
3202 { .name
= "SPSR_EL2", .state
= ARM_CP_STATE_AA64
,
3203 .type
= ARM_CP_ALIAS
,
3204 .opc0
= 3, .opc1
= 4, .crn
= 4, .crm
= 0, .opc2
= 0,
3205 .access
= PL2_RW
, .fieldoffset
= offsetof(CPUARMState
, banked_spsr
[6]) },
3206 { .name
= "VBAR_EL2", .state
= ARM_CP_STATE_AA64
,
3207 .opc0
= 3, .opc1
= 4, .crn
= 12, .crm
= 0, .opc2
= 0,
3208 .access
= PL2_RW
, .writefn
= vbar_write
,
3209 .fieldoffset
= offsetof(CPUARMState
, cp15
.vbar_el
[2]),
3211 { .name
= "SP_EL2", .state
= ARM_CP_STATE_AA64
,
3212 .opc0
= 3, .opc1
= 6, .crn
= 4, .crm
= 1, .opc2
= 0,
3213 .access
= PL3_RW
, .type
= ARM_CP_ALIAS
,
3214 .fieldoffset
= offsetof(CPUARMState
, sp_el
[2]) },
3215 { .name
= "CPTR_EL2", .state
= ARM_CP_STATE_BOTH
,
3216 .opc0
= 3, .opc1
= 4, .crn
= 1, .crm
= 1, .opc2
= 2,
3217 .access
= PL2_RW
, .accessfn
= cptr_access
, .resetvalue
= 0,
3218 .fieldoffset
= offsetof(CPUARMState
, cp15
.cptr_el
[2]) },
3219 { .name
= "MAIR_EL2", .state
= ARM_CP_STATE_BOTH
,
3220 .opc0
= 3, .opc1
= 4, .crn
= 10, .crm
= 2, .opc2
= 0,
3221 .access
= PL2_RW
, .fieldoffset
= offsetof(CPUARMState
, cp15
.mair_el
[2]),
3223 { .name
= "HMAIR1", .state
= ARM_CP_STATE_AA32
,
3224 .opc1
= 4, .crn
= 10, .crm
= 2, .opc2
= 1,
3225 .access
= PL2_RW
, .type
= ARM_CP_ALIAS
,
3226 .fieldoffset
= offsetofhigh32(CPUARMState
, cp15
.mair_el
[2]) },
3227 { .name
= "AMAIR_EL2", .state
= ARM_CP_STATE_BOTH
,
3228 .opc0
= 3, .opc1
= 4, .crn
= 10, .crm
= 3, .opc2
= 0,
3229 .access
= PL2_RW
, .type
= ARM_CP_CONST
,
3231 /* HAMAIR1 is mapped to AMAIR_EL2[63:32] */
3232 { .name
= "HMAIR1", .state
= ARM_CP_STATE_AA32
,
3233 .opc1
= 4, .crn
= 10, .crm
= 3, .opc2
= 1,
3234 .access
= PL2_RW
, .type
= ARM_CP_CONST
,
3236 { .name
= "AFSR0_EL2", .state
= ARM_CP_STATE_BOTH
,
3237 .opc0
= 3, .opc1
= 4, .crn
= 5, .crm
= 1, .opc2
= 0,
3238 .access
= PL2_RW
, .type
= ARM_CP_CONST
,
3240 { .name
= "AFSR1_EL2", .state
= ARM_CP_STATE_BOTH
,
3241 .opc0
= 3, .opc1
= 4, .crn
= 5, .crm
= 1, .opc2
= 1,
3242 .access
= PL2_RW
, .type
= ARM_CP_CONST
,
3244 { .name
= "TCR_EL2", .state
= ARM_CP_STATE_BOTH
,
3245 .opc0
= 3, .opc1
= 4, .crn
= 2, .crm
= 0, .opc2
= 2,
3246 .access
= PL2_RW
, .writefn
= vmsa_tcr_el1_write
,
3247 .resetfn
= vmsa_ttbcr_reset
, .raw_writefn
= raw_write
,
3248 .fieldoffset
= offsetof(CPUARMState
, cp15
.tcr_el
[2]) },
3249 { .name
= "SCTLR_EL2", .state
= ARM_CP_STATE_BOTH
,
3250 .opc0
= 3, .opc1
= 4, .crn
= 1, .crm
= 0, .opc2
= 0,
3251 .access
= PL2_RW
, .raw_writefn
= raw_write
, .writefn
= sctlr_write
,
3252 .fieldoffset
= offsetof(CPUARMState
, cp15
.sctlr_el
[2]) },
3253 { .name
= "TPIDR_EL2", .state
= ARM_CP_STATE_BOTH
,
3254 .opc0
= 3, .opc1
= 4, .crn
= 13, .crm
= 0, .opc2
= 2,
3255 .access
= PL2_RW
, .resetvalue
= 0,
3256 .fieldoffset
= offsetof(CPUARMState
, cp15
.tpidr_el
[2]) },
3257 { .name
= "TTBR0_EL2", .state
= ARM_CP_STATE_AA64
,
3258 .opc0
= 3, .opc1
= 4, .crn
= 2, .crm
= 0, .opc2
= 0,
3259 .access
= PL2_RW
, .resetvalue
= 0,
3260 .fieldoffset
= offsetof(CPUARMState
, cp15
.ttbr0_el
[2]) },
3261 { .name
= "HTTBR", .cp
= 15, .opc1
= 4, .crm
= 2,
3262 .access
= PL2_RW
, .type
= ARM_CP_64BIT
| ARM_CP_ALIAS
,
3263 .fieldoffset
= offsetof(CPUARMState
, cp15
.ttbr0_el
[2]) },
3264 { .name
= "TLBI_ALLE2", .state
= ARM_CP_STATE_AA64
,
3265 .opc0
= 1, .opc1
= 4, .crn
= 8, .crm
= 7, .opc2
= 0,
3266 .type
= ARM_CP_NO_RAW
, .access
= PL2_W
,
3267 .writefn
= tlbi_aa64_alle2_write
},
3268 { .name
= "TLBI_VAE2", .state
= ARM_CP_STATE_AA64
,
3269 .opc0
= 1, .opc1
= 4, .crn
= 8, .crm
= 7, .opc2
= 1,
3270 .type
= ARM_CP_NO_RAW
, .access
= PL2_W
,
3271 .writefn
= tlbi_aa64_vae2_write
},
3272 { .name
= "TLBI_VALE2", .state
= ARM_CP_STATE_AA64
,
3273 .opc0
= 1, .opc1
= 4, .crn
= 8, .crm
= 7, .opc2
= 5,
3274 .access
= PL2_W
, .type
= ARM_CP_NO_RAW
,
3275 .writefn
= tlbi_aa64_vae2_write
},
3276 { .name
= "TLBI_ALLE2IS", .state
= ARM_CP_STATE_AA64
,
3277 .opc0
= 1, .opc1
= 4, .crn
= 8, .crm
= 3, .opc2
= 0,
3278 .access
= PL2_W
, .type
= ARM_CP_NO_RAW
,
3279 .writefn
= tlbi_aa64_alle2is_write
},
3280 { .name
= "TLBI_VAE2IS", .state
= ARM_CP_STATE_AA64
,
3281 .opc0
= 1, .opc1
= 4, .crn
= 8, .crm
= 3, .opc2
= 1,
3282 .type
= ARM_CP_NO_RAW
, .access
= PL2_W
,
3283 .writefn
= tlbi_aa64_vae2is_write
},
3284 { .name
= "TLBI_VALE2IS", .state
= ARM_CP_STATE_AA64
,
3285 .opc0
= 1, .opc1
= 4, .crn
= 8, .crm
= 3, .opc2
= 5,
3286 .access
= PL2_W
, .type
= ARM_CP_NO_RAW
,
3287 .writefn
= tlbi_aa64_vae2is_write
},
3288 #ifndef CONFIG_USER_ONLY
3289 /* Unlike the other EL2-related AT operations, these must
3290 * UNDEF from EL3 if EL2 is not implemented, which is why we
3291 * define them here rather than with the rest of the AT ops.
3293 { .name
= "AT_S1E2R", .state
= ARM_CP_STATE_AA64
,
3294 .opc0
= 1, .opc1
= 4, .crn
= 7, .crm
= 8, .opc2
= 0,
3295 .access
= PL2_W
, .accessfn
= at_s1e2_access
,
3296 .type
= ARM_CP_NO_RAW
, .writefn
= ats_write64
},
3297 { .name
= "AT_S1E2W", .state
= ARM_CP_STATE_AA64
,
3298 .opc0
= 1, .opc1
= 4, .crn
= 7, .crm
= 8, .opc2
= 1,
3299 .access
= PL2_W
, .accessfn
= at_s1e2_access
,
3300 .type
= ARM_CP_NO_RAW
, .writefn
= ats_write64
},
3301 /* The AArch32 ATS1H* operations are CONSTRAINED UNPREDICTABLE
3302 * if EL2 is not implemented; we choose to UNDEF. Behaviour at EL3
3303 * with SCR.NS == 0 outside Monitor mode is UNPREDICTABLE; we choose
3304 * to behave as if SCR.NS was 1.
3306 { .name
= "ATS1HR", .cp
= 15, .opc1
= 4, .crn
= 7, .crm
= 8, .opc2
= 0,
3308 .writefn
= ats1h_write
, .type
= ARM_CP_NO_RAW
},
3309 { .name
= "ATS1HW", .cp
= 15, .opc1
= 4, .crn
= 7, .crm
= 8, .opc2
= 1,
3311 .writefn
= ats1h_write
, .type
= ARM_CP_NO_RAW
},
3312 { .name
= "CNTHCTL_EL2", .state
= ARM_CP_STATE_BOTH
,
3313 .opc0
= 3, .opc1
= 4, .crn
= 14, .crm
= 1, .opc2
= 0,
3314 /* ARMv7 requires bit 0 and 1 to reset to 1. ARMv8 defines the
3315 * reset values as IMPDEF. We choose to reset to 3 to comply with
3316 * both ARMv7 and ARMv8.
3318 .access
= PL2_RW
, .resetvalue
= 3,
3319 .fieldoffset
= offsetof(CPUARMState
, cp15
.cnthctl_el2
) },
3320 { .name
= "CNTVOFF_EL2", .state
= ARM_CP_STATE_AA64
,
3321 .opc0
= 3, .opc1
= 4, .crn
= 14, .crm
= 0, .opc2
= 3,
3322 .access
= PL2_RW
, .type
= ARM_CP_IO
, .resetvalue
= 0,
3323 .writefn
= gt_cntvoff_write
,
3324 .fieldoffset
= offsetof(CPUARMState
, cp15
.cntvoff_el2
) },
3325 { .name
= "CNTVOFF", .cp
= 15, .opc1
= 4, .crm
= 14,
3326 .access
= PL2_RW
, .type
= ARM_CP_64BIT
| ARM_CP_ALIAS
| ARM_CP_IO
,
3327 .writefn
= gt_cntvoff_write
,
3328 .fieldoffset
= offsetof(CPUARMState
, cp15
.cntvoff_el2
) },
3329 { .name
= "CNTHP_CVAL_EL2", .state
= ARM_CP_STATE_AA64
,
3330 .opc0
= 3, .opc1
= 4, .crn
= 14, .crm
= 2, .opc2
= 2,
3331 .fieldoffset
= offsetof(CPUARMState
, cp15
.c14_timer
[GTIMER_HYP
].cval
),
3332 .type
= ARM_CP_IO
, .access
= PL2_RW
,
3333 .writefn
= gt_hyp_cval_write
, .raw_writefn
= raw_write
},
3334 { .name
= "CNTHP_CVAL", .cp
= 15, .opc1
= 6, .crm
= 14,
3335 .fieldoffset
= offsetof(CPUARMState
, cp15
.c14_timer
[GTIMER_HYP
].cval
),
3336 .access
= PL2_RW
, .type
= ARM_CP_64BIT
| ARM_CP_IO
,
3337 .writefn
= gt_hyp_cval_write
, .raw_writefn
= raw_write
},
3338 { .name
= "CNTHP_TVAL_EL2", .state
= ARM_CP_STATE_BOTH
,
3339 .opc0
= 3, .opc1
= 4, .crn
= 14, .crm
= 2, .opc2
= 0,
3340 .type
= ARM_CP_IO
, .access
= PL2_RW
,
3341 .resetfn
= gt_hyp_timer_reset
,
3342 .readfn
= gt_hyp_tval_read
, .writefn
= gt_hyp_tval_write
},
3343 { .name
= "CNTHP_CTL_EL2", .state
= ARM_CP_STATE_BOTH
,
3345 .opc0
= 3, .opc1
= 4, .crn
= 14, .crm
= 2, .opc2
= 1,
3347 .fieldoffset
= offsetof(CPUARMState
, cp15
.c14_timer
[GTIMER_HYP
].ctl
),
3349 .writefn
= gt_hyp_ctl_write
, .raw_writefn
= raw_write
},
3354 static const ARMCPRegInfo el3_cp_reginfo
[] = {
3355 { .name
= "SCR_EL3", .state
= ARM_CP_STATE_AA64
,
3356 .opc0
= 3, .opc1
= 6, .crn
= 1, .crm
= 1, .opc2
= 0,
3357 .access
= PL3_RW
, .fieldoffset
= offsetof(CPUARMState
, cp15
.scr_el3
),
3358 .resetvalue
= 0, .writefn
= scr_write
},
3359 { .name
= "SCR", .type
= ARM_CP_ALIAS
,
3360 .cp
= 15, .opc1
= 0, .crn
= 1, .crm
= 1, .opc2
= 0,
3361 .access
= PL3_RW
, .fieldoffset
= offsetoflow32(CPUARMState
, cp15
.scr_el3
),
3362 .writefn
= scr_write
},
3363 { .name
= "SDER32_EL3", .state
= ARM_CP_STATE_AA64
,
3364 .opc0
= 3, .opc1
= 6, .crn
= 1, .crm
= 1, .opc2
= 1,
3365 .access
= PL3_RW
, .resetvalue
= 0,
3366 .fieldoffset
= offsetof(CPUARMState
, cp15
.sder
) },
3368 .cp
= 15, .opc1
= 0, .crn
= 1, .crm
= 1, .opc2
= 1,
3369 .access
= PL3_RW
, .resetvalue
= 0,
3370 .fieldoffset
= offsetoflow32(CPUARMState
, cp15
.sder
) },
3371 /* TODO: Implement NSACR trapping of secure EL1 accesses to EL3 */
3372 { .name
= "NSACR", .cp
= 15, .opc1
= 0, .crn
= 1, .crm
= 1, .opc2
= 2,
3373 .access
= PL3_W
| PL1_R
, .resetvalue
= 0,
3374 .fieldoffset
= offsetof(CPUARMState
, cp15
.nsacr
) },
3375 { .name
= "MVBAR", .cp
= 15, .opc1
= 0, .crn
= 12, .crm
= 0, .opc2
= 1,
3376 .access
= PL3_RW
, .writefn
= vbar_write
, .resetvalue
= 0,
3377 .fieldoffset
= offsetof(CPUARMState
, cp15
.mvbar
) },
3378 { .name
= "SCTLR_EL3", .state
= ARM_CP_STATE_AA64
,
3379 .type
= ARM_CP_ALIAS
, /* reset handled by AArch32 view */
3380 .opc0
= 3, .opc1
= 6, .crn
= 1, .crm
= 0, .opc2
= 0,
3381 .access
= PL3_RW
, .raw_writefn
= raw_write
, .writefn
= sctlr_write
,
3382 .fieldoffset
= offsetof(CPUARMState
, cp15
.sctlr_el
[3]) },
3383 { .name
= "TTBR0_EL3", .state
= ARM_CP_STATE_AA64
,
3384 .opc0
= 3, .opc1
= 6, .crn
= 2, .crm
= 0, .opc2
= 0,
3385 .access
= PL3_RW
, .writefn
= vmsa_ttbr_write
, .resetvalue
= 0,
3386 .fieldoffset
= offsetof(CPUARMState
, cp15
.ttbr0_el
[3]) },
3387 { .name
= "TCR_EL3", .state
= ARM_CP_STATE_AA64
,
3388 .opc0
= 3, .opc1
= 6, .crn
= 2, .crm
= 0, .opc2
= 2,
3389 .access
= PL3_RW
, .writefn
= vmsa_tcr_el1_write
,
3390 .resetfn
= vmsa_ttbcr_reset
, .raw_writefn
= raw_write
,
3391 .fieldoffset
= offsetof(CPUARMState
, cp15
.tcr_el
[3]) },
3392 { .name
= "ELR_EL3", .state
= ARM_CP_STATE_AA64
,
3393 .type
= ARM_CP_ALIAS
,
3394 .opc0
= 3, .opc1
= 6, .crn
= 4, .crm
= 0, .opc2
= 1,
3396 .fieldoffset
= offsetof(CPUARMState
, elr_el
[3]) },
3397 { .name
= "ESR_EL3", .state
= ARM_CP_STATE_AA64
,
3398 .type
= ARM_CP_ALIAS
,
3399 .opc0
= 3, .opc1
= 6, .crn
= 5, .crm
= 2, .opc2
= 0,
3400 .access
= PL3_RW
, .fieldoffset
= offsetof(CPUARMState
, cp15
.esr_el
[3]) },
3401 { .name
= "FAR_EL3", .state
= ARM_CP_STATE_AA64
,
3402 .opc0
= 3, .opc1
= 6, .crn
= 6, .crm
= 0, .opc2
= 0,
3403 .access
= PL3_RW
, .fieldoffset
= offsetof(CPUARMState
, cp15
.far_el
[3]) },
3404 { .name
= "SPSR_EL3", .state
= ARM_CP_STATE_AA64
,
3405 .type
= ARM_CP_ALIAS
,
3406 .opc0
= 3, .opc1
= 6, .crn
= 4, .crm
= 0, .opc2
= 0,
3407 .access
= PL3_RW
, .fieldoffset
= offsetof(CPUARMState
, banked_spsr
[7]) },
3408 { .name
= "VBAR_EL3", .state
= ARM_CP_STATE_AA64
,
3409 .opc0
= 3, .opc1
= 6, .crn
= 12, .crm
= 0, .opc2
= 0,
3410 .access
= PL3_RW
, .writefn
= vbar_write
,
3411 .fieldoffset
= offsetof(CPUARMState
, cp15
.vbar_el
[3]),
3413 { .name
= "CPTR_EL3", .state
= ARM_CP_STATE_AA64
,
3414 .opc0
= 3, .opc1
= 6, .crn
= 1, .crm
= 1, .opc2
= 2,
3415 .access
= PL3_RW
, .accessfn
= cptr_access
, .resetvalue
= 0,
3416 .fieldoffset
= offsetof(CPUARMState
, cp15
.cptr_el
[3]) },
3417 { .name
= "TPIDR_EL3", .state
= ARM_CP_STATE_AA64
,
3418 .opc0
= 3, .opc1
= 6, .crn
= 13, .crm
= 0, .opc2
= 2,
3419 .access
= PL3_RW
, .resetvalue
= 0,
3420 .fieldoffset
= offsetof(CPUARMState
, cp15
.tpidr_el
[3]) },
3421 { .name
= "AMAIR_EL3", .state
= ARM_CP_STATE_AA64
,
3422 .opc0
= 3, .opc1
= 6, .crn
= 10, .crm
= 3, .opc2
= 0,
3423 .access
= PL3_RW
, .type
= ARM_CP_CONST
,
3425 { .name
= "AFSR0_EL3", .state
= ARM_CP_STATE_BOTH
,
3426 .opc0
= 3, .opc1
= 6, .crn
= 5, .crm
= 1, .opc2
= 0,
3427 .access
= PL3_RW
, .type
= ARM_CP_CONST
,
3429 { .name
= "AFSR1_EL3", .state
= ARM_CP_STATE_BOTH
,
3430 .opc0
= 3, .opc1
= 6, .crn
= 5, .crm
= 1, .opc2
= 1,
3431 .access
= PL3_RW
, .type
= ARM_CP_CONST
,
3433 { .name
= "TLBI_ALLE3IS", .state
= ARM_CP_STATE_AA64
,
3434 .opc0
= 1, .opc1
= 6, .crn
= 8, .crm
= 3, .opc2
= 0,
3435 .access
= PL3_W
, .type
= ARM_CP_NO_RAW
,
3436 .writefn
= tlbi_aa64_alle3is_write
},
3437 { .name
= "TLBI_VAE3IS", .state
= ARM_CP_STATE_AA64
,
3438 .opc0
= 1, .opc1
= 6, .crn
= 8, .crm
= 3, .opc2
= 1,
3439 .access
= PL3_W
, .type
= ARM_CP_NO_RAW
,
3440 .writefn
= tlbi_aa64_vae3is_write
},
3441 { .name
= "TLBI_VALE3IS", .state
= ARM_CP_STATE_AA64
,
3442 .opc0
= 1, .opc1
= 6, .crn
= 8, .crm
= 3, .opc2
= 5,
3443 .access
= PL3_W
, .type
= ARM_CP_NO_RAW
,
3444 .writefn
= tlbi_aa64_vae3is_write
},
3445 { .name
= "TLBI_ALLE3", .state
= ARM_CP_STATE_AA64
,
3446 .opc0
= 1, .opc1
= 6, .crn
= 8, .crm
= 7, .opc2
= 0,
3447 .access
= PL3_W
, .type
= ARM_CP_NO_RAW
,
3448 .writefn
= tlbi_aa64_alle3_write
},
3449 { .name
= "TLBI_VAE3", .state
= ARM_CP_STATE_AA64
,
3450 .opc0
= 1, .opc1
= 6, .crn
= 8, .crm
= 7, .opc2
= 1,
3451 .access
= PL3_W
, .type
= ARM_CP_NO_RAW
,
3452 .writefn
= tlbi_aa64_vae3_write
},
3453 { .name
= "TLBI_VALE3", .state
= ARM_CP_STATE_AA64
,
3454 .opc0
= 1, .opc1
= 6, .crn
= 8, .crm
= 7, .opc2
= 5,
3455 .access
= PL3_W
, .type
= ARM_CP_NO_RAW
,
3456 .writefn
= tlbi_aa64_vae3_write
},
3460 static CPAccessResult
ctr_el0_access(CPUARMState
*env
, const ARMCPRegInfo
*ri
)
3462 /* Only accessible in EL0 if SCTLR.UCT is set (and only in AArch64,
3463 * but the AArch32 CTR has its own reginfo struct)
3465 if (arm_current_el(env
) == 0 && !(env
->cp15
.sctlr_el
[1] & SCTLR_UCT
)) {
3466 return CP_ACCESS_TRAP
;
3468 return CP_ACCESS_OK
;
3471 static const ARMCPRegInfo debug_cp_reginfo
[] = {
3472 /* DBGDRAR, DBGDSAR: always RAZ since we don't implement memory mapped
3473 * debug components. The AArch64 version of DBGDRAR is named MDRAR_EL1;
3474 * unlike DBGDRAR it is never accessible from EL0.
3475 * DBGDSAR is deprecated and must RAZ from v8 anyway, so it has no AArch64
3478 { .name
= "DBGDRAR", .cp
= 14, .crn
= 1, .crm
= 0, .opc1
= 0, .opc2
= 0,
3479 .access
= PL0_R
, .type
= ARM_CP_CONST
, .resetvalue
= 0 },
3480 { .name
= "MDRAR_EL1", .state
= ARM_CP_STATE_AA64
,
3481 .opc0
= 2, .opc1
= 0, .crn
= 1, .crm
= 0, .opc2
= 0,
3482 .access
= PL1_R
, .type
= ARM_CP_CONST
, .resetvalue
= 0 },
3483 { .name
= "DBGDSAR", .cp
= 14, .crn
= 2, .crm
= 0, .opc1
= 0, .opc2
= 0,
3484 .access
= PL0_R
, .type
= ARM_CP_CONST
, .resetvalue
= 0 },
3485 /* Monitor debug system control register; the 32-bit alias is DBGDSCRext. */
3486 { .name
= "MDSCR_EL1", .state
= ARM_CP_STATE_BOTH
,
3487 .cp
= 14, .opc0
= 2, .opc1
= 0, .crn
= 0, .crm
= 2, .opc2
= 2,
3489 .fieldoffset
= offsetof(CPUARMState
, cp15
.mdscr_el1
),
3491 /* MDCCSR_EL0, aka DBGDSCRint. This is a read-only mirror of MDSCR_EL1.
3492 * We don't implement the configurable EL0 access.
3494 { .name
= "MDCCSR_EL0", .state
= ARM_CP_STATE_BOTH
,
3495 .cp
= 14, .opc0
= 2, .opc1
= 0, .crn
= 0, .crm
= 1, .opc2
= 0,
3496 .type
= ARM_CP_ALIAS
,
3498 .fieldoffset
= offsetof(CPUARMState
, cp15
.mdscr_el1
), },
3499 /* We define a dummy WI OSLAR_EL1, because Linux writes to it. */
3500 { .name
= "OSLAR_EL1", .state
= ARM_CP_STATE_BOTH
,
3501 .cp
= 14, .opc0
= 2, .opc1
= 0, .crn
= 1, .crm
= 0, .opc2
= 4,
3502 .access
= PL1_W
, .type
= ARM_CP_NOP
},
3503 /* Dummy OSDLR_EL1: 32-bit Linux will read this */
3504 { .name
= "OSDLR_EL1", .state
= ARM_CP_STATE_BOTH
,
3505 .cp
= 14, .opc0
= 2, .opc1
= 0, .crn
= 1, .crm
= 3, .opc2
= 4,
3506 .access
= PL1_RW
, .type
= ARM_CP_NOP
},
3507 /* Dummy DBGVCR: Linux wants to clear this on startup, but we don't
3508 * implement vector catch debug events yet.
3511 .cp
= 14, .opc1
= 0, .crn
= 0, .crm
= 7, .opc2
= 0,
3512 .access
= PL1_RW
, .type
= ARM_CP_NOP
},
3516 static const ARMCPRegInfo debug_lpae_cp_reginfo
[] = {
3517 /* 64 bit access versions of the (dummy) debug registers */
3518 { .name
= "DBGDRAR", .cp
= 14, .crm
= 1, .opc1
= 0,
3519 .access
= PL0_R
, .type
= ARM_CP_CONST
|ARM_CP_64BIT
, .resetvalue
= 0 },
3520 { .name
= "DBGDSAR", .cp
= 14, .crm
= 2, .opc1
= 0,
3521 .access
= PL0_R
, .type
= ARM_CP_CONST
|ARM_CP_64BIT
, .resetvalue
= 0 },
3525 void hw_watchpoint_update(ARMCPU
*cpu
, int n
)
3527 CPUARMState
*env
= &cpu
->env
;
3529 vaddr wvr
= env
->cp15
.dbgwvr
[n
];
3530 uint64_t wcr
= env
->cp15
.dbgwcr
[n
];
3532 int flags
= BP_CPU
| BP_STOP_BEFORE_ACCESS
;
3534 if (env
->cpu_watchpoint
[n
]) {
3535 cpu_watchpoint_remove_by_ref(CPU(cpu
), env
->cpu_watchpoint
[n
]);
3536 env
->cpu_watchpoint
[n
] = NULL
;
3539 if (!extract64(wcr
, 0, 1)) {
3540 /* E bit clear : watchpoint disabled */
3544 switch (extract64(wcr
, 3, 2)) {
3546 /* LSC 00 is reserved and must behave as if the wp is disabled */
3549 flags
|= BP_MEM_READ
;
3552 flags
|= BP_MEM_WRITE
;
3555 flags
|= BP_MEM_ACCESS
;
3559 /* Attempts to use both MASK and BAS fields simultaneously are
3560 * CONSTRAINED UNPREDICTABLE; we opt to ignore BAS in this case,
3561 * thus generating a watchpoint for every byte in the masked region.
3563 mask
= extract64(wcr
, 24, 4);
3564 if (mask
== 1 || mask
== 2) {
3565 /* Reserved values of MASK; we must act as if the mask value was
3566 * some non-reserved value, or as if the watchpoint were disabled.
3567 * We choose the latter.
3571 /* Watchpoint covers an aligned area up to 2GB in size */
3573 /* If masked bits in WVR are not zero it's CONSTRAINED UNPREDICTABLE
3574 * whether the watchpoint fires when the unmasked bits match; we opt
3575 * to generate the exceptions.
3579 /* Watchpoint covers bytes defined by the byte address select bits */
3580 int bas
= extract64(wcr
, 5, 8);
3584 /* This must act as if the watchpoint is disabled */
3588 if (extract64(wvr
, 2, 1)) {
3589 /* Deprecated case of an only 4-aligned address. BAS[7:4] are
3590 * ignored, and BAS[3:0] define which bytes to watch.
3594 /* The BAS bits are supposed to be programmed to indicate a contiguous
3595 * range of bytes. Otherwise it is CONSTRAINED UNPREDICTABLE whether
3596 * we fire for each byte in the word/doubleword addressed by the WVR.
3597 * We choose to ignore any non-zero bits after the first range of 1s.
3599 basstart
= ctz32(bas
);
3600 len
= cto32(bas
>> basstart
);
3604 cpu_watchpoint_insert(CPU(cpu
), wvr
, len
, flags
,
3605 &env
->cpu_watchpoint
[n
]);
3608 void hw_watchpoint_update_all(ARMCPU
*cpu
)
3611 CPUARMState
*env
= &cpu
->env
;
3613 /* Completely clear out existing QEMU watchpoints and our array, to
3614 * avoid possible stale entries following migration load.
3616 cpu_watchpoint_remove_all(CPU(cpu
), BP_CPU
);
3617 memset(env
->cpu_watchpoint
, 0, sizeof(env
->cpu_watchpoint
));
3619 for (i
= 0; i
< ARRAY_SIZE(cpu
->env
.cpu_watchpoint
); i
++) {
3620 hw_watchpoint_update(cpu
, i
);
3624 static void dbgwvr_write(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
3627 ARMCPU
*cpu
= arm_env_get_cpu(env
);
3630 /* Bits [63:49] are hardwired to the value of bit [48]; that is, the
3631 * register reads and behaves as if values written are sign extended.
3632 * Bits [1:0] are RES0.
3634 value
= sextract64(value
, 0, 49) & ~3ULL;
3636 raw_write(env
, ri
, value
);
3637 hw_watchpoint_update(cpu
, i
);
3640 static void dbgwcr_write(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
3643 ARMCPU
*cpu
= arm_env_get_cpu(env
);
3646 raw_write(env
, ri
, value
);
3647 hw_watchpoint_update(cpu
, i
);
3650 void hw_breakpoint_update(ARMCPU
*cpu
, int n
)
3652 CPUARMState
*env
= &cpu
->env
;
3653 uint64_t bvr
= env
->cp15
.dbgbvr
[n
];
3654 uint64_t bcr
= env
->cp15
.dbgbcr
[n
];
3659 if (env
->cpu_breakpoint
[n
]) {
3660 cpu_breakpoint_remove_by_ref(CPU(cpu
), env
->cpu_breakpoint
[n
]);
3661 env
->cpu_breakpoint
[n
] = NULL
;
3664 if (!extract64(bcr
, 0, 1)) {
3665 /* E bit clear : watchpoint disabled */
3669 bt
= extract64(bcr
, 20, 4);
3672 case 4: /* unlinked address mismatch (reserved if AArch64) */
3673 case 5: /* linked address mismatch (reserved if AArch64) */
3674 qemu_log_mask(LOG_UNIMP
,
3675 "arm: address mismatch breakpoint types not implemented");
3677 case 0: /* unlinked address match */
3678 case 1: /* linked address match */
3680 /* Bits [63:49] are hardwired to the value of bit [48]; that is,
3681 * we behave as if the register was sign extended. Bits [1:0] are
3682 * RES0. The BAS field is used to allow setting breakpoints on 16
3683 * bit wide instructions; it is CONSTRAINED UNPREDICTABLE whether
3684 * a bp will fire if the addresses covered by the bp and the addresses
3685 * covered by the insn overlap but the insn doesn't start at the
3686 * start of the bp address range. We choose to require the insn and
3687 * the bp to have the same address. The constraints on writing to
3688 * BAS enforced in dbgbcr_write mean we have only four cases:
3689 * 0b0000 => no breakpoint
3690 * 0b0011 => breakpoint on addr
3691 * 0b1100 => breakpoint on addr + 2
3692 * 0b1111 => breakpoint on addr
3693 * See also figure D2-3 in the v8 ARM ARM (DDI0487A.c).
3695 int bas
= extract64(bcr
, 5, 4);
3696 addr
= sextract64(bvr
, 0, 49) & ~3ULL;
3705 case 2: /* unlinked context ID match */
3706 case 8: /* unlinked VMID match (reserved if no EL2) */
3707 case 10: /* unlinked context ID and VMID match (reserved if no EL2) */
3708 qemu_log_mask(LOG_UNIMP
,
3709 "arm: unlinked context breakpoint types not implemented");
3711 case 9: /* linked VMID match (reserved if no EL2) */
3712 case 11: /* linked context ID and VMID match (reserved if no EL2) */
3713 case 3: /* linked context ID match */
3715 /* We must generate no events for Linked context matches (unless
3716 * they are linked to by some other bp/wp, which is handled in
3717 * updates for the linking bp/wp). We choose to also generate no events
3718 * for reserved values.
3723 cpu_breakpoint_insert(CPU(cpu
), addr
, flags
, &env
->cpu_breakpoint
[n
]);
3726 void hw_breakpoint_update_all(ARMCPU
*cpu
)
3729 CPUARMState
*env
= &cpu
->env
;
3731 /* Completely clear out existing QEMU breakpoints and our array, to
3732 * avoid possible stale entries following migration load.
3734 cpu_breakpoint_remove_all(CPU(cpu
), BP_CPU
);
3735 memset(env
->cpu_breakpoint
, 0, sizeof(env
->cpu_breakpoint
));
3737 for (i
= 0; i
< ARRAY_SIZE(cpu
->env
.cpu_breakpoint
); i
++) {
3738 hw_breakpoint_update(cpu
, i
);
3742 static void dbgbvr_write(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
3745 ARMCPU
*cpu
= arm_env_get_cpu(env
);
3748 raw_write(env
, ri
, value
);
3749 hw_breakpoint_update(cpu
, i
);
3752 static void dbgbcr_write(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
3755 ARMCPU
*cpu
= arm_env_get_cpu(env
);
3758 /* BAS[3] is a read-only copy of BAS[2], and BAS[1] a read-only
3761 value
= deposit64(value
, 6, 1, extract64(value
, 5, 1));
3762 value
= deposit64(value
, 8, 1, extract64(value
, 7, 1));
3764 raw_write(env
, ri
, value
);
3765 hw_breakpoint_update(cpu
, i
);
3768 static void define_debug_regs(ARMCPU
*cpu
)
3770 /* Define v7 and v8 architectural debug registers.
3771 * These are just dummy implementations for now.
3774 int wrps
, brps
, ctx_cmps
;
3775 ARMCPRegInfo dbgdidr
= {
3776 .name
= "DBGDIDR", .cp
= 14, .crn
= 0, .crm
= 0, .opc1
= 0, .opc2
= 0,
3777 .access
= PL0_R
, .type
= ARM_CP_CONST
, .resetvalue
= cpu
->dbgdidr
,
3780 /* Note that all these register fields hold "number of Xs minus 1". */
3781 brps
= extract32(cpu
->dbgdidr
, 24, 4);
3782 wrps
= extract32(cpu
->dbgdidr
, 28, 4);
3783 ctx_cmps
= extract32(cpu
->dbgdidr
, 20, 4);
3785 assert(ctx_cmps
<= brps
);
3787 /* The DBGDIDR and ID_AA64DFR0_EL1 define various properties
3788 * of the debug registers such as number of breakpoints;
3789 * check that if they both exist then they agree.
3791 if (arm_feature(&cpu
->env
, ARM_FEATURE_AARCH64
)) {
3792 assert(extract32(cpu
->id_aa64dfr0
, 12, 4) == brps
);
3793 assert(extract32(cpu
->id_aa64dfr0
, 20, 4) == wrps
);
3794 assert(extract32(cpu
->id_aa64dfr0
, 28, 4) == ctx_cmps
);
3797 define_one_arm_cp_reg(cpu
, &dbgdidr
);
3798 define_arm_cp_regs(cpu
, debug_cp_reginfo
);
3800 if (arm_feature(&cpu
->env
, ARM_FEATURE_LPAE
)) {
3801 define_arm_cp_regs(cpu
, debug_lpae_cp_reginfo
);
3804 for (i
= 0; i
< brps
+ 1; i
++) {
3805 ARMCPRegInfo dbgregs
[] = {
3806 { .name
= "DBGBVR", .state
= ARM_CP_STATE_BOTH
,
3807 .cp
= 14, .opc0
= 2, .opc1
= 0, .crn
= 0, .crm
= i
, .opc2
= 4,
3809 .fieldoffset
= offsetof(CPUARMState
, cp15
.dbgbvr
[i
]),
3810 .writefn
= dbgbvr_write
, .raw_writefn
= raw_write
3812 { .name
= "DBGBCR", .state
= ARM_CP_STATE_BOTH
,
3813 .cp
= 14, .opc0
= 2, .opc1
= 0, .crn
= 0, .crm
= i
, .opc2
= 5,
3815 .fieldoffset
= offsetof(CPUARMState
, cp15
.dbgbcr
[i
]),
3816 .writefn
= dbgbcr_write
, .raw_writefn
= raw_write
3820 define_arm_cp_regs(cpu
, dbgregs
);
3823 for (i
= 0; i
< wrps
+ 1; i
++) {
3824 ARMCPRegInfo dbgregs
[] = {
3825 { .name
= "DBGWVR", .state
= ARM_CP_STATE_BOTH
,
3826 .cp
= 14, .opc0
= 2, .opc1
= 0, .crn
= 0, .crm
= i
, .opc2
= 6,
3828 .fieldoffset
= offsetof(CPUARMState
, cp15
.dbgwvr
[i
]),
3829 .writefn
= dbgwvr_write
, .raw_writefn
= raw_write
3831 { .name
= "DBGWCR", .state
= ARM_CP_STATE_BOTH
,
3832 .cp
= 14, .opc0
= 2, .opc1
= 0, .crn
= 0, .crm
= i
, .opc2
= 7,
3834 .fieldoffset
= offsetof(CPUARMState
, cp15
.dbgwcr
[i
]),
3835 .writefn
= dbgwcr_write
, .raw_writefn
= raw_write
3839 define_arm_cp_regs(cpu
, dbgregs
);
3843 void register_cp_regs_for_features(ARMCPU
*cpu
)
3845 /* Register all the coprocessor registers based on feature bits */
3846 CPUARMState
*env
= &cpu
->env
;
3847 if (arm_feature(env
, ARM_FEATURE_M
)) {
3848 /* M profile has no coprocessor registers */
3852 define_arm_cp_regs(cpu
, cp_reginfo
);
3853 if (!arm_feature(env
, ARM_FEATURE_V8
)) {
3854 /* Must go early as it is full of wildcards that may be
3855 * overridden by later definitions.
3857 define_arm_cp_regs(cpu
, not_v8_cp_reginfo
);
3860 if (arm_feature(env
, ARM_FEATURE_V6
)) {
3861 /* The ID registers all have impdef reset values */
3862 ARMCPRegInfo v6_idregs
[] = {
3863 { .name
= "ID_PFR0", .state
= ARM_CP_STATE_BOTH
,
3864 .opc0
= 3, .opc1
= 0, .crn
= 0, .crm
= 1, .opc2
= 0,
3865 .access
= PL1_R
, .type
= ARM_CP_CONST
,
3866 .resetvalue
= cpu
->id_pfr0
},
3867 { .name
= "ID_PFR1", .state
= ARM_CP_STATE_BOTH
,
3868 .opc0
= 3, .opc1
= 0, .crn
= 0, .crm
= 1, .opc2
= 1,
3869 .access
= PL1_R
, .type
= ARM_CP_CONST
,
3870 .resetvalue
= cpu
->id_pfr1
},
3871 { .name
= "ID_DFR0", .state
= ARM_CP_STATE_BOTH
,
3872 .opc0
= 3, .opc1
= 0, .crn
= 0, .crm
= 1, .opc2
= 2,
3873 .access
= PL1_R
, .type
= ARM_CP_CONST
,
3874 .resetvalue
= cpu
->id_dfr0
},
3875 { .name
= "ID_AFR0", .state
= ARM_CP_STATE_BOTH
,
3876 .opc0
= 3, .opc1
= 0, .crn
= 0, .crm
= 1, .opc2
= 3,
3877 .access
= PL1_R
, .type
= ARM_CP_CONST
,
3878 .resetvalue
= cpu
->id_afr0
},
3879 { .name
= "ID_MMFR0", .state
= ARM_CP_STATE_BOTH
,
3880 .opc0
= 3, .opc1
= 0, .crn
= 0, .crm
= 1, .opc2
= 4,
3881 .access
= PL1_R
, .type
= ARM_CP_CONST
,
3882 .resetvalue
= cpu
->id_mmfr0
},
3883 { .name
= "ID_MMFR1", .state
= ARM_CP_STATE_BOTH
,
3884 .opc0
= 3, .opc1
= 0, .crn
= 0, .crm
= 1, .opc2
= 5,
3885 .access
= PL1_R
, .type
= ARM_CP_CONST
,
3886 .resetvalue
= cpu
->id_mmfr1
},
3887 { .name
= "ID_MMFR2", .state
= ARM_CP_STATE_BOTH
,
3888 .opc0
= 3, .opc1
= 0, .crn
= 0, .crm
= 1, .opc2
= 6,
3889 .access
= PL1_R
, .type
= ARM_CP_CONST
,
3890 .resetvalue
= cpu
->id_mmfr2
},
3891 { .name
= "ID_MMFR3", .state
= ARM_CP_STATE_BOTH
,
3892 .opc0
= 3, .opc1
= 0, .crn
= 0, .crm
= 1, .opc2
= 7,
3893 .access
= PL1_R
, .type
= ARM_CP_CONST
,
3894 .resetvalue
= cpu
->id_mmfr3
},
3895 { .name
= "ID_ISAR0", .state
= ARM_CP_STATE_BOTH
,
3896 .opc0
= 3, .opc1
= 0, .crn
= 0, .crm
= 2, .opc2
= 0,
3897 .access
= PL1_R
, .type
= ARM_CP_CONST
,
3898 .resetvalue
= cpu
->id_isar0
},
3899 { .name
= "ID_ISAR1", .state
= ARM_CP_STATE_BOTH
,
3900 .opc0
= 3, .opc1
= 0, .crn
= 0, .crm
= 2, .opc2
= 1,
3901 .access
= PL1_R
, .type
= ARM_CP_CONST
,
3902 .resetvalue
= cpu
->id_isar1
},
3903 { .name
= "ID_ISAR2", .state
= ARM_CP_STATE_BOTH
,
3904 .opc0
= 3, .opc1
= 0, .crn
= 0, .crm
= 2, .opc2
= 2,
3905 .access
= PL1_R
, .type
= ARM_CP_CONST
,
3906 .resetvalue
= cpu
->id_isar2
},
3907 { .name
= "ID_ISAR3", .state
= ARM_CP_STATE_BOTH
,
3908 .opc0
= 3, .opc1
= 0, .crn
= 0, .crm
= 2, .opc2
= 3,
3909 .access
= PL1_R
, .type
= ARM_CP_CONST
,
3910 .resetvalue
= cpu
->id_isar3
},
3911 { .name
= "ID_ISAR4", .state
= ARM_CP_STATE_BOTH
,
3912 .opc0
= 3, .opc1
= 0, .crn
= 0, .crm
= 2, .opc2
= 4,
3913 .access
= PL1_R
, .type
= ARM_CP_CONST
,
3914 .resetvalue
= cpu
->id_isar4
},
3915 { .name
= "ID_ISAR5", .state
= ARM_CP_STATE_BOTH
,
3916 .opc0
= 3, .opc1
= 0, .crn
= 0, .crm
= 2, .opc2
= 5,
3917 .access
= PL1_R
, .type
= ARM_CP_CONST
,
3918 .resetvalue
= cpu
->id_isar5
},
3919 /* 6..7 are as yet unallocated and must RAZ */
3920 { .name
= "ID_ISAR6", .cp
= 15, .crn
= 0, .crm
= 2,
3921 .opc1
= 0, .opc2
= 6, .access
= PL1_R
, .type
= ARM_CP_CONST
,
3923 { .name
= "ID_ISAR7", .cp
= 15, .crn
= 0, .crm
= 2,
3924 .opc1
= 0, .opc2
= 7, .access
= PL1_R
, .type
= ARM_CP_CONST
,
3928 define_arm_cp_regs(cpu
, v6_idregs
);
3929 define_arm_cp_regs(cpu
, v6_cp_reginfo
);
3931 define_arm_cp_regs(cpu
, not_v6_cp_reginfo
);
3933 if (arm_feature(env
, ARM_FEATURE_V6K
)) {
3934 define_arm_cp_regs(cpu
, v6k_cp_reginfo
);
3936 if (arm_feature(env
, ARM_FEATURE_V7MP
) &&
3937 !arm_feature(env
, ARM_FEATURE_MPU
)) {
3938 define_arm_cp_regs(cpu
, v7mp_cp_reginfo
);
3940 if (arm_feature(env
, ARM_FEATURE_V7
)) {
3941 /* v7 performance monitor control register: same implementor
3942 * field as main ID register, and we implement only the cycle
3945 #ifndef CONFIG_USER_ONLY
3946 ARMCPRegInfo pmcr
= {
3947 .name
= "PMCR", .cp
= 15, .crn
= 9, .crm
= 12, .opc1
= 0, .opc2
= 0,
3949 .type
= ARM_CP_IO
| ARM_CP_ALIAS
,
3950 .fieldoffset
= offsetoflow32(CPUARMState
, cp15
.c9_pmcr
),
3951 .accessfn
= pmreg_access
, .writefn
= pmcr_write
,
3952 .raw_writefn
= raw_write
,
3954 ARMCPRegInfo pmcr64
= {
3955 .name
= "PMCR_EL0", .state
= ARM_CP_STATE_AA64
,
3956 .opc0
= 3, .opc1
= 3, .crn
= 9, .crm
= 12, .opc2
= 0,
3957 .access
= PL0_RW
, .accessfn
= pmreg_access
,
3959 .fieldoffset
= offsetof(CPUARMState
, cp15
.c9_pmcr
),
3960 .resetvalue
= cpu
->midr
& 0xff000000,
3961 .writefn
= pmcr_write
, .raw_writefn
= raw_write
,
3963 define_one_arm_cp_reg(cpu
, &pmcr
);
3964 define_one_arm_cp_reg(cpu
, &pmcr64
);
3966 ARMCPRegInfo clidr
= {
3967 .name
= "CLIDR", .state
= ARM_CP_STATE_BOTH
,
3968 .opc0
= 3, .crn
= 0, .crm
= 0, .opc1
= 1, .opc2
= 1,
3969 .access
= PL1_R
, .type
= ARM_CP_CONST
, .resetvalue
= cpu
->clidr
3971 define_one_arm_cp_reg(cpu
, &clidr
);
3972 define_arm_cp_regs(cpu
, v7_cp_reginfo
);
3973 define_debug_regs(cpu
);
3975 define_arm_cp_regs(cpu
, not_v7_cp_reginfo
);
3977 if (arm_feature(env
, ARM_FEATURE_V8
)) {
3978 /* AArch64 ID registers, which all have impdef reset values */
3979 ARMCPRegInfo v8_idregs
[] = {
3980 { .name
= "ID_AA64PFR0_EL1", .state
= ARM_CP_STATE_AA64
,
3981 .opc0
= 3, .opc1
= 0, .crn
= 0, .crm
= 4, .opc2
= 0,
3982 .access
= PL1_R
, .type
= ARM_CP_CONST
,
3983 .resetvalue
= cpu
->id_aa64pfr0
},
3984 { .name
= "ID_AA64PFR1_EL1", .state
= ARM_CP_STATE_AA64
,
3985 .opc0
= 3, .opc1
= 0, .crn
= 0, .crm
= 4, .opc2
= 1,
3986 .access
= PL1_R
, .type
= ARM_CP_CONST
,
3987 .resetvalue
= cpu
->id_aa64pfr1
},
3988 { .name
= "ID_AA64DFR0_EL1", .state
= ARM_CP_STATE_AA64
,
3989 .opc0
= 3, .opc1
= 0, .crn
= 0, .crm
= 5, .opc2
= 0,
3990 .access
= PL1_R
, .type
= ARM_CP_CONST
,
3991 /* We mask out the PMUVer field, because we don't currently
3992 * implement the PMU. Not advertising it prevents the guest
3993 * from trying to use it and getting UNDEFs on registers we
3996 .resetvalue
= cpu
->id_aa64dfr0
& ~0xf00 },
3997 { .name
= "ID_AA64DFR1_EL1", .state
= ARM_CP_STATE_AA64
,
3998 .opc0
= 3, .opc1
= 0, .crn
= 0, .crm
= 5, .opc2
= 1,
3999 .access
= PL1_R
, .type
= ARM_CP_CONST
,
4000 .resetvalue
= cpu
->id_aa64dfr1
},
4001 { .name
= "ID_AA64AFR0_EL1", .state
= ARM_CP_STATE_AA64
,
4002 .opc0
= 3, .opc1
= 0, .crn
= 0, .crm
= 5, .opc2
= 4,
4003 .access
= PL1_R
, .type
= ARM_CP_CONST
,
4004 .resetvalue
= cpu
->id_aa64afr0
},
4005 { .name
= "ID_AA64AFR1_EL1", .state
= ARM_CP_STATE_AA64
,
4006 .opc0
= 3, .opc1
= 0, .crn
= 0, .crm
= 5, .opc2
= 5,
4007 .access
= PL1_R
, .type
= ARM_CP_CONST
,
4008 .resetvalue
= cpu
->id_aa64afr1
},
4009 { .name
= "ID_AA64ISAR0_EL1", .state
= ARM_CP_STATE_AA64
,
4010 .opc0
= 3, .opc1
= 0, .crn
= 0, .crm
= 6, .opc2
= 0,
4011 .access
= PL1_R
, .type
= ARM_CP_CONST
,
4012 .resetvalue
= cpu
->id_aa64isar0
},
4013 { .name
= "ID_AA64ISAR1_EL1", .state
= ARM_CP_STATE_AA64
,
4014 .opc0
= 3, .opc1
= 0, .crn
= 0, .crm
= 6, .opc2
= 1,
4015 .access
= PL1_R
, .type
= ARM_CP_CONST
,
4016 .resetvalue
= cpu
->id_aa64isar1
},
4017 { .name
= "ID_AA64MMFR0_EL1", .state
= ARM_CP_STATE_AA64
,
4018 .opc0
= 3, .opc1
= 0, .crn
= 0, .crm
= 7, .opc2
= 0,
4019 .access
= PL1_R
, .type
= ARM_CP_CONST
,
4020 .resetvalue
= cpu
->id_aa64mmfr0
},
4021 { .name
= "ID_AA64MMFR1_EL1", .state
= ARM_CP_STATE_AA64
,
4022 .opc0
= 3, .opc1
= 0, .crn
= 0, .crm
= 7, .opc2
= 1,
4023 .access
= PL1_R
, .type
= ARM_CP_CONST
,
4024 .resetvalue
= cpu
->id_aa64mmfr1
},
4025 { .name
= "MVFR0_EL1", .state
= ARM_CP_STATE_AA64
,
4026 .opc0
= 3, .opc1
= 0, .crn
= 0, .crm
= 3, .opc2
= 0,
4027 .access
= PL1_R
, .type
= ARM_CP_CONST
,
4028 .resetvalue
= cpu
->mvfr0
},
4029 { .name
= "MVFR1_EL1", .state
= ARM_CP_STATE_AA64
,
4030 .opc0
= 3, .opc1
= 0, .crn
= 0, .crm
= 3, .opc2
= 1,
4031 .access
= PL1_R
, .type
= ARM_CP_CONST
,
4032 .resetvalue
= cpu
->mvfr1
},
4033 { .name
= "MVFR2_EL1", .state
= ARM_CP_STATE_AA64
,
4034 .opc0
= 3, .opc1
= 0, .crn
= 0, .crm
= 3, .opc2
= 2,
4035 .access
= PL1_R
, .type
= ARM_CP_CONST
,
4036 .resetvalue
= cpu
->mvfr2
},
4039 /* RVBAR_EL1 is only implemented if EL1 is the highest EL */
4040 if (!arm_feature(env
, ARM_FEATURE_EL3
) &&
4041 !arm_feature(env
, ARM_FEATURE_EL2
)) {
4042 ARMCPRegInfo rvbar
= {
4043 .name
= "RVBAR_EL1", .state
= ARM_CP_STATE_AA64
,
4044 .opc0
= 3, .opc1
= 0, .crn
= 12, .crm
= 0, .opc2
= 1,
4045 .type
= ARM_CP_CONST
, .access
= PL1_R
, .resetvalue
= cpu
->rvbar
4047 define_one_arm_cp_reg(cpu
, &rvbar
);
4049 define_arm_cp_regs(cpu
, v8_idregs
);
4050 define_arm_cp_regs(cpu
, v8_cp_reginfo
);
4052 if (arm_feature(env
, ARM_FEATURE_EL2
)) {
4053 define_arm_cp_regs(cpu
, el2_cp_reginfo
);
4054 /* RVBAR_EL2 is only implemented if EL2 is the highest EL */
4055 if (!arm_feature(env
, ARM_FEATURE_EL3
)) {
4056 ARMCPRegInfo rvbar
= {
4057 .name
= "RVBAR_EL2", .state
= ARM_CP_STATE_AA64
,
4058 .opc0
= 3, .opc1
= 4, .crn
= 12, .crm
= 0, .opc2
= 1,
4059 .type
= ARM_CP_CONST
, .access
= PL2_R
, .resetvalue
= cpu
->rvbar
4061 define_one_arm_cp_reg(cpu
, &rvbar
);
4064 /* If EL2 is missing but higher ELs are enabled, we need to
4065 * register the no_el2 reginfos.
4067 if (arm_feature(env
, ARM_FEATURE_EL3
)) {
4068 define_arm_cp_regs(cpu
, el3_no_el2_cp_reginfo
);
4071 if (arm_feature(env
, ARM_FEATURE_EL3
)) {
4072 define_arm_cp_regs(cpu
, el3_cp_reginfo
);
4073 ARMCPRegInfo rvbar
= {
4074 .name
= "RVBAR_EL3", .state
= ARM_CP_STATE_AA64
,
4075 .opc0
= 3, .opc1
= 6, .crn
= 12, .crm
= 0, .opc2
= 1,
4076 .type
= ARM_CP_CONST
, .access
= PL3_R
, .resetvalue
= cpu
->rvbar
4078 define_one_arm_cp_reg(cpu
, &rvbar
);
4080 if (arm_feature(env
, ARM_FEATURE_MPU
)) {
4081 if (arm_feature(env
, ARM_FEATURE_V6
)) {
4082 /* PMSAv6 not implemented */
4083 assert(arm_feature(env
, ARM_FEATURE_V7
));
4084 define_arm_cp_regs(cpu
, vmsa_pmsa_cp_reginfo
);
4085 define_arm_cp_regs(cpu
, pmsav7_cp_reginfo
);
4087 define_arm_cp_regs(cpu
, pmsav5_cp_reginfo
);
4090 define_arm_cp_regs(cpu
, vmsa_pmsa_cp_reginfo
);
4091 define_arm_cp_regs(cpu
, vmsa_cp_reginfo
);
4093 if (arm_feature(env
, ARM_FEATURE_THUMB2EE
)) {
4094 define_arm_cp_regs(cpu
, t2ee_cp_reginfo
);
4096 if (arm_feature(env
, ARM_FEATURE_GENERIC_TIMER
)) {
4097 define_arm_cp_regs(cpu
, generic_timer_cp_reginfo
);
4099 if (arm_feature(env
, ARM_FEATURE_VAPA
)) {
4100 define_arm_cp_regs(cpu
, vapa_cp_reginfo
);
4102 if (arm_feature(env
, ARM_FEATURE_CACHE_TEST_CLEAN
)) {
4103 define_arm_cp_regs(cpu
, cache_test_clean_cp_reginfo
);
4105 if (arm_feature(env
, ARM_FEATURE_CACHE_DIRTY_REG
)) {
4106 define_arm_cp_regs(cpu
, cache_dirty_status_cp_reginfo
);
4108 if (arm_feature(env
, ARM_FEATURE_CACHE_BLOCK_OPS
)) {
4109 define_arm_cp_regs(cpu
, cache_block_ops_cp_reginfo
);
4111 if (arm_feature(env
, ARM_FEATURE_OMAPCP
)) {
4112 define_arm_cp_regs(cpu
, omap_cp_reginfo
);
4114 if (arm_feature(env
, ARM_FEATURE_STRONGARM
)) {
4115 define_arm_cp_regs(cpu
, strongarm_cp_reginfo
);
4117 if (arm_feature(env
, ARM_FEATURE_XSCALE
)) {
4118 define_arm_cp_regs(cpu
, xscale_cp_reginfo
);
4120 if (arm_feature(env
, ARM_FEATURE_DUMMY_C15_REGS
)) {
4121 define_arm_cp_regs(cpu
, dummy_c15_cp_reginfo
);
4123 if (arm_feature(env
, ARM_FEATURE_LPAE
)) {
4124 define_arm_cp_regs(cpu
, lpae_cp_reginfo
);
4126 /* Slightly awkwardly, the OMAP and StrongARM cores need all of
4127 * cp15 crn=0 to be writes-ignored, whereas for other cores they should
4128 * be read-only (ie write causes UNDEF exception).
4131 ARMCPRegInfo id_pre_v8_midr_cp_reginfo
[] = {
4132 /* Pre-v8 MIDR space.
4133 * Note that the MIDR isn't a simple constant register because
4134 * of the TI925 behaviour where writes to another register can
4135 * cause the MIDR value to change.
4137 * Unimplemented registers in the c15 0 0 0 space default to
4138 * MIDR. Define MIDR first as this entire space, then CTR, TCMTR
4139 * and friends override accordingly.
4142 .cp
= 15, .crn
= 0, .crm
= 0, .opc1
= 0, .opc2
= CP_ANY
,
4143 .access
= PL1_R
, .resetvalue
= cpu
->midr
,
4144 .writefn
= arm_cp_write_ignore
, .raw_writefn
= raw_write
,
4145 .fieldoffset
= offsetof(CPUARMState
, cp15
.c0_cpuid
),
4146 .type
= ARM_CP_OVERRIDE
},
4147 /* crn = 0 op1 = 0 crm = 3..7 : currently unassigned; we RAZ. */
4149 .cp
= 15, .crn
= 0, .crm
= 3, .opc1
= 0, .opc2
= CP_ANY
,
4150 .access
= PL1_R
, .type
= ARM_CP_CONST
, .resetvalue
= 0 },
4152 .cp
= 15, .crn
= 0, .crm
= 4, .opc1
= 0, .opc2
= CP_ANY
,
4153 .access
= PL1_R
, .type
= ARM_CP_CONST
, .resetvalue
= 0 },
4155 .cp
= 15, .crn
= 0, .crm
= 5, .opc1
= 0, .opc2
= CP_ANY
,
4156 .access
= PL1_R
, .type
= ARM_CP_CONST
, .resetvalue
= 0 },
4158 .cp
= 15, .crn
= 0, .crm
= 6, .opc1
= 0, .opc2
= CP_ANY
,
4159 .access
= PL1_R
, .type
= ARM_CP_CONST
, .resetvalue
= 0 },
4161 .cp
= 15, .crn
= 0, .crm
= 7, .opc1
= 0, .opc2
= CP_ANY
,
4162 .access
= PL1_R
, .type
= ARM_CP_CONST
, .resetvalue
= 0 },
4165 ARMCPRegInfo id_v8_midr_cp_reginfo
[] = {
4166 { .name
= "MIDR_EL1", .state
= ARM_CP_STATE_BOTH
,
4167 .opc0
= 3, .opc1
= 0, .crn
= 0, .crm
= 0, .opc2
= 0,
4168 .access
= PL1_R
, .type
= ARM_CP_CONST
, .resetvalue
= cpu
->midr
},
4169 /* crn = 0 op1 = 0 crm = 0 op2 = 4,7 : AArch32 aliases of MIDR */
4170 { .name
= "MIDR", .type
= ARM_CP_ALIAS
| ARM_CP_CONST
,
4171 .cp
= 15, .crn
= 0, .crm
= 0, .opc1
= 0, .opc2
= 4,
4172 .access
= PL1_R
, .resetvalue
= cpu
->midr
},
4173 { .name
= "MIDR", .type
= ARM_CP_ALIAS
| ARM_CP_CONST
,
4174 .cp
= 15, .crn
= 0, .crm
= 0, .opc1
= 0, .opc2
= 7,
4175 .access
= PL1_R
, .resetvalue
= cpu
->midr
},
4176 { .name
= "REVIDR_EL1", .state
= ARM_CP_STATE_BOTH
,
4177 .opc0
= 3, .opc1
= 0, .crn
= 0, .crm
= 0, .opc2
= 6,
4178 .access
= PL1_R
, .type
= ARM_CP_CONST
, .resetvalue
= cpu
->revidr
},
4181 ARMCPRegInfo id_cp_reginfo
[] = {
4182 /* These are common to v8 and pre-v8 */
4184 .cp
= 15, .crn
= 0, .crm
= 0, .opc1
= 0, .opc2
= 1,
4185 .access
= PL1_R
, .type
= ARM_CP_CONST
, .resetvalue
= cpu
->ctr
},
4186 { .name
= "CTR_EL0", .state
= ARM_CP_STATE_AA64
,
4187 .opc0
= 3, .opc1
= 3, .opc2
= 1, .crn
= 0, .crm
= 0,
4188 .access
= PL0_R
, .accessfn
= ctr_el0_access
,
4189 .type
= ARM_CP_CONST
, .resetvalue
= cpu
->ctr
},
4190 /* TCMTR and TLBTR exist in v8 but have no 64-bit versions */
4192 .cp
= 15, .crn
= 0, .crm
= 0, .opc1
= 0, .opc2
= 2,
4193 .access
= PL1_R
, .type
= ARM_CP_CONST
, .resetvalue
= 0 },
4196 /* TLBTR is specific to VMSA */
4197 ARMCPRegInfo id_tlbtr_reginfo
= {
4199 .cp
= 15, .crn
= 0, .crm
= 0, .opc1
= 0, .opc2
= 3,
4200 .access
= PL1_R
, .type
= ARM_CP_CONST
, .resetvalue
= 0,
4202 /* MPUIR is specific to PMSA V6+ */
4203 ARMCPRegInfo id_mpuir_reginfo
= {
4205 .cp
= 15, .crn
= 0, .crm
= 0, .opc1
= 0, .opc2
= 4,
4206 .access
= PL1_R
, .type
= ARM_CP_CONST
,
4207 .resetvalue
= cpu
->pmsav7_dregion
<< 8
4209 ARMCPRegInfo crn0_wi_reginfo
= {
4210 .name
= "CRN0_WI", .cp
= 15, .crn
= 0, .crm
= CP_ANY
,
4211 .opc1
= CP_ANY
, .opc2
= CP_ANY
, .access
= PL1_W
,
4212 .type
= ARM_CP_NOP
| ARM_CP_OVERRIDE
4214 if (arm_feature(env
, ARM_FEATURE_OMAPCP
) ||
4215 arm_feature(env
, ARM_FEATURE_STRONGARM
)) {
4217 /* Register the blanket "writes ignored" value first to cover the
4218 * whole space. Then update the specific ID registers to allow write
4219 * access, so that they ignore writes rather than causing them to
4222 define_one_arm_cp_reg(cpu
, &crn0_wi_reginfo
);
4223 for (r
= id_pre_v8_midr_cp_reginfo
;
4224 r
->type
!= ARM_CP_SENTINEL
; r
++) {
4227 for (r
= id_cp_reginfo
; r
->type
!= ARM_CP_SENTINEL
; r
++) {
4230 id_tlbtr_reginfo
.access
= PL1_RW
;
4231 id_tlbtr_reginfo
.access
= PL1_RW
;
4233 if (arm_feature(env
, ARM_FEATURE_V8
)) {
4234 define_arm_cp_regs(cpu
, id_v8_midr_cp_reginfo
);
4236 define_arm_cp_regs(cpu
, id_pre_v8_midr_cp_reginfo
);
4238 define_arm_cp_regs(cpu
, id_cp_reginfo
);
4239 if (!arm_feature(env
, ARM_FEATURE_MPU
)) {
4240 define_one_arm_cp_reg(cpu
, &id_tlbtr_reginfo
);
4241 } else if (arm_feature(env
, ARM_FEATURE_V7
)) {
4242 define_one_arm_cp_reg(cpu
, &id_mpuir_reginfo
);
4246 if (arm_feature(env
, ARM_FEATURE_MPIDR
)) {
4247 define_arm_cp_regs(cpu
, mpidr_cp_reginfo
);
4250 if (arm_feature(env
, ARM_FEATURE_AUXCR
)) {
4251 ARMCPRegInfo auxcr_reginfo
[] = {
4252 { .name
= "ACTLR_EL1", .state
= ARM_CP_STATE_BOTH
,
4253 .opc0
= 3, .opc1
= 0, .crn
= 1, .crm
= 0, .opc2
= 1,
4254 .access
= PL1_RW
, .type
= ARM_CP_CONST
,
4255 .resetvalue
= cpu
->reset_auxcr
},
4256 { .name
= "ACTLR_EL2", .state
= ARM_CP_STATE_BOTH
,
4257 .opc0
= 3, .opc1
= 4, .crn
= 1, .crm
= 0, .opc2
= 1,
4258 .access
= PL2_RW
, .type
= ARM_CP_CONST
,
4260 { .name
= "ACTLR_EL3", .state
= ARM_CP_STATE_AA64
,
4261 .opc0
= 3, .opc1
= 6, .crn
= 1, .crm
= 0, .opc2
= 1,
4262 .access
= PL3_RW
, .type
= ARM_CP_CONST
,
4266 define_arm_cp_regs(cpu
, auxcr_reginfo
);
4269 if (arm_feature(env
, ARM_FEATURE_CBAR
)) {
4270 if (arm_feature(env
, ARM_FEATURE_AARCH64
)) {
4271 /* 32 bit view is [31:18] 0...0 [43:32]. */
4272 uint32_t cbar32
= (extract64(cpu
->reset_cbar
, 18, 14) << 18)
4273 | extract64(cpu
->reset_cbar
, 32, 12);
4274 ARMCPRegInfo cbar_reginfo
[] = {
4276 .type
= ARM_CP_CONST
,
4277 .cp
= 15, .crn
= 15, .crm
= 0, .opc1
= 4, .opc2
= 0,
4278 .access
= PL1_R
, .resetvalue
= cpu
->reset_cbar
},
4279 { .name
= "CBAR_EL1", .state
= ARM_CP_STATE_AA64
,
4280 .type
= ARM_CP_CONST
,
4281 .opc0
= 3, .opc1
= 1, .crn
= 15, .crm
= 3, .opc2
= 0,
4282 .access
= PL1_R
, .resetvalue
= cbar32
},
4285 /* We don't implement a r/w 64 bit CBAR currently */
4286 assert(arm_feature(env
, ARM_FEATURE_CBAR_RO
));
4287 define_arm_cp_regs(cpu
, cbar_reginfo
);
4289 ARMCPRegInfo cbar
= {
4291 .cp
= 15, .crn
= 15, .crm
= 0, .opc1
= 4, .opc2
= 0,
4292 .access
= PL1_R
|PL3_W
, .resetvalue
= cpu
->reset_cbar
,
4293 .fieldoffset
= offsetof(CPUARMState
,
4294 cp15
.c15_config_base_address
)
4296 if (arm_feature(env
, ARM_FEATURE_CBAR_RO
)) {
4297 cbar
.access
= PL1_R
;
4298 cbar
.fieldoffset
= 0;
4299 cbar
.type
= ARM_CP_CONST
;
4301 define_one_arm_cp_reg(cpu
, &cbar
);
4305 /* Generic registers whose values depend on the implementation */
4307 ARMCPRegInfo sctlr
= {
4308 .name
= "SCTLR", .state
= ARM_CP_STATE_BOTH
,
4309 .opc0
= 3, .opc1
= 0, .crn
= 1, .crm
= 0, .opc2
= 0,
4311 .bank_fieldoffsets
= { offsetof(CPUARMState
, cp15
.sctlr_s
),
4312 offsetof(CPUARMState
, cp15
.sctlr_ns
) },
4313 .writefn
= sctlr_write
, .resetvalue
= cpu
->reset_sctlr
,
4314 .raw_writefn
= raw_write
,
4316 if (arm_feature(env
, ARM_FEATURE_XSCALE
)) {
4317 /* Normally we would always end the TB on an SCTLR write, but Linux
4318 * arch/arm/mach-pxa/sleep.S expects two instructions following
4319 * an MMU enable to execute from cache. Imitate this behaviour.
4321 sctlr
.type
|= ARM_CP_SUPPRESS_TB_END
;
4323 define_one_arm_cp_reg(cpu
, &sctlr
);
4327 ARMCPU
*cpu_arm_init(const char *cpu_model
)
4329 return ARM_CPU(cpu_generic_init(TYPE_ARM_CPU
, cpu_model
));
4332 void arm_cpu_register_gdb_regs_for_features(ARMCPU
*cpu
)
4334 CPUState
*cs
= CPU(cpu
);
4335 CPUARMState
*env
= &cpu
->env
;
4337 if (arm_feature(env
, ARM_FEATURE_AARCH64
)) {
4338 gdb_register_coprocessor(cs
, aarch64_fpu_gdb_get_reg
,
4339 aarch64_fpu_gdb_set_reg
,
4340 34, "aarch64-fpu.xml", 0);
4341 } else if (arm_feature(env
, ARM_FEATURE_NEON
)) {
4342 gdb_register_coprocessor(cs
, vfp_gdb_get_reg
, vfp_gdb_set_reg
,
4343 51, "arm-neon.xml", 0);
4344 } else if (arm_feature(env
, ARM_FEATURE_VFP3
)) {
4345 gdb_register_coprocessor(cs
, vfp_gdb_get_reg
, vfp_gdb_set_reg
,
4346 35, "arm-vfp3.xml", 0);
4347 } else if (arm_feature(env
, ARM_FEATURE_VFP
)) {
4348 gdb_register_coprocessor(cs
, vfp_gdb_get_reg
, vfp_gdb_set_reg
,
4349 19, "arm-vfp.xml", 0);
4353 /* Sort alphabetically by type name, except for "any". */
4354 static gint
arm_cpu_list_compare(gconstpointer a
, gconstpointer b
)
4356 ObjectClass
*class_a
= (ObjectClass
*)a
;
4357 ObjectClass
*class_b
= (ObjectClass
*)b
;
4358 const char *name_a
, *name_b
;
4360 name_a
= object_class_get_name(class_a
);
4361 name_b
= object_class_get_name(class_b
);
4362 if (strcmp(name_a
, "any-" TYPE_ARM_CPU
) == 0) {
4364 } else if (strcmp(name_b
, "any-" TYPE_ARM_CPU
) == 0) {
4367 return strcmp(name_a
, name_b
);
4371 static void arm_cpu_list_entry(gpointer data
, gpointer user_data
)
4373 ObjectClass
*oc
= data
;
4374 CPUListState
*s
= user_data
;
4375 const char *typename
;
4378 typename
= object_class_get_name(oc
);
4379 name
= g_strndup(typename
, strlen(typename
) - strlen("-" TYPE_ARM_CPU
));
4380 (*s
->cpu_fprintf
)(s
->file
, " %s\n",
4385 void arm_cpu_list(FILE *f
, fprintf_function cpu_fprintf
)
4389 .cpu_fprintf
= cpu_fprintf
,
4393 list
= object_class_get_list(TYPE_ARM_CPU
, false);
4394 list
= g_slist_sort(list
, arm_cpu_list_compare
);
4395 (*cpu_fprintf
)(f
, "Available CPUs:\n");
4396 g_slist_foreach(list
, arm_cpu_list_entry
, &s
);
4399 /* The 'host' CPU type is dynamically registered only if KVM is
4400 * enabled, so we have to special-case it here:
4402 (*cpu_fprintf
)(f
, " host (only available in KVM mode)\n");
4406 static void arm_cpu_add_definition(gpointer data
, gpointer user_data
)
4408 ObjectClass
*oc
= data
;
4409 CpuDefinitionInfoList
**cpu_list
= user_data
;
4410 CpuDefinitionInfoList
*entry
;
4411 CpuDefinitionInfo
*info
;
4412 const char *typename
;
4414 typename
= object_class_get_name(oc
);
4415 info
= g_malloc0(sizeof(*info
));
4416 info
->name
= g_strndup(typename
,
4417 strlen(typename
) - strlen("-" TYPE_ARM_CPU
));
4419 entry
= g_malloc0(sizeof(*entry
));
4420 entry
->value
= info
;
4421 entry
->next
= *cpu_list
;
4425 CpuDefinitionInfoList
*arch_query_cpu_definitions(Error
**errp
)
4427 CpuDefinitionInfoList
*cpu_list
= NULL
;
4430 list
= object_class_get_list(TYPE_ARM_CPU
, false);
4431 g_slist_foreach(list
, arm_cpu_add_definition
, &cpu_list
);
4437 static void add_cpreg_to_hashtable(ARMCPU
*cpu
, const ARMCPRegInfo
*r
,
4438 void *opaque
, int state
, int secstate
,
4439 int crm
, int opc1
, int opc2
)
4441 /* Private utility function for define_one_arm_cp_reg_with_opaque():
4442 * add a single reginfo struct to the hash table.
4444 uint32_t *key
= g_new(uint32_t, 1);
4445 ARMCPRegInfo
*r2
= g_memdup(r
, sizeof(ARMCPRegInfo
));
4446 int is64
= (r
->type
& ARM_CP_64BIT
) ? 1 : 0;
4447 int ns
= (secstate
& ARM_CP_SECSTATE_NS
) ? 1 : 0;
4449 /* Reset the secure state to the specific incoming state. This is
4450 * necessary as the register may have been defined with both states.
4452 r2
->secure
= secstate
;
4454 if (r
->bank_fieldoffsets
[0] && r
->bank_fieldoffsets
[1]) {
4455 /* Register is banked (using both entries in array).
4456 * Overwriting fieldoffset as the array is only used to define
4457 * banked registers but later only fieldoffset is used.
4459 r2
->fieldoffset
= r
->bank_fieldoffsets
[ns
];
4462 if (state
== ARM_CP_STATE_AA32
) {
4463 if (r
->bank_fieldoffsets
[0] && r
->bank_fieldoffsets
[1]) {
4464 /* If the register is banked then we don't need to migrate or
4465 * reset the 32-bit instance in certain cases:
4467 * 1) If the register has both 32-bit and 64-bit instances then we
4468 * can count on the 64-bit instance taking care of the
4470 * 2) If ARMv8 is enabled then we can count on a 64-bit version
4471 * taking care of the secure bank. This requires that separate
4472 * 32 and 64-bit definitions are provided.
4474 if ((r
->state
== ARM_CP_STATE_BOTH
&& ns
) ||
4475 (arm_feature(&cpu
->env
, ARM_FEATURE_V8
) && !ns
)) {
4476 r2
->type
|= ARM_CP_ALIAS
;
4478 } else if ((secstate
!= r
->secure
) && !ns
) {
4479 /* The register is not banked so we only want to allow migration of
4480 * the non-secure instance.
4482 r2
->type
|= ARM_CP_ALIAS
;
4485 if (r
->state
== ARM_CP_STATE_BOTH
) {
4486 /* We assume it is a cp15 register if the .cp field is left unset.
4492 #ifdef HOST_WORDS_BIGENDIAN
4493 if (r2
->fieldoffset
) {
4494 r2
->fieldoffset
+= sizeof(uint32_t);
4499 if (state
== ARM_CP_STATE_AA64
) {
4500 /* To allow abbreviation of ARMCPRegInfo
4501 * definitions, we treat cp == 0 as equivalent to
4502 * the value for "standard guest-visible sysreg".
4503 * STATE_BOTH definitions are also always "standard
4504 * sysreg" in their AArch64 view (the .cp value may
4505 * be non-zero for the benefit of the AArch32 view).
4507 if (r
->cp
== 0 || r
->state
== ARM_CP_STATE_BOTH
) {
4508 r2
->cp
= CP_REG_ARM64_SYSREG_CP
;
4510 *key
= ENCODE_AA64_CP_REG(r2
->cp
, r2
->crn
, crm
,
4511 r2
->opc0
, opc1
, opc2
);
4513 *key
= ENCODE_CP_REG(r2
->cp
, is64
, ns
, r2
->crn
, crm
, opc1
, opc2
);
4516 r2
->opaque
= opaque
;
4518 /* reginfo passed to helpers is correct for the actual access,
4519 * and is never ARM_CP_STATE_BOTH:
4522 /* Make sure reginfo passed to helpers for wildcarded regs
4523 * has the correct crm/opc1/opc2 for this reg, not CP_ANY:
4528 /* By convention, for wildcarded registers only the first
4529 * entry is used for migration; the others are marked as
4530 * ALIAS so we don't try to transfer the register
4531 * multiple times. Special registers (ie NOP/WFI) are
4532 * never migratable and not even raw-accessible.
4534 if ((r
->type
& ARM_CP_SPECIAL
)) {
4535 r2
->type
|= ARM_CP_NO_RAW
;
4537 if (((r
->crm
== CP_ANY
) && crm
!= 0) ||
4538 ((r
->opc1
== CP_ANY
) && opc1
!= 0) ||
4539 ((r
->opc2
== CP_ANY
) && opc2
!= 0)) {
4540 r2
->type
|= ARM_CP_ALIAS
;
4543 /* Check that raw accesses are either forbidden or handled. Note that
4544 * we can't assert this earlier because the setup of fieldoffset for
4545 * banked registers has to be done first.
4547 if (!(r2
->type
& ARM_CP_NO_RAW
)) {
4548 assert(!raw_accessors_invalid(r2
));
4551 /* Overriding of an existing definition must be explicitly
4554 if (!(r
->type
& ARM_CP_OVERRIDE
)) {
4555 ARMCPRegInfo
*oldreg
;
4556 oldreg
= g_hash_table_lookup(cpu
->cp_regs
, key
);
4557 if (oldreg
&& !(oldreg
->type
& ARM_CP_OVERRIDE
)) {
4558 fprintf(stderr
, "Register redefined: cp=%d %d bit "
4559 "crn=%d crm=%d opc1=%d opc2=%d, "
4560 "was %s, now %s\n", r2
->cp
, 32 + 32 * is64
,
4561 r2
->crn
, r2
->crm
, r2
->opc1
, r2
->opc2
,
4562 oldreg
->name
, r2
->name
);
4563 g_assert_not_reached();
4566 g_hash_table_insert(cpu
->cp_regs
, key
, r2
);
4570 void define_one_arm_cp_reg_with_opaque(ARMCPU
*cpu
,
4571 const ARMCPRegInfo
*r
, void *opaque
)
4573 /* Define implementations of coprocessor registers.
4574 * We store these in a hashtable because typically
4575 * there are less than 150 registers in a space which
4576 * is 16*16*16*8*8 = 262144 in size.
4577 * Wildcarding is supported for the crm, opc1 and opc2 fields.
4578 * If a register is defined twice then the second definition is
4579 * used, so this can be used to define some generic registers and
4580 * then override them with implementation specific variations.
4581 * At least one of the original and the second definition should
4582 * include ARM_CP_OVERRIDE in its type bits -- this is just a guard
4583 * against accidental use.
4585 * The state field defines whether the register is to be
4586 * visible in the AArch32 or AArch64 execution state. If the
4587 * state is set to ARM_CP_STATE_BOTH then we synthesise a
4588 * reginfo structure for the AArch32 view, which sees the lower
4589 * 32 bits of the 64 bit register.
4591 * Only registers visible in AArch64 may set r->opc0; opc0 cannot
4592 * be wildcarded. AArch64 registers are always considered to be 64
4593 * bits; the ARM_CP_64BIT* flag applies only to the AArch32 view of
4594 * the register, if any.
4596 int crm
, opc1
, opc2
, state
;
4597 int crmmin
= (r
->crm
== CP_ANY
) ? 0 : r
->crm
;
4598 int crmmax
= (r
->crm
== CP_ANY
) ? 15 : r
->crm
;
4599 int opc1min
= (r
->opc1
== CP_ANY
) ? 0 : r
->opc1
;
4600 int opc1max
= (r
->opc1
== CP_ANY
) ? 7 : r
->opc1
;
4601 int opc2min
= (r
->opc2
== CP_ANY
) ? 0 : r
->opc2
;
4602 int opc2max
= (r
->opc2
== CP_ANY
) ? 7 : r
->opc2
;
4603 /* 64 bit registers have only CRm and Opc1 fields */
4604 assert(!((r
->type
& ARM_CP_64BIT
) && (r
->opc2
|| r
->crn
)));
4605 /* op0 only exists in the AArch64 encodings */
4606 assert((r
->state
!= ARM_CP_STATE_AA32
) || (r
->opc0
== 0));
4607 /* AArch64 regs are all 64 bit so ARM_CP_64BIT is meaningless */
4608 assert((r
->state
!= ARM_CP_STATE_AA64
) || !(r
->type
& ARM_CP_64BIT
));
4609 /* The AArch64 pseudocode CheckSystemAccess() specifies that op1
4610 * encodes a minimum access level for the register. We roll this
4611 * runtime check into our general permission check code, so check
4612 * here that the reginfo's specified permissions are strict enough
4613 * to encompass the generic architectural permission check.
4615 if (r
->state
!= ARM_CP_STATE_AA32
) {
4618 case 0: case 1: case 2:
4631 /* unallocated encoding, so not possible */
4639 /* min_EL EL1, secure mode only (we don't check the latter) */
4643 /* broken reginfo with out-of-range opc1 */
4647 /* assert our permissions are not too lax (stricter is fine) */
4648 assert((r
->access
& ~mask
) == 0);
4651 /* Check that the register definition has enough info to handle
4652 * reads and writes if they are permitted.
4654 if (!(r
->type
& (ARM_CP_SPECIAL
|ARM_CP_CONST
))) {
4655 if (r
->access
& PL3_R
) {
4656 assert((r
->fieldoffset
||
4657 (r
->bank_fieldoffsets
[0] && r
->bank_fieldoffsets
[1])) ||
4660 if (r
->access
& PL3_W
) {
4661 assert((r
->fieldoffset
||
4662 (r
->bank_fieldoffsets
[0] && r
->bank_fieldoffsets
[1])) ||
4666 /* Bad type field probably means missing sentinel at end of reg list */
4667 assert(cptype_valid(r
->type
));
4668 for (crm
= crmmin
; crm
<= crmmax
; crm
++) {
4669 for (opc1
= opc1min
; opc1
<= opc1max
; opc1
++) {
4670 for (opc2
= opc2min
; opc2
<= opc2max
; opc2
++) {
4671 for (state
= ARM_CP_STATE_AA32
;
4672 state
<= ARM_CP_STATE_AA64
; state
++) {
4673 if (r
->state
!= state
&& r
->state
!= ARM_CP_STATE_BOTH
) {
4676 if (state
== ARM_CP_STATE_AA32
) {
4677 /* Under AArch32 CP registers can be common
4678 * (same for secure and non-secure world) or banked.
4680 switch (r
->secure
) {
4681 case ARM_CP_SECSTATE_S
:
4682 case ARM_CP_SECSTATE_NS
:
4683 add_cpreg_to_hashtable(cpu
, r
, opaque
, state
,
4684 r
->secure
, crm
, opc1
, opc2
);
4687 add_cpreg_to_hashtable(cpu
, r
, opaque
, state
,
4690 add_cpreg_to_hashtable(cpu
, r
, opaque
, state
,
4696 /* AArch64 registers get mapped to non-secure instance
4698 add_cpreg_to_hashtable(cpu
, r
, opaque
, state
,
4708 void define_arm_cp_regs_with_opaque(ARMCPU
*cpu
,
4709 const ARMCPRegInfo
*regs
, void *opaque
)
4711 /* Define a whole list of registers */
4712 const ARMCPRegInfo
*r
;
4713 for (r
= regs
; r
->type
!= ARM_CP_SENTINEL
; r
++) {
4714 define_one_arm_cp_reg_with_opaque(cpu
, r
, opaque
);
4718 const ARMCPRegInfo
*get_arm_cp_reginfo(GHashTable
*cpregs
, uint32_t encoded_cp
)
4720 return g_hash_table_lookup(cpregs
, &encoded_cp
);
4723 void arm_cp_write_ignore(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
4726 /* Helper coprocessor write function for write-ignore registers */
4729 uint64_t arm_cp_read_zero(CPUARMState
*env
, const ARMCPRegInfo
*ri
)
4731 /* Helper coprocessor write function for read-as-zero registers */
4735 void arm_cp_reset_ignore(CPUARMState
*env
, const ARMCPRegInfo
*opaque
)
4737 /* Helper coprocessor reset function for do-nothing-on-reset registers */
4740 static int bad_mode_switch(CPUARMState
*env
, int mode
)
4742 /* Return true if it is not valid for us to switch to
4743 * this CPU mode (ie all the UNPREDICTABLE cases in
4744 * the ARM ARM CPSRWriteByInstr pseudocode).
4747 case ARM_CPU_MODE_USR
:
4748 case ARM_CPU_MODE_SYS
:
4749 case ARM_CPU_MODE_SVC
:
4750 case ARM_CPU_MODE_ABT
:
4751 case ARM_CPU_MODE_UND
:
4752 case ARM_CPU_MODE_IRQ
:
4753 case ARM_CPU_MODE_FIQ
:
4755 case ARM_CPU_MODE_MON
:
4756 return !arm_is_secure(env
);
4762 uint32_t cpsr_read(CPUARMState
*env
)
4765 ZF
= (env
->ZF
== 0);
4766 return env
->uncached_cpsr
| (env
->NF
& 0x80000000) | (ZF
<< 30) |
4767 (env
->CF
<< 29) | ((env
->VF
& 0x80000000) >> 3) | (env
->QF
<< 27)
4768 | (env
->thumb
<< 5) | ((env
->condexec_bits
& 3) << 25)
4769 | ((env
->condexec_bits
& 0xfc) << 8)
4770 | (env
->GE
<< 16) | (env
->daif
& CPSR_AIF
);
4773 void cpsr_write(CPUARMState
*env
, uint32_t val
, uint32_t mask
)
4775 uint32_t changed_daif
;
4777 if (mask
& CPSR_NZCV
) {
4778 env
->ZF
= (~val
) & CPSR_Z
;
4780 env
->CF
= (val
>> 29) & 1;
4781 env
->VF
= (val
<< 3) & 0x80000000;
4784 env
->QF
= ((val
& CPSR_Q
) != 0);
4786 env
->thumb
= ((val
& CPSR_T
) != 0);
4787 if (mask
& CPSR_IT_0_1
) {
4788 env
->condexec_bits
&= ~3;
4789 env
->condexec_bits
|= (val
>> 25) & 3;
4791 if (mask
& CPSR_IT_2_7
) {
4792 env
->condexec_bits
&= 3;
4793 env
->condexec_bits
|= (val
>> 8) & 0xfc;
4795 if (mask
& CPSR_GE
) {
4796 env
->GE
= (val
>> 16) & 0xf;
4799 /* In a V7 implementation that includes the security extensions but does
4800 * not include Virtualization Extensions the SCR.FW and SCR.AW bits control
4801 * whether non-secure software is allowed to change the CPSR_F and CPSR_A
4802 * bits respectively.
4804 * In a V8 implementation, it is permitted for privileged software to
4805 * change the CPSR A/F bits regardless of the SCR.AW/FW bits.
4807 if (!arm_feature(env
, ARM_FEATURE_V8
) &&
4808 arm_feature(env
, ARM_FEATURE_EL3
) &&
4809 !arm_feature(env
, ARM_FEATURE_EL2
) &&
4810 !arm_is_secure(env
)) {
4812 changed_daif
= (env
->daif
^ val
) & mask
;
4814 if (changed_daif
& CPSR_A
) {
4815 /* Check to see if we are allowed to change the masking of async
4816 * abort exceptions from a non-secure state.
4818 if (!(env
->cp15
.scr_el3
& SCR_AW
)) {
4819 qemu_log_mask(LOG_GUEST_ERROR
,
4820 "Ignoring attempt to switch CPSR_A flag from "
4821 "non-secure world with SCR.AW bit clear\n");
4826 if (changed_daif
& CPSR_F
) {
4827 /* Check to see if we are allowed to change the masking of FIQ
4828 * exceptions from a non-secure state.
4830 if (!(env
->cp15
.scr_el3
& SCR_FW
)) {
4831 qemu_log_mask(LOG_GUEST_ERROR
,
4832 "Ignoring attempt to switch CPSR_F flag from "
4833 "non-secure world with SCR.FW bit clear\n");
4837 /* Check whether non-maskable FIQ (NMFI) support is enabled.
4838 * If this bit is set software is not allowed to mask
4839 * FIQs, but is allowed to set CPSR_F to 0.
4841 if ((A32_BANKED_CURRENT_REG_GET(env
, sctlr
) & SCTLR_NMFI
) &&
4843 qemu_log_mask(LOG_GUEST_ERROR
,
4844 "Ignoring attempt to enable CPSR_F flag "
4845 "(non-maskable FIQ [NMFI] support enabled)\n");
4851 env
->daif
&= ~(CPSR_AIF
& mask
);
4852 env
->daif
|= val
& CPSR_AIF
& mask
;
4854 if ((env
->uncached_cpsr
^ val
) & mask
& CPSR_M
) {
4855 if (bad_mode_switch(env
, val
& CPSR_M
)) {
4856 /* Attempt to switch to an invalid mode: this is UNPREDICTABLE.
4857 * We choose to ignore the attempt and leave the CPSR M field
4862 switch_mode(env
, val
& CPSR_M
);
4865 mask
&= ~CACHED_CPSR_BITS
;
4866 env
->uncached_cpsr
= (env
->uncached_cpsr
& ~mask
) | (val
& mask
);
4869 /* Sign/zero extend */
4870 uint32_t HELPER(sxtb16
)(uint32_t x
)
4873 res
= (uint16_t)(int8_t)x
;
4874 res
|= (uint32_t)(int8_t)(x
>> 16) << 16;
4878 uint32_t HELPER(uxtb16
)(uint32_t x
)
4881 res
= (uint16_t)(uint8_t)x
;
4882 res
|= (uint32_t)(uint8_t)(x
>> 16) << 16;
4886 uint32_t HELPER(clz
)(uint32_t x
)
4891 int32_t HELPER(sdiv
)(int32_t num
, int32_t den
)
4895 if (num
== INT_MIN
&& den
== -1)
4900 uint32_t HELPER(udiv
)(uint32_t num
, uint32_t den
)
4907 uint32_t HELPER(rbit
)(uint32_t x
)
4909 x
= ((x
& 0xff000000) >> 24)
4910 | ((x
& 0x00ff0000) >> 8)
4911 | ((x
& 0x0000ff00) << 8)
4912 | ((x
& 0x000000ff) << 24);
4913 x
= ((x
& 0xf0f0f0f0) >> 4)
4914 | ((x
& 0x0f0f0f0f) << 4);
4915 x
= ((x
& 0x88888888) >> 3)
4916 | ((x
& 0x44444444) >> 1)
4917 | ((x
& 0x22222222) << 1)
4918 | ((x
& 0x11111111) << 3);
4922 #if defined(CONFIG_USER_ONLY)
4924 /* These should probably raise undefined insn exceptions. */
4925 void HELPER(v7m_msr
)(CPUARMState
*env
, uint32_t reg
, uint32_t val
)
4927 ARMCPU
*cpu
= arm_env_get_cpu(env
);
4929 cpu_abort(CPU(cpu
), "v7m_msr %d\n", reg
);
4932 uint32_t HELPER(v7m_mrs
)(CPUARMState
*env
, uint32_t reg
)
4934 ARMCPU
*cpu
= arm_env_get_cpu(env
);
4936 cpu_abort(CPU(cpu
), "v7m_mrs %d\n", reg
);
4940 void switch_mode(CPUARMState
*env
, int mode
)
4942 ARMCPU
*cpu
= arm_env_get_cpu(env
);
4944 if (mode
!= ARM_CPU_MODE_USR
) {
4945 cpu_abort(CPU(cpu
), "Tried to switch out of user mode\n");
4949 void HELPER(set_r13_banked
)(CPUARMState
*env
, uint32_t mode
, uint32_t val
)
4951 ARMCPU
*cpu
= arm_env_get_cpu(env
);
4953 cpu_abort(CPU(cpu
), "banked r13 write\n");
4956 uint32_t HELPER(get_r13_banked
)(CPUARMState
*env
, uint32_t mode
)
4958 ARMCPU
*cpu
= arm_env_get_cpu(env
);
4960 cpu_abort(CPU(cpu
), "banked r13 read\n");
4964 uint32_t arm_phys_excp_target_el(CPUState
*cs
, uint32_t excp_idx
,
4965 uint32_t cur_el
, bool secure
)
4970 void aarch64_sync_64_to_32(CPUARMState
*env
)
4972 g_assert_not_reached();
4977 /* Map CPU modes onto saved register banks. */
4978 int bank_number(int mode
)
4981 case ARM_CPU_MODE_USR
:
4982 case ARM_CPU_MODE_SYS
:
4984 case ARM_CPU_MODE_SVC
:
4986 case ARM_CPU_MODE_ABT
:
4988 case ARM_CPU_MODE_UND
:
4990 case ARM_CPU_MODE_IRQ
:
4992 case ARM_CPU_MODE_FIQ
:
4994 case ARM_CPU_MODE_HYP
:
4996 case ARM_CPU_MODE_MON
:
4999 g_assert_not_reached();
5002 void switch_mode(CPUARMState
*env
, int mode
)
5007 old_mode
= env
->uncached_cpsr
& CPSR_M
;
5008 if (mode
== old_mode
)
5011 if (old_mode
== ARM_CPU_MODE_FIQ
) {
5012 memcpy (env
->fiq_regs
, env
->regs
+ 8, 5 * sizeof(uint32_t));
5013 memcpy (env
->regs
+ 8, env
->usr_regs
, 5 * sizeof(uint32_t));
5014 } else if (mode
== ARM_CPU_MODE_FIQ
) {
5015 memcpy (env
->usr_regs
, env
->regs
+ 8, 5 * sizeof(uint32_t));
5016 memcpy (env
->regs
+ 8, env
->fiq_regs
, 5 * sizeof(uint32_t));
5019 i
= bank_number(old_mode
);
5020 env
->banked_r13
[i
] = env
->regs
[13];
5021 env
->banked_r14
[i
] = env
->regs
[14];
5022 env
->banked_spsr
[i
] = env
->spsr
;
5024 i
= bank_number(mode
);
5025 env
->regs
[13] = env
->banked_r13
[i
];
5026 env
->regs
[14] = env
->banked_r14
[i
];
5027 env
->spsr
= env
->banked_spsr
[i
];
5030 /* Physical Interrupt Target EL Lookup Table
5032 * [ From ARM ARM section G1.13.4 (Table G1-15) ]
5034 * The below multi-dimensional table is used for looking up the target
5035 * exception level given numerous condition criteria. Specifically, the
5036 * target EL is based on SCR and HCR routing controls as well as the
5037 * currently executing EL and secure state.
5040 * target_el_table[2][2][2][2][2][4]
5041 * | | | | | +--- Current EL
5042 * | | | | +------ Non-secure(0)/Secure(1)
5043 * | | | +--------- HCR mask override
5044 * | | +------------ SCR exec state control
5045 * | +--------------- SCR mask override
5046 * +------------------ 32-bit(0)/64-bit(1) EL3
5048 * The table values are as such:
5052 * The ARM ARM target EL table includes entries indicating that an "exception
5053 * is not taken". The two cases where this is applicable are:
5054 * 1) An exception is taken from EL3 but the SCR does not have the exception
5056 * 2) An exception is taken from EL2 but the HCR does not have the exception
5058 * In these two cases, the below table contain a target of EL1. This value is
5059 * returned as it is expected that the consumer of the table data will check
5060 * for "target EL >= current EL" to ensure the exception is not taken.
5064 * BIT IRQ IMO Non-secure Secure
5065 * EL3 FIQ RW FMO EL0 EL1 EL2 EL3 EL0 EL1 EL2 EL3
5067 const int8_t target_el_table
[2][2][2][2][2][4] = {
5068 {{{{/* 0 0 0 0 */{ 1, 1, 2, -1 },{ 3, -1, -1, 3 },},
5069 {/* 0 0 0 1 */{ 2, 2, 2, -1 },{ 3, -1, -1, 3 },},},
5070 {{/* 0 0 1 0 */{ 1, 1, 2, -1 },{ 3, -1, -1, 3 },},
5071 {/* 0 0 1 1 */{ 2, 2, 2, -1 },{ 3, -1, -1, 3 },},},},
5072 {{{/* 0 1 0 0 */{ 3, 3, 3, -1 },{ 3, -1, -1, 3 },},
5073 {/* 0 1 0 1 */{ 3, 3, 3, -1 },{ 3, -1, -1, 3 },},},
5074 {{/* 0 1 1 0 */{ 3, 3, 3, -1 },{ 3, -1, -1, 3 },},
5075 {/* 0 1 1 1 */{ 3, 3, 3, -1 },{ 3, -1, -1, 3 },},},},},
5076 {{{{/* 1 0 0 0 */{ 1, 1, 2, -1 },{ 1, 1, -1, 1 },},
5077 {/* 1 0 0 1 */{ 2, 2, 2, -1 },{ 1, 1, -1, 1 },},},
5078 {{/* 1 0 1 0 */{ 1, 1, 1, -1 },{ 1, 1, -1, 1 },},
5079 {/* 1 0 1 1 */{ 2, 2, 2, -1 },{ 1, 1, -1, 1 },},},},
5080 {{{/* 1 1 0 0 */{ 3, 3, 3, -1 },{ 3, 3, -1, 3 },},
5081 {/* 1 1 0 1 */{ 3, 3, 3, -1 },{ 3, 3, -1, 3 },},},
5082 {{/* 1 1 1 0 */{ 3, 3, 3, -1 },{ 3, 3, -1, 3 },},
5083 {/* 1 1 1 1 */{ 3, 3, 3, -1 },{ 3, 3, -1, 3 },},},},},
5087 * Determine the target EL for physical exceptions
5089 uint32_t arm_phys_excp_target_el(CPUState
*cs
, uint32_t excp_idx
,
5090 uint32_t cur_el
, bool secure
)
5092 CPUARMState
*env
= cs
->env_ptr
;
5093 int rw
= ((env
->cp15
.scr_el3
& SCR_RW
) == SCR_RW
);
5097 int is64
= arm_el_is_aa64(env
, 3);
5101 scr
= ((env
->cp15
.scr_el3
& SCR_IRQ
) == SCR_IRQ
);
5102 hcr
= ((env
->cp15
.hcr_el2
& HCR_IMO
) == HCR_IMO
);
5105 scr
= ((env
->cp15
.scr_el3
& SCR_FIQ
) == SCR_FIQ
);
5106 hcr
= ((env
->cp15
.hcr_el2
& HCR_FMO
) == HCR_FMO
);
5109 scr
= ((env
->cp15
.scr_el3
& SCR_EA
) == SCR_EA
);
5110 hcr
= ((env
->cp15
.hcr_el2
& HCR_AMO
) == HCR_AMO
);
5114 /* If HCR.TGE is set then HCR is treated as being 1 */
5115 hcr
|= ((env
->cp15
.hcr_el2
& HCR_TGE
) == HCR_TGE
);
5117 /* Perform a table-lookup for the target EL given the current state */
5118 target_el
= target_el_table
[is64
][scr
][rw
][hcr
][secure
][cur_el
];
5120 assert(target_el
> 0);
5125 static void v7m_push(CPUARMState
*env
, uint32_t val
)
5127 CPUState
*cs
= CPU(arm_env_get_cpu(env
));
5130 stl_phys(cs
->as
, env
->regs
[13], val
);
5133 static uint32_t v7m_pop(CPUARMState
*env
)
5135 CPUState
*cs
= CPU(arm_env_get_cpu(env
));
5138 val
= ldl_phys(cs
->as
, env
->regs
[13]);
5143 /* Switch to V7M main or process stack pointer. */
5144 static void switch_v7m_sp(CPUARMState
*env
, int process
)
5147 if (env
->v7m
.current_sp
!= process
) {
5148 tmp
= env
->v7m
.other_sp
;
5149 env
->v7m
.other_sp
= env
->regs
[13];
5150 env
->regs
[13] = tmp
;
5151 env
->v7m
.current_sp
= process
;
5155 static void do_v7m_exception_exit(CPUARMState
*env
)
5160 type
= env
->regs
[15];
5161 if (env
->v7m
.exception
!= 0)
5162 armv7m_nvic_complete_irq(env
->nvic
, env
->v7m
.exception
);
5164 /* Switch to the target stack. */
5165 switch_v7m_sp(env
, (type
& 4) != 0);
5166 /* Pop registers. */
5167 env
->regs
[0] = v7m_pop(env
);
5168 env
->regs
[1] = v7m_pop(env
);
5169 env
->regs
[2] = v7m_pop(env
);
5170 env
->regs
[3] = v7m_pop(env
);
5171 env
->regs
[12] = v7m_pop(env
);
5172 env
->regs
[14] = v7m_pop(env
);
5173 env
->regs
[15] = v7m_pop(env
);
5174 if (env
->regs
[15] & 1) {
5175 qemu_log_mask(LOG_GUEST_ERROR
,
5176 "M profile return from interrupt with misaligned "
5177 "PC is UNPREDICTABLE\n");
5178 /* Actual hardware seems to ignore the lsbit, and there are several
5179 * RTOSes out there which incorrectly assume the r15 in the stack
5180 * frame should be a Thumb-style "lsbit indicates ARM/Thumb" value.
5182 env
->regs
[15] &= ~1U;
5184 xpsr
= v7m_pop(env
);
5185 xpsr_write(env
, xpsr
, 0xfffffdff);
5186 /* Undo stack alignment. */
5189 /* ??? The exception return type specifies Thread/Handler mode. However
5190 this is also implied by the xPSR value. Not sure what to do
5191 if there is a mismatch. */
5192 /* ??? Likewise for mismatches between the CONTROL register and the stack
5196 void arm_v7m_cpu_do_interrupt(CPUState
*cs
)
5198 ARMCPU
*cpu
= ARM_CPU(cs
);
5199 CPUARMState
*env
= &cpu
->env
;
5200 uint32_t xpsr
= xpsr_read(env
);
5204 arm_log_exception(cs
->exception_index
);
5207 if (env
->v7m
.current_sp
)
5209 if (env
->v7m
.exception
== 0)
5212 /* For exceptions we just mark as pending on the NVIC, and let that
5214 /* TODO: Need to escalate if the current priority is higher than the
5215 one we're raising. */
5216 switch (cs
->exception_index
) {
5218 armv7m_nvic_set_pending(env
->nvic
, ARMV7M_EXCP_USAGE
);
5221 /* The PC already points to the next instruction. */
5222 armv7m_nvic_set_pending(env
->nvic
, ARMV7M_EXCP_SVC
);
5224 case EXCP_PREFETCH_ABORT
:
5225 case EXCP_DATA_ABORT
:
5226 /* TODO: if we implemented the MPU registers, this is where we
5227 * should set the MMFAR, etc from exception.fsr and exception.vaddress.
5229 armv7m_nvic_set_pending(env
->nvic
, ARMV7M_EXCP_MEM
);
5232 if (semihosting_enabled()) {
5234 nr
= arm_lduw_code(env
, env
->regs
[15], env
->bswap_code
) & 0xff;
5237 qemu_log_mask(CPU_LOG_INT
,
5238 "...handling as semihosting call 0x%x\n",
5240 env
->regs
[0] = do_arm_semihosting(env
);
5244 armv7m_nvic_set_pending(env
->nvic
, ARMV7M_EXCP_DEBUG
);
5247 env
->v7m
.exception
= armv7m_nvic_acknowledge_irq(env
->nvic
);
5249 case EXCP_EXCEPTION_EXIT
:
5250 do_v7m_exception_exit(env
);
5253 cpu_abort(cs
, "Unhandled exception 0x%x\n", cs
->exception_index
);
5254 return; /* Never happens. Keep compiler happy. */
5257 /* Align stack pointer. */
5258 /* ??? Should only do this if Configuration Control Register
5259 STACKALIGN bit is set. */
5260 if (env
->regs
[13] & 4) {
5264 /* Switch to the handler mode. */
5265 v7m_push(env
, xpsr
);
5266 v7m_push(env
, env
->regs
[15]);
5267 v7m_push(env
, env
->regs
[14]);
5268 v7m_push(env
, env
->regs
[12]);
5269 v7m_push(env
, env
->regs
[3]);
5270 v7m_push(env
, env
->regs
[2]);
5271 v7m_push(env
, env
->regs
[1]);
5272 v7m_push(env
, env
->regs
[0]);
5273 switch_v7m_sp(env
, 0);
5275 env
->condexec_bits
= 0;
5277 addr
= ldl_phys(cs
->as
, env
->v7m
.vecbase
+ env
->v7m
.exception
* 4);
5278 env
->regs
[15] = addr
& 0xfffffffe;
5279 env
->thumb
= addr
& 1;
5282 /* Function used to synchronize QEMU's AArch64 register set with AArch32
5283 * register set. This is necessary when switching between AArch32 and AArch64
5286 void aarch64_sync_32_to_64(CPUARMState
*env
)
5289 uint32_t mode
= env
->uncached_cpsr
& CPSR_M
;
5291 /* We can blanket copy R[0:7] to X[0:7] */
5292 for (i
= 0; i
< 8; i
++) {
5293 env
->xregs
[i
] = env
->regs
[i
];
5296 /* Unless we are in FIQ mode, x8-x12 come from the user registers r8-r12.
5297 * Otherwise, they come from the banked user regs.
5299 if (mode
== ARM_CPU_MODE_FIQ
) {
5300 for (i
= 8; i
< 13; i
++) {
5301 env
->xregs
[i
] = env
->usr_regs
[i
- 8];
5304 for (i
= 8; i
< 13; i
++) {
5305 env
->xregs
[i
] = env
->regs
[i
];
5309 /* Registers x13-x23 are the various mode SP and FP registers. Registers
5310 * r13 and r14 are only copied if we are in that mode, otherwise we copy
5311 * from the mode banked register.
5313 if (mode
== ARM_CPU_MODE_USR
|| mode
== ARM_CPU_MODE_SYS
) {
5314 env
->xregs
[13] = env
->regs
[13];
5315 env
->xregs
[14] = env
->regs
[14];
5317 env
->xregs
[13] = env
->banked_r13
[bank_number(ARM_CPU_MODE_USR
)];
5318 /* HYP is an exception in that it is copied from r14 */
5319 if (mode
== ARM_CPU_MODE_HYP
) {
5320 env
->xregs
[14] = env
->regs
[14];
5322 env
->xregs
[14] = env
->banked_r14
[bank_number(ARM_CPU_MODE_USR
)];
5326 if (mode
== ARM_CPU_MODE_HYP
) {
5327 env
->xregs
[15] = env
->regs
[13];
5329 env
->xregs
[15] = env
->banked_r13
[bank_number(ARM_CPU_MODE_HYP
)];
5332 if (mode
== ARM_CPU_MODE_IRQ
) {
5333 env
->xregs
[16] = env
->regs
[14];
5334 env
->xregs
[17] = env
->regs
[13];
5336 env
->xregs
[16] = env
->banked_r14
[bank_number(ARM_CPU_MODE_IRQ
)];
5337 env
->xregs
[17] = env
->banked_r13
[bank_number(ARM_CPU_MODE_IRQ
)];
5340 if (mode
== ARM_CPU_MODE_SVC
) {
5341 env
->xregs
[18] = env
->regs
[14];
5342 env
->xregs
[19] = env
->regs
[13];
5344 env
->xregs
[18] = env
->banked_r14
[bank_number(ARM_CPU_MODE_SVC
)];
5345 env
->xregs
[19] = env
->banked_r13
[bank_number(ARM_CPU_MODE_SVC
)];
5348 if (mode
== ARM_CPU_MODE_ABT
) {
5349 env
->xregs
[20] = env
->regs
[14];
5350 env
->xregs
[21] = env
->regs
[13];
5352 env
->xregs
[20] = env
->banked_r14
[bank_number(ARM_CPU_MODE_ABT
)];
5353 env
->xregs
[21] = env
->banked_r13
[bank_number(ARM_CPU_MODE_ABT
)];
5356 if (mode
== ARM_CPU_MODE_UND
) {
5357 env
->xregs
[22] = env
->regs
[14];
5358 env
->xregs
[23] = env
->regs
[13];
5360 env
->xregs
[22] = env
->banked_r14
[bank_number(ARM_CPU_MODE_UND
)];
5361 env
->xregs
[23] = env
->banked_r13
[bank_number(ARM_CPU_MODE_UND
)];
5364 /* Registers x24-x30 are mapped to r8-r14 in FIQ mode. If we are in FIQ
5365 * mode, then we can copy from r8-r14. Otherwise, we copy from the
5366 * FIQ bank for r8-r14.
5368 if (mode
== ARM_CPU_MODE_FIQ
) {
5369 for (i
= 24; i
< 31; i
++) {
5370 env
->xregs
[i
] = env
->regs
[i
- 16]; /* X[24:30] <- R[8:14] */
5373 for (i
= 24; i
< 29; i
++) {
5374 env
->xregs
[i
] = env
->fiq_regs
[i
- 24];
5376 env
->xregs
[29] = env
->banked_r13
[bank_number(ARM_CPU_MODE_FIQ
)];
5377 env
->xregs
[30] = env
->banked_r14
[bank_number(ARM_CPU_MODE_FIQ
)];
5380 env
->pc
= env
->regs
[15];
5383 /* Function used to synchronize QEMU's AArch32 register set with AArch64
5384 * register set. This is necessary when switching between AArch32 and AArch64
5387 void aarch64_sync_64_to_32(CPUARMState
*env
)
5390 uint32_t mode
= env
->uncached_cpsr
& CPSR_M
;
5392 /* We can blanket copy X[0:7] to R[0:7] */
5393 for (i
= 0; i
< 8; i
++) {
5394 env
->regs
[i
] = env
->xregs
[i
];
5397 /* Unless we are in FIQ mode, r8-r12 come from the user registers x8-x12.
5398 * Otherwise, we copy x8-x12 into the banked user regs.
5400 if (mode
== ARM_CPU_MODE_FIQ
) {
5401 for (i
= 8; i
< 13; i
++) {
5402 env
->usr_regs
[i
- 8] = env
->xregs
[i
];
5405 for (i
= 8; i
< 13; i
++) {
5406 env
->regs
[i
] = env
->xregs
[i
];
5410 /* Registers r13 & r14 depend on the current mode.
5411 * If we are in a given mode, we copy the corresponding x registers to r13
5412 * and r14. Otherwise, we copy the x register to the banked r13 and r14
5415 if (mode
== ARM_CPU_MODE_USR
|| mode
== ARM_CPU_MODE_SYS
) {
5416 env
->regs
[13] = env
->xregs
[13];
5417 env
->regs
[14] = env
->xregs
[14];
5419 env
->banked_r13
[bank_number(ARM_CPU_MODE_USR
)] = env
->xregs
[13];
5421 /* HYP is an exception in that it does not have its own banked r14 but
5422 * shares the USR r14
5424 if (mode
== ARM_CPU_MODE_HYP
) {
5425 env
->regs
[14] = env
->xregs
[14];
5427 env
->banked_r14
[bank_number(ARM_CPU_MODE_USR
)] = env
->xregs
[14];
5431 if (mode
== ARM_CPU_MODE_HYP
) {
5432 env
->regs
[13] = env
->xregs
[15];
5434 env
->banked_r13
[bank_number(ARM_CPU_MODE_HYP
)] = env
->xregs
[15];
5437 if (mode
== ARM_CPU_MODE_IRQ
) {
5438 env
->regs
[14] = env
->xregs
[16];
5439 env
->regs
[13] = env
->xregs
[17];
5441 env
->banked_r14
[bank_number(ARM_CPU_MODE_IRQ
)] = env
->xregs
[16];
5442 env
->banked_r13
[bank_number(ARM_CPU_MODE_IRQ
)] = env
->xregs
[17];
5445 if (mode
== ARM_CPU_MODE_SVC
) {
5446 env
->regs
[14] = env
->xregs
[18];
5447 env
->regs
[13] = env
->xregs
[19];
5449 env
->banked_r14
[bank_number(ARM_CPU_MODE_SVC
)] = env
->xregs
[18];
5450 env
->banked_r13
[bank_number(ARM_CPU_MODE_SVC
)] = env
->xregs
[19];
5453 if (mode
== ARM_CPU_MODE_ABT
) {
5454 env
->regs
[14] = env
->xregs
[20];
5455 env
->regs
[13] = env
->xregs
[21];
5457 env
->banked_r14
[bank_number(ARM_CPU_MODE_ABT
)] = env
->xregs
[20];
5458 env
->banked_r13
[bank_number(ARM_CPU_MODE_ABT
)] = env
->xregs
[21];
5461 if (mode
== ARM_CPU_MODE_UND
) {
5462 env
->regs
[14] = env
->xregs
[22];
5463 env
->regs
[13] = env
->xregs
[23];
5465 env
->banked_r14
[bank_number(ARM_CPU_MODE_UND
)] = env
->xregs
[22];
5466 env
->banked_r13
[bank_number(ARM_CPU_MODE_UND
)] = env
->xregs
[23];
5469 /* Registers x24-x30 are mapped to r8-r14 in FIQ mode. If we are in FIQ
5470 * mode, then we can copy to r8-r14. Otherwise, we copy to the
5471 * FIQ bank for r8-r14.
5473 if (mode
== ARM_CPU_MODE_FIQ
) {
5474 for (i
= 24; i
< 31; i
++) {
5475 env
->regs
[i
- 16] = env
->xregs
[i
]; /* X[24:30] -> R[8:14] */
5478 for (i
= 24; i
< 29; i
++) {
5479 env
->fiq_regs
[i
- 24] = env
->xregs
[i
];
5481 env
->banked_r13
[bank_number(ARM_CPU_MODE_FIQ
)] = env
->xregs
[29];
5482 env
->banked_r14
[bank_number(ARM_CPU_MODE_FIQ
)] = env
->xregs
[30];
5485 env
->regs
[15] = env
->pc
;
5488 /* Handle a CPU exception. */
5489 void arm_cpu_do_interrupt(CPUState
*cs
)
5491 ARMCPU
*cpu
= ARM_CPU(cs
);
5492 CPUARMState
*env
= &cpu
->env
;
5501 arm_log_exception(cs
->exception_index
);
5503 if (arm_is_psci_call(cpu
, cs
->exception_index
)) {
5504 arm_handle_psci_call(cpu
);
5505 qemu_log_mask(CPU_LOG_INT
, "...handled as PSCI call\n");
5509 /* If this is a debug exception we must update the DBGDSCR.MOE bits */
5510 switch (env
->exception
.syndrome
>> ARM_EL_EC_SHIFT
) {
5512 case EC_BREAKPOINT_SAME_EL
:
5516 case EC_WATCHPOINT_SAME_EL
:
5522 case EC_VECTORCATCH
:
5531 env
->cp15
.mdscr_el1
= deposit64(env
->cp15
.mdscr_el1
, 2, 4, moe
);
5534 /* TODO: Vectored interrupt controller. */
5535 switch (cs
->exception_index
) {
5537 new_mode
= ARM_CPU_MODE_UND
;
5546 if (semihosting_enabled()) {
5547 /* Check for semihosting interrupt. */
5549 mask
= arm_lduw_code(env
, env
->regs
[15] - 2, env
->bswap_code
)
5552 mask
= arm_ldl_code(env
, env
->regs
[15] - 4, env
->bswap_code
)
5555 /* Only intercept calls from privileged modes, to provide some
5556 semblance of security. */
5557 if (((mask
== 0x123456 && !env
->thumb
)
5558 || (mask
== 0xab && env
->thumb
))
5559 && (env
->uncached_cpsr
& CPSR_M
) != ARM_CPU_MODE_USR
) {
5560 qemu_log_mask(CPU_LOG_INT
,
5561 "...handling as semihosting call 0x%x\n",
5563 env
->regs
[0] = do_arm_semihosting(env
);
5567 new_mode
= ARM_CPU_MODE_SVC
;
5570 /* The PC already points to the next instruction. */
5574 /* See if this is a semihosting syscall. */
5575 if (env
->thumb
&& semihosting_enabled()) {
5576 mask
= arm_lduw_code(env
, env
->regs
[15], env
->bswap_code
) & 0xff;
5578 && (env
->uncached_cpsr
& CPSR_M
) != ARM_CPU_MODE_USR
) {
5580 qemu_log_mask(CPU_LOG_INT
,
5581 "...handling as semihosting call 0x%x\n",
5583 env
->regs
[0] = do_arm_semihosting(env
);
5587 env
->exception
.fsr
= 2;
5588 /* Fall through to prefetch abort. */
5589 case EXCP_PREFETCH_ABORT
:
5590 A32_BANKED_CURRENT_REG_SET(env
, ifsr
, env
->exception
.fsr
);
5591 A32_BANKED_CURRENT_REG_SET(env
, ifar
, env
->exception
.vaddress
);
5592 qemu_log_mask(CPU_LOG_INT
, "...with IFSR 0x%x IFAR 0x%x\n",
5593 env
->exception
.fsr
, (uint32_t)env
->exception
.vaddress
);
5594 new_mode
= ARM_CPU_MODE_ABT
;
5596 mask
= CPSR_A
| CPSR_I
;
5599 case EXCP_DATA_ABORT
:
5600 A32_BANKED_CURRENT_REG_SET(env
, dfsr
, env
->exception
.fsr
);
5601 A32_BANKED_CURRENT_REG_SET(env
, dfar
, env
->exception
.vaddress
);
5602 qemu_log_mask(CPU_LOG_INT
, "...with DFSR 0x%x DFAR 0x%x\n",
5604 (uint32_t)env
->exception
.vaddress
);
5605 new_mode
= ARM_CPU_MODE_ABT
;
5607 mask
= CPSR_A
| CPSR_I
;
5611 new_mode
= ARM_CPU_MODE_IRQ
;
5613 /* Disable IRQ and imprecise data aborts. */
5614 mask
= CPSR_A
| CPSR_I
;
5616 if (env
->cp15
.scr_el3
& SCR_IRQ
) {
5617 /* IRQ routed to monitor mode */
5618 new_mode
= ARM_CPU_MODE_MON
;
5623 new_mode
= ARM_CPU_MODE_FIQ
;
5625 /* Disable FIQ, IRQ and imprecise data aborts. */
5626 mask
= CPSR_A
| CPSR_I
| CPSR_F
;
5627 if (env
->cp15
.scr_el3
& SCR_FIQ
) {
5628 /* FIQ routed to monitor mode */
5629 new_mode
= ARM_CPU_MODE_MON
;
5634 new_mode
= ARM_CPU_MODE_MON
;
5636 mask
= CPSR_A
| CPSR_I
| CPSR_F
;
5640 cpu_abort(cs
, "Unhandled exception 0x%x\n", cs
->exception_index
);
5641 return; /* Never happens. Keep compiler happy. */
5644 if (new_mode
== ARM_CPU_MODE_MON
) {
5645 addr
+= env
->cp15
.mvbar
;
5646 } else if (A32_BANKED_CURRENT_REG_GET(env
, sctlr
) & SCTLR_V
) {
5647 /* High vectors. When enabled, base address cannot be remapped. */
5650 /* ARM v7 architectures provide a vector base address register to remap
5651 * the interrupt vector table.
5652 * This register is only followed in non-monitor mode, and is banked.
5653 * Note: only bits 31:5 are valid.
5655 addr
+= A32_BANKED_CURRENT_REG_GET(env
, vbar
);
5658 if ((env
->uncached_cpsr
& CPSR_M
) == ARM_CPU_MODE_MON
) {
5659 env
->cp15
.scr_el3
&= ~SCR_NS
;
5662 switch_mode (env
, new_mode
);
5663 /* For exceptions taken to AArch32 we must clear the SS bit in both
5664 * PSTATE and in the old-state value we save to SPSR_<mode>, so zero it now.
5666 env
->uncached_cpsr
&= ~PSTATE_SS
;
5667 env
->spsr
= cpsr_read(env
);
5668 /* Clear IT bits. */
5669 env
->condexec_bits
= 0;
5670 /* Switch to the new mode, and to the correct instruction set. */
5671 env
->uncached_cpsr
= (env
->uncached_cpsr
& ~CPSR_M
) | new_mode
;
5673 /* this is a lie, as the was no c1_sys on V4T/V5, but who cares
5674 * and we should just guard the thumb mode on V4 */
5675 if (arm_feature(env
, ARM_FEATURE_V4T
)) {
5676 env
->thumb
= (A32_BANKED_CURRENT_REG_GET(env
, sctlr
) & SCTLR_TE
) != 0;
5678 env
->regs
[14] = env
->regs
[15] + offset
;
5679 env
->regs
[15] = addr
;
5680 cs
->interrupt_request
|= CPU_INTERRUPT_EXITTB
;
5684 /* Return the exception level which controls this address translation regime */
5685 static inline uint32_t regime_el(CPUARMState
*env
, ARMMMUIdx mmu_idx
)
5688 case ARMMMUIdx_S2NS
:
5689 case ARMMMUIdx_S1E2
:
5691 case ARMMMUIdx_S1E3
:
5693 case ARMMMUIdx_S1SE0
:
5694 return arm_el_is_aa64(env
, 3) ? 1 : 3;
5695 case ARMMMUIdx_S1SE1
:
5696 case ARMMMUIdx_S1NSE0
:
5697 case ARMMMUIdx_S1NSE1
:
5700 g_assert_not_reached();
5704 /* Return true if this address translation regime is secure */
5705 static inline bool regime_is_secure(CPUARMState
*env
, ARMMMUIdx mmu_idx
)
5708 case ARMMMUIdx_S12NSE0
:
5709 case ARMMMUIdx_S12NSE1
:
5710 case ARMMMUIdx_S1NSE0
:
5711 case ARMMMUIdx_S1NSE1
:
5712 case ARMMMUIdx_S1E2
:
5713 case ARMMMUIdx_S2NS
:
5715 case ARMMMUIdx_S1E3
:
5716 case ARMMMUIdx_S1SE0
:
5717 case ARMMMUIdx_S1SE1
:
5720 g_assert_not_reached();
5724 /* Return the SCTLR value which controls this address translation regime */
5725 static inline uint32_t regime_sctlr(CPUARMState
*env
, ARMMMUIdx mmu_idx
)
5727 return env
->cp15
.sctlr_el
[regime_el(env
, mmu_idx
)];
5730 /* Return true if the specified stage of address translation is disabled */
5731 static inline bool regime_translation_disabled(CPUARMState
*env
,
5734 if (mmu_idx
== ARMMMUIdx_S2NS
) {
5735 return (env
->cp15
.hcr_el2
& HCR_VM
) == 0;
5737 return (regime_sctlr(env
, mmu_idx
) & SCTLR_M
) == 0;
5740 /* Return the TCR controlling this translation regime */
5741 static inline TCR
*regime_tcr(CPUARMState
*env
, ARMMMUIdx mmu_idx
)
5743 if (mmu_idx
== ARMMMUIdx_S2NS
) {
5744 /* TODO: return VTCR_EL2 */
5745 g_assert_not_reached();
5747 return &env
->cp15
.tcr_el
[regime_el(env
, mmu_idx
)];
5750 /* Return the TTBR associated with this translation regime */
5751 static inline uint64_t regime_ttbr(CPUARMState
*env
, ARMMMUIdx mmu_idx
,
5754 if (mmu_idx
== ARMMMUIdx_S2NS
) {
5755 /* TODO: return VTTBR_EL2 */
5756 g_assert_not_reached();
5759 return env
->cp15
.ttbr0_el
[regime_el(env
, mmu_idx
)];
5761 return env
->cp15
.ttbr1_el
[regime_el(env
, mmu_idx
)];
5765 /* Return true if the translation regime is using LPAE format page tables */
5766 static inline bool regime_using_lpae_format(CPUARMState
*env
,
5769 int el
= regime_el(env
, mmu_idx
);
5770 if (el
== 2 || arm_el_is_aa64(env
, el
)) {
5773 if (arm_feature(env
, ARM_FEATURE_LPAE
)
5774 && (regime_tcr(env
, mmu_idx
)->raw_tcr
& TTBCR_EAE
)) {
5780 static inline bool regime_is_user(CPUARMState
*env
, ARMMMUIdx mmu_idx
)
5783 case ARMMMUIdx_S1SE0
:
5784 case ARMMMUIdx_S1NSE0
:
5788 case ARMMMUIdx_S12NSE0
:
5789 case ARMMMUIdx_S12NSE1
:
5790 g_assert_not_reached();
5794 /* Translate section/page access permissions to page
5795 * R/W protection flags
5798 * @mmu_idx: MMU index indicating required translation regime
5799 * @ap: The 3-bit access permissions (AP[2:0])
5800 * @domain_prot: The 2-bit domain access permissions
5802 static inline int ap_to_rw_prot(CPUARMState
*env
, ARMMMUIdx mmu_idx
,
5803 int ap
, int domain_prot
)
5805 bool is_user
= regime_is_user(env
, mmu_idx
);
5807 if (domain_prot
== 3) {
5808 return PAGE_READ
| PAGE_WRITE
;
5813 if (arm_feature(env
, ARM_FEATURE_V7
)) {
5816 switch (regime_sctlr(env
, mmu_idx
) & (SCTLR_S
| SCTLR_R
)) {
5818 return is_user
? 0 : PAGE_READ
;
5825 return is_user
? 0 : PAGE_READ
| PAGE_WRITE
;
5830 return PAGE_READ
| PAGE_WRITE
;
5833 return PAGE_READ
| PAGE_WRITE
;
5834 case 4: /* Reserved. */
5837 return is_user
? 0 : PAGE_READ
;
5841 if (!arm_feature(env
, ARM_FEATURE_V6K
)) {
5846 g_assert_not_reached();
5850 /* Translate section/page access permissions to page
5851 * R/W protection flags.
5853 * @ap: The 2-bit simple AP (AP[2:1])
5854 * @is_user: TRUE if accessing from PL0
5856 static inline int simple_ap_to_rw_prot_is_user(int ap
, bool is_user
)
5860 return is_user
? 0 : PAGE_READ
| PAGE_WRITE
;
5862 return PAGE_READ
| PAGE_WRITE
;
5864 return is_user
? 0 : PAGE_READ
;
5868 g_assert_not_reached();
5873 simple_ap_to_rw_prot(CPUARMState
*env
, ARMMMUIdx mmu_idx
, int ap
)
5875 return simple_ap_to_rw_prot_is_user(ap
, regime_is_user(env
, mmu_idx
));
5878 /* Translate section/page access permissions to protection flags
5881 * @mmu_idx: MMU index indicating required translation regime
5882 * @is_aa64: TRUE if AArch64
5883 * @ap: The 2-bit simple AP (AP[2:1])
5884 * @ns: NS (non-secure) bit
5885 * @xn: XN (execute-never) bit
5886 * @pxn: PXN (privileged execute-never) bit
5888 static int get_S1prot(CPUARMState
*env
, ARMMMUIdx mmu_idx
, bool is_aa64
,
5889 int ap
, int ns
, int xn
, int pxn
)
5891 bool is_user
= regime_is_user(env
, mmu_idx
);
5892 int prot_rw
, user_rw
;
5896 assert(mmu_idx
!= ARMMMUIdx_S2NS
);
5898 user_rw
= simple_ap_to_rw_prot_is_user(ap
, true);
5902 prot_rw
= simple_ap_to_rw_prot_is_user(ap
, false);
5905 if (ns
&& arm_is_secure(env
) && (env
->cp15
.scr_el3
& SCR_SIF
)) {
5909 /* TODO have_wxn should be replaced with
5910 * ARM_FEATURE_V8 || (ARM_FEATURE_V7 && ARM_FEATURE_EL2)
5911 * when ARM_FEATURE_EL2 starts getting set. For now we assume all LPAE
5912 * compatible processors have EL2, which is required for [U]WXN.
5914 have_wxn
= arm_feature(env
, ARM_FEATURE_LPAE
);
5917 wxn
= regime_sctlr(env
, mmu_idx
) & SCTLR_WXN
;
5921 switch (regime_el(env
, mmu_idx
)) {
5924 xn
= pxn
|| (user_rw
& PAGE_WRITE
);
5931 } else if (arm_feature(env
, ARM_FEATURE_V7
)) {
5932 switch (regime_el(env
, mmu_idx
)) {
5936 xn
= xn
|| !(user_rw
& PAGE_READ
);
5940 uwxn
= regime_sctlr(env
, mmu_idx
) & SCTLR_UWXN
;
5942 xn
= xn
|| !(prot_rw
& PAGE_READ
) || pxn
||
5943 (uwxn
&& (user_rw
& PAGE_WRITE
));
5953 if (xn
|| (wxn
&& (prot_rw
& PAGE_WRITE
))) {
5956 return prot_rw
| PAGE_EXEC
;
5959 static bool get_level1_table_address(CPUARMState
*env
, ARMMMUIdx mmu_idx
,
5960 uint32_t *table
, uint32_t address
)
5962 /* Note that we can only get here for an AArch32 PL0/PL1 lookup */
5963 TCR
*tcr
= regime_tcr(env
, mmu_idx
);
5965 if (address
& tcr
->mask
) {
5966 if (tcr
->raw_tcr
& TTBCR_PD1
) {
5967 /* Translation table walk disabled for TTBR1 */
5970 *table
= regime_ttbr(env
, mmu_idx
, 1) & 0xffffc000;
5972 if (tcr
->raw_tcr
& TTBCR_PD0
) {
5973 /* Translation table walk disabled for TTBR0 */
5976 *table
= regime_ttbr(env
, mmu_idx
, 0) & tcr
->base_mask
;
5978 *table
|= (address
>> 18) & 0x3ffc;
5982 /* All loads done in the course of a page table walk go through here.
5983 * TODO: rather than ignoring errors from physical memory reads (which
5984 * are external aborts in ARM terminology) we should propagate this
5985 * error out so that we can turn it into a Data Abort if this walk
5986 * was being done for a CPU load/store or an address translation instruction
5987 * (but not if it was for a debug access).
5989 static uint32_t arm_ldl_ptw(CPUState
*cs
, hwaddr addr
, bool is_secure
)
5991 MemTxAttrs attrs
= {};
5993 attrs
.secure
= is_secure
;
5994 return address_space_ldl(cs
->as
, addr
, attrs
, NULL
);
5997 static uint64_t arm_ldq_ptw(CPUState
*cs
, hwaddr addr
, bool is_secure
)
5999 MemTxAttrs attrs
= {};
6001 attrs
.secure
= is_secure
;
6002 return address_space_ldq(cs
->as
, addr
, attrs
, NULL
);
6005 static bool get_phys_addr_v5(CPUARMState
*env
, uint32_t address
,
6006 int access_type
, ARMMMUIdx mmu_idx
,
6007 hwaddr
*phys_ptr
, int *prot
,
6008 target_ulong
*page_size
, uint32_t *fsr
)
6010 CPUState
*cs
= CPU(arm_env_get_cpu(env
));
6021 /* Pagetable walk. */
6022 /* Lookup l1 descriptor. */
6023 if (!get_level1_table_address(env
, mmu_idx
, &table
, address
)) {
6024 /* Section translation fault if page walk is disabled by PD0 or PD1 */
6028 desc
= arm_ldl_ptw(cs
, table
, regime_is_secure(env
, mmu_idx
));
6030 domain
= (desc
>> 5) & 0x0f;
6031 if (regime_el(env
, mmu_idx
) == 1) {
6032 dacr
= env
->cp15
.dacr_ns
;
6034 dacr
= env
->cp15
.dacr_s
;
6036 domain_prot
= (dacr
>> (domain
* 2)) & 3;
6038 /* Section translation fault. */
6042 if (domain_prot
== 0 || domain_prot
== 2) {
6044 code
= 9; /* Section domain fault. */
6046 code
= 11; /* Page domain fault. */
6051 phys_addr
= (desc
& 0xfff00000) | (address
& 0x000fffff);
6052 ap
= (desc
>> 10) & 3;
6054 *page_size
= 1024 * 1024;
6056 /* Lookup l2 entry. */
6058 /* Coarse pagetable. */
6059 table
= (desc
& 0xfffffc00) | ((address
>> 10) & 0x3fc);
6061 /* Fine pagetable. */
6062 table
= (desc
& 0xfffff000) | ((address
>> 8) & 0xffc);
6064 desc
= arm_ldl_ptw(cs
, table
, regime_is_secure(env
, mmu_idx
));
6066 case 0: /* Page translation fault. */
6069 case 1: /* 64k page. */
6070 phys_addr
= (desc
& 0xffff0000) | (address
& 0xffff);
6071 ap
= (desc
>> (4 + ((address
>> 13) & 6))) & 3;
6072 *page_size
= 0x10000;
6074 case 2: /* 4k page. */
6075 phys_addr
= (desc
& 0xfffff000) | (address
& 0xfff);
6076 ap
= (desc
>> (4 + ((address
>> 9) & 6))) & 3;
6077 *page_size
= 0x1000;
6079 case 3: /* 1k page, or ARMv6/XScale "extended small (4k) page" */
6081 /* ARMv6/XScale extended small page format */
6082 if (arm_feature(env
, ARM_FEATURE_XSCALE
)
6083 || arm_feature(env
, ARM_FEATURE_V6
)) {
6084 phys_addr
= (desc
& 0xfffff000) | (address
& 0xfff);
6085 *page_size
= 0x1000;
6087 /* UNPREDICTABLE in ARMv5; we choose to take a
6088 * page translation fault.
6094 phys_addr
= (desc
& 0xfffffc00) | (address
& 0x3ff);
6097 ap
= (desc
>> 4) & 3;
6100 /* Never happens, but compiler isn't smart enough to tell. */
6105 *prot
= ap_to_rw_prot(env
, mmu_idx
, ap
, domain_prot
);
6106 *prot
|= *prot
? PAGE_EXEC
: 0;
6107 if (!(*prot
& (1 << access_type
))) {
6108 /* Access permission fault. */
6111 *phys_ptr
= phys_addr
;
6114 *fsr
= code
| (domain
<< 4);
6118 static bool get_phys_addr_v6(CPUARMState
*env
, uint32_t address
,
6119 int access_type
, ARMMMUIdx mmu_idx
,
6120 hwaddr
*phys_ptr
, MemTxAttrs
*attrs
, int *prot
,
6121 target_ulong
*page_size
, uint32_t *fsr
)
6123 CPUState
*cs
= CPU(arm_env_get_cpu(env
));
6137 /* Pagetable walk. */
6138 /* Lookup l1 descriptor. */
6139 if (!get_level1_table_address(env
, mmu_idx
, &table
, address
)) {
6140 /* Section translation fault if page walk is disabled by PD0 or PD1 */
6144 desc
= arm_ldl_ptw(cs
, table
, regime_is_secure(env
, mmu_idx
));
6146 if (type
== 0 || (type
== 3 && !arm_feature(env
, ARM_FEATURE_PXN
))) {
6147 /* Section translation fault, or attempt to use the encoding
6148 * which is Reserved on implementations without PXN.
6153 if ((type
== 1) || !(desc
& (1 << 18))) {
6154 /* Page or Section. */
6155 domain
= (desc
>> 5) & 0x0f;
6157 if (regime_el(env
, mmu_idx
) == 1) {
6158 dacr
= env
->cp15
.dacr_ns
;
6160 dacr
= env
->cp15
.dacr_s
;
6162 domain_prot
= (dacr
>> (domain
* 2)) & 3;
6163 if (domain_prot
== 0 || domain_prot
== 2) {
6165 code
= 9; /* Section domain fault. */
6167 code
= 11; /* Page domain fault. */
6172 if (desc
& (1 << 18)) {
6174 phys_addr
= (desc
& 0xff000000) | (address
& 0x00ffffff);
6175 phys_addr
|= (uint64_t)extract32(desc
, 20, 4) << 32;
6176 phys_addr
|= (uint64_t)extract32(desc
, 5, 4) << 36;
6177 *page_size
= 0x1000000;
6180 phys_addr
= (desc
& 0xfff00000) | (address
& 0x000fffff);
6181 *page_size
= 0x100000;
6183 ap
= ((desc
>> 10) & 3) | ((desc
>> 13) & 4);
6184 xn
= desc
& (1 << 4);
6187 ns
= extract32(desc
, 19, 1);
6189 if (arm_feature(env
, ARM_FEATURE_PXN
)) {
6190 pxn
= (desc
>> 2) & 1;
6192 ns
= extract32(desc
, 3, 1);
6193 /* Lookup l2 entry. */
6194 table
= (desc
& 0xfffffc00) | ((address
>> 10) & 0x3fc);
6195 desc
= arm_ldl_ptw(cs
, table
, regime_is_secure(env
, mmu_idx
));
6196 ap
= ((desc
>> 4) & 3) | ((desc
>> 7) & 4);
6198 case 0: /* Page translation fault. */
6201 case 1: /* 64k page. */
6202 phys_addr
= (desc
& 0xffff0000) | (address
& 0xffff);
6203 xn
= desc
& (1 << 15);
6204 *page_size
= 0x10000;
6206 case 2: case 3: /* 4k page. */
6207 phys_addr
= (desc
& 0xfffff000) | (address
& 0xfff);
6209 *page_size
= 0x1000;
6212 /* Never happens, but compiler isn't smart enough to tell. */
6217 if (domain_prot
== 3) {
6218 *prot
= PAGE_READ
| PAGE_WRITE
| PAGE_EXEC
;
6220 if (pxn
&& !regime_is_user(env
, mmu_idx
)) {
6223 if (xn
&& access_type
== 2)
6226 if (arm_feature(env
, ARM_FEATURE_V6K
) &&
6227 (regime_sctlr(env
, mmu_idx
) & SCTLR_AFE
)) {
6228 /* The simplified model uses AP[0] as an access control bit. */
6229 if ((ap
& 1) == 0) {
6230 /* Access flag fault. */
6231 code
= (code
== 15) ? 6 : 3;
6234 *prot
= simple_ap_to_rw_prot(env
, mmu_idx
, ap
>> 1);
6236 *prot
= ap_to_rw_prot(env
, mmu_idx
, ap
, domain_prot
);
6241 if (!(*prot
& (1 << access_type
))) {
6242 /* Access permission fault. */
6247 /* The NS bit will (as required by the architecture) have no effect if
6248 * the CPU doesn't support TZ or this is a non-secure translation
6249 * regime, because the attribute will already be non-secure.
6251 attrs
->secure
= false;
6253 *phys_ptr
= phys_addr
;
6256 *fsr
= code
| (domain
<< 4);
6260 /* Fault type for long-descriptor MMU fault reporting; this corresponds
6261 * to bits [5..2] in the STATUS field in long-format DFSR/IFSR.
6264 translation_fault
= 1,
6266 permission_fault
= 3,
6269 static bool get_phys_addr_lpae(CPUARMState
*env
, target_ulong address
,
6270 int access_type
, ARMMMUIdx mmu_idx
,
6271 hwaddr
*phys_ptr
, MemTxAttrs
*txattrs
, int *prot
,
6272 target_ulong
*page_size_ptr
, uint32_t *fsr
)
6274 CPUState
*cs
= CPU(arm_env_get_cpu(env
));
6275 /* Read an LPAE long-descriptor translation table. */
6276 MMUFaultType fault_type
= translation_fault
;
6283 hwaddr descaddr
, descmask
;
6284 uint32_t tableattrs
;
6285 target_ulong page_size
;
6287 int32_t granule_sz
= 9;
6288 int32_t va_size
= 32;
6290 TCR
*tcr
= regime_tcr(env
, mmu_idx
);
6291 int ap
, ns
, xn
, pxn
;
6292 uint32_t el
= regime_el(env
, mmu_idx
);
6293 bool ttbr1_valid
= true;
6296 * This code does not handle the different format TCR for VTCR_EL2.
6297 * This code also does not support shareability levels.
6298 * Attribute and permission bit handling should also be checked when adding
6299 * support for those page table walks.
6301 if (arm_el_is_aa64(env
, el
)) {
6304 tbi
= extract64(tcr
->raw_tcr
, 20, 1);
6306 if (extract64(address
, 55, 1)) {
6307 tbi
= extract64(tcr
->raw_tcr
, 38, 1);
6309 tbi
= extract64(tcr
->raw_tcr
, 37, 1);
6314 /* If we are in 64-bit EL2 or EL3 then there is no TTBR1, so mark it
6318 ttbr1_valid
= false;
6321 /* There is no TTBR1 for EL2 */
6323 ttbr1_valid
= false;
6327 /* Determine whether this address is in the region controlled by
6328 * TTBR0 or TTBR1 (or if it is in neither region and should fault).
6329 * This is a Non-secure PL0/1 stage 1 translation, so controlled by
6330 * TTBCR/TTBR0/TTBR1 in accordance with ARM ARM DDI0406C table B-32:
6332 uint32_t t0sz
= extract32(tcr
->raw_tcr
, 0, 6);
6333 if (va_size
== 64) {
6334 t0sz
= MIN(t0sz
, 39);
6335 t0sz
= MAX(t0sz
, 16);
6337 uint32_t t1sz
= extract32(tcr
->raw_tcr
, 16, 6);
6338 if (va_size
== 64) {
6339 t1sz
= MIN(t1sz
, 39);
6340 t1sz
= MAX(t1sz
, 16);
6342 if (t0sz
&& !extract64(address
, va_size
- t0sz
, t0sz
- tbi
)) {
6343 /* there is a ttbr0 region and we are in it (high bits all zero) */
6345 } else if (ttbr1_valid
&& t1sz
&&
6346 !extract64(~address
, va_size
- t1sz
, t1sz
- tbi
)) {
6347 /* there is a ttbr1 region and we are in it (high bits all one) */
6350 /* ttbr0 region is "everything not in the ttbr1 region" */
6352 } else if (!t1sz
&& ttbr1_valid
) {
6353 /* ttbr1 region is "everything not in the ttbr0 region" */
6356 /* in the gap between the two regions, this is a Translation fault */
6357 fault_type
= translation_fault
;
6361 /* Note that QEMU ignores shareability and cacheability attributes,
6362 * so we don't need to do anything with the SH, ORGN, IRGN fields
6363 * in the TTBCR. Similarly, TTBCR:A1 selects whether we get the
6364 * ASID from TTBR0 or TTBR1, but QEMU's TLB doesn't currently
6365 * implement any ASID-like capability so we can ignore it (instead
6366 * we will always flush the TLB any time the ASID is changed).
6368 if (ttbr_select
== 0) {
6369 ttbr
= regime_ttbr(env
, mmu_idx
, 0);
6370 epd
= extract32(tcr
->raw_tcr
, 7, 1);
6373 tg
= extract32(tcr
->raw_tcr
, 14, 2);
6374 if (tg
== 1) { /* 64KB pages */
6377 if (tg
== 2) { /* 16KB pages */
6381 /* We should only be here if TTBR1 is valid */
6382 assert(ttbr1_valid
);
6384 ttbr
= regime_ttbr(env
, mmu_idx
, 1);
6385 epd
= extract32(tcr
->raw_tcr
, 23, 1);
6388 tg
= extract32(tcr
->raw_tcr
, 30, 2);
6389 if (tg
== 3) { /* 64KB pages */
6392 if (tg
== 1) { /* 16KB pages */
6397 /* Here we should have set up all the parameters for the translation:
6398 * va_size, ttbr, epd, tsz, granule_sz, tbi
6402 /* Translation table walk disabled => Translation fault on TLB miss
6403 * Note: This is always 0 on 64-bit EL2 and EL3.
6408 /* The starting level depends on the virtual address size (which can be
6409 * up to 48 bits) and the translation granule size. It indicates the number
6410 * of strides (granule_sz bits at a time) needed to consume the bits
6411 * of the input address. In the pseudocode this is:
6412 * level = 4 - RoundUp((inputsize - grainsize) / stride)
6413 * where their 'inputsize' is our 'va_size - tsz', 'grainsize' is
6414 * our 'granule_sz + 3' and 'stride' is our 'granule_sz'.
6415 * Applying the usual "rounded up m/n is (m+n-1)/n" and simplifying:
6416 * = 4 - (va_size - tsz - granule_sz - 3 + granule_sz - 1) / granule_sz
6417 * = 4 - (va_size - tsz - 4) / granule_sz;
6419 level
= 4 - (va_size
- tsz
- 4) / granule_sz
;
6421 /* Clear the vaddr bits which aren't part of the within-region address,
6422 * so that we don't have to special case things when calculating the
6423 * first descriptor address.
6426 address
&= (1ULL << (va_size
- tsz
)) - 1;
6429 descmask
= (1ULL << (granule_sz
+ 3)) - 1;
6431 /* Now we can extract the actual base address from the TTBR */
6432 descaddr
= extract64(ttbr
, 0, 48);
6433 descaddr
&= ~((1ULL << (va_size
- tsz
- (granule_sz
* (4 - level
)))) - 1);
6435 /* Secure accesses start with the page table in secure memory and
6436 * can be downgraded to non-secure at any step. Non-secure accesses
6437 * remain non-secure. We implement this by just ORing in the NSTable/NS
6438 * bits at each step.
6440 tableattrs
= regime_is_secure(env
, mmu_idx
) ? 0 : (1 << 4);
6442 uint64_t descriptor
;
6445 descaddr
|= (address
>> (granule_sz
* (4 - level
))) & descmask
;
6447 nstable
= extract32(tableattrs
, 4, 1);
6448 descriptor
= arm_ldq_ptw(cs
, descaddr
, !nstable
);
6449 if (!(descriptor
& 1) ||
6450 (!(descriptor
& 2) && (level
== 3))) {
6451 /* Invalid, or the Reserved level 3 encoding */
6454 descaddr
= descriptor
& 0xfffffff000ULL
;
6456 if ((descriptor
& 2) && (level
< 3)) {
6457 /* Table entry. The top five bits are attributes which may
6458 * propagate down through lower levels of the table (and
6459 * which are all arranged so that 0 means "no effect", so
6460 * we can gather them up by ORing in the bits at each level).
6462 tableattrs
|= extract64(descriptor
, 59, 5);
6466 /* Block entry at level 1 or 2, or page entry at level 3.
6467 * These are basically the same thing, although the number
6468 * of bits we pull in from the vaddr varies.
6470 page_size
= (1ULL << ((granule_sz
* (4 - level
)) + 3));
6471 descaddr
|= (address
& (page_size
- 1));
6472 /* Extract attributes from the descriptor and merge with table attrs */
6473 attrs
= extract64(descriptor
, 2, 10)
6474 | (extract64(descriptor
, 52, 12) << 10);
6475 attrs
|= extract32(tableattrs
, 0, 2) << 11; /* XN, PXN */
6476 attrs
|= extract32(tableattrs
, 3, 1) << 5; /* APTable[1] => AP[2] */
6477 /* The sense of AP[1] vs APTable[0] is reversed, as APTable[0] == 1
6478 * means "force PL1 access only", which means forcing AP[1] to 0.
6480 if (extract32(tableattrs
, 2, 1)) {
6483 attrs
|= nstable
<< 3; /* NS */
6486 /* Here descaddr is the final physical address, and attributes
6489 fault_type
= access_fault
;
6490 if ((attrs
& (1 << 8)) == 0) {
6495 ap
= extract32(attrs
, 4, 2);
6496 ns
= extract32(attrs
, 3, 1);
6497 xn
= extract32(attrs
, 12, 1);
6498 pxn
= extract32(attrs
, 11, 1);
6500 *prot
= get_S1prot(env
, mmu_idx
, va_size
== 64, ap
, ns
, xn
, pxn
);
6502 fault_type
= permission_fault
;
6503 if (!(*prot
& (1 << access_type
))) {
6508 /* The NS bit will (as required by the architecture) have no effect if
6509 * the CPU doesn't support TZ or this is a non-secure translation
6510 * regime, because the attribute will already be non-secure.
6512 txattrs
->secure
= false;
6514 *phys_ptr
= descaddr
;
6515 *page_size_ptr
= page_size
;
6519 /* Long-descriptor format IFSR/DFSR value */
6520 *fsr
= (1 << 9) | (fault_type
<< 2) | level
;
6524 static inline void get_phys_addr_pmsav7_default(CPUARMState
*env
,
6526 int32_t address
, int *prot
)
6528 *prot
= PAGE_READ
| PAGE_WRITE
;
6530 case 0xF0000000 ... 0xFFFFFFFF:
6531 if (regime_sctlr(env
, mmu_idx
) & SCTLR_V
) { /* hivecs execing is ok */
6535 case 0x00000000 ... 0x7FFFFFFF:
6542 static bool get_phys_addr_pmsav7(CPUARMState
*env
, uint32_t address
,
6543 int access_type
, ARMMMUIdx mmu_idx
,
6544 hwaddr
*phys_ptr
, int *prot
, uint32_t *fsr
)
6546 ARMCPU
*cpu
= arm_env_get_cpu(env
);
6548 bool is_user
= regime_is_user(env
, mmu_idx
);
6550 *phys_ptr
= address
;
6553 if (regime_translation_disabled(env
, mmu_idx
)) { /* MPU disabled */
6554 get_phys_addr_pmsav7_default(env
, mmu_idx
, address
, prot
);
6555 } else { /* MPU enabled */
6556 for (n
= (int)cpu
->pmsav7_dregion
- 1; n
>= 0; n
--) {
6558 uint32_t base
= env
->pmsav7
.drbar
[n
];
6559 uint32_t rsize
= extract32(env
->pmsav7
.drsr
[n
], 1, 5);
6563 if (!(env
->pmsav7
.drsr
[n
] & 0x1)) {
6568 qemu_log_mask(LOG_GUEST_ERROR
, "DRSR.Rsize field can not be 0");
6572 rmask
= (1ull << rsize
) - 1;
6575 qemu_log_mask(LOG_GUEST_ERROR
, "DRBAR %" PRIx32
" misaligned "
6576 "to DRSR region size, mask = %" PRIx32
,
6581 if (address
< base
|| address
> base
+ rmask
) {
6585 /* Region matched */
6587 if (rsize
>= 8) { /* no subregions for regions < 256 bytes */
6589 uint32_t srdis_mask
;
6591 rsize
-= 3; /* sub region size (power of 2) */
6592 snd
= ((address
- base
) >> rsize
) & 0x7;
6593 srdis
= extract32(env
->pmsav7
.drsr
[n
], snd
+ 8, 1);
6595 srdis_mask
= srdis
? 0x3 : 0x0;
6596 for (i
= 2; i
<= 8 && rsize
< TARGET_PAGE_BITS
; i
*= 2) {
6597 /* This will check in groups of 2, 4 and then 8, whether
6598 * the subregion bits are consistent. rsize is incremented
6599 * back up to give the region size, considering consistent
6600 * adjacent subregions as one region. Stop testing if rsize
6601 * is already big enough for an entire QEMU page.
6603 int snd_rounded
= snd
& ~(i
- 1);
6604 uint32_t srdis_multi
= extract32(env
->pmsav7
.drsr
[n
],
6605 snd_rounded
+ 8, i
);
6606 if (srdis_mask
^ srdis_multi
) {
6609 srdis_mask
= (srdis_mask
<< i
) | srdis_mask
;
6613 if (rsize
< TARGET_PAGE_BITS
) {
6614 qemu_log_mask(LOG_UNIMP
, "No support for MPU (sub)region"
6615 "alignment of %" PRIu32
" bits. Minimum is %d\n",
6616 rsize
, TARGET_PAGE_BITS
);
6625 if (n
== -1) { /* no hits */
6626 if (cpu
->pmsav7_dregion
&&
6627 (is_user
|| !(regime_sctlr(env
, mmu_idx
) & SCTLR_BR
))) {
6628 /* background fault */
6632 get_phys_addr_pmsav7_default(env
, mmu_idx
, address
, prot
);
6633 } else { /* a MPU hit! */
6634 uint32_t ap
= extract32(env
->pmsav7
.dracr
[n
], 8, 3);
6636 if (is_user
) { /* User mode AP bit decoding */
6641 break; /* no access */
6643 *prot
|= PAGE_WRITE
;
6647 *prot
|= PAGE_READ
| PAGE_EXEC
;
6650 qemu_log_mask(LOG_GUEST_ERROR
,
6651 "Bad value for AP bits in DRACR %"
6654 } else { /* Priv. mode AP bits decoding */
6657 break; /* no access */
6661 *prot
|= PAGE_WRITE
;
6665 *prot
|= PAGE_READ
| PAGE_EXEC
;
6668 qemu_log_mask(LOG_GUEST_ERROR
,
6669 "Bad value for AP bits in DRACR %"
6675 if (env
->pmsav7
.dracr
[n
] & (1 << 12)) {
6676 *prot
&= ~PAGE_EXEC
;
6681 *fsr
= 0x00d; /* Permission fault */
6682 return !(*prot
& (1 << access_type
));
6685 static bool get_phys_addr_pmsav5(CPUARMState
*env
, uint32_t address
,
6686 int access_type
, ARMMMUIdx mmu_idx
,
6687 hwaddr
*phys_ptr
, int *prot
, uint32_t *fsr
)
6692 bool is_user
= regime_is_user(env
, mmu_idx
);
6694 *phys_ptr
= address
;
6695 for (n
= 7; n
>= 0; n
--) {
6696 base
= env
->cp15
.c6_region
[n
];
6697 if ((base
& 1) == 0) {
6700 mask
= 1 << ((base
>> 1) & 0x1f);
6701 /* Keep this shift separate from the above to avoid an
6702 (undefined) << 32. */
6703 mask
= (mask
<< 1) - 1;
6704 if (((base
^ address
) & ~mask
) == 0) {
6713 if (access_type
== 2) {
6714 mask
= env
->cp15
.pmsav5_insn_ap
;
6716 mask
= env
->cp15
.pmsav5_data_ap
;
6718 mask
= (mask
>> (n
* 4)) & 0xf;
6728 *prot
= PAGE_READ
| PAGE_WRITE
;
6733 *prot
|= PAGE_WRITE
;
6737 *prot
= PAGE_READ
| PAGE_WRITE
;
6750 /* Bad permission. */
6758 /* get_phys_addr - get the physical address for this virtual address
6760 * Find the physical address corresponding to the given virtual address,
6761 * by doing a translation table walk on MMU based systems or using the
6762 * MPU state on MPU based systems.
6764 * Returns false if the translation was successful. Otherwise, phys_ptr, attrs,
6765 * prot and page_size may not be filled in, and the populated fsr value provides
6766 * information on why the translation aborted, in the format of a
6767 * DFSR/IFSR fault register, with the following caveats:
6768 * * we honour the short vs long DFSR format differences.
6769 * * the WnR bit is never set (the caller must do this).
6770 * * for PSMAv5 based systems we don't bother to return a full FSR format
6774 * @address: virtual address to get physical address for
6775 * @access_type: 0 for read, 1 for write, 2 for execute
6776 * @mmu_idx: MMU index indicating required translation regime
6777 * @phys_ptr: set to the physical address corresponding to the virtual address
6778 * @attrs: set to the memory transaction attributes to use
6779 * @prot: set to the permissions for the page containing phys_ptr
6780 * @page_size: set to the size of the page containing phys_ptr
6781 * @fsr: set to the DFSR/IFSR value on failure
6783 static inline bool get_phys_addr(CPUARMState
*env
, target_ulong address
,
6784 int access_type
, ARMMMUIdx mmu_idx
,
6785 hwaddr
*phys_ptr
, MemTxAttrs
*attrs
, int *prot
,
6786 target_ulong
*page_size
, uint32_t *fsr
)
6788 if (mmu_idx
== ARMMMUIdx_S12NSE0
|| mmu_idx
== ARMMMUIdx_S12NSE1
) {
6789 /* TODO: when we support EL2 we should here call ourselves recursively
6790 * to do the stage 1 and then stage 2 translations. The arm_ld*_ptw
6791 * functions will also need changing to perform ARMMMUIdx_S2NS loads
6792 * rather than direct physical memory loads when appropriate.
6793 * For non-EL2 CPUs a stage1+stage2 translation is just stage 1.
6795 assert(!arm_feature(env
, ARM_FEATURE_EL2
));
6796 mmu_idx
+= ARMMMUIdx_S1NSE0
;
6799 /* The page table entries may downgrade secure to non-secure, but
6800 * cannot upgrade an non-secure translation regime's attributes
6803 attrs
->secure
= regime_is_secure(env
, mmu_idx
);
6804 attrs
->user
= regime_is_user(env
, mmu_idx
);
6806 /* Fast Context Switch Extension. This doesn't exist at all in v8.
6807 * In v7 and earlier it affects all stage 1 translations.
6809 if (address
< 0x02000000 && mmu_idx
!= ARMMMUIdx_S2NS
6810 && !arm_feature(env
, ARM_FEATURE_V8
)) {
6811 if (regime_el(env
, mmu_idx
) == 3) {
6812 address
+= env
->cp15
.fcseidr_s
;
6814 address
+= env
->cp15
.fcseidr_ns
;
6818 /* pmsav7 has special handling for when MPU is disabled so call it before
6819 * the common MMU/MPU disabled check below.
6821 if (arm_feature(env
, ARM_FEATURE_MPU
) &&
6822 arm_feature(env
, ARM_FEATURE_V7
)) {
6823 *page_size
= TARGET_PAGE_SIZE
;
6824 return get_phys_addr_pmsav7(env
, address
, access_type
, mmu_idx
,
6825 phys_ptr
, prot
, fsr
);
6828 if (regime_translation_disabled(env
, mmu_idx
)) {
6829 /* MMU/MPU disabled. */
6830 *phys_ptr
= address
;
6831 *prot
= PAGE_READ
| PAGE_WRITE
| PAGE_EXEC
;
6832 *page_size
= TARGET_PAGE_SIZE
;
6836 if (arm_feature(env
, ARM_FEATURE_MPU
)) {
6838 *page_size
= TARGET_PAGE_SIZE
;
6839 return get_phys_addr_pmsav5(env
, address
, access_type
, mmu_idx
,
6840 phys_ptr
, prot
, fsr
);
6843 if (regime_using_lpae_format(env
, mmu_idx
)) {
6844 return get_phys_addr_lpae(env
, address
, access_type
, mmu_idx
, phys_ptr
,
6845 attrs
, prot
, page_size
, fsr
);
6846 } else if (regime_sctlr(env
, mmu_idx
) & SCTLR_XP
) {
6847 return get_phys_addr_v6(env
, address
, access_type
, mmu_idx
, phys_ptr
,
6848 attrs
, prot
, page_size
, fsr
);
6850 return get_phys_addr_v5(env
, address
, access_type
, mmu_idx
, phys_ptr
,
6851 prot
, page_size
, fsr
);
6855 /* Walk the page table and (if the mapping exists) add the page
6856 * to the TLB. Return false on success, or true on failure. Populate
6857 * fsr with ARM DFSR/IFSR fault register format value on failure.
6859 bool arm_tlb_fill(CPUState
*cs
, vaddr address
,
6860 int access_type
, int mmu_idx
, uint32_t *fsr
)
6862 ARMCPU
*cpu
= ARM_CPU(cs
);
6863 CPUARMState
*env
= &cpu
->env
;
6865 target_ulong page_size
;
6868 MemTxAttrs attrs
= {};
6870 ret
= get_phys_addr(env
, address
, access_type
, mmu_idx
, &phys_addr
,
6871 &attrs
, &prot
, &page_size
, fsr
);
6873 /* Map a single [sub]page. */
6874 phys_addr
&= TARGET_PAGE_MASK
;
6875 address
&= TARGET_PAGE_MASK
;
6876 tlb_set_page_with_attrs(cs
, address
, phys_addr
, attrs
,
6877 prot
, mmu_idx
, page_size
);
6884 hwaddr
arm_cpu_get_phys_page_debug(CPUState
*cs
, vaddr addr
)
6886 ARMCPU
*cpu
= ARM_CPU(cs
);
6887 CPUARMState
*env
= &cpu
->env
;
6889 target_ulong page_size
;
6893 MemTxAttrs attrs
= {};
6895 ret
= get_phys_addr(env
, addr
, 0, cpu_mmu_index(env
, false), &phys_addr
,
6896 &attrs
, &prot
, &page_size
, &fsr
);
6905 void HELPER(set_r13_banked
)(CPUARMState
*env
, uint32_t mode
, uint32_t val
)
6907 if ((env
->uncached_cpsr
& CPSR_M
) == mode
) {
6908 env
->regs
[13] = val
;
6910 env
->banked_r13
[bank_number(mode
)] = val
;
6914 uint32_t HELPER(get_r13_banked
)(CPUARMState
*env
, uint32_t mode
)
6916 if ((env
->uncached_cpsr
& CPSR_M
) == mode
) {
6917 return env
->regs
[13];
6919 return env
->banked_r13
[bank_number(mode
)];
6923 uint32_t HELPER(v7m_mrs
)(CPUARMState
*env
, uint32_t reg
)
6925 ARMCPU
*cpu
= arm_env_get_cpu(env
);
6929 return xpsr_read(env
) & 0xf8000000;
6931 return xpsr_read(env
) & 0xf80001ff;
6933 return xpsr_read(env
) & 0xff00fc00;
6935 return xpsr_read(env
) & 0xff00fdff;
6937 return xpsr_read(env
) & 0x000001ff;
6939 return xpsr_read(env
) & 0x0700fc00;
6941 return xpsr_read(env
) & 0x0700edff;
6943 return env
->v7m
.current_sp
? env
->v7m
.other_sp
: env
->regs
[13];
6945 return env
->v7m
.current_sp
? env
->regs
[13] : env
->v7m
.other_sp
;
6946 case 16: /* PRIMASK */
6947 return (env
->daif
& PSTATE_I
) != 0;
6948 case 17: /* BASEPRI */
6949 case 18: /* BASEPRI_MAX */
6950 return env
->v7m
.basepri
;
6951 case 19: /* FAULTMASK */
6952 return (env
->daif
& PSTATE_F
) != 0;
6953 case 20: /* CONTROL */
6954 return env
->v7m
.control
;
6956 /* ??? For debugging only. */
6957 cpu_abort(CPU(cpu
), "Unimplemented system register read (%d)\n", reg
);
6962 void HELPER(v7m_msr
)(CPUARMState
*env
, uint32_t reg
, uint32_t val
)
6964 ARMCPU
*cpu
= arm_env_get_cpu(env
);
6968 xpsr_write(env
, val
, 0xf8000000);
6971 xpsr_write(env
, val
, 0xf8000000);
6974 xpsr_write(env
, val
, 0xfe00fc00);
6977 xpsr_write(env
, val
, 0xfe00fc00);
6980 /* IPSR bits are readonly. */
6983 xpsr_write(env
, val
, 0x0600fc00);
6986 xpsr_write(env
, val
, 0x0600fc00);
6989 if (env
->v7m
.current_sp
)
6990 env
->v7m
.other_sp
= val
;
6992 env
->regs
[13] = val
;
6995 if (env
->v7m
.current_sp
)
6996 env
->regs
[13] = val
;
6998 env
->v7m
.other_sp
= val
;
7000 case 16: /* PRIMASK */
7002 env
->daif
|= PSTATE_I
;
7004 env
->daif
&= ~PSTATE_I
;
7007 case 17: /* BASEPRI */
7008 env
->v7m
.basepri
= val
& 0xff;
7010 case 18: /* BASEPRI_MAX */
7012 if (val
!= 0 && (val
< env
->v7m
.basepri
|| env
->v7m
.basepri
== 0))
7013 env
->v7m
.basepri
= val
;
7015 case 19: /* FAULTMASK */
7017 env
->daif
|= PSTATE_F
;
7019 env
->daif
&= ~PSTATE_F
;
7022 case 20: /* CONTROL */
7023 env
->v7m
.control
= val
& 3;
7024 switch_v7m_sp(env
, (val
& 2) != 0);
7027 /* ??? For debugging only. */
7028 cpu_abort(CPU(cpu
), "Unimplemented system register write (%d)\n", reg
);
7035 void HELPER(dc_zva
)(CPUARMState
*env
, uint64_t vaddr_in
)
7037 /* Implement DC ZVA, which zeroes a fixed-length block of memory.
7038 * Note that we do not implement the (architecturally mandated)
7039 * alignment fault for attempts to use this on Device memory
7040 * (which matches the usual QEMU behaviour of not implementing either
7041 * alignment faults or any memory attribute handling).
7044 ARMCPU
*cpu
= arm_env_get_cpu(env
);
7045 uint64_t blocklen
= 4 << cpu
->dcz_blocksize
;
7046 uint64_t vaddr
= vaddr_in
& ~(blocklen
- 1);
7048 #ifndef CONFIG_USER_ONLY
7050 /* Slightly awkwardly, QEMU's TARGET_PAGE_SIZE may be less than
7051 * the block size so we might have to do more than one TLB lookup.
7052 * We know that in fact for any v8 CPU the page size is at least 4K
7053 * and the block size must be 2K or less, but TARGET_PAGE_SIZE is only
7054 * 1K as an artefact of legacy v5 subpage support being present in the
7055 * same QEMU executable.
7057 int maxidx
= DIV_ROUND_UP(blocklen
, TARGET_PAGE_SIZE
);
7058 void *hostaddr
[maxidx
];
7060 unsigned mmu_idx
= cpu_mmu_index(env
, false);
7061 TCGMemOpIdx oi
= make_memop_idx(MO_UB
, mmu_idx
);
7063 for (try = 0; try < 2; try++) {
7065 for (i
= 0; i
< maxidx
; i
++) {
7066 hostaddr
[i
] = tlb_vaddr_to_host(env
,
7067 vaddr
+ TARGET_PAGE_SIZE
* i
,
7074 /* If it's all in the TLB it's fair game for just writing to;
7075 * we know we don't need to update dirty status, etc.
7077 for (i
= 0; i
< maxidx
- 1; i
++) {
7078 memset(hostaddr
[i
], 0, TARGET_PAGE_SIZE
);
7080 memset(hostaddr
[i
], 0, blocklen
- (i
* TARGET_PAGE_SIZE
));
7083 /* OK, try a store and see if we can populate the tlb. This
7084 * might cause an exception if the memory isn't writable,
7085 * in which case we will longjmp out of here. We must for
7086 * this purpose use the actual register value passed to us
7087 * so that we get the fault address right.
7089 helper_ret_stb_mmu(env
, vaddr_in
, 0, oi
, GETRA());
7090 /* Now we can populate the other TLB entries, if any */
7091 for (i
= 0; i
< maxidx
; i
++) {
7092 uint64_t va
= vaddr
+ TARGET_PAGE_SIZE
* i
;
7093 if (va
!= (vaddr_in
& TARGET_PAGE_MASK
)) {
7094 helper_ret_stb_mmu(env
, va
, 0, oi
, GETRA());
7099 /* Slow path (probably attempt to do this to an I/O device or
7100 * similar, or clearing of a block of code we have translations
7101 * cached for). Just do a series of byte writes as the architecture
7102 * demands. It's not worth trying to use a cpu_physical_memory_map(),
7103 * memset(), unmap() sequence here because:
7104 * + we'd need to account for the blocksize being larger than a page
7105 * + the direct-RAM access case is almost always going to be dealt
7106 * with in the fastpath code above, so there's no speed benefit
7107 * + we would have to deal with the map returning NULL because the
7108 * bounce buffer was in use
7110 for (i
= 0; i
< blocklen
; i
++) {
7111 helper_ret_stb_mmu(env
, vaddr
+ i
, 0, oi
, GETRA());
7115 memset(g2h(vaddr
), 0, blocklen
);
7119 /* Note that signed overflow is undefined in C. The following routines are
7120 careful to use unsigned types where modulo arithmetic is required.
7121 Failure to do so _will_ break on newer gcc. */
7123 /* Signed saturating arithmetic. */
7125 /* Perform 16-bit signed saturating addition. */
7126 static inline uint16_t add16_sat(uint16_t a
, uint16_t b
)
7131 if (((res
^ a
) & 0x8000) && !((a
^ b
) & 0x8000)) {
7140 /* Perform 8-bit signed saturating addition. */
7141 static inline uint8_t add8_sat(uint8_t a
, uint8_t b
)
7146 if (((res
^ a
) & 0x80) && !((a
^ b
) & 0x80)) {
7155 /* Perform 16-bit signed saturating subtraction. */
7156 static inline uint16_t sub16_sat(uint16_t a
, uint16_t b
)
7161 if (((res
^ a
) & 0x8000) && ((a
^ b
) & 0x8000)) {
7170 /* Perform 8-bit signed saturating subtraction. */
7171 static inline uint8_t sub8_sat(uint8_t a
, uint8_t b
)
7176 if (((res
^ a
) & 0x80) && ((a
^ b
) & 0x80)) {
7185 #define ADD16(a, b, n) RESULT(add16_sat(a, b), n, 16);
7186 #define SUB16(a, b, n) RESULT(sub16_sat(a, b), n, 16);
7187 #define ADD8(a, b, n) RESULT(add8_sat(a, b), n, 8);
7188 #define SUB8(a, b, n) RESULT(sub8_sat(a, b), n, 8);
7191 #include "op_addsub.h"
7193 /* Unsigned saturating arithmetic. */
7194 static inline uint16_t add16_usat(uint16_t a
, uint16_t b
)
7203 static inline uint16_t sub16_usat(uint16_t a
, uint16_t b
)
7211 static inline uint8_t add8_usat(uint8_t a
, uint8_t b
)
7220 static inline uint8_t sub8_usat(uint8_t a
, uint8_t b
)
7228 #define ADD16(a, b, n) RESULT(add16_usat(a, b), n, 16);
7229 #define SUB16(a, b, n) RESULT(sub16_usat(a, b), n, 16);
7230 #define ADD8(a, b, n) RESULT(add8_usat(a, b), n, 8);
7231 #define SUB8(a, b, n) RESULT(sub8_usat(a, b), n, 8);
7234 #include "op_addsub.h"
7236 /* Signed modulo arithmetic. */
7237 #define SARITH16(a, b, n, op) do { \
7239 sum = (int32_t)(int16_t)(a) op (int32_t)(int16_t)(b); \
7240 RESULT(sum, n, 16); \
7242 ge |= 3 << (n * 2); \
7245 #define SARITH8(a, b, n, op) do { \
7247 sum = (int32_t)(int8_t)(a) op (int32_t)(int8_t)(b); \
7248 RESULT(sum, n, 8); \
7254 #define ADD16(a, b, n) SARITH16(a, b, n, +)
7255 #define SUB16(a, b, n) SARITH16(a, b, n, -)
7256 #define ADD8(a, b, n) SARITH8(a, b, n, +)
7257 #define SUB8(a, b, n) SARITH8(a, b, n, -)
7261 #include "op_addsub.h"
7263 /* Unsigned modulo arithmetic. */
7264 #define ADD16(a, b, n) do { \
7266 sum = (uint32_t)(uint16_t)(a) + (uint32_t)(uint16_t)(b); \
7267 RESULT(sum, n, 16); \
7268 if ((sum >> 16) == 1) \
7269 ge |= 3 << (n * 2); \
7272 #define ADD8(a, b, n) do { \
7274 sum = (uint32_t)(uint8_t)(a) + (uint32_t)(uint8_t)(b); \
7275 RESULT(sum, n, 8); \
7276 if ((sum >> 8) == 1) \
7280 #define SUB16(a, b, n) do { \
7282 sum = (uint32_t)(uint16_t)(a) - (uint32_t)(uint16_t)(b); \
7283 RESULT(sum, n, 16); \
7284 if ((sum >> 16) == 0) \
7285 ge |= 3 << (n * 2); \
7288 #define SUB8(a, b, n) do { \
7290 sum = (uint32_t)(uint8_t)(a) - (uint32_t)(uint8_t)(b); \
7291 RESULT(sum, n, 8); \
7292 if ((sum >> 8) == 0) \
7299 #include "op_addsub.h"
7301 /* Halved signed arithmetic. */
7302 #define ADD16(a, b, n) \
7303 RESULT(((int32_t)(int16_t)(a) + (int32_t)(int16_t)(b)) >> 1, n, 16)
7304 #define SUB16(a, b, n) \
7305 RESULT(((int32_t)(int16_t)(a) - (int32_t)(int16_t)(b)) >> 1, n, 16)
7306 #define ADD8(a, b, n) \
7307 RESULT(((int32_t)(int8_t)(a) + (int32_t)(int8_t)(b)) >> 1, n, 8)
7308 #define SUB8(a, b, n) \
7309 RESULT(((int32_t)(int8_t)(a) - (int32_t)(int8_t)(b)) >> 1, n, 8)
7312 #include "op_addsub.h"
7314 /* Halved unsigned arithmetic. */
7315 #define ADD16(a, b, n) \
7316 RESULT(((uint32_t)(uint16_t)(a) + (uint32_t)(uint16_t)(b)) >> 1, n, 16)
7317 #define SUB16(a, b, n) \
7318 RESULT(((uint32_t)(uint16_t)(a) - (uint32_t)(uint16_t)(b)) >> 1, n, 16)
7319 #define ADD8(a, b, n) \
7320 RESULT(((uint32_t)(uint8_t)(a) + (uint32_t)(uint8_t)(b)) >> 1, n, 8)
7321 #define SUB8(a, b, n) \
7322 RESULT(((uint32_t)(uint8_t)(a) - (uint32_t)(uint8_t)(b)) >> 1, n, 8)
7325 #include "op_addsub.h"
7327 static inline uint8_t do_usad(uint8_t a
, uint8_t b
)
7335 /* Unsigned sum of absolute byte differences. */
7336 uint32_t HELPER(usad8
)(uint32_t a
, uint32_t b
)
7339 sum
= do_usad(a
, b
);
7340 sum
+= do_usad(a
>> 8, b
>> 8);
7341 sum
+= do_usad(a
>> 16, b
>>16);
7342 sum
+= do_usad(a
>> 24, b
>> 24);
7346 /* For ARMv6 SEL instruction. */
7347 uint32_t HELPER(sel_flags
)(uint32_t flags
, uint32_t a
, uint32_t b
)
7360 return (a
& mask
) | (b
& ~mask
);
7363 /* VFP support. We follow the convention used for VFP instructions:
7364 Single precision routines have a "s" suffix, double precision a
7367 /* Convert host exception flags to vfp form. */
7368 static inline int vfp_exceptbits_from_host(int host_bits
)
7370 int target_bits
= 0;
7372 if (host_bits
& float_flag_invalid
)
7374 if (host_bits
& float_flag_divbyzero
)
7376 if (host_bits
& float_flag_overflow
)
7378 if (host_bits
& (float_flag_underflow
| float_flag_output_denormal
))
7380 if (host_bits
& float_flag_inexact
)
7381 target_bits
|= 0x10;
7382 if (host_bits
& float_flag_input_denormal
)
7383 target_bits
|= 0x80;
7387 uint32_t HELPER(vfp_get_fpscr
)(CPUARMState
*env
)
7392 fpscr
= (env
->vfp
.xregs
[ARM_VFP_FPSCR
] & 0xffc8ffff)
7393 | (env
->vfp
.vec_len
<< 16)
7394 | (env
->vfp
.vec_stride
<< 20);
7395 i
= get_float_exception_flags(&env
->vfp
.fp_status
);
7396 i
|= get_float_exception_flags(&env
->vfp
.standard_fp_status
);
7397 fpscr
|= vfp_exceptbits_from_host(i
);
7401 uint32_t vfp_get_fpscr(CPUARMState
*env
)
7403 return HELPER(vfp_get_fpscr
)(env
);
7406 /* Convert vfp exception flags to target form. */
7407 static inline int vfp_exceptbits_to_host(int target_bits
)
7411 if (target_bits
& 1)
7412 host_bits
|= float_flag_invalid
;
7413 if (target_bits
& 2)
7414 host_bits
|= float_flag_divbyzero
;
7415 if (target_bits
& 4)
7416 host_bits
|= float_flag_overflow
;
7417 if (target_bits
& 8)
7418 host_bits
|= float_flag_underflow
;
7419 if (target_bits
& 0x10)
7420 host_bits
|= float_flag_inexact
;
7421 if (target_bits
& 0x80)
7422 host_bits
|= float_flag_input_denormal
;
7426 void HELPER(vfp_set_fpscr
)(CPUARMState
*env
, uint32_t val
)
7431 changed
= env
->vfp
.xregs
[ARM_VFP_FPSCR
];
7432 env
->vfp
.xregs
[ARM_VFP_FPSCR
] = (val
& 0xffc8ffff);
7433 env
->vfp
.vec_len
= (val
>> 16) & 7;
7434 env
->vfp
.vec_stride
= (val
>> 20) & 3;
7437 if (changed
& (3 << 22)) {
7438 i
= (val
>> 22) & 3;
7440 case FPROUNDING_TIEEVEN
:
7441 i
= float_round_nearest_even
;
7443 case FPROUNDING_POSINF
:
7446 case FPROUNDING_NEGINF
:
7447 i
= float_round_down
;
7449 case FPROUNDING_ZERO
:
7450 i
= float_round_to_zero
;
7453 set_float_rounding_mode(i
, &env
->vfp
.fp_status
);
7455 if (changed
& (1 << 24)) {
7456 set_flush_to_zero((val
& (1 << 24)) != 0, &env
->vfp
.fp_status
);
7457 set_flush_inputs_to_zero((val
& (1 << 24)) != 0, &env
->vfp
.fp_status
);
7459 if (changed
& (1 << 25))
7460 set_default_nan_mode((val
& (1 << 25)) != 0, &env
->vfp
.fp_status
);
7462 i
= vfp_exceptbits_to_host(val
);
7463 set_float_exception_flags(i
, &env
->vfp
.fp_status
);
7464 set_float_exception_flags(0, &env
->vfp
.standard_fp_status
);
7467 void vfp_set_fpscr(CPUARMState
*env
, uint32_t val
)
7469 HELPER(vfp_set_fpscr
)(env
, val
);
7472 #define VFP_HELPER(name, p) HELPER(glue(glue(vfp_,name),p))
7474 #define VFP_BINOP(name) \
7475 float32 VFP_HELPER(name, s)(float32 a, float32 b, void *fpstp) \
7477 float_status *fpst = fpstp; \
7478 return float32_ ## name(a, b, fpst); \
7480 float64 VFP_HELPER(name, d)(float64 a, float64 b, void *fpstp) \
7482 float_status *fpst = fpstp; \
7483 return float64_ ## name(a, b, fpst); \
7495 float32
VFP_HELPER(neg
, s
)(float32 a
)
7497 return float32_chs(a
);
7500 float64
VFP_HELPER(neg
, d
)(float64 a
)
7502 return float64_chs(a
);
7505 float32
VFP_HELPER(abs
, s
)(float32 a
)
7507 return float32_abs(a
);
7510 float64
VFP_HELPER(abs
, d
)(float64 a
)
7512 return float64_abs(a
);
7515 float32
VFP_HELPER(sqrt
, s
)(float32 a
, CPUARMState
*env
)
7517 return float32_sqrt(a
, &env
->vfp
.fp_status
);
7520 float64
VFP_HELPER(sqrt
, d
)(float64 a
, CPUARMState
*env
)
7522 return float64_sqrt(a
, &env
->vfp
.fp_status
);
7525 /* XXX: check quiet/signaling case */
7526 #define DO_VFP_cmp(p, type) \
7527 void VFP_HELPER(cmp, p)(type a, type b, CPUARMState *env) \
7530 switch(type ## _compare_quiet(a, b, &env->vfp.fp_status)) { \
7531 case 0: flags = 0x6; break; \
7532 case -1: flags = 0x8; break; \
7533 case 1: flags = 0x2; break; \
7534 default: case 2: flags = 0x3; break; \
7536 env->vfp.xregs[ARM_VFP_FPSCR] = (flags << 28) \
7537 | (env->vfp.xregs[ARM_VFP_FPSCR] & 0x0fffffff); \
7539 void VFP_HELPER(cmpe, p)(type a, type b, CPUARMState *env) \
7542 switch(type ## _compare(a, b, &env->vfp.fp_status)) { \
7543 case 0: flags = 0x6; break; \
7544 case -1: flags = 0x8; break; \
7545 case 1: flags = 0x2; break; \
7546 default: case 2: flags = 0x3; break; \
7548 env->vfp.xregs[ARM_VFP_FPSCR] = (flags << 28) \
7549 | (env->vfp.xregs[ARM_VFP_FPSCR] & 0x0fffffff); \
7551 DO_VFP_cmp(s
, float32
)
7552 DO_VFP_cmp(d
, float64
)
7555 /* Integer to float and float to integer conversions */
7557 #define CONV_ITOF(name, fsz, sign) \
7558 float##fsz HELPER(name)(uint32_t x, void *fpstp) \
7560 float_status *fpst = fpstp; \
7561 return sign##int32_to_##float##fsz((sign##int32_t)x, fpst); \
7564 #define CONV_FTOI(name, fsz, sign, round) \
7565 uint32_t HELPER(name)(float##fsz x, void *fpstp) \
7567 float_status *fpst = fpstp; \
7568 if (float##fsz##_is_any_nan(x)) { \
7569 float_raise(float_flag_invalid, fpst); \
7572 return float##fsz##_to_##sign##int32##round(x, fpst); \
7575 #define FLOAT_CONVS(name, p, fsz, sign) \
7576 CONV_ITOF(vfp_##name##to##p, fsz, sign) \
7577 CONV_FTOI(vfp_to##name##p, fsz, sign, ) \
7578 CONV_FTOI(vfp_to##name##z##p, fsz, sign, _round_to_zero)
7580 FLOAT_CONVS(si
, s
, 32, )
7581 FLOAT_CONVS(si
, d
, 64, )
7582 FLOAT_CONVS(ui
, s
, 32, u
)
7583 FLOAT_CONVS(ui
, d
, 64, u
)
7589 /* floating point conversion */
7590 float64
VFP_HELPER(fcvtd
, s
)(float32 x
, CPUARMState
*env
)
7592 float64 r
= float32_to_float64(x
, &env
->vfp
.fp_status
);
7593 /* ARM requires that S<->D conversion of any kind of NaN generates
7594 * a quiet NaN by forcing the most significant frac bit to 1.
7596 return float64_maybe_silence_nan(r
);
7599 float32
VFP_HELPER(fcvts
, d
)(float64 x
, CPUARMState
*env
)
7601 float32 r
= float64_to_float32(x
, &env
->vfp
.fp_status
);
7602 /* ARM requires that S<->D conversion of any kind of NaN generates
7603 * a quiet NaN by forcing the most significant frac bit to 1.
7605 return float32_maybe_silence_nan(r
);
7608 /* VFP3 fixed point conversion. */
7609 #define VFP_CONV_FIX_FLOAT(name, p, fsz, isz, itype) \
7610 float##fsz HELPER(vfp_##name##to##p)(uint##isz##_t x, uint32_t shift, \
7613 float_status *fpst = fpstp; \
7615 tmp = itype##_to_##float##fsz(x, fpst); \
7616 return float##fsz##_scalbn(tmp, -(int)shift, fpst); \
7619 /* Notice that we want only input-denormal exception flags from the
7620 * scalbn operation: the other possible flags (overflow+inexact if
7621 * we overflow to infinity, output-denormal) aren't correct for the
7622 * complete scale-and-convert operation.
7624 #define VFP_CONV_FLOAT_FIX_ROUND(name, p, fsz, isz, itype, round) \
7625 uint##isz##_t HELPER(vfp_to##name##p##round)(float##fsz x, \
7629 float_status *fpst = fpstp; \
7630 int old_exc_flags = get_float_exception_flags(fpst); \
7632 if (float##fsz##_is_any_nan(x)) { \
7633 float_raise(float_flag_invalid, fpst); \
7636 tmp = float##fsz##_scalbn(x, shift, fpst); \
7637 old_exc_flags |= get_float_exception_flags(fpst) \
7638 & float_flag_input_denormal; \
7639 set_float_exception_flags(old_exc_flags, fpst); \
7640 return float##fsz##_to_##itype##round(tmp, fpst); \
7643 #define VFP_CONV_FIX(name, p, fsz, isz, itype) \
7644 VFP_CONV_FIX_FLOAT(name, p, fsz, isz, itype) \
7645 VFP_CONV_FLOAT_FIX_ROUND(name, p, fsz, isz, itype, _round_to_zero) \
7646 VFP_CONV_FLOAT_FIX_ROUND(name, p, fsz, isz, itype, )
7648 #define VFP_CONV_FIX_A64(name, p, fsz, isz, itype) \
7649 VFP_CONV_FIX_FLOAT(name, p, fsz, isz, itype) \
7650 VFP_CONV_FLOAT_FIX_ROUND(name, p, fsz, isz, itype, )
7652 VFP_CONV_FIX(sh
, d
, 64, 64, int16
)
7653 VFP_CONV_FIX(sl
, d
, 64, 64, int32
)
7654 VFP_CONV_FIX_A64(sq
, d
, 64, 64, int64
)
7655 VFP_CONV_FIX(uh
, d
, 64, 64, uint16
)
7656 VFP_CONV_FIX(ul
, d
, 64, 64, uint32
)
7657 VFP_CONV_FIX_A64(uq
, d
, 64, 64, uint64
)
7658 VFP_CONV_FIX(sh
, s
, 32, 32, int16
)
7659 VFP_CONV_FIX(sl
, s
, 32, 32, int32
)
7660 VFP_CONV_FIX_A64(sq
, s
, 32, 64, int64
)
7661 VFP_CONV_FIX(uh
, s
, 32, 32, uint16
)
7662 VFP_CONV_FIX(ul
, s
, 32, 32, uint32
)
7663 VFP_CONV_FIX_A64(uq
, s
, 32, 64, uint64
)
7665 #undef VFP_CONV_FIX_FLOAT
7666 #undef VFP_CONV_FLOAT_FIX_ROUND
7668 /* Set the current fp rounding mode and return the old one.
7669 * The argument is a softfloat float_round_ value.
7671 uint32_t HELPER(set_rmode
)(uint32_t rmode
, CPUARMState
*env
)
7673 float_status
*fp_status
= &env
->vfp
.fp_status
;
7675 uint32_t prev_rmode
= get_float_rounding_mode(fp_status
);
7676 set_float_rounding_mode(rmode
, fp_status
);
7681 /* Set the current fp rounding mode in the standard fp status and return
7682 * the old one. This is for NEON instructions that need to change the
7683 * rounding mode but wish to use the standard FPSCR values for everything
7684 * else. Always set the rounding mode back to the correct value after
7686 * The argument is a softfloat float_round_ value.
7688 uint32_t HELPER(set_neon_rmode
)(uint32_t rmode
, CPUARMState
*env
)
7690 float_status
*fp_status
= &env
->vfp
.standard_fp_status
;
7692 uint32_t prev_rmode
= get_float_rounding_mode(fp_status
);
7693 set_float_rounding_mode(rmode
, fp_status
);
7698 /* Half precision conversions. */
7699 static float32
do_fcvt_f16_to_f32(uint32_t a
, CPUARMState
*env
, float_status
*s
)
7701 int ieee
= (env
->vfp
.xregs
[ARM_VFP_FPSCR
] & (1 << 26)) == 0;
7702 float32 r
= float16_to_float32(make_float16(a
), ieee
, s
);
7704 return float32_maybe_silence_nan(r
);
7709 static uint32_t do_fcvt_f32_to_f16(float32 a
, CPUARMState
*env
, float_status
*s
)
7711 int ieee
= (env
->vfp
.xregs
[ARM_VFP_FPSCR
] & (1 << 26)) == 0;
7712 float16 r
= float32_to_float16(a
, ieee
, s
);
7714 r
= float16_maybe_silence_nan(r
);
7716 return float16_val(r
);
7719 float32
HELPER(neon_fcvt_f16_to_f32
)(uint32_t a
, CPUARMState
*env
)
7721 return do_fcvt_f16_to_f32(a
, env
, &env
->vfp
.standard_fp_status
);
7724 uint32_t HELPER(neon_fcvt_f32_to_f16
)(float32 a
, CPUARMState
*env
)
7726 return do_fcvt_f32_to_f16(a
, env
, &env
->vfp
.standard_fp_status
);
7729 float32
HELPER(vfp_fcvt_f16_to_f32
)(uint32_t a
, CPUARMState
*env
)
7731 return do_fcvt_f16_to_f32(a
, env
, &env
->vfp
.fp_status
);
7734 uint32_t HELPER(vfp_fcvt_f32_to_f16
)(float32 a
, CPUARMState
*env
)
7736 return do_fcvt_f32_to_f16(a
, env
, &env
->vfp
.fp_status
);
7739 float64
HELPER(vfp_fcvt_f16_to_f64
)(uint32_t a
, CPUARMState
*env
)
7741 int ieee
= (env
->vfp
.xregs
[ARM_VFP_FPSCR
] & (1 << 26)) == 0;
7742 float64 r
= float16_to_float64(make_float16(a
), ieee
, &env
->vfp
.fp_status
);
7744 return float64_maybe_silence_nan(r
);
7749 uint32_t HELPER(vfp_fcvt_f64_to_f16
)(float64 a
, CPUARMState
*env
)
7751 int ieee
= (env
->vfp
.xregs
[ARM_VFP_FPSCR
] & (1 << 26)) == 0;
7752 float16 r
= float64_to_float16(a
, ieee
, &env
->vfp
.fp_status
);
7754 r
= float16_maybe_silence_nan(r
);
7756 return float16_val(r
);
7759 #define float32_two make_float32(0x40000000)
7760 #define float32_three make_float32(0x40400000)
7761 #define float32_one_point_five make_float32(0x3fc00000)
7763 float32
HELPER(recps_f32
)(float32 a
, float32 b
, CPUARMState
*env
)
7765 float_status
*s
= &env
->vfp
.standard_fp_status
;
7766 if ((float32_is_infinity(a
) && float32_is_zero_or_denormal(b
)) ||
7767 (float32_is_infinity(b
) && float32_is_zero_or_denormal(a
))) {
7768 if (!(float32_is_zero(a
) || float32_is_zero(b
))) {
7769 float_raise(float_flag_input_denormal
, s
);
7773 return float32_sub(float32_two
, float32_mul(a
, b
, s
), s
);
7776 float32
HELPER(rsqrts_f32
)(float32 a
, float32 b
, CPUARMState
*env
)
7778 float_status
*s
= &env
->vfp
.standard_fp_status
;
7780 if ((float32_is_infinity(a
) && float32_is_zero_or_denormal(b
)) ||
7781 (float32_is_infinity(b
) && float32_is_zero_or_denormal(a
))) {
7782 if (!(float32_is_zero(a
) || float32_is_zero(b
))) {
7783 float_raise(float_flag_input_denormal
, s
);
7785 return float32_one_point_five
;
7787 product
= float32_mul(a
, b
, s
);
7788 return float32_div(float32_sub(float32_three
, product
, s
), float32_two
, s
);
7793 /* Constants 256 and 512 are used in some helpers; we avoid relying on
7794 * int->float conversions at run-time. */
7795 #define float64_256 make_float64(0x4070000000000000LL)
7796 #define float64_512 make_float64(0x4080000000000000LL)
7797 #define float32_maxnorm make_float32(0x7f7fffff)
7798 #define float64_maxnorm make_float64(0x7fefffffffffffffLL)
7800 /* Reciprocal functions
7802 * The algorithm that must be used to calculate the estimate
7803 * is specified by the ARM ARM, see FPRecipEstimate()
7806 static float64
recip_estimate(float64 a
, float_status
*real_fp_status
)
7808 /* These calculations mustn't set any fp exception flags,
7809 * so we use a local copy of the fp_status.
7811 float_status dummy_status
= *real_fp_status
;
7812 float_status
*s
= &dummy_status
;
7813 /* q = (int)(a * 512.0) */
7814 float64 q
= float64_mul(float64_512
, a
, s
);
7815 int64_t q_int
= float64_to_int64_round_to_zero(q
, s
);
7817 /* r = 1.0 / (((double)q + 0.5) / 512.0) */
7818 q
= int64_to_float64(q_int
, s
);
7819 q
= float64_add(q
, float64_half
, s
);
7820 q
= float64_div(q
, float64_512
, s
);
7821 q
= float64_div(float64_one
, q
, s
);
7823 /* s = (int)(256.0 * r + 0.5) */
7824 q
= float64_mul(q
, float64_256
, s
);
7825 q
= float64_add(q
, float64_half
, s
);
7826 q_int
= float64_to_int64_round_to_zero(q
, s
);
7828 /* return (double)s / 256.0 */
7829 return float64_div(int64_to_float64(q_int
, s
), float64_256
, s
);
7832 /* Common wrapper to call recip_estimate */
7833 static float64
call_recip_estimate(float64 num
, int off
, float_status
*fpst
)
7835 uint64_t val64
= float64_val(num
);
7836 uint64_t frac
= extract64(val64
, 0, 52);
7837 int64_t exp
= extract64(val64
, 52, 11);
7839 float64 scaled
, estimate
;
7841 /* Generate the scaled number for the estimate function */
7843 if (extract64(frac
, 51, 1) == 0) {
7845 frac
= extract64(frac
, 0, 50) << 2;
7847 frac
= extract64(frac
, 0, 51) << 1;
7851 /* scaled = '0' : '01111111110' : fraction<51:44> : Zeros(44); */
7852 scaled
= make_float64((0x3feULL
<< 52)
7853 | extract64(frac
, 44, 8) << 44);
7855 estimate
= recip_estimate(scaled
, fpst
);
7857 /* Build new result */
7858 val64
= float64_val(estimate
);
7859 sbit
= 0x8000000000000000ULL
& val64
;
7861 frac
= extract64(val64
, 0, 52);
7864 frac
= 1ULL << 51 | extract64(frac
, 1, 51);
7865 } else if (exp
== -1) {
7866 frac
= 1ULL << 50 | extract64(frac
, 2, 50);
7870 return make_float64(sbit
| (exp
<< 52) | frac
);
7873 static bool round_to_inf(float_status
*fpst
, bool sign_bit
)
7875 switch (fpst
->float_rounding_mode
) {
7876 case float_round_nearest_even
: /* Round to Nearest */
7878 case float_round_up
: /* Round to +Inf */
7880 case float_round_down
: /* Round to -Inf */
7882 case float_round_to_zero
: /* Round to Zero */
7886 g_assert_not_reached();
7889 float32
HELPER(recpe_f32
)(float32 input
, void *fpstp
)
7891 float_status
*fpst
= fpstp
;
7892 float32 f32
= float32_squash_input_denormal(input
, fpst
);
7893 uint32_t f32_val
= float32_val(f32
);
7894 uint32_t f32_sbit
= 0x80000000ULL
& f32_val
;
7895 int32_t f32_exp
= extract32(f32_val
, 23, 8);
7896 uint32_t f32_frac
= extract32(f32_val
, 0, 23);
7902 if (float32_is_any_nan(f32
)) {
7904 if (float32_is_signaling_nan(f32
)) {
7905 float_raise(float_flag_invalid
, fpst
);
7906 nan
= float32_maybe_silence_nan(f32
);
7908 if (fpst
->default_nan_mode
) {
7909 nan
= float32_default_nan
;
7912 } else if (float32_is_infinity(f32
)) {
7913 return float32_set_sign(float32_zero
, float32_is_neg(f32
));
7914 } else if (float32_is_zero(f32
)) {
7915 float_raise(float_flag_divbyzero
, fpst
);
7916 return float32_set_sign(float32_infinity
, float32_is_neg(f32
));
7917 } else if ((f32_val
& ~(1ULL << 31)) < (1ULL << 21)) {
7918 /* Abs(value) < 2.0^-128 */
7919 float_raise(float_flag_overflow
| float_flag_inexact
, fpst
);
7920 if (round_to_inf(fpst
, f32_sbit
)) {
7921 return float32_set_sign(float32_infinity
, float32_is_neg(f32
));
7923 return float32_set_sign(float32_maxnorm
, float32_is_neg(f32
));
7925 } else if (f32_exp
>= 253 && fpst
->flush_to_zero
) {
7926 float_raise(float_flag_underflow
, fpst
);
7927 return float32_set_sign(float32_zero
, float32_is_neg(f32
));
7931 f64
= make_float64(((int64_t)(f32_exp
) << 52) | (int64_t)(f32_frac
) << 29);
7932 r64
= call_recip_estimate(f64
, 253, fpst
);
7933 r64_val
= float64_val(r64
);
7934 r64_exp
= extract64(r64_val
, 52, 11);
7935 r64_frac
= extract64(r64_val
, 0, 52);
7937 /* result = sign : result_exp<7:0> : fraction<51:29>; */
7938 return make_float32(f32_sbit
|
7939 (r64_exp
& 0xff) << 23 |
7940 extract64(r64_frac
, 29, 24));
7943 float64
HELPER(recpe_f64
)(float64 input
, void *fpstp
)
7945 float_status
*fpst
= fpstp
;
7946 float64 f64
= float64_squash_input_denormal(input
, fpst
);
7947 uint64_t f64_val
= float64_val(f64
);
7948 uint64_t f64_sbit
= 0x8000000000000000ULL
& f64_val
;
7949 int64_t f64_exp
= extract64(f64_val
, 52, 11);
7955 /* Deal with any special cases */
7956 if (float64_is_any_nan(f64
)) {
7958 if (float64_is_signaling_nan(f64
)) {
7959 float_raise(float_flag_invalid
, fpst
);
7960 nan
= float64_maybe_silence_nan(f64
);
7962 if (fpst
->default_nan_mode
) {
7963 nan
= float64_default_nan
;
7966 } else if (float64_is_infinity(f64
)) {
7967 return float64_set_sign(float64_zero
, float64_is_neg(f64
));
7968 } else if (float64_is_zero(f64
)) {
7969 float_raise(float_flag_divbyzero
, fpst
);
7970 return float64_set_sign(float64_infinity
, float64_is_neg(f64
));
7971 } else if ((f64_val
& ~(1ULL << 63)) < (1ULL << 50)) {
7972 /* Abs(value) < 2.0^-1024 */
7973 float_raise(float_flag_overflow
| float_flag_inexact
, fpst
);
7974 if (round_to_inf(fpst
, f64_sbit
)) {
7975 return float64_set_sign(float64_infinity
, float64_is_neg(f64
));
7977 return float64_set_sign(float64_maxnorm
, float64_is_neg(f64
));
7979 } else if (f64_exp
>= 2045 && fpst
->flush_to_zero
) {
7980 float_raise(float_flag_underflow
, fpst
);
7981 return float64_set_sign(float64_zero
, float64_is_neg(f64
));
7984 r64
= call_recip_estimate(f64
, 2045, fpst
);
7985 r64_val
= float64_val(r64
);
7986 r64_exp
= extract64(r64_val
, 52, 11);
7987 r64_frac
= extract64(r64_val
, 0, 52);
7989 /* result = sign : result_exp<10:0> : fraction<51:0> */
7990 return make_float64(f64_sbit
|
7991 ((r64_exp
& 0x7ff) << 52) |
7995 /* The algorithm that must be used to calculate the estimate
7996 * is specified by the ARM ARM.
7998 static float64
recip_sqrt_estimate(float64 a
, float_status
*real_fp_status
)
8000 /* These calculations mustn't set any fp exception flags,
8001 * so we use a local copy of the fp_status.
8003 float_status dummy_status
= *real_fp_status
;
8004 float_status
*s
= &dummy_status
;
8008 if (float64_lt(a
, float64_half
, s
)) {
8009 /* range 0.25 <= a < 0.5 */
8011 /* a in units of 1/512 rounded down */
8012 /* q0 = (int)(a * 512.0); */
8013 q
= float64_mul(float64_512
, a
, s
);
8014 q_int
= float64_to_int64_round_to_zero(q
, s
);
8016 /* reciprocal root r */
8017 /* r = 1.0 / sqrt(((double)q0 + 0.5) / 512.0); */
8018 q
= int64_to_float64(q_int
, s
);
8019 q
= float64_add(q
, float64_half
, s
);
8020 q
= float64_div(q
, float64_512
, s
);
8021 q
= float64_sqrt(q
, s
);
8022 q
= float64_div(float64_one
, q
, s
);
8024 /* range 0.5 <= a < 1.0 */
8026 /* a in units of 1/256 rounded down */
8027 /* q1 = (int)(a * 256.0); */
8028 q
= float64_mul(float64_256
, a
, s
);
8029 int64_t q_int
= float64_to_int64_round_to_zero(q
, s
);
8031 /* reciprocal root r */
8032 /* r = 1.0 /sqrt(((double)q1 + 0.5) / 256); */
8033 q
= int64_to_float64(q_int
, s
);
8034 q
= float64_add(q
, float64_half
, s
);
8035 q
= float64_div(q
, float64_256
, s
);
8036 q
= float64_sqrt(q
, s
);
8037 q
= float64_div(float64_one
, q
, s
);
8039 /* r in units of 1/256 rounded to nearest */
8040 /* s = (int)(256.0 * r + 0.5); */
8042 q
= float64_mul(q
, float64_256
,s
);
8043 q
= float64_add(q
, float64_half
, s
);
8044 q_int
= float64_to_int64_round_to_zero(q
, s
);
8046 /* return (double)s / 256.0;*/
8047 return float64_div(int64_to_float64(q_int
, s
), float64_256
, s
);
8050 float32
HELPER(rsqrte_f32
)(float32 input
, void *fpstp
)
8052 float_status
*s
= fpstp
;
8053 float32 f32
= float32_squash_input_denormal(input
, s
);
8054 uint32_t val
= float32_val(f32
);
8055 uint32_t f32_sbit
= 0x80000000 & val
;
8056 int32_t f32_exp
= extract32(val
, 23, 8);
8057 uint32_t f32_frac
= extract32(val
, 0, 23);
8063 if (float32_is_any_nan(f32
)) {
8065 if (float32_is_signaling_nan(f32
)) {
8066 float_raise(float_flag_invalid
, s
);
8067 nan
= float32_maybe_silence_nan(f32
);
8069 if (s
->default_nan_mode
) {
8070 nan
= float32_default_nan
;
8073 } else if (float32_is_zero(f32
)) {
8074 float_raise(float_flag_divbyzero
, s
);
8075 return float32_set_sign(float32_infinity
, float32_is_neg(f32
));
8076 } else if (float32_is_neg(f32
)) {
8077 float_raise(float_flag_invalid
, s
);
8078 return float32_default_nan
;
8079 } else if (float32_is_infinity(f32
)) {
8080 return float32_zero
;
8083 /* Scale and normalize to a double-precision value between 0.25 and 1.0,
8084 * preserving the parity of the exponent. */
8086 f64_frac
= ((uint64_t) f32_frac
) << 29;
8088 while (extract64(f64_frac
, 51, 1) == 0) {
8089 f64_frac
= f64_frac
<< 1;
8090 f32_exp
= f32_exp
-1;
8092 f64_frac
= extract64(f64_frac
, 0, 51) << 1;
8095 if (extract64(f32_exp
, 0, 1) == 0) {
8096 f64
= make_float64(((uint64_t) f32_sbit
) << 32
8100 f64
= make_float64(((uint64_t) f32_sbit
) << 32
8105 result_exp
= (380 - f32_exp
) / 2;
8107 f64
= recip_sqrt_estimate(f64
, s
);
8109 val64
= float64_val(f64
);
8111 val
= ((result_exp
& 0xff) << 23)
8112 | ((val64
>> 29) & 0x7fffff);
8113 return make_float32(val
);
8116 float64
HELPER(rsqrte_f64
)(float64 input
, void *fpstp
)
8118 float_status
*s
= fpstp
;
8119 float64 f64
= float64_squash_input_denormal(input
, s
);
8120 uint64_t val
= float64_val(f64
);
8121 uint64_t f64_sbit
= 0x8000000000000000ULL
& val
;
8122 int64_t f64_exp
= extract64(val
, 52, 11);
8123 uint64_t f64_frac
= extract64(val
, 0, 52);
8125 uint64_t result_frac
;
8127 if (float64_is_any_nan(f64
)) {
8129 if (float64_is_signaling_nan(f64
)) {
8130 float_raise(float_flag_invalid
, s
);
8131 nan
= float64_maybe_silence_nan(f64
);
8133 if (s
->default_nan_mode
) {
8134 nan
= float64_default_nan
;
8137 } else if (float64_is_zero(f64
)) {
8138 float_raise(float_flag_divbyzero
, s
);
8139 return float64_set_sign(float64_infinity
, float64_is_neg(f64
));
8140 } else if (float64_is_neg(f64
)) {
8141 float_raise(float_flag_invalid
, s
);
8142 return float64_default_nan
;
8143 } else if (float64_is_infinity(f64
)) {
8144 return float64_zero
;
8147 /* Scale and normalize to a double-precision value between 0.25 and 1.0,
8148 * preserving the parity of the exponent. */
8151 while (extract64(f64_frac
, 51, 1) == 0) {
8152 f64_frac
= f64_frac
<< 1;
8153 f64_exp
= f64_exp
- 1;
8155 f64_frac
= extract64(f64_frac
, 0, 51) << 1;
8158 if (extract64(f64_exp
, 0, 1) == 0) {
8159 f64
= make_float64(f64_sbit
8163 f64
= make_float64(f64_sbit
8168 result_exp
= (3068 - f64_exp
) / 2;
8170 f64
= recip_sqrt_estimate(f64
, s
);
8172 result_frac
= extract64(float64_val(f64
), 0, 52);
8174 return make_float64(f64_sbit
|
8175 ((result_exp
& 0x7ff) << 52) |
8179 uint32_t HELPER(recpe_u32
)(uint32_t a
, void *fpstp
)
8181 float_status
*s
= fpstp
;
8184 if ((a
& 0x80000000) == 0) {
8188 f64
= make_float64((0x3feULL
<< 52)
8189 | ((int64_t)(a
& 0x7fffffff) << 21));
8191 f64
= recip_estimate(f64
, s
);
8193 return 0x80000000 | ((float64_val(f64
) >> 21) & 0x7fffffff);
8196 uint32_t HELPER(rsqrte_u32
)(uint32_t a
, void *fpstp
)
8198 float_status
*fpst
= fpstp
;
8201 if ((a
& 0xc0000000) == 0) {
8205 if (a
& 0x80000000) {
8206 f64
= make_float64((0x3feULL
<< 52)
8207 | ((uint64_t)(a
& 0x7fffffff) << 21));
8208 } else { /* bits 31-30 == '01' */
8209 f64
= make_float64((0x3fdULL
<< 52)
8210 | ((uint64_t)(a
& 0x3fffffff) << 22));
8213 f64
= recip_sqrt_estimate(f64
, fpst
);
8215 return 0x80000000 | ((float64_val(f64
) >> 21) & 0x7fffffff);
8218 /* VFPv4 fused multiply-accumulate */
8219 float32
VFP_HELPER(muladd
, s
)(float32 a
, float32 b
, float32 c
, void *fpstp
)
8221 float_status
*fpst
= fpstp
;
8222 return float32_muladd(a
, b
, c
, 0, fpst
);
8225 float64
VFP_HELPER(muladd
, d
)(float64 a
, float64 b
, float64 c
, void *fpstp
)
8227 float_status
*fpst
= fpstp
;
8228 return float64_muladd(a
, b
, c
, 0, fpst
);
8231 /* ARMv8 round to integral */
8232 float32
HELPER(rints_exact
)(float32 x
, void *fp_status
)
8234 return float32_round_to_int(x
, fp_status
);
8237 float64
HELPER(rintd_exact
)(float64 x
, void *fp_status
)
8239 return float64_round_to_int(x
, fp_status
);
8242 float32
HELPER(rints
)(float32 x
, void *fp_status
)
8244 int old_flags
= get_float_exception_flags(fp_status
), new_flags
;
8247 ret
= float32_round_to_int(x
, fp_status
);
8249 /* Suppress any inexact exceptions the conversion produced */
8250 if (!(old_flags
& float_flag_inexact
)) {
8251 new_flags
= get_float_exception_flags(fp_status
);
8252 set_float_exception_flags(new_flags
& ~float_flag_inexact
, fp_status
);
8258 float64
HELPER(rintd
)(float64 x
, void *fp_status
)
8260 int old_flags
= get_float_exception_flags(fp_status
), new_flags
;
8263 ret
= float64_round_to_int(x
, fp_status
);
8265 new_flags
= get_float_exception_flags(fp_status
);
8267 /* Suppress any inexact exceptions the conversion produced */
8268 if (!(old_flags
& float_flag_inexact
)) {
8269 new_flags
= get_float_exception_flags(fp_status
);
8270 set_float_exception_flags(new_flags
& ~float_flag_inexact
, fp_status
);
8276 /* Convert ARM rounding mode to softfloat */
8277 int arm_rmode_to_sf(int rmode
)
8280 case FPROUNDING_TIEAWAY
:
8281 rmode
= float_round_ties_away
;
8283 case FPROUNDING_ODD
:
8284 /* FIXME: add support for TIEAWAY and ODD */
8285 qemu_log_mask(LOG_UNIMP
, "arm: unimplemented rounding mode: %d\n",
8287 case FPROUNDING_TIEEVEN
:
8289 rmode
= float_round_nearest_even
;
8291 case FPROUNDING_POSINF
:
8292 rmode
= float_round_up
;
8294 case FPROUNDING_NEGINF
:
8295 rmode
= float_round_down
;
8297 case FPROUNDING_ZERO
:
8298 rmode
= float_round_to_zero
;
8305 * The upper bytes of val (above the number specified by 'bytes') must have
8306 * been zeroed out by the caller.
8308 uint32_t HELPER(crc32
)(uint32_t acc
, uint32_t val
, uint32_t bytes
)
8314 /* zlib crc32 converts the accumulator and output to one's complement. */
8315 return crc32(acc
^ 0xffffffff, buf
, bytes
) ^ 0xffffffff;
8318 uint32_t HELPER(crc32c
)(uint32_t acc
, uint32_t val
, uint32_t bytes
)
8324 /* Linux crc32c converts the output to one's complement. */
8325 return crc32c(acc
, buf
, bytes
) ^ 0xffffffff;