block/commit: use QEMU_IOVEC_INIT_BUF
[qemu/ar7.git] / hw / nvram / fw_cfg.c
blob7fdf04adc97fb8a33ace54f033ee4305efde6586
1 /*
2 * QEMU Firmware configuration device emulation
4 * Copyright (c) 2008 Gleb Natapov
6 * Permission is hereby granted, free of charge, to any person obtaining a copy
7 * of this software and associated documentation files (the "Software"), to deal
8 * in the Software without restriction, including without limitation the rights
9 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
10 * copies of the Software, and to permit persons to whom the Software is
11 * furnished to do so, subject to the following conditions:
13 * The above copyright notice and this permission notice shall be included in
14 * all copies or substantial portions of the Software.
16 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
17 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
18 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
19 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
20 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
21 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
22 * THE SOFTWARE.
25 #include "qemu/osdep.h"
26 #include "hw/hw.h"
27 #include "sysemu/sysemu.h"
28 #include "sysemu/dma.h"
29 #include "hw/boards.h"
30 #include "hw/nvram/fw_cfg.h"
31 #include "hw/sysbus.h"
32 #include "trace.h"
33 #include "qemu/error-report.h"
34 #include "qemu/option.h"
35 #include "qemu/config-file.h"
36 #include "qemu/cutils.h"
37 #include "qapi/error.h"
39 #define FW_CFG_FILE_SLOTS_DFLT 0x20
41 /* FW_CFG_VERSION bits */
42 #define FW_CFG_VERSION 0x01
43 #define FW_CFG_VERSION_DMA 0x02
45 /* FW_CFG_DMA_CONTROL bits */
46 #define FW_CFG_DMA_CTL_ERROR 0x01
47 #define FW_CFG_DMA_CTL_READ 0x02
48 #define FW_CFG_DMA_CTL_SKIP 0x04
49 #define FW_CFG_DMA_CTL_SELECT 0x08
50 #define FW_CFG_DMA_CTL_WRITE 0x10
52 #define FW_CFG_DMA_SIGNATURE 0x51454d5520434647ULL /* "QEMU CFG" */
54 struct FWCfgEntry {
55 uint32_t len;
56 bool allow_write;
57 uint8_t *data;
58 void *callback_opaque;
59 FWCfgCallback select_cb;
60 FWCfgWriteCallback write_cb;
63 #define JPG_FILE 0
64 #define BMP_FILE 1
66 static char *read_splashfile(char *filename, gsize *file_sizep,
67 int *file_typep)
69 GError *err = NULL;
70 gchar *content;
71 int file_type;
72 unsigned int filehead;
73 int bmp_bpp;
75 if (!g_file_get_contents(filename, &content, file_sizep, &err)) {
76 error_report("failed to read splash file '%s': %s",
77 filename, err->message);
78 g_error_free(err);
79 return NULL;
82 /* check file size */
83 if (*file_sizep < 30) {
84 goto error;
87 /* check magic ID */
88 filehead = ((content[0] & 0xff) + (content[1] << 8)) & 0xffff;
89 if (filehead == 0xd8ff) {
90 file_type = JPG_FILE;
91 } else if (filehead == 0x4d42) {
92 file_type = BMP_FILE;
93 } else {
94 goto error;
97 /* check BMP bpp */
98 if (file_type == BMP_FILE) {
99 bmp_bpp = (content[28] + (content[29] << 8)) & 0xffff;
100 if (bmp_bpp != 24) {
101 goto error;
105 /* return values */
106 *file_typep = file_type;
108 return content;
110 error:
111 error_report("splash file '%s' format not recognized; must be JPEG "
112 "or 24 bit BMP", filename);
113 g_free(content);
114 return NULL;
117 static void fw_cfg_bootsplash(FWCfgState *s)
119 const char *boot_splash_filename = NULL;
120 const char *boot_splash_time = NULL;
121 char *filename, *file_data;
122 gsize file_size;
123 int file_type;
125 /* get user configuration */
126 QemuOptsList *plist = qemu_find_opts("boot-opts");
127 QemuOpts *opts = QTAILQ_FIRST(&plist->head);
128 boot_splash_filename = qemu_opt_get(opts, "splash");
129 boot_splash_time = qemu_opt_get(opts, "splash-time");
131 /* insert splash time if user configurated */
132 if (boot_splash_time) {
133 int64_t bst_val = qemu_opt_get_number(opts, "splash-time", -1);
134 uint16_t bst_le16;
136 /* validate the input */
137 if (bst_val < 0 || bst_val > 0xffff) {
138 error_report("splash-time is invalid,"
139 "it should be a value between 0 and 65535");
140 exit(1);
142 /* use little endian format */
143 bst_le16 = cpu_to_le16(bst_val);
144 fw_cfg_add_file(s, "etc/boot-menu-wait",
145 g_memdup(&bst_le16, sizeof bst_le16), sizeof bst_le16);
148 /* insert splash file if user configurated */
149 if (boot_splash_filename) {
150 filename = qemu_find_file(QEMU_FILE_TYPE_BIOS, boot_splash_filename);
151 if (filename == NULL) {
152 error_report("failed to find file '%s'", boot_splash_filename);
153 return;
156 /* loading file data */
157 file_data = read_splashfile(filename, &file_size, &file_type);
158 if (file_data == NULL) {
159 g_free(filename);
160 return;
162 g_free(boot_splash_filedata);
163 boot_splash_filedata = (uint8_t *)file_data;
164 boot_splash_filedata_size = file_size;
166 /* insert data */
167 if (file_type == JPG_FILE) {
168 fw_cfg_add_file(s, "bootsplash.jpg",
169 boot_splash_filedata, boot_splash_filedata_size);
170 } else {
171 fw_cfg_add_file(s, "bootsplash.bmp",
172 boot_splash_filedata, boot_splash_filedata_size);
174 g_free(filename);
178 static void fw_cfg_reboot(FWCfgState *s)
180 const char *reboot_timeout = NULL;
181 int64_t rt_val = -1;
183 /* get user configuration */
184 QemuOptsList *plist = qemu_find_opts("boot-opts");
185 QemuOpts *opts = QTAILQ_FIRST(&plist->head);
186 reboot_timeout = qemu_opt_get(opts, "reboot-timeout");
188 if (reboot_timeout) {
189 rt_val = qemu_opt_get_number(opts, "reboot-timeout", -1);
190 /* validate the input */
191 if (rt_val < 0 || rt_val > 0xffff) {
192 error_report("reboot timeout is invalid,"
193 "it should be a value between 0 and 65535");
194 exit(1);
198 fw_cfg_add_file(s, "etc/boot-fail-wait", g_memdup(&rt_val, 4), 4);
201 static void fw_cfg_write(FWCfgState *s, uint8_t value)
203 /* nothing, write support removed in QEMU v2.4+ */
206 static inline uint16_t fw_cfg_file_slots(const FWCfgState *s)
208 return s->file_slots;
211 /* Note: this function returns an exclusive limit. */
212 static inline uint32_t fw_cfg_max_entry(const FWCfgState *s)
214 return FW_CFG_FILE_FIRST + fw_cfg_file_slots(s);
217 static int fw_cfg_select(FWCfgState *s, uint16_t key)
219 int arch, ret;
220 FWCfgEntry *e;
222 s->cur_offset = 0;
223 if ((key & FW_CFG_ENTRY_MASK) >= fw_cfg_max_entry(s)) {
224 s->cur_entry = FW_CFG_INVALID;
225 ret = 0;
226 } else {
227 s->cur_entry = key;
228 ret = 1;
229 /* entry successfully selected, now run callback if present */
230 arch = !!(key & FW_CFG_ARCH_LOCAL);
231 e = &s->entries[arch][key & FW_CFG_ENTRY_MASK];
232 if (e->select_cb) {
233 e->select_cb(e->callback_opaque);
237 trace_fw_cfg_select(s, key, ret);
238 return ret;
241 static uint64_t fw_cfg_data_read(void *opaque, hwaddr addr, unsigned size)
243 FWCfgState *s = opaque;
244 int arch = !!(s->cur_entry & FW_CFG_ARCH_LOCAL);
245 FWCfgEntry *e = (s->cur_entry == FW_CFG_INVALID) ? NULL :
246 &s->entries[arch][s->cur_entry & FW_CFG_ENTRY_MASK];
247 uint64_t value = 0;
249 assert(size > 0 && size <= sizeof(value));
250 if (s->cur_entry != FW_CFG_INVALID && e->data && s->cur_offset < e->len) {
251 /* The least significant 'size' bytes of the return value are
252 * expected to contain a string preserving portion of the item
253 * data, padded with zeros on the right in case we run out early.
254 * In technical terms, we're composing the host-endian representation
255 * of the big endian interpretation of the fw_cfg string.
257 do {
258 value = (value << 8) | e->data[s->cur_offset++];
259 } while (--size && s->cur_offset < e->len);
260 /* If size is still not zero, we *did* run out early, so continue
261 * left-shifting, to add the appropriate number of padding zeros
262 * on the right.
264 value <<= 8 * size;
267 trace_fw_cfg_read(s, value);
268 return value;
271 static void fw_cfg_data_mem_write(void *opaque, hwaddr addr,
272 uint64_t value, unsigned size)
274 FWCfgState *s = opaque;
275 unsigned i = size;
277 do {
278 fw_cfg_write(s, value >> (8 * --i));
279 } while (i);
282 static void fw_cfg_dma_transfer(FWCfgState *s)
284 dma_addr_t len;
285 FWCfgDmaAccess dma;
286 int arch;
287 FWCfgEntry *e;
288 int read = 0, write = 0;
289 dma_addr_t dma_addr;
291 /* Reset the address before the next access */
292 dma_addr = s->dma_addr;
293 s->dma_addr = 0;
295 if (dma_memory_read(s->dma_as, dma_addr, &dma, sizeof(dma))) {
296 stl_be_dma(s->dma_as, dma_addr + offsetof(FWCfgDmaAccess, control),
297 FW_CFG_DMA_CTL_ERROR);
298 return;
301 dma.address = be64_to_cpu(dma.address);
302 dma.length = be32_to_cpu(dma.length);
303 dma.control = be32_to_cpu(dma.control);
305 if (dma.control & FW_CFG_DMA_CTL_SELECT) {
306 fw_cfg_select(s, dma.control >> 16);
309 arch = !!(s->cur_entry & FW_CFG_ARCH_LOCAL);
310 e = (s->cur_entry == FW_CFG_INVALID) ? NULL :
311 &s->entries[arch][s->cur_entry & FW_CFG_ENTRY_MASK];
313 if (dma.control & FW_CFG_DMA_CTL_READ) {
314 read = 1;
315 write = 0;
316 } else if (dma.control & FW_CFG_DMA_CTL_WRITE) {
317 read = 0;
318 write = 1;
319 } else if (dma.control & FW_CFG_DMA_CTL_SKIP) {
320 read = 0;
321 write = 0;
322 } else {
323 dma.length = 0;
326 dma.control = 0;
328 while (dma.length > 0 && !(dma.control & FW_CFG_DMA_CTL_ERROR)) {
329 if (s->cur_entry == FW_CFG_INVALID || !e->data ||
330 s->cur_offset >= e->len) {
331 len = dma.length;
333 /* If the access is not a read access, it will be a skip access,
334 * tested before.
336 if (read) {
337 if (dma_memory_set(s->dma_as, dma.address, 0, len)) {
338 dma.control |= FW_CFG_DMA_CTL_ERROR;
341 if (write) {
342 dma.control |= FW_CFG_DMA_CTL_ERROR;
344 } else {
345 if (dma.length <= (e->len - s->cur_offset)) {
346 len = dma.length;
347 } else {
348 len = (e->len - s->cur_offset);
351 /* If the access is not a read access, it will be a skip access,
352 * tested before.
354 if (read) {
355 if (dma_memory_write(s->dma_as, dma.address,
356 &e->data[s->cur_offset], len)) {
357 dma.control |= FW_CFG_DMA_CTL_ERROR;
360 if (write) {
361 if (!e->allow_write ||
362 len != dma.length ||
363 dma_memory_read(s->dma_as, dma.address,
364 &e->data[s->cur_offset], len)) {
365 dma.control |= FW_CFG_DMA_CTL_ERROR;
366 } else if (e->write_cb) {
367 e->write_cb(e->callback_opaque, s->cur_offset, len);
371 s->cur_offset += len;
374 dma.address += len;
375 dma.length -= len;
379 stl_be_dma(s->dma_as, dma_addr + offsetof(FWCfgDmaAccess, control),
380 dma.control);
382 trace_fw_cfg_read(s, 0);
385 static uint64_t fw_cfg_dma_mem_read(void *opaque, hwaddr addr,
386 unsigned size)
388 /* Return a signature value (and handle various read sizes) */
389 return extract64(FW_CFG_DMA_SIGNATURE, (8 - addr - size) * 8, size * 8);
392 static void fw_cfg_dma_mem_write(void *opaque, hwaddr addr,
393 uint64_t value, unsigned size)
395 FWCfgState *s = opaque;
397 if (size == 4) {
398 if (addr == 0) {
399 /* FWCfgDmaAccess high address */
400 s->dma_addr = value << 32;
401 } else if (addr == 4) {
402 /* FWCfgDmaAccess low address */
403 s->dma_addr |= value;
404 fw_cfg_dma_transfer(s);
406 } else if (size == 8 && addr == 0) {
407 s->dma_addr = value;
408 fw_cfg_dma_transfer(s);
412 static bool fw_cfg_dma_mem_valid(void *opaque, hwaddr addr,
413 unsigned size, bool is_write,
414 MemTxAttrs attrs)
416 return !is_write || ((size == 4 && (addr == 0 || addr == 4)) ||
417 (size == 8 && addr == 0));
420 static bool fw_cfg_data_mem_valid(void *opaque, hwaddr addr,
421 unsigned size, bool is_write,
422 MemTxAttrs attrs)
424 return addr == 0;
427 static uint64_t fw_cfg_ctl_mem_read(void *opaque, hwaddr addr, unsigned size)
429 return 0;
432 static void fw_cfg_ctl_mem_write(void *opaque, hwaddr addr,
433 uint64_t value, unsigned size)
435 fw_cfg_select(opaque, (uint16_t)value);
438 static bool fw_cfg_ctl_mem_valid(void *opaque, hwaddr addr,
439 unsigned size, bool is_write,
440 MemTxAttrs attrs)
442 return is_write && size == 2;
445 static void fw_cfg_comb_write(void *opaque, hwaddr addr,
446 uint64_t value, unsigned size)
448 switch (size) {
449 case 1:
450 fw_cfg_write(opaque, (uint8_t)value);
451 break;
452 case 2:
453 fw_cfg_select(opaque, (uint16_t)value);
454 break;
458 static bool fw_cfg_comb_valid(void *opaque, hwaddr addr,
459 unsigned size, bool is_write,
460 MemTxAttrs attrs)
462 return (size == 1) || (is_write && size == 2);
465 static const MemoryRegionOps fw_cfg_ctl_mem_ops = {
466 .read = fw_cfg_ctl_mem_read,
467 .write = fw_cfg_ctl_mem_write,
468 .endianness = DEVICE_BIG_ENDIAN,
469 .valid.accepts = fw_cfg_ctl_mem_valid,
472 static const MemoryRegionOps fw_cfg_data_mem_ops = {
473 .read = fw_cfg_data_read,
474 .write = fw_cfg_data_mem_write,
475 .endianness = DEVICE_BIG_ENDIAN,
476 .valid = {
477 .min_access_size = 1,
478 .max_access_size = 1,
479 .accepts = fw_cfg_data_mem_valid,
483 static const MemoryRegionOps fw_cfg_comb_mem_ops = {
484 .read = fw_cfg_data_read,
485 .write = fw_cfg_comb_write,
486 .endianness = DEVICE_LITTLE_ENDIAN,
487 .valid.accepts = fw_cfg_comb_valid,
490 static const MemoryRegionOps fw_cfg_dma_mem_ops = {
491 .read = fw_cfg_dma_mem_read,
492 .write = fw_cfg_dma_mem_write,
493 .endianness = DEVICE_BIG_ENDIAN,
494 .valid.accepts = fw_cfg_dma_mem_valid,
495 .valid.max_access_size = 8,
496 .impl.max_access_size = 8,
499 static void fw_cfg_reset(DeviceState *d)
501 FWCfgState *s = FW_CFG(d);
503 /* we never register a read callback for FW_CFG_SIGNATURE */
504 fw_cfg_select(s, FW_CFG_SIGNATURE);
507 /* Save restore 32 bit int as uint16_t
508 This is a Big hack, but it is how the old state did it.
509 Or we broke compatibility in the state, or we can't use struct tm
512 static int get_uint32_as_uint16(QEMUFile *f, void *pv, size_t size,
513 const VMStateField *field)
515 uint32_t *v = pv;
516 *v = qemu_get_be16(f);
517 return 0;
520 static int put_unused(QEMUFile *f, void *pv, size_t size,
521 const VMStateField *field, QJSON *vmdesc)
523 fprintf(stderr, "uint32_as_uint16 is only used for backward compatibility.\n");
524 fprintf(stderr, "This functions shouldn't be called.\n");
526 return 0;
529 static const VMStateInfo vmstate_hack_uint32_as_uint16 = {
530 .name = "int32_as_uint16",
531 .get = get_uint32_as_uint16,
532 .put = put_unused,
535 #define VMSTATE_UINT16_HACK(_f, _s, _t) \
536 VMSTATE_SINGLE_TEST(_f, _s, _t, 0, vmstate_hack_uint32_as_uint16, uint32_t)
539 static bool is_version_1(void *opaque, int version_id)
541 return version_id == 1;
544 bool fw_cfg_dma_enabled(void *opaque)
546 FWCfgState *s = opaque;
548 return s->dma_enabled;
551 static const VMStateDescription vmstate_fw_cfg_dma = {
552 .name = "fw_cfg/dma",
553 .needed = fw_cfg_dma_enabled,
554 .fields = (VMStateField[]) {
555 VMSTATE_UINT64(dma_addr, FWCfgState),
556 VMSTATE_END_OF_LIST()
560 static const VMStateDescription vmstate_fw_cfg = {
561 .name = "fw_cfg",
562 .version_id = 2,
563 .minimum_version_id = 1,
564 .fields = (VMStateField[]) {
565 VMSTATE_UINT16(cur_entry, FWCfgState),
566 VMSTATE_UINT16_HACK(cur_offset, FWCfgState, is_version_1),
567 VMSTATE_UINT32_V(cur_offset, FWCfgState, 2),
568 VMSTATE_END_OF_LIST()
570 .subsections = (const VMStateDescription*[]) {
571 &vmstate_fw_cfg_dma,
572 NULL,
576 static void fw_cfg_add_bytes_callback(FWCfgState *s, uint16_t key,
577 FWCfgCallback select_cb,
578 FWCfgWriteCallback write_cb,
579 void *callback_opaque,
580 void *data, size_t len,
581 bool read_only)
583 int arch = !!(key & FW_CFG_ARCH_LOCAL);
585 key &= FW_CFG_ENTRY_MASK;
587 assert(key < fw_cfg_max_entry(s) && len < UINT32_MAX);
588 assert(s->entries[arch][key].data == NULL); /* avoid key conflict */
590 s->entries[arch][key].data = data;
591 s->entries[arch][key].len = (uint32_t)len;
592 s->entries[arch][key].select_cb = select_cb;
593 s->entries[arch][key].write_cb = write_cb;
594 s->entries[arch][key].callback_opaque = callback_opaque;
595 s->entries[arch][key].allow_write = !read_only;
598 static void *fw_cfg_modify_bytes_read(FWCfgState *s, uint16_t key,
599 void *data, size_t len)
601 void *ptr;
602 int arch = !!(key & FW_CFG_ARCH_LOCAL);
604 key &= FW_CFG_ENTRY_MASK;
606 assert(key < fw_cfg_max_entry(s) && len < UINT32_MAX);
608 /* return the old data to the function caller, avoid memory leak */
609 ptr = s->entries[arch][key].data;
610 s->entries[arch][key].data = data;
611 s->entries[arch][key].len = len;
612 s->entries[arch][key].callback_opaque = NULL;
613 s->entries[arch][key].allow_write = false;
615 return ptr;
618 void fw_cfg_add_bytes(FWCfgState *s, uint16_t key, void *data, size_t len)
620 fw_cfg_add_bytes_callback(s, key, NULL, NULL, NULL, data, len, true);
623 void fw_cfg_add_string(FWCfgState *s, uint16_t key, const char *value)
625 size_t sz = strlen(value) + 1;
627 fw_cfg_add_bytes(s, key, g_memdup(value, sz), sz);
630 void fw_cfg_add_i16(FWCfgState *s, uint16_t key, uint16_t value)
632 uint16_t *copy;
634 copy = g_malloc(sizeof(value));
635 *copy = cpu_to_le16(value);
636 fw_cfg_add_bytes(s, key, copy, sizeof(value));
639 void fw_cfg_modify_i16(FWCfgState *s, uint16_t key, uint16_t value)
641 uint16_t *copy, *old;
643 copy = g_malloc(sizeof(value));
644 *copy = cpu_to_le16(value);
645 old = fw_cfg_modify_bytes_read(s, key, copy, sizeof(value));
646 g_free(old);
649 void fw_cfg_add_i32(FWCfgState *s, uint16_t key, uint32_t value)
651 uint32_t *copy;
653 copy = g_malloc(sizeof(value));
654 *copy = cpu_to_le32(value);
655 fw_cfg_add_bytes(s, key, copy, sizeof(value));
658 void fw_cfg_add_i64(FWCfgState *s, uint16_t key, uint64_t value)
660 uint64_t *copy;
662 copy = g_malloc(sizeof(value));
663 *copy = cpu_to_le64(value);
664 fw_cfg_add_bytes(s, key, copy, sizeof(value));
667 void fw_cfg_set_order_override(FWCfgState *s, int order)
669 assert(s->fw_cfg_order_override == 0);
670 s->fw_cfg_order_override = order;
673 void fw_cfg_reset_order_override(FWCfgState *s)
675 assert(s->fw_cfg_order_override != 0);
676 s->fw_cfg_order_override = 0;
680 * This is the legacy order list. For legacy systems, files are in
681 * the fw_cfg in the order defined below, by the "order" value. Note
682 * that some entries (VGA ROMs, NIC option ROMS, etc.) go into a
683 * specific area, but there may be more than one and they occur in the
684 * order that the user specifies them on the command line. Those are
685 * handled in a special manner, using the order override above.
687 * For non-legacy, the files are sorted by filename to avoid this kind
688 * of complexity in the future.
690 * This is only for x86, other arches don't implement versioning so
691 * they won't set legacy mode.
693 static struct {
694 const char *name;
695 int order;
696 } fw_cfg_order[] = {
697 { "etc/boot-menu-wait", 10 },
698 { "bootsplash.jpg", 11 },
699 { "bootsplash.bmp", 12 },
700 { "etc/boot-fail-wait", 15 },
701 { "etc/smbios/smbios-tables", 20 },
702 { "etc/smbios/smbios-anchor", 30 },
703 { "etc/e820", 40 },
704 { "etc/reserved-memory-end", 50 },
705 { "genroms/kvmvapic.bin", 55 },
706 { "genroms/linuxboot.bin", 60 },
707 { }, /* VGA ROMs from pc_vga_init come here, 70. */
708 { }, /* NIC option ROMs from pc_nic_init come here, 80. */
709 { "etc/system-states", 90 },
710 { }, /* User ROMs come here, 100. */
711 { }, /* Device FW comes here, 110. */
712 { "etc/extra-pci-roots", 120 },
713 { "etc/acpi/tables", 130 },
714 { "etc/table-loader", 140 },
715 { "etc/tpm/log", 150 },
716 { "etc/acpi/rsdp", 160 },
717 { "bootorder", 170 },
719 #define FW_CFG_ORDER_OVERRIDE_LAST 200
722 static int get_fw_cfg_order(FWCfgState *s, const char *name)
724 int i;
726 if (s->fw_cfg_order_override > 0) {
727 return s->fw_cfg_order_override;
730 for (i = 0; i < ARRAY_SIZE(fw_cfg_order); i++) {
731 if (fw_cfg_order[i].name == NULL) {
732 continue;
735 if (strcmp(name, fw_cfg_order[i].name) == 0) {
736 return fw_cfg_order[i].order;
740 /* Stick unknown stuff at the end. */
741 warn_report("Unknown firmware file in legacy mode: %s", name);
742 return FW_CFG_ORDER_OVERRIDE_LAST;
745 void fw_cfg_add_file_callback(FWCfgState *s, const char *filename,
746 FWCfgCallback select_cb,
747 FWCfgWriteCallback write_cb,
748 void *callback_opaque,
749 void *data, size_t len, bool read_only)
751 int i, index, count;
752 size_t dsize;
753 MachineClass *mc = MACHINE_GET_CLASS(qdev_get_machine());
754 int order = 0;
756 if (!s->files) {
757 dsize = sizeof(uint32_t) + sizeof(FWCfgFile) * fw_cfg_file_slots(s);
758 s->files = g_malloc0(dsize);
759 fw_cfg_add_bytes(s, FW_CFG_FILE_DIR, s->files, dsize);
762 count = be32_to_cpu(s->files->count);
763 assert(count < fw_cfg_file_slots(s));
765 /* Find the insertion point. */
766 if (mc->legacy_fw_cfg_order) {
768 * Sort by order. For files with the same order, we keep them
769 * in the sequence in which they were added.
771 order = get_fw_cfg_order(s, filename);
772 for (index = count;
773 index > 0 && order < s->entry_order[index - 1];
774 index--);
775 } else {
776 /* Sort by file name. */
777 for (index = count;
778 index > 0 && strcmp(filename, s->files->f[index - 1].name) < 0;
779 index--);
783 * Move all the entries from the index point and after down one
784 * to create a slot for the new entry. Because calculations are
785 * being done with the index, make it so that "i" is the current
786 * index and "i - 1" is the one being copied from, thus the
787 * unusual start and end in the for statement.
789 for (i = count; i > index; i--) {
790 s->files->f[i] = s->files->f[i - 1];
791 s->files->f[i].select = cpu_to_be16(FW_CFG_FILE_FIRST + i);
792 s->entries[0][FW_CFG_FILE_FIRST + i] =
793 s->entries[0][FW_CFG_FILE_FIRST + i - 1];
794 s->entry_order[i] = s->entry_order[i - 1];
797 memset(&s->files->f[index], 0, sizeof(FWCfgFile));
798 memset(&s->entries[0][FW_CFG_FILE_FIRST + index], 0, sizeof(FWCfgEntry));
800 pstrcpy(s->files->f[index].name, sizeof(s->files->f[index].name), filename);
801 for (i = 0; i <= count; i++) {
802 if (i != index &&
803 strcmp(s->files->f[index].name, s->files->f[i].name) == 0) {
804 error_report("duplicate fw_cfg file name: %s",
805 s->files->f[index].name);
806 exit(1);
810 fw_cfg_add_bytes_callback(s, FW_CFG_FILE_FIRST + index,
811 select_cb, write_cb,
812 callback_opaque, data, len,
813 read_only);
815 s->files->f[index].size = cpu_to_be32(len);
816 s->files->f[index].select = cpu_to_be16(FW_CFG_FILE_FIRST + index);
817 s->entry_order[index] = order;
818 trace_fw_cfg_add_file(s, index, s->files->f[index].name, len);
820 s->files->count = cpu_to_be32(count+1);
823 void fw_cfg_add_file(FWCfgState *s, const char *filename,
824 void *data, size_t len)
826 fw_cfg_add_file_callback(s, filename, NULL, NULL, NULL, data, len, true);
829 void *fw_cfg_modify_file(FWCfgState *s, const char *filename,
830 void *data, size_t len)
832 int i, index;
833 void *ptr = NULL;
835 assert(s->files);
837 index = be32_to_cpu(s->files->count);
839 for (i = 0; i < index; i++) {
840 if (strcmp(filename, s->files->f[i].name) == 0) {
841 ptr = fw_cfg_modify_bytes_read(s, FW_CFG_FILE_FIRST + i,
842 data, len);
843 s->files->f[i].size = cpu_to_be32(len);
844 return ptr;
848 assert(index < fw_cfg_file_slots(s));
850 /* add new one */
851 fw_cfg_add_file_callback(s, filename, NULL, NULL, NULL, data, len, true);
852 return NULL;
855 static void fw_cfg_machine_reset(void *opaque)
857 void *ptr;
858 size_t len;
859 FWCfgState *s = opaque;
860 char *bootindex = get_boot_devices_list(&len);
862 ptr = fw_cfg_modify_file(s, "bootorder", (uint8_t *)bootindex, len);
863 g_free(ptr);
866 static void fw_cfg_machine_ready(struct Notifier *n, void *data)
868 FWCfgState *s = container_of(n, FWCfgState, machine_ready);
869 qemu_register_reset(fw_cfg_machine_reset, s);
874 static void fw_cfg_common_realize(DeviceState *dev, Error **errp)
876 FWCfgState *s = FW_CFG(dev);
877 MachineState *machine = MACHINE(qdev_get_machine());
878 uint32_t version = FW_CFG_VERSION;
880 if (!fw_cfg_find()) {
881 error_setg(errp, "at most one %s device is permitted", TYPE_FW_CFG);
882 return;
885 fw_cfg_add_bytes(s, FW_CFG_SIGNATURE, (char *)"QEMU", 4);
886 fw_cfg_add_bytes(s, FW_CFG_UUID, &qemu_uuid, 16);
887 fw_cfg_add_i16(s, FW_CFG_NOGRAPHIC, (uint16_t)!machine->enable_graphics);
888 fw_cfg_add_i16(s, FW_CFG_BOOT_MENU, (uint16_t)boot_menu);
889 fw_cfg_bootsplash(s);
890 fw_cfg_reboot(s);
892 if (s->dma_enabled) {
893 version |= FW_CFG_VERSION_DMA;
896 fw_cfg_add_i32(s, FW_CFG_ID, version);
898 s->machine_ready.notify = fw_cfg_machine_ready;
899 qemu_add_machine_init_done_notifier(&s->machine_ready);
902 FWCfgState *fw_cfg_init_io_dma(uint32_t iobase, uint32_t dma_iobase,
903 AddressSpace *dma_as)
905 DeviceState *dev;
906 SysBusDevice *sbd;
907 FWCfgIoState *ios;
908 FWCfgState *s;
909 bool dma_requested = dma_iobase && dma_as;
911 dev = qdev_create(NULL, TYPE_FW_CFG_IO);
912 if (!dma_requested) {
913 qdev_prop_set_bit(dev, "dma_enabled", false);
916 object_property_add_child(OBJECT(qdev_get_machine()), TYPE_FW_CFG,
917 OBJECT(dev), NULL);
918 qdev_init_nofail(dev);
920 sbd = SYS_BUS_DEVICE(dev);
921 ios = FW_CFG_IO(dev);
922 sysbus_add_io(sbd, iobase, &ios->comb_iomem);
924 s = FW_CFG(dev);
926 if (s->dma_enabled) {
927 /* 64 bits for the address field */
928 s->dma_as = dma_as;
929 s->dma_addr = 0;
930 sysbus_add_io(sbd, dma_iobase, &s->dma_iomem);
933 return s;
936 FWCfgState *fw_cfg_init_io(uint32_t iobase)
938 return fw_cfg_init_io_dma(iobase, 0, NULL);
941 FWCfgState *fw_cfg_init_mem_wide(hwaddr ctl_addr,
942 hwaddr data_addr, uint32_t data_width,
943 hwaddr dma_addr, AddressSpace *dma_as)
945 DeviceState *dev;
946 SysBusDevice *sbd;
947 FWCfgState *s;
948 bool dma_requested = dma_addr && dma_as;
950 dev = qdev_create(NULL, TYPE_FW_CFG_MEM);
951 qdev_prop_set_uint32(dev, "data_width", data_width);
952 if (!dma_requested) {
953 qdev_prop_set_bit(dev, "dma_enabled", false);
956 object_property_add_child(OBJECT(qdev_get_machine()), TYPE_FW_CFG,
957 OBJECT(dev), NULL);
958 qdev_init_nofail(dev);
960 sbd = SYS_BUS_DEVICE(dev);
961 sysbus_mmio_map(sbd, 0, ctl_addr);
962 sysbus_mmio_map(sbd, 1, data_addr);
964 s = FW_CFG(dev);
966 if (s->dma_enabled) {
967 s->dma_as = dma_as;
968 s->dma_addr = 0;
969 sysbus_mmio_map(sbd, 2, dma_addr);
972 return s;
975 FWCfgState *fw_cfg_init_mem(hwaddr ctl_addr, hwaddr data_addr)
977 return fw_cfg_init_mem_wide(ctl_addr, data_addr,
978 fw_cfg_data_mem_ops.valid.max_access_size,
979 0, NULL);
983 FWCfgState *fw_cfg_find(void)
985 /* Returns NULL unless there is exactly one fw_cfg device */
986 return FW_CFG(object_resolve_path_type("", TYPE_FW_CFG, NULL));
990 static void fw_cfg_class_init(ObjectClass *klass, void *data)
992 DeviceClass *dc = DEVICE_CLASS(klass);
994 dc->reset = fw_cfg_reset;
995 dc->vmsd = &vmstate_fw_cfg;
998 static const TypeInfo fw_cfg_info = {
999 .name = TYPE_FW_CFG,
1000 .parent = TYPE_SYS_BUS_DEVICE,
1001 .abstract = true,
1002 .instance_size = sizeof(FWCfgState),
1003 .class_init = fw_cfg_class_init,
1006 static void fw_cfg_file_slots_allocate(FWCfgState *s, Error **errp)
1008 uint16_t file_slots_max;
1010 if (fw_cfg_file_slots(s) < FW_CFG_FILE_SLOTS_MIN) {
1011 error_setg(errp, "\"file_slots\" must be at least 0x%x",
1012 FW_CFG_FILE_SLOTS_MIN);
1013 return;
1016 /* (UINT16_MAX & FW_CFG_ENTRY_MASK) is the highest inclusive selector value
1017 * that we permit. The actual (exclusive) value coming from the
1018 * configuration is (FW_CFG_FILE_FIRST + fw_cfg_file_slots(s)). */
1019 file_slots_max = (UINT16_MAX & FW_CFG_ENTRY_MASK) - FW_CFG_FILE_FIRST + 1;
1020 if (fw_cfg_file_slots(s) > file_slots_max) {
1021 error_setg(errp, "\"file_slots\" must not exceed 0x%" PRIx16,
1022 file_slots_max);
1023 return;
1026 s->entries[0] = g_new0(FWCfgEntry, fw_cfg_max_entry(s));
1027 s->entries[1] = g_new0(FWCfgEntry, fw_cfg_max_entry(s));
1028 s->entry_order = g_new0(int, fw_cfg_max_entry(s));
1031 static Property fw_cfg_io_properties[] = {
1032 DEFINE_PROP_BOOL("dma_enabled", FWCfgIoState, parent_obj.dma_enabled,
1033 true),
1034 DEFINE_PROP_UINT16("x-file-slots", FWCfgIoState, parent_obj.file_slots,
1035 FW_CFG_FILE_SLOTS_DFLT),
1036 DEFINE_PROP_END_OF_LIST(),
1039 static void fw_cfg_io_realize(DeviceState *dev, Error **errp)
1041 FWCfgIoState *s = FW_CFG_IO(dev);
1042 Error *local_err = NULL;
1044 fw_cfg_file_slots_allocate(FW_CFG(s), &local_err);
1045 if (local_err) {
1046 error_propagate(errp, local_err);
1047 return;
1050 /* when using port i/o, the 8-bit data register ALWAYS overlaps
1051 * with half of the 16-bit control register. Hence, the total size
1052 * of the i/o region used is FW_CFG_CTL_SIZE */
1053 memory_region_init_io(&s->comb_iomem, OBJECT(s), &fw_cfg_comb_mem_ops,
1054 FW_CFG(s), "fwcfg", FW_CFG_CTL_SIZE);
1056 if (FW_CFG(s)->dma_enabled) {
1057 memory_region_init_io(&FW_CFG(s)->dma_iomem, OBJECT(s),
1058 &fw_cfg_dma_mem_ops, FW_CFG(s), "fwcfg.dma",
1059 sizeof(dma_addr_t));
1062 fw_cfg_common_realize(dev, errp);
1065 static void fw_cfg_io_class_init(ObjectClass *klass, void *data)
1067 DeviceClass *dc = DEVICE_CLASS(klass);
1069 dc->realize = fw_cfg_io_realize;
1070 dc->props = fw_cfg_io_properties;
1073 static const TypeInfo fw_cfg_io_info = {
1074 .name = TYPE_FW_CFG_IO,
1075 .parent = TYPE_FW_CFG,
1076 .instance_size = sizeof(FWCfgIoState),
1077 .class_init = fw_cfg_io_class_init,
1081 static Property fw_cfg_mem_properties[] = {
1082 DEFINE_PROP_UINT32("data_width", FWCfgMemState, data_width, -1),
1083 DEFINE_PROP_BOOL("dma_enabled", FWCfgMemState, parent_obj.dma_enabled,
1084 true),
1085 DEFINE_PROP_UINT16("x-file-slots", FWCfgMemState, parent_obj.file_slots,
1086 FW_CFG_FILE_SLOTS_DFLT),
1087 DEFINE_PROP_END_OF_LIST(),
1090 static void fw_cfg_mem_realize(DeviceState *dev, Error **errp)
1092 FWCfgMemState *s = FW_CFG_MEM(dev);
1093 SysBusDevice *sbd = SYS_BUS_DEVICE(dev);
1094 const MemoryRegionOps *data_ops = &fw_cfg_data_mem_ops;
1095 Error *local_err = NULL;
1097 fw_cfg_file_slots_allocate(FW_CFG(s), &local_err);
1098 if (local_err) {
1099 error_propagate(errp, local_err);
1100 return;
1103 memory_region_init_io(&s->ctl_iomem, OBJECT(s), &fw_cfg_ctl_mem_ops,
1104 FW_CFG(s), "fwcfg.ctl", FW_CFG_CTL_SIZE);
1105 sysbus_init_mmio(sbd, &s->ctl_iomem);
1107 if (s->data_width > data_ops->valid.max_access_size) {
1108 s->wide_data_ops = *data_ops;
1110 s->wide_data_ops.valid.max_access_size = s->data_width;
1111 s->wide_data_ops.impl.max_access_size = s->data_width;
1112 data_ops = &s->wide_data_ops;
1114 memory_region_init_io(&s->data_iomem, OBJECT(s), data_ops, FW_CFG(s),
1115 "fwcfg.data", data_ops->valid.max_access_size);
1116 sysbus_init_mmio(sbd, &s->data_iomem);
1118 if (FW_CFG(s)->dma_enabled) {
1119 memory_region_init_io(&FW_CFG(s)->dma_iomem, OBJECT(s),
1120 &fw_cfg_dma_mem_ops, FW_CFG(s), "fwcfg.dma",
1121 sizeof(dma_addr_t));
1122 sysbus_init_mmio(sbd, &FW_CFG(s)->dma_iomem);
1125 fw_cfg_common_realize(dev, errp);
1128 static void fw_cfg_mem_class_init(ObjectClass *klass, void *data)
1130 DeviceClass *dc = DEVICE_CLASS(klass);
1132 dc->realize = fw_cfg_mem_realize;
1133 dc->props = fw_cfg_mem_properties;
1136 static const TypeInfo fw_cfg_mem_info = {
1137 .name = TYPE_FW_CFG_MEM,
1138 .parent = TYPE_FW_CFG,
1139 .instance_size = sizeof(FWCfgMemState),
1140 .class_init = fw_cfg_mem_class_init,
1144 static void fw_cfg_register_types(void)
1146 type_register_static(&fw_cfg_info);
1147 type_register_static(&fw_cfg_io_info);
1148 type_register_static(&fw_cfg_mem_info);
1151 type_init(fw_cfg_register_types)