Do not include exec/address-spaces.h if it's not really necessary
[qemu/ar7.git] / target / i386 / hvf / hvf.c
blobf044181d061cfc6c0f4efcfc829806460acfcb26
1 /* Copyright 2008 IBM Corporation
2 * 2008 Red Hat, Inc.
3 * Copyright 2011 Intel Corporation
4 * Copyright 2016 Veertu, Inc.
5 * Copyright 2017 The Android Open Source Project
7 * QEMU Hypervisor.framework support
9 * This program is free software; you can redistribute it and/or
10 * modify it under the terms of version 2 of the GNU General Public
11 * License as published by the Free Software Foundation.
13 * This program is distributed in the hope that it will be useful,
14 * but WITHOUT ANY WARRANTY; without even the implied warranty of
15 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
16 * General Public License for more details.
18 * You should have received a copy of the GNU General Public License
19 * along with this program; if not, see <http://www.gnu.org/licenses/>.
21 * This file contain code under public domain from the hvdos project:
22 * https://github.com/mist64/hvdos
24 * Parts Copyright (c) 2011 NetApp, Inc.
25 * All rights reserved.
27 * Redistribution and use in source and binary forms, with or without
28 * modification, are permitted provided that the following conditions
29 * are met:
30 * 1. Redistributions of source code must retain the above copyright
31 * notice, this list of conditions and the following disclaimer.
32 * 2. Redistributions in binary form must reproduce the above copyright
33 * notice, this list of conditions and the following disclaimer in the
34 * documentation and/or other materials provided with the distribution.
36 * THIS SOFTWARE IS PROVIDED BY NETAPP, INC ``AS IS'' AND
37 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
38 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
39 * ARE DISCLAIMED. IN NO EVENT SHALL NETAPP, INC OR CONTRIBUTORS BE LIABLE
40 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
41 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
42 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
43 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
44 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
45 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
46 * SUCH DAMAGE.
49 #include "qemu/osdep.h"
50 #include "qemu-common.h"
51 #include "qemu/error-report.h"
53 #include "sysemu/hvf.h"
54 #include "sysemu/runstate.h"
55 #include "hvf-i386.h"
56 #include "vmcs.h"
57 #include "vmx.h"
58 #include "x86.h"
59 #include "x86_descr.h"
60 #include "x86_mmu.h"
61 #include "x86_decode.h"
62 #include "x86_emu.h"
63 #include "x86_task.h"
64 #include "x86hvf.h"
66 #include <Hypervisor/hv.h>
67 #include <Hypervisor/hv_vmx.h>
68 #include <sys/sysctl.h>
70 #include "hw/i386/apic_internal.h"
71 #include "qemu/main-loop.h"
72 #include "qemu/accel.h"
73 #include "target/i386/cpu.h"
75 #include "hvf-accel-ops.h"
77 HVFState *hvf_state;
79 static void assert_hvf_ok(hv_return_t ret)
81 if (ret == HV_SUCCESS) {
82 return;
85 switch (ret) {
86 case HV_ERROR:
87 error_report("Error: HV_ERROR");
88 break;
89 case HV_BUSY:
90 error_report("Error: HV_BUSY");
91 break;
92 case HV_BAD_ARGUMENT:
93 error_report("Error: HV_BAD_ARGUMENT");
94 break;
95 case HV_NO_RESOURCES:
96 error_report("Error: HV_NO_RESOURCES");
97 break;
98 case HV_NO_DEVICE:
99 error_report("Error: HV_NO_DEVICE");
100 break;
101 case HV_UNSUPPORTED:
102 error_report("Error: HV_UNSUPPORTED");
103 break;
104 default:
105 error_report("Unknown Error");
108 abort();
111 /* Memory slots */
112 hvf_slot *hvf_find_overlap_slot(uint64_t start, uint64_t size)
114 hvf_slot *slot;
115 int x;
116 for (x = 0; x < hvf_state->num_slots; ++x) {
117 slot = &hvf_state->slots[x];
118 if (slot->size && start < (slot->start + slot->size) &&
119 (start + size) > slot->start) {
120 return slot;
123 return NULL;
126 struct mac_slot {
127 int present;
128 uint64_t size;
129 uint64_t gpa_start;
130 uint64_t gva;
133 struct mac_slot mac_slots[32];
135 static int do_hvf_set_memory(hvf_slot *slot, hv_memory_flags_t flags)
137 struct mac_slot *macslot;
138 hv_return_t ret;
140 macslot = &mac_slots[slot->slot_id];
142 if (macslot->present) {
143 if (macslot->size != slot->size) {
144 macslot->present = 0;
145 ret = hv_vm_unmap(macslot->gpa_start, macslot->size);
146 assert_hvf_ok(ret);
150 if (!slot->size) {
151 return 0;
154 macslot->present = 1;
155 macslot->gpa_start = slot->start;
156 macslot->size = slot->size;
157 ret = hv_vm_map((hv_uvaddr_t)slot->mem, slot->start, slot->size, flags);
158 assert_hvf_ok(ret);
159 return 0;
162 void hvf_set_phys_mem(MemoryRegionSection *section, bool add)
164 hvf_slot *mem;
165 MemoryRegion *area = section->mr;
166 bool writeable = !area->readonly && !area->rom_device;
167 hv_memory_flags_t flags;
169 if (!memory_region_is_ram(area)) {
170 if (writeable) {
171 return;
172 } else if (!memory_region_is_romd(area)) {
174 * If the memory device is not in romd_mode, then we actually want
175 * to remove the hvf memory slot so all accesses will trap.
177 add = false;
181 mem = hvf_find_overlap_slot(
182 section->offset_within_address_space,
183 int128_get64(section->size));
185 if (mem && add) {
186 if (mem->size == int128_get64(section->size) &&
187 mem->start == section->offset_within_address_space &&
188 mem->mem == (memory_region_get_ram_ptr(area) +
189 section->offset_within_region)) {
190 return; /* Same region was attempted to register, go away. */
194 /* Region needs to be reset. set the size to 0 and remap it. */
195 if (mem) {
196 mem->size = 0;
197 if (do_hvf_set_memory(mem, 0)) {
198 error_report("Failed to reset overlapping slot");
199 abort();
203 if (!add) {
204 return;
207 if (area->readonly ||
208 (!memory_region_is_ram(area) && memory_region_is_romd(area))) {
209 flags = HV_MEMORY_READ | HV_MEMORY_EXEC;
210 } else {
211 flags = HV_MEMORY_READ | HV_MEMORY_WRITE | HV_MEMORY_EXEC;
214 /* Now make a new slot. */
215 int x;
217 for (x = 0; x < hvf_state->num_slots; ++x) {
218 mem = &hvf_state->slots[x];
219 if (!mem->size) {
220 break;
224 if (x == hvf_state->num_slots) {
225 error_report("No free slots");
226 abort();
229 mem->size = int128_get64(section->size);
230 mem->mem = memory_region_get_ram_ptr(area) + section->offset_within_region;
231 mem->start = section->offset_within_address_space;
232 mem->region = area;
234 if (do_hvf_set_memory(mem, flags)) {
235 error_report("Error registering new memory slot");
236 abort();
240 void vmx_update_tpr(CPUState *cpu)
242 /* TODO: need integrate APIC handling */
243 X86CPU *x86_cpu = X86_CPU(cpu);
244 int tpr = cpu_get_apic_tpr(x86_cpu->apic_state) << 4;
245 int irr = apic_get_highest_priority_irr(x86_cpu->apic_state);
247 wreg(cpu->hvf_fd, HV_X86_TPR, tpr);
248 if (irr == -1) {
249 wvmcs(cpu->hvf_fd, VMCS_TPR_THRESHOLD, 0);
250 } else {
251 wvmcs(cpu->hvf_fd, VMCS_TPR_THRESHOLD, (irr > tpr) ? tpr >> 4 :
252 irr >> 4);
256 static void update_apic_tpr(CPUState *cpu)
258 X86CPU *x86_cpu = X86_CPU(cpu);
259 int tpr = rreg(cpu->hvf_fd, HV_X86_TPR) >> 4;
260 cpu_set_apic_tpr(x86_cpu->apic_state, tpr);
263 #define VECTORING_INFO_VECTOR_MASK 0xff
265 void hvf_handle_io(CPUArchState *env, uint16_t port, void *buffer,
266 int direction, int size, int count)
268 int i;
269 uint8_t *ptr = buffer;
271 for (i = 0; i < count; i++) {
272 address_space_rw(&address_space_io, port, MEMTXATTRS_UNSPECIFIED,
273 ptr, size,
274 direction);
275 ptr += size;
279 static void do_hvf_cpu_synchronize_state(CPUState *cpu, run_on_cpu_data arg)
281 if (!cpu->vcpu_dirty) {
282 hvf_get_registers(cpu);
283 cpu->vcpu_dirty = true;
287 void hvf_cpu_synchronize_state(CPUState *cpu)
289 if (!cpu->vcpu_dirty) {
290 run_on_cpu(cpu, do_hvf_cpu_synchronize_state, RUN_ON_CPU_NULL);
294 static void do_hvf_cpu_synchronize_post_reset(CPUState *cpu,
295 run_on_cpu_data arg)
297 hvf_put_registers(cpu);
298 cpu->vcpu_dirty = false;
301 void hvf_cpu_synchronize_post_reset(CPUState *cpu)
303 run_on_cpu(cpu, do_hvf_cpu_synchronize_post_reset, RUN_ON_CPU_NULL);
306 static void do_hvf_cpu_synchronize_post_init(CPUState *cpu,
307 run_on_cpu_data arg)
309 hvf_put_registers(cpu);
310 cpu->vcpu_dirty = false;
313 void hvf_cpu_synchronize_post_init(CPUState *cpu)
315 run_on_cpu(cpu, do_hvf_cpu_synchronize_post_init, RUN_ON_CPU_NULL);
318 static void do_hvf_cpu_synchronize_pre_loadvm(CPUState *cpu,
319 run_on_cpu_data arg)
321 cpu->vcpu_dirty = true;
324 void hvf_cpu_synchronize_pre_loadvm(CPUState *cpu)
326 run_on_cpu(cpu, do_hvf_cpu_synchronize_pre_loadvm, RUN_ON_CPU_NULL);
329 static bool ept_emulation_fault(hvf_slot *slot, uint64_t gpa, uint64_t ept_qual)
331 int read, write;
333 /* EPT fault on an instruction fetch doesn't make sense here */
334 if (ept_qual & EPT_VIOLATION_INST_FETCH) {
335 return false;
338 /* EPT fault must be a read fault or a write fault */
339 read = ept_qual & EPT_VIOLATION_DATA_READ ? 1 : 0;
340 write = ept_qual & EPT_VIOLATION_DATA_WRITE ? 1 : 0;
341 if ((read | write) == 0) {
342 return false;
345 if (write && slot) {
346 if (slot->flags & HVF_SLOT_LOG) {
347 memory_region_set_dirty(slot->region, gpa - slot->start, 1);
348 hv_vm_protect((hv_gpaddr_t)slot->start, (size_t)slot->size,
349 HV_MEMORY_READ | HV_MEMORY_WRITE);
354 * The EPT violation must have been caused by accessing a
355 * guest-physical address that is a translation of a guest-linear
356 * address.
358 if ((ept_qual & EPT_VIOLATION_GLA_VALID) == 0 ||
359 (ept_qual & EPT_VIOLATION_XLAT_VALID) == 0) {
360 return false;
363 if (!slot) {
364 return true;
366 if (!memory_region_is_ram(slot->region) &&
367 !(read && memory_region_is_romd(slot->region))) {
368 return true;
370 return false;
373 static void hvf_set_dirty_tracking(MemoryRegionSection *section, bool on)
375 hvf_slot *slot;
377 slot = hvf_find_overlap_slot(
378 section->offset_within_address_space,
379 int128_get64(section->size));
381 /* protect region against writes; begin tracking it */
382 if (on) {
383 slot->flags |= HVF_SLOT_LOG;
384 hv_vm_protect((hv_gpaddr_t)slot->start, (size_t)slot->size,
385 HV_MEMORY_READ);
386 /* stop tracking region*/
387 } else {
388 slot->flags &= ~HVF_SLOT_LOG;
389 hv_vm_protect((hv_gpaddr_t)slot->start, (size_t)slot->size,
390 HV_MEMORY_READ | HV_MEMORY_WRITE);
394 static void hvf_log_start(MemoryListener *listener,
395 MemoryRegionSection *section, int old, int new)
397 if (old != 0) {
398 return;
401 hvf_set_dirty_tracking(section, 1);
404 static void hvf_log_stop(MemoryListener *listener,
405 MemoryRegionSection *section, int old, int new)
407 if (new != 0) {
408 return;
411 hvf_set_dirty_tracking(section, 0);
414 static void hvf_log_sync(MemoryListener *listener,
415 MemoryRegionSection *section)
418 * sync of dirty pages is handled elsewhere; just make sure we keep
419 * tracking the region.
421 hvf_set_dirty_tracking(section, 1);
424 static void hvf_region_add(MemoryListener *listener,
425 MemoryRegionSection *section)
427 hvf_set_phys_mem(section, true);
430 static void hvf_region_del(MemoryListener *listener,
431 MemoryRegionSection *section)
433 hvf_set_phys_mem(section, false);
436 static MemoryListener hvf_memory_listener = {
437 .priority = 10,
438 .region_add = hvf_region_add,
439 .region_del = hvf_region_del,
440 .log_start = hvf_log_start,
441 .log_stop = hvf_log_stop,
442 .log_sync = hvf_log_sync,
445 void hvf_vcpu_destroy(CPUState *cpu)
447 X86CPU *x86_cpu = X86_CPU(cpu);
448 CPUX86State *env = &x86_cpu->env;
450 hv_return_t ret = hv_vcpu_destroy((hv_vcpuid_t)cpu->hvf_fd);
451 g_free(env->hvf_mmio_buf);
452 assert_hvf_ok(ret);
455 static void dummy_signal(int sig)
459 static void init_tsc_freq(CPUX86State *env)
461 size_t length;
462 uint64_t tsc_freq;
464 if (env->tsc_khz != 0) {
465 return;
468 length = sizeof(uint64_t);
469 if (sysctlbyname("machdep.tsc.frequency", &tsc_freq, &length, NULL, 0)) {
470 return;
472 env->tsc_khz = tsc_freq / 1000; /* Hz to KHz */
475 static void init_apic_bus_freq(CPUX86State *env)
477 size_t length;
478 uint64_t bus_freq;
480 if (env->apic_bus_freq != 0) {
481 return;
484 length = sizeof(uint64_t);
485 if (sysctlbyname("hw.busfrequency", &bus_freq, &length, NULL, 0)) {
486 return;
488 env->apic_bus_freq = bus_freq;
491 static inline bool tsc_is_known(CPUX86State *env)
493 return env->tsc_khz != 0;
496 static inline bool apic_bus_freq_is_known(CPUX86State *env)
498 return env->apic_bus_freq != 0;
501 int hvf_init_vcpu(CPUState *cpu)
504 X86CPU *x86cpu = X86_CPU(cpu);
505 CPUX86State *env = &x86cpu->env;
506 int r;
508 /* init cpu signals */
509 sigset_t set;
510 struct sigaction sigact;
512 memset(&sigact, 0, sizeof(sigact));
513 sigact.sa_handler = dummy_signal;
514 sigaction(SIG_IPI, &sigact, NULL);
516 pthread_sigmask(SIG_BLOCK, NULL, &set);
517 sigdelset(&set, SIG_IPI);
519 init_emu();
520 init_decoder();
522 hvf_state->hvf_caps = g_new0(struct hvf_vcpu_caps, 1);
523 env->hvf_mmio_buf = g_new(char, 4096);
525 if (x86cpu->vmware_cpuid_freq) {
526 init_tsc_freq(env);
527 init_apic_bus_freq(env);
529 if (!tsc_is_known(env) || !apic_bus_freq_is_known(env)) {
530 error_report("vmware-cpuid-freq: feature couldn't be enabled");
534 r = hv_vcpu_create((hv_vcpuid_t *)&cpu->hvf_fd, HV_VCPU_DEFAULT);
535 cpu->vcpu_dirty = 1;
536 assert_hvf_ok(r);
538 if (hv_vmx_read_capability(HV_VMX_CAP_PINBASED,
539 &hvf_state->hvf_caps->vmx_cap_pinbased)) {
540 abort();
542 if (hv_vmx_read_capability(HV_VMX_CAP_PROCBASED,
543 &hvf_state->hvf_caps->vmx_cap_procbased)) {
544 abort();
546 if (hv_vmx_read_capability(HV_VMX_CAP_PROCBASED2,
547 &hvf_state->hvf_caps->vmx_cap_procbased2)) {
548 abort();
550 if (hv_vmx_read_capability(HV_VMX_CAP_ENTRY,
551 &hvf_state->hvf_caps->vmx_cap_entry)) {
552 abort();
555 /* set VMCS control fields */
556 wvmcs(cpu->hvf_fd, VMCS_PIN_BASED_CTLS,
557 cap2ctrl(hvf_state->hvf_caps->vmx_cap_pinbased,
558 VMCS_PIN_BASED_CTLS_EXTINT |
559 VMCS_PIN_BASED_CTLS_NMI |
560 VMCS_PIN_BASED_CTLS_VNMI));
561 wvmcs(cpu->hvf_fd, VMCS_PRI_PROC_BASED_CTLS,
562 cap2ctrl(hvf_state->hvf_caps->vmx_cap_procbased,
563 VMCS_PRI_PROC_BASED_CTLS_HLT |
564 VMCS_PRI_PROC_BASED_CTLS_MWAIT |
565 VMCS_PRI_PROC_BASED_CTLS_TSC_OFFSET |
566 VMCS_PRI_PROC_BASED_CTLS_TPR_SHADOW) |
567 VMCS_PRI_PROC_BASED_CTLS_SEC_CONTROL);
568 wvmcs(cpu->hvf_fd, VMCS_SEC_PROC_BASED_CTLS,
569 cap2ctrl(hvf_state->hvf_caps->vmx_cap_procbased2,
570 VMCS_PRI_PROC_BASED2_CTLS_APIC_ACCESSES));
572 wvmcs(cpu->hvf_fd, VMCS_ENTRY_CTLS, cap2ctrl(hvf_state->hvf_caps->vmx_cap_entry,
573 0));
574 wvmcs(cpu->hvf_fd, VMCS_EXCEPTION_BITMAP, 0); /* Double fault */
576 wvmcs(cpu->hvf_fd, VMCS_TPR_THRESHOLD, 0);
578 x86cpu = X86_CPU(cpu);
579 x86cpu->env.xsave_buf = qemu_memalign(4096, 4096);
581 hv_vcpu_enable_native_msr(cpu->hvf_fd, MSR_STAR, 1);
582 hv_vcpu_enable_native_msr(cpu->hvf_fd, MSR_LSTAR, 1);
583 hv_vcpu_enable_native_msr(cpu->hvf_fd, MSR_CSTAR, 1);
584 hv_vcpu_enable_native_msr(cpu->hvf_fd, MSR_FMASK, 1);
585 hv_vcpu_enable_native_msr(cpu->hvf_fd, MSR_FSBASE, 1);
586 hv_vcpu_enable_native_msr(cpu->hvf_fd, MSR_GSBASE, 1);
587 hv_vcpu_enable_native_msr(cpu->hvf_fd, MSR_KERNELGSBASE, 1);
588 hv_vcpu_enable_native_msr(cpu->hvf_fd, MSR_TSC_AUX, 1);
589 hv_vcpu_enable_native_msr(cpu->hvf_fd, MSR_IA32_TSC, 1);
590 hv_vcpu_enable_native_msr(cpu->hvf_fd, MSR_IA32_SYSENTER_CS, 1);
591 hv_vcpu_enable_native_msr(cpu->hvf_fd, MSR_IA32_SYSENTER_EIP, 1);
592 hv_vcpu_enable_native_msr(cpu->hvf_fd, MSR_IA32_SYSENTER_ESP, 1);
594 return 0;
597 static void hvf_store_events(CPUState *cpu, uint32_t ins_len, uint64_t idtvec_info)
599 X86CPU *x86_cpu = X86_CPU(cpu);
600 CPUX86State *env = &x86_cpu->env;
602 env->exception_nr = -1;
603 env->exception_pending = 0;
604 env->exception_injected = 0;
605 env->interrupt_injected = -1;
606 env->nmi_injected = false;
607 env->ins_len = 0;
608 env->has_error_code = false;
609 if (idtvec_info & VMCS_IDT_VEC_VALID) {
610 switch (idtvec_info & VMCS_IDT_VEC_TYPE) {
611 case VMCS_IDT_VEC_HWINTR:
612 case VMCS_IDT_VEC_SWINTR:
613 env->interrupt_injected = idtvec_info & VMCS_IDT_VEC_VECNUM;
614 break;
615 case VMCS_IDT_VEC_NMI:
616 env->nmi_injected = true;
617 break;
618 case VMCS_IDT_VEC_HWEXCEPTION:
619 case VMCS_IDT_VEC_SWEXCEPTION:
620 env->exception_nr = idtvec_info & VMCS_IDT_VEC_VECNUM;
621 env->exception_injected = 1;
622 break;
623 case VMCS_IDT_VEC_PRIV_SWEXCEPTION:
624 default:
625 abort();
627 if ((idtvec_info & VMCS_IDT_VEC_TYPE) == VMCS_IDT_VEC_SWEXCEPTION ||
628 (idtvec_info & VMCS_IDT_VEC_TYPE) == VMCS_IDT_VEC_SWINTR) {
629 env->ins_len = ins_len;
631 if (idtvec_info & VMCS_IDT_VEC_ERRCODE_VALID) {
632 env->has_error_code = true;
633 env->error_code = rvmcs(cpu->hvf_fd, VMCS_IDT_VECTORING_ERROR);
636 if ((rvmcs(cpu->hvf_fd, VMCS_GUEST_INTERRUPTIBILITY) &
637 VMCS_INTERRUPTIBILITY_NMI_BLOCKING)) {
638 env->hflags2 |= HF2_NMI_MASK;
639 } else {
640 env->hflags2 &= ~HF2_NMI_MASK;
642 if (rvmcs(cpu->hvf_fd, VMCS_GUEST_INTERRUPTIBILITY) &
643 (VMCS_INTERRUPTIBILITY_STI_BLOCKING |
644 VMCS_INTERRUPTIBILITY_MOVSS_BLOCKING)) {
645 env->hflags |= HF_INHIBIT_IRQ_MASK;
646 } else {
647 env->hflags &= ~HF_INHIBIT_IRQ_MASK;
651 static void hvf_cpu_x86_cpuid(CPUX86State *env, uint32_t index, uint32_t count,
652 uint32_t *eax, uint32_t *ebx,
653 uint32_t *ecx, uint32_t *edx)
656 * A wrapper extends cpu_x86_cpuid with 0x40000000 and 0x40000010 leafs,
657 * leafs 0x40000001-0x4000000F are filled with zeros
658 * Provides vmware-cpuid-freq support to hvf
660 * Note: leaf 0x40000000 not exposes HVF,
661 * leaving hypervisor signature empty
664 if (index < 0x40000000 || index > 0x40000010 ||
665 !tsc_is_known(env) || !apic_bus_freq_is_known(env)) {
667 cpu_x86_cpuid(env, index, count, eax, ebx, ecx, edx);
668 return;
671 switch (index) {
672 case 0x40000000:
673 *eax = 0x40000010; /* Max available cpuid leaf */
674 *ebx = 0; /* Leave signature empty */
675 *ecx = 0;
676 *edx = 0;
677 break;
678 case 0x40000010:
679 *eax = env->tsc_khz;
680 *ebx = env->apic_bus_freq / 1000; /* Hz to KHz */
681 *ecx = 0;
682 *edx = 0;
683 break;
684 default:
685 *eax = 0;
686 *ebx = 0;
687 *ecx = 0;
688 *edx = 0;
689 break;
693 int hvf_vcpu_exec(CPUState *cpu)
695 X86CPU *x86_cpu = X86_CPU(cpu);
696 CPUX86State *env = &x86_cpu->env;
697 int ret = 0;
698 uint64_t rip = 0;
700 if (hvf_process_events(cpu)) {
701 return EXCP_HLT;
704 do {
705 if (cpu->vcpu_dirty) {
706 hvf_put_registers(cpu);
707 cpu->vcpu_dirty = false;
710 if (hvf_inject_interrupts(cpu)) {
711 return EXCP_INTERRUPT;
713 vmx_update_tpr(cpu);
715 qemu_mutex_unlock_iothread();
716 if (!cpu_is_bsp(X86_CPU(cpu)) && cpu->halted) {
717 qemu_mutex_lock_iothread();
718 return EXCP_HLT;
721 hv_return_t r = hv_vcpu_run(cpu->hvf_fd);
722 assert_hvf_ok(r);
724 /* handle VMEXIT */
725 uint64_t exit_reason = rvmcs(cpu->hvf_fd, VMCS_EXIT_REASON);
726 uint64_t exit_qual = rvmcs(cpu->hvf_fd, VMCS_EXIT_QUALIFICATION);
727 uint32_t ins_len = (uint32_t)rvmcs(cpu->hvf_fd,
728 VMCS_EXIT_INSTRUCTION_LENGTH);
730 uint64_t idtvec_info = rvmcs(cpu->hvf_fd, VMCS_IDT_VECTORING_INFO);
732 hvf_store_events(cpu, ins_len, idtvec_info);
733 rip = rreg(cpu->hvf_fd, HV_X86_RIP);
734 env->eflags = rreg(cpu->hvf_fd, HV_X86_RFLAGS);
736 qemu_mutex_lock_iothread();
738 update_apic_tpr(cpu);
739 current_cpu = cpu;
741 ret = 0;
742 switch (exit_reason) {
743 case EXIT_REASON_HLT: {
744 macvm_set_rip(cpu, rip + ins_len);
745 if (!((cpu->interrupt_request & CPU_INTERRUPT_HARD) &&
746 (env->eflags & IF_MASK))
747 && !(cpu->interrupt_request & CPU_INTERRUPT_NMI) &&
748 !(idtvec_info & VMCS_IDT_VEC_VALID)) {
749 cpu->halted = 1;
750 ret = EXCP_HLT;
751 break;
753 ret = EXCP_INTERRUPT;
754 break;
756 case EXIT_REASON_MWAIT: {
757 ret = EXCP_INTERRUPT;
758 break;
760 /* Need to check if MMIO or unmapped fault */
761 case EXIT_REASON_EPT_FAULT:
763 hvf_slot *slot;
764 uint64_t gpa = rvmcs(cpu->hvf_fd, VMCS_GUEST_PHYSICAL_ADDRESS);
766 if (((idtvec_info & VMCS_IDT_VEC_VALID) == 0) &&
767 ((exit_qual & EXIT_QUAL_NMIUDTI) != 0)) {
768 vmx_set_nmi_blocking(cpu);
771 slot = hvf_find_overlap_slot(gpa, 1);
772 /* mmio */
773 if (ept_emulation_fault(slot, gpa, exit_qual)) {
774 struct x86_decode decode;
776 load_regs(cpu);
777 decode_instruction(env, &decode);
778 exec_instruction(env, &decode);
779 store_regs(cpu);
780 break;
782 break;
784 case EXIT_REASON_INOUT:
786 uint32_t in = (exit_qual & 8) != 0;
787 uint32_t size = (exit_qual & 7) + 1;
788 uint32_t string = (exit_qual & 16) != 0;
789 uint32_t port = exit_qual >> 16;
790 /*uint32_t rep = (exit_qual & 0x20) != 0;*/
792 if (!string && in) {
793 uint64_t val = 0;
794 load_regs(cpu);
795 hvf_handle_io(env, port, &val, 0, size, 1);
796 if (size == 1) {
797 AL(env) = val;
798 } else if (size == 2) {
799 AX(env) = val;
800 } else if (size == 4) {
801 RAX(env) = (uint32_t)val;
802 } else {
803 RAX(env) = (uint64_t)val;
805 env->eip += ins_len;
806 store_regs(cpu);
807 break;
808 } else if (!string && !in) {
809 RAX(env) = rreg(cpu->hvf_fd, HV_X86_RAX);
810 hvf_handle_io(env, port, &RAX(env), 1, size, 1);
811 macvm_set_rip(cpu, rip + ins_len);
812 break;
814 struct x86_decode decode;
816 load_regs(cpu);
817 decode_instruction(env, &decode);
818 assert(ins_len == decode.len);
819 exec_instruction(env, &decode);
820 store_regs(cpu);
822 break;
824 case EXIT_REASON_CPUID: {
825 uint32_t rax = (uint32_t)rreg(cpu->hvf_fd, HV_X86_RAX);
826 uint32_t rbx = (uint32_t)rreg(cpu->hvf_fd, HV_X86_RBX);
827 uint32_t rcx = (uint32_t)rreg(cpu->hvf_fd, HV_X86_RCX);
828 uint32_t rdx = (uint32_t)rreg(cpu->hvf_fd, HV_X86_RDX);
830 if (rax == 1) {
831 /* CPUID1.ecx.OSXSAVE needs to know CR4 */
832 env->cr[4] = rvmcs(cpu->hvf_fd, VMCS_GUEST_CR4);
834 hvf_cpu_x86_cpuid(env, rax, rcx, &rax, &rbx, &rcx, &rdx);
836 wreg(cpu->hvf_fd, HV_X86_RAX, rax);
837 wreg(cpu->hvf_fd, HV_X86_RBX, rbx);
838 wreg(cpu->hvf_fd, HV_X86_RCX, rcx);
839 wreg(cpu->hvf_fd, HV_X86_RDX, rdx);
841 macvm_set_rip(cpu, rip + ins_len);
842 break;
844 case EXIT_REASON_XSETBV: {
845 X86CPU *x86_cpu = X86_CPU(cpu);
846 CPUX86State *env = &x86_cpu->env;
847 uint32_t eax = (uint32_t)rreg(cpu->hvf_fd, HV_X86_RAX);
848 uint32_t ecx = (uint32_t)rreg(cpu->hvf_fd, HV_X86_RCX);
849 uint32_t edx = (uint32_t)rreg(cpu->hvf_fd, HV_X86_RDX);
851 if (ecx) {
852 macvm_set_rip(cpu, rip + ins_len);
853 break;
855 env->xcr0 = ((uint64_t)edx << 32) | eax;
856 wreg(cpu->hvf_fd, HV_X86_XCR0, env->xcr0 | 1);
857 macvm_set_rip(cpu, rip + ins_len);
858 break;
860 case EXIT_REASON_INTR_WINDOW:
861 vmx_clear_int_window_exiting(cpu);
862 ret = EXCP_INTERRUPT;
863 break;
864 case EXIT_REASON_NMI_WINDOW:
865 vmx_clear_nmi_window_exiting(cpu);
866 ret = EXCP_INTERRUPT;
867 break;
868 case EXIT_REASON_EXT_INTR:
869 /* force exit and allow io handling */
870 ret = EXCP_INTERRUPT;
871 break;
872 case EXIT_REASON_RDMSR:
873 case EXIT_REASON_WRMSR:
875 load_regs(cpu);
876 if (exit_reason == EXIT_REASON_RDMSR) {
877 simulate_rdmsr(cpu);
878 } else {
879 simulate_wrmsr(cpu);
881 env->eip += ins_len;
882 store_regs(cpu);
883 break;
885 case EXIT_REASON_CR_ACCESS: {
886 int cr;
887 int reg;
889 load_regs(cpu);
890 cr = exit_qual & 15;
891 reg = (exit_qual >> 8) & 15;
893 switch (cr) {
894 case 0x0: {
895 macvm_set_cr0(cpu->hvf_fd, RRX(env, reg));
896 break;
898 case 4: {
899 macvm_set_cr4(cpu->hvf_fd, RRX(env, reg));
900 break;
902 case 8: {
903 X86CPU *x86_cpu = X86_CPU(cpu);
904 if (exit_qual & 0x10) {
905 RRX(env, reg) = cpu_get_apic_tpr(x86_cpu->apic_state);
906 } else {
907 int tpr = RRX(env, reg);
908 cpu_set_apic_tpr(x86_cpu->apic_state, tpr);
909 ret = EXCP_INTERRUPT;
911 break;
913 default:
914 error_report("Unrecognized CR %d", cr);
915 abort();
917 env->eip += ins_len;
918 store_regs(cpu);
919 break;
921 case EXIT_REASON_APIC_ACCESS: { /* TODO */
922 struct x86_decode decode;
924 load_regs(cpu);
925 decode_instruction(env, &decode);
926 exec_instruction(env, &decode);
927 store_regs(cpu);
928 break;
930 case EXIT_REASON_TPR: {
931 ret = 1;
932 break;
934 case EXIT_REASON_TASK_SWITCH: {
935 uint64_t vinfo = rvmcs(cpu->hvf_fd, VMCS_IDT_VECTORING_INFO);
936 x68_segment_selector sel = {.sel = exit_qual & 0xffff};
937 vmx_handle_task_switch(cpu, sel, (exit_qual >> 30) & 0x3,
938 vinfo & VMCS_INTR_VALID, vinfo & VECTORING_INFO_VECTOR_MASK, vinfo
939 & VMCS_INTR_T_MASK);
940 break;
942 case EXIT_REASON_TRIPLE_FAULT: {
943 qemu_system_reset_request(SHUTDOWN_CAUSE_GUEST_RESET);
944 ret = EXCP_INTERRUPT;
945 break;
947 case EXIT_REASON_RDPMC:
948 wreg(cpu->hvf_fd, HV_X86_RAX, 0);
949 wreg(cpu->hvf_fd, HV_X86_RDX, 0);
950 macvm_set_rip(cpu, rip + ins_len);
951 break;
952 case VMX_REASON_VMCALL:
953 env->exception_nr = EXCP0D_GPF;
954 env->exception_injected = 1;
955 env->has_error_code = true;
956 env->error_code = 0;
957 break;
958 default:
959 error_report("%llx: unhandled exit %llx", rip, exit_reason);
961 } while (ret == 0);
963 return ret;
966 bool hvf_allowed;
968 static int hvf_accel_init(MachineState *ms)
970 int x;
971 hv_return_t ret;
972 HVFState *s;
974 ret = hv_vm_create(HV_VM_DEFAULT);
975 assert_hvf_ok(ret);
977 s = g_new0(HVFState, 1);
979 s->num_slots = 32;
980 for (x = 0; x < s->num_slots; ++x) {
981 s->slots[x].size = 0;
982 s->slots[x].slot_id = x;
985 hvf_state = s;
986 memory_listener_register(&hvf_memory_listener, &address_space_memory);
987 return 0;
990 static void hvf_accel_class_init(ObjectClass *oc, void *data)
992 AccelClass *ac = ACCEL_CLASS(oc);
993 ac->name = "HVF";
994 ac->init_machine = hvf_accel_init;
995 ac->allowed = &hvf_allowed;
998 static const TypeInfo hvf_accel_type = {
999 .name = TYPE_HVF_ACCEL,
1000 .parent = TYPE_ACCEL,
1001 .class_init = hvf_accel_class_init,
1004 static void hvf_type_init(void)
1006 type_register_static(&hvf_accel_type);
1009 type_init(hvf_type_init);