apic: rename apic specific bitopts
[qemu/ar7.git] / hw / timer / mc146818rtc.c
blob481604de35d3a56e48312cf5c840ff132fdaf9be
1 /*
2 * QEMU MC146818 RTC emulation
4 * Copyright (c) 2003-2004 Fabrice Bellard
6 * Permission is hereby granted, free of charge, to any person obtaining a copy
7 * of this software and associated documentation files (the "Software"), to deal
8 * in the Software without restriction, including without limitation the rights
9 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
10 * copies of the Software, and to permit persons to whom the Software is
11 * furnished to do so, subject to the following conditions:
13 * The above copyright notice and this permission notice shall be included in
14 * all copies or substantial portions of the Software.
16 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
17 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
18 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
19 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
20 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
21 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
22 * THE SOFTWARE.
24 #include "hw/hw.h"
25 #include "qemu/timer.h"
26 #include "sysemu/sysemu.h"
27 #include "hw/timer/mc146818rtc.h"
28 #include "qapi/visitor.h"
30 #ifdef TARGET_I386
31 #include "hw/i386/apic.h"
32 #endif
34 //#define DEBUG_CMOS
35 //#define DEBUG_COALESCED
37 #ifdef DEBUG_CMOS
38 # define CMOS_DPRINTF(format, ...) printf(format, ## __VA_ARGS__)
39 #else
40 # define CMOS_DPRINTF(format, ...) do { } while (0)
41 #endif
43 #ifdef DEBUG_COALESCED
44 # define DPRINTF_C(format, ...) printf(format, ## __VA_ARGS__)
45 #else
46 # define DPRINTF_C(format, ...) do { } while (0)
47 #endif
49 #define NSEC_PER_SEC 1000000000LL
50 #define SEC_PER_MIN 60
51 #define MIN_PER_HOUR 60
52 #define SEC_PER_HOUR 3600
53 #define HOUR_PER_DAY 24
54 #define SEC_PER_DAY 86400
56 #define RTC_REINJECT_ON_ACK_COUNT 20
57 #define RTC_CLOCK_RATE 32768
58 #define UIP_HOLD_LENGTH (8 * NSEC_PER_SEC / 32768)
60 #define MC146818_RTC(obj) OBJECT_CHECK(RTCState, (obj), TYPE_MC146818_RTC)
62 typedef struct RTCState {
63 ISADevice parent_obj;
65 MemoryRegion io;
66 uint8_t cmos_data[128];
67 uint8_t cmos_index;
68 int32_t base_year;
69 uint64_t base_rtc;
70 uint64_t last_update;
71 int64_t offset;
72 qemu_irq irq;
73 qemu_irq sqw_irq;
74 int it_shift;
75 /* periodic timer */
76 QEMUTimer *periodic_timer;
77 int64_t next_periodic_time;
78 /* update-ended timer */
79 QEMUTimer *update_timer;
80 uint64_t next_alarm_time;
81 uint16_t irq_reinject_on_ack_count;
82 uint32_t irq_coalesced;
83 uint32_t period;
84 QEMUTimer *coalesced_timer;
85 Notifier clock_reset_notifier;
86 LostTickPolicy lost_tick_policy;
87 Notifier suspend_notifier;
88 } RTCState;
90 static void rtc_set_time(RTCState *s);
91 static void rtc_update_time(RTCState *s);
92 static void rtc_set_cmos(RTCState *s, const struct tm *tm);
93 static inline int rtc_from_bcd(RTCState *s, int a);
94 static uint64_t get_next_alarm(RTCState *s);
96 static inline bool rtc_running(RTCState *s)
98 return (!(s->cmos_data[RTC_REG_B] & REG_B_SET) &&
99 (s->cmos_data[RTC_REG_A] & 0x70) <= 0x20);
102 static uint64_t get_guest_rtc_ns(RTCState *s)
104 uint64_t guest_rtc;
105 uint64_t guest_clock = qemu_get_clock_ns(rtc_clock);
107 guest_rtc = s->base_rtc * NSEC_PER_SEC
108 + guest_clock - s->last_update + s->offset;
109 return guest_rtc;
112 #ifdef TARGET_I386
113 static void rtc_coalesced_timer_update(RTCState *s)
115 if (s->irq_coalesced == 0) {
116 qemu_del_timer(s->coalesced_timer);
117 } else {
118 /* divide each RTC interval to 2 - 8 smaller intervals */
119 int c = MIN(s->irq_coalesced, 7) + 1;
120 int64_t next_clock = qemu_get_clock_ns(rtc_clock) +
121 muldiv64(s->period / c, get_ticks_per_sec(), RTC_CLOCK_RATE);
122 qemu_mod_timer(s->coalesced_timer, next_clock);
126 static void rtc_coalesced_timer(void *opaque)
128 RTCState *s = opaque;
130 if (s->irq_coalesced != 0) {
131 apic_reset_irq_delivered();
132 s->cmos_data[RTC_REG_C] |= 0xc0;
133 DPRINTF_C("cmos: injecting from timer\n");
134 qemu_irq_raise(s->irq);
135 if (apic_get_irq_delivered()) {
136 s->irq_coalesced--;
137 DPRINTF_C("cmos: coalesced irqs decreased to %d\n",
138 s->irq_coalesced);
142 rtc_coalesced_timer_update(s);
144 #endif
146 /* handle periodic timer */
147 static void periodic_timer_update(RTCState *s, int64_t current_time)
149 int period_code, period;
150 int64_t cur_clock, next_irq_clock;
152 period_code = s->cmos_data[RTC_REG_A] & 0x0f;
153 if (period_code != 0
154 && ((s->cmos_data[RTC_REG_B] & REG_B_PIE)
155 || ((s->cmos_data[RTC_REG_B] & REG_B_SQWE) && s->sqw_irq))) {
156 if (period_code <= 2)
157 period_code += 7;
158 /* period in 32 Khz cycles */
159 period = 1 << (period_code - 1);
160 #ifdef TARGET_I386
161 if (period != s->period) {
162 s->irq_coalesced = (s->irq_coalesced * s->period) / period;
163 DPRINTF_C("cmos: coalesced irqs scaled to %d\n", s->irq_coalesced);
165 s->period = period;
166 #endif
167 /* compute 32 khz clock */
168 cur_clock = muldiv64(current_time, RTC_CLOCK_RATE, get_ticks_per_sec());
169 next_irq_clock = (cur_clock & ~(period - 1)) + period;
170 s->next_periodic_time =
171 muldiv64(next_irq_clock, get_ticks_per_sec(), RTC_CLOCK_RATE) + 1;
172 qemu_mod_timer(s->periodic_timer, s->next_periodic_time);
173 } else {
174 #ifdef TARGET_I386
175 s->irq_coalesced = 0;
176 #endif
177 qemu_del_timer(s->periodic_timer);
181 static void rtc_periodic_timer(void *opaque)
183 RTCState *s = opaque;
185 periodic_timer_update(s, s->next_periodic_time);
186 s->cmos_data[RTC_REG_C] |= REG_C_PF;
187 if (s->cmos_data[RTC_REG_B] & REG_B_PIE) {
188 s->cmos_data[RTC_REG_C] |= REG_C_IRQF;
189 #ifdef TARGET_I386
190 if (s->lost_tick_policy == LOST_TICK_SLEW) {
191 if (s->irq_reinject_on_ack_count >= RTC_REINJECT_ON_ACK_COUNT)
192 s->irq_reinject_on_ack_count = 0;
193 apic_reset_irq_delivered();
194 qemu_irq_raise(s->irq);
195 if (!apic_get_irq_delivered()) {
196 s->irq_coalesced++;
197 rtc_coalesced_timer_update(s);
198 DPRINTF_C("cmos: coalesced irqs increased to %d\n",
199 s->irq_coalesced);
201 } else
202 #endif
203 qemu_irq_raise(s->irq);
205 if (s->cmos_data[RTC_REG_B] & REG_B_SQWE) {
206 /* Not square wave at all but we don't want 2048Hz interrupts!
207 Must be seen as a pulse. */
208 qemu_irq_raise(s->sqw_irq);
212 /* handle update-ended timer */
213 static void check_update_timer(RTCState *s)
215 uint64_t next_update_time;
216 uint64_t guest_nsec;
217 int next_alarm_sec;
219 /* From the data sheet: "Holding the dividers in reset prevents
220 * interrupts from operating, while setting the SET bit allows"
221 * them to occur. However, it will prevent an alarm interrupt
222 * from occurring, because the time of day is not updated.
224 if ((s->cmos_data[RTC_REG_A] & 0x60) == 0x60) {
225 qemu_del_timer(s->update_timer);
226 return;
228 if ((s->cmos_data[RTC_REG_C] & REG_C_UF) &&
229 (s->cmos_data[RTC_REG_B] & REG_B_SET)) {
230 qemu_del_timer(s->update_timer);
231 return;
233 if ((s->cmos_data[RTC_REG_C] & REG_C_UF) &&
234 (s->cmos_data[RTC_REG_C] & REG_C_AF)) {
235 qemu_del_timer(s->update_timer);
236 return;
239 guest_nsec = get_guest_rtc_ns(s) % NSEC_PER_SEC;
240 /* if UF is clear, reprogram to next second */
241 next_update_time = qemu_get_clock_ns(rtc_clock)
242 + NSEC_PER_SEC - guest_nsec;
244 /* Compute time of next alarm. One second is already accounted
245 * for in next_update_time.
247 next_alarm_sec = get_next_alarm(s);
248 s->next_alarm_time = next_update_time + (next_alarm_sec - 1) * NSEC_PER_SEC;
250 if (s->cmos_data[RTC_REG_C] & REG_C_UF) {
251 /* UF is set, but AF is clear. Program the timer to target
252 * the alarm time. */
253 next_update_time = s->next_alarm_time;
255 if (next_update_time != qemu_timer_expire_time_ns(s->update_timer)) {
256 qemu_mod_timer(s->update_timer, next_update_time);
260 static inline uint8_t convert_hour(RTCState *s, uint8_t hour)
262 if (!(s->cmos_data[RTC_REG_B] & REG_B_24H)) {
263 hour %= 12;
264 if (s->cmos_data[RTC_HOURS] & 0x80) {
265 hour += 12;
268 return hour;
271 static uint64_t get_next_alarm(RTCState *s)
273 int32_t alarm_sec, alarm_min, alarm_hour, cur_hour, cur_min, cur_sec;
274 int32_t hour, min, sec;
276 rtc_update_time(s);
278 alarm_sec = rtc_from_bcd(s, s->cmos_data[RTC_SECONDS_ALARM]);
279 alarm_min = rtc_from_bcd(s, s->cmos_data[RTC_MINUTES_ALARM]);
280 alarm_hour = rtc_from_bcd(s, s->cmos_data[RTC_HOURS_ALARM]);
281 alarm_hour = alarm_hour == -1 ? -1 : convert_hour(s, alarm_hour);
283 cur_sec = rtc_from_bcd(s, s->cmos_data[RTC_SECONDS]);
284 cur_min = rtc_from_bcd(s, s->cmos_data[RTC_MINUTES]);
285 cur_hour = rtc_from_bcd(s, s->cmos_data[RTC_HOURS]);
286 cur_hour = convert_hour(s, cur_hour);
288 if (alarm_hour == -1) {
289 alarm_hour = cur_hour;
290 if (alarm_min == -1) {
291 alarm_min = cur_min;
292 if (alarm_sec == -1) {
293 alarm_sec = cur_sec + 1;
294 } else if (cur_sec > alarm_sec) {
295 alarm_min++;
297 } else if (cur_min == alarm_min) {
298 if (alarm_sec == -1) {
299 alarm_sec = cur_sec + 1;
300 } else {
301 if (cur_sec > alarm_sec) {
302 alarm_hour++;
305 if (alarm_sec == SEC_PER_MIN) {
306 /* wrap to next hour, minutes is not in don't care mode */
307 alarm_sec = 0;
308 alarm_hour++;
310 } else if (cur_min > alarm_min) {
311 alarm_hour++;
313 } else if (cur_hour == alarm_hour) {
314 if (alarm_min == -1) {
315 alarm_min = cur_min;
316 if (alarm_sec == -1) {
317 alarm_sec = cur_sec + 1;
318 } else if (cur_sec > alarm_sec) {
319 alarm_min++;
322 if (alarm_sec == SEC_PER_MIN) {
323 alarm_sec = 0;
324 alarm_min++;
326 /* wrap to next day, hour is not in don't care mode */
327 alarm_min %= MIN_PER_HOUR;
328 } else if (cur_min == alarm_min) {
329 if (alarm_sec == -1) {
330 alarm_sec = cur_sec + 1;
332 /* wrap to next day, hours+minutes not in don't care mode */
333 alarm_sec %= SEC_PER_MIN;
337 /* values that are still don't care fire at the next min/sec */
338 if (alarm_min == -1) {
339 alarm_min = 0;
341 if (alarm_sec == -1) {
342 alarm_sec = 0;
345 /* keep values in range */
346 if (alarm_sec == SEC_PER_MIN) {
347 alarm_sec = 0;
348 alarm_min++;
350 if (alarm_min == MIN_PER_HOUR) {
351 alarm_min = 0;
352 alarm_hour++;
354 alarm_hour %= HOUR_PER_DAY;
356 hour = alarm_hour - cur_hour;
357 min = hour * MIN_PER_HOUR + alarm_min - cur_min;
358 sec = min * SEC_PER_MIN + alarm_sec - cur_sec;
359 return sec <= 0 ? sec + SEC_PER_DAY : sec;
362 static void rtc_update_timer(void *opaque)
364 RTCState *s = opaque;
365 int32_t irqs = REG_C_UF;
366 int32_t new_irqs;
368 assert((s->cmos_data[RTC_REG_A] & 0x60) != 0x60);
370 /* UIP might have been latched, update time and clear it. */
371 rtc_update_time(s);
372 s->cmos_data[RTC_REG_A] &= ~REG_A_UIP;
374 if (qemu_get_clock_ns(rtc_clock) >= s->next_alarm_time) {
375 irqs |= REG_C_AF;
376 if (s->cmos_data[RTC_REG_B] & REG_B_AIE) {
377 qemu_system_wakeup_request(QEMU_WAKEUP_REASON_RTC);
381 new_irqs = irqs & ~s->cmos_data[RTC_REG_C];
382 s->cmos_data[RTC_REG_C] |= irqs;
383 if ((new_irqs & s->cmos_data[RTC_REG_B]) != 0) {
384 s->cmos_data[RTC_REG_C] |= REG_C_IRQF;
385 qemu_irq_raise(s->irq);
387 check_update_timer(s);
390 static void cmos_ioport_write(void *opaque, hwaddr addr,
391 uint64_t data, unsigned size)
393 RTCState *s = opaque;
395 if ((addr & 1) == 0) {
396 s->cmos_index = data & 0x7f;
397 } else {
398 CMOS_DPRINTF("cmos: write index=0x%02x val=0x%02x\n",
399 s->cmos_index, data);
400 switch(s->cmos_index) {
401 case RTC_SECONDS_ALARM:
402 case RTC_MINUTES_ALARM:
403 case RTC_HOURS_ALARM:
404 s->cmos_data[s->cmos_index] = data;
405 check_update_timer(s);
406 break;
407 case RTC_IBM_PS2_CENTURY_BYTE:
408 s->cmos_index = RTC_CENTURY;
409 /* fall through */
410 case RTC_CENTURY:
411 case RTC_SECONDS:
412 case RTC_MINUTES:
413 case RTC_HOURS:
414 case RTC_DAY_OF_WEEK:
415 case RTC_DAY_OF_MONTH:
416 case RTC_MONTH:
417 case RTC_YEAR:
418 s->cmos_data[s->cmos_index] = data;
419 /* if in set mode, do not update the time */
420 if (rtc_running(s)) {
421 rtc_set_time(s);
422 check_update_timer(s);
424 break;
425 case RTC_REG_A:
426 if ((data & 0x60) == 0x60) {
427 if (rtc_running(s)) {
428 rtc_update_time(s);
430 /* What happens to UIP when divider reset is enabled is
431 * unclear from the datasheet. Shouldn't matter much
432 * though.
434 s->cmos_data[RTC_REG_A] &= ~REG_A_UIP;
435 } else if (((s->cmos_data[RTC_REG_A] & 0x60) == 0x60) &&
436 (data & 0x70) <= 0x20) {
437 /* when the divider reset is removed, the first update cycle
438 * begins one-half second later*/
439 if (!(s->cmos_data[RTC_REG_B] & REG_B_SET)) {
440 s->offset = 500000000;
441 rtc_set_time(s);
443 s->cmos_data[RTC_REG_A] &= ~REG_A_UIP;
445 /* UIP bit is read only */
446 s->cmos_data[RTC_REG_A] = (data & ~REG_A_UIP) |
447 (s->cmos_data[RTC_REG_A] & REG_A_UIP);
448 periodic_timer_update(s, qemu_get_clock_ns(rtc_clock));
449 check_update_timer(s);
450 break;
451 case RTC_REG_B:
452 if (data & REG_B_SET) {
453 /* update cmos to when the rtc was stopping */
454 if (rtc_running(s)) {
455 rtc_update_time(s);
457 /* set mode: reset UIP mode */
458 s->cmos_data[RTC_REG_A] &= ~REG_A_UIP;
459 data &= ~REG_B_UIE;
460 } else {
461 /* if disabling set mode, update the time */
462 if ((s->cmos_data[RTC_REG_B] & REG_B_SET) &&
463 (s->cmos_data[RTC_REG_A] & 0x70) <= 0x20) {
464 s->offset = get_guest_rtc_ns(s) % NSEC_PER_SEC;
465 rtc_set_time(s);
468 /* if an interrupt flag is already set when the interrupt
469 * becomes enabled, raise an interrupt immediately. */
470 if (data & s->cmos_data[RTC_REG_C] & REG_C_MASK) {
471 s->cmos_data[RTC_REG_C] |= REG_C_IRQF;
472 qemu_irq_raise(s->irq);
473 } else {
474 s->cmos_data[RTC_REG_C] &= ~REG_C_IRQF;
475 qemu_irq_lower(s->irq);
477 s->cmos_data[RTC_REG_B] = data;
478 periodic_timer_update(s, qemu_get_clock_ns(rtc_clock));
479 check_update_timer(s);
480 break;
481 case RTC_REG_C:
482 case RTC_REG_D:
483 /* cannot write to them */
484 break;
485 default:
486 s->cmos_data[s->cmos_index] = data;
487 break;
492 static inline int rtc_to_bcd(RTCState *s, int a)
494 if (s->cmos_data[RTC_REG_B] & REG_B_DM) {
495 return a;
496 } else {
497 return ((a / 10) << 4) | (a % 10);
501 static inline int rtc_from_bcd(RTCState *s, int a)
503 if ((a & 0xc0) == 0xc0) {
504 return -1;
506 if (s->cmos_data[RTC_REG_B] & REG_B_DM) {
507 return a;
508 } else {
509 return ((a >> 4) * 10) + (a & 0x0f);
513 static void rtc_get_time(RTCState *s, struct tm *tm)
515 tm->tm_sec = rtc_from_bcd(s, s->cmos_data[RTC_SECONDS]);
516 tm->tm_min = rtc_from_bcd(s, s->cmos_data[RTC_MINUTES]);
517 tm->tm_hour = rtc_from_bcd(s, s->cmos_data[RTC_HOURS] & 0x7f);
518 if (!(s->cmos_data[RTC_REG_B] & REG_B_24H)) {
519 tm->tm_hour %= 12;
520 if (s->cmos_data[RTC_HOURS] & 0x80) {
521 tm->tm_hour += 12;
524 tm->tm_wday = rtc_from_bcd(s, s->cmos_data[RTC_DAY_OF_WEEK]) - 1;
525 tm->tm_mday = rtc_from_bcd(s, s->cmos_data[RTC_DAY_OF_MONTH]);
526 tm->tm_mon = rtc_from_bcd(s, s->cmos_data[RTC_MONTH]) - 1;
527 tm->tm_year =
528 rtc_from_bcd(s, s->cmos_data[RTC_YEAR]) + s->base_year +
529 rtc_from_bcd(s, s->cmos_data[RTC_CENTURY]) * 100 - 1900;
532 static void rtc_set_time(RTCState *s)
534 struct tm tm;
536 rtc_get_time(s, &tm);
537 s->base_rtc = mktimegm(&tm);
538 s->last_update = qemu_get_clock_ns(rtc_clock);
540 rtc_change_mon_event(&tm);
543 static void rtc_set_cmos(RTCState *s, const struct tm *tm)
545 int year;
547 s->cmos_data[RTC_SECONDS] = rtc_to_bcd(s, tm->tm_sec);
548 s->cmos_data[RTC_MINUTES] = rtc_to_bcd(s, tm->tm_min);
549 if (s->cmos_data[RTC_REG_B] & REG_B_24H) {
550 /* 24 hour format */
551 s->cmos_data[RTC_HOURS] = rtc_to_bcd(s, tm->tm_hour);
552 } else {
553 /* 12 hour format */
554 int h = (tm->tm_hour % 12) ? tm->tm_hour % 12 : 12;
555 s->cmos_data[RTC_HOURS] = rtc_to_bcd(s, h);
556 if (tm->tm_hour >= 12)
557 s->cmos_data[RTC_HOURS] |= 0x80;
559 s->cmos_data[RTC_DAY_OF_WEEK] = rtc_to_bcd(s, tm->tm_wday + 1);
560 s->cmos_data[RTC_DAY_OF_MONTH] = rtc_to_bcd(s, tm->tm_mday);
561 s->cmos_data[RTC_MONTH] = rtc_to_bcd(s, tm->tm_mon + 1);
562 year = tm->tm_year + 1900 - s->base_year;
563 s->cmos_data[RTC_YEAR] = rtc_to_bcd(s, year % 100);
564 s->cmos_data[RTC_CENTURY] = rtc_to_bcd(s, year / 100);
567 static void rtc_update_time(RTCState *s)
569 struct tm ret;
570 time_t guest_sec;
571 int64_t guest_nsec;
573 guest_nsec = get_guest_rtc_ns(s);
574 guest_sec = guest_nsec / NSEC_PER_SEC;
575 gmtime_r(&guest_sec, &ret);
577 /* Is SET flag of Register B disabled? */
578 if ((s->cmos_data[RTC_REG_B] & REG_B_SET) == 0) {
579 rtc_set_cmos(s, &ret);
583 static int update_in_progress(RTCState *s)
585 int64_t guest_nsec;
587 if (!rtc_running(s)) {
588 return 0;
590 if (qemu_timer_pending(s->update_timer)) {
591 int64_t next_update_time = qemu_timer_expire_time_ns(s->update_timer);
592 /* Latch UIP until the timer expires. */
593 if (qemu_get_clock_ns(rtc_clock) >= (next_update_time - UIP_HOLD_LENGTH)) {
594 s->cmos_data[RTC_REG_A] |= REG_A_UIP;
595 return 1;
599 guest_nsec = get_guest_rtc_ns(s);
600 /* UIP bit will be set at last 244us of every second. */
601 if ((guest_nsec % NSEC_PER_SEC) >= (NSEC_PER_SEC - UIP_HOLD_LENGTH)) {
602 return 1;
604 return 0;
607 static uint64_t cmos_ioport_read(void *opaque, hwaddr addr,
608 unsigned size)
610 RTCState *s = opaque;
611 int ret;
612 if ((addr & 1) == 0) {
613 return 0xff;
614 } else {
615 switch(s->cmos_index) {
616 case RTC_IBM_PS2_CENTURY_BYTE:
617 s->cmos_index = RTC_CENTURY;
618 /* fall through */
619 case RTC_CENTURY:
620 case RTC_SECONDS:
621 case RTC_MINUTES:
622 case RTC_HOURS:
623 case RTC_DAY_OF_WEEK:
624 case RTC_DAY_OF_MONTH:
625 case RTC_MONTH:
626 case RTC_YEAR:
627 /* if not in set mode, calibrate cmos before
628 * reading*/
629 if (rtc_running(s)) {
630 rtc_update_time(s);
632 ret = s->cmos_data[s->cmos_index];
633 break;
634 case RTC_REG_A:
635 if (update_in_progress(s)) {
636 s->cmos_data[s->cmos_index] |= REG_A_UIP;
637 } else {
638 s->cmos_data[s->cmos_index] &= ~REG_A_UIP;
640 ret = s->cmos_data[s->cmos_index];
641 break;
642 case RTC_REG_C:
643 ret = s->cmos_data[s->cmos_index];
644 qemu_irq_lower(s->irq);
645 s->cmos_data[RTC_REG_C] = 0x00;
646 if (ret & (REG_C_UF | REG_C_AF)) {
647 check_update_timer(s);
649 #ifdef TARGET_I386
650 if(s->irq_coalesced &&
651 (s->cmos_data[RTC_REG_B] & REG_B_PIE) &&
652 s->irq_reinject_on_ack_count < RTC_REINJECT_ON_ACK_COUNT) {
653 s->irq_reinject_on_ack_count++;
654 s->cmos_data[RTC_REG_C] |= REG_C_IRQF | REG_C_PF;
655 apic_reset_irq_delivered();
656 DPRINTF_C("cmos: injecting on ack\n");
657 qemu_irq_raise(s->irq);
658 if (apic_get_irq_delivered()) {
659 s->irq_coalesced--;
660 DPRINTF_C("cmos: coalesced irqs decreased to %d\n",
661 s->irq_coalesced);
664 #endif
665 break;
666 default:
667 ret = s->cmos_data[s->cmos_index];
668 break;
670 CMOS_DPRINTF("cmos: read index=0x%02x val=0x%02x\n",
671 s->cmos_index, ret);
672 return ret;
676 void rtc_set_memory(ISADevice *dev, int addr, int val)
678 RTCState *s = MC146818_RTC(dev);
679 if (addr >= 0 && addr <= 127)
680 s->cmos_data[addr] = val;
683 int rtc_get_memory(ISADevice *dev, int addr)
685 RTCState *s = MC146818_RTC(dev);
686 assert(addr >= 0 && addr <= 127);
687 return s->cmos_data[addr];
690 static void rtc_set_date_from_host(ISADevice *dev)
692 RTCState *s = MC146818_RTC(dev);
693 struct tm tm;
695 qemu_get_timedate(&tm, 0);
697 s->base_rtc = mktimegm(&tm);
698 s->last_update = qemu_get_clock_ns(rtc_clock);
699 s->offset = 0;
701 /* set the CMOS date */
702 rtc_set_cmos(s, &tm);
705 static int rtc_post_load(void *opaque, int version_id)
707 RTCState *s = opaque;
709 if (version_id <= 2) {
710 rtc_set_time(s);
711 s->offset = 0;
712 check_update_timer(s);
715 #ifdef TARGET_I386
716 if (version_id >= 2) {
717 if (s->lost_tick_policy == LOST_TICK_SLEW) {
718 rtc_coalesced_timer_update(s);
721 #endif
722 return 0;
725 static const VMStateDescription vmstate_rtc = {
726 .name = "mc146818rtc",
727 .version_id = 3,
728 .minimum_version_id = 1,
729 .minimum_version_id_old = 1,
730 .post_load = rtc_post_load,
731 .fields = (VMStateField []) {
732 VMSTATE_BUFFER(cmos_data, RTCState),
733 VMSTATE_UINT8(cmos_index, RTCState),
734 VMSTATE_UNUSED(7*4),
735 VMSTATE_TIMER(periodic_timer, RTCState),
736 VMSTATE_INT64(next_periodic_time, RTCState),
737 VMSTATE_UNUSED(3*8),
738 VMSTATE_UINT32_V(irq_coalesced, RTCState, 2),
739 VMSTATE_UINT32_V(period, RTCState, 2),
740 VMSTATE_UINT64_V(base_rtc, RTCState, 3),
741 VMSTATE_UINT64_V(last_update, RTCState, 3),
742 VMSTATE_INT64_V(offset, RTCState, 3),
743 VMSTATE_TIMER_V(update_timer, RTCState, 3),
744 VMSTATE_UINT64_V(next_alarm_time, RTCState, 3),
745 VMSTATE_END_OF_LIST()
749 static void rtc_notify_clock_reset(Notifier *notifier, void *data)
751 RTCState *s = container_of(notifier, RTCState, clock_reset_notifier);
752 int64_t now = *(int64_t *)data;
754 rtc_set_date_from_host(ISA_DEVICE(s));
755 periodic_timer_update(s, now);
756 check_update_timer(s);
757 #ifdef TARGET_I386
758 if (s->lost_tick_policy == LOST_TICK_SLEW) {
759 rtc_coalesced_timer_update(s);
761 #endif
764 /* set CMOS shutdown status register (index 0xF) as S3_resume(0xFE)
765 BIOS will read it and start S3 resume at POST Entry */
766 static void rtc_notify_suspend(Notifier *notifier, void *data)
768 RTCState *s = container_of(notifier, RTCState, suspend_notifier);
769 rtc_set_memory(ISA_DEVICE(s), 0xF, 0xFE);
772 static void rtc_reset(void *opaque)
774 RTCState *s = opaque;
776 s->cmos_data[RTC_REG_B] &= ~(REG_B_PIE | REG_B_AIE | REG_B_SQWE);
777 s->cmos_data[RTC_REG_C] &= ~(REG_C_UF | REG_C_IRQF | REG_C_PF | REG_C_AF);
778 check_update_timer(s);
780 qemu_irq_lower(s->irq);
782 #ifdef TARGET_I386
783 if (s->lost_tick_policy == LOST_TICK_SLEW) {
784 s->irq_coalesced = 0;
786 #endif
789 static const MemoryRegionOps cmos_ops = {
790 .read = cmos_ioport_read,
791 .write = cmos_ioport_write,
792 .impl = {
793 .min_access_size = 1,
794 .max_access_size = 1,
796 .endianness = DEVICE_LITTLE_ENDIAN,
799 static void rtc_get_date(Object *obj, Visitor *v, void *opaque,
800 const char *name, Error **errp)
802 RTCState *s = MC146818_RTC(obj);
803 struct tm current_tm;
805 rtc_update_time(s);
806 rtc_get_time(s, &current_tm);
807 visit_start_struct(v, NULL, "struct tm", name, 0, errp);
808 visit_type_int32(v, &current_tm.tm_year, "tm_year", errp);
809 visit_type_int32(v, &current_tm.tm_mon, "tm_mon", errp);
810 visit_type_int32(v, &current_tm.tm_mday, "tm_mday", errp);
811 visit_type_int32(v, &current_tm.tm_hour, "tm_hour", errp);
812 visit_type_int32(v, &current_tm.tm_min, "tm_min", errp);
813 visit_type_int32(v, &current_tm.tm_sec, "tm_sec", errp);
814 visit_end_struct(v, errp);
817 static int rtc_initfn(ISADevice *dev)
819 RTCState *s = MC146818_RTC(dev);
820 int base = 0x70;
822 s->cmos_data[RTC_REG_A] = 0x26;
823 s->cmos_data[RTC_REG_B] = 0x02;
824 s->cmos_data[RTC_REG_C] = 0x00;
825 s->cmos_data[RTC_REG_D] = 0x80;
827 /* This is for historical reasons. The default base year qdev property
828 * was set to 2000 for most machine types before the century byte was
829 * implemented.
831 * This if statement means that the century byte will be always 0
832 * (at least until 2079...) for base_year = 1980, but will be set
833 * correctly for base_year = 2000.
835 if (s->base_year == 2000) {
836 s->base_year = 0;
839 rtc_set_date_from_host(dev);
841 #ifdef TARGET_I386
842 switch (s->lost_tick_policy) {
843 case LOST_TICK_SLEW:
844 s->coalesced_timer =
845 qemu_new_timer_ns(rtc_clock, rtc_coalesced_timer, s);
846 break;
847 case LOST_TICK_DISCARD:
848 break;
849 default:
850 return -EINVAL;
852 #endif
854 s->periodic_timer = qemu_new_timer_ns(rtc_clock, rtc_periodic_timer, s);
855 s->update_timer = qemu_new_timer_ns(rtc_clock, rtc_update_timer, s);
856 check_update_timer(s);
858 s->clock_reset_notifier.notify = rtc_notify_clock_reset;
859 qemu_register_clock_reset_notifier(rtc_clock, &s->clock_reset_notifier);
861 s->suspend_notifier.notify = rtc_notify_suspend;
862 qemu_register_suspend_notifier(&s->suspend_notifier);
864 memory_region_init_io(&s->io, &cmos_ops, s, "rtc", 2);
865 isa_register_ioport(dev, &s->io, base);
867 qdev_set_legacy_instance_id(&dev->qdev, base, 3);
868 qemu_register_reset(rtc_reset, s);
870 object_property_add(OBJECT(s), "date", "struct tm",
871 rtc_get_date, NULL, NULL, s, NULL);
873 return 0;
876 ISADevice *rtc_init(ISABus *bus, int base_year, qemu_irq intercept_irq)
878 DeviceState *dev;
879 ISADevice *isadev;
880 RTCState *s;
882 isadev = isa_create(bus, TYPE_MC146818_RTC);
883 dev = DEVICE(isadev);
884 s = MC146818_RTC(isadev);
885 qdev_prop_set_int32(dev, "base_year", base_year);
886 qdev_init_nofail(dev);
887 if (intercept_irq) {
888 s->irq = intercept_irq;
889 } else {
890 isa_init_irq(isadev, &s->irq, RTC_ISA_IRQ);
892 return isadev;
895 static Property mc146818rtc_properties[] = {
896 DEFINE_PROP_INT32("base_year", RTCState, base_year, 1980),
897 DEFINE_PROP_LOSTTICKPOLICY("lost_tick_policy", RTCState,
898 lost_tick_policy, LOST_TICK_DISCARD),
899 DEFINE_PROP_END_OF_LIST(),
902 static void rtc_class_initfn(ObjectClass *klass, void *data)
904 DeviceClass *dc = DEVICE_CLASS(klass);
905 ISADeviceClass *ic = ISA_DEVICE_CLASS(klass);
906 ic->init = rtc_initfn;
907 dc->no_user = 1;
908 dc->vmsd = &vmstate_rtc;
909 dc->props = mc146818rtc_properties;
912 static const TypeInfo mc146818rtc_info = {
913 .name = TYPE_MC146818_RTC,
914 .parent = TYPE_ISA_DEVICE,
915 .instance_size = sizeof(RTCState),
916 .class_init = rtc_class_initfn,
919 static void mc146818rtc_register_types(void)
921 type_register_static(&mc146818rtc_info);
924 type_init(mc146818rtc_register_types)