4 * Copyright (c) 2012 SUSE LINUX Products GmbH
6 * This program is free software; you can redistribute it and/or
7 * modify it under the terms of the GNU General Public License
8 * as published by the Free Software Foundation; either version 2
9 * of the License, or (at your option) any later version.
11 * This program is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 * GNU General Public License for more details.
16 * You should have received a copy of the GNU General Public License
17 * along with this program; if not, see
18 * <http://www.gnu.org/licenses/gpl-2.0.html>
21 #include "qemu/osdep.h"
22 #include "qemu/qemu-print.h"
23 #include "qemu-common.h"
24 #include "target/arm/idau.h"
25 #include "qemu/module.h"
26 #include "qapi/error.h"
27 #include "qapi/visitor.h"
29 #include "internals.h"
30 #include "exec/exec-all.h"
31 #include "hw/qdev-properties.h"
32 #if !defined(CONFIG_USER_ONLY)
33 #include "hw/loader.h"
34 #include "hw/boards.h"
36 #include "sysemu/sysemu.h"
37 #include "sysemu/tcg.h"
38 #include "sysemu/hw_accel.h"
40 #include "disas/capstone.h"
41 #include "fpu/softfloat.h"
43 static void arm_cpu_set_pc(CPUState
*cs
, vaddr value
)
45 ARMCPU
*cpu
= ARM_CPU(cs
);
46 CPUARMState
*env
= &cpu
->env
;
52 env
->regs
[15] = value
& ~1;
53 env
->thumb
= value
& 1;
57 static void arm_cpu_synchronize_from_tb(CPUState
*cs
, TranslationBlock
*tb
)
59 ARMCPU
*cpu
= ARM_CPU(cs
);
60 CPUARMState
*env
= &cpu
->env
;
63 * It's OK to look at env for the current mode here, because it's
64 * never possible for an AArch64 TB to chain to an AArch32 TB.
69 env
->regs
[15] = tb
->pc
;
73 static bool arm_cpu_has_work(CPUState
*cs
)
75 ARMCPU
*cpu
= ARM_CPU(cs
);
77 return (cpu
->power_state
!= PSCI_OFF
)
78 && cs
->interrupt_request
&
79 (CPU_INTERRUPT_FIQ
| CPU_INTERRUPT_HARD
80 | CPU_INTERRUPT_VFIQ
| CPU_INTERRUPT_VIRQ
81 | CPU_INTERRUPT_EXITTB
);
84 void arm_register_pre_el_change_hook(ARMCPU
*cpu
, ARMELChangeHookFn
*hook
,
87 ARMELChangeHook
*entry
= g_new0(ARMELChangeHook
, 1);
90 entry
->opaque
= opaque
;
92 QLIST_INSERT_HEAD(&cpu
->pre_el_change_hooks
, entry
, node
);
95 void arm_register_el_change_hook(ARMCPU
*cpu
, ARMELChangeHookFn
*hook
,
98 ARMELChangeHook
*entry
= g_new0(ARMELChangeHook
, 1);
101 entry
->opaque
= opaque
;
103 QLIST_INSERT_HEAD(&cpu
->el_change_hooks
, entry
, node
);
106 static void cp_reg_reset(gpointer key
, gpointer value
, gpointer opaque
)
108 /* Reset a single ARMCPRegInfo register */
109 ARMCPRegInfo
*ri
= value
;
110 ARMCPU
*cpu
= opaque
;
112 if (ri
->type
& (ARM_CP_SPECIAL
| ARM_CP_ALIAS
)) {
117 ri
->resetfn(&cpu
->env
, ri
);
121 /* A zero offset is never possible as it would be regs[0]
122 * so we use it to indicate that reset is being handled elsewhere.
123 * This is basically only used for fields in non-core coprocessors
124 * (like the pxa2xx ones).
126 if (!ri
->fieldoffset
) {
130 if (cpreg_field_is_64bit(ri
)) {
131 CPREG_FIELD64(&cpu
->env
, ri
) = ri
->resetvalue
;
133 CPREG_FIELD32(&cpu
->env
, ri
) = ri
->resetvalue
;
137 static void cp_reg_check_reset(gpointer key
, gpointer value
, gpointer opaque
)
139 /* Purely an assertion check: we've already done reset once,
140 * so now check that running the reset for the cpreg doesn't
141 * change its value. This traps bugs where two different cpregs
142 * both try to reset the same state field but to different values.
144 ARMCPRegInfo
*ri
= value
;
145 ARMCPU
*cpu
= opaque
;
146 uint64_t oldvalue
, newvalue
;
148 if (ri
->type
& (ARM_CP_SPECIAL
| ARM_CP_ALIAS
| ARM_CP_NO_RAW
)) {
152 oldvalue
= read_raw_cp_reg(&cpu
->env
, ri
);
153 cp_reg_reset(key
, value
, opaque
);
154 newvalue
= read_raw_cp_reg(&cpu
->env
, ri
);
155 assert(oldvalue
== newvalue
);
158 static void arm_cpu_reset(DeviceState
*dev
)
160 CPUState
*s
= CPU(dev
);
161 ARMCPU
*cpu
= ARM_CPU(s
);
162 ARMCPUClass
*acc
= ARM_CPU_GET_CLASS(cpu
);
163 CPUARMState
*env
= &cpu
->env
;
165 acc
->parent_reset(dev
);
167 memset(env
, 0, offsetof(CPUARMState
, end_reset_fields
));
169 g_hash_table_foreach(cpu
->cp_regs
, cp_reg_reset
, cpu
);
170 g_hash_table_foreach(cpu
->cp_regs
, cp_reg_check_reset
, cpu
);
172 env
->vfp
.xregs
[ARM_VFP_FPSID
] = cpu
->reset_fpsid
;
173 env
->vfp
.xregs
[ARM_VFP_MVFR0
] = cpu
->isar
.mvfr0
;
174 env
->vfp
.xregs
[ARM_VFP_MVFR1
] = cpu
->isar
.mvfr1
;
175 env
->vfp
.xregs
[ARM_VFP_MVFR2
] = cpu
->isar
.mvfr2
;
177 cpu
->power_state
= s
->start_powered_off
? PSCI_OFF
: PSCI_ON
;
179 if (arm_feature(env
, ARM_FEATURE_IWMMXT
)) {
180 env
->iwmmxt
.cregs
[ARM_IWMMXT_wCID
] = 0x69051000 | 'Q';
183 if (arm_feature(env
, ARM_FEATURE_AARCH64
)) {
184 /* 64 bit CPUs always start in 64 bit mode */
186 #if defined(CONFIG_USER_ONLY)
187 env
->pstate
= PSTATE_MODE_EL0t
;
188 /* Userspace expects access to DC ZVA, CTL_EL0 and the cache ops */
189 env
->cp15
.sctlr_el
[1] |= SCTLR_UCT
| SCTLR_UCI
| SCTLR_DZE
;
190 /* Enable all PAC keys. */
191 env
->cp15
.sctlr_el
[1] |= (SCTLR_EnIA
| SCTLR_EnIB
|
192 SCTLR_EnDA
| SCTLR_EnDB
);
193 /* and to the FP/Neon instructions */
194 env
->cp15
.cpacr_el1
= deposit64(env
->cp15
.cpacr_el1
, 20, 2, 3);
195 /* and to the SVE instructions */
196 env
->cp15
.cpacr_el1
= deposit64(env
->cp15
.cpacr_el1
, 16, 2, 3);
197 /* with reasonable vector length */
198 if (cpu_isar_feature(aa64_sve
, cpu
)) {
199 env
->vfp
.zcr_el
[1] = MIN(cpu
->sve_max_vq
- 1, 3);
202 * Enable TBI0 and TBI1. While the real kernel only enables TBI0,
203 * turning on both here will produce smaller code and otherwise
204 * make no difference to the user-level emulation.
206 * In sve_probe_page, we assume that this is set.
207 * Do not modify this without other changes.
209 env
->cp15
.tcr_el
[1].raw_tcr
= (3ULL << 37);
211 /* Reset into the highest available EL */
212 if (arm_feature(env
, ARM_FEATURE_EL3
)) {
213 env
->pstate
= PSTATE_MODE_EL3h
;
214 } else if (arm_feature(env
, ARM_FEATURE_EL2
)) {
215 env
->pstate
= PSTATE_MODE_EL2h
;
217 env
->pstate
= PSTATE_MODE_EL1h
;
219 env
->pc
= cpu
->rvbar
;
222 #if defined(CONFIG_USER_ONLY)
223 /* Userspace expects access to cp10 and cp11 for FP/Neon */
224 env
->cp15
.cpacr_el1
= deposit64(env
->cp15
.cpacr_el1
, 20, 4, 0xf);
228 #if defined(CONFIG_USER_ONLY)
229 env
->uncached_cpsr
= ARM_CPU_MODE_USR
;
230 /* For user mode we must enable access to coprocessors */
231 env
->vfp
.xregs
[ARM_VFP_FPEXC
] = 1 << 30;
232 if (arm_feature(env
, ARM_FEATURE_IWMMXT
)) {
233 env
->cp15
.c15_cpar
= 3;
234 } else if (arm_feature(env
, ARM_FEATURE_XSCALE
)) {
235 env
->cp15
.c15_cpar
= 1;
240 * If the highest available EL is EL2, AArch32 will start in Hyp
241 * mode; otherwise it starts in SVC. Note that if we start in
242 * AArch64 then these values in the uncached_cpsr will be ignored.
244 if (arm_feature(env
, ARM_FEATURE_EL2
) &&
245 !arm_feature(env
, ARM_FEATURE_EL3
)) {
246 env
->uncached_cpsr
= ARM_CPU_MODE_HYP
;
248 env
->uncached_cpsr
= ARM_CPU_MODE_SVC
;
250 env
->daif
= PSTATE_D
| PSTATE_A
| PSTATE_I
| PSTATE_F
;
252 if (arm_feature(env
, ARM_FEATURE_M
)) {
253 uint32_t initial_msp
; /* Loaded from 0x0 */
254 uint32_t initial_pc
; /* Loaded from 0x4 */
258 if (cpu_isar_feature(aa32_lob
, cpu
)) {
260 * LTPSIZE is constant 4 if MVE not implemented, and resets
261 * to an UNKNOWN value if MVE is implemented. We choose to
264 env
->v7m
.ltpsize
= 4;
265 /* The LTPSIZE field in FPDSCR is constant and reads as 4. */
266 env
->v7m
.fpdscr
[M_REG_NS
] = 4 << FPCR_LTPSIZE_SHIFT
;
267 env
->v7m
.fpdscr
[M_REG_S
] = 4 << FPCR_LTPSIZE_SHIFT
;
270 if (arm_feature(env
, ARM_FEATURE_M_SECURITY
)) {
271 env
->v7m
.secure
= true;
273 /* This bit resets to 0 if security is supported, but 1 if
274 * it is not. The bit is not present in v7M, but we set it
275 * here so we can avoid having to make checks on it conditional
276 * on ARM_FEATURE_V8 (we don't let the guest see the bit).
278 env
->v7m
.aircr
= R_V7M_AIRCR_BFHFNMINS_MASK
;
280 * Set NSACR to indicate "NS access permitted to everything";
281 * this avoids having to have all the tests of it being
282 * conditional on ARM_FEATURE_M_SECURITY. Note also that from
283 * v8.1M the guest-visible value of NSACR in a CPU without the
284 * Security Extension is 0xcff.
286 env
->v7m
.nsacr
= 0xcff;
289 /* In v7M the reset value of this bit is IMPDEF, but ARM recommends
290 * that it resets to 1, so QEMU always does that rather than making
291 * it dependent on CPU model. In v8M it is RES1.
293 env
->v7m
.ccr
[M_REG_NS
] = R_V7M_CCR_STKALIGN_MASK
;
294 env
->v7m
.ccr
[M_REG_S
] = R_V7M_CCR_STKALIGN_MASK
;
295 if (arm_feature(env
, ARM_FEATURE_V8
)) {
296 /* in v8M the NONBASETHRDENA bit [0] is RES1 */
297 env
->v7m
.ccr
[M_REG_NS
] |= R_V7M_CCR_NONBASETHRDENA_MASK
;
298 env
->v7m
.ccr
[M_REG_S
] |= R_V7M_CCR_NONBASETHRDENA_MASK
;
300 if (!arm_feature(env
, ARM_FEATURE_M_MAIN
)) {
301 env
->v7m
.ccr
[M_REG_NS
] |= R_V7M_CCR_UNALIGN_TRP_MASK
;
302 env
->v7m
.ccr
[M_REG_S
] |= R_V7M_CCR_UNALIGN_TRP_MASK
;
305 if (cpu_isar_feature(aa32_vfp_simd
, cpu
)) {
306 env
->v7m
.fpccr
[M_REG_NS
] = R_V7M_FPCCR_ASPEN_MASK
;
307 env
->v7m
.fpccr
[M_REG_S
] = R_V7M_FPCCR_ASPEN_MASK
|
308 R_V7M_FPCCR_LSPEN_MASK
| R_V7M_FPCCR_S_MASK
;
310 /* Unlike A/R profile, M profile defines the reset LR value */
311 env
->regs
[14] = 0xffffffff;
313 env
->v7m
.vecbase
[M_REG_S
] = cpu
->init_svtor
& 0xffffff80;
315 /* Load the initial SP and PC from offset 0 and 4 in the vector table */
316 vecbase
= env
->v7m
.vecbase
[env
->v7m
.secure
];
317 rom
= rom_ptr(vecbase
, 8);
319 /* Address zero is covered by ROM which hasn't yet been
320 * copied into physical memory.
322 initial_msp
= ldl_p(rom
);
323 initial_pc
= ldl_p(rom
+ 4);
325 /* Address zero not covered by a ROM blob, or the ROM blob
326 * is in non-modifiable memory and this is a second reset after
327 * it got copied into memory. In the latter case, rom_ptr
328 * will return a NULL pointer and we should use ldl_phys instead.
330 initial_msp
= ldl_phys(s
->as
, vecbase
);
331 initial_pc
= ldl_phys(s
->as
, vecbase
+ 4);
334 env
->regs
[13] = initial_msp
& 0xFFFFFFFC;
335 env
->regs
[15] = initial_pc
& ~1;
336 env
->thumb
= initial_pc
& 1;
339 /* AArch32 has a hard highvec setting of 0xFFFF0000. If we are currently
340 * executing as AArch32 then check if highvecs are enabled and
341 * adjust the PC accordingly.
343 if (A32_BANKED_CURRENT_REG_GET(env
, sctlr
) & SCTLR_V
) {
344 env
->regs
[15] = 0xFFFF0000;
347 /* M profile requires that reset clears the exclusive monitor;
348 * A profile does not, but clearing it makes more sense than having it
349 * set with an exclusive access on address zero.
351 arm_clear_exclusive(env
);
353 env
->vfp
.xregs
[ARM_VFP_FPEXC
] = 0;
356 if (arm_feature(env
, ARM_FEATURE_PMSA
)) {
357 if (cpu
->pmsav7_dregion
> 0) {
358 if (arm_feature(env
, ARM_FEATURE_V8
)) {
359 memset(env
->pmsav8
.rbar
[M_REG_NS
], 0,
360 sizeof(*env
->pmsav8
.rbar
[M_REG_NS
])
361 * cpu
->pmsav7_dregion
);
362 memset(env
->pmsav8
.rlar
[M_REG_NS
], 0,
363 sizeof(*env
->pmsav8
.rlar
[M_REG_NS
])
364 * cpu
->pmsav7_dregion
);
365 if (arm_feature(env
, ARM_FEATURE_M_SECURITY
)) {
366 memset(env
->pmsav8
.rbar
[M_REG_S
], 0,
367 sizeof(*env
->pmsav8
.rbar
[M_REG_S
])
368 * cpu
->pmsav7_dregion
);
369 memset(env
->pmsav8
.rlar
[M_REG_S
], 0,
370 sizeof(*env
->pmsav8
.rlar
[M_REG_S
])
371 * cpu
->pmsav7_dregion
);
373 } else if (arm_feature(env
, ARM_FEATURE_V7
)) {
374 memset(env
->pmsav7
.drbar
, 0,
375 sizeof(*env
->pmsav7
.drbar
) * cpu
->pmsav7_dregion
);
376 memset(env
->pmsav7
.drsr
, 0,
377 sizeof(*env
->pmsav7
.drsr
) * cpu
->pmsav7_dregion
);
378 memset(env
->pmsav7
.dracr
, 0,
379 sizeof(*env
->pmsav7
.dracr
) * cpu
->pmsav7_dregion
);
382 env
->pmsav7
.rnr
[M_REG_NS
] = 0;
383 env
->pmsav7
.rnr
[M_REG_S
] = 0;
384 env
->pmsav8
.mair0
[M_REG_NS
] = 0;
385 env
->pmsav8
.mair0
[M_REG_S
] = 0;
386 env
->pmsav8
.mair1
[M_REG_NS
] = 0;
387 env
->pmsav8
.mair1
[M_REG_S
] = 0;
390 if (arm_feature(env
, ARM_FEATURE_M_SECURITY
)) {
391 if (cpu
->sau_sregion
> 0) {
392 memset(env
->sau
.rbar
, 0, sizeof(*env
->sau
.rbar
) * cpu
->sau_sregion
);
393 memset(env
->sau
.rlar
, 0, sizeof(*env
->sau
.rlar
) * cpu
->sau_sregion
);
396 /* SAU_CTRL reset value is IMPDEF; we choose 0, which is what
397 * the Cortex-M33 does.
402 set_flush_to_zero(1, &env
->vfp
.standard_fp_status
);
403 set_flush_inputs_to_zero(1, &env
->vfp
.standard_fp_status
);
404 set_default_nan_mode(1, &env
->vfp
.standard_fp_status
);
405 set_default_nan_mode(1, &env
->vfp
.standard_fp_status_f16
);
406 set_float_detect_tininess(float_tininess_before_rounding
,
407 &env
->vfp
.fp_status
);
408 set_float_detect_tininess(float_tininess_before_rounding
,
409 &env
->vfp
.standard_fp_status
);
410 set_float_detect_tininess(float_tininess_before_rounding
,
411 &env
->vfp
.fp_status_f16
);
412 set_float_detect_tininess(float_tininess_before_rounding
,
413 &env
->vfp
.standard_fp_status_f16
);
414 #ifndef CONFIG_USER_ONLY
416 kvm_arm_reset_vcpu(cpu
);
420 hw_breakpoint_update_all(cpu
);
421 hw_watchpoint_update_all(cpu
);
422 arm_rebuild_hflags(env
);
425 static inline bool arm_excp_unmasked(CPUState
*cs
, unsigned int excp_idx
,
426 unsigned int target_el
,
427 unsigned int cur_el
, bool secure
,
430 CPUARMState
*env
= cs
->env_ptr
;
431 bool pstate_unmasked
;
432 bool unmasked
= false;
435 * Don't take exceptions if they target a lower EL.
436 * This check should catch any exceptions that would not be taken
439 if (cur_el
> target_el
) {
445 pstate_unmasked
= !(env
->daif
& PSTATE_F
);
449 pstate_unmasked
= !(env
->daif
& PSTATE_I
);
453 if (secure
|| !(hcr_el2
& HCR_FMO
) || (hcr_el2
& HCR_TGE
)) {
454 /* VFIQs are only taken when hypervized and non-secure. */
457 return !(env
->daif
& PSTATE_F
);
459 if (secure
|| !(hcr_el2
& HCR_IMO
) || (hcr_el2
& HCR_TGE
)) {
460 /* VIRQs are only taken when hypervized and non-secure. */
463 return !(env
->daif
& PSTATE_I
);
465 g_assert_not_reached();
469 * Use the target EL, current execution state and SCR/HCR settings to
470 * determine whether the corresponding CPSR bit is used to mask the
473 if ((target_el
> cur_el
) && (target_el
!= 1)) {
474 /* Exceptions targeting a higher EL may not be maskable */
475 if (arm_feature(env
, ARM_FEATURE_AARCH64
)) {
477 * 64-bit masking rules are simple: exceptions to EL3
478 * can't be masked, and exceptions to EL2 can only be
479 * masked from Secure state. The HCR and SCR settings
480 * don't affect the masking logic, only the interrupt routing.
482 if (target_el
== 3 || !secure
) {
487 * The old 32-bit-only environment has a more complicated
488 * masking setup. HCR and SCR bits not only affect interrupt
489 * routing but also change the behaviour of masking.
496 * If FIQs are routed to EL3 or EL2 then there are cases where
497 * we override the CPSR.F in determining if the exception is
498 * masked or not. If neither of these are set then we fall back
499 * to the CPSR.F setting otherwise we further assess the state
502 hcr
= hcr_el2
& HCR_FMO
;
503 scr
= (env
->cp15
.scr_el3
& SCR_FIQ
);
506 * When EL3 is 32-bit, the SCR.FW bit controls whether the
507 * CPSR.F bit masks FIQ interrupts when taken in non-secure
508 * state. If SCR.FW is set then FIQs can be masked by CPSR.F
509 * when non-secure but only when FIQs are only routed to EL3.
511 scr
= scr
&& !((env
->cp15
.scr_el3
& SCR_FW
) && !hcr
);
515 * When EL3 execution state is 32-bit, if HCR.IMO is set then
516 * we may override the CPSR.I masking when in non-secure state.
517 * The SCR.IRQ setting has already been taken into consideration
518 * when setting the target EL, so it does not have a further
521 hcr
= hcr_el2
& HCR_IMO
;
525 g_assert_not_reached();
528 if ((scr
|| hcr
) && !secure
) {
535 * The PSTATE bits only mask the interrupt if we have not overriden the
538 return unmasked
|| pstate_unmasked
;
541 bool arm_cpu_exec_interrupt(CPUState
*cs
, int interrupt_request
)
543 CPUClass
*cc
= CPU_GET_CLASS(cs
);
544 CPUARMState
*env
= cs
->env_ptr
;
545 uint32_t cur_el
= arm_current_el(env
);
546 bool secure
= arm_is_secure(env
);
547 uint64_t hcr_el2
= arm_hcr_el2_eff(env
);
551 /* The prioritization of interrupts is IMPLEMENTATION DEFINED. */
553 if (interrupt_request
& CPU_INTERRUPT_FIQ
) {
555 target_el
= arm_phys_excp_target_el(cs
, excp_idx
, cur_el
, secure
);
556 if (arm_excp_unmasked(cs
, excp_idx
, target_el
,
557 cur_el
, secure
, hcr_el2
)) {
561 if (interrupt_request
& CPU_INTERRUPT_HARD
) {
563 target_el
= arm_phys_excp_target_el(cs
, excp_idx
, cur_el
, secure
);
564 if (arm_excp_unmasked(cs
, excp_idx
, target_el
,
565 cur_el
, secure
, hcr_el2
)) {
569 if (interrupt_request
& CPU_INTERRUPT_VIRQ
) {
570 excp_idx
= EXCP_VIRQ
;
572 if (arm_excp_unmasked(cs
, excp_idx
, target_el
,
573 cur_el
, secure
, hcr_el2
)) {
577 if (interrupt_request
& CPU_INTERRUPT_VFIQ
) {
578 excp_idx
= EXCP_VFIQ
;
580 if (arm_excp_unmasked(cs
, excp_idx
, target_el
,
581 cur_el
, secure
, hcr_el2
)) {
588 cs
->exception_index
= excp_idx
;
589 env
->exception
.target_el
= target_el
;
590 cc
->do_interrupt(cs
);
594 void arm_cpu_update_virq(ARMCPU
*cpu
)
597 * Update the interrupt level for VIRQ, which is the logical OR of
598 * the HCR_EL2.VI bit and the input line level from the GIC.
600 CPUARMState
*env
= &cpu
->env
;
601 CPUState
*cs
= CPU(cpu
);
603 bool new_state
= (env
->cp15
.hcr_el2
& HCR_VI
) ||
604 (env
->irq_line_state
& CPU_INTERRUPT_VIRQ
);
606 if (new_state
!= ((cs
->interrupt_request
& CPU_INTERRUPT_VIRQ
) != 0)) {
608 cpu_interrupt(cs
, CPU_INTERRUPT_VIRQ
);
610 cpu_reset_interrupt(cs
, CPU_INTERRUPT_VIRQ
);
615 void arm_cpu_update_vfiq(ARMCPU
*cpu
)
618 * Update the interrupt level for VFIQ, which is the logical OR of
619 * the HCR_EL2.VF bit and the input line level from the GIC.
621 CPUARMState
*env
= &cpu
->env
;
622 CPUState
*cs
= CPU(cpu
);
624 bool new_state
= (env
->cp15
.hcr_el2
& HCR_VF
) ||
625 (env
->irq_line_state
& CPU_INTERRUPT_VFIQ
);
627 if (new_state
!= ((cs
->interrupt_request
& CPU_INTERRUPT_VFIQ
) != 0)) {
629 cpu_interrupt(cs
, CPU_INTERRUPT_VFIQ
);
631 cpu_reset_interrupt(cs
, CPU_INTERRUPT_VFIQ
);
636 #ifndef CONFIG_USER_ONLY
637 static void arm_cpu_set_irq(void *opaque
, int irq
, int level
)
639 ARMCPU
*cpu
= opaque
;
640 CPUARMState
*env
= &cpu
->env
;
641 CPUState
*cs
= CPU(cpu
);
642 static const int mask
[] = {
643 [ARM_CPU_IRQ
] = CPU_INTERRUPT_HARD
,
644 [ARM_CPU_FIQ
] = CPU_INTERRUPT_FIQ
,
645 [ARM_CPU_VIRQ
] = CPU_INTERRUPT_VIRQ
,
646 [ARM_CPU_VFIQ
] = CPU_INTERRUPT_VFIQ
650 env
->irq_line_state
|= mask
[irq
];
652 env
->irq_line_state
&= ~mask
[irq
];
657 assert(arm_feature(env
, ARM_FEATURE_EL2
));
658 arm_cpu_update_virq(cpu
);
661 assert(arm_feature(env
, ARM_FEATURE_EL2
));
662 arm_cpu_update_vfiq(cpu
);
667 cpu_interrupt(cs
, mask
[irq
]);
669 cpu_reset_interrupt(cs
, mask
[irq
]);
673 g_assert_not_reached();
677 static void arm_cpu_kvm_set_irq(void *opaque
, int irq
, int level
)
680 ARMCPU
*cpu
= opaque
;
681 CPUARMState
*env
= &cpu
->env
;
682 CPUState
*cs
= CPU(cpu
);
683 uint32_t linestate_bit
;
688 irq_id
= KVM_ARM_IRQ_CPU_IRQ
;
689 linestate_bit
= CPU_INTERRUPT_HARD
;
692 irq_id
= KVM_ARM_IRQ_CPU_FIQ
;
693 linestate_bit
= CPU_INTERRUPT_FIQ
;
696 g_assert_not_reached();
700 env
->irq_line_state
|= linestate_bit
;
702 env
->irq_line_state
&= ~linestate_bit
;
704 kvm_arm_set_irq(cs
->cpu_index
, KVM_ARM_IRQ_TYPE_CPU
, irq_id
, !!level
);
708 static bool arm_cpu_virtio_is_big_endian(CPUState
*cs
)
710 ARMCPU
*cpu
= ARM_CPU(cs
);
711 CPUARMState
*env
= &cpu
->env
;
713 cpu_synchronize_state(cs
);
714 return arm_cpu_data_is_big_endian(env
);
720 print_insn_thumb1(bfd_vma pc
, disassemble_info
*info
)
722 return print_insn_arm(pc
| 1, info
);
725 static void arm_disas_set_info(CPUState
*cpu
, disassemble_info
*info
)
727 ARMCPU
*ac
= ARM_CPU(cpu
);
728 CPUARMState
*env
= &ac
->env
;
732 /* We might not be compiled with the A64 disassembler
733 * because it needs a C++ compiler. Leave print_insn
734 * unset in this case to use the caller default behaviour.
736 #if defined(CONFIG_ARM_A64_DIS)
737 info
->print_insn
= print_insn_arm_a64
;
739 info
->cap_arch
= CS_ARCH_ARM64
;
740 info
->cap_insn_unit
= 4;
741 info
->cap_insn_split
= 4;
745 info
->print_insn
= print_insn_thumb1
;
746 info
->cap_insn_unit
= 2;
747 info
->cap_insn_split
= 4;
748 cap_mode
= CS_MODE_THUMB
;
750 info
->print_insn
= print_insn_arm
;
751 info
->cap_insn_unit
= 4;
752 info
->cap_insn_split
= 4;
753 cap_mode
= CS_MODE_ARM
;
755 if (arm_feature(env
, ARM_FEATURE_V8
)) {
756 cap_mode
|= CS_MODE_V8
;
758 if (arm_feature(env
, ARM_FEATURE_M
)) {
759 cap_mode
|= CS_MODE_MCLASS
;
761 info
->cap_arch
= CS_ARCH_ARM
;
762 info
->cap_mode
= cap_mode
;
765 sctlr_b
= arm_sctlr_b(env
);
766 if (bswap_code(sctlr_b
)) {
767 #ifdef TARGET_WORDS_BIGENDIAN
768 info
->endian
= BFD_ENDIAN_LITTLE
;
770 info
->endian
= BFD_ENDIAN_BIG
;
773 info
->flags
&= ~INSN_ARM_BE32
;
774 #ifndef CONFIG_USER_ONLY
776 info
->flags
|= INSN_ARM_BE32
;
781 #ifdef TARGET_AARCH64
783 static void aarch64_cpu_dump_state(CPUState
*cs
, FILE *f
, int flags
)
785 ARMCPU
*cpu
= ARM_CPU(cs
);
786 CPUARMState
*env
= &cpu
->env
;
787 uint32_t psr
= pstate_read(env
);
789 int el
= arm_current_el(env
);
790 const char *ns_status
;
792 qemu_fprintf(f
, " PC=%016" PRIx64
" ", env
->pc
);
793 for (i
= 0; i
< 32; i
++) {
795 qemu_fprintf(f
, " SP=%016" PRIx64
"\n", env
->xregs
[i
]);
797 qemu_fprintf(f
, "X%02d=%016" PRIx64
"%s", i
, env
->xregs
[i
],
798 (i
+ 2) % 3 ? " " : "\n");
802 if (arm_feature(env
, ARM_FEATURE_EL3
) && el
!= 3) {
803 ns_status
= env
->cp15
.scr_el3
& SCR_NS
? "NS " : "S ";
807 qemu_fprintf(f
, "PSTATE=%08x %c%c%c%c %sEL%d%c",
809 psr
& PSTATE_N
? 'N' : '-',
810 psr
& PSTATE_Z
? 'Z' : '-',
811 psr
& PSTATE_C
? 'C' : '-',
812 psr
& PSTATE_V
? 'V' : '-',
815 psr
& PSTATE_SP
? 'h' : 't');
817 if (cpu_isar_feature(aa64_bti
, cpu
)) {
818 qemu_fprintf(f
, " BTYPE=%d", (psr
& PSTATE_BTYPE
) >> 10);
820 if (!(flags
& CPU_DUMP_FPU
)) {
821 qemu_fprintf(f
, "\n");
824 if (fp_exception_el(env
, el
) != 0) {
825 qemu_fprintf(f
, " FPU disabled\n");
828 qemu_fprintf(f
, " FPCR=%08x FPSR=%08x\n",
829 vfp_get_fpcr(env
), vfp_get_fpsr(env
));
831 if (cpu_isar_feature(aa64_sve
, cpu
) && sve_exception_el(env
, el
) == 0) {
832 int j
, zcr_len
= sve_zcr_len_for_el(env
, el
);
834 for (i
= 0; i
<= FFR_PRED_NUM
; i
++) {
836 if (i
== FFR_PRED_NUM
) {
837 qemu_fprintf(f
, "FFR=");
838 /* It's last, so end the line. */
841 qemu_fprintf(f
, "P%02d=", i
);
854 /* More than one quadword per predicate. */
859 for (j
= zcr_len
/ 4; j
>= 0; j
--) {
861 if (j
* 4 + 4 <= zcr_len
+ 1) {
864 digits
= (zcr_len
% 4 + 1) * 4;
866 qemu_fprintf(f
, "%0*" PRIx64
"%s", digits
,
867 env
->vfp
.pregs
[i
].p
[j
],
868 j
? ":" : eol
? "\n" : " ");
872 for (i
= 0; i
< 32; i
++) {
874 qemu_fprintf(f
, "Z%02d=%016" PRIx64
":%016" PRIx64
"%s",
875 i
, env
->vfp
.zregs
[i
].d
[1],
876 env
->vfp
.zregs
[i
].d
[0], i
& 1 ? "\n" : " ");
877 } else if (zcr_len
== 1) {
878 qemu_fprintf(f
, "Z%02d=%016" PRIx64
":%016" PRIx64
879 ":%016" PRIx64
":%016" PRIx64
"\n",
880 i
, env
->vfp
.zregs
[i
].d
[3], env
->vfp
.zregs
[i
].d
[2],
881 env
->vfp
.zregs
[i
].d
[1], env
->vfp
.zregs
[i
].d
[0]);
883 for (j
= zcr_len
; j
>= 0; j
--) {
884 bool odd
= (zcr_len
- j
) % 2 != 0;
886 qemu_fprintf(f
, "Z%02d[%x-%x]=", i
, j
, j
- 1);
889 qemu_fprintf(f
, " [%x-%x]=", j
, j
- 1);
891 qemu_fprintf(f
, " [%x]=", j
);
894 qemu_fprintf(f
, "%016" PRIx64
":%016" PRIx64
"%s",
895 env
->vfp
.zregs
[i
].d
[j
* 2 + 1],
896 env
->vfp
.zregs
[i
].d
[j
* 2],
897 odd
|| j
== 0 ? "\n" : ":");
902 for (i
= 0; i
< 32; i
++) {
903 uint64_t *q
= aa64_vfp_qreg(env
, i
);
904 qemu_fprintf(f
, "Q%02d=%016" PRIx64
":%016" PRIx64
"%s",
905 i
, q
[1], q
[0], (i
& 1 ? "\n" : " "));
912 static inline void aarch64_cpu_dump_state(CPUState
*cs
, FILE *f
, int flags
)
914 g_assert_not_reached();
919 static void arm_cpu_dump_state(CPUState
*cs
, FILE *f
, int flags
)
921 ARMCPU
*cpu
= ARM_CPU(cs
);
922 CPUARMState
*env
= &cpu
->env
;
926 aarch64_cpu_dump_state(cs
, f
, flags
);
930 for (i
= 0; i
< 16; i
++) {
931 qemu_fprintf(f
, "R%02d=%08x", i
, env
->regs
[i
]);
933 qemu_fprintf(f
, "\n");
935 qemu_fprintf(f
, " ");
939 if (arm_feature(env
, ARM_FEATURE_M
)) {
940 uint32_t xpsr
= xpsr_read(env
);
942 const char *ns_status
= "";
944 if (arm_feature(env
, ARM_FEATURE_M_SECURITY
)) {
945 ns_status
= env
->v7m
.secure
? "S " : "NS ";
948 if (xpsr
& XPSR_EXCP
) {
951 if (env
->v7m
.control
[env
->v7m
.secure
] & R_V7M_CONTROL_NPRIV_MASK
) {
952 mode
= "unpriv-thread";
954 mode
= "priv-thread";
958 qemu_fprintf(f
, "XPSR=%08x %c%c%c%c %c %s%s\n",
960 xpsr
& XPSR_N
? 'N' : '-',
961 xpsr
& XPSR_Z
? 'Z' : '-',
962 xpsr
& XPSR_C
? 'C' : '-',
963 xpsr
& XPSR_V
? 'V' : '-',
964 xpsr
& XPSR_T
? 'T' : 'A',
968 uint32_t psr
= cpsr_read(env
);
969 const char *ns_status
= "";
971 if (arm_feature(env
, ARM_FEATURE_EL3
) &&
972 (psr
& CPSR_M
) != ARM_CPU_MODE_MON
) {
973 ns_status
= env
->cp15
.scr_el3
& SCR_NS
? "NS " : "S ";
976 qemu_fprintf(f
, "PSR=%08x %c%c%c%c %c %s%s%d\n",
978 psr
& CPSR_N
? 'N' : '-',
979 psr
& CPSR_Z
? 'Z' : '-',
980 psr
& CPSR_C
? 'C' : '-',
981 psr
& CPSR_V
? 'V' : '-',
982 psr
& CPSR_T
? 'T' : 'A',
984 aarch32_mode_name(psr
), (psr
& 0x10) ? 32 : 26);
987 if (flags
& CPU_DUMP_FPU
) {
989 if (cpu_isar_feature(aa32_simd_r32
, cpu
)) {
991 } else if (cpu_isar_feature(aa32_vfp_simd
, cpu
)) {
994 for (i
= 0; i
< numvfpregs
; i
++) {
995 uint64_t v
= *aa32_vfp_dreg(env
, i
);
996 qemu_fprintf(f
, "s%02d=%08x s%02d=%08x d%02d=%016" PRIx64
"\n",
998 i
* 2 + 1, (uint32_t)(v
>> 32),
1001 qemu_fprintf(f
, "FPSCR: %08x\n", vfp_get_fpscr(env
));
1005 uint64_t arm_cpu_mp_affinity(int idx
, uint8_t clustersz
)
1007 uint32_t Aff1
= idx
/ clustersz
;
1008 uint32_t Aff0
= idx
% clustersz
;
1009 return (Aff1
<< ARM_AFF1_SHIFT
) | Aff0
;
1012 static void cpreg_hashtable_data_destroy(gpointer data
)
1015 * Destroy function for cpu->cp_regs hashtable data entries.
1016 * We must free the name string because it was g_strdup()ed in
1017 * add_cpreg_to_hashtable(). It's OK to cast away the 'const'
1018 * from r->name because we know we definitely allocated it.
1020 ARMCPRegInfo
*r
= data
;
1022 g_free((void *)r
->name
);
1026 static void arm_cpu_initfn(Object
*obj
)
1028 ARMCPU
*cpu
= ARM_CPU(obj
);
1030 cpu_set_cpustate_pointers(cpu
);
1031 cpu
->cp_regs
= g_hash_table_new_full(g_int_hash
, g_int_equal
,
1032 g_free
, cpreg_hashtable_data_destroy
);
1034 QLIST_INIT(&cpu
->pre_el_change_hooks
);
1035 QLIST_INIT(&cpu
->el_change_hooks
);
1037 #ifndef CONFIG_USER_ONLY
1038 /* Our inbound IRQ and FIQ lines */
1039 if (kvm_enabled()) {
1040 /* VIRQ and VFIQ are unused with KVM but we add them to maintain
1041 * the same interface as non-KVM CPUs.
1043 qdev_init_gpio_in(DEVICE(cpu
), arm_cpu_kvm_set_irq
, 4);
1045 qdev_init_gpio_in(DEVICE(cpu
), arm_cpu_set_irq
, 4);
1048 qdev_init_gpio_out(DEVICE(cpu
), cpu
->gt_timer_outputs
,
1049 ARRAY_SIZE(cpu
->gt_timer_outputs
));
1051 qdev_init_gpio_out_named(DEVICE(cpu
), &cpu
->gicv3_maintenance_interrupt
,
1052 "gicv3-maintenance-interrupt", 1);
1053 qdev_init_gpio_out_named(DEVICE(cpu
), &cpu
->pmu_interrupt
,
1054 "pmu-interrupt", 1);
1057 /* DTB consumers generally don't in fact care what the 'compatible'
1058 * string is, so always provide some string and trust that a hypothetical
1059 * picky DTB consumer will also provide a helpful error message.
1061 cpu
->dtb_compatible
= "qemu,unknown";
1062 cpu
->psci_version
= 1; /* By default assume PSCI v0.1 */
1063 cpu
->kvm_target
= QEMU_KVM_ARM_TARGET_NONE
;
1065 if (tcg_enabled()) {
1066 cpu
->psci_version
= 2; /* TCG implements PSCI 0.2 */
1070 static Property arm_cpu_gt_cntfrq_property
=
1071 DEFINE_PROP_UINT64("cntfrq", ARMCPU
, gt_cntfrq_hz
,
1072 NANOSECONDS_PER_SECOND
/ GTIMER_SCALE
);
1074 static Property arm_cpu_reset_cbar_property
=
1075 DEFINE_PROP_UINT64("reset-cbar", ARMCPU
, reset_cbar
, 0);
1077 static Property arm_cpu_reset_hivecs_property
=
1078 DEFINE_PROP_BOOL("reset-hivecs", ARMCPU
, reset_hivecs
, false);
1080 static Property arm_cpu_rvbar_property
=
1081 DEFINE_PROP_UINT64("rvbar", ARMCPU
, rvbar
, 0);
1083 #ifndef CONFIG_USER_ONLY
1084 static Property arm_cpu_has_el2_property
=
1085 DEFINE_PROP_BOOL("has_el2", ARMCPU
, has_el2
, true);
1087 static Property arm_cpu_has_el3_property
=
1088 DEFINE_PROP_BOOL("has_el3", ARMCPU
, has_el3
, true);
1091 static Property arm_cpu_cfgend_property
=
1092 DEFINE_PROP_BOOL("cfgend", ARMCPU
, cfgend
, false);
1094 static Property arm_cpu_has_vfp_property
=
1095 DEFINE_PROP_BOOL("vfp", ARMCPU
, has_vfp
, true);
1097 static Property arm_cpu_has_neon_property
=
1098 DEFINE_PROP_BOOL("neon", ARMCPU
, has_neon
, true);
1100 static Property arm_cpu_has_dsp_property
=
1101 DEFINE_PROP_BOOL("dsp", ARMCPU
, has_dsp
, true);
1103 static Property arm_cpu_has_mpu_property
=
1104 DEFINE_PROP_BOOL("has-mpu", ARMCPU
, has_mpu
, true);
1106 /* This is like DEFINE_PROP_UINT32 but it doesn't set the default value,
1107 * because the CPU initfn will have already set cpu->pmsav7_dregion to
1108 * the right value for that particular CPU type, and we don't want
1109 * to override that with an incorrect constant value.
1111 static Property arm_cpu_pmsav7_dregion_property
=
1112 DEFINE_PROP_UNSIGNED_NODEFAULT("pmsav7-dregion", ARMCPU
,
1114 qdev_prop_uint32
, uint32_t);
1116 static bool arm_get_pmu(Object
*obj
, Error
**errp
)
1118 ARMCPU
*cpu
= ARM_CPU(obj
);
1120 return cpu
->has_pmu
;
1123 static void arm_set_pmu(Object
*obj
, bool value
, Error
**errp
)
1125 ARMCPU
*cpu
= ARM_CPU(obj
);
1128 if (kvm_enabled() && !kvm_arm_pmu_supported()) {
1129 error_setg(errp
, "'pmu' feature not supported by KVM on this host");
1132 set_feature(&cpu
->env
, ARM_FEATURE_PMU
);
1134 unset_feature(&cpu
->env
, ARM_FEATURE_PMU
);
1136 cpu
->has_pmu
= value
;
1139 unsigned int gt_cntfrq_period_ns(ARMCPU
*cpu
)
1142 * The exact approach to calculating guest ticks is:
1144 * muldiv64(qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL), cpu->gt_cntfrq_hz,
1145 * NANOSECONDS_PER_SECOND);
1147 * We don't do that. Rather we intentionally use integer division
1148 * truncation below and in the caller for the conversion of host monotonic
1149 * time to guest ticks to provide the exact inverse for the semantics of
1150 * the QEMUTimer scale factor. QEMUTimer's scale facter is an integer, so
1151 * it loses precision when representing frequencies where
1152 * `(NANOSECONDS_PER_SECOND % cpu->gt_cntfrq) > 0` holds. Failing to
1153 * provide an exact inverse leads to scheduling timers with negative
1154 * periods, which in turn leads to sticky behaviour in the guest.
1156 * Finally, CNTFRQ is effectively capped at 1GHz to ensure our scale factor
1157 * cannot become zero.
1159 return NANOSECONDS_PER_SECOND
> cpu
->gt_cntfrq_hz
?
1160 NANOSECONDS_PER_SECOND
/ cpu
->gt_cntfrq_hz
: 1;
1163 void arm_cpu_post_init(Object
*obj
)
1165 ARMCPU
*cpu
= ARM_CPU(obj
);
1167 /* M profile implies PMSA. We have to do this here rather than
1168 * in realize with the other feature-implication checks because
1169 * we look at the PMSA bit to see if we should add some properties.
1171 if (arm_feature(&cpu
->env
, ARM_FEATURE_M
)) {
1172 set_feature(&cpu
->env
, ARM_FEATURE_PMSA
);
1175 if (arm_feature(&cpu
->env
, ARM_FEATURE_CBAR
) ||
1176 arm_feature(&cpu
->env
, ARM_FEATURE_CBAR_RO
)) {
1177 qdev_property_add_static(DEVICE(obj
), &arm_cpu_reset_cbar_property
);
1180 if (!arm_feature(&cpu
->env
, ARM_FEATURE_M
)) {
1181 qdev_property_add_static(DEVICE(obj
), &arm_cpu_reset_hivecs_property
);
1184 if (arm_feature(&cpu
->env
, ARM_FEATURE_AARCH64
)) {
1185 qdev_property_add_static(DEVICE(obj
), &arm_cpu_rvbar_property
);
1188 #ifndef CONFIG_USER_ONLY
1189 if (arm_feature(&cpu
->env
, ARM_FEATURE_EL3
)) {
1190 /* Add the has_el3 state CPU property only if EL3 is allowed. This will
1191 * prevent "has_el3" from existing on CPUs which cannot support EL3.
1193 qdev_property_add_static(DEVICE(obj
), &arm_cpu_has_el3_property
);
1195 object_property_add_link(obj
, "secure-memory",
1197 (Object
**)&cpu
->secure_memory
,
1198 qdev_prop_allow_set_link_before_realize
,
1199 OBJ_PROP_LINK_STRONG
);
1202 if (arm_feature(&cpu
->env
, ARM_FEATURE_EL2
)) {
1203 qdev_property_add_static(DEVICE(obj
), &arm_cpu_has_el2_property
);
1207 if (arm_feature(&cpu
->env
, ARM_FEATURE_PMU
)) {
1208 cpu
->has_pmu
= true;
1209 object_property_add_bool(obj
, "pmu", arm_get_pmu
, arm_set_pmu
);
1213 * Allow user to turn off VFP and Neon support, but only for TCG --
1214 * KVM does not currently allow us to lie to the guest about its
1215 * ID/feature registers, so the guest always sees what the host has.
1217 if (arm_feature(&cpu
->env
, ARM_FEATURE_AARCH64
)
1218 ? cpu_isar_feature(aa64_fp_simd
, cpu
)
1219 : cpu_isar_feature(aa32_vfp
, cpu
)) {
1220 cpu
->has_vfp
= true;
1221 if (!kvm_enabled()) {
1222 qdev_property_add_static(DEVICE(obj
), &arm_cpu_has_vfp_property
);
1226 if (arm_feature(&cpu
->env
, ARM_FEATURE_NEON
)) {
1227 cpu
->has_neon
= true;
1228 if (!kvm_enabled()) {
1229 qdev_property_add_static(DEVICE(obj
), &arm_cpu_has_neon_property
);
1233 if (arm_feature(&cpu
->env
, ARM_FEATURE_M
) &&
1234 arm_feature(&cpu
->env
, ARM_FEATURE_THUMB_DSP
)) {
1235 qdev_property_add_static(DEVICE(obj
), &arm_cpu_has_dsp_property
);
1238 if (arm_feature(&cpu
->env
, ARM_FEATURE_PMSA
)) {
1239 qdev_property_add_static(DEVICE(obj
), &arm_cpu_has_mpu_property
);
1240 if (arm_feature(&cpu
->env
, ARM_FEATURE_V7
)) {
1241 qdev_property_add_static(DEVICE(obj
),
1242 &arm_cpu_pmsav7_dregion_property
);
1246 if (arm_feature(&cpu
->env
, ARM_FEATURE_M_SECURITY
)) {
1247 object_property_add_link(obj
, "idau", TYPE_IDAU_INTERFACE
, &cpu
->idau
,
1248 qdev_prop_allow_set_link_before_realize
,
1249 OBJ_PROP_LINK_STRONG
);
1251 * M profile: initial value of the Secure VTOR. We can't just use
1252 * a simple DEFINE_PROP_UINT32 for this because we want to permit
1253 * the property to be set after realize.
1255 object_property_add_uint32_ptr(obj
, "init-svtor",
1257 OBJ_PROP_FLAG_READWRITE
);
1260 qdev_property_add_static(DEVICE(obj
), &arm_cpu_cfgend_property
);
1262 if (arm_feature(&cpu
->env
, ARM_FEATURE_GENERIC_TIMER
)) {
1263 qdev_property_add_static(DEVICE(cpu
), &arm_cpu_gt_cntfrq_property
);
1266 if (kvm_enabled()) {
1267 kvm_arm_add_vcpu_properties(obj
);
1270 #ifndef CONFIG_USER_ONLY
1271 if (arm_feature(&cpu
->env
, ARM_FEATURE_AARCH64
) &&
1272 cpu_isar_feature(aa64_mte
, cpu
)) {
1273 object_property_add_link(obj
, "tag-memory",
1275 (Object
**)&cpu
->tag_memory
,
1276 qdev_prop_allow_set_link_before_realize
,
1277 OBJ_PROP_LINK_STRONG
);
1279 if (arm_feature(&cpu
->env
, ARM_FEATURE_EL3
)) {
1280 object_property_add_link(obj
, "secure-tag-memory",
1282 (Object
**)&cpu
->secure_tag_memory
,
1283 qdev_prop_allow_set_link_before_realize
,
1284 OBJ_PROP_LINK_STRONG
);
1290 static void arm_cpu_finalizefn(Object
*obj
)
1292 ARMCPU
*cpu
= ARM_CPU(obj
);
1293 ARMELChangeHook
*hook
, *next
;
1295 g_hash_table_destroy(cpu
->cp_regs
);
1297 QLIST_FOREACH_SAFE(hook
, &cpu
->pre_el_change_hooks
, node
, next
) {
1298 QLIST_REMOVE(hook
, node
);
1301 QLIST_FOREACH_SAFE(hook
, &cpu
->el_change_hooks
, node
, next
) {
1302 QLIST_REMOVE(hook
, node
);
1305 #ifndef CONFIG_USER_ONLY
1306 if (cpu
->pmu_timer
) {
1307 timer_del(cpu
->pmu_timer
);
1308 timer_deinit(cpu
->pmu_timer
);
1309 timer_free(cpu
->pmu_timer
);
1314 void arm_cpu_finalize_features(ARMCPU
*cpu
, Error
**errp
)
1316 Error
*local_err
= NULL
;
1318 if (arm_feature(&cpu
->env
, ARM_FEATURE_AARCH64
)) {
1319 arm_cpu_sve_finalize(cpu
, &local_err
);
1320 if (local_err
!= NULL
) {
1321 error_propagate(errp
, local_err
);
1326 if (kvm_enabled()) {
1327 kvm_arm_steal_time_finalize(cpu
, &local_err
);
1328 if (local_err
!= NULL
) {
1329 error_propagate(errp
, local_err
);
1335 static void arm_cpu_realizefn(DeviceState
*dev
, Error
**errp
)
1337 CPUState
*cs
= CPU(dev
);
1338 ARMCPU
*cpu
= ARM_CPU(dev
);
1339 ARMCPUClass
*acc
= ARM_CPU_GET_CLASS(dev
);
1340 CPUARMState
*env
= &cpu
->env
;
1342 Error
*local_err
= NULL
;
1343 bool no_aa32
= false;
1345 /* If we needed to query the host kernel for the CPU features
1346 * then it's possible that might have failed in the initfn, but
1347 * this is the first point where we can report it.
1349 if (cpu
->host_cpu_probe_failed
) {
1350 if (!kvm_enabled()) {
1351 error_setg(errp
, "The 'host' CPU type can only be used with KVM");
1353 error_setg(errp
, "Failed to retrieve host CPU features");
1358 #ifndef CONFIG_USER_ONLY
1359 /* The NVIC and M-profile CPU are two halves of a single piece of
1360 * hardware; trying to use one without the other is a command line
1361 * error and will result in segfaults if not caught here.
1363 if (arm_feature(env
, ARM_FEATURE_M
)) {
1365 error_setg(errp
, "This board cannot be used with Cortex-M CPUs");
1370 error_setg(errp
, "This board can only be used with Cortex-M CPUs");
1378 if (arm_feature(env
, ARM_FEATURE_GENERIC_TIMER
)) {
1379 if (!cpu
->gt_cntfrq_hz
) {
1380 error_setg(errp
, "Invalid CNTFRQ: %"PRId64
"Hz",
1384 scale
= gt_cntfrq_period_ns(cpu
);
1386 scale
= GTIMER_SCALE
;
1389 cpu
->gt_timer
[GTIMER_PHYS
] = timer_new(QEMU_CLOCK_VIRTUAL
, scale
,
1390 arm_gt_ptimer_cb
, cpu
);
1391 cpu
->gt_timer
[GTIMER_VIRT
] = timer_new(QEMU_CLOCK_VIRTUAL
, scale
,
1392 arm_gt_vtimer_cb
, cpu
);
1393 cpu
->gt_timer
[GTIMER_HYP
] = timer_new(QEMU_CLOCK_VIRTUAL
, scale
,
1394 arm_gt_htimer_cb
, cpu
);
1395 cpu
->gt_timer
[GTIMER_SEC
] = timer_new(QEMU_CLOCK_VIRTUAL
, scale
,
1396 arm_gt_stimer_cb
, cpu
);
1397 cpu
->gt_timer
[GTIMER_HYPVIRT
] = timer_new(QEMU_CLOCK_VIRTUAL
, scale
,
1398 arm_gt_hvtimer_cb
, cpu
);
1402 cpu_exec_realizefn(cs
, &local_err
);
1403 if (local_err
!= NULL
) {
1404 error_propagate(errp
, local_err
);
1408 arm_cpu_finalize_features(cpu
, &local_err
);
1409 if (local_err
!= NULL
) {
1410 error_propagate(errp
, local_err
);
1414 if (arm_feature(env
, ARM_FEATURE_AARCH64
) &&
1415 cpu
->has_vfp
!= cpu
->has_neon
) {
1417 * This is an architectural requirement for AArch64; AArch32 is
1418 * more flexible and permits VFP-no-Neon and Neon-no-VFP.
1421 "AArch64 CPUs must have both VFP and Neon or neither");
1425 if (!cpu
->has_vfp
) {
1429 t
= cpu
->isar
.id_aa64isar1
;
1430 t
= FIELD_DP64(t
, ID_AA64ISAR1
, JSCVT
, 0);
1431 cpu
->isar
.id_aa64isar1
= t
;
1433 t
= cpu
->isar
.id_aa64pfr0
;
1434 t
= FIELD_DP64(t
, ID_AA64PFR0
, FP
, 0xf);
1435 cpu
->isar
.id_aa64pfr0
= t
;
1437 u
= cpu
->isar
.id_isar6
;
1438 u
= FIELD_DP32(u
, ID_ISAR6
, JSCVT
, 0);
1439 cpu
->isar
.id_isar6
= u
;
1441 u
= cpu
->isar
.mvfr0
;
1442 u
= FIELD_DP32(u
, MVFR0
, FPSP
, 0);
1443 u
= FIELD_DP32(u
, MVFR0
, FPDP
, 0);
1444 u
= FIELD_DP32(u
, MVFR0
, FPDIVIDE
, 0);
1445 u
= FIELD_DP32(u
, MVFR0
, FPSQRT
, 0);
1446 u
= FIELD_DP32(u
, MVFR0
, FPROUND
, 0);
1447 if (!arm_feature(env
, ARM_FEATURE_M
)) {
1448 u
= FIELD_DP32(u
, MVFR0
, FPTRAP
, 0);
1449 u
= FIELD_DP32(u
, MVFR0
, FPSHVEC
, 0);
1451 cpu
->isar
.mvfr0
= u
;
1453 u
= cpu
->isar
.mvfr1
;
1454 u
= FIELD_DP32(u
, MVFR1
, FPFTZ
, 0);
1455 u
= FIELD_DP32(u
, MVFR1
, FPDNAN
, 0);
1456 u
= FIELD_DP32(u
, MVFR1
, FPHP
, 0);
1457 if (arm_feature(env
, ARM_FEATURE_M
)) {
1458 u
= FIELD_DP32(u
, MVFR1
, FP16
, 0);
1460 cpu
->isar
.mvfr1
= u
;
1462 u
= cpu
->isar
.mvfr2
;
1463 u
= FIELD_DP32(u
, MVFR2
, FPMISC
, 0);
1464 cpu
->isar
.mvfr2
= u
;
1467 if (!cpu
->has_neon
) {
1471 unset_feature(env
, ARM_FEATURE_NEON
);
1473 t
= cpu
->isar
.id_aa64isar0
;
1474 t
= FIELD_DP64(t
, ID_AA64ISAR0
, DP
, 0);
1475 cpu
->isar
.id_aa64isar0
= t
;
1477 t
= cpu
->isar
.id_aa64isar1
;
1478 t
= FIELD_DP64(t
, ID_AA64ISAR1
, FCMA
, 0);
1479 cpu
->isar
.id_aa64isar1
= t
;
1481 t
= cpu
->isar
.id_aa64pfr0
;
1482 t
= FIELD_DP64(t
, ID_AA64PFR0
, ADVSIMD
, 0xf);
1483 cpu
->isar
.id_aa64pfr0
= t
;
1485 u
= cpu
->isar
.id_isar5
;
1486 u
= FIELD_DP32(u
, ID_ISAR5
, RDM
, 0);
1487 u
= FIELD_DP32(u
, ID_ISAR5
, VCMA
, 0);
1488 cpu
->isar
.id_isar5
= u
;
1490 u
= cpu
->isar
.id_isar6
;
1491 u
= FIELD_DP32(u
, ID_ISAR6
, DP
, 0);
1492 u
= FIELD_DP32(u
, ID_ISAR6
, FHM
, 0);
1493 cpu
->isar
.id_isar6
= u
;
1495 if (!arm_feature(env
, ARM_FEATURE_M
)) {
1496 u
= cpu
->isar
.mvfr1
;
1497 u
= FIELD_DP32(u
, MVFR1
, SIMDLS
, 0);
1498 u
= FIELD_DP32(u
, MVFR1
, SIMDINT
, 0);
1499 u
= FIELD_DP32(u
, MVFR1
, SIMDSP
, 0);
1500 u
= FIELD_DP32(u
, MVFR1
, SIMDHP
, 0);
1501 cpu
->isar
.mvfr1
= u
;
1503 u
= cpu
->isar
.mvfr2
;
1504 u
= FIELD_DP32(u
, MVFR2
, SIMDMISC
, 0);
1505 cpu
->isar
.mvfr2
= u
;
1509 if (!cpu
->has_neon
&& !cpu
->has_vfp
) {
1513 t
= cpu
->isar
.id_aa64isar0
;
1514 t
= FIELD_DP64(t
, ID_AA64ISAR0
, FHM
, 0);
1515 cpu
->isar
.id_aa64isar0
= t
;
1517 t
= cpu
->isar
.id_aa64isar1
;
1518 t
= FIELD_DP64(t
, ID_AA64ISAR1
, FRINTTS
, 0);
1519 cpu
->isar
.id_aa64isar1
= t
;
1521 u
= cpu
->isar
.mvfr0
;
1522 u
= FIELD_DP32(u
, MVFR0
, SIMDREG
, 0);
1523 cpu
->isar
.mvfr0
= u
;
1525 /* Despite the name, this field covers both VFP and Neon */
1526 u
= cpu
->isar
.mvfr1
;
1527 u
= FIELD_DP32(u
, MVFR1
, SIMDFMAC
, 0);
1528 cpu
->isar
.mvfr1
= u
;
1531 if (arm_feature(env
, ARM_FEATURE_M
) && !cpu
->has_dsp
) {
1534 unset_feature(env
, ARM_FEATURE_THUMB_DSP
);
1536 u
= cpu
->isar
.id_isar1
;
1537 u
= FIELD_DP32(u
, ID_ISAR1
, EXTEND
, 1);
1538 cpu
->isar
.id_isar1
= u
;
1540 u
= cpu
->isar
.id_isar2
;
1541 u
= FIELD_DP32(u
, ID_ISAR2
, MULTU
, 1);
1542 u
= FIELD_DP32(u
, ID_ISAR2
, MULTS
, 1);
1543 cpu
->isar
.id_isar2
= u
;
1545 u
= cpu
->isar
.id_isar3
;
1546 u
= FIELD_DP32(u
, ID_ISAR3
, SIMD
, 1);
1547 u
= FIELD_DP32(u
, ID_ISAR3
, SATURATE
, 0);
1548 cpu
->isar
.id_isar3
= u
;
1551 /* Some features automatically imply others: */
1552 if (arm_feature(env
, ARM_FEATURE_V8
)) {
1553 if (arm_feature(env
, ARM_FEATURE_M
)) {
1554 set_feature(env
, ARM_FEATURE_V7
);
1556 set_feature(env
, ARM_FEATURE_V7VE
);
1561 * There exist AArch64 cpus without AArch32 support. When KVM
1562 * queries ID_ISAR0_EL1 on such a host, the value is UNKNOWN.
1563 * Similarly, we cannot check ID_AA64PFR0 without AArch64 support.
1564 * As a general principle, we also do not make ID register
1565 * consistency checks anywhere unless using TCG, because only
1566 * for TCG would a consistency-check failure be a QEMU bug.
1568 if (arm_feature(&cpu
->env
, ARM_FEATURE_AARCH64
)) {
1569 no_aa32
= !cpu_isar_feature(aa64_aa32
, cpu
);
1572 if (arm_feature(env
, ARM_FEATURE_V7VE
)) {
1573 /* v7 Virtualization Extensions. In real hardware this implies
1574 * EL2 and also the presence of the Security Extensions.
1575 * For QEMU, for backwards-compatibility we implement some
1576 * CPUs or CPU configs which have no actual EL2 or EL3 but do
1577 * include the various other features that V7VE implies.
1578 * Presence of EL2 itself is ARM_FEATURE_EL2, and of the
1579 * Security Extensions is ARM_FEATURE_EL3.
1581 assert(!tcg_enabled() || no_aa32
||
1582 cpu_isar_feature(aa32_arm_div
, cpu
));
1583 set_feature(env
, ARM_FEATURE_LPAE
);
1584 set_feature(env
, ARM_FEATURE_V7
);
1586 if (arm_feature(env
, ARM_FEATURE_V7
)) {
1587 set_feature(env
, ARM_FEATURE_VAPA
);
1588 set_feature(env
, ARM_FEATURE_THUMB2
);
1589 set_feature(env
, ARM_FEATURE_MPIDR
);
1590 if (!arm_feature(env
, ARM_FEATURE_M
)) {
1591 set_feature(env
, ARM_FEATURE_V6K
);
1593 set_feature(env
, ARM_FEATURE_V6
);
1596 /* Always define VBAR for V7 CPUs even if it doesn't exist in
1597 * non-EL3 configs. This is needed by some legacy boards.
1599 set_feature(env
, ARM_FEATURE_VBAR
);
1601 if (arm_feature(env
, ARM_FEATURE_V6K
)) {
1602 set_feature(env
, ARM_FEATURE_V6
);
1603 set_feature(env
, ARM_FEATURE_MVFR
);
1605 if (arm_feature(env
, ARM_FEATURE_V6
)) {
1606 set_feature(env
, ARM_FEATURE_V5
);
1607 if (!arm_feature(env
, ARM_FEATURE_M
)) {
1608 assert(!tcg_enabled() || no_aa32
||
1609 cpu_isar_feature(aa32_jazelle
, cpu
));
1610 set_feature(env
, ARM_FEATURE_AUXCR
);
1613 if (arm_feature(env
, ARM_FEATURE_V5
)) {
1614 set_feature(env
, ARM_FEATURE_V4T
);
1616 if (arm_feature(env
, ARM_FEATURE_LPAE
)) {
1617 set_feature(env
, ARM_FEATURE_V7MP
);
1619 if (arm_feature(env
, ARM_FEATURE_CBAR_RO
)) {
1620 set_feature(env
, ARM_FEATURE_CBAR
);
1622 if (arm_feature(env
, ARM_FEATURE_THUMB2
) &&
1623 !arm_feature(env
, ARM_FEATURE_M
)) {
1624 set_feature(env
, ARM_FEATURE_THUMB_DSP
);
1628 * We rely on no XScale CPU having VFP so we can use the same bits in the
1629 * TB flags field for VECSTRIDE and XSCALE_CPAR.
1631 assert(arm_feature(&cpu
->env
, ARM_FEATURE_AARCH64
) ||
1632 !cpu_isar_feature(aa32_vfp_simd
, cpu
) ||
1633 !arm_feature(env
, ARM_FEATURE_XSCALE
));
1635 if (arm_feature(env
, ARM_FEATURE_V7
) &&
1636 !arm_feature(env
, ARM_FEATURE_M
) &&
1637 !arm_feature(env
, ARM_FEATURE_PMSA
)) {
1638 /* v7VMSA drops support for the old ARMv5 tiny pages, so we
1643 /* For CPUs which might have tiny 1K pages, or which have an
1644 * MPU and might have small region sizes, stick with 1K pages.
1648 if (!set_preferred_target_page_bits(pagebits
)) {
1649 /* This can only ever happen for hotplugging a CPU, or if
1650 * the board code incorrectly creates a CPU which it has
1651 * promised via minimum_page_size that it will not.
1653 error_setg(errp
, "This CPU requires a smaller page size than the "
1658 /* This cpu-id-to-MPIDR affinity is used only for TCG; KVM will override it.
1659 * We don't support setting cluster ID ([16..23]) (known as Aff2
1660 * in later ARM ARM versions), or any of the higher affinity level fields,
1661 * so these bits always RAZ.
1663 if (cpu
->mp_affinity
== ARM64_AFFINITY_INVALID
) {
1664 cpu
->mp_affinity
= arm_cpu_mp_affinity(cs
->cpu_index
,
1665 ARM_DEFAULT_CPUS_PER_CLUSTER
);
1668 if (cpu
->reset_hivecs
) {
1669 cpu
->reset_sctlr
|= (1 << 13);
1673 if (arm_feature(&cpu
->env
, ARM_FEATURE_V7
)) {
1674 cpu
->reset_sctlr
|= SCTLR_EE
;
1676 cpu
->reset_sctlr
|= SCTLR_B
;
1680 if (!arm_feature(env
, ARM_FEATURE_M
) && !cpu
->has_el3
) {
1681 /* If the has_el3 CPU property is disabled then we need to disable the
1684 unset_feature(env
, ARM_FEATURE_EL3
);
1686 /* Disable the security extension feature bits in the processor feature
1687 * registers as well. These are id_pfr1[7:4] and id_aa64pfr0[15:12].
1689 cpu
->isar
.id_pfr1
&= ~0xf0;
1690 cpu
->isar
.id_aa64pfr0
&= ~0xf000;
1693 if (!cpu
->has_el2
) {
1694 unset_feature(env
, ARM_FEATURE_EL2
);
1697 if (!cpu
->has_pmu
) {
1698 unset_feature(env
, ARM_FEATURE_PMU
);
1700 if (arm_feature(env
, ARM_FEATURE_PMU
)) {
1703 if (!kvm_enabled()) {
1704 arm_register_pre_el_change_hook(cpu
, &pmu_pre_el_change
, 0);
1705 arm_register_el_change_hook(cpu
, &pmu_post_el_change
, 0);
1708 #ifndef CONFIG_USER_ONLY
1709 cpu
->pmu_timer
= timer_new_ns(QEMU_CLOCK_VIRTUAL
, arm_pmu_timer_cb
,
1713 cpu
->isar
.id_aa64dfr0
=
1714 FIELD_DP64(cpu
->isar
.id_aa64dfr0
, ID_AA64DFR0
, PMUVER
, 0);
1715 cpu
->isar
.id_dfr0
= FIELD_DP32(cpu
->isar
.id_dfr0
, ID_DFR0
, PERFMON
, 0);
1720 if (!arm_feature(env
, ARM_FEATURE_EL2
)) {
1721 /* Disable the hypervisor feature bits in the processor feature
1722 * registers if we don't have EL2. These are id_pfr1[15:12] and
1723 * id_aa64pfr0_el1[11:8].
1725 cpu
->isar
.id_aa64pfr0
&= ~0xf00;
1726 cpu
->isar
.id_pfr1
&= ~0xf000;
1729 #ifndef CONFIG_USER_ONLY
1730 if (cpu
->tag_memory
== NULL
&& cpu_isar_feature(aa64_mte
, cpu
)) {
1732 * Disable the MTE feature bits if we do not have tag-memory
1733 * provided by the machine.
1735 cpu
->isar
.id_aa64pfr1
=
1736 FIELD_DP64(cpu
->isar
.id_aa64pfr1
, ID_AA64PFR1
, MTE
, 0);
1740 /* MPU can be configured out of a PMSA CPU either by setting has-mpu
1741 * to false or by setting pmsav7-dregion to 0.
1743 if (!cpu
->has_mpu
) {
1744 cpu
->pmsav7_dregion
= 0;
1746 if (cpu
->pmsav7_dregion
== 0) {
1747 cpu
->has_mpu
= false;
1750 if (arm_feature(env
, ARM_FEATURE_PMSA
) &&
1751 arm_feature(env
, ARM_FEATURE_V7
)) {
1752 uint32_t nr
= cpu
->pmsav7_dregion
;
1755 error_setg(errp
, "PMSAv7 MPU #regions invalid %" PRIu32
, nr
);
1760 if (arm_feature(env
, ARM_FEATURE_V8
)) {
1762 env
->pmsav8
.rbar
[M_REG_NS
] = g_new0(uint32_t, nr
);
1763 env
->pmsav8
.rlar
[M_REG_NS
] = g_new0(uint32_t, nr
);
1764 if (arm_feature(env
, ARM_FEATURE_M_SECURITY
)) {
1765 env
->pmsav8
.rbar
[M_REG_S
] = g_new0(uint32_t, nr
);
1766 env
->pmsav8
.rlar
[M_REG_S
] = g_new0(uint32_t, nr
);
1769 env
->pmsav7
.drbar
= g_new0(uint32_t, nr
);
1770 env
->pmsav7
.drsr
= g_new0(uint32_t, nr
);
1771 env
->pmsav7
.dracr
= g_new0(uint32_t, nr
);
1776 if (arm_feature(env
, ARM_FEATURE_M_SECURITY
)) {
1777 uint32_t nr
= cpu
->sau_sregion
;
1780 error_setg(errp
, "v8M SAU #regions invalid %" PRIu32
, nr
);
1785 env
->sau
.rbar
= g_new0(uint32_t, nr
);
1786 env
->sau
.rlar
= g_new0(uint32_t, nr
);
1790 if (arm_feature(env
, ARM_FEATURE_EL3
)) {
1791 set_feature(env
, ARM_FEATURE_VBAR
);
1794 register_cp_regs_for_features(cpu
);
1795 arm_cpu_register_gdb_regs_for_features(cpu
);
1797 init_cpreg_list(cpu
);
1799 #ifndef CONFIG_USER_ONLY
1800 MachineState
*ms
= MACHINE(qdev_get_machine());
1801 unsigned int smp_cpus
= ms
->smp
.cpus
;
1802 bool has_secure
= cpu
->has_el3
|| arm_feature(env
, ARM_FEATURE_M_SECURITY
);
1805 * We must set cs->num_ases to the final value before
1806 * the first call to cpu_address_space_init.
1808 if (cpu
->tag_memory
!= NULL
) {
1809 cs
->num_ases
= 3 + has_secure
;
1811 cs
->num_ases
= 1 + has_secure
;
1815 if (!cpu
->secure_memory
) {
1816 cpu
->secure_memory
= cs
->memory
;
1818 cpu_address_space_init(cs
, ARMASIdx_S
, "cpu-secure-memory",
1819 cpu
->secure_memory
);
1822 if (cpu
->tag_memory
!= NULL
) {
1823 cpu_address_space_init(cs
, ARMASIdx_TagNS
, "cpu-tag-memory",
1826 cpu_address_space_init(cs
, ARMASIdx_TagS
, "cpu-tag-memory",
1827 cpu
->secure_tag_memory
);
1831 cpu_address_space_init(cs
, ARMASIdx_NS
, "cpu-memory", cs
->memory
);
1833 /* No core_count specified, default to smp_cpus. */
1834 if (cpu
->core_count
== -1) {
1835 cpu
->core_count
= smp_cpus
;
1839 if (tcg_enabled()) {
1840 int dcz_blocklen
= 4 << cpu
->dcz_blocksize
;
1843 * We only support DCZ blocklen that fits on one page.
1845 * Architectually this is always true. However TARGET_PAGE_SIZE
1846 * is variable and, for compatibility with -machine virt-2.7,
1847 * is only 1KiB, as an artifact of legacy ARMv5 subpage support.
1848 * But even then, while the largest architectural DCZ blocklen
1849 * is 2KiB, no cpu actually uses such a large blocklen.
1851 assert(dcz_blocklen
<= TARGET_PAGE_SIZE
);
1854 * We only support DCZ blocksize >= 2*TAG_GRANULE, which is to say
1855 * both nibbles of each byte storing tag data may be written at once.
1856 * Since TAG_GRANULE is 16, this means that blocklen must be >= 32.
1858 if (cpu_isar_feature(aa64_mte
, cpu
)) {
1859 assert(dcz_blocklen
>= 2 * TAG_GRANULE
);
1866 acc
->parent_realize(dev
, errp
);
1869 static ObjectClass
*arm_cpu_class_by_name(const char *cpu_model
)
1874 const char *cpunamestr
;
1876 cpuname
= g_strsplit(cpu_model
, ",", 1);
1877 cpunamestr
= cpuname
[0];
1878 #ifdef CONFIG_USER_ONLY
1879 /* For backwards compatibility usermode emulation allows "-cpu any",
1880 * which has the same semantics as "-cpu max".
1882 if (!strcmp(cpunamestr
, "any")) {
1886 typename
= g_strdup_printf(ARM_CPU_TYPE_NAME("%s"), cpunamestr
);
1887 oc
= object_class_by_name(typename
);
1888 g_strfreev(cpuname
);
1890 if (!oc
|| !object_class_dynamic_cast(oc
, TYPE_ARM_CPU
) ||
1891 object_class_is_abstract(oc
)) {
1897 /* CPU models. These are not needed for the AArch64 linux-user build. */
1898 #if !defined(CONFIG_USER_ONLY) || !defined(TARGET_AARCH64)
1900 static const ARMCPRegInfo cortexa8_cp_reginfo
[] = {
1901 { .name
= "L2LOCKDOWN", .cp
= 15, .crn
= 9, .crm
= 0, .opc1
= 1, .opc2
= 0,
1902 .access
= PL1_RW
, .type
= ARM_CP_CONST
, .resetvalue
= 0 },
1903 { .name
= "L2AUXCR", .cp
= 15, .crn
= 9, .crm
= 0, .opc1
= 1, .opc2
= 2,
1904 .access
= PL1_RW
, .type
= ARM_CP_CONST
, .resetvalue
= 0 },
1908 static void cortex_a8_initfn(Object
*obj
)
1910 ARMCPU
*cpu
= ARM_CPU(obj
);
1912 cpu
->dtb_compatible
= "arm,cortex-a8";
1913 set_feature(&cpu
->env
, ARM_FEATURE_V7
);
1914 set_feature(&cpu
->env
, ARM_FEATURE_NEON
);
1915 set_feature(&cpu
->env
, ARM_FEATURE_THUMB2EE
);
1916 set_feature(&cpu
->env
, ARM_FEATURE_DUMMY_C15_REGS
);
1917 set_feature(&cpu
->env
, ARM_FEATURE_EL3
);
1918 cpu
->midr
= 0x410fc080;
1919 cpu
->reset_fpsid
= 0x410330c0;
1920 cpu
->isar
.mvfr0
= 0x11110222;
1921 cpu
->isar
.mvfr1
= 0x00011111;
1922 cpu
->ctr
= 0x82048004;
1923 cpu
->reset_sctlr
= 0x00c50078;
1924 cpu
->isar
.id_pfr0
= 0x1031;
1925 cpu
->isar
.id_pfr1
= 0x11;
1926 cpu
->isar
.id_dfr0
= 0x400;
1928 cpu
->isar
.id_mmfr0
= 0x31100003;
1929 cpu
->isar
.id_mmfr1
= 0x20000000;
1930 cpu
->isar
.id_mmfr2
= 0x01202000;
1931 cpu
->isar
.id_mmfr3
= 0x11;
1932 cpu
->isar
.id_isar0
= 0x00101111;
1933 cpu
->isar
.id_isar1
= 0x12112111;
1934 cpu
->isar
.id_isar2
= 0x21232031;
1935 cpu
->isar
.id_isar3
= 0x11112131;
1936 cpu
->isar
.id_isar4
= 0x00111142;
1937 cpu
->isar
.dbgdidr
= 0x15141000;
1938 cpu
->clidr
= (1 << 27) | (2 << 24) | 3;
1939 cpu
->ccsidr
[0] = 0xe007e01a; /* 16k L1 dcache. */
1940 cpu
->ccsidr
[1] = 0x2007e01a; /* 16k L1 icache. */
1941 cpu
->ccsidr
[2] = 0xf0000000; /* No L2 icache. */
1942 cpu
->reset_auxcr
= 2;
1943 define_arm_cp_regs(cpu
, cortexa8_cp_reginfo
);
1946 static const ARMCPRegInfo cortexa9_cp_reginfo
[] = {
1947 /* power_control should be set to maximum latency. Again,
1948 * default to 0 and set by private hook
1950 { .name
= "A9_PWRCTL", .cp
= 15, .crn
= 15, .crm
= 0, .opc1
= 0, .opc2
= 0,
1951 .access
= PL1_RW
, .resetvalue
= 0,
1952 .fieldoffset
= offsetof(CPUARMState
, cp15
.c15_power_control
) },
1953 { .name
= "A9_DIAG", .cp
= 15, .crn
= 15, .crm
= 0, .opc1
= 0, .opc2
= 1,
1954 .access
= PL1_RW
, .resetvalue
= 0,
1955 .fieldoffset
= offsetof(CPUARMState
, cp15
.c15_diagnostic
) },
1956 { .name
= "A9_PWRDIAG", .cp
= 15, .crn
= 15, .crm
= 0, .opc1
= 0, .opc2
= 2,
1957 .access
= PL1_RW
, .resetvalue
= 0,
1958 .fieldoffset
= offsetof(CPUARMState
, cp15
.c15_power_diagnostic
) },
1959 { .name
= "NEONBUSY", .cp
= 15, .crn
= 15, .crm
= 1, .opc1
= 0, .opc2
= 0,
1960 .access
= PL1_RW
, .resetvalue
= 0, .type
= ARM_CP_CONST
},
1961 /* TLB lockdown control */
1962 { .name
= "TLB_LOCKR", .cp
= 15, .crn
= 15, .crm
= 4, .opc1
= 5, .opc2
= 2,
1963 .access
= PL1_W
, .resetvalue
= 0, .type
= ARM_CP_NOP
},
1964 { .name
= "TLB_LOCKW", .cp
= 15, .crn
= 15, .crm
= 4, .opc1
= 5, .opc2
= 4,
1965 .access
= PL1_W
, .resetvalue
= 0, .type
= ARM_CP_NOP
},
1966 { .name
= "TLB_VA", .cp
= 15, .crn
= 15, .crm
= 5, .opc1
= 5, .opc2
= 2,
1967 .access
= PL1_RW
, .resetvalue
= 0, .type
= ARM_CP_CONST
},
1968 { .name
= "TLB_PA", .cp
= 15, .crn
= 15, .crm
= 6, .opc1
= 5, .opc2
= 2,
1969 .access
= PL1_RW
, .resetvalue
= 0, .type
= ARM_CP_CONST
},
1970 { .name
= "TLB_ATTR", .cp
= 15, .crn
= 15, .crm
= 7, .opc1
= 5, .opc2
= 2,
1971 .access
= PL1_RW
, .resetvalue
= 0, .type
= ARM_CP_CONST
},
1975 static void cortex_a9_initfn(Object
*obj
)
1977 ARMCPU
*cpu
= ARM_CPU(obj
);
1979 cpu
->dtb_compatible
= "arm,cortex-a9";
1980 set_feature(&cpu
->env
, ARM_FEATURE_V7
);
1981 set_feature(&cpu
->env
, ARM_FEATURE_NEON
);
1982 set_feature(&cpu
->env
, ARM_FEATURE_THUMB2EE
);
1983 set_feature(&cpu
->env
, ARM_FEATURE_EL3
);
1984 /* Note that A9 supports the MP extensions even for
1985 * A9UP and single-core A9MP (which are both different
1986 * and valid configurations; we don't model A9UP).
1988 set_feature(&cpu
->env
, ARM_FEATURE_V7MP
);
1989 set_feature(&cpu
->env
, ARM_FEATURE_CBAR
);
1990 cpu
->midr
= 0x410fc090;
1991 cpu
->reset_fpsid
= 0x41033090;
1992 cpu
->isar
.mvfr0
= 0x11110222;
1993 cpu
->isar
.mvfr1
= 0x01111111;
1994 cpu
->ctr
= 0x80038003;
1995 cpu
->reset_sctlr
= 0x00c50078;
1996 cpu
->isar
.id_pfr0
= 0x1031;
1997 cpu
->isar
.id_pfr1
= 0x11;
1998 cpu
->isar
.id_dfr0
= 0x000;
2000 cpu
->isar
.id_mmfr0
= 0x00100103;
2001 cpu
->isar
.id_mmfr1
= 0x20000000;
2002 cpu
->isar
.id_mmfr2
= 0x01230000;
2003 cpu
->isar
.id_mmfr3
= 0x00002111;
2004 cpu
->isar
.id_isar0
= 0x00101111;
2005 cpu
->isar
.id_isar1
= 0x13112111;
2006 cpu
->isar
.id_isar2
= 0x21232041;
2007 cpu
->isar
.id_isar3
= 0x11112131;
2008 cpu
->isar
.id_isar4
= 0x00111142;
2009 cpu
->isar
.dbgdidr
= 0x35141000;
2010 cpu
->clidr
= (1 << 27) | (1 << 24) | 3;
2011 cpu
->ccsidr
[0] = 0xe00fe019; /* 16k L1 dcache. */
2012 cpu
->ccsidr
[1] = 0x200fe019; /* 16k L1 icache. */
2013 define_arm_cp_regs(cpu
, cortexa9_cp_reginfo
);
2016 #ifndef CONFIG_USER_ONLY
2017 static uint64_t a15_l2ctlr_read(CPUARMState
*env
, const ARMCPRegInfo
*ri
)
2019 MachineState
*ms
= MACHINE(qdev_get_machine());
2021 /* Linux wants the number of processors from here.
2022 * Might as well set the interrupt-controller bit too.
2024 return ((ms
->smp
.cpus
- 1) << 24) | (1 << 23);
2028 static const ARMCPRegInfo cortexa15_cp_reginfo
[] = {
2029 #ifndef CONFIG_USER_ONLY
2030 { .name
= "L2CTLR", .cp
= 15, .crn
= 9, .crm
= 0, .opc1
= 1, .opc2
= 2,
2031 .access
= PL1_RW
, .resetvalue
= 0, .readfn
= a15_l2ctlr_read
,
2032 .writefn
= arm_cp_write_ignore
, },
2034 { .name
= "L2ECTLR", .cp
= 15, .crn
= 9, .crm
= 0, .opc1
= 1, .opc2
= 3,
2035 .access
= PL1_RW
, .type
= ARM_CP_CONST
, .resetvalue
= 0 },
2039 static void cortex_a7_initfn(Object
*obj
)
2041 ARMCPU
*cpu
= ARM_CPU(obj
);
2043 cpu
->dtb_compatible
= "arm,cortex-a7";
2044 set_feature(&cpu
->env
, ARM_FEATURE_V7VE
);
2045 set_feature(&cpu
->env
, ARM_FEATURE_NEON
);
2046 set_feature(&cpu
->env
, ARM_FEATURE_THUMB2EE
);
2047 set_feature(&cpu
->env
, ARM_FEATURE_GENERIC_TIMER
);
2048 set_feature(&cpu
->env
, ARM_FEATURE_DUMMY_C15_REGS
);
2049 set_feature(&cpu
->env
, ARM_FEATURE_CBAR_RO
);
2050 set_feature(&cpu
->env
, ARM_FEATURE_EL2
);
2051 set_feature(&cpu
->env
, ARM_FEATURE_EL3
);
2052 set_feature(&cpu
->env
, ARM_FEATURE_PMU
);
2053 cpu
->kvm_target
= QEMU_KVM_ARM_TARGET_CORTEX_A7
;
2054 cpu
->midr
= 0x410fc075;
2055 cpu
->reset_fpsid
= 0x41023075;
2056 cpu
->isar
.mvfr0
= 0x10110222;
2057 cpu
->isar
.mvfr1
= 0x11111111;
2058 cpu
->ctr
= 0x84448003;
2059 cpu
->reset_sctlr
= 0x00c50078;
2060 cpu
->isar
.id_pfr0
= 0x00001131;
2061 cpu
->isar
.id_pfr1
= 0x00011011;
2062 cpu
->isar
.id_dfr0
= 0x02010555;
2063 cpu
->id_afr0
= 0x00000000;
2064 cpu
->isar
.id_mmfr0
= 0x10101105;
2065 cpu
->isar
.id_mmfr1
= 0x40000000;
2066 cpu
->isar
.id_mmfr2
= 0x01240000;
2067 cpu
->isar
.id_mmfr3
= 0x02102211;
2068 /* a7_mpcore_r0p5_trm, page 4-4 gives 0x01101110; but
2069 * table 4-41 gives 0x02101110, which includes the arm div insns.
2071 cpu
->isar
.id_isar0
= 0x02101110;
2072 cpu
->isar
.id_isar1
= 0x13112111;
2073 cpu
->isar
.id_isar2
= 0x21232041;
2074 cpu
->isar
.id_isar3
= 0x11112131;
2075 cpu
->isar
.id_isar4
= 0x10011142;
2076 cpu
->isar
.dbgdidr
= 0x3515f005;
2077 cpu
->clidr
= 0x0a200023;
2078 cpu
->ccsidr
[0] = 0x701fe00a; /* 32K L1 dcache */
2079 cpu
->ccsidr
[1] = 0x201fe00a; /* 32K L1 icache */
2080 cpu
->ccsidr
[2] = 0x711fe07a; /* 4096K L2 unified cache */
2081 define_arm_cp_regs(cpu
, cortexa15_cp_reginfo
); /* Same as A15 */
2084 static void cortex_a15_initfn(Object
*obj
)
2086 ARMCPU
*cpu
= ARM_CPU(obj
);
2088 cpu
->dtb_compatible
= "arm,cortex-a15";
2089 set_feature(&cpu
->env
, ARM_FEATURE_V7VE
);
2090 set_feature(&cpu
->env
, ARM_FEATURE_NEON
);
2091 set_feature(&cpu
->env
, ARM_FEATURE_THUMB2EE
);
2092 set_feature(&cpu
->env
, ARM_FEATURE_GENERIC_TIMER
);
2093 set_feature(&cpu
->env
, ARM_FEATURE_DUMMY_C15_REGS
);
2094 set_feature(&cpu
->env
, ARM_FEATURE_CBAR_RO
);
2095 set_feature(&cpu
->env
, ARM_FEATURE_EL2
);
2096 set_feature(&cpu
->env
, ARM_FEATURE_EL3
);
2097 set_feature(&cpu
->env
, ARM_FEATURE_PMU
);
2098 cpu
->kvm_target
= QEMU_KVM_ARM_TARGET_CORTEX_A15
;
2099 cpu
->midr
= 0x412fc0f1;
2100 cpu
->reset_fpsid
= 0x410430f0;
2101 cpu
->isar
.mvfr0
= 0x10110222;
2102 cpu
->isar
.mvfr1
= 0x11111111;
2103 cpu
->ctr
= 0x8444c004;
2104 cpu
->reset_sctlr
= 0x00c50078;
2105 cpu
->isar
.id_pfr0
= 0x00001131;
2106 cpu
->isar
.id_pfr1
= 0x00011011;
2107 cpu
->isar
.id_dfr0
= 0x02010555;
2108 cpu
->id_afr0
= 0x00000000;
2109 cpu
->isar
.id_mmfr0
= 0x10201105;
2110 cpu
->isar
.id_mmfr1
= 0x20000000;
2111 cpu
->isar
.id_mmfr2
= 0x01240000;
2112 cpu
->isar
.id_mmfr3
= 0x02102211;
2113 cpu
->isar
.id_isar0
= 0x02101110;
2114 cpu
->isar
.id_isar1
= 0x13112111;
2115 cpu
->isar
.id_isar2
= 0x21232041;
2116 cpu
->isar
.id_isar3
= 0x11112131;
2117 cpu
->isar
.id_isar4
= 0x10011142;
2118 cpu
->isar
.dbgdidr
= 0x3515f021;
2119 cpu
->clidr
= 0x0a200023;
2120 cpu
->ccsidr
[0] = 0x701fe00a; /* 32K L1 dcache */
2121 cpu
->ccsidr
[1] = 0x201fe00a; /* 32K L1 icache */
2122 cpu
->ccsidr
[2] = 0x711fe07a; /* 4096K L2 unified cache */
2123 define_arm_cp_regs(cpu
, cortexa15_cp_reginfo
);
2126 #ifndef TARGET_AARCH64
2128 * -cpu max: a CPU with as many features enabled as our emulation supports.
2129 * The version of '-cpu max' for qemu-system-aarch64 is defined in cpu64.c;
2130 * this only needs to handle 32 bits, and need not care about KVM.
2132 static void arm_max_initfn(Object
*obj
)
2134 ARMCPU
*cpu
= ARM_CPU(obj
);
2136 cortex_a15_initfn(obj
);
2138 /* old-style VFP short-vector support */
2139 cpu
->isar
.mvfr0
= FIELD_DP32(cpu
->isar
.mvfr0
, MVFR0
, FPSHVEC
, 1);
2141 #ifdef CONFIG_USER_ONLY
2143 * We don't set these in system emulation mode for the moment,
2144 * since we don't correctly set (all of) the ID registers to
2147 set_feature(&cpu
->env
, ARM_FEATURE_V8
);
2151 t
= cpu
->isar
.id_isar5
;
2152 t
= FIELD_DP32(t
, ID_ISAR5
, AES
, 2);
2153 t
= FIELD_DP32(t
, ID_ISAR5
, SHA1
, 1);
2154 t
= FIELD_DP32(t
, ID_ISAR5
, SHA2
, 1);
2155 t
= FIELD_DP32(t
, ID_ISAR5
, CRC32
, 1);
2156 t
= FIELD_DP32(t
, ID_ISAR5
, RDM
, 1);
2157 t
= FIELD_DP32(t
, ID_ISAR5
, VCMA
, 1);
2158 cpu
->isar
.id_isar5
= t
;
2160 t
= cpu
->isar
.id_isar6
;
2161 t
= FIELD_DP32(t
, ID_ISAR6
, JSCVT
, 1);
2162 t
= FIELD_DP32(t
, ID_ISAR6
, DP
, 1);
2163 t
= FIELD_DP32(t
, ID_ISAR6
, FHM
, 1);
2164 t
= FIELD_DP32(t
, ID_ISAR6
, SB
, 1);
2165 t
= FIELD_DP32(t
, ID_ISAR6
, SPECRES
, 1);
2166 cpu
->isar
.id_isar6
= t
;
2168 t
= cpu
->isar
.mvfr1
;
2169 t
= FIELD_DP32(t
, MVFR1
, FPHP
, 3); /* v8.2-FP16 */
2170 t
= FIELD_DP32(t
, MVFR1
, SIMDHP
, 2); /* v8.2-FP16 */
2171 cpu
->isar
.mvfr1
= t
;
2173 t
= cpu
->isar
.mvfr2
;
2174 t
= FIELD_DP32(t
, MVFR2
, SIMDMISC
, 3); /* SIMD MaxNum */
2175 t
= FIELD_DP32(t
, MVFR2
, FPMISC
, 4); /* FP MaxNum */
2176 cpu
->isar
.mvfr2
= t
;
2178 t
= cpu
->isar
.id_mmfr3
;
2179 t
= FIELD_DP32(t
, ID_MMFR3
, PAN
, 2); /* ATS1E1 */
2180 cpu
->isar
.id_mmfr3
= t
;
2182 t
= cpu
->isar
.id_mmfr4
;
2183 t
= FIELD_DP32(t
, ID_MMFR4
, HPDS
, 1); /* AA32HPD */
2184 t
= FIELD_DP32(t
, ID_MMFR4
, AC2
, 1); /* ACTLR2, HACTLR2 */
2185 t
= FIELD_DP32(t
, ID_MMFR4
, CNP
, 1); /* TTCNP */
2186 t
= FIELD_DP32(t
, ID_MMFR4
, XNX
, 1); /* TTS2UXN */
2187 cpu
->isar
.id_mmfr4
= t
;
2193 #endif /* !defined(CONFIG_USER_ONLY) || !defined(TARGET_AARCH64) */
2195 static const ARMCPUInfo arm_cpus
[] = {
2196 #if !defined(CONFIG_USER_ONLY) || !defined(TARGET_AARCH64)
2197 { .name
= "cortex-a7", .initfn
= cortex_a7_initfn
},
2198 { .name
= "cortex-a8", .initfn
= cortex_a8_initfn
},
2199 { .name
= "cortex-a9", .initfn
= cortex_a9_initfn
},
2200 { .name
= "cortex-a15", .initfn
= cortex_a15_initfn
},
2201 #ifndef TARGET_AARCH64
2202 { .name
= "max", .initfn
= arm_max_initfn
},
2204 #ifdef CONFIG_USER_ONLY
2205 { .name
= "any", .initfn
= arm_max_initfn
},
2210 static Property arm_cpu_properties
[] = {
2211 DEFINE_PROP_UINT32("psci-conduit", ARMCPU
, psci_conduit
, 0),
2212 DEFINE_PROP_UINT64("midr", ARMCPU
, midr
, 0),
2213 DEFINE_PROP_UINT64("mp-affinity", ARMCPU
,
2214 mp_affinity
, ARM64_AFFINITY_INVALID
),
2215 DEFINE_PROP_INT32("node-id", ARMCPU
, node_id
, CPU_UNSET_NUMA_NODE_ID
),
2216 DEFINE_PROP_INT32("core-count", ARMCPU
, core_count
, -1),
2217 DEFINE_PROP_END_OF_LIST()
2220 static gchar
*arm_gdb_arch_name(CPUState
*cs
)
2222 ARMCPU
*cpu
= ARM_CPU(cs
);
2223 CPUARMState
*env
= &cpu
->env
;
2225 if (arm_feature(env
, ARM_FEATURE_IWMMXT
)) {
2226 return g_strdup("iwmmxt");
2228 return g_strdup("arm");
2231 static void arm_cpu_class_init(ObjectClass
*oc
, void *data
)
2233 ARMCPUClass
*acc
= ARM_CPU_CLASS(oc
);
2234 CPUClass
*cc
= CPU_CLASS(acc
);
2235 DeviceClass
*dc
= DEVICE_CLASS(oc
);
2237 device_class_set_parent_realize(dc
, arm_cpu_realizefn
,
2238 &acc
->parent_realize
);
2240 device_class_set_props(dc
, arm_cpu_properties
);
2241 device_class_set_parent_reset(dc
, arm_cpu_reset
, &acc
->parent_reset
);
2243 cc
->class_by_name
= arm_cpu_class_by_name
;
2244 cc
->has_work
= arm_cpu_has_work
;
2245 cc
->cpu_exec_interrupt
= arm_cpu_exec_interrupt
;
2246 cc
->dump_state
= arm_cpu_dump_state
;
2247 cc
->set_pc
= arm_cpu_set_pc
;
2248 cc
->synchronize_from_tb
= arm_cpu_synchronize_from_tb
;
2249 cc
->gdb_read_register
= arm_cpu_gdb_read_register
;
2250 cc
->gdb_write_register
= arm_cpu_gdb_write_register
;
2251 #ifndef CONFIG_USER_ONLY
2252 cc
->do_interrupt
= arm_cpu_do_interrupt
;
2253 cc
->get_phys_page_attrs_debug
= arm_cpu_get_phys_page_attrs_debug
;
2254 cc
->asidx_from_attrs
= arm_asidx_from_attrs
;
2255 cc
->vmsd
= &vmstate_arm_cpu
;
2256 cc
->virtio_is_big_endian
= arm_cpu_virtio_is_big_endian
;
2257 cc
->write_elf64_note
= arm_cpu_write_elf64_note
;
2258 cc
->write_elf32_note
= arm_cpu_write_elf32_note
;
2260 cc
->gdb_num_core_regs
= 26;
2261 cc
->gdb_core_xml_file
= "arm-core.xml";
2262 cc
->gdb_arch_name
= arm_gdb_arch_name
;
2263 cc
->gdb_get_dynamic_xml
= arm_gdb_get_dynamic_xml
;
2264 cc
->gdb_stop_before_watchpoint
= true;
2265 cc
->disas_set_info
= arm_disas_set_info
;
2267 cc
->tcg_initialize
= arm_translate_init
;
2268 cc
->tlb_fill
= arm_cpu_tlb_fill
;
2269 cc
->debug_excp_handler
= arm_debug_excp_handler
;
2270 cc
->debug_check_watchpoint
= arm_debug_check_watchpoint
;
2271 cc
->do_unaligned_access
= arm_cpu_do_unaligned_access
;
2272 #if !defined(CONFIG_USER_ONLY)
2273 cc
->do_transaction_failed
= arm_cpu_do_transaction_failed
;
2274 cc
->adjust_watchpoint_address
= arm_adjust_watchpoint_address
;
2275 #endif /* CONFIG_TCG && !CONFIG_USER_ONLY */
2280 static void arm_host_initfn(Object
*obj
)
2282 ARMCPU
*cpu
= ARM_CPU(obj
);
2284 kvm_arm_set_cpu_features_from_host(cpu
);
2285 if (arm_feature(&cpu
->env
, ARM_FEATURE_AARCH64
)) {
2286 aarch64_add_sve_properties(obj
);
2288 arm_cpu_post_init(obj
);
2291 static const TypeInfo host_arm_cpu_type_info
= {
2292 .name
= TYPE_ARM_HOST_CPU
,
2293 .parent
= TYPE_AARCH64_CPU
,
2294 .instance_init
= arm_host_initfn
,
2299 static void arm_cpu_instance_init(Object
*obj
)
2301 ARMCPUClass
*acc
= ARM_CPU_GET_CLASS(obj
);
2303 acc
->info
->initfn(obj
);
2304 arm_cpu_post_init(obj
);
2307 static void cpu_register_class_init(ObjectClass
*oc
, void *data
)
2309 ARMCPUClass
*acc
= ARM_CPU_CLASS(oc
);
2314 void arm_cpu_register(const ARMCPUInfo
*info
)
2316 TypeInfo type_info
= {
2317 .parent
= TYPE_ARM_CPU
,
2318 .instance_size
= sizeof(ARMCPU
),
2319 .instance_align
= __alignof__(ARMCPU
),
2320 .instance_init
= arm_cpu_instance_init
,
2321 .class_size
= sizeof(ARMCPUClass
),
2322 .class_init
= info
->class_init
?: cpu_register_class_init
,
2323 .class_data
= (void *)info
,
2326 type_info
.name
= g_strdup_printf("%s-" TYPE_ARM_CPU
, info
->name
);
2327 type_register(&type_info
);
2328 g_free((void *)type_info
.name
);
2331 static const TypeInfo arm_cpu_type_info
= {
2332 .name
= TYPE_ARM_CPU
,
2334 .instance_size
= sizeof(ARMCPU
),
2335 .instance_align
= __alignof__(ARMCPU
),
2336 .instance_init
= arm_cpu_initfn
,
2337 .instance_finalize
= arm_cpu_finalizefn
,
2339 .class_size
= sizeof(ARMCPUClass
),
2340 .class_init
= arm_cpu_class_init
,
2343 static const TypeInfo idau_interface_type_info
= {
2344 .name
= TYPE_IDAU_INTERFACE
,
2345 .parent
= TYPE_INTERFACE
,
2346 .class_size
= sizeof(IDAUInterfaceClass
),
2349 static void arm_cpu_register_types(void)
2351 const size_t cpu_count
= ARRAY_SIZE(arm_cpus
);
2353 type_register_static(&arm_cpu_type_info
);
2356 type_register_static(&host_arm_cpu_type_info
);
2362 type_register_static(&idau_interface_type_info
);
2363 for (i
= 0; i
< cpu_count
; ++i
) {
2364 arm_cpu_register(&arm_cpus
[i
]);
2369 type_init(arm_cpu_register_types
)