target/ppc/spapr: Enable the large decrementer for pseries-4.0
[qemu/ar7.git] / hw / ppc / spapr.c
blob8e24d7dc50248933f209dd8384ccb541c094423b
1 /*
2 * QEMU PowerPC pSeries Logical Partition (aka sPAPR) hardware System Emulator
4 * Copyright (c) 2004-2007 Fabrice Bellard
5 * Copyright (c) 2007 Jocelyn Mayer
6 * Copyright (c) 2010 David Gibson, IBM Corporation.
8 * Permission is hereby granted, free of charge, to any person obtaining a copy
9 * of this software and associated documentation files (the "Software"), to deal
10 * in the Software without restriction, including without limitation the rights
11 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
12 * copies of the Software, and to permit persons to whom the Software is
13 * furnished to do so, subject to the following conditions:
15 * The above copyright notice and this permission notice shall be included in
16 * all copies or substantial portions of the Software.
18 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
19 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
20 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
21 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
22 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
23 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
24 * THE SOFTWARE.
27 #include "qemu/osdep.h"
28 #include "qapi/error.h"
29 #include "qapi/visitor.h"
30 #include "sysemu/sysemu.h"
31 #include "sysemu/numa.h"
32 #include "sysemu/qtest.h"
33 #include "hw/hw.h"
34 #include "qemu/log.h"
35 #include "hw/fw-path-provider.h"
36 #include "elf.h"
37 #include "net/net.h"
38 #include "sysemu/device_tree.h"
39 #include "sysemu/cpus.h"
40 #include "sysemu/hw_accel.h"
41 #include "kvm_ppc.h"
42 #include "migration/misc.h"
43 #include "migration/global_state.h"
44 #include "migration/register.h"
45 #include "mmu-hash64.h"
46 #include "mmu-book3s-v3.h"
47 #include "cpu-models.h"
48 #include "qom/cpu.h"
50 #include "hw/boards.h"
51 #include "hw/ppc/ppc.h"
52 #include "hw/loader.h"
54 #include "hw/ppc/fdt.h"
55 #include "hw/ppc/spapr.h"
56 #include "hw/ppc/spapr_vio.h"
57 #include "hw/pci-host/spapr.h"
58 #include "hw/pci/msi.h"
60 #include "hw/pci/pci.h"
61 #include "hw/scsi/scsi.h"
62 #include "hw/virtio/virtio-scsi.h"
63 #include "hw/virtio/vhost-scsi-common.h"
65 #include "exec/address-spaces.h"
66 #include "exec/ram_addr.h"
67 #include "hw/usb.h"
68 #include "qemu/config-file.h"
69 #include "qemu/error-report.h"
70 #include "trace.h"
71 #include "hw/nmi.h"
72 #include "hw/intc/intc.h"
74 #include "qemu/cutils.h"
75 #include "hw/ppc/spapr_cpu_core.h"
76 #include "hw/mem/memory-device.h"
78 #include <libfdt.h>
80 /* SLOF memory layout:
82 * SLOF raw image loaded at 0, copies its romfs right below the flat
83 * device-tree, then position SLOF itself 31M below that
85 * So we set FW_OVERHEAD to 40MB which should account for all of that
86 * and more
88 * We load our kernel at 4M, leaving space for SLOF initial image
90 #define FDT_MAX_SIZE 0x100000
91 #define RTAS_MAX_SIZE 0x10000
92 #define RTAS_MAX_ADDR 0x80000000 /* RTAS must stay below that */
93 #define FW_MAX_SIZE 0x400000
94 #define FW_FILE_NAME "slof.bin"
95 #define FW_OVERHEAD 0x2800000
96 #define KERNEL_LOAD_ADDR FW_MAX_SIZE
98 #define MIN_RMA_SLOF 128UL
100 #define PHANDLE_INTC 0x00001111
102 /* These two functions implement the VCPU id numbering: one to compute them
103 * all and one to identify thread 0 of a VCORE. Any change to the first one
104 * is likely to have an impact on the second one, so let's keep them close.
106 static int spapr_vcpu_id(sPAPRMachineState *spapr, int cpu_index)
108 assert(spapr->vsmt);
109 return
110 (cpu_index / smp_threads) * spapr->vsmt + cpu_index % smp_threads;
112 static bool spapr_is_thread0_in_vcore(sPAPRMachineState *spapr,
113 PowerPCCPU *cpu)
115 assert(spapr->vsmt);
116 return spapr_get_vcpu_id(cpu) % spapr->vsmt == 0;
119 static bool pre_2_10_vmstate_dummy_icp_needed(void *opaque)
121 /* Dummy entries correspond to unused ICPState objects in older QEMUs,
122 * and newer QEMUs don't even have them. In both cases, we don't want
123 * to send anything on the wire.
125 return false;
128 static const VMStateDescription pre_2_10_vmstate_dummy_icp = {
129 .name = "icp/server",
130 .version_id = 1,
131 .minimum_version_id = 1,
132 .needed = pre_2_10_vmstate_dummy_icp_needed,
133 .fields = (VMStateField[]) {
134 VMSTATE_UNUSED(4), /* uint32_t xirr */
135 VMSTATE_UNUSED(1), /* uint8_t pending_priority */
136 VMSTATE_UNUSED(1), /* uint8_t mfrr */
137 VMSTATE_END_OF_LIST()
141 static void pre_2_10_vmstate_register_dummy_icp(int i)
143 vmstate_register(NULL, i, &pre_2_10_vmstate_dummy_icp,
144 (void *)(uintptr_t) i);
147 static void pre_2_10_vmstate_unregister_dummy_icp(int i)
149 vmstate_unregister(NULL, &pre_2_10_vmstate_dummy_icp,
150 (void *)(uintptr_t) i);
153 int spapr_max_server_number(sPAPRMachineState *spapr)
155 assert(spapr->vsmt);
156 return DIV_ROUND_UP(max_cpus * spapr->vsmt, smp_threads);
159 static int spapr_fixup_cpu_smt_dt(void *fdt, int offset, PowerPCCPU *cpu,
160 int smt_threads)
162 int i, ret = 0;
163 uint32_t servers_prop[smt_threads];
164 uint32_t gservers_prop[smt_threads * 2];
165 int index = spapr_get_vcpu_id(cpu);
167 if (cpu->compat_pvr) {
168 ret = fdt_setprop_cell(fdt, offset, "cpu-version", cpu->compat_pvr);
169 if (ret < 0) {
170 return ret;
174 /* Build interrupt servers and gservers properties */
175 for (i = 0; i < smt_threads; i++) {
176 servers_prop[i] = cpu_to_be32(index + i);
177 /* Hack, direct the group queues back to cpu 0 */
178 gservers_prop[i*2] = cpu_to_be32(index + i);
179 gservers_prop[i*2 + 1] = 0;
181 ret = fdt_setprop(fdt, offset, "ibm,ppc-interrupt-server#s",
182 servers_prop, sizeof(servers_prop));
183 if (ret < 0) {
184 return ret;
186 ret = fdt_setprop(fdt, offset, "ibm,ppc-interrupt-gserver#s",
187 gservers_prop, sizeof(gservers_prop));
189 return ret;
192 static int spapr_fixup_cpu_numa_dt(void *fdt, int offset, PowerPCCPU *cpu)
194 int index = spapr_get_vcpu_id(cpu);
195 uint32_t associativity[] = {cpu_to_be32(0x5),
196 cpu_to_be32(0x0),
197 cpu_to_be32(0x0),
198 cpu_to_be32(0x0),
199 cpu_to_be32(cpu->node_id),
200 cpu_to_be32(index)};
202 /* Advertise NUMA via ibm,associativity */
203 return fdt_setprop(fdt, offset, "ibm,associativity", associativity,
204 sizeof(associativity));
207 /* Populate the "ibm,pa-features" property */
208 static void spapr_populate_pa_features(sPAPRMachineState *spapr,
209 PowerPCCPU *cpu,
210 void *fdt, int offset,
211 bool legacy_guest)
213 uint8_t pa_features_206[] = { 6, 0,
214 0xf6, 0x1f, 0xc7, 0x00, 0x80, 0xc0 };
215 uint8_t pa_features_207[] = { 24, 0,
216 0xf6, 0x1f, 0xc7, 0xc0, 0x80, 0xf0,
217 0x80, 0x00, 0x00, 0x00, 0x00, 0x00,
218 0x00, 0x00, 0x00, 0x00, 0x80, 0x00,
219 0x80, 0x00, 0x80, 0x00, 0x00, 0x00 };
220 uint8_t pa_features_300[] = { 66, 0,
221 /* 0: MMU|FPU|SLB|RUN|DABR|NX, 1: fri[nzpm]|DABRX|SPRG3|SLB0|PP110 */
222 /* 2: VPM|DS205|PPR|DS202|DS206, 3: LSD|URG, SSO, 5: LE|CFAR|EB|LSQ */
223 0xf6, 0x1f, 0xc7, 0xc0, 0x80, 0xf0, /* 0 - 5 */
224 /* 6: DS207 */
225 0x80, 0x00, 0x00, 0x00, 0x00, 0x00, /* 6 - 11 */
226 /* 16: Vector */
227 0x00, 0x00, 0x00, 0x00, 0x80, 0x00, /* 12 - 17 */
228 /* 18: Vec. Scalar, 20: Vec. XOR, 22: HTM */
229 0x80, 0x00, 0x80, 0x00, 0x00, 0x00, /* 18 - 23 */
230 /* 24: Ext. Dec, 26: 64 bit ftrs, 28: PM ftrs */
231 0x80, 0x00, 0x80, 0x00, 0x80, 0x00, /* 24 - 29 */
232 /* 30: MMR, 32: LE atomic, 34: EBB + ext EBB */
233 0x80, 0x00, 0x80, 0x00, 0xC0, 0x00, /* 30 - 35 */
234 /* 36: SPR SO, 38: Copy/Paste, 40: Radix MMU */
235 0x80, 0x00, 0x80, 0x00, 0x80, 0x00, /* 36 - 41 */
236 /* 42: PM, 44: PC RA, 46: SC vec'd */
237 0x80, 0x00, 0x80, 0x00, 0x80, 0x00, /* 42 - 47 */
238 /* 48: SIMD, 50: QP BFP, 52: String */
239 0x80, 0x00, 0x80, 0x00, 0x80, 0x00, /* 48 - 53 */
240 /* 54: DecFP, 56: DecI, 58: SHA */
241 0x80, 0x00, 0x80, 0x00, 0x80, 0x00, /* 54 - 59 */
242 /* 60: NM atomic, 62: RNG */
243 0x80, 0x00, 0x80, 0x00, 0x00, 0x00, /* 60 - 65 */
245 uint8_t *pa_features = NULL;
246 size_t pa_size;
248 if (ppc_check_compat(cpu, CPU_POWERPC_LOGICAL_2_06, 0, cpu->compat_pvr)) {
249 pa_features = pa_features_206;
250 pa_size = sizeof(pa_features_206);
252 if (ppc_check_compat(cpu, CPU_POWERPC_LOGICAL_2_07, 0, cpu->compat_pvr)) {
253 pa_features = pa_features_207;
254 pa_size = sizeof(pa_features_207);
256 if (ppc_check_compat(cpu, CPU_POWERPC_LOGICAL_3_00, 0, cpu->compat_pvr)) {
257 pa_features = pa_features_300;
258 pa_size = sizeof(pa_features_300);
260 if (!pa_features) {
261 return;
264 if (ppc_hash64_has(cpu, PPC_HASH64_CI_LARGEPAGE)) {
266 * Note: we keep CI large pages off by default because a 64K capable
267 * guest provisioned with large pages might otherwise try to map a qemu
268 * framebuffer (or other kind of memory mapped PCI BAR) using 64K pages
269 * even if that qemu runs on a 4k host.
270 * We dd this bit back here if we are confident this is not an issue
272 pa_features[3] |= 0x20;
274 if ((spapr_get_cap(spapr, SPAPR_CAP_HTM) != 0) && pa_size > 24) {
275 pa_features[24] |= 0x80; /* Transactional memory support */
277 if (legacy_guest && pa_size > 40) {
278 /* Workaround for broken kernels that attempt (guest) radix
279 * mode when they can't handle it, if they see the radix bit set
280 * in pa-features. So hide it from them. */
281 pa_features[40 + 2] &= ~0x80; /* Radix MMU */
284 _FDT((fdt_setprop(fdt, offset, "ibm,pa-features", pa_features, pa_size)));
287 static int spapr_fixup_cpu_dt(void *fdt, sPAPRMachineState *spapr)
289 int ret = 0, offset, cpus_offset;
290 CPUState *cs;
291 char cpu_model[32];
292 uint32_t pft_size_prop[] = {0, cpu_to_be32(spapr->htab_shift)};
294 CPU_FOREACH(cs) {
295 PowerPCCPU *cpu = POWERPC_CPU(cs);
296 DeviceClass *dc = DEVICE_GET_CLASS(cs);
297 int index = spapr_get_vcpu_id(cpu);
298 int compat_smt = MIN(smp_threads, ppc_compat_max_vthreads(cpu));
300 if (!spapr_is_thread0_in_vcore(spapr, cpu)) {
301 continue;
304 snprintf(cpu_model, 32, "%s@%x", dc->fw_name, index);
306 cpus_offset = fdt_path_offset(fdt, "/cpus");
307 if (cpus_offset < 0) {
308 cpus_offset = fdt_add_subnode(fdt, 0, "cpus");
309 if (cpus_offset < 0) {
310 return cpus_offset;
313 offset = fdt_subnode_offset(fdt, cpus_offset, cpu_model);
314 if (offset < 0) {
315 offset = fdt_add_subnode(fdt, cpus_offset, cpu_model);
316 if (offset < 0) {
317 return offset;
321 ret = fdt_setprop(fdt, offset, "ibm,pft-size",
322 pft_size_prop, sizeof(pft_size_prop));
323 if (ret < 0) {
324 return ret;
327 if (nb_numa_nodes > 1) {
328 ret = spapr_fixup_cpu_numa_dt(fdt, offset, cpu);
329 if (ret < 0) {
330 return ret;
334 ret = spapr_fixup_cpu_smt_dt(fdt, offset, cpu, compat_smt);
335 if (ret < 0) {
336 return ret;
339 spapr_populate_pa_features(spapr, cpu, fdt, offset,
340 spapr->cas_legacy_guest_workaround);
342 return ret;
345 static hwaddr spapr_node0_size(MachineState *machine)
347 if (nb_numa_nodes) {
348 int i;
349 for (i = 0; i < nb_numa_nodes; ++i) {
350 if (numa_info[i].node_mem) {
351 return MIN(pow2floor(numa_info[i].node_mem),
352 machine->ram_size);
356 return machine->ram_size;
359 static void add_str(GString *s, const gchar *s1)
361 g_string_append_len(s, s1, strlen(s1) + 1);
364 static int spapr_populate_memory_node(void *fdt, int nodeid, hwaddr start,
365 hwaddr size)
367 uint32_t associativity[] = {
368 cpu_to_be32(0x4), /* length */
369 cpu_to_be32(0x0), cpu_to_be32(0x0),
370 cpu_to_be32(0x0), cpu_to_be32(nodeid)
372 char mem_name[32];
373 uint64_t mem_reg_property[2];
374 int off;
376 mem_reg_property[0] = cpu_to_be64(start);
377 mem_reg_property[1] = cpu_to_be64(size);
379 sprintf(mem_name, "memory@" TARGET_FMT_lx, start);
380 off = fdt_add_subnode(fdt, 0, mem_name);
381 _FDT(off);
382 _FDT((fdt_setprop_string(fdt, off, "device_type", "memory")));
383 _FDT((fdt_setprop(fdt, off, "reg", mem_reg_property,
384 sizeof(mem_reg_property))));
385 _FDT((fdt_setprop(fdt, off, "ibm,associativity", associativity,
386 sizeof(associativity))));
387 return off;
390 static int spapr_populate_memory(sPAPRMachineState *spapr, void *fdt)
392 MachineState *machine = MACHINE(spapr);
393 hwaddr mem_start, node_size;
394 int i, nb_nodes = nb_numa_nodes;
395 NodeInfo *nodes = numa_info;
396 NodeInfo ramnode;
398 /* No NUMA nodes, assume there is just one node with whole RAM */
399 if (!nb_numa_nodes) {
400 nb_nodes = 1;
401 ramnode.node_mem = machine->ram_size;
402 nodes = &ramnode;
405 for (i = 0, mem_start = 0; i < nb_nodes; ++i) {
406 if (!nodes[i].node_mem) {
407 continue;
409 if (mem_start >= machine->ram_size) {
410 node_size = 0;
411 } else {
412 node_size = nodes[i].node_mem;
413 if (node_size > machine->ram_size - mem_start) {
414 node_size = machine->ram_size - mem_start;
417 if (!mem_start) {
418 /* spapr_machine_init() checks for rma_size <= node0_size
419 * already */
420 spapr_populate_memory_node(fdt, i, 0, spapr->rma_size);
421 mem_start += spapr->rma_size;
422 node_size -= spapr->rma_size;
424 for ( ; node_size; ) {
425 hwaddr sizetmp = pow2floor(node_size);
427 /* mem_start != 0 here */
428 if (ctzl(mem_start) < ctzl(sizetmp)) {
429 sizetmp = 1ULL << ctzl(mem_start);
432 spapr_populate_memory_node(fdt, i, mem_start, sizetmp);
433 node_size -= sizetmp;
434 mem_start += sizetmp;
438 return 0;
441 static void spapr_populate_cpu_dt(CPUState *cs, void *fdt, int offset,
442 sPAPRMachineState *spapr)
444 PowerPCCPU *cpu = POWERPC_CPU(cs);
445 CPUPPCState *env = &cpu->env;
446 PowerPCCPUClass *pcc = POWERPC_CPU_GET_CLASS(cs);
447 int index = spapr_get_vcpu_id(cpu);
448 uint32_t segs[] = {cpu_to_be32(28), cpu_to_be32(40),
449 0xffffffff, 0xffffffff};
450 uint32_t tbfreq = kvm_enabled() ? kvmppc_get_tbfreq()
451 : SPAPR_TIMEBASE_FREQ;
452 uint32_t cpufreq = kvm_enabled() ? kvmppc_get_clockfreq() : 1000000000;
453 uint32_t page_sizes_prop[64];
454 size_t page_sizes_prop_size;
455 uint32_t vcpus_per_socket = smp_threads * smp_cores;
456 uint32_t pft_size_prop[] = {0, cpu_to_be32(spapr->htab_shift)};
457 int compat_smt = MIN(smp_threads, ppc_compat_max_vthreads(cpu));
458 sPAPRDRConnector *drc;
459 int drc_index;
460 uint32_t radix_AP_encodings[PPC_PAGE_SIZES_MAX_SZ];
461 int i;
463 drc = spapr_drc_by_id(TYPE_SPAPR_DRC_CPU, index);
464 if (drc) {
465 drc_index = spapr_drc_index(drc);
466 _FDT((fdt_setprop_cell(fdt, offset, "ibm,my-drc-index", drc_index)));
469 _FDT((fdt_setprop_cell(fdt, offset, "reg", index)));
470 _FDT((fdt_setprop_string(fdt, offset, "device_type", "cpu")));
472 _FDT((fdt_setprop_cell(fdt, offset, "cpu-version", env->spr[SPR_PVR])));
473 _FDT((fdt_setprop_cell(fdt, offset, "d-cache-block-size",
474 env->dcache_line_size)));
475 _FDT((fdt_setprop_cell(fdt, offset, "d-cache-line-size",
476 env->dcache_line_size)));
477 _FDT((fdt_setprop_cell(fdt, offset, "i-cache-block-size",
478 env->icache_line_size)));
479 _FDT((fdt_setprop_cell(fdt, offset, "i-cache-line-size",
480 env->icache_line_size)));
482 if (pcc->l1_dcache_size) {
483 _FDT((fdt_setprop_cell(fdt, offset, "d-cache-size",
484 pcc->l1_dcache_size)));
485 } else {
486 warn_report("Unknown L1 dcache size for cpu");
488 if (pcc->l1_icache_size) {
489 _FDT((fdt_setprop_cell(fdt, offset, "i-cache-size",
490 pcc->l1_icache_size)));
491 } else {
492 warn_report("Unknown L1 icache size for cpu");
495 _FDT((fdt_setprop_cell(fdt, offset, "timebase-frequency", tbfreq)));
496 _FDT((fdt_setprop_cell(fdt, offset, "clock-frequency", cpufreq)));
497 _FDT((fdt_setprop_cell(fdt, offset, "slb-size", cpu->hash64_opts->slb_size)));
498 _FDT((fdt_setprop_cell(fdt, offset, "ibm,slb-size", cpu->hash64_opts->slb_size)));
499 _FDT((fdt_setprop_string(fdt, offset, "status", "okay")));
500 _FDT((fdt_setprop(fdt, offset, "64-bit", NULL, 0)));
502 if (env->spr_cb[SPR_PURR].oea_read) {
503 _FDT((fdt_setprop(fdt, offset, "ibm,purr", NULL, 0)));
506 if (ppc_hash64_has(cpu, PPC_HASH64_1TSEG)) {
507 _FDT((fdt_setprop(fdt, offset, "ibm,processor-segment-sizes",
508 segs, sizeof(segs))));
511 /* Advertise VSX (vector extensions) if available
512 * 1 == VMX / Altivec available
513 * 2 == VSX available
515 * Only CPUs for which we create core types in spapr_cpu_core.c
516 * are possible, and all of those have VMX */
517 if (spapr_get_cap(spapr, SPAPR_CAP_VSX) != 0) {
518 _FDT((fdt_setprop_cell(fdt, offset, "ibm,vmx", 2)));
519 } else {
520 _FDT((fdt_setprop_cell(fdt, offset, "ibm,vmx", 1)));
523 /* Advertise DFP (Decimal Floating Point) if available
524 * 0 / no property == no DFP
525 * 1 == DFP available */
526 if (spapr_get_cap(spapr, SPAPR_CAP_DFP) != 0) {
527 _FDT((fdt_setprop_cell(fdt, offset, "ibm,dfp", 1)));
530 page_sizes_prop_size = ppc_create_page_sizes_prop(cpu, page_sizes_prop,
531 sizeof(page_sizes_prop));
532 if (page_sizes_prop_size) {
533 _FDT((fdt_setprop(fdt, offset, "ibm,segment-page-sizes",
534 page_sizes_prop, page_sizes_prop_size)));
537 spapr_populate_pa_features(spapr, cpu, fdt, offset, false);
539 _FDT((fdt_setprop_cell(fdt, offset, "ibm,chip-id",
540 cs->cpu_index / vcpus_per_socket)));
542 _FDT((fdt_setprop(fdt, offset, "ibm,pft-size",
543 pft_size_prop, sizeof(pft_size_prop))));
545 if (nb_numa_nodes > 1) {
546 _FDT(spapr_fixup_cpu_numa_dt(fdt, offset, cpu));
549 _FDT(spapr_fixup_cpu_smt_dt(fdt, offset, cpu, compat_smt));
551 if (pcc->radix_page_info) {
552 for (i = 0; i < pcc->radix_page_info->count; i++) {
553 radix_AP_encodings[i] =
554 cpu_to_be32(pcc->radix_page_info->entries[i]);
556 _FDT((fdt_setprop(fdt, offset, "ibm,processor-radix-AP-encodings",
557 radix_AP_encodings,
558 pcc->radix_page_info->count *
559 sizeof(radix_AP_encodings[0]))));
563 * We set this property to let the guest know that it can use the large
564 * decrementer and its width in bits.
566 if (spapr_get_cap(spapr, SPAPR_CAP_LARGE_DECREMENTER) != SPAPR_CAP_OFF)
567 _FDT((fdt_setprop_u32(fdt, offset, "ibm,dec-bits",
568 pcc->lrg_decr_bits)));
571 static void spapr_populate_cpus_dt_node(void *fdt, sPAPRMachineState *spapr)
573 CPUState **rev;
574 CPUState *cs;
575 int n_cpus;
576 int cpus_offset;
577 char *nodename;
578 int i;
580 cpus_offset = fdt_add_subnode(fdt, 0, "cpus");
581 _FDT(cpus_offset);
582 _FDT((fdt_setprop_cell(fdt, cpus_offset, "#address-cells", 0x1)));
583 _FDT((fdt_setprop_cell(fdt, cpus_offset, "#size-cells", 0x0)));
586 * We walk the CPUs in reverse order to ensure that CPU DT nodes
587 * created by fdt_add_subnode() end up in the right order in FDT
588 * for the guest kernel the enumerate the CPUs correctly.
590 * The CPU list cannot be traversed in reverse order, so we need
591 * to do extra work.
593 n_cpus = 0;
594 rev = NULL;
595 CPU_FOREACH(cs) {
596 rev = g_renew(CPUState *, rev, n_cpus + 1);
597 rev[n_cpus++] = cs;
600 for (i = n_cpus - 1; i >= 0; i--) {
601 CPUState *cs = rev[i];
602 PowerPCCPU *cpu = POWERPC_CPU(cs);
603 int index = spapr_get_vcpu_id(cpu);
604 DeviceClass *dc = DEVICE_GET_CLASS(cs);
605 int offset;
607 if (!spapr_is_thread0_in_vcore(spapr, cpu)) {
608 continue;
611 nodename = g_strdup_printf("%s@%x", dc->fw_name, index);
612 offset = fdt_add_subnode(fdt, cpus_offset, nodename);
613 g_free(nodename);
614 _FDT(offset);
615 spapr_populate_cpu_dt(cs, fdt, offset, spapr);
618 g_free(rev);
621 static int spapr_rng_populate_dt(void *fdt)
623 int node;
624 int ret;
626 node = qemu_fdt_add_subnode(fdt, "/ibm,platform-facilities");
627 if (node <= 0) {
628 return -1;
630 ret = fdt_setprop_string(fdt, node, "device_type",
631 "ibm,platform-facilities");
632 ret |= fdt_setprop_cell(fdt, node, "#address-cells", 0x1);
633 ret |= fdt_setprop_cell(fdt, node, "#size-cells", 0x0);
635 node = fdt_add_subnode(fdt, node, "ibm,random-v1");
636 if (node <= 0) {
637 return -1;
639 ret |= fdt_setprop_string(fdt, node, "compatible", "ibm,random");
641 return ret ? -1 : 0;
644 static uint32_t spapr_pc_dimm_node(MemoryDeviceInfoList *list, ram_addr_t addr)
646 MemoryDeviceInfoList *info;
648 for (info = list; info; info = info->next) {
649 MemoryDeviceInfo *value = info->value;
651 if (value && value->type == MEMORY_DEVICE_INFO_KIND_DIMM) {
652 PCDIMMDeviceInfo *pcdimm_info = value->u.dimm.data;
654 if (addr >= pcdimm_info->addr &&
655 addr < (pcdimm_info->addr + pcdimm_info->size)) {
656 return pcdimm_info->node;
661 return -1;
664 struct sPAPRDrconfCellV2 {
665 uint32_t seq_lmbs;
666 uint64_t base_addr;
667 uint32_t drc_index;
668 uint32_t aa_index;
669 uint32_t flags;
670 } QEMU_PACKED;
672 typedef struct DrconfCellQueue {
673 struct sPAPRDrconfCellV2 cell;
674 QSIMPLEQ_ENTRY(DrconfCellQueue) entry;
675 } DrconfCellQueue;
677 static DrconfCellQueue *
678 spapr_get_drconf_cell(uint32_t seq_lmbs, uint64_t base_addr,
679 uint32_t drc_index, uint32_t aa_index,
680 uint32_t flags)
682 DrconfCellQueue *elem;
684 elem = g_malloc0(sizeof(*elem));
685 elem->cell.seq_lmbs = cpu_to_be32(seq_lmbs);
686 elem->cell.base_addr = cpu_to_be64(base_addr);
687 elem->cell.drc_index = cpu_to_be32(drc_index);
688 elem->cell.aa_index = cpu_to_be32(aa_index);
689 elem->cell.flags = cpu_to_be32(flags);
691 return elem;
694 /* ibm,dynamic-memory-v2 */
695 static int spapr_populate_drmem_v2(sPAPRMachineState *spapr, void *fdt,
696 int offset, MemoryDeviceInfoList *dimms)
698 MachineState *machine = MACHINE(spapr);
699 uint8_t *int_buf, *cur_index;
700 int ret;
701 uint64_t lmb_size = SPAPR_MEMORY_BLOCK_SIZE;
702 uint64_t addr, cur_addr, size;
703 uint32_t nr_boot_lmbs = (machine->device_memory->base / lmb_size);
704 uint64_t mem_end = machine->device_memory->base +
705 memory_region_size(&machine->device_memory->mr);
706 uint32_t node, buf_len, nr_entries = 0;
707 sPAPRDRConnector *drc;
708 DrconfCellQueue *elem, *next;
709 MemoryDeviceInfoList *info;
710 QSIMPLEQ_HEAD(, DrconfCellQueue) drconf_queue
711 = QSIMPLEQ_HEAD_INITIALIZER(drconf_queue);
713 /* Entry to cover RAM and the gap area */
714 elem = spapr_get_drconf_cell(nr_boot_lmbs, 0, 0, -1,
715 SPAPR_LMB_FLAGS_RESERVED |
716 SPAPR_LMB_FLAGS_DRC_INVALID);
717 QSIMPLEQ_INSERT_TAIL(&drconf_queue, elem, entry);
718 nr_entries++;
720 cur_addr = machine->device_memory->base;
721 for (info = dimms; info; info = info->next) {
722 PCDIMMDeviceInfo *di = info->value->u.dimm.data;
724 addr = di->addr;
725 size = di->size;
726 node = di->node;
728 /* Entry for hot-pluggable area */
729 if (cur_addr < addr) {
730 drc = spapr_drc_by_id(TYPE_SPAPR_DRC_LMB, cur_addr / lmb_size);
731 g_assert(drc);
732 elem = spapr_get_drconf_cell((addr - cur_addr) / lmb_size,
733 cur_addr, spapr_drc_index(drc), -1, 0);
734 QSIMPLEQ_INSERT_TAIL(&drconf_queue, elem, entry);
735 nr_entries++;
738 /* Entry for DIMM */
739 drc = spapr_drc_by_id(TYPE_SPAPR_DRC_LMB, addr / lmb_size);
740 g_assert(drc);
741 elem = spapr_get_drconf_cell(size / lmb_size, addr,
742 spapr_drc_index(drc), node,
743 SPAPR_LMB_FLAGS_ASSIGNED);
744 QSIMPLEQ_INSERT_TAIL(&drconf_queue, elem, entry);
745 nr_entries++;
746 cur_addr = addr + size;
749 /* Entry for remaining hotpluggable area */
750 if (cur_addr < mem_end) {
751 drc = spapr_drc_by_id(TYPE_SPAPR_DRC_LMB, cur_addr / lmb_size);
752 g_assert(drc);
753 elem = spapr_get_drconf_cell((mem_end - cur_addr) / lmb_size,
754 cur_addr, spapr_drc_index(drc), -1, 0);
755 QSIMPLEQ_INSERT_TAIL(&drconf_queue, elem, entry);
756 nr_entries++;
759 buf_len = nr_entries * sizeof(struct sPAPRDrconfCellV2) + sizeof(uint32_t);
760 int_buf = cur_index = g_malloc0(buf_len);
761 *(uint32_t *)int_buf = cpu_to_be32(nr_entries);
762 cur_index += sizeof(nr_entries);
764 QSIMPLEQ_FOREACH_SAFE(elem, &drconf_queue, entry, next) {
765 memcpy(cur_index, &elem->cell, sizeof(elem->cell));
766 cur_index += sizeof(elem->cell);
767 QSIMPLEQ_REMOVE(&drconf_queue, elem, DrconfCellQueue, entry);
768 g_free(elem);
771 ret = fdt_setprop(fdt, offset, "ibm,dynamic-memory-v2", int_buf, buf_len);
772 g_free(int_buf);
773 if (ret < 0) {
774 return -1;
776 return 0;
779 /* ibm,dynamic-memory */
780 static int spapr_populate_drmem_v1(sPAPRMachineState *spapr, void *fdt,
781 int offset, MemoryDeviceInfoList *dimms)
783 MachineState *machine = MACHINE(spapr);
784 int i, ret;
785 uint64_t lmb_size = SPAPR_MEMORY_BLOCK_SIZE;
786 uint32_t device_lmb_start = machine->device_memory->base / lmb_size;
787 uint32_t nr_lmbs = (machine->device_memory->base +
788 memory_region_size(&machine->device_memory->mr)) /
789 lmb_size;
790 uint32_t *int_buf, *cur_index, buf_len;
793 * Allocate enough buffer size to fit in ibm,dynamic-memory
795 buf_len = (nr_lmbs * SPAPR_DR_LMB_LIST_ENTRY_SIZE + 1) * sizeof(uint32_t);
796 cur_index = int_buf = g_malloc0(buf_len);
797 int_buf[0] = cpu_to_be32(nr_lmbs);
798 cur_index++;
799 for (i = 0; i < nr_lmbs; i++) {
800 uint64_t addr = i * lmb_size;
801 uint32_t *dynamic_memory = cur_index;
803 if (i >= device_lmb_start) {
804 sPAPRDRConnector *drc;
806 drc = spapr_drc_by_id(TYPE_SPAPR_DRC_LMB, i);
807 g_assert(drc);
809 dynamic_memory[0] = cpu_to_be32(addr >> 32);
810 dynamic_memory[1] = cpu_to_be32(addr & 0xffffffff);
811 dynamic_memory[2] = cpu_to_be32(spapr_drc_index(drc));
812 dynamic_memory[3] = cpu_to_be32(0); /* reserved */
813 dynamic_memory[4] = cpu_to_be32(spapr_pc_dimm_node(dimms, addr));
814 if (memory_region_present(get_system_memory(), addr)) {
815 dynamic_memory[5] = cpu_to_be32(SPAPR_LMB_FLAGS_ASSIGNED);
816 } else {
817 dynamic_memory[5] = cpu_to_be32(0);
819 } else {
821 * LMB information for RMA, boot time RAM and gap b/n RAM and
822 * device memory region -- all these are marked as reserved
823 * and as having no valid DRC.
825 dynamic_memory[0] = cpu_to_be32(addr >> 32);
826 dynamic_memory[1] = cpu_to_be32(addr & 0xffffffff);
827 dynamic_memory[2] = cpu_to_be32(0);
828 dynamic_memory[3] = cpu_to_be32(0); /* reserved */
829 dynamic_memory[4] = cpu_to_be32(-1);
830 dynamic_memory[5] = cpu_to_be32(SPAPR_LMB_FLAGS_RESERVED |
831 SPAPR_LMB_FLAGS_DRC_INVALID);
834 cur_index += SPAPR_DR_LMB_LIST_ENTRY_SIZE;
836 ret = fdt_setprop(fdt, offset, "ibm,dynamic-memory", int_buf, buf_len);
837 g_free(int_buf);
838 if (ret < 0) {
839 return -1;
841 return 0;
845 * Adds ibm,dynamic-reconfiguration-memory node.
846 * Refer to docs/specs/ppc-spapr-hotplug.txt for the documentation
847 * of this device tree node.
849 static int spapr_populate_drconf_memory(sPAPRMachineState *spapr, void *fdt)
851 MachineState *machine = MACHINE(spapr);
852 int ret, i, offset;
853 uint64_t lmb_size = SPAPR_MEMORY_BLOCK_SIZE;
854 uint32_t prop_lmb_size[] = {0, cpu_to_be32(lmb_size)};
855 uint32_t *int_buf, *cur_index, buf_len;
856 int nr_nodes = nb_numa_nodes ? nb_numa_nodes : 1;
857 MemoryDeviceInfoList *dimms = NULL;
860 * Don't create the node if there is no device memory
862 if (machine->ram_size == machine->maxram_size) {
863 return 0;
866 offset = fdt_add_subnode(fdt, 0, "ibm,dynamic-reconfiguration-memory");
868 ret = fdt_setprop(fdt, offset, "ibm,lmb-size", prop_lmb_size,
869 sizeof(prop_lmb_size));
870 if (ret < 0) {
871 return ret;
874 ret = fdt_setprop_cell(fdt, offset, "ibm,memory-flags-mask", 0xff);
875 if (ret < 0) {
876 return ret;
879 ret = fdt_setprop_cell(fdt, offset, "ibm,memory-preservation-time", 0x0);
880 if (ret < 0) {
881 return ret;
884 /* ibm,dynamic-memory or ibm,dynamic-memory-v2 */
885 dimms = qmp_memory_device_list();
886 if (spapr_ovec_test(spapr->ov5_cas, OV5_DRMEM_V2)) {
887 ret = spapr_populate_drmem_v2(spapr, fdt, offset, dimms);
888 } else {
889 ret = spapr_populate_drmem_v1(spapr, fdt, offset, dimms);
891 qapi_free_MemoryDeviceInfoList(dimms);
893 if (ret < 0) {
894 return ret;
897 /* ibm,associativity-lookup-arrays */
898 buf_len = (nr_nodes * 4 + 2) * sizeof(uint32_t);
899 cur_index = int_buf = g_malloc0(buf_len);
900 int_buf[0] = cpu_to_be32(nr_nodes);
901 int_buf[1] = cpu_to_be32(4); /* Number of entries per associativity list */
902 cur_index += 2;
903 for (i = 0; i < nr_nodes; i++) {
904 uint32_t associativity[] = {
905 cpu_to_be32(0x0),
906 cpu_to_be32(0x0),
907 cpu_to_be32(0x0),
908 cpu_to_be32(i)
910 memcpy(cur_index, associativity, sizeof(associativity));
911 cur_index += 4;
913 ret = fdt_setprop(fdt, offset, "ibm,associativity-lookup-arrays", int_buf,
914 (cur_index - int_buf) * sizeof(uint32_t));
915 g_free(int_buf);
917 return ret;
920 static int spapr_dt_cas_updates(sPAPRMachineState *spapr, void *fdt,
921 sPAPROptionVector *ov5_updates)
923 sPAPRMachineClass *smc = SPAPR_MACHINE_GET_CLASS(spapr);
924 int ret = 0, offset;
926 /* Generate ibm,dynamic-reconfiguration-memory node if required */
927 if (spapr_ovec_test(ov5_updates, OV5_DRCONF_MEMORY)) {
928 g_assert(smc->dr_lmb_enabled);
929 ret = spapr_populate_drconf_memory(spapr, fdt);
930 if (ret) {
931 goto out;
935 offset = fdt_path_offset(fdt, "/chosen");
936 if (offset < 0) {
937 offset = fdt_add_subnode(fdt, 0, "chosen");
938 if (offset < 0) {
939 return offset;
942 ret = spapr_ovec_populate_dt(fdt, offset, spapr->ov5_cas,
943 "ibm,architecture-vec-5");
945 out:
946 return ret;
949 static bool spapr_hotplugged_dev_before_cas(void)
951 Object *drc_container, *obj;
952 ObjectProperty *prop;
953 ObjectPropertyIterator iter;
955 drc_container = container_get(object_get_root(), "/dr-connector");
956 object_property_iter_init(&iter, drc_container);
957 while ((prop = object_property_iter_next(&iter))) {
958 if (!strstart(prop->type, "link<", NULL)) {
959 continue;
961 obj = object_property_get_link(drc_container, prop->name, NULL);
962 if (spapr_drc_needed(obj)) {
963 return true;
966 return false;
969 int spapr_h_cas_compose_response(sPAPRMachineState *spapr,
970 target_ulong addr, target_ulong size,
971 sPAPROptionVector *ov5_updates)
973 void *fdt, *fdt_skel;
974 sPAPRDeviceTreeUpdateHeader hdr = { .version_id = 1 };
976 if (spapr_hotplugged_dev_before_cas()) {
977 return 1;
980 if (size < sizeof(hdr) || size > FW_MAX_SIZE) {
981 error_report("SLOF provided an unexpected CAS buffer size "
982 TARGET_FMT_lu " (min: %zu, max: %u)",
983 size, sizeof(hdr), FW_MAX_SIZE);
984 exit(EXIT_FAILURE);
987 size -= sizeof(hdr);
989 /* Create skeleton */
990 fdt_skel = g_malloc0(size);
991 _FDT((fdt_create(fdt_skel, size)));
992 _FDT((fdt_finish_reservemap(fdt_skel)));
993 _FDT((fdt_begin_node(fdt_skel, "")));
994 _FDT((fdt_end_node(fdt_skel)));
995 _FDT((fdt_finish(fdt_skel)));
996 fdt = g_malloc0(size);
997 _FDT((fdt_open_into(fdt_skel, fdt, size)));
998 g_free(fdt_skel);
1000 /* Fixup cpu nodes */
1001 _FDT((spapr_fixup_cpu_dt(fdt, spapr)));
1003 if (spapr_dt_cas_updates(spapr, fdt, ov5_updates)) {
1004 return -1;
1007 /* Pack resulting tree */
1008 _FDT((fdt_pack(fdt)));
1010 if (fdt_totalsize(fdt) + sizeof(hdr) > size) {
1011 trace_spapr_cas_failed(size);
1012 return -1;
1015 cpu_physical_memory_write(addr, &hdr, sizeof(hdr));
1016 cpu_physical_memory_write(addr + sizeof(hdr), fdt, fdt_totalsize(fdt));
1017 trace_spapr_cas_continue(fdt_totalsize(fdt) + sizeof(hdr));
1018 g_free(fdt);
1020 return 0;
1023 static void spapr_dt_rtas(sPAPRMachineState *spapr, void *fdt)
1025 int rtas;
1026 GString *hypertas = g_string_sized_new(256);
1027 GString *qemu_hypertas = g_string_sized_new(256);
1028 uint32_t refpoints[] = { cpu_to_be32(0x4), cpu_to_be32(0x4) };
1029 uint64_t max_device_addr = MACHINE(spapr)->device_memory->base +
1030 memory_region_size(&MACHINE(spapr)->device_memory->mr);
1031 uint32_t lrdr_capacity[] = {
1032 cpu_to_be32(max_device_addr >> 32),
1033 cpu_to_be32(max_device_addr & 0xffffffff),
1034 0, cpu_to_be32(SPAPR_MEMORY_BLOCK_SIZE),
1035 cpu_to_be32(max_cpus / smp_threads),
1037 uint32_t maxdomains[] = {
1038 cpu_to_be32(4),
1039 cpu_to_be32(0),
1040 cpu_to_be32(0),
1041 cpu_to_be32(0),
1042 cpu_to_be32(nb_numa_nodes ? nb_numa_nodes : 1),
1045 _FDT(rtas = fdt_add_subnode(fdt, 0, "rtas"));
1047 /* hypertas */
1048 add_str(hypertas, "hcall-pft");
1049 add_str(hypertas, "hcall-term");
1050 add_str(hypertas, "hcall-dabr");
1051 add_str(hypertas, "hcall-interrupt");
1052 add_str(hypertas, "hcall-tce");
1053 add_str(hypertas, "hcall-vio");
1054 add_str(hypertas, "hcall-splpar");
1055 add_str(hypertas, "hcall-bulk");
1056 add_str(hypertas, "hcall-set-mode");
1057 add_str(hypertas, "hcall-sprg0");
1058 add_str(hypertas, "hcall-copy");
1059 add_str(hypertas, "hcall-debug");
1060 add_str(hypertas, "hcall-vphn");
1061 add_str(qemu_hypertas, "hcall-memop1");
1063 if (!kvm_enabled() || kvmppc_spapr_use_multitce()) {
1064 add_str(hypertas, "hcall-multi-tce");
1067 if (spapr->resize_hpt != SPAPR_RESIZE_HPT_DISABLED) {
1068 add_str(hypertas, "hcall-hpt-resize");
1071 _FDT(fdt_setprop(fdt, rtas, "ibm,hypertas-functions",
1072 hypertas->str, hypertas->len));
1073 g_string_free(hypertas, TRUE);
1074 _FDT(fdt_setprop(fdt, rtas, "qemu,hypertas-functions",
1075 qemu_hypertas->str, qemu_hypertas->len));
1076 g_string_free(qemu_hypertas, TRUE);
1078 _FDT(fdt_setprop(fdt, rtas, "ibm,associativity-reference-points",
1079 refpoints, sizeof(refpoints)));
1081 _FDT(fdt_setprop(fdt, rtas, "ibm,max-associativity-domains",
1082 maxdomains, sizeof(maxdomains)));
1084 _FDT(fdt_setprop_cell(fdt, rtas, "rtas-error-log-max",
1085 RTAS_ERROR_LOG_MAX));
1086 _FDT(fdt_setprop_cell(fdt, rtas, "rtas-event-scan-rate",
1087 RTAS_EVENT_SCAN_RATE));
1089 g_assert(msi_nonbroken);
1090 _FDT(fdt_setprop(fdt, rtas, "ibm,change-msix-capable", NULL, 0));
1093 * According to PAPR, rtas ibm,os-term does not guarantee a return
1094 * back to the guest cpu.
1096 * While an additional ibm,extended-os-term property indicates
1097 * that rtas call return will always occur. Set this property.
1099 _FDT(fdt_setprop(fdt, rtas, "ibm,extended-os-term", NULL, 0));
1101 _FDT(fdt_setprop(fdt, rtas, "ibm,lrdr-capacity",
1102 lrdr_capacity, sizeof(lrdr_capacity)));
1104 spapr_dt_rtas_tokens(fdt, rtas);
1108 * Prepare ibm,arch-vec-5-platform-support, which indicates the MMU
1109 * and the XIVE features that the guest may request and thus the valid
1110 * values for bytes 23..26 of option vector 5:
1112 static void spapr_dt_ov5_platform_support(sPAPRMachineState *spapr, void *fdt,
1113 int chosen)
1115 PowerPCCPU *first_ppc_cpu = POWERPC_CPU(first_cpu);
1117 char val[2 * 4] = {
1118 23, spapr->irq->ov5, /* Xive mode. */
1119 24, 0x00, /* Hash/Radix, filled in below. */
1120 25, 0x00, /* Hash options: Segment Tables == no, GTSE == no. */
1121 26, 0x40, /* Radix options: GTSE == yes. */
1124 if (!ppc_check_compat(first_ppc_cpu, CPU_POWERPC_LOGICAL_3_00, 0,
1125 first_ppc_cpu->compat_pvr)) {
1127 * If we're in a pre POWER9 compat mode then the guest should
1128 * do hash and use the legacy interrupt mode
1130 val[1] = 0x00; /* XICS */
1131 val[3] = 0x00; /* Hash */
1132 } else if (kvm_enabled()) {
1133 if (kvmppc_has_cap_mmu_radix() && kvmppc_has_cap_mmu_hash_v3()) {
1134 val[3] = 0x80; /* OV5_MMU_BOTH */
1135 } else if (kvmppc_has_cap_mmu_radix()) {
1136 val[3] = 0x40; /* OV5_MMU_RADIX_300 */
1137 } else {
1138 val[3] = 0x00; /* Hash */
1140 } else {
1141 /* V3 MMU supports both hash and radix in tcg (with dynamic switching) */
1142 val[3] = 0xC0;
1144 _FDT(fdt_setprop(fdt, chosen, "ibm,arch-vec-5-platform-support",
1145 val, sizeof(val)));
1148 static void spapr_dt_chosen(sPAPRMachineState *spapr, void *fdt)
1150 MachineState *machine = MACHINE(spapr);
1151 int chosen;
1152 const char *boot_device = machine->boot_order;
1153 char *stdout_path = spapr_vio_stdout_path(spapr->vio_bus);
1154 size_t cb = 0;
1155 char *bootlist = get_boot_devices_list(&cb);
1157 _FDT(chosen = fdt_add_subnode(fdt, 0, "chosen"));
1159 _FDT(fdt_setprop_string(fdt, chosen, "bootargs", machine->kernel_cmdline));
1160 _FDT(fdt_setprop_cell(fdt, chosen, "linux,initrd-start",
1161 spapr->initrd_base));
1162 _FDT(fdt_setprop_cell(fdt, chosen, "linux,initrd-end",
1163 spapr->initrd_base + spapr->initrd_size));
1165 if (spapr->kernel_size) {
1166 uint64_t kprop[2] = { cpu_to_be64(KERNEL_LOAD_ADDR),
1167 cpu_to_be64(spapr->kernel_size) };
1169 _FDT(fdt_setprop(fdt, chosen, "qemu,boot-kernel",
1170 &kprop, sizeof(kprop)));
1171 if (spapr->kernel_le) {
1172 _FDT(fdt_setprop(fdt, chosen, "qemu,boot-kernel-le", NULL, 0));
1175 if (boot_menu) {
1176 _FDT((fdt_setprop_cell(fdt, chosen, "qemu,boot-menu", boot_menu)));
1178 _FDT(fdt_setprop_cell(fdt, chosen, "qemu,graphic-width", graphic_width));
1179 _FDT(fdt_setprop_cell(fdt, chosen, "qemu,graphic-height", graphic_height));
1180 _FDT(fdt_setprop_cell(fdt, chosen, "qemu,graphic-depth", graphic_depth));
1182 if (cb && bootlist) {
1183 int i;
1185 for (i = 0; i < cb; i++) {
1186 if (bootlist[i] == '\n') {
1187 bootlist[i] = ' ';
1190 _FDT(fdt_setprop_string(fdt, chosen, "qemu,boot-list", bootlist));
1193 if (boot_device && strlen(boot_device)) {
1194 _FDT(fdt_setprop_string(fdt, chosen, "qemu,boot-device", boot_device));
1197 if (!spapr->has_graphics && stdout_path) {
1199 * "linux,stdout-path" and "stdout" properties are deprecated by linux
1200 * kernel. New platforms should only use the "stdout-path" property. Set
1201 * the new property and continue using older property to remain
1202 * compatible with the existing firmware.
1204 _FDT(fdt_setprop_string(fdt, chosen, "linux,stdout-path", stdout_path));
1205 _FDT(fdt_setprop_string(fdt, chosen, "stdout-path", stdout_path));
1208 spapr_dt_ov5_platform_support(spapr, fdt, chosen);
1210 g_free(stdout_path);
1211 g_free(bootlist);
1214 static void spapr_dt_hypervisor(sPAPRMachineState *spapr, void *fdt)
1216 /* The /hypervisor node isn't in PAPR - this is a hack to allow PR
1217 * KVM to work under pHyp with some guest co-operation */
1218 int hypervisor;
1219 uint8_t hypercall[16];
1221 _FDT(hypervisor = fdt_add_subnode(fdt, 0, "hypervisor"));
1222 /* indicate KVM hypercall interface */
1223 _FDT(fdt_setprop_string(fdt, hypervisor, "compatible", "linux,kvm"));
1224 if (kvmppc_has_cap_fixup_hcalls()) {
1226 * Older KVM versions with older guest kernels were broken
1227 * with the magic page, don't allow the guest to map it.
1229 if (!kvmppc_get_hypercall(first_cpu->env_ptr, hypercall,
1230 sizeof(hypercall))) {
1231 _FDT(fdt_setprop(fdt, hypervisor, "hcall-instructions",
1232 hypercall, sizeof(hypercall)));
1237 static void *spapr_build_fdt(sPAPRMachineState *spapr)
1239 MachineState *machine = MACHINE(spapr);
1240 MachineClass *mc = MACHINE_GET_CLASS(machine);
1241 sPAPRMachineClass *smc = SPAPR_MACHINE_GET_CLASS(machine);
1242 int ret;
1243 void *fdt;
1244 sPAPRPHBState *phb;
1245 char *buf;
1247 fdt = g_malloc0(FDT_MAX_SIZE);
1248 _FDT((fdt_create_empty_tree(fdt, FDT_MAX_SIZE)));
1250 /* Root node */
1251 _FDT(fdt_setprop_string(fdt, 0, "device_type", "chrp"));
1252 _FDT(fdt_setprop_string(fdt, 0, "model", "IBM pSeries (emulated by qemu)"));
1253 _FDT(fdt_setprop_string(fdt, 0, "compatible", "qemu,pseries"));
1256 * Add info to guest to indentify which host is it being run on
1257 * and what is the uuid of the guest
1259 if (spapr->host_model && !g_str_equal(spapr->host_model, "none")) {
1260 if (g_str_equal(spapr->host_model, "passthrough")) {
1261 /* -M host-model=passthrough */
1262 if (kvmppc_get_host_model(&buf)) {
1263 _FDT(fdt_setprop_string(fdt, 0, "host-model", buf));
1264 g_free(buf);
1266 } else {
1267 /* -M host-model=<user-string> */
1268 _FDT(fdt_setprop_string(fdt, 0, "host-model", spapr->host_model));
1272 if (spapr->host_serial && !g_str_equal(spapr->host_serial, "none")) {
1273 if (g_str_equal(spapr->host_serial, "passthrough")) {
1274 /* -M host-serial=passthrough */
1275 if (kvmppc_get_host_serial(&buf)) {
1276 _FDT(fdt_setprop_string(fdt, 0, "host-serial", buf));
1277 g_free(buf);
1279 } else {
1280 /* -M host-serial=<user-string> */
1281 _FDT(fdt_setprop_string(fdt, 0, "host-serial", spapr->host_serial));
1285 buf = qemu_uuid_unparse_strdup(&qemu_uuid);
1287 _FDT(fdt_setprop_string(fdt, 0, "vm,uuid", buf));
1288 if (qemu_uuid_set) {
1289 _FDT(fdt_setprop_string(fdt, 0, "system-id", buf));
1291 g_free(buf);
1293 if (qemu_get_vm_name()) {
1294 _FDT(fdt_setprop_string(fdt, 0, "ibm,partition-name",
1295 qemu_get_vm_name()));
1298 _FDT(fdt_setprop_cell(fdt, 0, "#address-cells", 2));
1299 _FDT(fdt_setprop_cell(fdt, 0, "#size-cells", 2));
1301 /* /interrupt controller */
1302 spapr->irq->dt_populate(spapr, spapr_max_server_number(spapr), fdt,
1303 PHANDLE_INTC);
1305 ret = spapr_populate_memory(spapr, fdt);
1306 if (ret < 0) {
1307 error_report("couldn't setup memory nodes in fdt");
1308 exit(1);
1311 /* /vdevice */
1312 spapr_dt_vdevice(spapr->vio_bus, fdt);
1314 if (object_resolve_path_type("", TYPE_SPAPR_RNG, NULL)) {
1315 ret = spapr_rng_populate_dt(fdt);
1316 if (ret < 0) {
1317 error_report("could not set up rng device in the fdt");
1318 exit(1);
1322 QLIST_FOREACH(phb, &spapr->phbs, list) {
1323 ret = spapr_populate_pci_dt(phb, PHANDLE_INTC, fdt,
1324 spapr->irq->nr_msis, NULL);
1325 if (ret < 0) {
1326 error_report("couldn't setup PCI devices in fdt");
1327 exit(1);
1331 /* cpus */
1332 spapr_populate_cpus_dt_node(fdt, spapr);
1334 if (smc->dr_lmb_enabled) {
1335 _FDT(spapr_drc_populate_dt(fdt, 0, NULL, SPAPR_DR_CONNECTOR_TYPE_LMB));
1338 if (mc->has_hotpluggable_cpus) {
1339 int offset = fdt_path_offset(fdt, "/cpus");
1340 ret = spapr_drc_populate_dt(fdt, offset, NULL,
1341 SPAPR_DR_CONNECTOR_TYPE_CPU);
1342 if (ret < 0) {
1343 error_report("Couldn't set up CPU DR device tree properties");
1344 exit(1);
1348 /* /event-sources */
1349 spapr_dt_events(spapr, fdt);
1351 /* /rtas */
1352 spapr_dt_rtas(spapr, fdt);
1354 /* /chosen */
1355 spapr_dt_chosen(spapr, fdt);
1357 /* /hypervisor */
1358 if (kvm_enabled()) {
1359 spapr_dt_hypervisor(spapr, fdt);
1362 /* Build memory reserve map */
1363 if (spapr->kernel_size) {
1364 _FDT((fdt_add_mem_rsv(fdt, KERNEL_LOAD_ADDR, spapr->kernel_size)));
1366 if (spapr->initrd_size) {
1367 _FDT((fdt_add_mem_rsv(fdt, spapr->initrd_base, spapr->initrd_size)));
1370 /* ibm,client-architecture-support updates */
1371 ret = spapr_dt_cas_updates(spapr, fdt, spapr->ov5_cas);
1372 if (ret < 0) {
1373 error_report("couldn't setup CAS properties fdt");
1374 exit(1);
1377 if (smc->dr_phb_enabled) {
1378 ret = spapr_drc_populate_dt(fdt, 0, NULL, SPAPR_DR_CONNECTOR_TYPE_PHB);
1379 if (ret < 0) {
1380 error_report("Couldn't set up PHB DR device tree properties");
1381 exit(1);
1385 return fdt;
1388 static uint64_t translate_kernel_address(void *opaque, uint64_t addr)
1390 return (addr & 0x0fffffff) + KERNEL_LOAD_ADDR;
1393 static void emulate_spapr_hypercall(PPCVirtualHypervisor *vhyp,
1394 PowerPCCPU *cpu)
1396 CPUPPCState *env = &cpu->env;
1398 /* The TCG path should also be holding the BQL at this point */
1399 g_assert(qemu_mutex_iothread_locked());
1401 if (msr_pr) {
1402 hcall_dprintf("Hypercall made with MSR[PR]=1\n");
1403 env->gpr[3] = H_PRIVILEGE;
1404 } else {
1405 env->gpr[3] = spapr_hypercall(cpu, env->gpr[3], &env->gpr[4]);
1409 struct LPCRSyncState {
1410 target_ulong value;
1411 target_ulong mask;
1414 static void do_lpcr_sync(CPUState *cs, run_on_cpu_data arg)
1416 struct LPCRSyncState *s = arg.host_ptr;
1417 PowerPCCPU *cpu = POWERPC_CPU(cs);
1418 CPUPPCState *env = &cpu->env;
1419 target_ulong lpcr;
1421 cpu_synchronize_state(cs);
1422 lpcr = env->spr[SPR_LPCR];
1423 lpcr &= ~s->mask;
1424 lpcr |= s->value;
1425 ppc_store_lpcr(cpu, lpcr);
1428 void spapr_set_all_lpcrs(target_ulong value, target_ulong mask)
1430 CPUState *cs;
1431 struct LPCRSyncState s = {
1432 .value = value,
1433 .mask = mask
1435 CPU_FOREACH(cs) {
1436 run_on_cpu(cs, do_lpcr_sync, RUN_ON_CPU_HOST_PTR(&s));
1440 static void spapr_get_pate(PPCVirtualHypervisor *vhyp, ppc_v3_pate_t *entry)
1442 sPAPRMachineState *spapr = SPAPR_MACHINE(vhyp);
1444 /* Copy PATE1:GR into PATE0:HR */
1445 entry->dw0 = spapr->patb_entry & PATE0_HR;
1446 entry->dw1 = spapr->patb_entry;
1449 #define HPTE(_table, _i) (void *)(((uint64_t *)(_table)) + ((_i) * 2))
1450 #define HPTE_VALID(_hpte) (tswap64(*((uint64_t *)(_hpte))) & HPTE64_V_VALID)
1451 #define HPTE_DIRTY(_hpte) (tswap64(*((uint64_t *)(_hpte))) & HPTE64_V_HPTE_DIRTY)
1452 #define CLEAN_HPTE(_hpte) ((*(uint64_t *)(_hpte)) &= tswap64(~HPTE64_V_HPTE_DIRTY))
1453 #define DIRTY_HPTE(_hpte) ((*(uint64_t *)(_hpte)) |= tswap64(HPTE64_V_HPTE_DIRTY))
1456 * Get the fd to access the kernel htab, re-opening it if necessary
1458 static int get_htab_fd(sPAPRMachineState *spapr)
1460 Error *local_err = NULL;
1462 if (spapr->htab_fd >= 0) {
1463 return spapr->htab_fd;
1466 spapr->htab_fd = kvmppc_get_htab_fd(false, 0, &local_err);
1467 if (spapr->htab_fd < 0) {
1468 error_report_err(local_err);
1471 return spapr->htab_fd;
1474 void close_htab_fd(sPAPRMachineState *spapr)
1476 if (spapr->htab_fd >= 0) {
1477 close(spapr->htab_fd);
1479 spapr->htab_fd = -1;
1482 static hwaddr spapr_hpt_mask(PPCVirtualHypervisor *vhyp)
1484 sPAPRMachineState *spapr = SPAPR_MACHINE(vhyp);
1486 return HTAB_SIZE(spapr) / HASH_PTEG_SIZE_64 - 1;
1489 static target_ulong spapr_encode_hpt_for_kvm_pr(PPCVirtualHypervisor *vhyp)
1491 sPAPRMachineState *spapr = SPAPR_MACHINE(vhyp);
1493 assert(kvm_enabled());
1495 if (!spapr->htab) {
1496 return 0;
1499 return (target_ulong)(uintptr_t)spapr->htab | (spapr->htab_shift - 18);
1502 static const ppc_hash_pte64_t *spapr_map_hptes(PPCVirtualHypervisor *vhyp,
1503 hwaddr ptex, int n)
1505 sPAPRMachineState *spapr = SPAPR_MACHINE(vhyp);
1506 hwaddr pte_offset = ptex * HASH_PTE_SIZE_64;
1508 if (!spapr->htab) {
1510 * HTAB is controlled by KVM. Fetch into temporary buffer
1512 ppc_hash_pte64_t *hptes = g_malloc(n * HASH_PTE_SIZE_64);
1513 kvmppc_read_hptes(hptes, ptex, n);
1514 return hptes;
1518 * HTAB is controlled by QEMU. Just point to the internally
1519 * accessible PTEG.
1521 return (const ppc_hash_pte64_t *)(spapr->htab + pte_offset);
1524 static void spapr_unmap_hptes(PPCVirtualHypervisor *vhyp,
1525 const ppc_hash_pte64_t *hptes,
1526 hwaddr ptex, int n)
1528 sPAPRMachineState *spapr = SPAPR_MACHINE(vhyp);
1530 if (!spapr->htab) {
1531 g_free((void *)hptes);
1534 /* Nothing to do for qemu managed HPT */
1537 static void spapr_store_hpte(PPCVirtualHypervisor *vhyp, hwaddr ptex,
1538 uint64_t pte0, uint64_t pte1)
1540 sPAPRMachineState *spapr = SPAPR_MACHINE(vhyp);
1541 hwaddr offset = ptex * HASH_PTE_SIZE_64;
1543 if (!spapr->htab) {
1544 kvmppc_write_hpte(ptex, pte0, pte1);
1545 } else {
1546 if (pte0 & HPTE64_V_VALID) {
1547 stq_p(spapr->htab + offset + HASH_PTE_SIZE_64 / 2, pte1);
1549 * When setting valid, we write PTE1 first. This ensures
1550 * proper synchronization with the reading code in
1551 * ppc_hash64_pteg_search()
1553 smp_wmb();
1554 stq_p(spapr->htab + offset, pte0);
1555 } else {
1556 stq_p(spapr->htab + offset, pte0);
1558 * When clearing it we set PTE0 first. This ensures proper
1559 * synchronization with the reading code in
1560 * ppc_hash64_pteg_search()
1562 smp_wmb();
1563 stq_p(spapr->htab + offset + HASH_PTE_SIZE_64 / 2, pte1);
1568 int spapr_hpt_shift_for_ramsize(uint64_t ramsize)
1570 int shift;
1572 /* We aim for a hash table of size 1/128 the size of RAM (rounded
1573 * up). The PAPR recommendation is actually 1/64 of RAM size, but
1574 * that's much more than is needed for Linux guests */
1575 shift = ctz64(pow2ceil(ramsize)) - 7;
1576 shift = MAX(shift, 18); /* Minimum architected size */
1577 shift = MIN(shift, 46); /* Maximum architected size */
1578 return shift;
1581 void spapr_free_hpt(sPAPRMachineState *spapr)
1583 g_free(spapr->htab);
1584 spapr->htab = NULL;
1585 spapr->htab_shift = 0;
1586 close_htab_fd(spapr);
1589 void spapr_reallocate_hpt(sPAPRMachineState *spapr, int shift,
1590 Error **errp)
1592 long rc;
1594 /* Clean up any HPT info from a previous boot */
1595 spapr_free_hpt(spapr);
1597 rc = kvmppc_reset_htab(shift);
1598 if (rc < 0) {
1599 /* kernel-side HPT needed, but couldn't allocate one */
1600 error_setg_errno(errp, errno,
1601 "Failed to allocate KVM HPT of order %d (try smaller maxmem?)",
1602 shift);
1603 /* This is almost certainly fatal, but if the caller really
1604 * wants to carry on with shift == 0, it's welcome to try */
1605 } else if (rc > 0) {
1606 /* kernel-side HPT allocated */
1607 if (rc != shift) {
1608 error_setg(errp,
1609 "Requested order %d HPT, but kernel allocated order %ld (try smaller maxmem?)",
1610 shift, rc);
1613 spapr->htab_shift = shift;
1614 spapr->htab = NULL;
1615 } else {
1616 /* kernel-side HPT not needed, allocate in userspace instead */
1617 size_t size = 1ULL << shift;
1618 int i;
1620 spapr->htab = qemu_memalign(size, size);
1621 if (!spapr->htab) {
1622 error_setg_errno(errp, errno,
1623 "Could not allocate HPT of order %d", shift);
1624 return;
1627 memset(spapr->htab, 0, size);
1628 spapr->htab_shift = shift;
1630 for (i = 0; i < size / HASH_PTE_SIZE_64; i++) {
1631 DIRTY_HPTE(HPTE(spapr->htab, i));
1634 /* We're setting up a hash table, so that means we're not radix */
1635 spapr_set_all_lpcrs(0, LPCR_HR | LPCR_UPRT);
1638 void spapr_setup_hpt_and_vrma(sPAPRMachineState *spapr)
1640 int hpt_shift;
1642 if ((spapr->resize_hpt == SPAPR_RESIZE_HPT_DISABLED)
1643 || (spapr->cas_reboot
1644 && !spapr_ovec_test(spapr->ov5_cas, OV5_HPT_RESIZE))) {
1645 hpt_shift = spapr_hpt_shift_for_ramsize(MACHINE(spapr)->maxram_size);
1646 } else {
1647 uint64_t current_ram_size;
1649 current_ram_size = MACHINE(spapr)->ram_size + get_plugged_memory_size();
1650 hpt_shift = spapr_hpt_shift_for_ramsize(current_ram_size);
1652 spapr_reallocate_hpt(spapr, hpt_shift, &error_fatal);
1654 if (spapr->vrma_adjust) {
1655 spapr->rma_size = kvmppc_rma_size(spapr_node0_size(MACHINE(spapr)),
1656 spapr->htab_shift);
1660 static int spapr_reset_drcs(Object *child, void *opaque)
1662 sPAPRDRConnector *drc =
1663 (sPAPRDRConnector *) object_dynamic_cast(child,
1664 TYPE_SPAPR_DR_CONNECTOR);
1666 if (drc) {
1667 spapr_drc_reset(drc);
1670 return 0;
1673 static void spapr_machine_reset(void)
1675 MachineState *machine = MACHINE(qdev_get_machine());
1676 sPAPRMachineState *spapr = SPAPR_MACHINE(machine);
1677 PowerPCCPU *first_ppc_cpu;
1678 uint32_t rtas_limit;
1679 hwaddr rtas_addr, fdt_addr;
1680 void *fdt;
1681 int rc;
1683 spapr_caps_apply(spapr);
1685 first_ppc_cpu = POWERPC_CPU(first_cpu);
1686 if (kvm_enabled() && kvmppc_has_cap_mmu_radix() &&
1687 ppc_type_check_compat(machine->cpu_type, CPU_POWERPC_LOGICAL_3_00, 0,
1688 spapr->max_compat_pvr)) {
1690 * If using KVM with radix mode available, VCPUs can be started
1691 * without a HPT because KVM will start them in radix mode.
1692 * Set the GR bit in PATE so that we know there is no HPT.
1694 spapr->patb_entry = PATE1_GR;
1695 spapr_set_all_lpcrs(LPCR_HR | LPCR_UPRT, LPCR_HR | LPCR_UPRT);
1696 } else {
1697 spapr_setup_hpt_and_vrma(spapr);
1701 * If this reset wasn't generated by CAS, we should reset our
1702 * negotiated options and start from scratch
1704 if (!spapr->cas_reboot) {
1705 spapr_ovec_cleanup(spapr->ov5_cas);
1706 spapr->ov5_cas = spapr_ovec_new();
1708 ppc_set_compat(first_ppc_cpu, spapr->max_compat_pvr, &error_fatal);
1711 if (!SPAPR_MACHINE_GET_CLASS(spapr)->legacy_irq_allocation) {
1712 spapr_irq_msi_reset(spapr);
1715 qemu_devices_reset();
1718 * This is fixing some of the default configuration of the XIVE
1719 * devices. To be called after the reset of the machine devices.
1721 spapr_irq_reset(spapr, &error_fatal);
1724 * There is no CAS under qtest. Simulate one to please the code that
1725 * depends on spapr->ov5_cas. This is especially needed to test device
1726 * unplug, so we do that before resetting the DRCs.
1728 if (qtest_enabled()) {
1729 spapr_ovec_cleanup(spapr->ov5_cas);
1730 spapr->ov5_cas = spapr_ovec_clone(spapr->ov5);
1733 /* DRC reset may cause a device to be unplugged. This will cause troubles
1734 * if this device is used by another device (eg, a running vhost backend
1735 * will crash QEMU if the DIMM holding the vring goes away). To avoid such
1736 * situations, we reset DRCs after all devices have been reset.
1738 object_child_foreach_recursive(object_get_root(), spapr_reset_drcs, NULL);
1740 spapr_clear_pending_events(spapr);
1743 * We place the device tree and RTAS just below either the top of the RMA,
1744 * or just below 2GB, whichever is lower, so that it can be
1745 * processed with 32-bit real mode code if necessary
1747 rtas_limit = MIN(spapr->rma_size, RTAS_MAX_ADDR);
1748 rtas_addr = rtas_limit - RTAS_MAX_SIZE;
1749 fdt_addr = rtas_addr - FDT_MAX_SIZE;
1751 fdt = spapr_build_fdt(spapr);
1753 spapr_load_rtas(spapr, fdt, rtas_addr);
1755 rc = fdt_pack(fdt);
1757 /* Should only fail if we've built a corrupted tree */
1758 assert(rc == 0);
1760 if (fdt_totalsize(fdt) > FDT_MAX_SIZE) {
1761 error_report("FDT too big ! 0x%x bytes (max is 0x%x)",
1762 fdt_totalsize(fdt), FDT_MAX_SIZE);
1763 exit(1);
1766 /* Load the fdt */
1767 qemu_fdt_dumpdtb(fdt, fdt_totalsize(fdt));
1768 cpu_physical_memory_write(fdt_addr, fdt, fdt_totalsize(fdt));
1769 g_free(spapr->fdt_blob);
1770 spapr->fdt_size = fdt_totalsize(fdt);
1771 spapr->fdt_initial_size = spapr->fdt_size;
1772 spapr->fdt_blob = fdt;
1774 /* Set up the entry state */
1775 spapr_cpu_set_entry_state(first_ppc_cpu, SPAPR_ENTRY_POINT, fdt_addr);
1776 first_ppc_cpu->env.gpr[5] = 0;
1778 spapr->cas_reboot = false;
1781 static void spapr_create_nvram(sPAPRMachineState *spapr)
1783 DeviceState *dev = qdev_create(&spapr->vio_bus->bus, "spapr-nvram");
1784 DriveInfo *dinfo = drive_get(IF_PFLASH, 0, 0);
1786 if (dinfo) {
1787 qdev_prop_set_drive(dev, "drive", blk_by_legacy_dinfo(dinfo),
1788 &error_fatal);
1791 qdev_init_nofail(dev);
1793 spapr->nvram = (struct sPAPRNVRAM *)dev;
1796 static void spapr_rtc_create(sPAPRMachineState *spapr)
1798 object_initialize_child(OBJECT(spapr), "rtc",
1799 &spapr->rtc, sizeof(spapr->rtc), TYPE_SPAPR_RTC,
1800 &error_fatal, NULL);
1801 object_property_set_bool(OBJECT(&spapr->rtc), true, "realized",
1802 &error_fatal);
1803 object_property_add_alias(OBJECT(spapr), "rtc-time", OBJECT(&spapr->rtc),
1804 "date", &error_fatal);
1807 /* Returns whether we want to use VGA or not */
1808 static bool spapr_vga_init(PCIBus *pci_bus, Error **errp)
1810 switch (vga_interface_type) {
1811 case VGA_NONE:
1812 return false;
1813 case VGA_DEVICE:
1814 return true;
1815 case VGA_STD:
1816 case VGA_VIRTIO:
1817 case VGA_CIRRUS:
1818 return pci_vga_init(pci_bus) != NULL;
1819 default:
1820 error_setg(errp,
1821 "Unsupported VGA mode, only -vga std or -vga virtio is supported");
1822 return false;
1826 static int spapr_pre_load(void *opaque)
1828 int rc;
1830 rc = spapr_caps_pre_load(opaque);
1831 if (rc) {
1832 return rc;
1835 return 0;
1838 static int spapr_post_load(void *opaque, int version_id)
1840 sPAPRMachineState *spapr = (sPAPRMachineState *)opaque;
1841 int err = 0;
1843 err = spapr_caps_post_migration(spapr);
1844 if (err) {
1845 return err;
1849 * In earlier versions, there was no separate qdev for the PAPR
1850 * RTC, so the RTC offset was stored directly in sPAPREnvironment.
1851 * So when migrating from those versions, poke the incoming offset
1852 * value into the RTC device
1854 if (version_id < 3) {
1855 err = spapr_rtc_import_offset(&spapr->rtc, spapr->rtc_offset);
1856 if (err) {
1857 return err;
1861 if (kvm_enabled() && spapr->patb_entry) {
1862 PowerPCCPU *cpu = POWERPC_CPU(first_cpu);
1863 bool radix = !!(spapr->patb_entry & PATE1_GR);
1864 bool gtse = !!(cpu->env.spr[SPR_LPCR] & LPCR_GTSE);
1867 * Update LPCR:HR and UPRT as they may not be set properly in
1868 * the stream
1870 spapr_set_all_lpcrs(radix ? (LPCR_HR | LPCR_UPRT) : 0,
1871 LPCR_HR | LPCR_UPRT);
1873 err = kvmppc_configure_v3_mmu(cpu, radix, gtse, spapr->patb_entry);
1874 if (err) {
1875 error_report("Process table config unsupported by the host");
1876 return -EINVAL;
1880 err = spapr_irq_post_load(spapr, version_id);
1881 if (err) {
1882 return err;
1885 return err;
1888 static int spapr_pre_save(void *opaque)
1890 int rc;
1892 rc = spapr_caps_pre_save(opaque);
1893 if (rc) {
1894 return rc;
1897 return 0;
1900 static bool version_before_3(void *opaque, int version_id)
1902 return version_id < 3;
1905 static bool spapr_pending_events_needed(void *opaque)
1907 sPAPRMachineState *spapr = (sPAPRMachineState *)opaque;
1908 return !QTAILQ_EMPTY(&spapr->pending_events);
1911 static const VMStateDescription vmstate_spapr_event_entry = {
1912 .name = "spapr_event_log_entry",
1913 .version_id = 1,
1914 .minimum_version_id = 1,
1915 .fields = (VMStateField[]) {
1916 VMSTATE_UINT32(summary, sPAPREventLogEntry),
1917 VMSTATE_UINT32(extended_length, sPAPREventLogEntry),
1918 VMSTATE_VBUFFER_ALLOC_UINT32(extended_log, sPAPREventLogEntry, 0,
1919 NULL, extended_length),
1920 VMSTATE_END_OF_LIST()
1924 static const VMStateDescription vmstate_spapr_pending_events = {
1925 .name = "spapr_pending_events",
1926 .version_id = 1,
1927 .minimum_version_id = 1,
1928 .needed = spapr_pending_events_needed,
1929 .fields = (VMStateField[]) {
1930 VMSTATE_QTAILQ_V(pending_events, sPAPRMachineState, 1,
1931 vmstate_spapr_event_entry, sPAPREventLogEntry, next),
1932 VMSTATE_END_OF_LIST()
1936 static bool spapr_ov5_cas_needed(void *opaque)
1938 sPAPRMachineState *spapr = opaque;
1939 sPAPROptionVector *ov5_mask = spapr_ovec_new();
1940 sPAPROptionVector *ov5_legacy = spapr_ovec_new();
1941 sPAPROptionVector *ov5_removed = spapr_ovec_new();
1942 bool cas_needed;
1944 /* Prior to the introduction of sPAPROptionVector, we had two option
1945 * vectors we dealt with: OV5_FORM1_AFFINITY, and OV5_DRCONF_MEMORY.
1946 * Both of these options encode machine topology into the device-tree
1947 * in such a way that the now-booted OS should still be able to interact
1948 * appropriately with QEMU regardless of what options were actually
1949 * negotiatied on the source side.
1951 * As such, we can avoid migrating the CAS-negotiated options if these
1952 * are the only options available on the current machine/platform.
1953 * Since these are the only options available for pseries-2.7 and
1954 * earlier, this allows us to maintain old->new/new->old migration
1955 * compatibility.
1957 * For QEMU 2.8+, there are additional CAS-negotiatable options available
1958 * via default pseries-2.8 machines and explicit command-line parameters.
1959 * Some of these options, like OV5_HP_EVT, *do* require QEMU to be aware
1960 * of the actual CAS-negotiated values to continue working properly. For
1961 * example, availability of memory unplug depends on knowing whether
1962 * OV5_HP_EVT was negotiated via CAS.
1964 * Thus, for any cases where the set of available CAS-negotiatable
1965 * options extends beyond OV5_FORM1_AFFINITY and OV5_DRCONF_MEMORY, we
1966 * include the CAS-negotiated options in the migration stream, unless
1967 * if they affect boot time behaviour only.
1969 spapr_ovec_set(ov5_mask, OV5_FORM1_AFFINITY);
1970 spapr_ovec_set(ov5_mask, OV5_DRCONF_MEMORY);
1971 spapr_ovec_set(ov5_mask, OV5_DRMEM_V2);
1973 /* spapr_ovec_diff returns true if bits were removed. we avoid using
1974 * the mask itself since in the future it's possible "legacy" bits may be
1975 * removed via machine options, which could generate a false positive
1976 * that breaks migration.
1978 spapr_ovec_intersect(ov5_legacy, spapr->ov5, ov5_mask);
1979 cas_needed = spapr_ovec_diff(ov5_removed, spapr->ov5, ov5_legacy);
1981 spapr_ovec_cleanup(ov5_mask);
1982 spapr_ovec_cleanup(ov5_legacy);
1983 spapr_ovec_cleanup(ov5_removed);
1985 return cas_needed;
1988 static const VMStateDescription vmstate_spapr_ov5_cas = {
1989 .name = "spapr_option_vector_ov5_cas",
1990 .version_id = 1,
1991 .minimum_version_id = 1,
1992 .needed = spapr_ov5_cas_needed,
1993 .fields = (VMStateField[]) {
1994 VMSTATE_STRUCT_POINTER_V(ov5_cas, sPAPRMachineState, 1,
1995 vmstate_spapr_ovec, sPAPROptionVector),
1996 VMSTATE_END_OF_LIST()
2000 static bool spapr_patb_entry_needed(void *opaque)
2002 sPAPRMachineState *spapr = opaque;
2004 return !!spapr->patb_entry;
2007 static const VMStateDescription vmstate_spapr_patb_entry = {
2008 .name = "spapr_patb_entry",
2009 .version_id = 1,
2010 .minimum_version_id = 1,
2011 .needed = spapr_patb_entry_needed,
2012 .fields = (VMStateField[]) {
2013 VMSTATE_UINT64(patb_entry, sPAPRMachineState),
2014 VMSTATE_END_OF_LIST()
2018 static bool spapr_irq_map_needed(void *opaque)
2020 sPAPRMachineState *spapr = opaque;
2022 return spapr->irq_map && !bitmap_empty(spapr->irq_map, spapr->irq_map_nr);
2025 static const VMStateDescription vmstate_spapr_irq_map = {
2026 .name = "spapr_irq_map",
2027 .version_id = 1,
2028 .minimum_version_id = 1,
2029 .needed = spapr_irq_map_needed,
2030 .fields = (VMStateField[]) {
2031 VMSTATE_BITMAP(irq_map, sPAPRMachineState, 0, irq_map_nr),
2032 VMSTATE_END_OF_LIST()
2036 static bool spapr_dtb_needed(void *opaque)
2038 sPAPRMachineClass *smc = SPAPR_MACHINE_GET_CLASS(opaque);
2040 return smc->update_dt_enabled;
2043 static int spapr_dtb_pre_load(void *opaque)
2045 sPAPRMachineState *spapr = (sPAPRMachineState *)opaque;
2047 g_free(spapr->fdt_blob);
2048 spapr->fdt_blob = NULL;
2049 spapr->fdt_size = 0;
2051 return 0;
2054 static const VMStateDescription vmstate_spapr_dtb = {
2055 .name = "spapr_dtb",
2056 .version_id = 1,
2057 .minimum_version_id = 1,
2058 .needed = spapr_dtb_needed,
2059 .pre_load = spapr_dtb_pre_load,
2060 .fields = (VMStateField[]) {
2061 VMSTATE_UINT32(fdt_initial_size, sPAPRMachineState),
2062 VMSTATE_UINT32(fdt_size, sPAPRMachineState),
2063 VMSTATE_VBUFFER_ALLOC_UINT32(fdt_blob, sPAPRMachineState, 0, NULL,
2064 fdt_size),
2065 VMSTATE_END_OF_LIST()
2069 static const VMStateDescription vmstate_spapr = {
2070 .name = "spapr",
2071 .version_id = 3,
2072 .minimum_version_id = 1,
2073 .pre_load = spapr_pre_load,
2074 .post_load = spapr_post_load,
2075 .pre_save = spapr_pre_save,
2076 .fields = (VMStateField[]) {
2077 /* used to be @next_irq */
2078 VMSTATE_UNUSED_BUFFER(version_before_3, 0, 4),
2080 /* RTC offset */
2081 VMSTATE_UINT64_TEST(rtc_offset, sPAPRMachineState, version_before_3),
2083 VMSTATE_PPC_TIMEBASE_V(tb, sPAPRMachineState, 2),
2084 VMSTATE_END_OF_LIST()
2086 .subsections = (const VMStateDescription*[]) {
2087 &vmstate_spapr_ov5_cas,
2088 &vmstate_spapr_patb_entry,
2089 &vmstate_spapr_pending_events,
2090 &vmstate_spapr_cap_htm,
2091 &vmstate_spapr_cap_vsx,
2092 &vmstate_spapr_cap_dfp,
2093 &vmstate_spapr_cap_cfpc,
2094 &vmstate_spapr_cap_sbbc,
2095 &vmstate_spapr_cap_ibs,
2096 &vmstate_spapr_irq_map,
2097 &vmstate_spapr_cap_nested_kvm_hv,
2098 &vmstate_spapr_dtb,
2099 &vmstate_spapr_cap_large_decr,
2100 NULL
2104 static int htab_save_setup(QEMUFile *f, void *opaque)
2106 sPAPRMachineState *spapr = opaque;
2108 /* "Iteration" header */
2109 if (!spapr->htab_shift) {
2110 qemu_put_be32(f, -1);
2111 } else {
2112 qemu_put_be32(f, spapr->htab_shift);
2115 if (spapr->htab) {
2116 spapr->htab_save_index = 0;
2117 spapr->htab_first_pass = true;
2118 } else {
2119 if (spapr->htab_shift) {
2120 assert(kvm_enabled());
2125 return 0;
2128 static void htab_save_chunk(QEMUFile *f, sPAPRMachineState *spapr,
2129 int chunkstart, int n_valid, int n_invalid)
2131 qemu_put_be32(f, chunkstart);
2132 qemu_put_be16(f, n_valid);
2133 qemu_put_be16(f, n_invalid);
2134 qemu_put_buffer(f, HPTE(spapr->htab, chunkstart),
2135 HASH_PTE_SIZE_64 * n_valid);
2138 static void htab_save_end_marker(QEMUFile *f)
2140 qemu_put_be32(f, 0);
2141 qemu_put_be16(f, 0);
2142 qemu_put_be16(f, 0);
2145 static void htab_save_first_pass(QEMUFile *f, sPAPRMachineState *spapr,
2146 int64_t max_ns)
2148 bool has_timeout = max_ns != -1;
2149 int htabslots = HTAB_SIZE(spapr) / HASH_PTE_SIZE_64;
2150 int index = spapr->htab_save_index;
2151 int64_t starttime = qemu_clock_get_ns(QEMU_CLOCK_REALTIME);
2153 assert(spapr->htab_first_pass);
2155 do {
2156 int chunkstart;
2158 /* Consume invalid HPTEs */
2159 while ((index < htabslots)
2160 && !HPTE_VALID(HPTE(spapr->htab, index))) {
2161 CLEAN_HPTE(HPTE(spapr->htab, index));
2162 index++;
2165 /* Consume valid HPTEs */
2166 chunkstart = index;
2167 while ((index < htabslots) && (index - chunkstart < USHRT_MAX)
2168 && HPTE_VALID(HPTE(spapr->htab, index))) {
2169 CLEAN_HPTE(HPTE(spapr->htab, index));
2170 index++;
2173 if (index > chunkstart) {
2174 int n_valid = index - chunkstart;
2176 htab_save_chunk(f, spapr, chunkstart, n_valid, 0);
2178 if (has_timeout &&
2179 (qemu_clock_get_ns(QEMU_CLOCK_REALTIME) - starttime) > max_ns) {
2180 break;
2183 } while ((index < htabslots) && !qemu_file_rate_limit(f));
2185 if (index >= htabslots) {
2186 assert(index == htabslots);
2187 index = 0;
2188 spapr->htab_first_pass = false;
2190 spapr->htab_save_index = index;
2193 static int htab_save_later_pass(QEMUFile *f, sPAPRMachineState *spapr,
2194 int64_t max_ns)
2196 bool final = max_ns < 0;
2197 int htabslots = HTAB_SIZE(spapr) / HASH_PTE_SIZE_64;
2198 int examined = 0, sent = 0;
2199 int index = spapr->htab_save_index;
2200 int64_t starttime = qemu_clock_get_ns(QEMU_CLOCK_REALTIME);
2202 assert(!spapr->htab_first_pass);
2204 do {
2205 int chunkstart, invalidstart;
2207 /* Consume non-dirty HPTEs */
2208 while ((index < htabslots)
2209 && !HPTE_DIRTY(HPTE(spapr->htab, index))) {
2210 index++;
2211 examined++;
2214 chunkstart = index;
2215 /* Consume valid dirty HPTEs */
2216 while ((index < htabslots) && (index - chunkstart < USHRT_MAX)
2217 && HPTE_DIRTY(HPTE(spapr->htab, index))
2218 && HPTE_VALID(HPTE(spapr->htab, index))) {
2219 CLEAN_HPTE(HPTE(spapr->htab, index));
2220 index++;
2221 examined++;
2224 invalidstart = index;
2225 /* Consume invalid dirty HPTEs */
2226 while ((index < htabslots) && (index - invalidstart < USHRT_MAX)
2227 && HPTE_DIRTY(HPTE(spapr->htab, index))
2228 && !HPTE_VALID(HPTE(spapr->htab, index))) {
2229 CLEAN_HPTE(HPTE(spapr->htab, index));
2230 index++;
2231 examined++;
2234 if (index > chunkstart) {
2235 int n_valid = invalidstart - chunkstart;
2236 int n_invalid = index - invalidstart;
2238 htab_save_chunk(f, spapr, chunkstart, n_valid, n_invalid);
2239 sent += index - chunkstart;
2241 if (!final && (qemu_clock_get_ns(QEMU_CLOCK_REALTIME) - starttime) > max_ns) {
2242 break;
2246 if (examined >= htabslots) {
2247 break;
2250 if (index >= htabslots) {
2251 assert(index == htabslots);
2252 index = 0;
2254 } while ((examined < htabslots) && (!qemu_file_rate_limit(f) || final));
2256 if (index >= htabslots) {
2257 assert(index == htabslots);
2258 index = 0;
2261 spapr->htab_save_index = index;
2263 return (examined >= htabslots) && (sent == 0) ? 1 : 0;
2266 #define MAX_ITERATION_NS 5000000 /* 5 ms */
2267 #define MAX_KVM_BUF_SIZE 2048
2269 static int htab_save_iterate(QEMUFile *f, void *opaque)
2271 sPAPRMachineState *spapr = opaque;
2272 int fd;
2273 int rc = 0;
2275 /* Iteration header */
2276 if (!spapr->htab_shift) {
2277 qemu_put_be32(f, -1);
2278 return 1;
2279 } else {
2280 qemu_put_be32(f, 0);
2283 if (!spapr->htab) {
2284 assert(kvm_enabled());
2286 fd = get_htab_fd(spapr);
2287 if (fd < 0) {
2288 return fd;
2291 rc = kvmppc_save_htab(f, fd, MAX_KVM_BUF_SIZE, MAX_ITERATION_NS);
2292 if (rc < 0) {
2293 return rc;
2295 } else if (spapr->htab_first_pass) {
2296 htab_save_first_pass(f, spapr, MAX_ITERATION_NS);
2297 } else {
2298 rc = htab_save_later_pass(f, spapr, MAX_ITERATION_NS);
2301 htab_save_end_marker(f);
2303 return rc;
2306 static int htab_save_complete(QEMUFile *f, void *opaque)
2308 sPAPRMachineState *spapr = opaque;
2309 int fd;
2311 /* Iteration header */
2312 if (!spapr->htab_shift) {
2313 qemu_put_be32(f, -1);
2314 return 0;
2315 } else {
2316 qemu_put_be32(f, 0);
2319 if (!spapr->htab) {
2320 int rc;
2322 assert(kvm_enabled());
2324 fd = get_htab_fd(spapr);
2325 if (fd < 0) {
2326 return fd;
2329 rc = kvmppc_save_htab(f, fd, MAX_KVM_BUF_SIZE, -1);
2330 if (rc < 0) {
2331 return rc;
2333 } else {
2334 if (spapr->htab_first_pass) {
2335 htab_save_first_pass(f, spapr, -1);
2337 htab_save_later_pass(f, spapr, -1);
2340 /* End marker */
2341 htab_save_end_marker(f);
2343 return 0;
2346 static int htab_load(QEMUFile *f, void *opaque, int version_id)
2348 sPAPRMachineState *spapr = opaque;
2349 uint32_t section_hdr;
2350 int fd = -1;
2351 Error *local_err = NULL;
2353 if (version_id < 1 || version_id > 1) {
2354 error_report("htab_load() bad version");
2355 return -EINVAL;
2358 section_hdr = qemu_get_be32(f);
2360 if (section_hdr == -1) {
2361 spapr_free_hpt(spapr);
2362 return 0;
2365 if (section_hdr) {
2366 /* First section gives the htab size */
2367 spapr_reallocate_hpt(spapr, section_hdr, &local_err);
2368 if (local_err) {
2369 error_report_err(local_err);
2370 return -EINVAL;
2372 return 0;
2375 if (!spapr->htab) {
2376 assert(kvm_enabled());
2378 fd = kvmppc_get_htab_fd(true, 0, &local_err);
2379 if (fd < 0) {
2380 error_report_err(local_err);
2381 return fd;
2385 while (true) {
2386 uint32_t index;
2387 uint16_t n_valid, n_invalid;
2389 index = qemu_get_be32(f);
2390 n_valid = qemu_get_be16(f);
2391 n_invalid = qemu_get_be16(f);
2393 if ((index == 0) && (n_valid == 0) && (n_invalid == 0)) {
2394 /* End of Stream */
2395 break;
2398 if ((index + n_valid + n_invalid) >
2399 (HTAB_SIZE(spapr) / HASH_PTE_SIZE_64)) {
2400 /* Bad index in stream */
2401 error_report(
2402 "htab_load() bad index %d (%hd+%hd entries) in htab stream (htab_shift=%d)",
2403 index, n_valid, n_invalid, spapr->htab_shift);
2404 return -EINVAL;
2407 if (spapr->htab) {
2408 if (n_valid) {
2409 qemu_get_buffer(f, HPTE(spapr->htab, index),
2410 HASH_PTE_SIZE_64 * n_valid);
2412 if (n_invalid) {
2413 memset(HPTE(spapr->htab, index + n_valid), 0,
2414 HASH_PTE_SIZE_64 * n_invalid);
2416 } else {
2417 int rc;
2419 assert(fd >= 0);
2421 rc = kvmppc_load_htab_chunk(f, fd, index, n_valid, n_invalid);
2422 if (rc < 0) {
2423 return rc;
2428 if (!spapr->htab) {
2429 assert(fd >= 0);
2430 close(fd);
2433 return 0;
2436 static void htab_save_cleanup(void *opaque)
2438 sPAPRMachineState *spapr = opaque;
2440 close_htab_fd(spapr);
2443 static SaveVMHandlers savevm_htab_handlers = {
2444 .save_setup = htab_save_setup,
2445 .save_live_iterate = htab_save_iterate,
2446 .save_live_complete_precopy = htab_save_complete,
2447 .save_cleanup = htab_save_cleanup,
2448 .load_state = htab_load,
2451 static void spapr_boot_set(void *opaque, const char *boot_device,
2452 Error **errp)
2454 MachineState *machine = MACHINE(opaque);
2455 machine->boot_order = g_strdup(boot_device);
2458 static void spapr_create_lmb_dr_connectors(sPAPRMachineState *spapr)
2460 MachineState *machine = MACHINE(spapr);
2461 uint64_t lmb_size = SPAPR_MEMORY_BLOCK_SIZE;
2462 uint32_t nr_lmbs = (machine->maxram_size - machine->ram_size)/lmb_size;
2463 int i;
2465 for (i = 0; i < nr_lmbs; i++) {
2466 uint64_t addr;
2468 addr = i * lmb_size + machine->device_memory->base;
2469 spapr_dr_connector_new(OBJECT(spapr), TYPE_SPAPR_DRC_LMB,
2470 addr / lmb_size);
2475 * If RAM size, maxmem size and individual node mem sizes aren't aligned
2476 * to SPAPR_MEMORY_BLOCK_SIZE(256MB), then refuse to start the guest
2477 * since we can't support such unaligned sizes with DRCONF_MEMORY.
2479 static void spapr_validate_node_memory(MachineState *machine, Error **errp)
2481 int i;
2483 if (machine->ram_size % SPAPR_MEMORY_BLOCK_SIZE) {
2484 error_setg(errp, "Memory size 0x" RAM_ADDR_FMT
2485 " is not aligned to %" PRIu64 " MiB",
2486 machine->ram_size,
2487 SPAPR_MEMORY_BLOCK_SIZE / MiB);
2488 return;
2491 if (machine->maxram_size % SPAPR_MEMORY_BLOCK_SIZE) {
2492 error_setg(errp, "Maximum memory size 0x" RAM_ADDR_FMT
2493 " is not aligned to %" PRIu64 " MiB",
2494 machine->ram_size,
2495 SPAPR_MEMORY_BLOCK_SIZE / MiB);
2496 return;
2499 for (i = 0; i < nb_numa_nodes; i++) {
2500 if (numa_info[i].node_mem % SPAPR_MEMORY_BLOCK_SIZE) {
2501 error_setg(errp,
2502 "Node %d memory size 0x%" PRIx64
2503 " is not aligned to %" PRIu64 " MiB",
2504 i, numa_info[i].node_mem,
2505 SPAPR_MEMORY_BLOCK_SIZE / MiB);
2506 return;
2511 /* find cpu slot in machine->possible_cpus by core_id */
2512 static CPUArchId *spapr_find_cpu_slot(MachineState *ms, uint32_t id, int *idx)
2514 int index = id / smp_threads;
2516 if (index >= ms->possible_cpus->len) {
2517 return NULL;
2519 if (idx) {
2520 *idx = index;
2522 return &ms->possible_cpus->cpus[index];
2525 static void spapr_set_vsmt_mode(sPAPRMachineState *spapr, Error **errp)
2527 Error *local_err = NULL;
2528 bool vsmt_user = !!spapr->vsmt;
2529 int kvm_smt = kvmppc_smt_threads();
2530 int ret;
2532 if (!kvm_enabled() && (smp_threads > 1)) {
2533 error_setg(&local_err, "TCG cannot support more than 1 thread/core "
2534 "on a pseries machine");
2535 goto out;
2537 if (!is_power_of_2(smp_threads)) {
2538 error_setg(&local_err, "Cannot support %d threads/core on a pseries "
2539 "machine because it must be a power of 2", smp_threads);
2540 goto out;
2543 /* Detemine the VSMT mode to use: */
2544 if (vsmt_user) {
2545 if (spapr->vsmt < smp_threads) {
2546 error_setg(&local_err, "Cannot support VSMT mode %d"
2547 " because it must be >= threads/core (%d)",
2548 spapr->vsmt, smp_threads);
2549 goto out;
2551 /* In this case, spapr->vsmt has been set by the command line */
2552 } else {
2554 * Default VSMT value is tricky, because we need it to be as
2555 * consistent as possible (for migration), but this requires
2556 * changing it for at least some existing cases. We pick 8 as
2557 * the value that we'd get with KVM on POWER8, the
2558 * overwhelmingly common case in production systems.
2560 spapr->vsmt = MAX(8, smp_threads);
2563 /* KVM: If necessary, set the SMT mode: */
2564 if (kvm_enabled() && (spapr->vsmt != kvm_smt)) {
2565 ret = kvmppc_set_smt_threads(spapr->vsmt);
2566 if (ret) {
2567 /* Looks like KVM isn't able to change VSMT mode */
2568 error_setg(&local_err,
2569 "Failed to set KVM's VSMT mode to %d (errno %d)",
2570 spapr->vsmt, ret);
2571 /* We can live with that if the default one is big enough
2572 * for the number of threads, and a submultiple of the one
2573 * we want. In this case we'll waste some vcpu ids, but
2574 * behaviour will be correct */
2575 if ((kvm_smt >= smp_threads) && ((spapr->vsmt % kvm_smt) == 0)) {
2576 warn_report_err(local_err);
2577 local_err = NULL;
2578 goto out;
2579 } else {
2580 if (!vsmt_user) {
2581 error_append_hint(&local_err,
2582 "On PPC, a VM with %d threads/core"
2583 " on a host with %d threads/core"
2584 " requires the use of VSMT mode %d.\n",
2585 smp_threads, kvm_smt, spapr->vsmt);
2587 kvmppc_hint_smt_possible(&local_err);
2588 goto out;
2592 /* else TCG: nothing to do currently */
2593 out:
2594 error_propagate(errp, local_err);
2597 static void spapr_init_cpus(sPAPRMachineState *spapr)
2599 MachineState *machine = MACHINE(spapr);
2600 MachineClass *mc = MACHINE_GET_CLASS(machine);
2601 sPAPRMachineClass *smc = SPAPR_MACHINE_GET_CLASS(machine);
2602 const char *type = spapr_get_cpu_core_type(machine->cpu_type);
2603 const CPUArchIdList *possible_cpus;
2604 int boot_cores_nr = smp_cpus / smp_threads;
2605 int i;
2607 possible_cpus = mc->possible_cpu_arch_ids(machine);
2608 if (mc->has_hotpluggable_cpus) {
2609 if (smp_cpus % smp_threads) {
2610 error_report("smp_cpus (%u) must be multiple of threads (%u)",
2611 smp_cpus, smp_threads);
2612 exit(1);
2614 if (max_cpus % smp_threads) {
2615 error_report("max_cpus (%u) must be multiple of threads (%u)",
2616 max_cpus, smp_threads);
2617 exit(1);
2619 } else {
2620 if (max_cpus != smp_cpus) {
2621 error_report("This machine version does not support CPU hotplug");
2622 exit(1);
2624 boot_cores_nr = possible_cpus->len;
2627 if (smc->pre_2_10_has_unused_icps) {
2628 int i;
2630 for (i = 0; i < spapr_max_server_number(spapr); i++) {
2631 /* Dummy entries get deregistered when real ICPState objects
2632 * are registered during CPU core hotplug.
2634 pre_2_10_vmstate_register_dummy_icp(i);
2638 for (i = 0; i < possible_cpus->len; i++) {
2639 int core_id = i * smp_threads;
2641 if (mc->has_hotpluggable_cpus) {
2642 spapr_dr_connector_new(OBJECT(spapr), TYPE_SPAPR_DRC_CPU,
2643 spapr_vcpu_id(spapr, core_id));
2646 if (i < boot_cores_nr) {
2647 Object *core = object_new(type);
2648 int nr_threads = smp_threads;
2650 /* Handle the partially filled core for older machine types */
2651 if ((i + 1) * smp_threads >= smp_cpus) {
2652 nr_threads = smp_cpus - i * smp_threads;
2655 object_property_set_int(core, nr_threads, "nr-threads",
2656 &error_fatal);
2657 object_property_set_int(core, core_id, CPU_CORE_PROP_CORE_ID,
2658 &error_fatal);
2659 object_property_set_bool(core, true, "realized", &error_fatal);
2661 object_unref(core);
2666 static PCIHostState *spapr_create_default_phb(void)
2668 DeviceState *dev;
2670 dev = qdev_create(NULL, TYPE_SPAPR_PCI_HOST_BRIDGE);
2671 qdev_prop_set_uint32(dev, "index", 0);
2672 qdev_init_nofail(dev);
2674 return PCI_HOST_BRIDGE(dev);
2677 /* pSeries LPAR / sPAPR hardware init */
2678 static void spapr_machine_init(MachineState *machine)
2680 sPAPRMachineState *spapr = SPAPR_MACHINE(machine);
2681 sPAPRMachineClass *smc = SPAPR_MACHINE_GET_CLASS(machine);
2682 const char *kernel_filename = machine->kernel_filename;
2683 const char *initrd_filename = machine->initrd_filename;
2684 PCIHostState *phb;
2685 int i;
2686 MemoryRegion *sysmem = get_system_memory();
2687 MemoryRegion *ram = g_new(MemoryRegion, 1);
2688 hwaddr node0_size = spapr_node0_size(machine);
2689 long load_limit, fw_size;
2690 char *filename;
2691 Error *resize_hpt_err = NULL;
2693 msi_nonbroken = true;
2695 QLIST_INIT(&spapr->phbs);
2696 QTAILQ_INIT(&spapr->pending_dimm_unplugs);
2698 /* Determine capabilities to run with */
2699 spapr_caps_init(spapr);
2701 kvmppc_check_papr_resize_hpt(&resize_hpt_err);
2702 if (spapr->resize_hpt == SPAPR_RESIZE_HPT_DEFAULT) {
2704 * If the user explicitly requested a mode we should either
2705 * supply it, or fail completely (which we do below). But if
2706 * it's not set explicitly, we reset our mode to something
2707 * that works
2709 if (resize_hpt_err) {
2710 spapr->resize_hpt = SPAPR_RESIZE_HPT_DISABLED;
2711 error_free(resize_hpt_err);
2712 resize_hpt_err = NULL;
2713 } else {
2714 spapr->resize_hpt = smc->resize_hpt_default;
2718 assert(spapr->resize_hpt != SPAPR_RESIZE_HPT_DEFAULT);
2720 if ((spapr->resize_hpt != SPAPR_RESIZE_HPT_DISABLED) && resize_hpt_err) {
2722 * User requested HPT resize, but this host can't supply it. Bail out
2724 error_report_err(resize_hpt_err);
2725 exit(1);
2728 spapr->rma_size = node0_size;
2730 /* With KVM, we don't actually know whether KVM supports an
2731 * unbounded RMA (PR KVM) or is limited by the hash table size
2732 * (HV KVM using VRMA), so we always assume the latter
2734 * In that case, we also limit the initial allocations for RTAS
2735 * etc... to 256M since we have no way to know what the VRMA size
2736 * is going to be as it depends on the size of the hash table
2737 * which isn't determined yet.
2739 if (kvm_enabled()) {
2740 spapr->vrma_adjust = 1;
2741 spapr->rma_size = MIN(spapr->rma_size, 0x10000000);
2744 /* Actually we don't support unbounded RMA anymore since we added
2745 * proper emulation of HV mode. The max we can get is 16G which
2746 * also happens to be what we configure for PAPR mode so make sure
2747 * we don't do anything bigger than that
2749 spapr->rma_size = MIN(spapr->rma_size, 0x400000000ull);
2751 if (spapr->rma_size > node0_size) {
2752 error_report("Numa node 0 has to span the RMA (%#08"HWADDR_PRIx")",
2753 spapr->rma_size);
2754 exit(1);
2757 /* Setup a load limit for the ramdisk leaving room for SLOF and FDT */
2758 load_limit = MIN(spapr->rma_size, RTAS_MAX_ADDR) - FW_OVERHEAD;
2761 * VSMT must be set in order to be able to compute VCPU ids, ie to
2762 * call spapr_max_server_number() or spapr_vcpu_id().
2764 spapr_set_vsmt_mode(spapr, &error_fatal);
2766 /* Set up Interrupt Controller before we create the VCPUs */
2767 spapr_irq_init(spapr, &error_fatal);
2769 /* Set up containers for ibm,client-architecture-support negotiated options
2771 spapr->ov5 = spapr_ovec_new();
2772 spapr->ov5_cas = spapr_ovec_new();
2774 if (smc->dr_lmb_enabled) {
2775 spapr_ovec_set(spapr->ov5, OV5_DRCONF_MEMORY);
2776 spapr_validate_node_memory(machine, &error_fatal);
2779 spapr_ovec_set(spapr->ov5, OV5_FORM1_AFFINITY);
2781 /* advertise support for dedicated HP event source to guests */
2782 if (spapr->use_hotplug_event_source) {
2783 spapr_ovec_set(spapr->ov5, OV5_HP_EVT);
2786 /* advertise support for HPT resizing */
2787 if (spapr->resize_hpt != SPAPR_RESIZE_HPT_DISABLED) {
2788 spapr_ovec_set(spapr->ov5, OV5_HPT_RESIZE);
2791 /* advertise support for ibm,dyamic-memory-v2 */
2792 spapr_ovec_set(spapr->ov5, OV5_DRMEM_V2);
2794 /* advertise XIVE on POWER9 machines */
2795 if (spapr->irq->ov5 & (SPAPR_OV5_XIVE_EXPLOIT | SPAPR_OV5_XIVE_BOTH)) {
2796 if (ppc_type_check_compat(machine->cpu_type, CPU_POWERPC_LOGICAL_3_00,
2797 0, spapr->max_compat_pvr)) {
2798 spapr_ovec_set(spapr->ov5, OV5_XIVE_EXPLOIT);
2799 } else if (spapr->irq->ov5 & SPAPR_OV5_XIVE_EXPLOIT) {
2800 error_report("XIVE-only machines require a POWER9 CPU");
2801 exit(1);
2805 /* init CPUs */
2806 spapr_init_cpus(spapr);
2808 if ((!kvm_enabled() || kvmppc_has_cap_mmu_radix()) &&
2809 ppc_type_check_compat(machine->cpu_type, CPU_POWERPC_LOGICAL_3_00, 0,
2810 spapr->max_compat_pvr)) {
2811 /* KVM and TCG always allow GTSE with radix... */
2812 spapr_ovec_set(spapr->ov5, OV5_MMU_RADIX_GTSE);
2814 /* ... but not with hash (currently). */
2816 if (kvm_enabled()) {
2817 /* Enable H_LOGICAL_CI_* so SLOF can talk to in-kernel devices */
2818 kvmppc_enable_logical_ci_hcalls();
2819 kvmppc_enable_set_mode_hcall();
2821 /* H_CLEAR_MOD/_REF are mandatory in PAPR, but off by default */
2822 kvmppc_enable_clear_ref_mod_hcalls();
2825 /* allocate RAM */
2826 memory_region_allocate_system_memory(ram, NULL, "ppc_spapr.ram",
2827 machine->ram_size);
2828 memory_region_add_subregion(sysmem, 0, ram);
2830 /* always allocate the device memory information */
2831 machine->device_memory = g_malloc0(sizeof(*machine->device_memory));
2833 /* initialize hotplug memory address space */
2834 if (machine->ram_size < machine->maxram_size) {
2835 ram_addr_t device_mem_size = machine->maxram_size - machine->ram_size;
2837 * Limit the number of hotpluggable memory slots to half the number
2838 * slots that KVM supports, leaving the other half for PCI and other
2839 * devices. However ensure that number of slots doesn't drop below 32.
2841 int max_memslots = kvm_enabled() ? kvm_get_max_memslots() / 2 :
2842 SPAPR_MAX_RAM_SLOTS;
2844 if (max_memslots < SPAPR_MAX_RAM_SLOTS) {
2845 max_memslots = SPAPR_MAX_RAM_SLOTS;
2847 if (machine->ram_slots > max_memslots) {
2848 error_report("Specified number of memory slots %"
2849 PRIu64" exceeds max supported %d",
2850 machine->ram_slots, max_memslots);
2851 exit(1);
2854 machine->device_memory->base = ROUND_UP(machine->ram_size,
2855 SPAPR_DEVICE_MEM_ALIGN);
2856 memory_region_init(&machine->device_memory->mr, OBJECT(spapr),
2857 "device-memory", device_mem_size);
2858 memory_region_add_subregion(sysmem, machine->device_memory->base,
2859 &machine->device_memory->mr);
2862 if (smc->dr_lmb_enabled) {
2863 spapr_create_lmb_dr_connectors(spapr);
2866 filename = qemu_find_file(QEMU_FILE_TYPE_BIOS, "spapr-rtas.bin");
2867 if (!filename) {
2868 error_report("Could not find LPAR rtas '%s'", "spapr-rtas.bin");
2869 exit(1);
2871 spapr->rtas_size = get_image_size(filename);
2872 if (spapr->rtas_size < 0) {
2873 error_report("Could not get size of LPAR rtas '%s'", filename);
2874 exit(1);
2876 spapr->rtas_blob = g_malloc(spapr->rtas_size);
2877 if (load_image_size(filename, spapr->rtas_blob, spapr->rtas_size) < 0) {
2878 error_report("Could not load LPAR rtas '%s'", filename);
2879 exit(1);
2881 if (spapr->rtas_size > RTAS_MAX_SIZE) {
2882 error_report("RTAS too big ! 0x%zx bytes (max is 0x%x)",
2883 (size_t)spapr->rtas_size, RTAS_MAX_SIZE);
2884 exit(1);
2886 g_free(filename);
2888 /* Set up RTAS event infrastructure */
2889 spapr_events_init(spapr);
2891 /* Set up the RTC RTAS interfaces */
2892 spapr_rtc_create(spapr);
2894 /* Set up VIO bus */
2895 spapr->vio_bus = spapr_vio_bus_init();
2897 for (i = 0; i < serial_max_hds(); i++) {
2898 if (serial_hd(i)) {
2899 spapr_vty_create(spapr->vio_bus, serial_hd(i));
2903 /* We always have at least the nvram device on VIO */
2904 spapr_create_nvram(spapr);
2907 * Setup hotplug / dynamic-reconfiguration connectors. top-level
2908 * connectors (described in root DT node's "ibm,drc-types" property)
2909 * are pre-initialized here. additional child connectors (such as
2910 * connectors for a PHBs PCI slots) are added as needed during their
2911 * parent's realization.
2913 if (smc->dr_phb_enabled) {
2914 for (i = 0; i < SPAPR_MAX_PHBS; i++) {
2915 spapr_dr_connector_new(OBJECT(machine), TYPE_SPAPR_DRC_PHB, i);
2919 /* Set up PCI */
2920 spapr_pci_rtas_init();
2922 phb = spapr_create_default_phb();
2924 for (i = 0; i < nb_nics; i++) {
2925 NICInfo *nd = &nd_table[i];
2927 if (!nd->model) {
2928 nd->model = g_strdup("spapr-vlan");
2931 if (g_str_equal(nd->model, "spapr-vlan") ||
2932 g_str_equal(nd->model, "ibmveth")) {
2933 spapr_vlan_create(spapr->vio_bus, nd);
2934 } else {
2935 pci_nic_init_nofail(&nd_table[i], phb->bus, nd->model, NULL);
2939 for (i = 0; i <= drive_get_max_bus(IF_SCSI); i++) {
2940 spapr_vscsi_create(spapr->vio_bus);
2943 /* Graphics */
2944 if (spapr_vga_init(phb->bus, &error_fatal)) {
2945 spapr->has_graphics = true;
2946 machine->usb |= defaults_enabled() && !machine->usb_disabled;
2949 if (machine->usb) {
2950 if (smc->use_ohci_by_default) {
2951 pci_create_simple(phb->bus, -1, "pci-ohci");
2952 } else {
2953 pci_create_simple(phb->bus, -1, "nec-usb-xhci");
2956 if (spapr->has_graphics) {
2957 USBBus *usb_bus = usb_bus_find(-1);
2959 usb_create_simple(usb_bus, "usb-kbd");
2960 usb_create_simple(usb_bus, "usb-mouse");
2964 if (spapr->rma_size < (MIN_RMA_SLOF * MiB)) {
2965 error_report(
2966 "pSeries SLOF firmware requires >= %ldM guest RMA (Real Mode Area memory)",
2967 MIN_RMA_SLOF);
2968 exit(1);
2971 if (kernel_filename) {
2972 uint64_t lowaddr = 0;
2974 spapr->kernel_size = load_elf(kernel_filename, NULL,
2975 translate_kernel_address, NULL,
2976 NULL, &lowaddr, NULL, 1,
2977 PPC_ELF_MACHINE, 0, 0);
2978 if (spapr->kernel_size == ELF_LOAD_WRONG_ENDIAN) {
2979 spapr->kernel_size = load_elf(kernel_filename, NULL,
2980 translate_kernel_address, NULL, NULL,
2981 &lowaddr, NULL, 0, PPC_ELF_MACHINE,
2982 0, 0);
2983 spapr->kernel_le = spapr->kernel_size > 0;
2985 if (spapr->kernel_size < 0) {
2986 error_report("error loading %s: %s", kernel_filename,
2987 load_elf_strerror(spapr->kernel_size));
2988 exit(1);
2991 /* load initrd */
2992 if (initrd_filename) {
2993 /* Try to locate the initrd in the gap between the kernel
2994 * and the firmware. Add a bit of space just in case
2996 spapr->initrd_base = (KERNEL_LOAD_ADDR + spapr->kernel_size
2997 + 0x1ffff) & ~0xffff;
2998 spapr->initrd_size = load_image_targphys(initrd_filename,
2999 spapr->initrd_base,
3000 load_limit
3001 - spapr->initrd_base);
3002 if (spapr->initrd_size < 0) {
3003 error_report("could not load initial ram disk '%s'",
3004 initrd_filename);
3005 exit(1);
3010 if (bios_name == NULL) {
3011 bios_name = FW_FILE_NAME;
3013 filename = qemu_find_file(QEMU_FILE_TYPE_BIOS, bios_name);
3014 if (!filename) {
3015 error_report("Could not find LPAR firmware '%s'", bios_name);
3016 exit(1);
3018 fw_size = load_image_targphys(filename, 0, FW_MAX_SIZE);
3019 if (fw_size <= 0) {
3020 error_report("Could not load LPAR firmware '%s'", filename);
3021 exit(1);
3023 g_free(filename);
3025 /* FIXME: Should register things through the MachineState's qdev
3026 * interface, this is a legacy from the sPAPREnvironment structure
3027 * which predated MachineState but had a similar function */
3028 vmstate_register(NULL, 0, &vmstate_spapr, spapr);
3029 register_savevm_live(NULL, "spapr/htab", -1, 1,
3030 &savevm_htab_handlers, spapr);
3032 qbus_set_hotplug_handler(sysbus_get_default(), OBJECT(machine),
3033 &error_fatal);
3035 qemu_register_boot_set(spapr_boot_set, spapr);
3037 if (kvm_enabled()) {
3038 /* to stop and start vmclock */
3039 qemu_add_vm_change_state_handler(cpu_ppc_clock_vm_state_change,
3040 &spapr->tb);
3042 kvmppc_spapr_enable_inkernel_multitce();
3046 static int spapr_kvm_type(MachineState *machine, const char *vm_type)
3048 if (!vm_type) {
3049 return 0;
3052 if (!strcmp(vm_type, "HV")) {
3053 return 1;
3056 if (!strcmp(vm_type, "PR")) {
3057 return 2;
3060 error_report("Unknown kvm-type specified '%s'", vm_type);
3061 exit(1);
3065 * Implementation of an interface to adjust firmware path
3066 * for the bootindex property handling.
3068 static char *spapr_get_fw_dev_path(FWPathProvider *p, BusState *bus,
3069 DeviceState *dev)
3071 #define CAST(type, obj, name) \
3072 ((type *)object_dynamic_cast(OBJECT(obj), (name)))
3073 SCSIDevice *d = CAST(SCSIDevice, dev, TYPE_SCSI_DEVICE);
3074 sPAPRPHBState *phb = CAST(sPAPRPHBState, dev, TYPE_SPAPR_PCI_HOST_BRIDGE);
3075 VHostSCSICommon *vsc = CAST(VHostSCSICommon, dev, TYPE_VHOST_SCSI_COMMON);
3077 if (d) {
3078 void *spapr = CAST(void, bus->parent, "spapr-vscsi");
3079 VirtIOSCSI *virtio = CAST(VirtIOSCSI, bus->parent, TYPE_VIRTIO_SCSI);
3080 USBDevice *usb = CAST(USBDevice, bus->parent, TYPE_USB_DEVICE);
3082 if (spapr) {
3084 * Replace "channel@0/disk@0,0" with "disk@8000000000000000":
3085 * In the top 16 bits of the 64-bit LUN, we use SRP luns of the form
3086 * 0x8000 | (target << 8) | (bus << 5) | lun
3087 * (see the "Logical unit addressing format" table in SAM5)
3089 unsigned id = 0x8000 | (d->id << 8) | (d->channel << 5) | d->lun;
3090 return g_strdup_printf("%s@%"PRIX64, qdev_fw_name(dev),
3091 (uint64_t)id << 48);
3092 } else if (virtio) {
3094 * We use SRP luns of the form 01000000 | (target << 8) | lun
3095 * in the top 32 bits of the 64-bit LUN
3096 * Note: the quote above is from SLOF and it is wrong,
3097 * the actual binding is:
3098 * swap 0100 or 10 << or 20 << ( target lun-id -- srplun )
3100 unsigned id = 0x1000000 | (d->id << 16) | d->lun;
3101 if (d->lun >= 256) {
3102 /* Use the LUN "flat space addressing method" */
3103 id |= 0x4000;
3105 return g_strdup_printf("%s@%"PRIX64, qdev_fw_name(dev),
3106 (uint64_t)id << 32);
3107 } else if (usb) {
3109 * We use SRP luns of the form 01000000 | (usb-port << 16) | lun
3110 * in the top 32 bits of the 64-bit LUN
3112 unsigned usb_port = atoi(usb->port->path);
3113 unsigned id = 0x1000000 | (usb_port << 16) | d->lun;
3114 return g_strdup_printf("%s@%"PRIX64, qdev_fw_name(dev),
3115 (uint64_t)id << 32);
3120 * SLOF probes the USB devices, and if it recognizes that the device is a
3121 * storage device, it changes its name to "storage" instead of "usb-host",
3122 * and additionally adds a child node for the SCSI LUN, so the correct
3123 * boot path in SLOF is something like .../storage@1/disk@xxx" instead.
3125 if (strcmp("usb-host", qdev_fw_name(dev)) == 0) {
3126 USBDevice *usbdev = CAST(USBDevice, dev, TYPE_USB_DEVICE);
3127 if (usb_host_dev_is_scsi_storage(usbdev)) {
3128 return g_strdup_printf("storage@%s/disk", usbdev->port->path);
3132 if (phb) {
3133 /* Replace "pci" with "pci@800000020000000" */
3134 return g_strdup_printf("pci@%"PRIX64, phb->buid);
3137 if (vsc) {
3138 /* Same logic as virtio above */
3139 unsigned id = 0x1000000 | (vsc->target << 16) | vsc->lun;
3140 return g_strdup_printf("disk@%"PRIX64, (uint64_t)id << 32);
3143 if (g_str_equal("pci-bridge", qdev_fw_name(dev))) {
3144 /* SLOF uses "pci" instead of "pci-bridge" for PCI bridges */
3145 PCIDevice *pcidev = CAST(PCIDevice, dev, TYPE_PCI_DEVICE);
3146 return g_strdup_printf("pci@%x", PCI_SLOT(pcidev->devfn));
3149 return NULL;
3152 static char *spapr_get_kvm_type(Object *obj, Error **errp)
3154 sPAPRMachineState *spapr = SPAPR_MACHINE(obj);
3156 return g_strdup(spapr->kvm_type);
3159 static void spapr_set_kvm_type(Object *obj, const char *value, Error **errp)
3161 sPAPRMachineState *spapr = SPAPR_MACHINE(obj);
3163 g_free(spapr->kvm_type);
3164 spapr->kvm_type = g_strdup(value);
3167 static bool spapr_get_modern_hotplug_events(Object *obj, Error **errp)
3169 sPAPRMachineState *spapr = SPAPR_MACHINE(obj);
3171 return spapr->use_hotplug_event_source;
3174 static void spapr_set_modern_hotplug_events(Object *obj, bool value,
3175 Error **errp)
3177 sPAPRMachineState *spapr = SPAPR_MACHINE(obj);
3179 spapr->use_hotplug_event_source = value;
3182 static bool spapr_get_msix_emulation(Object *obj, Error **errp)
3184 return true;
3187 static char *spapr_get_resize_hpt(Object *obj, Error **errp)
3189 sPAPRMachineState *spapr = SPAPR_MACHINE(obj);
3191 switch (spapr->resize_hpt) {
3192 case SPAPR_RESIZE_HPT_DEFAULT:
3193 return g_strdup("default");
3194 case SPAPR_RESIZE_HPT_DISABLED:
3195 return g_strdup("disabled");
3196 case SPAPR_RESIZE_HPT_ENABLED:
3197 return g_strdup("enabled");
3198 case SPAPR_RESIZE_HPT_REQUIRED:
3199 return g_strdup("required");
3201 g_assert_not_reached();
3204 static void spapr_set_resize_hpt(Object *obj, const char *value, Error **errp)
3206 sPAPRMachineState *spapr = SPAPR_MACHINE(obj);
3208 if (strcmp(value, "default") == 0) {
3209 spapr->resize_hpt = SPAPR_RESIZE_HPT_DEFAULT;
3210 } else if (strcmp(value, "disabled") == 0) {
3211 spapr->resize_hpt = SPAPR_RESIZE_HPT_DISABLED;
3212 } else if (strcmp(value, "enabled") == 0) {
3213 spapr->resize_hpt = SPAPR_RESIZE_HPT_ENABLED;
3214 } else if (strcmp(value, "required") == 0) {
3215 spapr->resize_hpt = SPAPR_RESIZE_HPT_REQUIRED;
3216 } else {
3217 error_setg(errp, "Bad value for \"resize-hpt\" property");
3221 static void spapr_get_vsmt(Object *obj, Visitor *v, const char *name,
3222 void *opaque, Error **errp)
3224 visit_type_uint32(v, name, (uint32_t *)opaque, errp);
3227 static void spapr_set_vsmt(Object *obj, Visitor *v, const char *name,
3228 void *opaque, Error **errp)
3230 visit_type_uint32(v, name, (uint32_t *)opaque, errp);
3233 static char *spapr_get_ic_mode(Object *obj, Error **errp)
3235 sPAPRMachineState *spapr = SPAPR_MACHINE(obj);
3237 if (spapr->irq == &spapr_irq_xics_legacy) {
3238 return g_strdup("legacy");
3239 } else if (spapr->irq == &spapr_irq_xics) {
3240 return g_strdup("xics");
3241 } else if (spapr->irq == &spapr_irq_xive) {
3242 return g_strdup("xive");
3243 } else if (spapr->irq == &spapr_irq_dual) {
3244 return g_strdup("dual");
3246 g_assert_not_reached();
3249 static void spapr_set_ic_mode(Object *obj, const char *value, Error **errp)
3251 sPAPRMachineState *spapr = SPAPR_MACHINE(obj);
3253 if (SPAPR_MACHINE_GET_CLASS(spapr)->legacy_irq_allocation) {
3254 error_setg(errp, "This machine only uses the legacy XICS backend, don't pass ic-mode");
3255 return;
3258 /* The legacy IRQ backend can not be set */
3259 if (strcmp(value, "xics") == 0) {
3260 spapr->irq = &spapr_irq_xics;
3261 } else if (strcmp(value, "xive") == 0) {
3262 spapr->irq = &spapr_irq_xive;
3263 } else if (strcmp(value, "dual") == 0) {
3264 spapr->irq = &spapr_irq_dual;
3265 } else {
3266 error_setg(errp, "Bad value for \"ic-mode\" property");
3270 static char *spapr_get_host_model(Object *obj, Error **errp)
3272 sPAPRMachineState *spapr = SPAPR_MACHINE(obj);
3274 return g_strdup(spapr->host_model);
3277 static void spapr_set_host_model(Object *obj, const char *value, Error **errp)
3279 sPAPRMachineState *spapr = SPAPR_MACHINE(obj);
3281 g_free(spapr->host_model);
3282 spapr->host_model = g_strdup(value);
3285 static char *spapr_get_host_serial(Object *obj, Error **errp)
3287 sPAPRMachineState *spapr = SPAPR_MACHINE(obj);
3289 return g_strdup(spapr->host_serial);
3292 static void spapr_set_host_serial(Object *obj, const char *value, Error **errp)
3294 sPAPRMachineState *spapr = SPAPR_MACHINE(obj);
3296 g_free(spapr->host_serial);
3297 spapr->host_serial = g_strdup(value);
3300 static void spapr_instance_init(Object *obj)
3302 sPAPRMachineState *spapr = SPAPR_MACHINE(obj);
3303 sPAPRMachineClass *smc = SPAPR_MACHINE_GET_CLASS(spapr);
3305 spapr->htab_fd = -1;
3306 spapr->use_hotplug_event_source = true;
3307 object_property_add_str(obj, "kvm-type",
3308 spapr_get_kvm_type, spapr_set_kvm_type, NULL);
3309 object_property_set_description(obj, "kvm-type",
3310 "Specifies the KVM virtualization mode (HV, PR)",
3311 NULL);
3312 object_property_add_bool(obj, "modern-hotplug-events",
3313 spapr_get_modern_hotplug_events,
3314 spapr_set_modern_hotplug_events,
3315 NULL);
3316 object_property_set_description(obj, "modern-hotplug-events",
3317 "Use dedicated hotplug event mechanism in"
3318 " place of standard EPOW events when possible"
3319 " (required for memory hot-unplug support)",
3320 NULL);
3321 ppc_compat_add_property(obj, "max-cpu-compat", &spapr->max_compat_pvr,
3322 "Maximum permitted CPU compatibility mode",
3323 &error_fatal);
3325 object_property_add_str(obj, "resize-hpt",
3326 spapr_get_resize_hpt, spapr_set_resize_hpt, NULL);
3327 object_property_set_description(obj, "resize-hpt",
3328 "Resizing of the Hash Page Table (enabled, disabled, required)",
3329 NULL);
3330 object_property_add(obj, "vsmt", "uint32", spapr_get_vsmt,
3331 spapr_set_vsmt, NULL, &spapr->vsmt, &error_abort);
3332 object_property_set_description(obj, "vsmt",
3333 "Virtual SMT: KVM behaves as if this were"
3334 " the host's SMT mode", &error_abort);
3335 object_property_add_bool(obj, "vfio-no-msix-emulation",
3336 spapr_get_msix_emulation, NULL, NULL);
3338 /* The machine class defines the default interrupt controller mode */
3339 spapr->irq = smc->irq;
3340 object_property_add_str(obj, "ic-mode", spapr_get_ic_mode,
3341 spapr_set_ic_mode, NULL);
3342 object_property_set_description(obj, "ic-mode",
3343 "Specifies the interrupt controller mode (xics, xive, dual)",
3344 NULL);
3346 object_property_add_str(obj, "host-model",
3347 spapr_get_host_model, spapr_set_host_model,
3348 &error_abort);
3349 object_property_set_description(obj, "host-model",
3350 "Set host's model-id to use - none|passthrough|string", &error_abort);
3351 object_property_add_str(obj, "host-serial",
3352 spapr_get_host_serial, spapr_set_host_serial,
3353 &error_abort);
3354 object_property_set_description(obj, "host-serial",
3355 "Set host's system-id to use - none|passthrough|string", &error_abort);
3358 static void spapr_machine_finalizefn(Object *obj)
3360 sPAPRMachineState *spapr = SPAPR_MACHINE(obj);
3362 g_free(spapr->kvm_type);
3365 void spapr_do_system_reset_on_cpu(CPUState *cs, run_on_cpu_data arg)
3367 cpu_synchronize_state(cs);
3368 ppc_cpu_do_system_reset(cs);
3371 static void spapr_nmi(NMIState *n, int cpu_index, Error **errp)
3373 CPUState *cs;
3375 CPU_FOREACH(cs) {
3376 async_run_on_cpu(cs, spapr_do_system_reset_on_cpu, RUN_ON_CPU_NULL);
3380 int spapr_lmb_dt_populate(sPAPRDRConnector *drc, sPAPRMachineState *spapr,
3381 void *fdt, int *fdt_start_offset, Error **errp)
3383 uint64_t addr;
3384 uint32_t node;
3386 addr = spapr_drc_index(drc) * SPAPR_MEMORY_BLOCK_SIZE;
3387 node = object_property_get_uint(OBJECT(drc->dev), PC_DIMM_NODE_PROP,
3388 &error_abort);
3389 *fdt_start_offset = spapr_populate_memory_node(fdt, node, addr,
3390 SPAPR_MEMORY_BLOCK_SIZE);
3391 return 0;
3394 static void spapr_add_lmbs(DeviceState *dev, uint64_t addr_start, uint64_t size,
3395 bool dedicated_hp_event_source, Error **errp)
3397 sPAPRDRConnector *drc;
3398 uint32_t nr_lmbs = size/SPAPR_MEMORY_BLOCK_SIZE;
3399 int i;
3400 uint64_t addr = addr_start;
3401 bool hotplugged = spapr_drc_hotplugged(dev);
3402 Error *local_err = NULL;
3404 for (i = 0; i < nr_lmbs; i++) {
3405 drc = spapr_drc_by_id(TYPE_SPAPR_DRC_LMB,
3406 addr / SPAPR_MEMORY_BLOCK_SIZE);
3407 g_assert(drc);
3409 spapr_drc_attach(drc, dev, &local_err);
3410 if (local_err) {
3411 while (addr > addr_start) {
3412 addr -= SPAPR_MEMORY_BLOCK_SIZE;
3413 drc = spapr_drc_by_id(TYPE_SPAPR_DRC_LMB,
3414 addr / SPAPR_MEMORY_BLOCK_SIZE);
3415 spapr_drc_detach(drc);
3417 error_propagate(errp, local_err);
3418 return;
3420 if (!hotplugged) {
3421 spapr_drc_reset(drc);
3423 addr += SPAPR_MEMORY_BLOCK_SIZE;
3425 /* send hotplug notification to the
3426 * guest only in case of hotplugged memory
3428 if (hotplugged) {
3429 if (dedicated_hp_event_source) {
3430 drc = spapr_drc_by_id(TYPE_SPAPR_DRC_LMB,
3431 addr_start / SPAPR_MEMORY_BLOCK_SIZE);
3432 spapr_hotplug_req_add_by_count_indexed(SPAPR_DR_CONNECTOR_TYPE_LMB,
3433 nr_lmbs,
3434 spapr_drc_index(drc));
3435 } else {
3436 spapr_hotplug_req_add_by_count(SPAPR_DR_CONNECTOR_TYPE_LMB,
3437 nr_lmbs);
3442 static void spapr_memory_plug(HotplugHandler *hotplug_dev, DeviceState *dev,
3443 Error **errp)
3445 Error *local_err = NULL;
3446 sPAPRMachineState *ms = SPAPR_MACHINE(hotplug_dev);
3447 PCDIMMDevice *dimm = PC_DIMM(dev);
3448 uint64_t size, addr;
3450 size = memory_device_get_region_size(MEMORY_DEVICE(dev), &error_abort);
3452 pc_dimm_plug(dimm, MACHINE(ms), &local_err);
3453 if (local_err) {
3454 goto out;
3457 addr = object_property_get_uint(OBJECT(dimm),
3458 PC_DIMM_ADDR_PROP, &local_err);
3459 if (local_err) {
3460 goto out_unplug;
3463 spapr_add_lmbs(dev, addr, size, spapr_ovec_test(ms->ov5_cas, OV5_HP_EVT),
3464 &local_err);
3465 if (local_err) {
3466 goto out_unplug;
3469 return;
3471 out_unplug:
3472 pc_dimm_unplug(dimm, MACHINE(ms));
3473 out:
3474 error_propagate(errp, local_err);
3477 static void spapr_memory_pre_plug(HotplugHandler *hotplug_dev, DeviceState *dev,
3478 Error **errp)
3480 const sPAPRMachineClass *smc = SPAPR_MACHINE_GET_CLASS(hotplug_dev);
3481 sPAPRMachineState *spapr = SPAPR_MACHINE(hotplug_dev);
3482 PCDIMMDevice *dimm = PC_DIMM(dev);
3483 Error *local_err = NULL;
3484 uint64_t size;
3485 Object *memdev;
3486 hwaddr pagesize;
3488 if (!smc->dr_lmb_enabled) {
3489 error_setg(errp, "Memory hotplug not supported for this machine");
3490 return;
3493 size = memory_device_get_region_size(MEMORY_DEVICE(dimm), &local_err);
3494 if (local_err) {
3495 error_propagate(errp, local_err);
3496 return;
3499 if (size % SPAPR_MEMORY_BLOCK_SIZE) {
3500 error_setg(errp, "Hotplugged memory size must be a multiple of "
3501 "%" PRIu64 " MB", SPAPR_MEMORY_BLOCK_SIZE / MiB);
3502 return;
3505 memdev = object_property_get_link(OBJECT(dimm), PC_DIMM_MEMDEV_PROP,
3506 &error_abort);
3507 pagesize = host_memory_backend_pagesize(MEMORY_BACKEND(memdev));
3508 spapr_check_pagesize(spapr, pagesize, &local_err);
3509 if (local_err) {
3510 error_propagate(errp, local_err);
3511 return;
3514 pc_dimm_pre_plug(dimm, MACHINE(hotplug_dev), NULL, errp);
3517 struct sPAPRDIMMState {
3518 PCDIMMDevice *dimm;
3519 uint32_t nr_lmbs;
3520 QTAILQ_ENTRY(sPAPRDIMMState) next;
3523 static sPAPRDIMMState *spapr_pending_dimm_unplugs_find(sPAPRMachineState *s,
3524 PCDIMMDevice *dimm)
3526 sPAPRDIMMState *dimm_state = NULL;
3528 QTAILQ_FOREACH(dimm_state, &s->pending_dimm_unplugs, next) {
3529 if (dimm_state->dimm == dimm) {
3530 break;
3533 return dimm_state;
3536 static sPAPRDIMMState *spapr_pending_dimm_unplugs_add(sPAPRMachineState *spapr,
3537 uint32_t nr_lmbs,
3538 PCDIMMDevice *dimm)
3540 sPAPRDIMMState *ds = NULL;
3543 * If this request is for a DIMM whose removal had failed earlier
3544 * (due to guest's refusal to remove the LMBs), we would have this
3545 * dimm already in the pending_dimm_unplugs list. In that
3546 * case don't add again.
3548 ds = spapr_pending_dimm_unplugs_find(spapr, dimm);
3549 if (!ds) {
3550 ds = g_malloc0(sizeof(sPAPRDIMMState));
3551 ds->nr_lmbs = nr_lmbs;
3552 ds->dimm = dimm;
3553 QTAILQ_INSERT_HEAD(&spapr->pending_dimm_unplugs, ds, next);
3555 return ds;
3558 static void spapr_pending_dimm_unplugs_remove(sPAPRMachineState *spapr,
3559 sPAPRDIMMState *dimm_state)
3561 QTAILQ_REMOVE(&spapr->pending_dimm_unplugs, dimm_state, next);
3562 g_free(dimm_state);
3565 static sPAPRDIMMState *spapr_recover_pending_dimm_state(sPAPRMachineState *ms,
3566 PCDIMMDevice *dimm)
3568 sPAPRDRConnector *drc;
3569 uint64_t size = memory_device_get_region_size(MEMORY_DEVICE(dimm),
3570 &error_abort);
3571 uint32_t nr_lmbs = size / SPAPR_MEMORY_BLOCK_SIZE;
3572 uint32_t avail_lmbs = 0;
3573 uint64_t addr_start, addr;
3574 int i;
3576 addr_start = object_property_get_int(OBJECT(dimm), PC_DIMM_ADDR_PROP,
3577 &error_abort);
3579 addr = addr_start;
3580 for (i = 0; i < nr_lmbs; i++) {
3581 drc = spapr_drc_by_id(TYPE_SPAPR_DRC_LMB,
3582 addr / SPAPR_MEMORY_BLOCK_SIZE);
3583 g_assert(drc);
3584 if (drc->dev) {
3585 avail_lmbs++;
3587 addr += SPAPR_MEMORY_BLOCK_SIZE;
3590 return spapr_pending_dimm_unplugs_add(ms, avail_lmbs, dimm);
3593 /* Callback to be called during DRC release. */
3594 void spapr_lmb_release(DeviceState *dev)
3596 HotplugHandler *hotplug_ctrl = qdev_get_hotplug_handler(dev);
3597 sPAPRMachineState *spapr = SPAPR_MACHINE(hotplug_ctrl);
3598 sPAPRDIMMState *ds = spapr_pending_dimm_unplugs_find(spapr, PC_DIMM(dev));
3600 /* This information will get lost if a migration occurs
3601 * during the unplug process. In this case recover it. */
3602 if (ds == NULL) {
3603 ds = spapr_recover_pending_dimm_state(spapr, PC_DIMM(dev));
3604 g_assert(ds);
3605 /* The DRC being examined by the caller at least must be counted */
3606 g_assert(ds->nr_lmbs);
3609 if (--ds->nr_lmbs) {
3610 return;
3614 * Now that all the LMBs have been removed by the guest, call the
3615 * unplug handler chain. This can never fail.
3617 hotplug_handler_unplug(hotplug_ctrl, dev, &error_abort);
3618 object_unparent(OBJECT(dev));
3621 static void spapr_memory_unplug(HotplugHandler *hotplug_dev, DeviceState *dev)
3623 sPAPRMachineState *spapr = SPAPR_MACHINE(hotplug_dev);
3624 sPAPRDIMMState *ds = spapr_pending_dimm_unplugs_find(spapr, PC_DIMM(dev));
3626 pc_dimm_unplug(PC_DIMM(dev), MACHINE(hotplug_dev));
3627 object_property_set_bool(OBJECT(dev), false, "realized", NULL);
3628 spapr_pending_dimm_unplugs_remove(spapr, ds);
3631 static void spapr_memory_unplug_request(HotplugHandler *hotplug_dev,
3632 DeviceState *dev, Error **errp)
3634 sPAPRMachineState *spapr = SPAPR_MACHINE(hotplug_dev);
3635 Error *local_err = NULL;
3636 PCDIMMDevice *dimm = PC_DIMM(dev);
3637 uint32_t nr_lmbs;
3638 uint64_t size, addr_start, addr;
3639 int i;
3640 sPAPRDRConnector *drc;
3642 size = memory_device_get_region_size(MEMORY_DEVICE(dimm), &error_abort);
3643 nr_lmbs = size / SPAPR_MEMORY_BLOCK_SIZE;
3645 addr_start = object_property_get_uint(OBJECT(dimm), PC_DIMM_ADDR_PROP,
3646 &local_err);
3647 if (local_err) {
3648 goto out;
3652 * An existing pending dimm state for this DIMM means that there is an
3653 * unplug operation in progress, waiting for the spapr_lmb_release
3654 * callback to complete the job (BQL can't cover that far). In this case,
3655 * bail out to avoid detaching DRCs that were already released.
3657 if (spapr_pending_dimm_unplugs_find(spapr, dimm)) {
3658 error_setg(&local_err,
3659 "Memory unplug already in progress for device %s",
3660 dev->id);
3661 goto out;
3664 spapr_pending_dimm_unplugs_add(spapr, nr_lmbs, dimm);
3666 addr = addr_start;
3667 for (i = 0; i < nr_lmbs; i++) {
3668 drc = spapr_drc_by_id(TYPE_SPAPR_DRC_LMB,
3669 addr / SPAPR_MEMORY_BLOCK_SIZE);
3670 g_assert(drc);
3672 spapr_drc_detach(drc);
3673 addr += SPAPR_MEMORY_BLOCK_SIZE;
3676 drc = spapr_drc_by_id(TYPE_SPAPR_DRC_LMB,
3677 addr_start / SPAPR_MEMORY_BLOCK_SIZE);
3678 spapr_hotplug_req_remove_by_count_indexed(SPAPR_DR_CONNECTOR_TYPE_LMB,
3679 nr_lmbs, spapr_drc_index(drc));
3680 out:
3681 error_propagate(errp, local_err);
3684 /* Callback to be called during DRC release. */
3685 void spapr_core_release(DeviceState *dev)
3687 HotplugHandler *hotplug_ctrl = qdev_get_hotplug_handler(dev);
3689 /* Call the unplug handler chain. This can never fail. */
3690 hotplug_handler_unplug(hotplug_ctrl, dev, &error_abort);
3691 object_unparent(OBJECT(dev));
3694 static void spapr_core_unplug(HotplugHandler *hotplug_dev, DeviceState *dev)
3696 MachineState *ms = MACHINE(hotplug_dev);
3697 sPAPRMachineClass *smc = SPAPR_MACHINE_GET_CLASS(ms);
3698 CPUCore *cc = CPU_CORE(dev);
3699 CPUArchId *core_slot = spapr_find_cpu_slot(ms, cc->core_id, NULL);
3701 if (smc->pre_2_10_has_unused_icps) {
3702 sPAPRCPUCore *sc = SPAPR_CPU_CORE(OBJECT(dev));
3703 int i;
3705 for (i = 0; i < cc->nr_threads; i++) {
3706 CPUState *cs = CPU(sc->threads[i]);
3708 pre_2_10_vmstate_register_dummy_icp(cs->cpu_index);
3712 assert(core_slot);
3713 core_slot->cpu = NULL;
3714 object_property_set_bool(OBJECT(dev), false, "realized", NULL);
3717 static
3718 void spapr_core_unplug_request(HotplugHandler *hotplug_dev, DeviceState *dev,
3719 Error **errp)
3721 sPAPRMachineState *spapr = SPAPR_MACHINE(OBJECT(hotplug_dev));
3722 int index;
3723 sPAPRDRConnector *drc;
3724 CPUCore *cc = CPU_CORE(dev);
3726 if (!spapr_find_cpu_slot(MACHINE(hotplug_dev), cc->core_id, &index)) {
3727 error_setg(errp, "Unable to find CPU core with core-id: %d",
3728 cc->core_id);
3729 return;
3731 if (index == 0) {
3732 error_setg(errp, "Boot CPU core may not be unplugged");
3733 return;
3736 drc = spapr_drc_by_id(TYPE_SPAPR_DRC_CPU,
3737 spapr_vcpu_id(spapr, cc->core_id));
3738 g_assert(drc);
3740 spapr_drc_detach(drc);
3742 spapr_hotplug_req_remove_by_index(drc);
3745 int spapr_core_dt_populate(sPAPRDRConnector *drc, sPAPRMachineState *spapr,
3746 void *fdt, int *fdt_start_offset, Error **errp)
3748 sPAPRCPUCore *core = SPAPR_CPU_CORE(drc->dev);
3749 CPUState *cs = CPU(core->threads[0]);
3750 PowerPCCPU *cpu = POWERPC_CPU(cs);
3751 DeviceClass *dc = DEVICE_GET_CLASS(cs);
3752 int id = spapr_get_vcpu_id(cpu);
3753 char *nodename;
3754 int offset;
3756 nodename = g_strdup_printf("%s@%x", dc->fw_name, id);
3757 offset = fdt_add_subnode(fdt, 0, nodename);
3758 g_free(nodename);
3760 spapr_populate_cpu_dt(cs, fdt, offset, spapr);
3762 *fdt_start_offset = offset;
3763 return 0;
3766 static void spapr_core_plug(HotplugHandler *hotplug_dev, DeviceState *dev,
3767 Error **errp)
3769 sPAPRMachineState *spapr = SPAPR_MACHINE(OBJECT(hotplug_dev));
3770 MachineClass *mc = MACHINE_GET_CLASS(spapr);
3771 sPAPRMachineClass *smc = SPAPR_MACHINE_CLASS(mc);
3772 sPAPRCPUCore *core = SPAPR_CPU_CORE(OBJECT(dev));
3773 CPUCore *cc = CPU_CORE(dev);
3774 CPUState *cs;
3775 sPAPRDRConnector *drc;
3776 Error *local_err = NULL;
3777 CPUArchId *core_slot;
3778 int index;
3779 bool hotplugged = spapr_drc_hotplugged(dev);
3781 core_slot = spapr_find_cpu_slot(MACHINE(hotplug_dev), cc->core_id, &index);
3782 if (!core_slot) {
3783 error_setg(errp, "Unable to find CPU core with core-id: %d",
3784 cc->core_id);
3785 return;
3787 drc = spapr_drc_by_id(TYPE_SPAPR_DRC_CPU,
3788 spapr_vcpu_id(spapr, cc->core_id));
3790 g_assert(drc || !mc->has_hotpluggable_cpus);
3792 if (drc) {
3793 spapr_drc_attach(drc, dev, &local_err);
3794 if (local_err) {
3795 error_propagate(errp, local_err);
3796 return;
3799 if (hotplugged) {
3801 * Send hotplug notification interrupt to the guest only
3802 * in case of hotplugged CPUs.
3804 spapr_hotplug_req_add_by_index(drc);
3805 } else {
3806 spapr_drc_reset(drc);
3810 core_slot->cpu = OBJECT(dev);
3812 if (smc->pre_2_10_has_unused_icps) {
3813 int i;
3815 for (i = 0; i < cc->nr_threads; i++) {
3816 cs = CPU(core->threads[i]);
3817 pre_2_10_vmstate_unregister_dummy_icp(cs->cpu_index);
3822 static void spapr_core_pre_plug(HotplugHandler *hotplug_dev, DeviceState *dev,
3823 Error **errp)
3825 MachineState *machine = MACHINE(OBJECT(hotplug_dev));
3826 MachineClass *mc = MACHINE_GET_CLASS(hotplug_dev);
3827 Error *local_err = NULL;
3828 CPUCore *cc = CPU_CORE(dev);
3829 const char *base_core_type = spapr_get_cpu_core_type(machine->cpu_type);
3830 const char *type = object_get_typename(OBJECT(dev));
3831 CPUArchId *core_slot;
3832 int index;
3834 if (dev->hotplugged && !mc->has_hotpluggable_cpus) {
3835 error_setg(&local_err, "CPU hotplug not supported for this machine");
3836 goto out;
3839 if (strcmp(base_core_type, type)) {
3840 error_setg(&local_err, "CPU core type should be %s", base_core_type);
3841 goto out;
3844 if (cc->core_id % smp_threads) {
3845 error_setg(&local_err, "invalid core id %d", cc->core_id);
3846 goto out;
3850 * In general we should have homogeneous threads-per-core, but old
3851 * (pre hotplug support) machine types allow the last core to have
3852 * reduced threads as a compatibility hack for when we allowed
3853 * total vcpus not a multiple of threads-per-core.
3855 if (mc->has_hotpluggable_cpus && (cc->nr_threads != smp_threads)) {
3856 error_setg(&local_err, "invalid nr-threads %d, must be %d",
3857 cc->nr_threads, smp_threads);
3858 goto out;
3861 core_slot = spapr_find_cpu_slot(MACHINE(hotplug_dev), cc->core_id, &index);
3862 if (!core_slot) {
3863 error_setg(&local_err, "core id %d out of range", cc->core_id);
3864 goto out;
3867 if (core_slot->cpu) {
3868 error_setg(&local_err, "core %d already populated", cc->core_id);
3869 goto out;
3872 numa_cpu_pre_plug(core_slot, dev, &local_err);
3874 out:
3875 error_propagate(errp, local_err);
3878 int spapr_phb_dt_populate(sPAPRDRConnector *drc, sPAPRMachineState *spapr,
3879 void *fdt, int *fdt_start_offset, Error **errp)
3881 sPAPRPHBState *sphb = SPAPR_PCI_HOST_BRIDGE(drc->dev);
3882 int intc_phandle;
3884 intc_phandle = spapr_irq_get_phandle(spapr, spapr->fdt_blob, errp);
3885 if (intc_phandle <= 0) {
3886 return -1;
3889 if (spapr_populate_pci_dt(sphb, intc_phandle, fdt, spapr->irq->nr_msis,
3890 fdt_start_offset)) {
3891 error_setg(errp, "unable to create FDT node for PHB %d", sphb->index);
3892 return -1;
3895 /* generally SLOF creates these, for hotplug it's up to QEMU */
3896 _FDT(fdt_setprop_string(fdt, *fdt_start_offset, "name", "pci"));
3898 return 0;
3901 static void spapr_phb_pre_plug(HotplugHandler *hotplug_dev, DeviceState *dev,
3902 Error **errp)
3904 sPAPRMachineState *spapr = SPAPR_MACHINE(OBJECT(hotplug_dev));
3905 sPAPRPHBState *sphb = SPAPR_PCI_HOST_BRIDGE(dev);
3906 sPAPRMachineClass *smc = SPAPR_MACHINE_GET_CLASS(spapr);
3907 const unsigned windows_supported = spapr_phb_windows_supported(sphb);
3909 if (dev->hotplugged && !smc->dr_phb_enabled) {
3910 error_setg(errp, "PHB hotplug not supported for this machine");
3911 return;
3914 if (sphb->index == (uint32_t)-1) {
3915 error_setg(errp, "\"index\" for PAPR PHB is mandatory");
3916 return;
3920 * This will check that sphb->index doesn't exceed the maximum number of
3921 * PHBs for the current machine type.
3923 smc->phb_placement(spapr, sphb->index,
3924 &sphb->buid, &sphb->io_win_addr,
3925 &sphb->mem_win_addr, &sphb->mem64_win_addr,
3926 windows_supported, sphb->dma_liobn, errp);
3929 static void spapr_phb_plug(HotplugHandler *hotplug_dev, DeviceState *dev,
3930 Error **errp)
3932 sPAPRMachineState *spapr = SPAPR_MACHINE(OBJECT(hotplug_dev));
3933 sPAPRMachineClass *smc = SPAPR_MACHINE_GET_CLASS(spapr);
3934 sPAPRPHBState *sphb = SPAPR_PCI_HOST_BRIDGE(dev);
3935 sPAPRDRConnector *drc;
3936 bool hotplugged = spapr_drc_hotplugged(dev);
3937 Error *local_err = NULL;
3939 if (!smc->dr_phb_enabled) {
3940 return;
3943 drc = spapr_drc_by_id(TYPE_SPAPR_DRC_PHB, sphb->index);
3944 /* hotplug hooks should check it's enabled before getting this far */
3945 assert(drc);
3947 spapr_drc_attach(drc, DEVICE(dev), &local_err);
3948 if (local_err) {
3949 error_propagate(errp, local_err);
3950 return;
3953 if (hotplugged) {
3954 spapr_hotplug_req_add_by_index(drc);
3955 } else {
3956 spapr_drc_reset(drc);
3960 void spapr_phb_release(DeviceState *dev)
3962 HotplugHandler *hotplug_ctrl = qdev_get_hotplug_handler(dev);
3964 hotplug_handler_unplug(hotplug_ctrl, dev, &error_abort);
3965 object_unparent(OBJECT(dev));
3968 static void spapr_phb_unplug(HotplugHandler *hotplug_dev, DeviceState *dev)
3970 object_property_set_bool(OBJECT(dev), false, "realized", NULL);
3973 static void spapr_phb_unplug_request(HotplugHandler *hotplug_dev,
3974 DeviceState *dev, Error **errp)
3976 sPAPRPHBState *sphb = SPAPR_PCI_HOST_BRIDGE(dev);
3977 sPAPRDRConnector *drc;
3979 drc = spapr_drc_by_id(TYPE_SPAPR_DRC_PHB, sphb->index);
3980 assert(drc);
3982 if (!spapr_drc_unplug_requested(drc)) {
3983 spapr_drc_detach(drc);
3984 spapr_hotplug_req_remove_by_index(drc);
3988 static void spapr_machine_device_plug(HotplugHandler *hotplug_dev,
3989 DeviceState *dev, Error **errp)
3991 if (object_dynamic_cast(OBJECT(dev), TYPE_PC_DIMM)) {
3992 spapr_memory_plug(hotplug_dev, dev, errp);
3993 } else if (object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_CPU_CORE)) {
3994 spapr_core_plug(hotplug_dev, dev, errp);
3995 } else if (object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_PCI_HOST_BRIDGE)) {
3996 spapr_phb_plug(hotplug_dev, dev, errp);
4000 static void spapr_machine_device_unplug(HotplugHandler *hotplug_dev,
4001 DeviceState *dev, Error **errp)
4003 if (object_dynamic_cast(OBJECT(dev), TYPE_PC_DIMM)) {
4004 spapr_memory_unplug(hotplug_dev, dev);
4005 } else if (object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_CPU_CORE)) {
4006 spapr_core_unplug(hotplug_dev, dev);
4007 } else if (object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_PCI_HOST_BRIDGE)) {
4008 spapr_phb_unplug(hotplug_dev, dev);
4012 static void spapr_machine_device_unplug_request(HotplugHandler *hotplug_dev,
4013 DeviceState *dev, Error **errp)
4015 sPAPRMachineState *sms = SPAPR_MACHINE(OBJECT(hotplug_dev));
4016 MachineClass *mc = MACHINE_GET_CLASS(sms);
4017 sPAPRMachineClass *smc = SPAPR_MACHINE_CLASS(mc);
4019 if (object_dynamic_cast(OBJECT(dev), TYPE_PC_DIMM)) {
4020 if (spapr_ovec_test(sms->ov5_cas, OV5_HP_EVT)) {
4021 spapr_memory_unplug_request(hotplug_dev, dev, errp);
4022 } else {
4023 /* NOTE: this means there is a window after guest reset, prior to
4024 * CAS negotiation, where unplug requests will fail due to the
4025 * capability not being detected yet. This is a bit different than
4026 * the case with PCI unplug, where the events will be queued and
4027 * eventually handled by the guest after boot
4029 error_setg(errp, "Memory hot unplug not supported for this guest");
4031 } else if (object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_CPU_CORE)) {
4032 if (!mc->has_hotpluggable_cpus) {
4033 error_setg(errp, "CPU hot unplug not supported on this machine");
4034 return;
4036 spapr_core_unplug_request(hotplug_dev, dev, errp);
4037 } else if (object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_PCI_HOST_BRIDGE)) {
4038 if (!smc->dr_phb_enabled) {
4039 error_setg(errp, "PHB hot unplug not supported on this machine");
4040 return;
4042 spapr_phb_unplug_request(hotplug_dev, dev, errp);
4046 static void spapr_machine_device_pre_plug(HotplugHandler *hotplug_dev,
4047 DeviceState *dev, Error **errp)
4049 if (object_dynamic_cast(OBJECT(dev), TYPE_PC_DIMM)) {
4050 spapr_memory_pre_plug(hotplug_dev, dev, errp);
4051 } else if (object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_CPU_CORE)) {
4052 spapr_core_pre_plug(hotplug_dev, dev, errp);
4053 } else if (object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_PCI_HOST_BRIDGE)) {
4054 spapr_phb_pre_plug(hotplug_dev, dev, errp);
4058 static HotplugHandler *spapr_get_hotplug_handler(MachineState *machine,
4059 DeviceState *dev)
4061 if (object_dynamic_cast(OBJECT(dev), TYPE_PC_DIMM) ||
4062 object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_CPU_CORE) ||
4063 object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_PCI_HOST_BRIDGE)) {
4064 return HOTPLUG_HANDLER(machine);
4066 return NULL;
4069 static CpuInstanceProperties
4070 spapr_cpu_index_to_props(MachineState *machine, unsigned cpu_index)
4072 CPUArchId *core_slot;
4073 MachineClass *mc = MACHINE_GET_CLASS(machine);
4075 /* make sure possible_cpu are intialized */
4076 mc->possible_cpu_arch_ids(machine);
4077 /* get CPU core slot containing thread that matches cpu_index */
4078 core_slot = spapr_find_cpu_slot(machine, cpu_index, NULL);
4079 assert(core_slot);
4080 return core_slot->props;
4083 static int64_t spapr_get_default_cpu_node_id(const MachineState *ms, int idx)
4085 return idx / smp_cores % nb_numa_nodes;
4088 static const CPUArchIdList *spapr_possible_cpu_arch_ids(MachineState *machine)
4090 int i;
4091 const char *core_type;
4092 int spapr_max_cores = max_cpus / smp_threads;
4093 MachineClass *mc = MACHINE_GET_CLASS(machine);
4095 if (!mc->has_hotpluggable_cpus) {
4096 spapr_max_cores = QEMU_ALIGN_UP(smp_cpus, smp_threads) / smp_threads;
4098 if (machine->possible_cpus) {
4099 assert(machine->possible_cpus->len == spapr_max_cores);
4100 return machine->possible_cpus;
4103 core_type = spapr_get_cpu_core_type(machine->cpu_type);
4104 if (!core_type) {
4105 error_report("Unable to find sPAPR CPU Core definition");
4106 exit(1);
4109 machine->possible_cpus = g_malloc0(sizeof(CPUArchIdList) +
4110 sizeof(CPUArchId) * spapr_max_cores);
4111 machine->possible_cpus->len = spapr_max_cores;
4112 for (i = 0; i < machine->possible_cpus->len; i++) {
4113 int core_id = i * smp_threads;
4115 machine->possible_cpus->cpus[i].type = core_type;
4116 machine->possible_cpus->cpus[i].vcpus_count = smp_threads;
4117 machine->possible_cpus->cpus[i].arch_id = core_id;
4118 machine->possible_cpus->cpus[i].props.has_core_id = true;
4119 machine->possible_cpus->cpus[i].props.core_id = core_id;
4121 return machine->possible_cpus;
4124 static void spapr_phb_placement(sPAPRMachineState *spapr, uint32_t index,
4125 uint64_t *buid, hwaddr *pio,
4126 hwaddr *mmio32, hwaddr *mmio64,
4127 unsigned n_dma, uint32_t *liobns, Error **errp)
4130 * New-style PHB window placement.
4132 * Goals: Gives large (1TiB), naturally aligned 64-bit MMIO window
4133 * for each PHB, in addition to 2GiB 32-bit MMIO and 64kiB PIO
4134 * windows.
4136 * Some guest kernels can't work with MMIO windows above 1<<46
4137 * (64TiB), so we place up to 31 PHBs in the area 32TiB..64TiB
4139 * 32TiB..(33TiB+1984kiB) contains the 64kiB PIO windows for each
4140 * PHB stacked together. (32TiB+2GiB)..(32TiB+64GiB) contains the
4141 * 2GiB 32-bit MMIO windows for each PHB. Then 33..64TiB has the
4142 * 1TiB 64-bit MMIO windows for each PHB.
4144 const uint64_t base_buid = 0x800000020000000ULL;
4145 int i;
4147 /* Sanity check natural alignments */
4148 QEMU_BUILD_BUG_ON((SPAPR_PCI_BASE % SPAPR_PCI_MEM64_WIN_SIZE) != 0);
4149 QEMU_BUILD_BUG_ON((SPAPR_PCI_LIMIT % SPAPR_PCI_MEM64_WIN_SIZE) != 0);
4150 QEMU_BUILD_BUG_ON((SPAPR_PCI_MEM64_WIN_SIZE % SPAPR_PCI_MEM32_WIN_SIZE) != 0);
4151 QEMU_BUILD_BUG_ON((SPAPR_PCI_MEM32_WIN_SIZE % SPAPR_PCI_IO_WIN_SIZE) != 0);
4152 /* Sanity check bounds */
4153 QEMU_BUILD_BUG_ON((SPAPR_MAX_PHBS * SPAPR_PCI_IO_WIN_SIZE) >
4154 SPAPR_PCI_MEM32_WIN_SIZE);
4155 QEMU_BUILD_BUG_ON((SPAPR_MAX_PHBS * SPAPR_PCI_MEM32_WIN_SIZE) >
4156 SPAPR_PCI_MEM64_WIN_SIZE);
4158 if (index >= SPAPR_MAX_PHBS) {
4159 error_setg(errp, "\"index\" for PAPR PHB is too large (max %llu)",
4160 SPAPR_MAX_PHBS - 1);
4161 return;
4164 *buid = base_buid + index;
4165 for (i = 0; i < n_dma; ++i) {
4166 liobns[i] = SPAPR_PCI_LIOBN(index, i);
4169 *pio = SPAPR_PCI_BASE + index * SPAPR_PCI_IO_WIN_SIZE;
4170 *mmio32 = SPAPR_PCI_BASE + (index + 1) * SPAPR_PCI_MEM32_WIN_SIZE;
4171 *mmio64 = SPAPR_PCI_BASE + (index + 1) * SPAPR_PCI_MEM64_WIN_SIZE;
4174 static ICSState *spapr_ics_get(XICSFabric *dev, int irq)
4176 sPAPRMachineState *spapr = SPAPR_MACHINE(dev);
4178 return ics_valid_irq(spapr->ics, irq) ? spapr->ics : NULL;
4181 static void spapr_ics_resend(XICSFabric *dev)
4183 sPAPRMachineState *spapr = SPAPR_MACHINE(dev);
4185 ics_resend(spapr->ics);
4188 static ICPState *spapr_icp_get(XICSFabric *xi, int vcpu_id)
4190 PowerPCCPU *cpu = spapr_find_cpu(vcpu_id);
4192 return cpu ? spapr_cpu_state(cpu)->icp : NULL;
4195 static void spapr_pic_print_info(InterruptStatsProvider *obj,
4196 Monitor *mon)
4198 sPAPRMachineState *spapr = SPAPR_MACHINE(obj);
4200 spapr->irq->print_info(spapr, mon);
4203 int spapr_get_vcpu_id(PowerPCCPU *cpu)
4205 return cpu->vcpu_id;
4208 void spapr_set_vcpu_id(PowerPCCPU *cpu, int cpu_index, Error **errp)
4210 sPAPRMachineState *spapr = SPAPR_MACHINE(qdev_get_machine());
4211 int vcpu_id;
4213 vcpu_id = spapr_vcpu_id(spapr, cpu_index);
4215 if (kvm_enabled() && !kvm_vcpu_id_is_valid(vcpu_id)) {
4216 error_setg(errp, "Can't create CPU with id %d in KVM", vcpu_id);
4217 error_append_hint(errp, "Adjust the number of cpus to %d "
4218 "or try to raise the number of threads per core\n",
4219 vcpu_id * smp_threads / spapr->vsmt);
4220 return;
4223 cpu->vcpu_id = vcpu_id;
4226 PowerPCCPU *spapr_find_cpu(int vcpu_id)
4228 CPUState *cs;
4230 CPU_FOREACH(cs) {
4231 PowerPCCPU *cpu = POWERPC_CPU(cs);
4233 if (spapr_get_vcpu_id(cpu) == vcpu_id) {
4234 return cpu;
4238 return NULL;
4241 static void spapr_machine_class_init(ObjectClass *oc, void *data)
4243 MachineClass *mc = MACHINE_CLASS(oc);
4244 sPAPRMachineClass *smc = SPAPR_MACHINE_CLASS(oc);
4245 FWPathProviderClass *fwc = FW_PATH_PROVIDER_CLASS(oc);
4246 NMIClass *nc = NMI_CLASS(oc);
4247 HotplugHandlerClass *hc = HOTPLUG_HANDLER_CLASS(oc);
4248 PPCVirtualHypervisorClass *vhc = PPC_VIRTUAL_HYPERVISOR_CLASS(oc);
4249 XICSFabricClass *xic = XICS_FABRIC_CLASS(oc);
4250 InterruptStatsProviderClass *ispc = INTERRUPT_STATS_PROVIDER_CLASS(oc);
4252 mc->desc = "pSeries Logical Partition (PAPR compliant)";
4253 mc->ignore_boot_device_suffixes = true;
4256 * We set up the default / latest behaviour here. The class_init
4257 * functions for the specific versioned machine types can override
4258 * these details for backwards compatibility
4260 mc->init = spapr_machine_init;
4261 mc->reset = spapr_machine_reset;
4262 mc->block_default_type = IF_SCSI;
4263 mc->max_cpus = 1024;
4264 mc->no_parallel = 1;
4265 mc->default_boot_order = "";
4266 mc->default_ram_size = 512 * MiB;
4267 mc->default_display = "std";
4268 mc->kvm_type = spapr_kvm_type;
4269 machine_class_allow_dynamic_sysbus_dev(mc, TYPE_SPAPR_PCI_HOST_BRIDGE);
4270 mc->pci_allow_0_address = true;
4271 assert(!mc->get_hotplug_handler);
4272 mc->get_hotplug_handler = spapr_get_hotplug_handler;
4273 hc->pre_plug = spapr_machine_device_pre_plug;
4274 hc->plug = spapr_machine_device_plug;
4275 mc->cpu_index_to_instance_props = spapr_cpu_index_to_props;
4276 mc->get_default_cpu_node_id = spapr_get_default_cpu_node_id;
4277 mc->possible_cpu_arch_ids = spapr_possible_cpu_arch_ids;
4278 hc->unplug_request = spapr_machine_device_unplug_request;
4279 hc->unplug = spapr_machine_device_unplug;
4281 smc->dr_lmb_enabled = true;
4282 smc->update_dt_enabled = true;
4283 mc->default_cpu_type = POWERPC_CPU_TYPE_NAME("power9_v2.0");
4284 mc->has_hotpluggable_cpus = true;
4285 smc->resize_hpt_default = SPAPR_RESIZE_HPT_ENABLED;
4286 fwc->get_dev_path = spapr_get_fw_dev_path;
4287 nc->nmi_monitor_handler = spapr_nmi;
4288 smc->phb_placement = spapr_phb_placement;
4289 vhc->hypercall = emulate_spapr_hypercall;
4290 vhc->hpt_mask = spapr_hpt_mask;
4291 vhc->map_hptes = spapr_map_hptes;
4292 vhc->unmap_hptes = spapr_unmap_hptes;
4293 vhc->store_hpte = spapr_store_hpte;
4294 vhc->get_pate = spapr_get_pate;
4295 vhc->encode_hpt_for_kvm_pr = spapr_encode_hpt_for_kvm_pr;
4296 xic->ics_get = spapr_ics_get;
4297 xic->ics_resend = spapr_ics_resend;
4298 xic->icp_get = spapr_icp_get;
4299 ispc->print_info = spapr_pic_print_info;
4300 /* Force NUMA node memory size to be a multiple of
4301 * SPAPR_MEMORY_BLOCK_SIZE (256M) since that's the granularity
4302 * in which LMBs are represented and hot-added
4304 mc->numa_mem_align_shift = 28;
4306 smc->default_caps.caps[SPAPR_CAP_HTM] = SPAPR_CAP_OFF;
4307 smc->default_caps.caps[SPAPR_CAP_VSX] = SPAPR_CAP_ON;
4308 smc->default_caps.caps[SPAPR_CAP_DFP] = SPAPR_CAP_ON;
4309 smc->default_caps.caps[SPAPR_CAP_CFPC] = SPAPR_CAP_BROKEN;
4310 smc->default_caps.caps[SPAPR_CAP_SBBC] = SPAPR_CAP_BROKEN;
4311 smc->default_caps.caps[SPAPR_CAP_IBS] = SPAPR_CAP_BROKEN;
4312 smc->default_caps.caps[SPAPR_CAP_HPT_MAXPAGESIZE] = 16; /* 64kiB */
4313 smc->default_caps.caps[SPAPR_CAP_NESTED_KVM_HV] = SPAPR_CAP_OFF;
4314 smc->default_caps.caps[SPAPR_CAP_LARGE_DECREMENTER] = SPAPR_CAP_ON;
4315 spapr_caps_add_properties(smc, &error_abort);
4316 smc->irq = &spapr_irq_xics;
4317 smc->dr_phb_enabled = true;
4320 static const TypeInfo spapr_machine_info = {
4321 .name = TYPE_SPAPR_MACHINE,
4322 .parent = TYPE_MACHINE,
4323 .abstract = true,
4324 .instance_size = sizeof(sPAPRMachineState),
4325 .instance_init = spapr_instance_init,
4326 .instance_finalize = spapr_machine_finalizefn,
4327 .class_size = sizeof(sPAPRMachineClass),
4328 .class_init = spapr_machine_class_init,
4329 .interfaces = (InterfaceInfo[]) {
4330 { TYPE_FW_PATH_PROVIDER },
4331 { TYPE_NMI },
4332 { TYPE_HOTPLUG_HANDLER },
4333 { TYPE_PPC_VIRTUAL_HYPERVISOR },
4334 { TYPE_XICS_FABRIC },
4335 { TYPE_INTERRUPT_STATS_PROVIDER },
4340 #define DEFINE_SPAPR_MACHINE(suffix, verstr, latest) \
4341 static void spapr_machine_##suffix##_class_init(ObjectClass *oc, \
4342 void *data) \
4344 MachineClass *mc = MACHINE_CLASS(oc); \
4345 spapr_machine_##suffix##_class_options(mc); \
4346 if (latest) { \
4347 mc->alias = "pseries"; \
4348 mc->is_default = 1; \
4351 static const TypeInfo spapr_machine_##suffix##_info = { \
4352 .name = MACHINE_TYPE_NAME("pseries-" verstr), \
4353 .parent = TYPE_SPAPR_MACHINE, \
4354 .class_init = spapr_machine_##suffix##_class_init, \
4355 }; \
4356 static void spapr_machine_register_##suffix(void) \
4358 type_register(&spapr_machine_##suffix##_info); \
4360 type_init(spapr_machine_register_##suffix)
4363 * pseries-4.0
4365 static void spapr_machine_4_0_class_options(MachineClass *mc)
4367 /* Defaults for the latest behaviour inherited from the base class */
4370 DEFINE_SPAPR_MACHINE(4_0, "4.0", true);
4373 * pseries-3.1
4375 static void spapr_machine_3_1_class_options(MachineClass *mc)
4377 sPAPRMachineClass *smc = SPAPR_MACHINE_CLASS(mc);
4378 static GlobalProperty compat[] = {
4379 { TYPE_SPAPR_MACHINE, "host-model", "passthrough" },
4380 { TYPE_SPAPR_MACHINE, "host-serial", "passthrough" },
4383 spapr_machine_4_0_class_options(mc);
4384 compat_props_add(mc->compat_props, hw_compat_3_1, hw_compat_3_1_len);
4385 compat_props_add(mc->compat_props, compat, G_N_ELEMENTS(compat));
4387 mc->default_cpu_type = POWERPC_CPU_TYPE_NAME("power8_v2.0");
4388 smc->update_dt_enabled = false;
4389 smc->dr_phb_enabled = false;
4390 smc->default_caps.caps[SPAPR_CAP_LARGE_DECREMENTER] = SPAPR_CAP_OFF;
4393 DEFINE_SPAPR_MACHINE(3_1, "3.1", false);
4396 * pseries-3.0
4399 static void spapr_machine_3_0_class_options(MachineClass *mc)
4401 sPAPRMachineClass *smc = SPAPR_MACHINE_CLASS(mc);
4403 spapr_machine_3_1_class_options(mc);
4404 compat_props_add(mc->compat_props, hw_compat_3_0, hw_compat_3_0_len);
4406 smc->legacy_irq_allocation = true;
4407 smc->irq = &spapr_irq_xics_legacy;
4410 DEFINE_SPAPR_MACHINE(3_0, "3.0", false);
4413 * pseries-2.12
4415 static void spapr_machine_2_12_class_options(MachineClass *mc)
4417 sPAPRMachineClass *smc = SPAPR_MACHINE_CLASS(mc);
4418 static GlobalProperty compat[] = {
4419 { TYPE_POWERPC_CPU, "pre-3.0-migration", "on" },
4420 { TYPE_SPAPR_CPU_CORE, "pre-3.0-migration", "on" },
4423 spapr_machine_3_0_class_options(mc);
4424 compat_props_add(mc->compat_props, hw_compat_2_12, hw_compat_2_12_len);
4425 compat_props_add(mc->compat_props, compat, G_N_ELEMENTS(compat));
4427 /* We depend on kvm_enabled() to choose a default value for the
4428 * hpt-max-page-size capability. Of course we can't do it here
4429 * because this is too early and the HW accelerator isn't initialzed
4430 * yet. Postpone this to machine init (see default_caps_with_cpu()).
4432 smc->default_caps.caps[SPAPR_CAP_HPT_MAXPAGESIZE] = 0;
4435 DEFINE_SPAPR_MACHINE(2_12, "2.12", false);
4437 static void spapr_machine_2_12_sxxm_class_options(MachineClass *mc)
4439 sPAPRMachineClass *smc = SPAPR_MACHINE_CLASS(mc);
4441 spapr_machine_2_12_class_options(mc);
4442 smc->default_caps.caps[SPAPR_CAP_CFPC] = SPAPR_CAP_WORKAROUND;
4443 smc->default_caps.caps[SPAPR_CAP_SBBC] = SPAPR_CAP_WORKAROUND;
4444 smc->default_caps.caps[SPAPR_CAP_IBS] = SPAPR_CAP_FIXED_CCD;
4447 DEFINE_SPAPR_MACHINE(2_12_sxxm, "2.12-sxxm", false);
4450 * pseries-2.11
4453 static void spapr_machine_2_11_class_options(MachineClass *mc)
4455 sPAPRMachineClass *smc = SPAPR_MACHINE_CLASS(mc);
4457 spapr_machine_2_12_class_options(mc);
4458 smc->default_caps.caps[SPAPR_CAP_HTM] = SPAPR_CAP_ON;
4459 compat_props_add(mc->compat_props, hw_compat_2_11, hw_compat_2_11_len);
4462 DEFINE_SPAPR_MACHINE(2_11, "2.11", false);
4465 * pseries-2.10
4468 static void spapr_machine_2_10_class_options(MachineClass *mc)
4470 spapr_machine_2_11_class_options(mc);
4471 compat_props_add(mc->compat_props, hw_compat_2_10, hw_compat_2_10_len);
4474 DEFINE_SPAPR_MACHINE(2_10, "2.10", false);
4477 * pseries-2.9
4480 static void spapr_machine_2_9_class_options(MachineClass *mc)
4482 sPAPRMachineClass *smc = SPAPR_MACHINE_CLASS(mc);
4483 static GlobalProperty compat[] = {
4484 { TYPE_POWERPC_CPU, "pre-2.10-migration", "on" },
4487 spapr_machine_2_10_class_options(mc);
4488 compat_props_add(mc->compat_props, hw_compat_2_9, hw_compat_2_9_len);
4489 compat_props_add(mc->compat_props, compat, G_N_ELEMENTS(compat));
4490 mc->numa_auto_assign_ram = numa_legacy_auto_assign_ram;
4491 smc->pre_2_10_has_unused_icps = true;
4492 smc->resize_hpt_default = SPAPR_RESIZE_HPT_DISABLED;
4495 DEFINE_SPAPR_MACHINE(2_9, "2.9", false);
4498 * pseries-2.8
4501 static void spapr_machine_2_8_class_options(MachineClass *mc)
4503 static GlobalProperty compat[] = {
4504 { TYPE_SPAPR_PCI_HOST_BRIDGE, "pcie-extended-configuration-space", "off" },
4507 spapr_machine_2_9_class_options(mc);
4508 compat_props_add(mc->compat_props, hw_compat_2_8, hw_compat_2_8_len);
4509 compat_props_add(mc->compat_props, compat, G_N_ELEMENTS(compat));
4510 mc->numa_mem_align_shift = 23;
4513 DEFINE_SPAPR_MACHINE(2_8, "2.8", false);
4516 * pseries-2.7
4519 static void phb_placement_2_7(sPAPRMachineState *spapr, uint32_t index,
4520 uint64_t *buid, hwaddr *pio,
4521 hwaddr *mmio32, hwaddr *mmio64,
4522 unsigned n_dma, uint32_t *liobns, Error **errp)
4524 /* Legacy PHB placement for pseries-2.7 and earlier machine types */
4525 const uint64_t base_buid = 0x800000020000000ULL;
4526 const hwaddr phb_spacing = 0x1000000000ULL; /* 64 GiB */
4527 const hwaddr mmio_offset = 0xa0000000; /* 2 GiB + 512 MiB */
4528 const hwaddr pio_offset = 0x80000000; /* 2 GiB */
4529 const uint32_t max_index = 255;
4530 const hwaddr phb0_alignment = 0x10000000000ULL; /* 1 TiB */
4532 uint64_t ram_top = MACHINE(spapr)->ram_size;
4533 hwaddr phb0_base, phb_base;
4534 int i;
4536 /* Do we have device memory? */
4537 if (MACHINE(spapr)->maxram_size > ram_top) {
4538 /* Can't just use maxram_size, because there may be an
4539 * alignment gap between normal and device memory regions
4541 ram_top = MACHINE(spapr)->device_memory->base +
4542 memory_region_size(&MACHINE(spapr)->device_memory->mr);
4545 phb0_base = QEMU_ALIGN_UP(ram_top, phb0_alignment);
4547 if (index > max_index) {
4548 error_setg(errp, "\"index\" for PAPR PHB is too large (max %u)",
4549 max_index);
4550 return;
4553 *buid = base_buid + index;
4554 for (i = 0; i < n_dma; ++i) {
4555 liobns[i] = SPAPR_PCI_LIOBN(index, i);
4558 phb_base = phb0_base + index * phb_spacing;
4559 *pio = phb_base + pio_offset;
4560 *mmio32 = phb_base + mmio_offset;
4562 * We don't set the 64-bit MMIO window, relying on the PHB's
4563 * fallback behaviour of automatically splitting a large "32-bit"
4564 * window into contiguous 32-bit and 64-bit windows
4568 static void spapr_machine_2_7_class_options(MachineClass *mc)
4570 sPAPRMachineClass *smc = SPAPR_MACHINE_CLASS(mc);
4571 static GlobalProperty compat[] = {
4572 { TYPE_SPAPR_PCI_HOST_BRIDGE, "mem_win_size", "0xf80000000", },
4573 { TYPE_SPAPR_PCI_HOST_BRIDGE, "mem64_win_size", "0", },
4574 { TYPE_POWERPC_CPU, "pre-2.8-migration", "on", },
4575 { TYPE_SPAPR_PCI_HOST_BRIDGE, "pre-2.8-migration", "on", },
4578 spapr_machine_2_8_class_options(mc);
4579 mc->default_cpu_type = POWERPC_CPU_TYPE_NAME("power7_v2.3");
4580 mc->default_machine_opts = "modern-hotplug-events=off";
4581 compat_props_add(mc->compat_props, hw_compat_2_7, hw_compat_2_7_len);
4582 compat_props_add(mc->compat_props, compat, G_N_ELEMENTS(compat));
4583 smc->phb_placement = phb_placement_2_7;
4586 DEFINE_SPAPR_MACHINE(2_7, "2.7", false);
4589 * pseries-2.6
4592 static void spapr_machine_2_6_class_options(MachineClass *mc)
4594 static GlobalProperty compat[] = {
4595 { TYPE_SPAPR_PCI_HOST_BRIDGE, "ddw", "off" },
4598 spapr_machine_2_7_class_options(mc);
4599 mc->has_hotpluggable_cpus = false;
4600 compat_props_add(mc->compat_props, hw_compat_2_6, hw_compat_2_6_len);
4601 compat_props_add(mc->compat_props, compat, G_N_ELEMENTS(compat));
4604 DEFINE_SPAPR_MACHINE(2_6, "2.6", false);
4607 * pseries-2.5
4610 static void spapr_machine_2_5_class_options(MachineClass *mc)
4612 sPAPRMachineClass *smc = SPAPR_MACHINE_CLASS(mc);
4613 static GlobalProperty compat[] = {
4614 { "spapr-vlan", "use-rx-buffer-pools", "off" },
4617 spapr_machine_2_6_class_options(mc);
4618 smc->use_ohci_by_default = true;
4619 compat_props_add(mc->compat_props, hw_compat_2_5, hw_compat_2_5_len);
4620 compat_props_add(mc->compat_props, compat, G_N_ELEMENTS(compat));
4623 DEFINE_SPAPR_MACHINE(2_5, "2.5", false);
4626 * pseries-2.4
4629 static void spapr_machine_2_4_class_options(MachineClass *mc)
4631 sPAPRMachineClass *smc = SPAPR_MACHINE_CLASS(mc);
4633 spapr_machine_2_5_class_options(mc);
4634 smc->dr_lmb_enabled = false;
4635 compat_props_add(mc->compat_props, hw_compat_2_4, hw_compat_2_4_len);
4638 DEFINE_SPAPR_MACHINE(2_4, "2.4", false);
4641 * pseries-2.3
4644 static void spapr_machine_2_3_class_options(MachineClass *mc)
4646 static GlobalProperty compat[] = {
4647 { "spapr-pci-host-bridge", "dynamic-reconfiguration", "off" },
4649 spapr_machine_2_4_class_options(mc);
4650 compat_props_add(mc->compat_props, hw_compat_2_3, hw_compat_2_3_len);
4651 compat_props_add(mc->compat_props, compat, G_N_ELEMENTS(compat));
4653 DEFINE_SPAPR_MACHINE(2_3, "2.3", false);
4656 * pseries-2.2
4659 static void spapr_machine_2_2_class_options(MachineClass *mc)
4661 static GlobalProperty compat[] = {
4662 { TYPE_SPAPR_PCI_HOST_BRIDGE, "mem_win_size", "0x20000000" },
4665 spapr_machine_2_3_class_options(mc);
4666 compat_props_add(mc->compat_props, hw_compat_2_2, hw_compat_2_2_len);
4667 compat_props_add(mc->compat_props, compat, G_N_ELEMENTS(compat));
4668 mc->default_machine_opts = "modern-hotplug-events=off,suppress-vmdesc=on";
4670 DEFINE_SPAPR_MACHINE(2_2, "2.2", false);
4673 * pseries-2.1
4676 static void spapr_machine_2_1_class_options(MachineClass *mc)
4678 spapr_machine_2_2_class_options(mc);
4679 compat_props_add(mc->compat_props, hw_compat_2_1, hw_compat_2_1_len);
4681 DEFINE_SPAPR_MACHINE(2_1, "2.1", false);
4683 static void spapr_machine_register_types(void)
4685 type_register_static(&spapr_machine_info);
4688 type_init(spapr_machine_register_types)