cpu: Introduce X86CPUTopoInfo structure for argument simplification
[qemu/ar7.git] / hw / i386 / pc.c
blob01eefa3e091038ce9dcf481961237482c8f9e93e
1 /*
2 * QEMU PC System Emulator
4 * Copyright (c) 2003-2004 Fabrice Bellard
6 * Permission is hereby granted, free of charge, to any person obtaining a copy
7 * of this software and associated documentation files (the "Software"), to deal
8 * in the Software without restriction, including without limitation the rights
9 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
10 * copies of the Software, and to permit persons to whom the Software is
11 * furnished to do so, subject to the following conditions:
13 * The above copyright notice and this permission notice shall be included in
14 * all copies or substantial portions of the Software.
16 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
17 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
18 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
19 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
20 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
21 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
22 * THE SOFTWARE.
24 #include "hw/hw.h"
25 #include "hw/i386/pc.h"
26 #include "hw/char/serial.h"
27 #include "hw/i386/apic.h"
28 #include "hw/i386/topology.h"
29 #include "sysemu/cpus.h"
30 #include "hw/block/fdc.h"
31 #include "hw/ide.h"
32 #include "hw/pci/pci.h"
33 #include "hw/pci/pci_bus.h"
34 #include "hw/nvram/fw_cfg.h"
35 #include "hw/timer/hpet.h"
36 #include "hw/smbios/smbios.h"
37 #include "hw/loader.h"
38 #include "elf.h"
39 #include "multiboot.h"
40 #include "hw/timer/mc146818rtc.h"
41 #include "hw/timer/i8254.h"
42 #include "hw/audio/pcspk.h"
43 #include "hw/pci/msi.h"
44 #include "hw/sysbus.h"
45 #include "sysemu/sysemu.h"
46 #include "sysemu/numa.h"
47 #include "sysemu/kvm.h"
48 #include "sysemu/qtest.h"
49 #include "kvm_i386.h"
50 #include "hw/xen/xen.h"
51 #include "sysemu/block-backend.h"
52 #include "hw/block/block.h"
53 #include "ui/qemu-spice.h"
54 #include "exec/memory.h"
55 #include "exec/address-spaces.h"
56 #include "sysemu/arch_init.h"
57 #include "qemu/bitmap.h"
58 #include "qemu/config-file.h"
59 #include "qemu/error-report.h"
60 #include "hw/acpi/acpi.h"
61 #include "hw/acpi/cpu_hotplug.h"
62 #include "hw/cpu/icc_bus.h"
63 #include "hw/boards.h"
64 #include "hw/pci/pci_host.h"
65 #include "acpi-build.h"
66 #include "hw/mem/pc-dimm.h"
67 #include "qapi/visitor.h"
68 #include "qapi-visit.h"
70 /* debug PC/ISA interrupts */
71 //#define DEBUG_IRQ
73 #ifdef DEBUG_IRQ
74 #define DPRINTF(fmt, ...) \
75 do { printf("CPUIRQ: " fmt , ## __VA_ARGS__); } while (0)
76 #else
77 #define DPRINTF(fmt, ...)
78 #endif
80 /* Leave a chunk of memory at the top of RAM for the BIOS ACPI tables
81 * (128K) and other BIOS datastructures (less than 4K reported to be used at
82 * the moment, 32K should be enough for a while). */
83 static unsigned acpi_data_size = 0x20000 + 0x8000;
84 void pc_set_legacy_acpi_data_size(void)
86 acpi_data_size = 0x10000;
89 #define BIOS_CFG_IOPORT 0x510
90 #define FW_CFG_ACPI_TABLES (FW_CFG_ARCH_LOCAL + 0)
91 #define FW_CFG_SMBIOS_ENTRIES (FW_CFG_ARCH_LOCAL + 1)
92 #define FW_CFG_IRQ0_OVERRIDE (FW_CFG_ARCH_LOCAL + 2)
93 #define FW_CFG_E820_TABLE (FW_CFG_ARCH_LOCAL + 3)
94 #define FW_CFG_HPET (FW_CFG_ARCH_LOCAL + 4)
96 #define E820_NR_ENTRIES 16
98 struct e820_entry {
99 uint64_t address;
100 uint64_t length;
101 uint32_t type;
102 } QEMU_PACKED __attribute((__aligned__(4)));
104 struct e820_table {
105 uint32_t count;
106 struct e820_entry entry[E820_NR_ENTRIES];
107 } QEMU_PACKED __attribute((__aligned__(4)));
109 static struct e820_table e820_reserve;
110 static struct e820_entry *e820_table;
111 static unsigned e820_entries;
112 struct hpet_fw_config hpet_cfg = {.count = UINT8_MAX};
114 void gsi_handler(void *opaque, int n, int level)
116 GSIState *s = opaque;
118 DPRINTF("pc: %s GSI %d\n", level ? "raising" : "lowering", n);
119 if (n < ISA_NUM_IRQS) {
120 qemu_set_irq(s->i8259_irq[n], level);
122 qemu_set_irq(s->ioapic_irq[n], level);
125 static void ioport80_write(void *opaque, hwaddr addr, uint64_t data,
126 unsigned size)
130 static uint64_t ioport80_read(void *opaque, hwaddr addr, unsigned size)
132 return 0xffffffffffffffffULL;
135 /* MSDOS compatibility mode FPU exception support */
136 static qemu_irq ferr_irq;
138 void pc_register_ferr_irq(qemu_irq irq)
140 ferr_irq = irq;
143 /* XXX: add IGNNE support */
144 void cpu_set_ferr(CPUX86State *s)
146 qemu_irq_raise(ferr_irq);
149 static void ioportF0_write(void *opaque, hwaddr addr, uint64_t data,
150 unsigned size)
152 qemu_irq_lower(ferr_irq);
155 static uint64_t ioportF0_read(void *opaque, hwaddr addr, unsigned size)
157 return 0xffffffffffffffffULL;
160 /* TSC handling */
161 uint64_t cpu_get_tsc(CPUX86State *env)
163 return cpu_get_ticks();
166 /* IRQ handling */
167 int cpu_get_pic_interrupt(CPUX86State *env)
169 X86CPU *cpu = x86_env_get_cpu(env);
170 int intno;
172 intno = apic_get_interrupt(cpu->apic_state);
173 if (intno >= 0) {
174 return intno;
176 /* read the irq from the PIC */
177 if (!apic_accept_pic_intr(cpu->apic_state)) {
178 return -1;
181 intno = pic_read_irq(isa_pic);
182 return intno;
185 static void pic_irq_request(void *opaque, int irq, int level)
187 CPUState *cs = first_cpu;
188 X86CPU *cpu = X86_CPU(cs);
190 DPRINTF("pic_irqs: %s irq %d\n", level? "raise" : "lower", irq);
191 if (cpu->apic_state) {
192 CPU_FOREACH(cs) {
193 cpu = X86_CPU(cs);
194 if (apic_accept_pic_intr(cpu->apic_state)) {
195 apic_deliver_pic_intr(cpu->apic_state, level);
198 } else {
199 if (level) {
200 cpu_interrupt(cs, CPU_INTERRUPT_HARD);
201 } else {
202 cpu_reset_interrupt(cs, CPU_INTERRUPT_HARD);
207 /* PC cmos mappings */
209 #define REG_EQUIPMENT_BYTE 0x14
211 static int cmos_get_fd_drive_type(FDriveType fd0)
213 int val;
215 switch (fd0) {
216 case FDRIVE_DRV_144:
217 /* 1.44 Mb 3"5 drive */
218 val = 4;
219 break;
220 case FDRIVE_DRV_288:
221 /* 2.88 Mb 3"5 drive */
222 val = 5;
223 break;
224 case FDRIVE_DRV_120:
225 /* 1.2 Mb 5"5 drive */
226 val = 2;
227 break;
228 case FDRIVE_DRV_NONE:
229 default:
230 val = 0;
231 break;
233 return val;
236 static void cmos_init_hd(ISADevice *s, int type_ofs, int info_ofs,
237 int16_t cylinders, int8_t heads, int8_t sectors)
239 rtc_set_memory(s, type_ofs, 47);
240 rtc_set_memory(s, info_ofs, cylinders);
241 rtc_set_memory(s, info_ofs + 1, cylinders >> 8);
242 rtc_set_memory(s, info_ofs + 2, heads);
243 rtc_set_memory(s, info_ofs + 3, 0xff);
244 rtc_set_memory(s, info_ofs + 4, 0xff);
245 rtc_set_memory(s, info_ofs + 5, 0xc0 | ((heads > 8) << 3));
246 rtc_set_memory(s, info_ofs + 6, cylinders);
247 rtc_set_memory(s, info_ofs + 7, cylinders >> 8);
248 rtc_set_memory(s, info_ofs + 8, sectors);
251 /* convert boot_device letter to something recognizable by the bios */
252 static int boot_device2nibble(char boot_device)
254 switch(boot_device) {
255 case 'a':
256 case 'b':
257 return 0x01; /* floppy boot */
258 case 'c':
259 return 0x02; /* hard drive boot */
260 case 'd':
261 return 0x03; /* CD-ROM boot */
262 case 'n':
263 return 0x04; /* Network boot */
265 return 0;
268 static void set_boot_dev(ISADevice *s, const char *boot_device, Error **errp)
270 #define PC_MAX_BOOT_DEVICES 3
271 int nbds, bds[3] = { 0, };
272 int i;
274 nbds = strlen(boot_device);
275 if (nbds > PC_MAX_BOOT_DEVICES) {
276 error_setg(errp, "Too many boot devices for PC");
277 return;
279 for (i = 0; i < nbds; i++) {
280 bds[i] = boot_device2nibble(boot_device[i]);
281 if (bds[i] == 0) {
282 error_setg(errp, "Invalid boot device for PC: '%c'",
283 boot_device[i]);
284 return;
287 rtc_set_memory(s, 0x3d, (bds[1] << 4) | bds[0]);
288 rtc_set_memory(s, 0x38, (bds[2] << 4) | (fd_bootchk ? 0x0 : 0x1));
291 static void pc_boot_set(void *opaque, const char *boot_device, Error **errp)
293 set_boot_dev(opaque, boot_device, errp);
296 static void pc_cmos_init_floppy(ISADevice *rtc_state, ISADevice *floppy)
298 int val, nb, i;
299 FDriveType fd_type[2] = { FDRIVE_DRV_NONE, FDRIVE_DRV_NONE };
301 /* floppy type */
302 if (floppy) {
303 for (i = 0; i < 2; i++) {
304 fd_type[i] = isa_fdc_get_drive_type(floppy, i);
307 val = (cmos_get_fd_drive_type(fd_type[0]) << 4) |
308 cmos_get_fd_drive_type(fd_type[1]);
309 rtc_set_memory(rtc_state, 0x10, val);
311 val = rtc_get_memory(rtc_state, REG_EQUIPMENT_BYTE);
312 nb = 0;
313 if (fd_type[0] < FDRIVE_DRV_NONE) {
314 nb++;
316 if (fd_type[1] < FDRIVE_DRV_NONE) {
317 nb++;
319 switch (nb) {
320 case 0:
321 break;
322 case 1:
323 val |= 0x01; /* 1 drive, ready for boot */
324 break;
325 case 2:
326 val |= 0x41; /* 2 drives, ready for boot */
327 break;
329 rtc_set_memory(rtc_state, REG_EQUIPMENT_BYTE, val);
332 typedef struct pc_cmos_init_late_arg {
333 ISADevice *rtc_state;
334 BusState *idebus[2];
335 } pc_cmos_init_late_arg;
337 typedef struct check_fdc_state {
338 ISADevice *floppy;
339 bool multiple;
340 } CheckFdcState;
342 static int check_fdc(Object *obj, void *opaque)
344 CheckFdcState *state = opaque;
345 Object *fdc;
346 uint32_t iobase;
347 Error *local_err = NULL;
349 fdc = object_dynamic_cast(obj, TYPE_ISA_FDC);
350 if (!fdc) {
351 return 0;
354 iobase = object_property_get_int(obj, "iobase", &local_err);
355 if (local_err || iobase != 0x3f0) {
356 error_free(local_err);
357 return 0;
360 if (state->floppy) {
361 state->multiple = true;
362 } else {
363 state->floppy = ISA_DEVICE(obj);
365 return 0;
368 static const char * const fdc_container_path[] = {
369 "/unattached", "/peripheral", "/peripheral-anon"
372 static void pc_cmos_init_late(void *opaque)
374 pc_cmos_init_late_arg *arg = opaque;
375 ISADevice *s = arg->rtc_state;
376 int16_t cylinders;
377 int8_t heads, sectors;
378 int val;
379 int i, trans;
380 Object *container;
381 CheckFdcState state = { 0 };
383 val = 0;
384 if (ide_get_geometry(arg->idebus[0], 0,
385 &cylinders, &heads, &sectors) >= 0) {
386 cmos_init_hd(s, 0x19, 0x1b, cylinders, heads, sectors);
387 val |= 0xf0;
389 if (ide_get_geometry(arg->idebus[0], 1,
390 &cylinders, &heads, &sectors) >= 0) {
391 cmos_init_hd(s, 0x1a, 0x24, cylinders, heads, sectors);
392 val |= 0x0f;
394 rtc_set_memory(s, 0x12, val);
396 val = 0;
397 for (i = 0; i < 4; i++) {
398 /* NOTE: ide_get_geometry() returns the physical
399 geometry. It is always such that: 1 <= sects <= 63, 1
400 <= heads <= 16, 1 <= cylinders <= 16383. The BIOS
401 geometry can be different if a translation is done. */
402 if (ide_get_geometry(arg->idebus[i / 2], i % 2,
403 &cylinders, &heads, &sectors) >= 0) {
404 trans = ide_get_bios_chs_trans(arg->idebus[i / 2], i % 2) - 1;
405 assert((trans & ~3) == 0);
406 val |= trans << (i * 2);
409 rtc_set_memory(s, 0x39, val);
412 * Locate the FDC at IO address 0x3f0, and configure the CMOS registers
413 * accordingly.
415 for (i = 0; i < ARRAY_SIZE(fdc_container_path); i++) {
416 container = container_get(qdev_get_machine(), fdc_container_path[i]);
417 object_child_foreach(container, check_fdc, &state);
420 if (state.multiple) {
421 error_report("warning: multiple floppy disk controllers with "
422 "iobase=0x3f0 have been found;\n"
423 "the one being picked for CMOS setup might not reflect "
424 "your intent");
426 pc_cmos_init_floppy(s, state.floppy);
428 qemu_unregister_reset(pc_cmos_init_late, opaque);
431 void pc_cmos_init(PCMachineState *pcms,
432 BusState *idebus0, BusState *idebus1,
433 ISADevice *s)
435 int val;
436 static pc_cmos_init_late_arg arg;
437 Error *local_err = NULL;
439 /* various important CMOS locations needed by PC/Bochs bios */
441 /* memory size */
442 /* base memory (first MiB) */
443 val = MIN(pcms->below_4g_mem_size / 1024, 640);
444 rtc_set_memory(s, 0x15, val);
445 rtc_set_memory(s, 0x16, val >> 8);
446 /* extended memory (next 64MiB) */
447 if (pcms->below_4g_mem_size > 1024 * 1024) {
448 val = (pcms->below_4g_mem_size - 1024 * 1024) / 1024;
449 } else {
450 val = 0;
452 if (val > 65535)
453 val = 65535;
454 rtc_set_memory(s, 0x17, val);
455 rtc_set_memory(s, 0x18, val >> 8);
456 rtc_set_memory(s, 0x30, val);
457 rtc_set_memory(s, 0x31, val >> 8);
458 /* memory between 16MiB and 4GiB */
459 if (pcms->below_4g_mem_size > 16 * 1024 * 1024) {
460 val = (pcms->below_4g_mem_size - 16 * 1024 * 1024) / 65536;
461 } else {
462 val = 0;
464 if (val > 65535)
465 val = 65535;
466 rtc_set_memory(s, 0x34, val);
467 rtc_set_memory(s, 0x35, val >> 8);
468 /* memory above 4GiB */
469 val = pcms->above_4g_mem_size / 65536;
470 rtc_set_memory(s, 0x5b, val);
471 rtc_set_memory(s, 0x5c, val >> 8);
472 rtc_set_memory(s, 0x5d, val >> 16);
474 /* set the number of CPU */
475 rtc_set_memory(s, 0x5f, smp_cpus - 1);
477 object_property_add_link(OBJECT(pcms), "rtc_state",
478 TYPE_ISA_DEVICE,
479 (Object **)&pcms->rtc,
480 object_property_allow_set_link,
481 OBJ_PROP_LINK_UNREF_ON_RELEASE, &error_abort);
482 object_property_set_link(OBJECT(pcms), OBJECT(s),
483 "rtc_state", &error_abort);
485 set_boot_dev(s, MACHINE(pcms)->boot_order, &local_err);
486 if (local_err) {
487 error_report_err(local_err);
488 exit(1);
491 val = 0;
492 val |= 0x02; /* FPU is there */
493 val |= 0x04; /* PS/2 mouse installed */
494 rtc_set_memory(s, REG_EQUIPMENT_BYTE, val);
496 /* hard drives and FDC */
497 arg.rtc_state = s;
498 arg.idebus[0] = idebus0;
499 arg.idebus[1] = idebus1;
500 qemu_register_reset(pc_cmos_init_late, &arg);
503 #define TYPE_PORT92 "port92"
504 #define PORT92(obj) OBJECT_CHECK(Port92State, (obj), TYPE_PORT92)
506 /* port 92 stuff: could be split off */
507 typedef struct Port92State {
508 ISADevice parent_obj;
510 MemoryRegion io;
511 uint8_t outport;
512 qemu_irq *a20_out;
513 } Port92State;
515 static void port92_write(void *opaque, hwaddr addr, uint64_t val,
516 unsigned size)
518 Port92State *s = opaque;
519 int oldval = s->outport;
521 DPRINTF("port92: write 0x%02" PRIx64 "\n", val);
522 s->outport = val;
523 qemu_set_irq(*s->a20_out, (val >> 1) & 1);
524 if ((val & 1) && !(oldval & 1)) {
525 qemu_system_reset_request();
529 static uint64_t port92_read(void *opaque, hwaddr addr,
530 unsigned size)
532 Port92State *s = opaque;
533 uint32_t ret;
535 ret = s->outport;
536 DPRINTF("port92: read 0x%02x\n", ret);
537 return ret;
540 static void port92_init(ISADevice *dev, qemu_irq *a20_out)
542 Port92State *s = PORT92(dev);
544 s->a20_out = a20_out;
547 static const VMStateDescription vmstate_port92_isa = {
548 .name = "port92",
549 .version_id = 1,
550 .minimum_version_id = 1,
551 .fields = (VMStateField[]) {
552 VMSTATE_UINT8(outport, Port92State),
553 VMSTATE_END_OF_LIST()
557 static void port92_reset(DeviceState *d)
559 Port92State *s = PORT92(d);
561 s->outport &= ~1;
564 static const MemoryRegionOps port92_ops = {
565 .read = port92_read,
566 .write = port92_write,
567 .impl = {
568 .min_access_size = 1,
569 .max_access_size = 1,
571 .endianness = DEVICE_LITTLE_ENDIAN,
574 static void port92_initfn(Object *obj)
576 Port92State *s = PORT92(obj);
578 memory_region_init_io(&s->io, OBJECT(s), &port92_ops, s, "port92", 1);
580 s->outport = 0;
583 static void port92_realizefn(DeviceState *dev, Error **errp)
585 ISADevice *isadev = ISA_DEVICE(dev);
586 Port92State *s = PORT92(dev);
588 isa_register_ioport(isadev, &s->io, 0x92);
591 static void port92_class_initfn(ObjectClass *klass, void *data)
593 DeviceClass *dc = DEVICE_CLASS(klass);
595 dc->realize = port92_realizefn;
596 dc->reset = port92_reset;
597 dc->vmsd = &vmstate_port92_isa;
599 * Reason: unlike ordinary ISA devices, this one needs additional
600 * wiring: its A20 output line needs to be wired up by
601 * port92_init().
603 dc->cannot_instantiate_with_device_add_yet = true;
606 static const TypeInfo port92_info = {
607 .name = TYPE_PORT92,
608 .parent = TYPE_ISA_DEVICE,
609 .instance_size = sizeof(Port92State),
610 .instance_init = port92_initfn,
611 .class_init = port92_class_initfn,
614 static void port92_register_types(void)
616 type_register_static(&port92_info);
619 type_init(port92_register_types)
621 static void handle_a20_line_change(void *opaque, int irq, int level)
623 X86CPU *cpu = opaque;
625 /* XXX: send to all CPUs ? */
626 /* XXX: add logic to handle multiple A20 line sources */
627 x86_cpu_set_a20(cpu, level);
630 int e820_add_entry(uint64_t address, uint64_t length, uint32_t type)
632 int index = le32_to_cpu(e820_reserve.count);
633 struct e820_entry *entry;
635 if (type != E820_RAM) {
636 /* old FW_CFG_E820_TABLE entry -- reservations only */
637 if (index >= E820_NR_ENTRIES) {
638 return -EBUSY;
640 entry = &e820_reserve.entry[index++];
642 entry->address = cpu_to_le64(address);
643 entry->length = cpu_to_le64(length);
644 entry->type = cpu_to_le32(type);
646 e820_reserve.count = cpu_to_le32(index);
649 /* new "etc/e820" file -- include ram too */
650 e820_table = g_renew(struct e820_entry, e820_table, e820_entries + 1);
651 e820_table[e820_entries].address = cpu_to_le64(address);
652 e820_table[e820_entries].length = cpu_to_le64(length);
653 e820_table[e820_entries].type = cpu_to_le32(type);
654 e820_entries++;
656 return e820_entries;
659 int e820_get_num_entries(void)
661 return e820_entries;
664 bool e820_get_entry(int idx, uint32_t type, uint64_t *address, uint64_t *length)
666 if (idx < e820_entries && e820_table[idx].type == cpu_to_le32(type)) {
667 *address = le64_to_cpu(e820_table[idx].address);
668 *length = le64_to_cpu(e820_table[idx].length);
669 return true;
671 return false;
674 /* Enables contiguous-apic-ID mode, for compatibility */
675 static bool compat_apic_id_mode;
677 void enable_compat_apic_id_mode(void)
679 compat_apic_id_mode = true;
682 /* Calculates initial APIC ID for a specific CPU index
684 * Currently we need to be able to calculate the APIC ID from the CPU index
685 * alone (without requiring a CPU object), as the QEMU<->Seabios interfaces have
686 * no concept of "CPU index", and the NUMA tables on fw_cfg need the APIC ID of
687 * all CPUs up to max_cpus.
689 static uint32_t x86_cpu_apic_id_from_index(unsigned int cpu_index)
691 uint32_t correct_id;
692 static bool warned;
694 correct_id = x86_apicid_from_cpu_idx(smp_cores, smp_threads, cpu_index);
695 if (compat_apic_id_mode) {
696 if (cpu_index != correct_id && !warned && !qtest_enabled()) {
697 error_report("APIC IDs set in compatibility mode, "
698 "CPU topology won't match the configuration");
699 warned = true;
701 return cpu_index;
702 } else {
703 return correct_id;
707 /* Calculates the limit to CPU APIC ID values
709 * This function returns the limit for the APIC ID value, so that all
710 * CPU APIC IDs are < pc_apic_id_limit().
712 * This is used for FW_CFG_MAX_CPUS. See comments on bochs_bios_init().
714 static unsigned int pc_apic_id_limit(unsigned int max_cpus)
716 return x86_cpu_apic_id_from_index(max_cpus - 1) + 1;
719 static void pc_build_smbios(FWCfgState *fw_cfg)
721 uint8_t *smbios_tables, *smbios_anchor;
722 size_t smbios_tables_len, smbios_anchor_len;
723 struct smbios_phys_mem_area *mem_array;
724 unsigned i, array_count;
726 smbios_tables = smbios_get_table_legacy(&smbios_tables_len);
727 if (smbios_tables) {
728 fw_cfg_add_bytes(fw_cfg, FW_CFG_SMBIOS_ENTRIES,
729 smbios_tables, smbios_tables_len);
732 /* build the array of physical mem area from e820 table */
733 mem_array = g_malloc0(sizeof(*mem_array) * e820_get_num_entries());
734 for (i = 0, array_count = 0; i < e820_get_num_entries(); i++) {
735 uint64_t addr, len;
737 if (e820_get_entry(i, E820_RAM, &addr, &len)) {
738 mem_array[array_count].address = addr;
739 mem_array[array_count].length = len;
740 array_count++;
743 smbios_get_tables(mem_array, array_count,
744 &smbios_tables, &smbios_tables_len,
745 &smbios_anchor, &smbios_anchor_len);
746 g_free(mem_array);
748 if (smbios_anchor) {
749 fw_cfg_add_file(fw_cfg, "etc/smbios/smbios-tables",
750 smbios_tables, smbios_tables_len);
751 fw_cfg_add_file(fw_cfg, "etc/smbios/smbios-anchor",
752 smbios_anchor, smbios_anchor_len);
756 static FWCfgState *bochs_bios_init(void)
758 FWCfgState *fw_cfg;
759 uint64_t *numa_fw_cfg;
760 int i, j;
761 unsigned int apic_id_limit = pc_apic_id_limit(max_cpus);
763 fw_cfg = fw_cfg_init_io(BIOS_CFG_IOPORT);
764 /* FW_CFG_MAX_CPUS is a bit confusing/problematic on x86:
766 * SeaBIOS needs FW_CFG_MAX_CPUS for CPU hotplug, but the CPU hotplug
767 * QEMU<->SeaBIOS interface is not based on the "CPU index", but on the APIC
768 * ID of hotplugged CPUs[1]. This means that FW_CFG_MAX_CPUS is not the
769 * "maximum number of CPUs", but the "limit to the APIC ID values SeaBIOS
770 * may see".
772 * So, this means we must not use max_cpus, here, but the maximum possible
773 * APIC ID value, plus one.
775 * [1] The only kind of "CPU identifier" used between SeaBIOS and QEMU is
776 * the APIC ID, not the "CPU index"
778 fw_cfg_add_i16(fw_cfg, FW_CFG_MAX_CPUS, (uint16_t)apic_id_limit);
779 fw_cfg_add_i64(fw_cfg, FW_CFG_RAM_SIZE, (uint64_t)ram_size);
780 fw_cfg_add_bytes(fw_cfg, FW_CFG_ACPI_TABLES,
781 acpi_tables, acpi_tables_len);
782 fw_cfg_add_i32(fw_cfg, FW_CFG_IRQ0_OVERRIDE, kvm_allows_irq0_override());
784 pc_build_smbios(fw_cfg);
786 fw_cfg_add_bytes(fw_cfg, FW_CFG_E820_TABLE,
787 &e820_reserve, sizeof(e820_reserve));
788 fw_cfg_add_file(fw_cfg, "etc/e820", e820_table,
789 sizeof(struct e820_entry) * e820_entries);
791 fw_cfg_add_bytes(fw_cfg, FW_CFG_HPET, &hpet_cfg, sizeof(hpet_cfg));
792 /* allocate memory for the NUMA channel: one (64bit) word for the number
793 * of nodes, one word for each VCPU->node and one word for each node to
794 * hold the amount of memory.
796 numa_fw_cfg = g_new0(uint64_t, 1 + apic_id_limit + nb_numa_nodes);
797 numa_fw_cfg[0] = cpu_to_le64(nb_numa_nodes);
798 for (i = 0; i < max_cpus; i++) {
799 unsigned int apic_id = x86_cpu_apic_id_from_index(i);
800 assert(apic_id < apic_id_limit);
801 for (j = 0; j < nb_numa_nodes; j++) {
802 if (test_bit(i, numa_info[j].node_cpu)) {
803 numa_fw_cfg[apic_id + 1] = cpu_to_le64(j);
804 break;
808 for (i = 0; i < nb_numa_nodes; i++) {
809 numa_fw_cfg[apic_id_limit + 1 + i] = cpu_to_le64(numa_info[i].node_mem);
811 fw_cfg_add_bytes(fw_cfg, FW_CFG_NUMA, numa_fw_cfg,
812 (1 + apic_id_limit + nb_numa_nodes) *
813 sizeof(*numa_fw_cfg));
815 return fw_cfg;
818 static long get_file_size(FILE *f)
820 long where, size;
822 /* XXX: on Unix systems, using fstat() probably makes more sense */
824 where = ftell(f);
825 fseek(f, 0, SEEK_END);
826 size = ftell(f);
827 fseek(f, where, SEEK_SET);
829 return size;
832 static void load_linux(PCMachineState *pcms,
833 FWCfgState *fw_cfg)
835 uint16_t protocol;
836 int setup_size, kernel_size, initrd_size = 0, cmdline_size;
837 uint32_t initrd_max;
838 uint8_t header[8192], *setup, *kernel, *initrd_data;
839 hwaddr real_addr, prot_addr, cmdline_addr, initrd_addr = 0;
840 FILE *f;
841 char *vmode;
842 MachineState *machine = MACHINE(pcms);
843 const char *kernel_filename = machine->kernel_filename;
844 const char *initrd_filename = machine->initrd_filename;
845 const char *kernel_cmdline = machine->kernel_cmdline;
847 /* Align to 16 bytes as a paranoia measure */
848 cmdline_size = (strlen(kernel_cmdline)+16) & ~15;
850 /* load the kernel header */
851 f = fopen(kernel_filename, "rb");
852 if (!f || !(kernel_size = get_file_size(f)) ||
853 fread(header, 1, MIN(ARRAY_SIZE(header), kernel_size), f) !=
854 MIN(ARRAY_SIZE(header), kernel_size)) {
855 fprintf(stderr, "qemu: could not load kernel '%s': %s\n",
856 kernel_filename, strerror(errno));
857 exit(1);
860 /* kernel protocol version */
861 #if 0
862 fprintf(stderr, "header magic: %#x\n", ldl_p(header+0x202));
863 #endif
864 if (ldl_p(header+0x202) == 0x53726448) {
865 protocol = lduw_p(header+0x206);
866 } else {
867 /* This looks like a multiboot kernel. If it is, let's stop
868 treating it like a Linux kernel. */
869 if (load_multiboot(fw_cfg, f, kernel_filename, initrd_filename,
870 kernel_cmdline, kernel_size, header)) {
871 return;
873 protocol = 0;
876 if (protocol < 0x200 || !(header[0x211] & 0x01)) {
877 /* Low kernel */
878 real_addr = 0x90000;
879 cmdline_addr = 0x9a000 - cmdline_size;
880 prot_addr = 0x10000;
881 } else if (protocol < 0x202) {
882 /* High but ancient kernel */
883 real_addr = 0x90000;
884 cmdline_addr = 0x9a000 - cmdline_size;
885 prot_addr = 0x100000;
886 } else {
887 /* High and recent kernel */
888 real_addr = 0x10000;
889 cmdline_addr = 0x20000;
890 prot_addr = 0x100000;
893 #if 0
894 fprintf(stderr,
895 "qemu: real_addr = 0x" TARGET_FMT_plx "\n"
896 "qemu: cmdline_addr = 0x" TARGET_FMT_plx "\n"
897 "qemu: prot_addr = 0x" TARGET_FMT_plx "\n",
898 real_addr,
899 cmdline_addr,
900 prot_addr);
901 #endif
903 /* highest address for loading the initrd */
904 if (protocol >= 0x203) {
905 initrd_max = ldl_p(header+0x22c);
906 } else {
907 initrd_max = 0x37ffffff;
910 if (initrd_max >= pcms->below_4g_mem_size - acpi_data_size) {
911 initrd_max = pcms->below_4g_mem_size - acpi_data_size - 1;
914 fw_cfg_add_i32(fw_cfg, FW_CFG_CMDLINE_ADDR, cmdline_addr);
915 fw_cfg_add_i32(fw_cfg, FW_CFG_CMDLINE_SIZE, strlen(kernel_cmdline)+1);
916 fw_cfg_add_string(fw_cfg, FW_CFG_CMDLINE_DATA, kernel_cmdline);
918 if (protocol >= 0x202) {
919 stl_p(header+0x228, cmdline_addr);
920 } else {
921 stw_p(header+0x20, 0xA33F);
922 stw_p(header+0x22, cmdline_addr-real_addr);
925 /* handle vga= parameter */
926 vmode = strstr(kernel_cmdline, "vga=");
927 if (vmode) {
928 unsigned int video_mode;
929 /* skip "vga=" */
930 vmode += 4;
931 if (!strncmp(vmode, "normal", 6)) {
932 video_mode = 0xffff;
933 } else if (!strncmp(vmode, "ext", 3)) {
934 video_mode = 0xfffe;
935 } else if (!strncmp(vmode, "ask", 3)) {
936 video_mode = 0xfffd;
937 } else {
938 video_mode = strtol(vmode, NULL, 0);
940 stw_p(header+0x1fa, video_mode);
943 /* loader type */
944 /* High nybble = B reserved for QEMU; low nybble is revision number.
945 If this code is substantially changed, you may want to consider
946 incrementing the revision. */
947 if (protocol >= 0x200) {
948 header[0x210] = 0xB0;
950 /* heap */
951 if (protocol >= 0x201) {
952 header[0x211] |= 0x80; /* CAN_USE_HEAP */
953 stw_p(header+0x224, cmdline_addr-real_addr-0x200);
956 /* load initrd */
957 if (initrd_filename) {
958 if (protocol < 0x200) {
959 fprintf(stderr, "qemu: linux kernel too old to load a ram disk\n");
960 exit(1);
963 initrd_size = get_image_size(initrd_filename);
964 if (initrd_size < 0) {
965 fprintf(stderr, "qemu: error reading initrd %s: %s\n",
966 initrd_filename, strerror(errno));
967 exit(1);
970 initrd_addr = (initrd_max-initrd_size) & ~4095;
972 initrd_data = g_malloc(initrd_size);
973 load_image(initrd_filename, initrd_data);
975 fw_cfg_add_i32(fw_cfg, FW_CFG_INITRD_ADDR, initrd_addr);
976 fw_cfg_add_i32(fw_cfg, FW_CFG_INITRD_SIZE, initrd_size);
977 fw_cfg_add_bytes(fw_cfg, FW_CFG_INITRD_DATA, initrd_data, initrd_size);
979 stl_p(header+0x218, initrd_addr);
980 stl_p(header+0x21c, initrd_size);
983 /* load kernel and setup */
984 setup_size = header[0x1f1];
985 if (setup_size == 0) {
986 setup_size = 4;
988 setup_size = (setup_size+1)*512;
989 kernel_size -= setup_size;
991 setup = g_malloc(setup_size);
992 kernel = g_malloc(kernel_size);
993 fseek(f, 0, SEEK_SET);
994 if (fread(setup, 1, setup_size, f) != setup_size) {
995 fprintf(stderr, "fread() failed\n");
996 exit(1);
998 if (fread(kernel, 1, kernel_size, f) != kernel_size) {
999 fprintf(stderr, "fread() failed\n");
1000 exit(1);
1002 fclose(f);
1003 memcpy(setup, header, MIN(sizeof(header), setup_size));
1005 fw_cfg_add_i32(fw_cfg, FW_CFG_KERNEL_ADDR, prot_addr);
1006 fw_cfg_add_i32(fw_cfg, FW_CFG_KERNEL_SIZE, kernel_size);
1007 fw_cfg_add_bytes(fw_cfg, FW_CFG_KERNEL_DATA, kernel, kernel_size);
1009 fw_cfg_add_i32(fw_cfg, FW_CFG_SETUP_ADDR, real_addr);
1010 fw_cfg_add_i32(fw_cfg, FW_CFG_SETUP_SIZE, setup_size);
1011 fw_cfg_add_bytes(fw_cfg, FW_CFG_SETUP_DATA, setup, setup_size);
1013 option_rom[nb_option_roms].name = "linuxboot.bin";
1014 option_rom[nb_option_roms].bootindex = 0;
1015 nb_option_roms++;
1018 #define NE2000_NB_MAX 6
1020 static const int ne2000_io[NE2000_NB_MAX] = { 0x300, 0x320, 0x340, 0x360,
1021 0x280, 0x380 };
1022 static const int ne2000_irq[NE2000_NB_MAX] = { 9, 10, 11, 3, 4, 5 };
1024 void pc_init_ne2k_isa(ISABus *bus, NICInfo *nd)
1026 static int nb_ne2k = 0;
1028 if (nb_ne2k == NE2000_NB_MAX)
1029 return;
1030 isa_ne2000_init(bus, ne2000_io[nb_ne2k],
1031 ne2000_irq[nb_ne2k], nd);
1032 nb_ne2k++;
1035 DeviceState *cpu_get_current_apic(void)
1037 if (current_cpu) {
1038 X86CPU *cpu = X86_CPU(current_cpu);
1039 return cpu->apic_state;
1040 } else {
1041 return NULL;
1045 void pc_acpi_smi_interrupt(void *opaque, int irq, int level)
1047 X86CPU *cpu = opaque;
1049 if (level) {
1050 cpu_interrupt(CPU(cpu), CPU_INTERRUPT_SMI);
1054 static X86CPU *pc_new_cpu(const char *cpu_model, int64_t apic_id,
1055 DeviceState *icc_bridge, Error **errp)
1057 X86CPU *cpu = NULL;
1058 Error *local_err = NULL;
1060 if (icc_bridge == NULL) {
1061 error_setg(&local_err, "Invalid icc-bridge value");
1062 goto out;
1065 cpu = cpu_x86_create(cpu_model, &local_err);
1066 if (local_err != NULL) {
1067 goto out;
1070 qdev_set_parent_bus(DEVICE(cpu), qdev_get_child_bus(icc_bridge, "icc"));
1072 object_property_set_int(OBJECT(cpu), apic_id, "apic-id", &local_err);
1073 object_property_set_bool(OBJECT(cpu), true, "realized", &local_err);
1075 out:
1076 if (local_err) {
1077 error_propagate(errp, local_err);
1078 object_unref(OBJECT(cpu));
1079 cpu = NULL;
1081 return cpu;
1084 static const char *current_cpu_model;
1086 void pc_hot_add_cpu(const int64_t id, Error **errp)
1088 DeviceState *icc_bridge;
1089 X86CPU *cpu;
1090 int64_t apic_id = x86_cpu_apic_id_from_index(id);
1091 Error *local_err = NULL;
1093 if (id < 0) {
1094 error_setg(errp, "Invalid CPU id: %" PRIi64, id);
1095 return;
1098 if (cpu_exists(apic_id)) {
1099 error_setg(errp, "Unable to add CPU: %" PRIi64
1100 ", it already exists", id);
1101 return;
1104 if (id >= max_cpus) {
1105 error_setg(errp, "Unable to add CPU: %" PRIi64
1106 ", max allowed: %d", id, max_cpus - 1);
1107 return;
1110 if (apic_id >= ACPI_CPU_HOTPLUG_ID_LIMIT) {
1111 error_setg(errp, "Unable to add CPU: %" PRIi64
1112 ", resulting APIC ID (%" PRIi64 ") is too large",
1113 id, apic_id);
1114 return;
1117 icc_bridge = DEVICE(object_resolve_path_type("icc-bridge",
1118 TYPE_ICC_BRIDGE, NULL));
1119 cpu = pc_new_cpu(current_cpu_model, apic_id, icc_bridge, &local_err);
1120 if (local_err) {
1121 error_propagate(errp, local_err);
1122 return;
1124 object_unref(OBJECT(cpu));
1127 void pc_cpus_init(const char *cpu_model, DeviceState *icc_bridge)
1129 int i;
1130 X86CPU *cpu = NULL;
1131 Error *error = NULL;
1132 unsigned long apic_id_limit;
1134 /* init CPUs */
1135 if (cpu_model == NULL) {
1136 #ifdef TARGET_X86_64
1137 cpu_model = "qemu64";
1138 #else
1139 cpu_model = "qemu32";
1140 #endif
1142 current_cpu_model = cpu_model;
1144 apic_id_limit = pc_apic_id_limit(max_cpus);
1145 if (apic_id_limit > ACPI_CPU_HOTPLUG_ID_LIMIT) {
1146 error_report("max_cpus is too large. APIC ID of last CPU is %lu",
1147 apic_id_limit - 1);
1148 exit(1);
1151 for (i = 0; i < smp_cpus; i++) {
1152 cpu = pc_new_cpu(cpu_model, x86_cpu_apic_id_from_index(i),
1153 icc_bridge, &error);
1154 if (error) {
1155 error_report_err(error);
1156 exit(1);
1158 object_unref(OBJECT(cpu));
1161 /* map APIC MMIO area if CPU has APIC */
1162 if (cpu && cpu->apic_state) {
1163 /* XXX: what if the base changes? */
1164 sysbus_mmio_map_overlap(SYS_BUS_DEVICE(icc_bridge), 0,
1165 APIC_DEFAULT_ADDRESS, 0x1000);
1168 /* tell smbios about cpuid version and features */
1169 smbios_set_cpuid(cpu->env.cpuid_version, cpu->env.features[FEAT_1_EDX]);
1172 /* pci-info ROM file. Little endian format */
1173 typedef struct PcRomPciInfo {
1174 uint64_t w32_min;
1175 uint64_t w32_max;
1176 uint64_t w64_min;
1177 uint64_t w64_max;
1178 } PcRomPciInfo;
1180 typedef struct PcGuestInfoState {
1181 PcGuestInfo info;
1182 Notifier machine_done;
1183 } PcGuestInfoState;
1185 static
1186 void pc_guest_info_machine_done(Notifier *notifier, void *data)
1188 PcGuestInfoState *guest_info_state = container_of(notifier,
1189 PcGuestInfoState,
1190 machine_done);
1191 PCIBus *bus = find_i440fx();
1193 if (bus) {
1194 int extra_hosts = 0;
1196 QLIST_FOREACH(bus, &bus->child, sibling) {
1197 /* look for expander root buses */
1198 if (pci_bus_is_root(bus)) {
1199 extra_hosts++;
1202 if (extra_hosts && guest_info_state->info.fw_cfg) {
1203 uint64_t *val = g_malloc(sizeof(*val));
1204 *val = cpu_to_le64(extra_hosts);
1205 fw_cfg_add_file(guest_info_state->info.fw_cfg,
1206 "etc/extra-pci-roots", val, sizeof(*val));
1210 acpi_setup(&guest_info_state->info);
1213 PcGuestInfo *pc_guest_info_init(PCMachineState *pcms)
1215 PcGuestInfoState *guest_info_state = g_malloc0(sizeof *guest_info_state);
1216 PcGuestInfo *guest_info = &guest_info_state->info;
1217 int i, j;
1219 guest_info->ram_size_below_4g = pcms->below_4g_mem_size;
1220 guest_info->ram_size = pcms->below_4g_mem_size + pcms->above_4g_mem_size;
1221 guest_info->apic_id_limit = pc_apic_id_limit(max_cpus);
1222 guest_info->apic_xrupt_override = kvm_allows_irq0_override();
1223 guest_info->numa_nodes = nb_numa_nodes;
1224 guest_info->node_mem = g_malloc0(guest_info->numa_nodes *
1225 sizeof *guest_info->node_mem);
1226 for (i = 0; i < nb_numa_nodes; i++) {
1227 guest_info->node_mem[i] = numa_info[i].node_mem;
1230 guest_info->node_cpu = g_malloc0(guest_info->apic_id_limit *
1231 sizeof *guest_info->node_cpu);
1233 for (i = 0; i < max_cpus; i++) {
1234 unsigned int apic_id = x86_cpu_apic_id_from_index(i);
1235 assert(apic_id < guest_info->apic_id_limit);
1236 for (j = 0; j < nb_numa_nodes; j++) {
1237 if (test_bit(i, numa_info[j].node_cpu)) {
1238 guest_info->node_cpu[apic_id] = j;
1239 break;
1244 guest_info_state->machine_done.notify = pc_guest_info_machine_done;
1245 qemu_add_machine_init_done_notifier(&guest_info_state->machine_done);
1246 return guest_info;
1249 /* setup pci memory address space mapping into system address space */
1250 void pc_pci_as_mapping_init(Object *owner, MemoryRegion *system_memory,
1251 MemoryRegion *pci_address_space)
1253 /* Set to lower priority than RAM */
1254 memory_region_add_subregion_overlap(system_memory, 0x0,
1255 pci_address_space, -1);
1258 void pc_acpi_init(const char *default_dsdt)
1260 char *filename;
1262 if (acpi_tables != NULL) {
1263 /* manually set via -acpitable, leave it alone */
1264 return;
1267 filename = qemu_find_file(QEMU_FILE_TYPE_BIOS, default_dsdt);
1268 if (filename == NULL) {
1269 fprintf(stderr, "WARNING: failed to find %s\n", default_dsdt);
1270 } else {
1271 QemuOpts *opts = qemu_opts_create(qemu_find_opts("acpi"), NULL, 0,
1272 &error_abort);
1273 Error *err = NULL;
1275 qemu_opt_set(opts, "file", filename, &error_abort);
1277 acpi_table_add_builtin(opts, &err);
1278 if (err) {
1279 error_report("WARNING: failed to load %s: %s", filename,
1280 error_get_pretty(err));
1281 error_free(err);
1283 g_free(filename);
1287 FWCfgState *xen_load_linux(PCMachineState *pcms,
1288 PcGuestInfo *guest_info)
1290 int i;
1291 FWCfgState *fw_cfg;
1293 assert(MACHINE(pcms)->kernel_filename != NULL);
1295 fw_cfg = fw_cfg_init_io(BIOS_CFG_IOPORT);
1296 rom_set_fw(fw_cfg);
1298 load_linux(pcms, fw_cfg);
1299 for (i = 0; i < nb_option_roms; i++) {
1300 assert(!strcmp(option_rom[i].name, "linuxboot.bin") ||
1301 !strcmp(option_rom[i].name, "multiboot.bin"));
1302 rom_add_option(option_rom[i].name, option_rom[i].bootindex);
1304 guest_info->fw_cfg = fw_cfg;
1305 return fw_cfg;
1308 FWCfgState *pc_memory_init(PCMachineState *pcms,
1309 MemoryRegion *system_memory,
1310 MemoryRegion *rom_memory,
1311 MemoryRegion **ram_memory,
1312 PcGuestInfo *guest_info)
1314 int linux_boot, i;
1315 MemoryRegion *ram, *option_rom_mr;
1316 MemoryRegion *ram_below_4g, *ram_above_4g;
1317 FWCfgState *fw_cfg;
1318 MachineState *machine = MACHINE(pcms);
1320 assert(machine->ram_size == pcms->below_4g_mem_size +
1321 pcms->above_4g_mem_size);
1323 linux_boot = (machine->kernel_filename != NULL);
1325 /* Allocate RAM. We allocate it as a single memory region and use
1326 * aliases to address portions of it, mostly for backwards compatibility
1327 * with older qemus that used qemu_ram_alloc().
1329 ram = g_malloc(sizeof(*ram));
1330 memory_region_allocate_system_memory(ram, NULL, "pc.ram",
1331 machine->ram_size);
1332 *ram_memory = ram;
1333 ram_below_4g = g_malloc(sizeof(*ram_below_4g));
1334 memory_region_init_alias(ram_below_4g, NULL, "ram-below-4g", ram,
1335 0, pcms->below_4g_mem_size);
1336 memory_region_add_subregion(system_memory, 0, ram_below_4g);
1337 e820_add_entry(0, pcms->below_4g_mem_size, E820_RAM);
1338 if (pcms->above_4g_mem_size > 0) {
1339 ram_above_4g = g_malloc(sizeof(*ram_above_4g));
1340 memory_region_init_alias(ram_above_4g, NULL, "ram-above-4g", ram,
1341 pcms->below_4g_mem_size,
1342 pcms->above_4g_mem_size);
1343 memory_region_add_subregion(system_memory, 0x100000000ULL,
1344 ram_above_4g);
1345 e820_add_entry(0x100000000ULL, pcms->above_4g_mem_size, E820_RAM);
1348 if (!guest_info->has_reserved_memory &&
1349 (machine->ram_slots ||
1350 (machine->maxram_size > machine->ram_size))) {
1351 MachineClass *mc = MACHINE_GET_CLASS(machine);
1353 error_report("\"-memory 'slots|maxmem'\" is not supported by: %s",
1354 mc->name);
1355 exit(EXIT_FAILURE);
1358 /* initialize hotplug memory address space */
1359 if (guest_info->has_reserved_memory &&
1360 (machine->ram_size < machine->maxram_size)) {
1361 ram_addr_t hotplug_mem_size =
1362 machine->maxram_size - machine->ram_size;
1364 if (machine->ram_slots > ACPI_MAX_RAM_SLOTS) {
1365 error_report("unsupported amount of memory slots: %"PRIu64,
1366 machine->ram_slots);
1367 exit(EXIT_FAILURE);
1370 if (QEMU_ALIGN_UP(machine->maxram_size,
1371 TARGET_PAGE_SIZE) != machine->maxram_size) {
1372 error_report("maximum memory size must by aligned to multiple of "
1373 "%d bytes", TARGET_PAGE_SIZE);
1374 exit(EXIT_FAILURE);
1377 pcms->hotplug_memory.base =
1378 ROUND_UP(0x100000000ULL + pcms->above_4g_mem_size, 1ULL << 30);
1380 if (pcms->enforce_aligned_dimm) {
1381 /* size hotplug region assuming 1G page max alignment per slot */
1382 hotplug_mem_size += (1ULL << 30) * machine->ram_slots;
1385 if ((pcms->hotplug_memory.base + hotplug_mem_size) <
1386 hotplug_mem_size) {
1387 error_report("unsupported amount of maximum memory: " RAM_ADDR_FMT,
1388 machine->maxram_size);
1389 exit(EXIT_FAILURE);
1392 memory_region_init(&pcms->hotplug_memory.mr, OBJECT(pcms),
1393 "hotplug-memory", hotplug_mem_size);
1394 memory_region_add_subregion(system_memory, pcms->hotplug_memory.base,
1395 &pcms->hotplug_memory.mr);
1398 /* Initialize PC system firmware */
1399 pc_system_firmware_init(rom_memory, guest_info->isapc_ram_fw);
1401 option_rom_mr = g_malloc(sizeof(*option_rom_mr));
1402 memory_region_init_ram(option_rom_mr, NULL, "pc.rom", PC_ROM_SIZE,
1403 &error_fatal);
1404 vmstate_register_ram_global(option_rom_mr);
1405 memory_region_add_subregion_overlap(rom_memory,
1406 PC_ROM_MIN_VGA,
1407 option_rom_mr,
1410 fw_cfg = bochs_bios_init();
1411 rom_set_fw(fw_cfg);
1413 if (guest_info->has_reserved_memory && pcms->hotplug_memory.base) {
1414 uint64_t *val = g_malloc(sizeof(*val));
1415 PCMachineClass *pcmc = PC_MACHINE_GET_CLASS(pcms);
1416 uint64_t res_mem_end = pcms->hotplug_memory.base;
1418 if (!pcmc->broken_reserved_end) {
1419 res_mem_end += memory_region_size(&pcms->hotplug_memory.mr);
1421 *val = cpu_to_le64(ROUND_UP(res_mem_end, 0x1ULL << 30));
1422 fw_cfg_add_file(fw_cfg, "etc/reserved-memory-end", val, sizeof(*val));
1425 if (linux_boot) {
1426 load_linux(pcms, fw_cfg);
1429 for (i = 0; i < nb_option_roms; i++) {
1430 rom_add_option(option_rom[i].name, option_rom[i].bootindex);
1432 guest_info->fw_cfg = fw_cfg;
1433 return fw_cfg;
1436 qemu_irq pc_allocate_cpu_irq(void)
1438 return qemu_allocate_irq(pic_irq_request, NULL, 0);
1441 DeviceState *pc_vga_init(ISABus *isa_bus, PCIBus *pci_bus)
1443 DeviceState *dev = NULL;
1445 if (pci_bus) {
1446 PCIDevice *pcidev = pci_vga_init(pci_bus);
1447 dev = pcidev ? &pcidev->qdev : NULL;
1448 } else if (isa_bus) {
1449 ISADevice *isadev = isa_vga_init(isa_bus);
1450 dev = isadev ? DEVICE(isadev) : NULL;
1452 return dev;
1455 static const MemoryRegionOps ioport80_io_ops = {
1456 .write = ioport80_write,
1457 .read = ioport80_read,
1458 .endianness = DEVICE_NATIVE_ENDIAN,
1459 .impl = {
1460 .min_access_size = 1,
1461 .max_access_size = 1,
1465 static const MemoryRegionOps ioportF0_io_ops = {
1466 .write = ioportF0_write,
1467 .read = ioportF0_read,
1468 .endianness = DEVICE_NATIVE_ENDIAN,
1469 .impl = {
1470 .min_access_size = 1,
1471 .max_access_size = 1,
1475 void pc_basic_device_init(ISABus *isa_bus, qemu_irq *gsi,
1476 ISADevice **rtc_state,
1477 bool create_fdctrl,
1478 bool no_vmport,
1479 uint32 hpet_irqs)
1481 int i;
1482 DriveInfo *fd[MAX_FD];
1483 DeviceState *hpet = NULL;
1484 int pit_isa_irq = 0;
1485 qemu_irq pit_alt_irq = NULL;
1486 qemu_irq rtc_irq = NULL;
1487 qemu_irq *a20_line;
1488 ISADevice *i8042, *port92, *vmmouse, *pit = NULL;
1489 MemoryRegion *ioport80_io = g_new(MemoryRegion, 1);
1490 MemoryRegion *ioportF0_io = g_new(MemoryRegion, 1);
1492 memory_region_init_io(ioport80_io, NULL, &ioport80_io_ops, NULL, "ioport80", 1);
1493 memory_region_add_subregion(isa_bus->address_space_io, 0x80, ioport80_io);
1495 memory_region_init_io(ioportF0_io, NULL, &ioportF0_io_ops, NULL, "ioportF0", 1);
1496 memory_region_add_subregion(isa_bus->address_space_io, 0xf0, ioportF0_io);
1499 * Check if an HPET shall be created.
1501 * Without KVM_CAP_PIT_STATE2, we cannot switch off the in-kernel PIT
1502 * when the HPET wants to take over. Thus we have to disable the latter.
1504 if (!no_hpet && (!kvm_irqchip_in_kernel() || kvm_has_pit_state2())) {
1505 /* In order to set property, here not using sysbus_try_create_simple */
1506 hpet = qdev_try_create(NULL, TYPE_HPET);
1507 if (hpet) {
1508 /* For pc-piix-*, hpet's intcap is always IRQ2. For pc-q35-1.7
1509 * and earlier, use IRQ2 for compat. Otherwise, use IRQ16~23,
1510 * IRQ8 and IRQ2.
1512 uint8_t compat = object_property_get_int(OBJECT(hpet),
1513 HPET_INTCAP, NULL);
1514 if (!compat) {
1515 qdev_prop_set_uint32(hpet, HPET_INTCAP, hpet_irqs);
1517 qdev_init_nofail(hpet);
1518 sysbus_mmio_map(SYS_BUS_DEVICE(hpet), 0, HPET_BASE);
1520 for (i = 0; i < GSI_NUM_PINS; i++) {
1521 sysbus_connect_irq(SYS_BUS_DEVICE(hpet), i, gsi[i]);
1523 pit_isa_irq = -1;
1524 pit_alt_irq = qdev_get_gpio_in(hpet, HPET_LEGACY_PIT_INT);
1525 rtc_irq = qdev_get_gpio_in(hpet, HPET_LEGACY_RTC_INT);
1528 *rtc_state = rtc_init(isa_bus, 2000, rtc_irq);
1530 qemu_register_boot_set(pc_boot_set, *rtc_state);
1532 if (!xen_enabled()) {
1533 if (kvm_irqchip_in_kernel()) {
1534 pit = kvm_pit_init(isa_bus, 0x40);
1535 } else {
1536 pit = pit_init(isa_bus, 0x40, pit_isa_irq, pit_alt_irq);
1538 if (hpet) {
1539 /* connect PIT to output control line of the HPET */
1540 qdev_connect_gpio_out(hpet, 0, qdev_get_gpio_in(DEVICE(pit), 0));
1542 pcspk_init(isa_bus, pit);
1545 serial_hds_isa_init(isa_bus, MAX_SERIAL_PORTS);
1546 parallel_hds_isa_init(isa_bus, MAX_PARALLEL_PORTS);
1548 a20_line = qemu_allocate_irqs(handle_a20_line_change, first_cpu, 2);
1549 i8042 = isa_create_simple(isa_bus, "i8042");
1550 i8042_setup_a20_line(i8042, &a20_line[0]);
1551 if (!no_vmport) {
1552 vmport_init(isa_bus);
1553 vmmouse = isa_try_create(isa_bus, "vmmouse");
1554 } else {
1555 vmmouse = NULL;
1557 if (vmmouse) {
1558 DeviceState *dev = DEVICE(vmmouse);
1559 qdev_prop_set_ptr(dev, "ps2_mouse", i8042);
1560 qdev_init_nofail(dev);
1562 port92 = isa_create_simple(isa_bus, "port92");
1563 port92_init(port92, &a20_line[1]);
1565 DMA_init(0);
1567 for(i = 0; i < MAX_FD; i++) {
1568 fd[i] = drive_get(IF_FLOPPY, 0, i);
1569 create_fdctrl |= !!fd[i];
1571 if (create_fdctrl) {
1572 fdctrl_init_isa(isa_bus, fd);
1576 void pc_nic_init(ISABus *isa_bus, PCIBus *pci_bus)
1578 int i;
1580 for (i = 0; i < nb_nics; i++) {
1581 NICInfo *nd = &nd_table[i];
1583 if (!pci_bus || (nd->model && strcmp(nd->model, "ne2k_isa") == 0)) {
1584 pc_init_ne2k_isa(isa_bus, nd);
1585 } else {
1586 pci_nic_init_nofail(nd, pci_bus, "e1000", NULL);
1591 void pc_pci_device_init(PCIBus *pci_bus)
1593 int max_bus;
1594 int bus;
1596 max_bus = drive_get_max_bus(IF_SCSI);
1597 for (bus = 0; bus <= max_bus; bus++) {
1598 pci_create_simple(pci_bus, -1, "lsi53c895a");
1602 void ioapic_init_gsi(GSIState *gsi_state, const char *parent_name)
1604 DeviceState *dev;
1605 SysBusDevice *d;
1606 unsigned int i;
1608 if (kvm_irqchip_in_kernel()) {
1609 dev = qdev_create(NULL, "kvm-ioapic");
1610 } else {
1611 dev = qdev_create(NULL, "ioapic");
1613 if (parent_name) {
1614 object_property_add_child(object_resolve_path(parent_name, NULL),
1615 "ioapic", OBJECT(dev), NULL);
1617 qdev_init_nofail(dev);
1618 d = SYS_BUS_DEVICE(dev);
1619 sysbus_mmio_map(d, 0, IO_APIC_DEFAULT_ADDRESS);
1621 for (i = 0; i < IOAPIC_NUM_PINS; i++) {
1622 gsi_state->ioapic_irq[i] = qdev_get_gpio_in(dev, i);
1626 static void pc_dimm_plug(HotplugHandler *hotplug_dev,
1627 DeviceState *dev, Error **errp)
1629 HotplugHandlerClass *hhc;
1630 Error *local_err = NULL;
1631 PCMachineState *pcms = PC_MACHINE(hotplug_dev);
1632 PCMachineClass *pcmc = PC_MACHINE_GET_CLASS(pcms);
1633 PCDIMMDevice *dimm = PC_DIMM(dev);
1634 PCDIMMDeviceClass *ddc = PC_DIMM_GET_CLASS(dimm);
1635 MemoryRegion *mr = ddc->get_memory_region(dimm);
1636 uint64_t align = TARGET_PAGE_SIZE;
1638 if (memory_region_get_alignment(mr) && pcms->enforce_aligned_dimm) {
1639 align = memory_region_get_alignment(mr);
1642 if (!pcms->acpi_dev) {
1643 error_setg(&local_err,
1644 "memory hotplug is not enabled: missing acpi device");
1645 goto out;
1648 pc_dimm_memory_plug(dev, &pcms->hotplug_memory, mr, align,
1649 pcmc->inter_dimm_gap, &local_err);
1650 if (local_err) {
1651 goto out;
1654 hhc = HOTPLUG_HANDLER_GET_CLASS(pcms->acpi_dev);
1655 hhc->plug(HOTPLUG_HANDLER(pcms->acpi_dev), dev, &error_abort);
1656 out:
1657 error_propagate(errp, local_err);
1660 static void pc_dimm_unplug_request(HotplugHandler *hotplug_dev,
1661 DeviceState *dev, Error **errp)
1663 HotplugHandlerClass *hhc;
1664 Error *local_err = NULL;
1665 PCMachineState *pcms = PC_MACHINE(hotplug_dev);
1667 if (!pcms->acpi_dev) {
1668 error_setg(&local_err,
1669 "memory hotplug is not enabled: missing acpi device");
1670 goto out;
1673 hhc = HOTPLUG_HANDLER_GET_CLASS(pcms->acpi_dev);
1674 hhc->unplug_request(HOTPLUG_HANDLER(pcms->acpi_dev), dev, &local_err);
1676 out:
1677 error_propagate(errp, local_err);
1680 static void pc_dimm_unplug(HotplugHandler *hotplug_dev,
1681 DeviceState *dev, Error **errp)
1683 PCMachineState *pcms = PC_MACHINE(hotplug_dev);
1684 PCDIMMDevice *dimm = PC_DIMM(dev);
1685 PCDIMMDeviceClass *ddc = PC_DIMM_GET_CLASS(dimm);
1686 MemoryRegion *mr = ddc->get_memory_region(dimm);
1687 HotplugHandlerClass *hhc;
1688 Error *local_err = NULL;
1690 hhc = HOTPLUG_HANDLER_GET_CLASS(pcms->acpi_dev);
1691 hhc->unplug(HOTPLUG_HANDLER(pcms->acpi_dev), dev, &local_err);
1693 if (local_err) {
1694 goto out;
1697 pc_dimm_memory_unplug(dev, &pcms->hotplug_memory, mr);
1698 object_unparent(OBJECT(dev));
1700 out:
1701 error_propagate(errp, local_err);
1704 static void pc_cpu_plug(HotplugHandler *hotplug_dev,
1705 DeviceState *dev, Error **errp)
1707 HotplugHandlerClass *hhc;
1708 Error *local_err = NULL;
1709 PCMachineState *pcms = PC_MACHINE(hotplug_dev);
1711 if (!dev->hotplugged) {
1712 goto out;
1715 if (!pcms->acpi_dev) {
1716 error_setg(&local_err,
1717 "cpu hotplug is not enabled: missing acpi device");
1718 goto out;
1721 hhc = HOTPLUG_HANDLER_GET_CLASS(pcms->acpi_dev);
1722 hhc->plug(HOTPLUG_HANDLER(pcms->acpi_dev), dev, &local_err);
1723 if (local_err) {
1724 goto out;
1727 /* increment the number of CPUs */
1728 rtc_set_memory(pcms->rtc, 0x5f, rtc_get_memory(pcms->rtc, 0x5f) + 1);
1729 out:
1730 error_propagate(errp, local_err);
1733 static void pc_machine_device_plug_cb(HotplugHandler *hotplug_dev,
1734 DeviceState *dev, Error **errp)
1736 if (object_dynamic_cast(OBJECT(dev), TYPE_PC_DIMM)) {
1737 pc_dimm_plug(hotplug_dev, dev, errp);
1738 } else if (object_dynamic_cast(OBJECT(dev), TYPE_CPU)) {
1739 pc_cpu_plug(hotplug_dev, dev, errp);
1743 static void pc_machine_device_unplug_request_cb(HotplugHandler *hotplug_dev,
1744 DeviceState *dev, Error **errp)
1746 if (object_dynamic_cast(OBJECT(dev), TYPE_PC_DIMM)) {
1747 pc_dimm_unplug_request(hotplug_dev, dev, errp);
1748 } else {
1749 error_setg(errp, "acpi: device unplug request for not supported device"
1750 " type: %s", object_get_typename(OBJECT(dev)));
1754 static void pc_machine_device_unplug_cb(HotplugHandler *hotplug_dev,
1755 DeviceState *dev, Error **errp)
1757 if (object_dynamic_cast(OBJECT(dev), TYPE_PC_DIMM)) {
1758 pc_dimm_unplug(hotplug_dev, dev, errp);
1759 } else {
1760 error_setg(errp, "acpi: device unplug for not supported device"
1761 " type: %s", object_get_typename(OBJECT(dev)));
1765 static HotplugHandler *pc_get_hotpug_handler(MachineState *machine,
1766 DeviceState *dev)
1768 PCMachineClass *pcmc = PC_MACHINE_GET_CLASS(machine);
1770 if (object_dynamic_cast(OBJECT(dev), TYPE_PC_DIMM) ||
1771 object_dynamic_cast(OBJECT(dev), TYPE_CPU)) {
1772 return HOTPLUG_HANDLER(machine);
1775 return pcmc->get_hotplug_handler ?
1776 pcmc->get_hotplug_handler(machine, dev) : NULL;
1779 static void
1780 pc_machine_get_hotplug_memory_region_size(Object *obj, Visitor *v, void *opaque,
1781 const char *name, Error **errp)
1783 PCMachineState *pcms = PC_MACHINE(obj);
1784 int64_t value = memory_region_size(&pcms->hotplug_memory.mr);
1786 visit_type_int(v, &value, name, errp);
1789 static void pc_machine_get_max_ram_below_4g(Object *obj, Visitor *v,
1790 void *opaque, const char *name,
1791 Error **errp)
1793 PCMachineState *pcms = PC_MACHINE(obj);
1794 uint64_t value = pcms->max_ram_below_4g;
1796 visit_type_size(v, &value, name, errp);
1799 static void pc_machine_set_max_ram_below_4g(Object *obj, Visitor *v,
1800 void *opaque, const char *name,
1801 Error **errp)
1803 PCMachineState *pcms = PC_MACHINE(obj);
1804 Error *error = NULL;
1805 uint64_t value;
1807 visit_type_size(v, &value, name, &error);
1808 if (error) {
1809 error_propagate(errp, error);
1810 return;
1812 if (value > (1ULL << 32)) {
1813 error_set(&error, ERROR_CLASS_GENERIC_ERROR,
1814 "Machine option 'max-ram-below-4g=%"PRIu64
1815 "' expects size less than or equal to 4G", value);
1816 error_propagate(errp, error);
1817 return;
1820 if (value < (1ULL << 20)) {
1821 error_report("Warning: small max_ram_below_4g(%"PRIu64
1822 ") less than 1M. BIOS may not work..",
1823 value);
1826 pcms->max_ram_below_4g = value;
1829 static void pc_machine_get_vmport(Object *obj, Visitor *v, void *opaque,
1830 const char *name, Error **errp)
1832 PCMachineState *pcms = PC_MACHINE(obj);
1833 OnOffAuto vmport = pcms->vmport;
1835 visit_type_OnOffAuto(v, &vmport, name, errp);
1838 static void pc_machine_set_vmport(Object *obj, Visitor *v, void *opaque,
1839 const char *name, Error **errp)
1841 PCMachineState *pcms = PC_MACHINE(obj);
1843 visit_type_OnOffAuto(v, &pcms->vmport, name, errp);
1846 bool pc_machine_is_smm_enabled(PCMachineState *pcms)
1848 bool smm_available = false;
1850 if (pcms->smm == ON_OFF_AUTO_OFF) {
1851 return false;
1854 if (tcg_enabled() || qtest_enabled()) {
1855 smm_available = true;
1856 } else if (kvm_enabled()) {
1857 smm_available = kvm_has_smm();
1860 if (smm_available) {
1861 return true;
1864 if (pcms->smm == ON_OFF_AUTO_ON) {
1865 error_report("System Management Mode not supported by this hypervisor.");
1866 exit(1);
1868 return false;
1871 static void pc_machine_get_smm(Object *obj, Visitor *v, void *opaque,
1872 const char *name, Error **errp)
1874 PCMachineState *pcms = PC_MACHINE(obj);
1875 OnOffAuto smm = pcms->smm;
1877 visit_type_OnOffAuto(v, &smm, name, errp);
1880 static void pc_machine_set_smm(Object *obj, Visitor *v, void *opaque,
1881 const char *name, Error **errp)
1883 PCMachineState *pcms = PC_MACHINE(obj);
1885 visit_type_OnOffAuto(v, &pcms->smm, name, errp);
1888 static bool pc_machine_get_aligned_dimm(Object *obj, Error **errp)
1890 PCMachineState *pcms = PC_MACHINE(obj);
1892 return pcms->enforce_aligned_dimm;
1895 static void pc_machine_initfn(Object *obj)
1897 PCMachineState *pcms = PC_MACHINE(obj);
1899 object_property_add(obj, PC_MACHINE_MEMHP_REGION_SIZE, "int",
1900 pc_machine_get_hotplug_memory_region_size,
1901 NULL, NULL, NULL, &error_abort);
1903 pcms->max_ram_below_4g = 1ULL << 32; /* 4G */
1904 object_property_add(obj, PC_MACHINE_MAX_RAM_BELOW_4G, "size",
1905 pc_machine_get_max_ram_below_4g,
1906 pc_machine_set_max_ram_below_4g,
1907 NULL, NULL, &error_abort);
1908 object_property_set_description(obj, PC_MACHINE_MAX_RAM_BELOW_4G,
1909 "Maximum ram below the 4G boundary (32bit boundary)",
1910 &error_abort);
1912 pcms->smm = ON_OFF_AUTO_AUTO;
1913 object_property_add(obj, PC_MACHINE_SMM, "OnOffAuto",
1914 pc_machine_get_smm,
1915 pc_machine_set_smm,
1916 NULL, NULL, &error_abort);
1917 object_property_set_description(obj, PC_MACHINE_SMM,
1918 "Enable SMM (pc & q35)",
1919 &error_abort);
1921 pcms->vmport = ON_OFF_AUTO_AUTO;
1922 object_property_add(obj, PC_MACHINE_VMPORT, "OnOffAuto",
1923 pc_machine_get_vmport,
1924 pc_machine_set_vmport,
1925 NULL, NULL, &error_abort);
1926 object_property_set_description(obj, PC_MACHINE_VMPORT,
1927 "Enable vmport (pc & q35)",
1928 &error_abort);
1930 pcms->enforce_aligned_dimm = true;
1931 object_property_add_bool(obj, PC_MACHINE_ENFORCE_ALIGNED_DIMM,
1932 pc_machine_get_aligned_dimm,
1933 NULL, &error_abort);
1936 static unsigned pc_cpu_index_to_socket_id(unsigned cpu_index)
1938 X86CPUTopoInfo topo;
1939 x86_topo_ids_from_idx(smp_cores, smp_threads, cpu_index,
1940 &topo);
1941 return topo.pkg_id;
1944 static void pc_machine_class_init(ObjectClass *oc, void *data)
1946 MachineClass *mc = MACHINE_CLASS(oc);
1947 PCMachineClass *pcmc = PC_MACHINE_CLASS(oc);
1948 HotplugHandlerClass *hc = HOTPLUG_HANDLER_CLASS(oc);
1950 pcmc->inter_dimm_gap = true;
1951 pcmc->get_hotplug_handler = mc->get_hotplug_handler;
1952 mc->get_hotplug_handler = pc_get_hotpug_handler;
1953 mc->cpu_index_to_socket_id = pc_cpu_index_to_socket_id;
1954 mc->default_boot_order = "cad";
1955 mc->hot_add_cpu = pc_hot_add_cpu;
1956 mc->max_cpus = 255;
1957 hc->plug = pc_machine_device_plug_cb;
1958 hc->unplug_request = pc_machine_device_unplug_request_cb;
1959 hc->unplug = pc_machine_device_unplug_cb;
1962 static const TypeInfo pc_machine_info = {
1963 .name = TYPE_PC_MACHINE,
1964 .parent = TYPE_MACHINE,
1965 .abstract = true,
1966 .instance_size = sizeof(PCMachineState),
1967 .instance_init = pc_machine_initfn,
1968 .class_size = sizeof(PCMachineClass),
1969 .class_init = pc_machine_class_init,
1970 .interfaces = (InterfaceInfo[]) {
1971 { TYPE_HOTPLUG_HANDLER },
1976 static void pc_machine_register_types(void)
1978 type_register_static(&pc_machine_info);
1981 type_init(pc_machine_register_types)