ppc/pnv: Link "psi" property to PnvOCC::psi pointer
[qemu/ar7.git] / block / nvme.c
blobd41c4bda6e39adf86b56ff2d4b4eecbeb67d2ee3
1 /*
2 * NVMe block driver based on vfio
4 * Copyright 2016 - 2018 Red Hat, Inc.
6 * Authors:
7 * Fam Zheng <famz@redhat.com>
8 * Paolo Bonzini <pbonzini@redhat.com>
10 * This work is licensed under the terms of the GNU GPL, version 2 or later.
11 * See the COPYING file in the top-level directory.
14 #include "qemu/osdep.h"
15 #include <linux/vfio.h>
16 #include "qapi/error.h"
17 #include "qapi/qmp/qdict.h"
18 #include "qapi/qmp/qstring.h"
19 #include "qemu/error-report.h"
20 #include "qemu/main-loop.h"
21 #include "qemu/module.h"
22 #include "qemu/cutils.h"
23 #include "qemu/option.h"
24 #include "qemu/vfio-helpers.h"
25 #include "block/block_int.h"
26 #include "sysemu/replay.h"
27 #include "trace.h"
29 #include "block/nvme.h"
31 #define NVME_SQ_ENTRY_BYTES 64
32 #define NVME_CQ_ENTRY_BYTES 16
33 #define NVME_QUEUE_SIZE 128
34 #define NVME_BAR_SIZE 8192
36 typedef struct {
37 int32_t head, tail;
38 uint8_t *queue;
39 uint64_t iova;
40 /* Hardware MMIO register */
41 volatile uint32_t *doorbell;
42 } NVMeQueue;
44 typedef struct {
45 BlockCompletionFunc *cb;
46 void *opaque;
47 int cid;
48 void *prp_list_page;
49 uint64_t prp_list_iova;
50 bool busy;
51 } NVMeRequest;
53 typedef struct {
54 CoQueue free_req_queue;
55 QemuMutex lock;
57 /* Fields protected by BQL */
58 int index;
59 uint8_t *prp_list_pages;
61 /* Fields protected by @lock */
62 NVMeQueue sq, cq;
63 int cq_phase;
64 NVMeRequest reqs[NVME_QUEUE_SIZE];
65 bool busy;
66 int need_kick;
67 int inflight;
68 } NVMeQueuePair;
70 /* Memory mapped registers */
71 typedef volatile struct {
72 uint64_t cap;
73 uint32_t vs;
74 uint32_t intms;
75 uint32_t intmc;
76 uint32_t cc;
77 uint32_t reserved0;
78 uint32_t csts;
79 uint32_t nssr;
80 uint32_t aqa;
81 uint64_t asq;
82 uint64_t acq;
83 uint32_t cmbloc;
84 uint32_t cmbsz;
85 uint8_t reserved1[0xec0];
86 uint8_t cmd_set_specfic[0x100];
87 uint32_t doorbells[];
88 } NVMeRegs;
90 QEMU_BUILD_BUG_ON(offsetof(NVMeRegs, doorbells) != 0x1000);
92 typedef struct {
93 AioContext *aio_context;
94 QEMUVFIOState *vfio;
95 NVMeRegs *regs;
96 /* The submission/completion queue pairs.
97 * [0]: admin queue.
98 * [1..]: io queues.
100 NVMeQueuePair **queues;
101 int nr_queues;
102 size_t page_size;
103 /* How many uint32_t elements does each doorbell entry take. */
104 size_t doorbell_scale;
105 bool write_cache_supported;
106 EventNotifier irq_notifier;
108 uint64_t nsze; /* Namespace size reported by identify command */
109 int nsid; /* The namespace id to read/write data. */
110 int blkshift;
112 uint64_t max_transfer;
113 bool plugged;
115 bool supports_write_zeroes;
116 bool supports_discard;
118 CoMutex dma_map_lock;
119 CoQueue dma_flush_queue;
121 /* Total size of mapped qiov, accessed under dma_map_lock */
122 int dma_map_count;
124 /* PCI address (required for nvme_refresh_filename()) */
125 char *device;
126 } BDRVNVMeState;
128 #define NVME_BLOCK_OPT_DEVICE "device"
129 #define NVME_BLOCK_OPT_NAMESPACE "namespace"
131 static QemuOptsList runtime_opts = {
132 .name = "nvme",
133 .head = QTAILQ_HEAD_INITIALIZER(runtime_opts.head),
134 .desc = {
136 .name = NVME_BLOCK_OPT_DEVICE,
137 .type = QEMU_OPT_STRING,
138 .help = "NVMe PCI device address",
141 .name = NVME_BLOCK_OPT_NAMESPACE,
142 .type = QEMU_OPT_NUMBER,
143 .help = "NVMe namespace",
145 { /* end of list */ }
149 static void nvme_init_queue(BlockDriverState *bs, NVMeQueue *q,
150 int nentries, int entry_bytes, Error **errp)
152 BDRVNVMeState *s = bs->opaque;
153 size_t bytes;
154 int r;
156 bytes = ROUND_UP(nentries * entry_bytes, s->page_size);
157 q->head = q->tail = 0;
158 q->queue = qemu_try_blockalign0(bs, bytes);
160 if (!q->queue) {
161 error_setg(errp, "Cannot allocate queue");
162 return;
164 r = qemu_vfio_dma_map(s->vfio, q->queue, bytes, false, &q->iova);
165 if (r) {
166 error_setg(errp, "Cannot map queue");
170 static void nvme_free_queue_pair(BlockDriverState *bs, NVMeQueuePair *q)
172 qemu_vfree(q->prp_list_pages);
173 qemu_vfree(q->sq.queue);
174 qemu_vfree(q->cq.queue);
175 qemu_mutex_destroy(&q->lock);
176 g_free(q);
179 static void nvme_free_req_queue_cb(void *opaque)
181 NVMeQueuePair *q = opaque;
183 qemu_mutex_lock(&q->lock);
184 while (qemu_co_enter_next(&q->free_req_queue, &q->lock)) {
185 /* Retry all pending requests */
187 qemu_mutex_unlock(&q->lock);
190 static NVMeQueuePair *nvme_create_queue_pair(BlockDriverState *bs,
191 int idx, int size,
192 Error **errp)
194 int i, r;
195 BDRVNVMeState *s = bs->opaque;
196 Error *local_err = NULL;
197 NVMeQueuePair *q = g_new0(NVMeQueuePair, 1);
198 uint64_t prp_list_iova;
200 qemu_mutex_init(&q->lock);
201 q->index = idx;
202 qemu_co_queue_init(&q->free_req_queue);
203 q->prp_list_pages = qemu_blockalign0(bs, s->page_size * NVME_QUEUE_SIZE);
204 r = qemu_vfio_dma_map(s->vfio, q->prp_list_pages,
205 s->page_size * NVME_QUEUE_SIZE,
206 false, &prp_list_iova);
207 if (r) {
208 goto fail;
210 for (i = 0; i < NVME_QUEUE_SIZE; i++) {
211 NVMeRequest *req = &q->reqs[i];
212 req->cid = i + 1;
213 req->prp_list_page = q->prp_list_pages + i * s->page_size;
214 req->prp_list_iova = prp_list_iova + i * s->page_size;
216 nvme_init_queue(bs, &q->sq, size, NVME_SQ_ENTRY_BYTES, &local_err);
217 if (local_err) {
218 error_propagate(errp, local_err);
219 goto fail;
221 q->sq.doorbell = &s->regs->doorbells[idx * 2 * s->doorbell_scale];
223 nvme_init_queue(bs, &q->cq, size, NVME_CQ_ENTRY_BYTES, &local_err);
224 if (local_err) {
225 error_propagate(errp, local_err);
226 goto fail;
228 q->cq.doorbell = &s->regs->doorbells[(idx * 2 + 1) * s->doorbell_scale];
230 return q;
231 fail:
232 nvme_free_queue_pair(bs, q);
233 return NULL;
236 /* With q->lock */
237 static void nvme_kick(BDRVNVMeState *s, NVMeQueuePair *q)
239 if (s->plugged || !q->need_kick) {
240 return;
242 trace_nvme_kick(s, q->index);
243 assert(!(q->sq.tail & 0xFF00));
244 /* Fence the write to submission queue entry before notifying the device. */
245 smp_wmb();
246 *q->sq.doorbell = cpu_to_le32(q->sq.tail);
247 q->inflight += q->need_kick;
248 q->need_kick = 0;
251 /* Find a free request element if any, otherwise:
252 * a) if in coroutine context, try to wait for one to become available;
253 * b) if not in coroutine, return NULL;
255 static NVMeRequest *nvme_get_free_req(NVMeQueuePair *q)
257 int i;
258 NVMeRequest *req = NULL;
260 qemu_mutex_lock(&q->lock);
261 while (q->inflight + q->need_kick > NVME_QUEUE_SIZE - 2) {
262 /* We have to leave one slot empty as that is the full queue case (head
263 * == tail + 1). */
264 if (qemu_in_coroutine()) {
265 trace_nvme_free_req_queue_wait(q);
266 qemu_co_queue_wait(&q->free_req_queue, &q->lock);
267 } else {
268 qemu_mutex_unlock(&q->lock);
269 return NULL;
272 for (i = 0; i < NVME_QUEUE_SIZE; i++) {
273 if (!q->reqs[i].busy) {
274 q->reqs[i].busy = true;
275 req = &q->reqs[i];
276 break;
279 /* We have checked inflight and need_kick while holding q->lock, so one
280 * free req must be available. */
281 assert(req);
282 qemu_mutex_unlock(&q->lock);
283 return req;
286 static inline int nvme_translate_error(const NvmeCqe *c)
288 uint16_t status = (le16_to_cpu(c->status) >> 1) & 0xFF;
289 if (status) {
290 trace_nvme_error(le32_to_cpu(c->result),
291 le16_to_cpu(c->sq_head),
292 le16_to_cpu(c->sq_id),
293 le16_to_cpu(c->cid),
294 le16_to_cpu(status));
296 switch (status) {
297 case 0:
298 return 0;
299 case 1:
300 return -ENOSYS;
301 case 2:
302 return -EINVAL;
303 default:
304 return -EIO;
308 /* With q->lock */
309 static bool nvme_process_completion(BDRVNVMeState *s, NVMeQueuePair *q)
311 bool progress = false;
312 NVMeRequest *preq;
313 NVMeRequest req;
314 NvmeCqe *c;
316 trace_nvme_process_completion(s, q->index, q->inflight);
317 if (q->busy || s->plugged) {
318 trace_nvme_process_completion_queue_busy(s, q->index);
319 return false;
321 q->busy = true;
322 assert(q->inflight >= 0);
323 while (q->inflight) {
324 int16_t cid;
325 c = (NvmeCqe *)&q->cq.queue[q->cq.head * NVME_CQ_ENTRY_BYTES];
326 if ((le16_to_cpu(c->status) & 0x1) == q->cq_phase) {
327 break;
329 q->cq.head = (q->cq.head + 1) % NVME_QUEUE_SIZE;
330 if (!q->cq.head) {
331 q->cq_phase = !q->cq_phase;
333 cid = le16_to_cpu(c->cid);
334 if (cid == 0 || cid > NVME_QUEUE_SIZE) {
335 fprintf(stderr, "Unexpected CID in completion queue: %" PRIu32 "\n",
336 cid);
337 continue;
339 assert(cid <= NVME_QUEUE_SIZE);
340 trace_nvme_complete_command(s, q->index, cid);
341 preq = &q->reqs[cid - 1];
342 req = *preq;
343 assert(req.cid == cid);
344 assert(req.cb);
345 preq->busy = false;
346 preq->cb = preq->opaque = NULL;
347 qemu_mutex_unlock(&q->lock);
348 req.cb(req.opaque, nvme_translate_error(c));
349 qemu_mutex_lock(&q->lock);
350 q->inflight--;
351 progress = true;
353 if (progress) {
354 /* Notify the device so it can post more completions. */
355 smp_mb_release();
356 *q->cq.doorbell = cpu_to_le32(q->cq.head);
357 if (!qemu_co_queue_empty(&q->free_req_queue)) {
358 replay_bh_schedule_oneshot_event(s->aio_context,
359 nvme_free_req_queue_cb, q);
362 q->busy = false;
363 return progress;
366 static void nvme_trace_command(const NvmeCmd *cmd)
368 int i;
370 for (i = 0; i < 8; ++i) {
371 uint8_t *cmdp = (uint8_t *)cmd + i * 8;
372 trace_nvme_submit_command_raw(cmdp[0], cmdp[1], cmdp[2], cmdp[3],
373 cmdp[4], cmdp[5], cmdp[6], cmdp[7]);
377 static void nvme_submit_command(BDRVNVMeState *s, NVMeQueuePair *q,
378 NVMeRequest *req,
379 NvmeCmd *cmd, BlockCompletionFunc cb,
380 void *opaque)
382 assert(!req->cb);
383 req->cb = cb;
384 req->opaque = opaque;
385 cmd->cid = cpu_to_le32(req->cid);
387 trace_nvme_submit_command(s, q->index, req->cid);
388 nvme_trace_command(cmd);
389 qemu_mutex_lock(&q->lock);
390 memcpy((uint8_t *)q->sq.queue +
391 q->sq.tail * NVME_SQ_ENTRY_BYTES, cmd, sizeof(*cmd));
392 q->sq.tail = (q->sq.tail + 1) % NVME_QUEUE_SIZE;
393 q->need_kick++;
394 nvme_kick(s, q);
395 nvme_process_completion(s, q);
396 qemu_mutex_unlock(&q->lock);
399 static void nvme_cmd_sync_cb(void *opaque, int ret)
401 int *pret = opaque;
402 *pret = ret;
403 aio_wait_kick();
406 static int nvme_cmd_sync(BlockDriverState *bs, NVMeQueuePair *q,
407 NvmeCmd *cmd)
409 NVMeRequest *req;
410 BDRVNVMeState *s = bs->opaque;
411 int ret = -EINPROGRESS;
412 req = nvme_get_free_req(q);
413 if (!req) {
414 return -EBUSY;
416 nvme_submit_command(s, q, req, cmd, nvme_cmd_sync_cb, &ret);
418 BDRV_POLL_WHILE(bs, ret == -EINPROGRESS);
419 return ret;
422 static void nvme_identify(BlockDriverState *bs, int namespace, Error **errp)
424 BDRVNVMeState *s = bs->opaque;
425 NvmeIdCtrl *idctrl;
426 NvmeIdNs *idns;
427 NvmeLBAF *lbaf;
428 uint8_t *resp;
429 uint16_t oncs;
430 int r;
431 uint64_t iova;
432 NvmeCmd cmd = {
433 .opcode = NVME_ADM_CMD_IDENTIFY,
434 .cdw10 = cpu_to_le32(0x1),
437 resp = qemu_try_blockalign0(bs, sizeof(NvmeIdCtrl));
438 if (!resp) {
439 error_setg(errp, "Cannot allocate buffer for identify response");
440 goto out;
442 idctrl = (NvmeIdCtrl *)resp;
443 idns = (NvmeIdNs *)resp;
444 r = qemu_vfio_dma_map(s->vfio, resp, sizeof(NvmeIdCtrl), true, &iova);
445 if (r) {
446 error_setg(errp, "Cannot map buffer for DMA");
447 goto out;
449 cmd.prp1 = cpu_to_le64(iova);
451 if (nvme_cmd_sync(bs, s->queues[0], &cmd)) {
452 error_setg(errp, "Failed to identify controller");
453 goto out;
456 if (le32_to_cpu(idctrl->nn) < namespace) {
457 error_setg(errp, "Invalid namespace");
458 goto out;
460 s->write_cache_supported = le32_to_cpu(idctrl->vwc) & 0x1;
461 s->max_transfer = (idctrl->mdts ? 1 << idctrl->mdts : 0) * s->page_size;
462 /* For now the page list buffer per command is one page, to hold at most
463 * s->page_size / sizeof(uint64_t) entries. */
464 s->max_transfer = MIN_NON_ZERO(s->max_transfer,
465 s->page_size / sizeof(uint64_t) * s->page_size);
467 oncs = le16_to_cpu(idctrl->oncs);
468 s->supports_write_zeroes = !!(oncs & NVME_ONCS_WRITE_ZEROS);
469 s->supports_discard = !!(oncs & NVME_ONCS_DSM);
471 memset(resp, 0, 4096);
473 cmd.cdw10 = 0;
474 cmd.nsid = cpu_to_le32(namespace);
475 if (nvme_cmd_sync(bs, s->queues[0], &cmd)) {
476 error_setg(errp, "Failed to identify namespace");
477 goto out;
480 s->nsze = le64_to_cpu(idns->nsze);
481 lbaf = &idns->lbaf[NVME_ID_NS_FLBAS_INDEX(idns->flbas)];
483 if (NVME_ID_NS_DLFEAT_WRITE_ZEROES(idns->dlfeat) &&
484 NVME_ID_NS_DLFEAT_READ_BEHAVIOR(idns->dlfeat) ==
485 NVME_ID_NS_DLFEAT_READ_BEHAVIOR_ZEROES) {
486 bs->supported_write_flags |= BDRV_REQ_MAY_UNMAP;
489 if (lbaf->ms) {
490 error_setg(errp, "Namespaces with metadata are not yet supported");
491 goto out;
494 if (lbaf->ds < BDRV_SECTOR_BITS || lbaf->ds > 12 ||
495 (1 << lbaf->ds) > s->page_size)
497 error_setg(errp, "Namespace has unsupported block size (2^%d)",
498 lbaf->ds);
499 goto out;
502 s->blkshift = lbaf->ds;
503 out:
504 qemu_vfio_dma_unmap(s->vfio, resp);
505 qemu_vfree(resp);
508 static bool nvme_poll_queues(BDRVNVMeState *s)
510 bool progress = false;
511 int i;
513 for (i = 0; i < s->nr_queues; i++) {
514 NVMeQueuePair *q = s->queues[i];
515 qemu_mutex_lock(&q->lock);
516 while (nvme_process_completion(s, q)) {
517 /* Keep polling */
518 progress = true;
520 qemu_mutex_unlock(&q->lock);
522 return progress;
525 static void nvme_handle_event(EventNotifier *n)
527 BDRVNVMeState *s = container_of(n, BDRVNVMeState, irq_notifier);
529 trace_nvme_handle_event(s);
530 event_notifier_test_and_clear(n);
531 nvme_poll_queues(s);
534 static bool nvme_add_io_queue(BlockDriverState *bs, Error **errp)
536 BDRVNVMeState *s = bs->opaque;
537 int n = s->nr_queues;
538 NVMeQueuePair *q;
539 NvmeCmd cmd;
540 int queue_size = NVME_QUEUE_SIZE;
542 q = nvme_create_queue_pair(bs, n, queue_size, errp);
543 if (!q) {
544 return false;
546 cmd = (NvmeCmd) {
547 .opcode = NVME_ADM_CMD_CREATE_CQ,
548 .prp1 = cpu_to_le64(q->cq.iova),
549 .cdw10 = cpu_to_le32(((queue_size - 1) << 16) | (n & 0xFFFF)),
550 .cdw11 = cpu_to_le32(0x3),
552 if (nvme_cmd_sync(bs, s->queues[0], &cmd)) {
553 error_setg(errp, "Failed to create io queue [%d]", n);
554 nvme_free_queue_pair(bs, q);
555 return false;
557 cmd = (NvmeCmd) {
558 .opcode = NVME_ADM_CMD_CREATE_SQ,
559 .prp1 = cpu_to_le64(q->sq.iova),
560 .cdw10 = cpu_to_le32(((queue_size - 1) << 16) | (n & 0xFFFF)),
561 .cdw11 = cpu_to_le32(0x1 | (n << 16)),
563 if (nvme_cmd_sync(bs, s->queues[0], &cmd)) {
564 error_setg(errp, "Failed to create io queue [%d]", n);
565 nvme_free_queue_pair(bs, q);
566 return false;
568 s->queues = g_renew(NVMeQueuePair *, s->queues, n + 1);
569 s->queues[n] = q;
570 s->nr_queues++;
571 return true;
574 static bool nvme_poll_cb(void *opaque)
576 EventNotifier *e = opaque;
577 BDRVNVMeState *s = container_of(e, BDRVNVMeState, irq_notifier);
578 bool progress = false;
580 trace_nvme_poll_cb(s);
581 progress = nvme_poll_queues(s);
582 return progress;
585 static int nvme_init(BlockDriverState *bs, const char *device, int namespace,
586 Error **errp)
588 BDRVNVMeState *s = bs->opaque;
589 int ret;
590 uint64_t cap;
591 uint64_t timeout_ms;
592 uint64_t deadline, now;
593 Error *local_err = NULL;
595 qemu_co_mutex_init(&s->dma_map_lock);
596 qemu_co_queue_init(&s->dma_flush_queue);
597 s->device = g_strdup(device);
598 s->nsid = namespace;
599 s->aio_context = bdrv_get_aio_context(bs);
600 ret = event_notifier_init(&s->irq_notifier, 0);
601 if (ret) {
602 error_setg(errp, "Failed to init event notifier");
603 return ret;
606 s->vfio = qemu_vfio_open_pci(device, errp);
607 if (!s->vfio) {
608 ret = -EINVAL;
609 goto out;
612 s->regs = qemu_vfio_pci_map_bar(s->vfio, 0, 0, NVME_BAR_SIZE, errp);
613 if (!s->regs) {
614 ret = -EINVAL;
615 goto out;
618 /* Perform initialize sequence as described in NVMe spec "7.6.1
619 * Initialization". */
621 cap = le64_to_cpu(s->regs->cap);
622 if (!(cap & (1ULL << 37))) {
623 error_setg(errp, "Device doesn't support NVMe command set");
624 ret = -EINVAL;
625 goto out;
628 s->page_size = MAX(4096, 1 << (12 + ((cap >> 48) & 0xF)));
629 s->doorbell_scale = (4 << (((cap >> 32) & 0xF))) / sizeof(uint32_t);
630 bs->bl.opt_mem_alignment = s->page_size;
631 timeout_ms = MIN(500 * ((cap >> 24) & 0xFF), 30000);
633 /* Reset device to get a clean state. */
634 s->regs->cc = cpu_to_le32(le32_to_cpu(s->regs->cc) & 0xFE);
635 /* Wait for CSTS.RDY = 0. */
636 deadline = qemu_clock_get_ns(QEMU_CLOCK_REALTIME) + timeout_ms * 1000000ULL;
637 while (le32_to_cpu(s->regs->csts) & 0x1) {
638 if (qemu_clock_get_ns(QEMU_CLOCK_REALTIME) > deadline) {
639 error_setg(errp, "Timeout while waiting for device to reset (%"
640 PRId64 " ms)",
641 timeout_ms);
642 ret = -ETIMEDOUT;
643 goto out;
647 /* Set up admin queue. */
648 s->queues = g_new(NVMeQueuePair *, 1);
649 s->queues[0] = nvme_create_queue_pair(bs, 0, NVME_QUEUE_SIZE, errp);
650 if (!s->queues[0]) {
651 ret = -EINVAL;
652 goto out;
654 s->nr_queues = 1;
655 QEMU_BUILD_BUG_ON(NVME_QUEUE_SIZE & 0xF000);
656 s->regs->aqa = cpu_to_le32((NVME_QUEUE_SIZE << 16) | NVME_QUEUE_SIZE);
657 s->regs->asq = cpu_to_le64(s->queues[0]->sq.iova);
658 s->regs->acq = cpu_to_le64(s->queues[0]->cq.iova);
660 /* After setting up all control registers we can enable device now. */
661 s->regs->cc = cpu_to_le32((ctz32(NVME_CQ_ENTRY_BYTES) << 20) |
662 (ctz32(NVME_SQ_ENTRY_BYTES) << 16) |
663 0x1);
664 /* Wait for CSTS.RDY = 1. */
665 now = qemu_clock_get_ns(QEMU_CLOCK_REALTIME);
666 deadline = now + timeout_ms * 1000000;
667 while (!(le32_to_cpu(s->regs->csts) & 0x1)) {
668 if (qemu_clock_get_ns(QEMU_CLOCK_REALTIME) > deadline) {
669 error_setg(errp, "Timeout while waiting for device to start (%"
670 PRId64 " ms)",
671 timeout_ms);
672 ret = -ETIMEDOUT;
673 goto out;
677 ret = qemu_vfio_pci_init_irq(s->vfio, &s->irq_notifier,
678 VFIO_PCI_MSIX_IRQ_INDEX, errp);
679 if (ret) {
680 goto out;
682 aio_set_event_notifier(bdrv_get_aio_context(bs), &s->irq_notifier,
683 false, nvme_handle_event, nvme_poll_cb);
685 nvme_identify(bs, namespace, &local_err);
686 if (local_err) {
687 error_propagate(errp, local_err);
688 ret = -EIO;
689 goto out;
692 /* Set up command queues. */
693 if (!nvme_add_io_queue(bs, errp)) {
694 ret = -EIO;
696 out:
697 /* Cleaning up is done in nvme_file_open() upon error. */
698 return ret;
701 /* Parse a filename in the format of nvme://XXXX:XX:XX.X/X. Example:
703 * nvme://0000:44:00.0/1
705 * where the "nvme://" is a fixed form of the protocol prefix, the middle part
706 * is the PCI address, and the last part is the namespace number starting from
707 * 1 according to the NVMe spec. */
708 static void nvme_parse_filename(const char *filename, QDict *options,
709 Error **errp)
711 int pref = strlen("nvme://");
713 if (strlen(filename) > pref && !strncmp(filename, "nvme://", pref)) {
714 const char *tmp = filename + pref;
715 char *device;
716 const char *namespace;
717 unsigned long ns;
718 const char *slash = strchr(tmp, '/');
719 if (!slash) {
720 qdict_put_str(options, NVME_BLOCK_OPT_DEVICE, tmp);
721 return;
723 device = g_strndup(tmp, slash - tmp);
724 qdict_put_str(options, NVME_BLOCK_OPT_DEVICE, device);
725 g_free(device);
726 namespace = slash + 1;
727 if (*namespace && qemu_strtoul(namespace, NULL, 10, &ns)) {
728 error_setg(errp, "Invalid namespace '%s', positive number expected",
729 namespace);
730 return;
732 qdict_put_str(options, NVME_BLOCK_OPT_NAMESPACE,
733 *namespace ? namespace : "1");
737 static int nvme_enable_disable_write_cache(BlockDriverState *bs, bool enable,
738 Error **errp)
740 int ret;
741 BDRVNVMeState *s = bs->opaque;
742 NvmeCmd cmd = {
743 .opcode = NVME_ADM_CMD_SET_FEATURES,
744 .nsid = cpu_to_le32(s->nsid),
745 .cdw10 = cpu_to_le32(0x06),
746 .cdw11 = cpu_to_le32(enable ? 0x01 : 0x00),
749 ret = nvme_cmd_sync(bs, s->queues[0], &cmd);
750 if (ret) {
751 error_setg(errp, "Failed to configure NVMe write cache");
753 return ret;
756 static void nvme_close(BlockDriverState *bs)
758 int i;
759 BDRVNVMeState *s = bs->opaque;
761 for (i = 0; i < s->nr_queues; ++i) {
762 nvme_free_queue_pair(bs, s->queues[i]);
764 g_free(s->queues);
765 aio_set_event_notifier(bdrv_get_aio_context(bs), &s->irq_notifier,
766 false, NULL, NULL);
767 event_notifier_cleanup(&s->irq_notifier);
768 qemu_vfio_pci_unmap_bar(s->vfio, 0, (void *)s->regs, 0, NVME_BAR_SIZE);
769 qemu_vfio_close(s->vfio);
771 g_free(s->device);
774 static int nvme_file_open(BlockDriverState *bs, QDict *options, int flags,
775 Error **errp)
777 const char *device;
778 QemuOpts *opts;
779 int namespace;
780 int ret;
781 BDRVNVMeState *s = bs->opaque;
783 bs->supported_write_flags = BDRV_REQ_FUA;
785 opts = qemu_opts_create(&runtime_opts, NULL, 0, &error_abort);
786 qemu_opts_absorb_qdict(opts, options, &error_abort);
787 device = qemu_opt_get(opts, NVME_BLOCK_OPT_DEVICE);
788 if (!device) {
789 error_setg(errp, "'" NVME_BLOCK_OPT_DEVICE "' option is required");
790 qemu_opts_del(opts);
791 return -EINVAL;
794 namespace = qemu_opt_get_number(opts, NVME_BLOCK_OPT_NAMESPACE, 1);
795 ret = nvme_init(bs, device, namespace, errp);
796 qemu_opts_del(opts);
797 if (ret) {
798 goto fail;
800 if (flags & BDRV_O_NOCACHE) {
801 if (!s->write_cache_supported) {
802 error_setg(errp,
803 "NVMe controller doesn't support write cache configuration");
804 ret = -EINVAL;
805 } else {
806 ret = nvme_enable_disable_write_cache(bs, !(flags & BDRV_O_NOCACHE),
807 errp);
809 if (ret) {
810 goto fail;
813 return 0;
814 fail:
815 nvme_close(bs);
816 return ret;
819 static int64_t nvme_getlength(BlockDriverState *bs)
821 BDRVNVMeState *s = bs->opaque;
822 return s->nsze << s->blkshift;
825 static uint32_t nvme_get_blocksize(BlockDriverState *bs)
827 BDRVNVMeState *s = bs->opaque;
828 assert(s->blkshift >= BDRV_SECTOR_BITS && s->blkshift <= 12);
829 return UINT32_C(1) << s->blkshift;
832 static int nvme_probe_blocksizes(BlockDriverState *bs, BlockSizes *bsz)
834 uint32_t blocksize = nvme_get_blocksize(bs);
835 bsz->phys = blocksize;
836 bsz->log = blocksize;
837 return 0;
840 /* Called with s->dma_map_lock */
841 static coroutine_fn int nvme_cmd_unmap_qiov(BlockDriverState *bs,
842 QEMUIOVector *qiov)
844 int r = 0;
845 BDRVNVMeState *s = bs->opaque;
847 s->dma_map_count -= qiov->size;
848 if (!s->dma_map_count && !qemu_co_queue_empty(&s->dma_flush_queue)) {
849 r = qemu_vfio_dma_reset_temporary(s->vfio);
850 if (!r) {
851 qemu_co_queue_restart_all(&s->dma_flush_queue);
854 return r;
857 /* Called with s->dma_map_lock */
858 static coroutine_fn int nvme_cmd_map_qiov(BlockDriverState *bs, NvmeCmd *cmd,
859 NVMeRequest *req, QEMUIOVector *qiov)
861 BDRVNVMeState *s = bs->opaque;
862 uint64_t *pagelist = req->prp_list_page;
863 int i, j, r;
864 int entries = 0;
866 assert(qiov->size);
867 assert(QEMU_IS_ALIGNED(qiov->size, s->page_size));
868 assert(qiov->size / s->page_size <= s->page_size / sizeof(uint64_t));
869 for (i = 0; i < qiov->niov; ++i) {
870 bool retry = true;
871 uint64_t iova;
872 try_map:
873 r = qemu_vfio_dma_map(s->vfio,
874 qiov->iov[i].iov_base,
875 qiov->iov[i].iov_len,
876 true, &iova);
877 if (r == -ENOMEM && retry) {
878 retry = false;
879 trace_nvme_dma_flush_queue_wait(s);
880 if (s->dma_map_count) {
881 trace_nvme_dma_map_flush(s);
882 qemu_co_queue_wait(&s->dma_flush_queue, &s->dma_map_lock);
883 } else {
884 r = qemu_vfio_dma_reset_temporary(s->vfio);
885 if (r) {
886 goto fail;
889 goto try_map;
891 if (r) {
892 goto fail;
895 for (j = 0; j < qiov->iov[i].iov_len / s->page_size; j++) {
896 pagelist[entries++] = cpu_to_le64(iova + j * s->page_size);
898 trace_nvme_cmd_map_qiov_iov(s, i, qiov->iov[i].iov_base,
899 qiov->iov[i].iov_len / s->page_size);
902 s->dma_map_count += qiov->size;
904 assert(entries <= s->page_size / sizeof(uint64_t));
905 switch (entries) {
906 case 0:
907 abort();
908 case 1:
909 cmd->prp1 = pagelist[0];
910 cmd->prp2 = 0;
911 break;
912 case 2:
913 cmd->prp1 = pagelist[0];
914 cmd->prp2 = pagelist[1];
915 break;
916 default:
917 cmd->prp1 = pagelist[0];
918 cmd->prp2 = cpu_to_le64(req->prp_list_iova + sizeof(uint64_t));
919 break;
921 trace_nvme_cmd_map_qiov(s, cmd, req, qiov, entries);
922 for (i = 0; i < entries; ++i) {
923 trace_nvme_cmd_map_qiov_pages(s, i, pagelist[i]);
925 return 0;
926 fail:
927 /* No need to unmap [0 - i) iovs even if we've failed, since we don't
928 * increment s->dma_map_count. This is okay for fixed mapping memory areas
929 * because they are already mapped before calling this function; for
930 * temporary mappings, a later nvme_cmd_(un)map_qiov will reclaim by
931 * calling qemu_vfio_dma_reset_temporary when necessary. */
932 return r;
935 typedef struct {
936 Coroutine *co;
937 int ret;
938 AioContext *ctx;
939 } NVMeCoData;
941 static void nvme_rw_cb_bh(void *opaque)
943 NVMeCoData *data = opaque;
944 qemu_coroutine_enter(data->co);
947 static void nvme_rw_cb(void *opaque, int ret)
949 NVMeCoData *data = opaque;
950 data->ret = ret;
951 if (!data->co) {
952 /* The rw coroutine hasn't yielded, don't try to enter. */
953 return;
955 replay_bh_schedule_oneshot_event(data->ctx, nvme_rw_cb_bh, data);
958 static coroutine_fn int nvme_co_prw_aligned(BlockDriverState *bs,
959 uint64_t offset, uint64_t bytes,
960 QEMUIOVector *qiov,
961 bool is_write,
962 int flags)
964 int r;
965 BDRVNVMeState *s = bs->opaque;
966 NVMeQueuePair *ioq = s->queues[1];
967 NVMeRequest *req;
969 uint32_t cdw12 = (((bytes >> s->blkshift) - 1) & 0xFFFF) |
970 (flags & BDRV_REQ_FUA ? 1 << 30 : 0);
971 NvmeCmd cmd = {
972 .opcode = is_write ? NVME_CMD_WRITE : NVME_CMD_READ,
973 .nsid = cpu_to_le32(s->nsid),
974 .cdw10 = cpu_to_le32((offset >> s->blkshift) & 0xFFFFFFFF),
975 .cdw11 = cpu_to_le32(((offset >> s->blkshift) >> 32) & 0xFFFFFFFF),
976 .cdw12 = cpu_to_le32(cdw12),
978 NVMeCoData data = {
979 .ctx = bdrv_get_aio_context(bs),
980 .ret = -EINPROGRESS,
983 trace_nvme_prw_aligned(s, is_write, offset, bytes, flags, qiov->niov);
984 assert(s->nr_queues > 1);
985 req = nvme_get_free_req(ioq);
986 assert(req);
988 qemu_co_mutex_lock(&s->dma_map_lock);
989 r = nvme_cmd_map_qiov(bs, &cmd, req, qiov);
990 qemu_co_mutex_unlock(&s->dma_map_lock);
991 if (r) {
992 req->busy = false;
993 return r;
995 nvme_submit_command(s, ioq, req, &cmd, nvme_rw_cb, &data);
997 data.co = qemu_coroutine_self();
998 while (data.ret == -EINPROGRESS) {
999 qemu_coroutine_yield();
1002 qemu_co_mutex_lock(&s->dma_map_lock);
1003 r = nvme_cmd_unmap_qiov(bs, qiov);
1004 qemu_co_mutex_unlock(&s->dma_map_lock);
1005 if (r) {
1006 return r;
1009 trace_nvme_rw_done(s, is_write, offset, bytes, data.ret);
1010 return data.ret;
1013 static inline bool nvme_qiov_aligned(BlockDriverState *bs,
1014 const QEMUIOVector *qiov)
1016 int i;
1017 BDRVNVMeState *s = bs->opaque;
1019 for (i = 0; i < qiov->niov; ++i) {
1020 if (!QEMU_PTR_IS_ALIGNED(qiov->iov[i].iov_base, s->page_size) ||
1021 !QEMU_IS_ALIGNED(qiov->iov[i].iov_len, s->page_size)) {
1022 trace_nvme_qiov_unaligned(qiov, i, qiov->iov[i].iov_base,
1023 qiov->iov[i].iov_len, s->page_size);
1024 return false;
1027 return true;
1030 static int nvme_co_prw(BlockDriverState *bs, uint64_t offset, uint64_t bytes,
1031 QEMUIOVector *qiov, bool is_write, int flags)
1033 BDRVNVMeState *s = bs->opaque;
1034 int r;
1035 uint8_t *buf = NULL;
1036 QEMUIOVector local_qiov;
1038 assert(QEMU_IS_ALIGNED(offset, s->page_size));
1039 assert(QEMU_IS_ALIGNED(bytes, s->page_size));
1040 assert(bytes <= s->max_transfer);
1041 if (nvme_qiov_aligned(bs, qiov)) {
1042 return nvme_co_prw_aligned(bs, offset, bytes, qiov, is_write, flags);
1044 trace_nvme_prw_buffered(s, offset, bytes, qiov->niov, is_write);
1045 buf = qemu_try_blockalign(bs, bytes);
1047 if (!buf) {
1048 return -ENOMEM;
1050 qemu_iovec_init(&local_qiov, 1);
1051 if (is_write) {
1052 qemu_iovec_to_buf(qiov, 0, buf, bytes);
1054 qemu_iovec_add(&local_qiov, buf, bytes);
1055 r = nvme_co_prw_aligned(bs, offset, bytes, &local_qiov, is_write, flags);
1056 qemu_iovec_destroy(&local_qiov);
1057 if (!r && !is_write) {
1058 qemu_iovec_from_buf(qiov, 0, buf, bytes);
1060 qemu_vfree(buf);
1061 return r;
1064 static coroutine_fn int nvme_co_preadv(BlockDriverState *bs,
1065 uint64_t offset, uint64_t bytes,
1066 QEMUIOVector *qiov, int flags)
1068 return nvme_co_prw(bs, offset, bytes, qiov, false, flags);
1071 static coroutine_fn int nvme_co_pwritev(BlockDriverState *bs,
1072 uint64_t offset, uint64_t bytes,
1073 QEMUIOVector *qiov, int flags)
1075 return nvme_co_prw(bs, offset, bytes, qiov, true, flags);
1078 static coroutine_fn int nvme_co_flush(BlockDriverState *bs)
1080 BDRVNVMeState *s = bs->opaque;
1081 NVMeQueuePair *ioq = s->queues[1];
1082 NVMeRequest *req;
1083 NvmeCmd cmd = {
1084 .opcode = NVME_CMD_FLUSH,
1085 .nsid = cpu_to_le32(s->nsid),
1087 NVMeCoData data = {
1088 .ctx = bdrv_get_aio_context(bs),
1089 .ret = -EINPROGRESS,
1092 assert(s->nr_queues > 1);
1093 req = nvme_get_free_req(ioq);
1094 assert(req);
1095 nvme_submit_command(s, ioq, req, &cmd, nvme_rw_cb, &data);
1097 data.co = qemu_coroutine_self();
1098 if (data.ret == -EINPROGRESS) {
1099 qemu_coroutine_yield();
1102 return data.ret;
1106 static coroutine_fn int nvme_co_pwrite_zeroes(BlockDriverState *bs,
1107 int64_t offset,
1108 int bytes,
1109 BdrvRequestFlags flags)
1111 BDRVNVMeState *s = bs->opaque;
1112 NVMeQueuePair *ioq = s->queues[1];
1113 NVMeRequest *req;
1115 uint32_t cdw12 = ((bytes >> s->blkshift) - 1) & 0xFFFF;
1117 if (!s->supports_write_zeroes) {
1118 return -ENOTSUP;
1121 NvmeCmd cmd = {
1122 .opcode = NVME_CMD_WRITE_ZEROS,
1123 .nsid = cpu_to_le32(s->nsid),
1124 .cdw10 = cpu_to_le32((offset >> s->blkshift) & 0xFFFFFFFF),
1125 .cdw11 = cpu_to_le32(((offset >> s->blkshift) >> 32) & 0xFFFFFFFF),
1128 NVMeCoData data = {
1129 .ctx = bdrv_get_aio_context(bs),
1130 .ret = -EINPROGRESS,
1133 if (flags & BDRV_REQ_MAY_UNMAP) {
1134 cdw12 |= (1 << 25);
1137 if (flags & BDRV_REQ_FUA) {
1138 cdw12 |= (1 << 30);
1141 cmd.cdw12 = cpu_to_le32(cdw12);
1143 trace_nvme_write_zeroes(s, offset, bytes, flags);
1144 assert(s->nr_queues > 1);
1145 req = nvme_get_free_req(ioq);
1146 assert(req);
1148 nvme_submit_command(s, ioq, req, &cmd, nvme_rw_cb, &data);
1150 data.co = qemu_coroutine_self();
1151 while (data.ret == -EINPROGRESS) {
1152 qemu_coroutine_yield();
1155 trace_nvme_rw_done(s, true, offset, bytes, data.ret);
1156 return data.ret;
1160 static int coroutine_fn nvme_co_pdiscard(BlockDriverState *bs,
1161 int64_t offset,
1162 int bytes)
1164 BDRVNVMeState *s = bs->opaque;
1165 NVMeQueuePair *ioq = s->queues[1];
1166 NVMeRequest *req;
1167 NvmeDsmRange *buf;
1168 QEMUIOVector local_qiov;
1169 int ret;
1171 NvmeCmd cmd = {
1172 .opcode = NVME_CMD_DSM,
1173 .nsid = cpu_to_le32(s->nsid),
1174 .cdw10 = cpu_to_le32(0), /*number of ranges - 0 based*/
1175 .cdw11 = cpu_to_le32(1 << 2), /*deallocate bit*/
1178 NVMeCoData data = {
1179 .ctx = bdrv_get_aio_context(bs),
1180 .ret = -EINPROGRESS,
1183 if (!s->supports_discard) {
1184 return -ENOTSUP;
1187 assert(s->nr_queues > 1);
1189 buf = qemu_try_blockalign0(bs, s->page_size);
1190 if (!buf) {
1191 return -ENOMEM;
1194 buf->nlb = cpu_to_le32(bytes >> s->blkshift);
1195 buf->slba = cpu_to_le64(offset >> s->blkshift);
1196 buf->cattr = 0;
1198 qemu_iovec_init(&local_qiov, 1);
1199 qemu_iovec_add(&local_qiov, buf, 4096);
1201 req = nvme_get_free_req(ioq);
1202 assert(req);
1204 qemu_co_mutex_lock(&s->dma_map_lock);
1205 ret = nvme_cmd_map_qiov(bs, &cmd, req, &local_qiov);
1206 qemu_co_mutex_unlock(&s->dma_map_lock);
1208 if (ret) {
1209 req->busy = false;
1210 goto out;
1213 trace_nvme_dsm(s, offset, bytes);
1215 nvme_submit_command(s, ioq, req, &cmd, nvme_rw_cb, &data);
1217 data.co = qemu_coroutine_self();
1218 while (data.ret == -EINPROGRESS) {
1219 qemu_coroutine_yield();
1222 qemu_co_mutex_lock(&s->dma_map_lock);
1223 ret = nvme_cmd_unmap_qiov(bs, &local_qiov);
1224 qemu_co_mutex_unlock(&s->dma_map_lock);
1226 if (ret) {
1227 goto out;
1230 ret = data.ret;
1231 trace_nvme_dsm_done(s, offset, bytes, ret);
1232 out:
1233 qemu_iovec_destroy(&local_qiov);
1234 qemu_vfree(buf);
1235 return ret;
1240 static int nvme_reopen_prepare(BDRVReopenState *reopen_state,
1241 BlockReopenQueue *queue, Error **errp)
1243 return 0;
1246 static void nvme_refresh_filename(BlockDriverState *bs)
1248 BDRVNVMeState *s = bs->opaque;
1250 snprintf(bs->exact_filename, sizeof(bs->exact_filename), "nvme://%s/%i",
1251 s->device, s->nsid);
1254 static void nvme_refresh_limits(BlockDriverState *bs, Error **errp)
1256 BDRVNVMeState *s = bs->opaque;
1258 bs->bl.opt_mem_alignment = s->page_size;
1259 bs->bl.request_alignment = s->page_size;
1260 bs->bl.max_transfer = s->max_transfer;
1263 static void nvme_detach_aio_context(BlockDriverState *bs)
1265 BDRVNVMeState *s = bs->opaque;
1267 aio_set_event_notifier(bdrv_get_aio_context(bs), &s->irq_notifier,
1268 false, NULL, NULL);
1271 static void nvme_attach_aio_context(BlockDriverState *bs,
1272 AioContext *new_context)
1274 BDRVNVMeState *s = bs->opaque;
1276 s->aio_context = new_context;
1277 aio_set_event_notifier(new_context, &s->irq_notifier,
1278 false, nvme_handle_event, nvme_poll_cb);
1281 static void nvme_aio_plug(BlockDriverState *bs)
1283 BDRVNVMeState *s = bs->opaque;
1284 assert(!s->plugged);
1285 s->plugged = true;
1288 static void nvme_aio_unplug(BlockDriverState *bs)
1290 int i;
1291 BDRVNVMeState *s = bs->opaque;
1292 assert(s->plugged);
1293 s->plugged = false;
1294 for (i = 1; i < s->nr_queues; i++) {
1295 NVMeQueuePair *q = s->queues[i];
1296 qemu_mutex_lock(&q->lock);
1297 nvme_kick(s, q);
1298 nvme_process_completion(s, q);
1299 qemu_mutex_unlock(&q->lock);
1303 static void nvme_register_buf(BlockDriverState *bs, void *host, size_t size)
1305 int ret;
1306 BDRVNVMeState *s = bs->opaque;
1308 ret = qemu_vfio_dma_map(s->vfio, host, size, false, NULL);
1309 if (ret) {
1310 /* FIXME: we may run out of IOVA addresses after repeated
1311 * bdrv_register_buf/bdrv_unregister_buf, because nvme_vfio_dma_unmap
1312 * doesn't reclaim addresses for fixed mappings. */
1313 error_report("nvme_register_buf failed: %s", strerror(-ret));
1317 static void nvme_unregister_buf(BlockDriverState *bs, void *host)
1319 BDRVNVMeState *s = bs->opaque;
1321 qemu_vfio_dma_unmap(s->vfio, host);
1324 static const char *const nvme_strong_runtime_opts[] = {
1325 NVME_BLOCK_OPT_DEVICE,
1326 NVME_BLOCK_OPT_NAMESPACE,
1328 NULL
1331 static BlockDriver bdrv_nvme = {
1332 .format_name = "nvme",
1333 .protocol_name = "nvme",
1334 .instance_size = sizeof(BDRVNVMeState),
1336 .bdrv_parse_filename = nvme_parse_filename,
1337 .bdrv_file_open = nvme_file_open,
1338 .bdrv_close = nvme_close,
1339 .bdrv_getlength = nvme_getlength,
1340 .bdrv_probe_blocksizes = nvme_probe_blocksizes,
1342 .bdrv_co_preadv = nvme_co_preadv,
1343 .bdrv_co_pwritev = nvme_co_pwritev,
1345 .bdrv_co_pwrite_zeroes = nvme_co_pwrite_zeroes,
1346 .bdrv_co_pdiscard = nvme_co_pdiscard,
1348 .bdrv_co_flush_to_disk = nvme_co_flush,
1349 .bdrv_reopen_prepare = nvme_reopen_prepare,
1351 .bdrv_refresh_filename = nvme_refresh_filename,
1352 .bdrv_refresh_limits = nvme_refresh_limits,
1353 .strong_runtime_opts = nvme_strong_runtime_opts,
1355 .bdrv_detach_aio_context = nvme_detach_aio_context,
1356 .bdrv_attach_aio_context = nvme_attach_aio_context,
1358 .bdrv_io_plug = nvme_aio_plug,
1359 .bdrv_io_unplug = nvme_aio_unplug,
1361 .bdrv_register_buf = nvme_register_buf,
1362 .bdrv_unregister_buf = nvme_unregister_buf,
1365 static void bdrv_nvme_init(void)
1367 bdrv_register(&bdrv_nvme);
1370 block_init(bdrv_nvme_init);