configure: Fix compiler warning in config.log (macro redefined)
[qemu/ar7.git] / exec.c
blob06889bdf18b29356785730829db1918f52002368
1 /*
2 * virtual page mapping and translated block handling
4 * Copyright (c) 2003 Fabrice Bellard
6 * This library is free software; you can redistribute it and/or
7 * modify it under the terms of the GNU Lesser General Public
8 * License as published by the Free Software Foundation; either
9 * version 2 of the License, or (at your option) any later version.
11 * This library is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
14 * Lesser General Public License for more details.
16 * You should have received a copy of the GNU Lesser General Public
17 * License along with this library; if not, see <http://www.gnu.org/licenses/>.
19 #include "config.h"
20 #ifdef _WIN32
21 #include <windows.h>
22 #else
23 #include <sys/types.h>
24 #include <sys/mman.h>
25 #endif
27 #include "qemu-common.h"
28 #include "cpu.h"
29 #include "tcg.h"
30 #include "hw/hw.h"
31 #include "hw/qdev.h"
32 #include "osdep.h"
33 #include "kvm.h"
34 #include "hw/xen.h"
35 #include "qemu-timer.h"
36 #include "memory.h"
37 #include "exec-memory.h"
38 #if defined(CONFIG_USER_ONLY)
39 #include <qemu.h>
40 #if defined(__FreeBSD__) || defined(__FreeBSD_kernel__)
41 #include <sys/param.h>
42 #if __FreeBSD_version >= 700104
43 #define HAVE_KINFO_GETVMMAP
44 #define sigqueue sigqueue_freebsd /* avoid redefinition */
45 #include <sys/time.h>
46 #include <sys/proc.h>
47 #include <machine/profile.h>
48 #define _KERNEL
49 #include <sys/user.h>
50 #undef _KERNEL
51 #undef sigqueue
52 #include <libutil.h>
53 #endif
54 #endif
55 #else /* !CONFIG_USER_ONLY */
56 #include "xen-mapcache.h"
57 #include "trace.h"
58 #endif
60 //#define DEBUG_TB_INVALIDATE
61 //#define DEBUG_FLUSH
62 //#define DEBUG_TLB
63 //#define DEBUG_UNASSIGNED
65 /* make various TB consistency checks */
66 //#define DEBUG_TB_CHECK
67 //#define DEBUG_TLB_CHECK
69 //#define DEBUG_IOPORT
70 //#define DEBUG_SUBPAGE
72 #if !defined(CONFIG_USER_ONLY)
73 /* TB consistency checks only implemented for usermode emulation. */
74 #undef DEBUG_TB_CHECK
75 #endif
77 #define SMC_BITMAP_USE_THRESHOLD 10
79 static TranslationBlock *tbs;
80 static int code_gen_max_blocks;
81 TranslationBlock *tb_phys_hash[CODE_GEN_PHYS_HASH_SIZE];
82 static int nb_tbs;
83 /* any access to the tbs or the page table must use this lock */
84 spinlock_t tb_lock = SPIN_LOCK_UNLOCKED;
86 #if defined(__arm__) || defined(__sparc_v9__)
87 /* The prologue must be reachable with a direct jump. ARM and Sparc64
88 have limited branch ranges (possibly also PPC) so place it in a
89 section close to code segment. */
90 #define code_gen_section \
91 __attribute__((__section__(".gen_code"))) \
92 __attribute__((aligned (32)))
93 #elif defined(_WIN32)
94 /* Maximum alignment for Win32 is 16. */
95 #define code_gen_section \
96 __attribute__((aligned (16)))
97 #else
98 #define code_gen_section \
99 __attribute__((aligned (32)))
100 #endif
102 uint8_t code_gen_prologue[1024] code_gen_section;
103 static uint8_t *code_gen_buffer;
104 static unsigned long code_gen_buffer_size;
105 /* threshold to flush the translated code buffer */
106 static unsigned long code_gen_buffer_max_size;
107 static uint8_t *code_gen_ptr;
109 #if !defined(CONFIG_USER_ONLY)
110 int phys_ram_fd;
111 static int in_migration;
113 RAMList ram_list = { .blocks = QLIST_HEAD_INITIALIZER(ram_list.blocks) };
115 static MemoryRegion *system_memory;
116 static MemoryRegion *system_io;
118 #endif
120 CPUState *first_cpu;
121 /* current CPU in the current thread. It is only valid inside
122 cpu_exec() */
123 DEFINE_TLS(CPUState *,cpu_single_env);
124 /* 0 = Do not count executed instructions.
125 1 = Precise instruction counting.
126 2 = Adaptive rate instruction counting. */
127 int use_icount = 0;
129 typedef struct PageDesc {
130 /* list of TBs intersecting this ram page */
131 TranslationBlock *first_tb;
132 /* in order to optimize self modifying code, we count the number
133 of lookups we do to a given page to use a bitmap */
134 unsigned int code_write_count;
135 uint8_t *code_bitmap;
136 #if defined(CONFIG_USER_ONLY)
137 unsigned long flags;
138 #endif
139 } PageDesc;
141 /* In system mode we want L1_MAP to be based on ram offsets,
142 while in user mode we want it to be based on virtual addresses. */
143 #if !defined(CONFIG_USER_ONLY)
144 #if HOST_LONG_BITS < TARGET_PHYS_ADDR_SPACE_BITS
145 # define L1_MAP_ADDR_SPACE_BITS HOST_LONG_BITS
146 #else
147 # define L1_MAP_ADDR_SPACE_BITS TARGET_PHYS_ADDR_SPACE_BITS
148 #endif
149 #else
150 # define L1_MAP_ADDR_SPACE_BITS TARGET_VIRT_ADDR_SPACE_BITS
151 #endif
153 /* Size of the L2 (and L3, etc) page tables. */
154 #define L2_BITS 10
155 #define L2_SIZE (1 << L2_BITS)
157 /* The bits remaining after N lower levels of page tables. */
158 #define P_L1_BITS_REM \
159 ((TARGET_PHYS_ADDR_SPACE_BITS - TARGET_PAGE_BITS) % L2_BITS)
160 #define V_L1_BITS_REM \
161 ((L1_MAP_ADDR_SPACE_BITS - TARGET_PAGE_BITS) % L2_BITS)
163 /* Size of the L1 page table. Avoid silly small sizes. */
164 #if P_L1_BITS_REM < 4
165 #define P_L1_BITS (P_L1_BITS_REM + L2_BITS)
166 #else
167 #define P_L1_BITS P_L1_BITS_REM
168 #endif
170 #if V_L1_BITS_REM < 4
171 #define V_L1_BITS (V_L1_BITS_REM + L2_BITS)
172 #else
173 #define V_L1_BITS V_L1_BITS_REM
174 #endif
176 #define P_L1_SIZE ((target_phys_addr_t)1 << P_L1_BITS)
177 #define V_L1_SIZE ((target_ulong)1 << V_L1_BITS)
179 #define P_L1_SHIFT (TARGET_PHYS_ADDR_SPACE_BITS - TARGET_PAGE_BITS - P_L1_BITS)
180 #define V_L1_SHIFT (L1_MAP_ADDR_SPACE_BITS - TARGET_PAGE_BITS - V_L1_BITS)
182 unsigned long qemu_real_host_page_size;
183 unsigned long qemu_host_page_size;
184 unsigned long qemu_host_page_mask;
186 /* This is a multi-level map on the virtual address space.
187 The bottom level has pointers to PageDesc. */
188 static void *l1_map[V_L1_SIZE];
190 #if !defined(CONFIG_USER_ONLY)
191 typedef struct PhysPageDesc {
192 /* offset in host memory of the page + io_index in the low bits */
193 ram_addr_t phys_offset;
194 ram_addr_t region_offset;
195 } PhysPageDesc;
197 /* This is a multi-level map on the physical address space.
198 The bottom level has pointers to PhysPageDesc. */
199 static void *l1_phys_map[P_L1_SIZE];
201 static void io_mem_init(void);
202 static void memory_map_init(void);
204 /* io memory support */
205 CPUWriteMemoryFunc *io_mem_write[IO_MEM_NB_ENTRIES][4];
206 CPUReadMemoryFunc *io_mem_read[IO_MEM_NB_ENTRIES][4];
207 void *io_mem_opaque[IO_MEM_NB_ENTRIES];
208 static char io_mem_used[IO_MEM_NB_ENTRIES];
209 static int io_mem_watch;
210 #endif
212 /* log support */
213 #ifdef WIN32
214 static const char *logfilename = "qemu.log";
215 #else
216 static const char *logfilename = "/tmp/qemu.log";
217 #endif
218 FILE *logfile;
219 int loglevel;
220 static int log_append = 0;
222 /* statistics */
223 #if !defined(CONFIG_USER_ONLY)
224 static int tlb_flush_count;
225 #endif
226 static int tb_flush_count;
227 static int tb_phys_invalidate_count;
229 #ifdef _WIN32
230 static void map_exec(void *addr, long size)
232 DWORD old_protect;
233 VirtualProtect(addr, size,
234 PAGE_EXECUTE_READWRITE, &old_protect);
237 #else
238 static void map_exec(void *addr, long size)
240 unsigned long start, end, page_size;
242 page_size = getpagesize();
243 start = (unsigned long)addr;
244 start &= ~(page_size - 1);
246 end = (unsigned long)addr + size;
247 end += page_size - 1;
248 end &= ~(page_size - 1);
250 mprotect((void *)start, end - start,
251 PROT_READ | PROT_WRITE | PROT_EXEC);
253 #endif
255 static void page_init(void)
257 /* NOTE: we can always suppose that qemu_host_page_size >=
258 TARGET_PAGE_SIZE */
259 #ifdef _WIN32
261 SYSTEM_INFO system_info;
263 GetSystemInfo(&system_info);
264 qemu_real_host_page_size = system_info.dwPageSize;
266 #else
267 qemu_real_host_page_size = getpagesize();
268 #endif
269 if (qemu_host_page_size == 0)
270 qemu_host_page_size = qemu_real_host_page_size;
271 if (qemu_host_page_size < TARGET_PAGE_SIZE)
272 qemu_host_page_size = TARGET_PAGE_SIZE;
273 qemu_host_page_mask = ~(qemu_host_page_size - 1);
275 #if defined(CONFIG_BSD) && defined(CONFIG_USER_ONLY)
277 #ifdef HAVE_KINFO_GETVMMAP
278 struct kinfo_vmentry *freep;
279 int i, cnt;
281 freep = kinfo_getvmmap(getpid(), &cnt);
282 if (freep) {
283 mmap_lock();
284 for (i = 0; i < cnt; i++) {
285 unsigned long startaddr, endaddr;
287 startaddr = freep[i].kve_start;
288 endaddr = freep[i].kve_end;
289 if (h2g_valid(startaddr)) {
290 startaddr = h2g(startaddr) & TARGET_PAGE_MASK;
292 if (h2g_valid(endaddr)) {
293 endaddr = h2g(endaddr);
294 page_set_flags(startaddr, endaddr, PAGE_RESERVED);
295 } else {
296 #if TARGET_ABI_BITS <= L1_MAP_ADDR_SPACE_BITS
297 endaddr = ~0ul;
298 page_set_flags(startaddr, endaddr, PAGE_RESERVED);
299 #endif
303 free(freep);
304 mmap_unlock();
306 #else
307 FILE *f;
309 last_brk = (unsigned long)sbrk(0);
311 f = fopen("/compat/linux/proc/self/maps", "r");
312 if (f) {
313 mmap_lock();
315 do {
316 unsigned long startaddr, endaddr;
317 int n;
319 n = fscanf (f, "%lx-%lx %*[^\n]\n", &startaddr, &endaddr);
321 if (n == 2 && h2g_valid(startaddr)) {
322 startaddr = h2g(startaddr) & TARGET_PAGE_MASK;
324 if (h2g_valid(endaddr)) {
325 endaddr = h2g(endaddr);
326 } else {
327 endaddr = ~0ul;
329 page_set_flags(startaddr, endaddr, PAGE_RESERVED);
331 } while (!feof(f));
333 fclose(f);
334 mmap_unlock();
336 #endif
338 #endif
341 static PageDesc *page_find_alloc(tb_page_addr_t index, int alloc)
343 PageDesc *pd;
344 void **lp;
345 int i;
347 #if defined(CONFIG_USER_ONLY)
348 /* We can't use g_malloc because it may recurse into a locked mutex. */
349 # define ALLOC(P, SIZE) \
350 do { \
351 P = mmap(NULL, SIZE, PROT_READ | PROT_WRITE, \
352 MAP_PRIVATE | MAP_ANONYMOUS, -1, 0); \
353 } while (0)
354 #else
355 # define ALLOC(P, SIZE) \
356 do { P = g_malloc0(SIZE); } while (0)
357 #endif
359 /* Level 1. Always allocated. */
360 lp = l1_map + ((index >> V_L1_SHIFT) & (V_L1_SIZE - 1));
362 /* Level 2..N-1. */
363 for (i = V_L1_SHIFT / L2_BITS - 1; i > 0; i--) {
364 void **p = *lp;
366 if (p == NULL) {
367 if (!alloc) {
368 return NULL;
370 ALLOC(p, sizeof(void *) * L2_SIZE);
371 *lp = p;
374 lp = p + ((index >> (i * L2_BITS)) & (L2_SIZE - 1));
377 pd = *lp;
378 if (pd == NULL) {
379 if (!alloc) {
380 return NULL;
382 ALLOC(pd, sizeof(PageDesc) * L2_SIZE);
383 *lp = pd;
386 #undef ALLOC
388 return pd + (index & (L2_SIZE - 1));
391 static inline PageDesc *page_find(tb_page_addr_t index)
393 return page_find_alloc(index, 0);
396 #if !defined(CONFIG_USER_ONLY)
397 static PhysPageDesc *phys_page_find_alloc(target_phys_addr_t index, int alloc)
399 PhysPageDesc *pd;
400 void **lp;
401 int i;
403 /* Level 1. Always allocated. */
404 lp = l1_phys_map + ((index >> P_L1_SHIFT) & (P_L1_SIZE - 1));
406 /* Level 2..N-1. */
407 for (i = P_L1_SHIFT / L2_BITS - 1; i > 0; i--) {
408 void **p = *lp;
409 if (p == NULL) {
410 if (!alloc) {
411 return NULL;
413 *lp = p = g_malloc0(sizeof(void *) * L2_SIZE);
415 lp = p + ((index >> (i * L2_BITS)) & (L2_SIZE - 1));
418 pd = *lp;
419 if (pd == NULL) {
420 int i;
421 int first_index = index & ~(L2_SIZE - 1);
423 if (!alloc) {
424 return NULL;
427 *lp = pd = g_malloc(sizeof(PhysPageDesc) * L2_SIZE);
429 for (i = 0; i < L2_SIZE; i++) {
430 pd[i].phys_offset = IO_MEM_UNASSIGNED;
431 pd[i].region_offset = (first_index + i) << TARGET_PAGE_BITS;
435 return pd + (index & (L2_SIZE - 1));
438 static inline PhysPageDesc *phys_page_find(target_phys_addr_t index)
440 return phys_page_find_alloc(index, 0);
443 static void tlb_protect_code(ram_addr_t ram_addr);
444 static void tlb_unprotect_code_phys(CPUState *env, ram_addr_t ram_addr,
445 target_ulong vaddr);
446 #define mmap_lock() do { } while(0)
447 #define mmap_unlock() do { } while(0)
448 #endif
450 #define DEFAULT_CODE_GEN_BUFFER_SIZE (32 * 1024 * 1024)
452 #if defined(CONFIG_USER_ONLY)
453 /* Currently it is not recommended to allocate big chunks of data in
454 user mode. It will change when a dedicated libc will be used */
455 #define USE_STATIC_CODE_GEN_BUFFER
456 #endif
458 #ifdef USE_STATIC_CODE_GEN_BUFFER
459 static uint8_t static_code_gen_buffer[DEFAULT_CODE_GEN_BUFFER_SIZE]
460 __attribute__((aligned (CODE_GEN_ALIGN)));
461 #endif
463 static void code_gen_alloc(unsigned long tb_size)
465 #ifdef USE_STATIC_CODE_GEN_BUFFER
466 code_gen_buffer = static_code_gen_buffer;
467 code_gen_buffer_size = DEFAULT_CODE_GEN_BUFFER_SIZE;
468 map_exec(code_gen_buffer, code_gen_buffer_size);
469 #else
470 code_gen_buffer_size = tb_size;
471 if (code_gen_buffer_size == 0) {
472 #if defined(CONFIG_USER_ONLY)
473 code_gen_buffer_size = DEFAULT_CODE_GEN_BUFFER_SIZE;
474 #else
475 /* XXX: needs adjustments */
476 code_gen_buffer_size = (unsigned long)(ram_size / 4);
477 #endif
479 if (code_gen_buffer_size < MIN_CODE_GEN_BUFFER_SIZE)
480 code_gen_buffer_size = MIN_CODE_GEN_BUFFER_SIZE;
481 /* The code gen buffer location may have constraints depending on
482 the host cpu and OS */
483 #if defined(__linux__)
485 int flags;
486 void *start = NULL;
488 flags = MAP_PRIVATE | MAP_ANONYMOUS;
489 #if defined(__x86_64__)
490 flags |= MAP_32BIT;
491 /* Cannot map more than that */
492 if (code_gen_buffer_size > (800 * 1024 * 1024))
493 code_gen_buffer_size = (800 * 1024 * 1024);
494 #elif defined(__sparc_v9__)
495 // Map the buffer below 2G, so we can use direct calls and branches
496 flags |= MAP_FIXED;
497 start = (void *) 0x60000000UL;
498 if (code_gen_buffer_size > (512 * 1024 * 1024))
499 code_gen_buffer_size = (512 * 1024 * 1024);
500 #elif defined(__arm__)
501 /* Keep the buffer no bigger than 16GB to branch between blocks */
502 if (code_gen_buffer_size > 16 * 1024 * 1024)
503 code_gen_buffer_size = 16 * 1024 * 1024;
504 #elif defined(__s390x__)
505 /* Map the buffer so that we can use direct calls and branches. */
506 /* We have a +- 4GB range on the branches; leave some slop. */
507 if (code_gen_buffer_size > (3ul * 1024 * 1024 * 1024)) {
508 code_gen_buffer_size = 3ul * 1024 * 1024 * 1024;
510 start = (void *)0x90000000UL;
511 #endif
512 code_gen_buffer = mmap(start, code_gen_buffer_size,
513 PROT_WRITE | PROT_READ | PROT_EXEC,
514 flags, -1, 0);
515 if (code_gen_buffer == MAP_FAILED) {
516 fprintf(stderr, "Could not allocate dynamic translator buffer\n");
517 exit(1);
520 #elif defined(__FreeBSD__) || defined(__FreeBSD_kernel__) \
521 || defined(__DragonFly__) || defined(__OpenBSD__) \
522 || defined(__NetBSD__)
524 int flags;
525 void *addr = NULL;
526 flags = MAP_PRIVATE | MAP_ANONYMOUS;
527 #if defined(__x86_64__)
528 /* FreeBSD doesn't have MAP_32BIT, use MAP_FIXED and assume
529 * 0x40000000 is free */
530 flags |= MAP_FIXED;
531 addr = (void *)0x40000000;
532 /* Cannot map more than that */
533 if (code_gen_buffer_size > (800 * 1024 * 1024))
534 code_gen_buffer_size = (800 * 1024 * 1024);
535 #elif defined(__sparc_v9__)
536 // Map the buffer below 2G, so we can use direct calls and branches
537 flags |= MAP_FIXED;
538 addr = (void *) 0x60000000UL;
539 if (code_gen_buffer_size > (512 * 1024 * 1024)) {
540 code_gen_buffer_size = (512 * 1024 * 1024);
542 #endif
543 code_gen_buffer = mmap(addr, code_gen_buffer_size,
544 PROT_WRITE | PROT_READ | PROT_EXEC,
545 flags, -1, 0);
546 if (code_gen_buffer == MAP_FAILED) {
547 fprintf(stderr, "Could not allocate dynamic translator buffer\n");
548 exit(1);
551 #else
552 code_gen_buffer = g_malloc(code_gen_buffer_size);
553 map_exec(code_gen_buffer, code_gen_buffer_size);
554 #endif
555 #endif /* !USE_STATIC_CODE_GEN_BUFFER */
556 map_exec(code_gen_prologue, sizeof(code_gen_prologue));
557 code_gen_buffer_max_size = code_gen_buffer_size -
558 (TCG_MAX_OP_SIZE * OPC_BUF_SIZE);
559 code_gen_max_blocks = code_gen_buffer_size / CODE_GEN_AVG_BLOCK_SIZE;
560 tbs = g_malloc(code_gen_max_blocks * sizeof(TranslationBlock));
563 /* Must be called before using the QEMU cpus. 'tb_size' is the size
564 (in bytes) allocated to the translation buffer. Zero means default
565 size. */
566 void tcg_exec_init(unsigned long tb_size)
568 cpu_gen_init();
569 code_gen_alloc(tb_size);
570 code_gen_ptr = code_gen_buffer;
571 page_init();
572 #if !defined(CONFIG_USER_ONLY) || !defined(CONFIG_USE_GUEST_BASE)
573 /* There's no guest base to take into account, so go ahead and
574 initialize the prologue now. */
575 tcg_prologue_init(&tcg_ctx);
576 #endif
579 bool tcg_enabled(void)
581 return code_gen_buffer != NULL;
584 void cpu_exec_init_all(void)
586 #if !defined(CONFIG_USER_ONLY)
587 memory_map_init();
588 io_mem_init();
589 #endif
592 #if defined(CPU_SAVE_VERSION) && !defined(CONFIG_USER_ONLY)
594 static int cpu_common_post_load(void *opaque, int version_id)
596 CPUState *env = opaque;
598 /* 0x01 was CPU_INTERRUPT_EXIT. This line can be removed when the
599 version_id is increased. */
600 env->interrupt_request &= ~0x01;
601 tlb_flush(env, 1);
603 return 0;
606 static const VMStateDescription vmstate_cpu_common = {
607 .name = "cpu_common",
608 .version_id = 1,
609 .minimum_version_id = 1,
610 .minimum_version_id_old = 1,
611 .post_load = cpu_common_post_load,
612 .fields = (VMStateField []) {
613 VMSTATE_UINT32(halted, CPUState),
614 VMSTATE_UINT32(interrupt_request, CPUState),
615 VMSTATE_END_OF_LIST()
618 #endif
620 CPUState *qemu_get_cpu(int cpu)
622 CPUState *env = first_cpu;
624 while (env) {
625 if (env->cpu_index == cpu)
626 break;
627 env = env->next_cpu;
630 return env;
633 void cpu_exec_init(CPUState *env)
635 CPUState **penv;
636 int cpu_index;
638 #if defined(CONFIG_USER_ONLY)
639 cpu_list_lock();
640 #endif
641 env->next_cpu = NULL;
642 penv = &first_cpu;
643 cpu_index = 0;
644 while (*penv != NULL) {
645 penv = &(*penv)->next_cpu;
646 cpu_index++;
648 env->cpu_index = cpu_index;
649 env->numa_node = 0;
650 QTAILQ_INIT(&env->breakpoints);
651 QTAILQ_INIT(&env->watchpoints);
652 #ifndef CONFIG_USER_ONLY
653 env->thread_id = qemu_get_thread_id();
654 #endif
655 *penv = env;
656 #if defined(CONFIG_USER_ONLY)
657 cpu_list_unlock();
658 #endif
659 #if defined(CPU_SAVE_VERSION) && !defined(CONFIG_USER_ONLY)
660 vmstate_register(NULL, cpu_index, &vmstate_cpu_common, env);
661 register_savevm(NULL, "cpu", cpu_index, CPU_SAVE_VERSION,
662 cpu_save, cpu_load, env);
663 #endif
666 /* Allocate a new translation block. Flush the translation buffer if
667 too many translation blocks or too much generated code. */
668 static TranslationBlock *tb_alloc(target_ulong pc)
670 TranslationBlock *tb;
672 if (nb_tbs >= code_gen_max_blocks ||
673 (code_gen_ptr - code_gen_buffer) >= code_gen_buffer_max_size)
674 return NULL;
675 tb = &tbs[nb_tbs++];
676 tb->pc = pc;
677 tb->cflags = 0;
678 return tb;
681 void tb_free(TranslationBlock *tb)
683 /* In practice this is mostly used for single use temporary TB
684 Ignore the hard cases and just back up if this TB happens to
685 be the last one generated. */
686 if (nb_tbs > 0 && tb == &tbs[nb_tbs - 1]) {
687 code_gen_ptr = tb->tc_ptr;
688 nb_tbs--;
692 static inline void invalidate_page_bitmap(PageDesc *p)
694 if (p->code_bitmap) {
695 g_free(p->code_bitmap);
696 p->code_bitmap = NULL;
698 p->code_write_count = 0;
701 /* Set to NULL all the 'first_tb' fields in all PageDescs. */
703 static void page_flush_tb_1 (int level, void **lp)
705 int i;
707 if (*lp == NULL) {
708 return;
710 if (level == 0) {
711 PageDesc *pd = *lp;
712 for (i = 0; i < L2_SIZE; ++i) {
713 pd[i].first_tb = NULL;
714 invalidate_page_bitmap(pd + i);
716 } else {
717 void **pp = *lp;
718 for (i = 0; i < L2_SIZE; ++i) {
719 page_flush_tb_1 (level - 1, pp + i);
724 static void page_flush_tb(void)
726 int i;
727 for (i = 0; i < V_L1_SIZE; i++) {
728 page_flush_tb_1(V_L1_SHIFT / L2_BITS - 1, l1_map + i);
732 /* flush all the translation blocks */
733 /* XXX: tb_flush is currently not thread safe */
734 void tb_flush(CPUState *env1)
736 CPUState *env;
737 #if defined(DEBUG_FLUSH)
738 printf("qemu: flush code_size=%ld nb_tbs=%d avg_tb_size=%ld\n",
739 (unsigned long)(code_gen_ptr - code_gen_buffer),
740 nb_tbs, nb_tbs > 0 ?
741 ((unsigned long)(code_gen_ptr - code_gen_buffer)) / nb_tbs : 0);
742 #endif
743 if ((unsigned long)(code_gen_ptr - code_gen_buffer) > code_gen_buffer_size)
744 cpu_abort(env1, "Internal error: code buffer overflow\n");
746 nb_tbs = 0;
748 for(env = first_cpu; env != NULL; env = env->next_cpu) {
749 memset (env->tb_jmp_cache, 0, TB_JMP_CACHE_SIZE * sizeof (void *));
752 memset (tb_phys_hash, 0, CODE_GEN_PHYS_HASH_SIZE * sizeof (void *));
753 page_flush_tb();
755 code_gen_ptr = code_gen_buffer;
756 /* XXX: flush processor icache at this point if cache flush is
757 expensive */
758 tb_flush_count++;
761 #ifdef DEBUG_TB_CHECK
763 static void tb_invalidate_check(target_ulong address)
765 TranslationBlock *tb;
766 int i;
767 address &= TARGET_PAGE_MASK;
768 for(i = 0;i < CODE_GEN_PHYS_HASH_SIZE; i++) {
769 for(tb = tb_phys_hash[i]; tb != NULL; tb = tb->phys_hash_next) {
770 if (!(address + TARGET_PAGE_SIZE <= tb->pc ||
771 address >= tb->pc + tb->size)) {
772 printf("ERROR invalidate: address=" TARGET_FMT_lx
773 " PC=%08lx size=%04x\n",
774 address, (long)tb->pc, tb->size);
780 /* verify that all the pages have correct rights for code */
781 static void tb_page_check(void)
783 TranslationBlock *tb;
784 int i, flags1, flags2;
786 for(i = 0;i < CODE_GEN_PHYS_HASH_SIZE; i++) {
787 for(tb = tb_phys_hash[i]; tb != NULL; tb = tb->phys_hash_next) {
788 flags1 = page_get_flags(tb->pc);
789 flags2 = page_get_flags(tb->pc + tb->size - 1);
790 if ((flags1 & PAGE_WRITE) || (flags2 & PAGE_WRITE)) {
791 printf("ERROR page flags: PC=%08lx size=%04x f1=%x f2=%x\n",
792 (long)tb->pc, tb->size, flags1, flags2);
798 #endif
800 /* invalidate one TB */
801 static inline void tb_remove(TranslationBlock **ptb, TranslationBlock *tb,
802 int next_offset)
804 TranslationBlock *tb1;
805 for(;;) {
806 tb1 = *ptb;
807 if (tb1 == tb) {
808 *ptb = *(TranslationBlock **)((char *)tb1 + next_offset);
809 break;
811 ptb = (TranslationBlock **)((char *)tb1 + next_offset);
815 static inline void tb_page_remove(TranslationBlock **ptb, TranslationBlock *tb)
817 TranslationBlock *tb1;
818 unsigned int n1;
820 for(;;) {
821 tb1 = *ptb;
822 n1 = (long)tb1 & 3;
823 tb1 = (TranslationBlock *)((long)tb1 & ~3);
824 if (tb1 == tb) {
825 *ptb = tb1->page_next[n1];
826 break;
828 ptb = &tb1->page_next[n1];
832 static inline void tb_jmp_remove(TranslationBlock *tb, int n)
834 TranslationBlock *tb1, **ptb;
835 unsigned int n1;
837 ptb = &tb->jmp_next[n];
838 tb1 = *ptb;
839 if (tb1) {
840 /* find tb(n) in circular list */
841 for(;;) {
842 tb1 = *ptb;
843 n1 = (long)tb1 & 3;
844 tb1 = (TranslationBlock *)((long)tb1 & ~3);
845 if (n1 == n && tb1 == tb)
846 break;
847 if (n1 == 2) {
848 ptb = &tb1->jmp_first;
849 } else {
850 ptb = &tb1->jmp_next[n1];
853 /* now we can suppress tb(n) from the list */
854 *ptb = tb->jmp_next[n];
856 tb->jmp_next[n] = NULL;
860 /* reset the jump entry 'n' of a TB so that it is not chained to
861 another TB */
862 static inline void tb_reset_jump(TranslationBlock *tb, int n)
864 tb_set_jmp_target(tb, n, (unsigned long)(tb->tc_ptr + tb->tb_next_offset[n]));
867 void tb_phys_invalidate(TranslationBlock *tb, tb_page_addr_t page_addr)
869 CPUState *env;
870 PageDesc *p;
871 unsigned int h, n1;
872 tb_page_addr_t phys_pc;
873 TranslationBlock *tb1, *tb2;
875 /* remove the TB from the hash list */
876 phys_pc = tb->page_addr[0] + (tb->pc & ~TARGET_PAGE_MASK);
877 h = tb_phys_hash_func(phys_pc);
878 tb_remove(&tb_phys_hash[h], tb,
879 offsetof(TranslationBlock, phys_hash_next));
881 /* remove the TB from the page list */
882 if (tb->page_addr[0] != page_addr) {
883 p = page_find(tb->page_addr[0] >> TARGET_PAGE_BITS);
884 tb_page_remove(&p->first_tb, tb);
885 invalidate_page_bitmap(p);
887 if (tb->page_addr[1] != -1 && tb->page_addr[1] != page_addr) {
888 p = page_find(tb->page_addr[1] >> TARGET_PAGE_BITS);
889 tb_page_remove(&p->first_tb, tb);
890 invalidate_page_bitmap(p);
893 tb_invalidated_flag = 1;
895 /* remove the TB from the hash list */
896 h = tb_jmp_cache_hash_func(tb->pc);
897 for(env = first_cpu; env != NULL; env = env->next_cpu) {
898 if (env->tb_jmp_cache[h] == tb)
899 env->tb_jmp_cache[h] = NULL;
902 /* suppress this TB from the two jump lists */
903 tb_jmp_remove(tb, 0);
904 tb_jmp_remove(tb, 1);
906 /* suppress any remaining jumps to this TB */
907 tb1 = tb->jmp_first;
908 for(;;) {
909 n1 = (long)tb1 & 3;
910 if (n1 == 2)
911 break;
912 tb1 = (TranslationBlock *)((long)tb1 & ~3);
913 tb2 = tb1->jmp_next[n1];
914 tb_reset_jump(tb1, n1);
915 tb1->jmp_next[n1] = NULL;
916 tb1 = tb2;
918 tb->jmp_first = (TranslationBlock *)((long)tb | 2); /* fail safe */
920 tb_phys_invalidate_count++;
923 static inline void set_bits(uint8_t *tab, int start, int len)
925 int end, mask, end1;
927 end = start + len;
928 tab += start >> 3;
929 mask = 0xff << (start & 7);
930 if ((start & ~7) == (end & ~7)) {
931 if (start < end) {
932 mask &= ~(0xff << (end & 7));
933 *tab |= mask;
935 } else {
936 *tab++ |= mask;
937 start = (start + 8) & ~7;
938 end1 = end & ~7;
939 while (start < end1) {
940 *tab++ = 0xff;
941 start += 8;
943 if (start < end) {
944 mask = ~(0xff << (end & 7));
945 *tab |= mask;
950 static void build_page_bitmap(PageDesc *p)
952 int n, tb_start, tb_end;
953 TranslationBlock *tb;
955 p->code_bitmap = g_malloc0(TARGET_PAGE_SIZE / 8);
957 tb = p->first_tb;
958 while (tb != NULL) {
959 n = (long)tb & 3;
960 tb = (TranslationBlock *)((long)tb & ~3);
961 /* NOTE: this is subtle as a TB may span two physical pages */
962 if (n == 0) {
963 /* NOTE: tb_end may be after the end of the page, but
964 it is not a problem */
965 tb_start = tb->pc & ~TARGET_PAGE_MASK;
966 tb_end = tb_start + tb->size;
967 if (tb_end > TARGET_PAGE_SIZE)
968 tb_end = TARGET_PAGE_SIZE;
969 } else {
970 tb_start = 0;
971 tb_end = ((tb->pc + tb->size) & ~TARGET_PAGE_MASK);
973 set_bits(p->code_bitmap, tb_start, tb_end - tb_start);
974 tb = tb->page_next[n];
978 TranslationBlock *tb_gen_code(CPUState *env,
979 target_ulong pc, target_ulong cs_base,
980 int flags, int cflags)
982 TranslationBlock *tb;
983 uint8_t *tc_ptr;
984 tb_page_addr_t phys_pc, phys_page2;
985 target_ulong virt_page2;
986 int code_gen_size;
988 phys_pc = get_page_addr_code(env, pc);
989 tb = tb_alloc(pc);
990 if (!tb) {
991 /* flush must be done */
992 tb_flush(env);
993 /* cannot fail at this point */
994 tb = tb_alloc(pc);
995 /* Don't forget to invalidate previous TB info. */
996 tb_invalidated_flag = 1;
998 tc_ptr = code_gen_ptr;
999 tb->tc_ptr = tc_ptr;
1000 tb->cs_base = cs_base;
1001 tb->flags = flags;
1002 tb->cflags = cflags;
1003 cpu_gen_code(env, tb, &code_gen_size);
1004 code_gen_ptr = (void *)(((unsigned long)code_gen_ptr + code_gen_size + CODE_GEN_ALIGN - 1) & ~(CODE_GEN_ALIGN - 1));
1006 /* check next page if needed */
1007 virt_page2 = (pc + tb->size - 1) & TARGET_PAGE_MASK;
1008 phys_page2 = -1;
1009 if ((pc & TARGET_PAGE_MASK) != virt_page2) {
1010 phys_page2 = get_page_addr_code(env, virt_page2);
1012 tb_link_page(tb, phys_pc, phys_page2);
1013 return tb;
1016 /* invalidate all TBs which intersect with the target physical page
1017 starting in range [start;end[. NOTE: start and end must refer to
1018 the same physical page. 'is_cpu_write_access' should be true if called
1019 from a real cpu write access: the virtual CPU will exit the current
1020 TB if code is modified inside this TB. */
1021 void tb_invalidate_phys_page_range(tb_page_addr_t start, tb_page_addr_t end,
1022 int is_cpu_write_access)
1024 TranslationBlock *tb, *tb_next, *saved_tb;
1025 CPUState *env = cpu_single_env;
1026 tb_page_addr_t tb_start, tb_end;
1027 PageDesc *p;
1028 int n;
1029 #ifdef TARGET_HAS_PRECISE_SMC
1030 int current_tb_not_found = is_cpu_write_access;
1031 TranslationBlock *current_tb = NULL;
1032 int current_tb_modified = 0;
1033 target_ulong current_pc = 0;
1034 target_ulong current_cs_base = 0;
1035 int current_flags = 0;
1036 #endif /* TARGET_HAS_PRECISE_SMC */
1038 p = page_find(start >> TARGET_PAGE_BITS);
1039 if (!p)
1040 return;
1041 if (!p->code_bitmap &&
1042 ++p->code_write_count >= SMC_BITMAP_USE_THRESHOLD &&
1043 is_cpu_write_access) {
1044 /* build code bitmap */
1045 build_page_bitmap(p);
1048 /* we remove all the TBs in the range [start, end[ */
1049 /* XXX: see if in some cases it could be faster to invalidate all the code */
1050 tb = p->first_tb;
1051 while (tb != NULL) {
1052 n = (long)tb & 3;
1053 tb = (TranslationBlock *)((long)tb & ~3);
1054 tb_next = tb->page_next[n];
1055 /* NOTE: this is subtle as a TB may span two physical pages */
1056 if (n == 0) {
1057 /* NOTE: tb_end may be after the end of the page, but
1058 it is not a problem */
1059 tb_start = tb->page_addr[0] + (tb->pc & ~TARGET_PAGE_MASK);
1060 tb_end = tb_start + tb->size;
1061 } else {
1062 tb_start = tb->page_addr[1];
1063 tb_end = tb_start + ((tb->pc + tb->size) & ~TARGET_PAGE_MASK);
1065 if (!(tb_end <= start || tb_start >= end)) {
1066 #ifdef TARGET_HAS_PRECISE_SMC
1067 if (current_tb_not_found) {
1068 current_tb_not_found = 0;
1069 current_tb = NULL;
1070 if (env->mem_io_pc) {
1071 /* now we have a real cpu fault */
1072 current_tb = tb_find_pc(env->mem_io_pc);
1075 if (current_tb == tb &&
1076 (current_tb->cflags & CF_COUNT_MASK) != 1) {
1077 /* If we are modifying the current TB, we must stop
1078 its execution. We could be more precise by checking
1079 that the modification is after the current PC, but it
1080 would require a specialized function to partially
1081 restore the CPU state */
1083 current_tb_modified = 1;
1084 cpu_restore_state(current_tb, env, env->mem_io_pc);
1085 cpu_get_tb_cpu_state(env, &current_pc, &current_cs_base,
1086 &current_flags);
1088 #endif /* TARGET_HAS_PRECISE_SMC */
1089 /* we need to do that to handle the case where a signal
1090 occurs while doing tb_phys_invalidate() */
1091 saved_tb = NULL;
1092 if (env) {
1093 saved_tb = env->current_tb;
1094 env->current_tb = NULL;
1096 tb_phys_invalidate(tb, -1);
1097 if (env) {
1098 env->current_tb = saved_tb;
1099 if (env->interrupt_request && env->current_tb)
1100 cpu_interrupt(env, env->interrupt_request);
1103 tb = tb_next;
1105 #if !defined(CONFIG_USER_ONLY)
1106 /* if no code remaining, no need to continue to use slow writes */
1107 if (!p->first_tb) {
1108 invalidate_page_bitmap(p);
1109 if (is_cpu_write_access) {
1110 tlb_unprotect_code_phys(env, start, env->mem_io_vaddr);
1113 #endif
1114 #ifdef TARGET_HAS_PRECISE_SMC
1115 if (current_tb_modified) {
1116 /* we generate a block containing just the instruction
1117 modifying the memory. It will ensure that it cannot modify
1118 itself */
1119 env->current_tb = NULL;
1120 tb_gen_code(env, current_pc, current_cs_base, current_flags, 1);
1121 cpu_resume_from_signal(env, NULL);
1123 #endif
1126 /* len must be <= 8 and start must be a multiple of len */
1127 static inline void tb_invalidate_phys_page_fast(tb_page_addr_t start, int len)
1129 PageDesc *p;
1130 int offset, b;
1131 #if 0
1132 if (1) {
1133 qemu_log("modifying code at 0x%x size=%d EIP=%x PC=%08x\n",
1134 cpu_single_env->mem_io_vaddr, len,
1135 cpu_single_env->eip,
1136 cpu_single_env->eip + (long)cpu_single_env->segs[R_CS].base);
1138 #endif
1139 p = page_find(start >> TARGET_PAGE_BITS);
1140 if (!p)
1141 return;
1142 if (p->code_bitmap) {
1143 offset = start & ~TARGET_PAGE_MASK;
1144 b = p->code_bitmap[offset >> 3] >> (offset & 7);
1145 if (b & ((1 << len) - 1))
1146 goto do_invalidate;
1147 } else {
1148 do_invalidate:
1149 tb_invalidate_phys_page_range(start, start + len, 1);
1153 #if !defined(CONFIG_SOFTMMU)
1154 static void tb_invalidate_phys_page(tb_page_addr_t addr,
1155 unsigned long pc, void *puc)
1157 TranslationBlock *tb;
1158 PageDesc *p;
1159 int n;
1160 #ifdef TARGET_HAS_PRECISE_SMC
1161 TranslationBlock *current_tb = NULL;
1162 CPUState *env = cpu_single_env;
1163 int current_tb_modified = 0;
1164 target_ulong current_pc = 0;
1165 target_ulong current_cs_base = 0;
1166 int current_flags = 0;
1167 #endif
1169 addr &= TARGET_PAGE_MASK;
1170 p = page_find(addr >> TARGET_PAGE_BITS);
1171 if (!p)
1172 return;
1173 tb = p->first_tb;
1174 #ifdef TARGET_HAS_PRECISE_SMC
1175 if (tb && pc != 0) {
1176 current_tb = tb_find_pc(pc);
1178 #endif
1179 while (tb != NULL) {
1180 n = (long)tb & 3;
1181 tb = (TranslationBlock *)((long)tb & ~3);
1182 #ifdef TARGET_HAS_PRECISE_SMC
1183 if (current_tb == tb &&
1184 (current_tb->cflags & CF_COUNT_MASK) != 1) {
1185 /* If we are modifying the current TB, we must stop
1186 its execution. We could be more precise by checking
1187 that the modification is after the current PC, but it
1188 would require a specialized function to partially
1189 restore the CPU state */
1191 current_tb_modified = 1;
1192 cpu_restore_state(current_tb, env, pc);
1193 cpu_get_tb_cpu_state(env, &current_pc, &current_cs_base,
1194 &current_flags);
1196 #endif /* TARGET_HAS_PRECISE_SMC */
1197 tb_phys_invalidate(tb, addr);
1198 tb = tb->page_next[n];
1200 p->first_tb = NULL;
1201 #ifdef TARGET_HAS_PRECISE_SMC
1202 if (current_tb_modified) {
1203 /* we generate a block containing just the instruction
1204 modifying the memory. It will ensure that it cannot modify
1205 itself */
1206 env->current_tb = NULL;
1207 tb_gen_code(env, current_pc, current_cs_base, current_flags, 1);
1208 cpu_resume_from_signal(env, puc);
1210 #endif
1212 #endif
1214 /* add the tb in the target page and protect it if necessary */
1215 static inline void tb_alloc_page(TranslationBlock *tb,
1216 unsigned int n, tb_page_addr_t page_addr)
1218 PageDesc *p;
1219 #ifndef CONFIG_USER_ONLY
1220 bool page_already_protected;
1221 #endif
1223 tb->page_addr[n] = page_addr;
1224 p = page_find_alloc(page_addr >> TARGET_PAGE_BITS, 1);
1225 tb->page_next[n] = p->first_tb;
1226 #ifndef CONFIG_USER_ONLY
1227 page_already_protected = p->first_tb != NULL;
1228 #endif
1229 p->first_tb = (TranslationBlock *)((long)tb | n);
1230 invalidate_page_bitmap(p);
1232 #if defined(TARGET_HAS_SMC) || 1
1234 #if defined(CONFIG_USER_ONLY)
1235 if (p->flags & PAGE_WRITE) {
1236 target_ulong addr;
1237 PageDesc *p2;
1238 int prot;
1240 /* force the host page as non writable (writes will have a
1241 page fault + mprotect overhead) */
1242 page_addr &= qemu_host_page_mask;
1243 prot = 0;
1244 for(addr = page_addr; addr < page_addr + qemu_host_page_size;
1245 addr += TARGET_PAGE_SIZE) {
1247 p2 = page_find (addr >> TARGET_PAGE_BITS);
1248 if (!p2)
1249 continue;
1250 prot |= p2->flags;
1251 p2->flags &= ~PAGE_WRITE;
1253 mprotect(g2h(page_addr), qemu_host_page_size,
1254 (prot & PAGE_BITS) & ~PAGE_WRITE);
1255 #ifdef DEBUG_TB_INVALIDATE
1256 printf("protecting code page: 0x" TARGET_FMT_lx "\n",
1257 page_addr);
1258 #endif
1260 #else
1261 /* if some code is already present, then the pages are already
1262 protected. So we handle the case where only the first TB is
1263 allocated in a physical page */
1264 if (!page_already_protected) {
1265 tlb_protect_code(page_addr);
1267 #endif
1269 #endif /* TARGET_HAS_SMC */
1272 /* add a new TB and link it to the physical page tables. phys_page2 is
1273 (-1) to indicate that only one page contains the TB. */
1274 void tb_link_page(TranslationBlock *tb,
1275 tb_page_addr_t phys_pc, tb_page_addr_t phys_page2)
1277 unsigned int h;
1278 TranslationBlock **ptb;
1280 /* Grab the mmap lock to stop another thread invalidating this TB
1281 before we are done. */
1282 mmap_lock();
1283 /* add in the physical hash table */
1284 h = tb_phys_hash_func(phys_pc);
1285 ptb = &tb_phys_hash[h];
1286 tb->phys_hash_next = *ptb;
1287 *ptb = tb;
1289 /* add in the page list */
1290 tb_alloc_page(tb, 0, phys_pc & TARGET_PAGE_MASK);
1291 if (phys_page2 != -1)
1292 tb_alloc_page(tb, 1, phys_page2);
1293 else
1294 tb->page_addr[1] = -1;
1296 tb->jmp_first = (TranslationBlock *)((long)tb | 2);
1297 tb->jmp_next[0] = NULL;
1298 tb->jmp_next[1] = NULL;
1300 /* init original jump addresses */
1301 if (tb->tb_next_offset[0] != 0xffff)
1302 tb_reset_jump(tb, 0);
1303 if (tb->tb_next_offset[1] != 0xffff)
1304 tb_reset_jump(tb, 1);
1306 #ifdef DEBUG_TB_CHECK
1307 tb_page_check();
1308 #endif
1309 mmap_unlock();
1312 /* find the TB 'tb' such that tb[0].tc_ptr <= tc_ptr <
1313 tb[1].tc_ptr. Return NULL if not found */
1314 TranslationBlock *tb_find_pc(unsigned long tc_ptr)
1316 int m_min, m_max, m;
1317 unsigned long v;
1318 TranslationBlock *tb;
1320 if (nb_tbs <= 0)
1321 return NULL;
1322 if (tc_ptr < (unsigned long)code_gen_buffer ||
1323 tc_ptr >= (unsigned long)code_gen_ptr)
1324 return NULL;
1325 /* binary search (cf Knuth) */
1326 m_min = 0;
1327 m_max = nb_tbs - 1;
1328 while (m_min <= m_max) {
1329 m = (m_min + m_max) >> 1;
1330 tb = &tbs[m];
1331 v = (unsigned long)tb->tc_ptr;
1332 if (v == tc_ptr)
1333 return tb;
1334 else if (tc_ptr < v) {
1335 m_max = m - 1;
1336 } else {
1337 m_min = m + 1;
1340 return &tbs[m_max];
1343 static void tb_reset_jump_recursive(TranslationBlock *tb);
1345 static inline void tb_reset_jump_recursive2(TranslationBlock *tb, int n)
1347 TranslationBlock *tb1, *tb_next, **ptb;
1348 unsigned int n1;
1350 tb1 = tb->jmp_next[n];
1351 if (tb1 != NULL) {
1352 /* find head of list */
1353 for(;;) {
1354 n1 = (long)tb1 & 3;
1355 tb1 = (TranslationBlock *)((long)tb1 & ~3);
1356 if (n1 == 2)
1357 break;
1358 tb1 = tb1->jmp_next[n1];
1360 /* we are now sure now that tb jumps to tb1 */
1361 tb_next = tb1;
1363 /* remove tb from the jmp_first list */
1364 ptb = &tb_next->jmp_first;
1365 for(;;) {
1366 tb1 = *ptb;
1367 n1 = (long)tb1 & 3;
1368 tb1 = (TranslationBlock *)((long)tb1 & ~3);
1369 if (n1 == n && tb1 == tb)
1370 break;
1371 ptb = &tb1->jmp_next[n1];
1373 *ptb = tb->jmp_next[n];
1374 tb->jmp_next[n] = NULL;
1376 /* suppress the jump to next tb in generated code */
1377 tb_reset_jump(tb, n);
1379 /* suppress jumps in the tb on which we could have jumped */
1380 tb_reset_jump_recursive(tb_next);
1384 static void tb_reset_jump_recursive(TranslationBlock *tb)
1386 tb_reset_jump_recursive2(tb, 0);
1387 tb_reset_jump_recursive2(tb, 1);
1390 #if defined(TARGET_HAS_ICE)
1391 #if defined(CONFIG_USER_ONLY)
1392 static void breakpoint_invalidate(CPUState *env, target_ulong pc)
1394 tb_invalidate_phys_page_range(pc, pc + 1, 0);
1396 #else
1397 static void breakpoint_invalidate(CPUState *env, target_ulong pc)
1399 target_phys_addr_t addr;
1400 target_ulong pd;
1401 ram_addr_t ram_addr;
1402 PhysPageDesc *p;
1404 addr = cpu_get_phys_page_debug(env, pc);
1405 p = phys_page_find(addr >> TARGET_PAGE_BITS);
1406 if (!p) {
1407 pd = IO_MEM_UNASSIGNED;
1408 } else {
1409 pd = p->phys_offset;
1411 ram_addr = (pd & TARGET_PAGE_MASK) | (pc & ~TARGET_PAGE_MASK);
1412 tb_invalidate_phys_page_range(ram_addr, ram_addr + 1, 0);
1414 #endif
1415 #endif /* TARGET_HAS_ICE */
1417 #if defined(CONFIG_USER_ONLY)
1418 void cpu_watchpoint_remove_all(CPUState *env, int mask)
1423 int cpu_watchpoint_insert(CPUState *env, target_ulong addr, target_ulong len,
1424 int flags, CPUWatchpoint **watchpoint)
1426 return -ENOSYS;
1428 #else
1429 /* Add a watchpoint. */
1430 int cpu_watchpoint_insert(CPUState *env, target_ulong addr, target_ulong len,
1431 int flags, CPUWatchpoint **watchpoint)
1433 target_ulong len_mask = ~(len - 1);
1434 CPUWatchpoint *wp;
1436 /* sanity checks: allow power-of-2 lengths, deny unaligned watchpoints */
1437 if ((len != 1 && len != 2 && len != 4 && len != 8) || (addr & ~len_mask)) {
1438 fprintf(stderr, "qemu: tried to set invalid watchpoint at "
1439 TARGET_FMT_lx ", len=" TARGET_FMT_lu "\n", addr, len);
1440 return -EINVAL;
1442 wp = g_malloc(sizeof(*wp));
1444 wp->vaddr = addr;
1445 wp->len_mask = len_mask;
1446 wp->flags = flags;
1448 /* keep all GDB-injected watchpoints in front */
1449 if (flags & BP_GDB)
1450 QTAILQ_INSERT_HEAD(&env->watchpoints, wp, entry);
1451 else
1452 QTAILQ_INSERT_TAIL(&env->watchpoints, wp, entry);
1454 tlb_flush_page(env, addr);
1456 if (watchpoint)
1457 *watchpoint = wp;
1458 return 0;
1461 /* Remove a specific watchpoint. */
1462 int cpu_watchpoint_remove(CPUState *env, target_ulong addr, target_ulong len,
1463 int flags)
1465 target_ulong len_mask = ~(len - 1);
1466 CPUWatchpoint *wp;
1468 QTAILQ_FOREACH(wp, &env->watchpoints, entry) {
1469 if (addr == wp->vaddr && len_mask == wp->len_mask
1470 && flags == (wp->flags & ~BP_WATCHPOINT_HIT)) {
1471 cpu_watchpoint_remove_by_ref(env, wp);
1472 return 0;
1475 return -ENOENT;
1478 /* Remove a specific watchpoint by reference. */
1479 void cpu_watchpoint_remove_by_ref(CPUState *env, CPUWatchpoint *watchpoint)
1481 QTAILQ_REMOVE(&env->watchpoints, watchpoint, entry);
1483 tlb_flush_page(env, watchpoint->vaddr);
1485 g_free(watchpoint);
1488 /* Remove all matching watchpoints. */
1489 void cpu_watchpoint_remove_all(CPUState *env, int mask)
1491 CPUWatchpoint *wp, *next;
1493 QTAILQ_FOREACH_SAFE(wp, &env->watchpoints, entry, next) {
1494 if (wp->flags & mask)
1495 cpu_watchpoint_remove_by_ref(env, wp);
1498 #endif
1500 /* Add a breakpoint. */
1501 int cpu_breakpoint_insert(CPUState *env, target_ulong pc, int flags,
1502 CPUBreakpoint **breakpoint)
1504 #if defined(TARGET_HAS_ICE)
1505 CPUBreakpoint *bp;
1507 bp = g_malloc(sizeof(*bp));
1509 bp->pc = pc;
1510 bp->flags = flags;
1512 /* keep all GDB-injected breakpoints in front */
1513 if (flags & BP_GDB)
1514 QTAILQ_INSERT_HEAD(&env->breakpoints, bp, entry);
1515 else
1516 QTAILQ_INSERT_TAIL(&env->breakpoints, bp, entry);
1518 breakpoint_invalidate(env, pc);
1520 if (breakpoint)
1521 *breakpoint = bp;
1522 return 0;
1523 #else
1524 return -ENOSYS;
1525 #endif
1528 /* Remove a specific breakpoint. */
1529 int cpu_breakpoint_remove(CPUState *env, target_ulong pc, int flags)
1531 #if defined(TARGET_HAS_ICE)
1532 CPUBreakpoint *bp;
1534 QTAILQ_FOREACH(bp, &env->breakpoints, entry) {
1535 if (bp->pc == pc && bp->flags == flags) {
1536 cpu_breakpoint_remove_by_ref(env, bp);
1537 return 0;
1540 return -ENOENT;
1541 #else
1542 return -ENOSYS;
1543 #endif
1546 /* Remove a specific breakpoint by reference. */
1547 void cpu_breakpoint_remove_by_ref(CPUState *env, CPUBreakpoint *breakpoint)
1549 #if defined(TARGET_HAS_ICE)
1550 QTAILQ_REMOVE(&env->breakpoints, breakpoint, entry);
1552 breakpoint_invalidate(env, breakpoint->pc);
1554 g_free(breakpoint);
1555 #endif
1558 /* Remove all matching breakpoints. */
1559 void cpu_breakpoint_remove_all(CPUState *env, int mask)
1561 #if defined(TARGET_HAS_ICE)
1562 CPUBreakpoint *bp, *next;
1564 QTAILQ_FOREACH_SAFE(bp, &env->breakpoints, entry, next) {
1565 if (bp->flags & mask)
1566 cpu_breakpoint_remove_by_ref(env, bp);
1568 #endif
1571 /* enable or disable single step mode. EXCP_DEBUG is returned by the
1572 CPU loop after each instruction */
1573 void cpu_single_step(CPUState *env, int enabled)
1575 #if defined(TARGET_HAS_ICE)
1576 if (env->singlestep_enabled != enabled) {
1577 env->singlestep_enabled = enabled;
1578 if (kvm_enabled())
1579 kvm_update_guest_debug(env, 0);
1580 else {
1581 /* must flush all the translated code to avoid inconsistencies */
1582 /* XXX: only flush what is necessary */
1583 tb_flush(env);
1586 #endif
1589 /* enable or disable low levels log */
1590 void cpu_set_log(int log_flags)
1592 loglevel = log_flags;
1593 if (loglevel && !logfile) {
1594 logfile = fopen(logfilename, log_append ? "a" : "w");
1595 if (!logfile) {
1596 perror(logfilename);
1597 _exit(1);
1599 #if !defined(CONFIG_SOFTMMU)
1600 /* must avoid mmap() usage of glibc by setting a buffer "by hand" */
1602 static char logfile_buf[4096];
1603 setvbuf(logfile, logfile_buf, _IOLBF, sizeof(logfile_buf));
1605 #elif defined(_WIN32)
1606 /* Win32 doesn't support line-buffering, so use unbuffered output. */
1607 setvbuf(logfile, NULL, _IONBF, 0);
1608 #else
1609 setvbuf(logfile, NULL, _IOLBF, 0);
1610 #endif
1611 log_append = 1;
1613 if (!loglevel && logfile) {
1614 fclose(logfile);
1615 logfile = NULL;
1619 void cpu_set_log_filename(const char *filename)
1621 logfilename = strdup(filename);
1622 if (logfile) {
1623 fclose(logfile);
1624 logfile = NULL;
1626 cpu_set_log(loglevel);
1629 static void cpu_unlink_tb(CPUState *env)
1631 /* FIXME: TB unchaining isn't SMP safe. For now just ignore the
1632 problem and hope the cpu will stop of its own accord. For userspace
1633 emulation this often isn't actually as bad as it sounds. Often
1634 signals are used primarily to interrupt blocking syscalls. */
1635 TranslationBlock *tb;
1636 static spinlock_t interrupt_lock = SPIN_LOCK_UNLOCKED;
1638 spin_lock(&interrupt_lock);
1639 tb = env->current_tb;
1640 /* if the cpu is currently executing code, we must unlink it and
1641 all the potentially executing TB */
1642 if (tb) {
1643 env->current_tb = NULL;
1644 tb_reset_jump_recursive(tb);
1646 spin_unlock(&interrupt_lock);
1649 #ifndef CONFIG_USER_ONLY
1650 /* mask must never be zero, except for A20 change call */
1651 static void tcg_handle_interrupt(CPUState *env, int mask)
1653 int old_mask;
1655 old_mask = env->interrupt_request;
1656 env->interrupt_request |= mask;
1659 * If called from iothread context, wake the target cpu in
1660 * case its halted.
1662 if (!qemu_cpu_is_self(env)) {
1663 qemu_cpu_kick(env);
1664 return;
1667 if (use_icount) {
1668 env->icount_decr.u16.high = 0xffff;
1669 if (!can_do_io(env)
1670 && (mask & ~old_mask) != 0) {
1671 cpu_abort(env, "Raised interrupt while not in I/O function");
1673 } else {
1674 cpu_unlink_tb(env);
1678 CPUInterruptHandler cpu_interrupt_handler = tcg_handle_interrupt;
1680 #else /* CONFIG_USER_ONLY */
1682 void cpu_interrupt(CPUState *env, int mask)
1684 env->interrupt_request |= mask;
1685 cpu_unlink_tb(env);
1687 #endif /* CONFIG_USER_ONLY */
1689 void cpu_reset_interrupt(CPUState *env, int mask)
1691 env->interrupt_request &= ~mask;
1694 void cpu_exit(CPUState *env)
1696 env->exit_request = 1;
1697 cpu_unlink_tb(env);
1700 const CPULogItem cpu_log_items[] = {
1701 { CPU_LOG_TB_OUT_ASM, "out_asm",
1702 "show generated host assembly code for each compiled TB" },
1703 { CPU_LOG_TB_IN_ASM, "in_asm",
1704 "show target assembly code for each compiled TB" },
1705 { CPU_LOG_TB_OP, "op",
1706 "show micro ops for each compiled TB" },
1707 { CPU_LOG_TB_OP_OPT, "op_opt",
1708 "show micro ops "
1709 #ifdef TARGET_I386
1710 "before eflags optimization and "
1711 #endif
1712 "after liveness analysis" },
1713 { CPU_LOG_INT, "int",
1714 "show interrupts/exceptions in short format" },
1715 { CPU_LOG_EXEC, "exec",
1716 "show trace before each executed TB (lots of logs)" },
1717 { CPU_LOG_TB_CPU, "cpu",
1718 "show CPU state before block translation" },
1719 #ifdef TARGET_I386
1720 { CPU_LOG_PCALL, "pcall",
1721 "show protected mode far calls/returns/exceptions" },
1722 { CPU_LOG_RESET, "cpu_reset",
1723 "show CPU state before CPU resets" },
1724 #endif
1725 #ifdef DEBUG_IOPORT
1726 { CPU_LOG_IOPORT, "ioport",
1727 "show all i/o ports accesses" },
1728 #endif
1729 { 0, NULL, NULL },
1732 #ifndef CONFIG_USER_ONLY
1733 static QLIST_HEAD(memory_client_list, CPUPhysMemoryClient) memory_client_list
1734 = QLIST_HEAD_INITIALIZER(memory_client_list);
1736 static void cpu_notify_set_memory(target_phys_addr_t start_addr,
1737 ram_addr_t size,
1738 ram_addr_t phys_offset,
1739 bool log_dirty)
1741 CPUPhysMemoryClient *client;
1742 QLIST_FOREACH(client, &memory_client_list, list) {
1743 client->set_memory(client, start_addr, size, phys_offset, log_dirty);
1747 static int cpu_notify_sync_dirty_bitmap(target_phys_addr_t start,
1748 target_phys_addr_t end)
1750 CPUPhysMemoryClient *client;
1751 QLIST_FOREACH(client, &memory_client_list, list) {
1752 int r = client->sync_dirty_bitmap(client, start, end);
1753 if (r < 0)
1754 return r;
1756 return 0;
1759 static int cpu_notify_migration_log(int enable)
1761 CPUPhysMemoryClient *client;
1762 QLIST_FOREACH(client, &memory_client_list, list) {
1763 int r = client->migration_log(client, enable);
1764 if (r < 0)
1765 return r;
1767 return 0;
1770 struct last_map {
1771 target_phys_addr_t start_addr;
1772 ram_addr_t size;
1773 ram_addr_t phys_offset;
1776 /* The l1_phys_map provides the upper P_L1_BITs of the guest physical
1777 * address. Each intermediate table provides the next L2_BITs of guest
1778 * physical address space. The number of levels vary based on host and
1779 * guest configuration, making it efficient to build the final guest
1780 * physical address by seeding the L1 offset and shifting and adding in
1781 * each L2 offset as we recurse through them. */
1782 static void phys_page_for_each_1(CPUPhysMemoryClient *client, int level,
1783 void **lp, target_phys_addr_t addr,
1784 struct last_map *map)
1786 int i;
1788 if (*lp == NULL) {
1789 return;
1791 if (level == 0) {
1792 PhysPageDesc *pd = *lp;
1793 addr <<= L2_BITS + TARGET_PAGE_BITS;
1794 for (i = 0; i < L2_SIZE; ++i) {
1795 if (pd[i].phys_offset != IO_MEM_UNASSIGNED) {
1796 target_phys_addr_t start_addr = addr | i << TARGET_PAGE_BITS;
1798 if (map->size &&
1799 start_addr == map->start_addr + map->size &&
1800 pd[i].phys_offset == map->phys_offset + map->size) {
1802 map->size += TARGET_PAGE_SIZE;
1803 continue;
1804 } else if (map->size) {
1805 client->set_memory(client, map->start_addr,
1806 map->size, map->phys_offset, false);
1809 map->start_addr = start_addr;
1810 map->size = TARGET_PAGE_SIZE;
1811 map->phys_offset = pd[i].phys_offset;
1814 } else {
1815 void **pp = *lp;
1816 for (i = 0; i < L2_SIZE; ++i) {
1817 phys_page_for_each_1(client, level - 1, pp + i,
1818 (addr << L2_BITS) | i, map);
1823 static void phys_page_for_each(CPUPhysMemoryClient *client)
1825 int i;
1826 struct last_map map = { };
1828 for (i = 0; i < P_L1_SIZE; ++i) {
1829 phys_page_for_each_1(client, P_L1_SHIFT / L2_BITS - 1,
1830 l1_phys_map + i, i, &map);
1832 if (map.size) {
1833 client->set_memory(client, map.start_addr, map.size, map.phys_offset,
1834 false);
1838 void cpu_register_phys_memory_client(CPUPhysMemoryClient *client)
1840 QLIST_INSERT_HEAD(&memory_client_list, client, list);
1841 phys_page_for_each(client);
1844 void cpu_unregister_phys_memory_client(CPUPhysMemoryClient *client)
1846 QLIST_REMOVE(client, list);
1848 #endif
1850 static int cmp1(const char *s1, int n, const char *s2)
1852 if (strlen(s2) != n)
1853 return 0;
1854 return memcmp(s1, s2, n) == 0;
1857 /* takes a comma separated list of log masks. Return 0 if error. */
1858 int cpu_str_to_log_mask(const char *str)
1860 const CPULogItem *item;
1861 int mask;
1862 const char *p, *p1;
1864 p = str;
1865 mask = 0;
1866 for(;;) {
1867 p1 = strchr(p, ',');
1868 if (!p1)
1869 p1 = p + strlen(p);
1870 if(cmp1(p,p1-p,"all")) {
1871 for(item = cpu_log_items; item->mask != 0; item++) {
1872 mask |= item->mask;
1874 } else {
1875 for(item = cpu_log_items; item->mask != 0; item++) {
1876 if (cmp1(p, p1 - p, item->name))
1877 goto found;
1879 return 0;
1881 found:
1882 mask |= item->mask;
1883 if (*p1 != ',')
1884 break;
1885 p = p1 + 1;
1887 return mask;
1890 void cpu_abort(CPUState *env, const char *fmt, ...)
1892 va_list ap;
1893 va_list ap2;
1895 va_start(ap, fmt);
1896 va_copy(ap2, ap);
1897 fprintf(stderr, "qemu: fatal: ");
1898 vfprintf(stderr, fmt, ap);
1899 fprintf(stderr, "\n");
1900 #ifdef TARGET_I386
1901 cpu_dump_state(env, stderr, fprintf, X86_DUMP_FPU | X86_DUMP_CCOP);
1902 #else
1903 cpu_dump_state(env, stderr, fprintf, 0);
1904 #endif
1905 if (qemu_log_enabled()) {
1906 qemu_log("qemu: fatal: ");
1907 qemu_log_vprintf(fmt, ap2);
1908 qemu_log("\n");
1909 #ifdef TARGET_I386
1910 log_cpu_state(env, X86_DUMP_FPU | X86_DUMP_CCOP);
1911 #else
1912 log_cpu_state(env, 0);
1913 #endif
1914 qemu_log_flush();
1915 qemu_log_close();
1917 va_end(ap2);
1918 va_end(ap);
1919 #if defined(CONFIG_USER_ONLY)
1921 struct sigaction act;
1922 sigfillset(&act.sa_mask);
1923 act.sa_handler = SIG_DFL;
1924 sigaction(SIGABRT, &act, NULL);
1926 #endif
1927 abort();
1930 CPUState *cpu_copy(CPUState *env)
1932 CPUState *new_env = cpu_init(env->cpu_model_str);
1933 CPUState *next_cpu = new_env->next_cpu;
1934 int cpu_index = new_env->cpu_index;
1935 #if defined(TARGET_HAS_ICE)
1936 CPUBreakpoint *bp;
1937 CPUWatchpoint *wp;
1938 #endif
1940 memcpy(new_env, env, sizeof(CPUState));
1942 /* Preserve chaining and index. */
1943 new_env->next_cpu = next_cpu;
1944 new_env->cpu_index = cpu_index;
1946 /* Clone all break/watchpoints.
1947 Note: Once we support ptrace with hw-debug register access, make sure
1948 BP_CPU break/watchpoints are handled correctly on clone. */
1949 QTAILQ_INIT(&env->breakpoints);
1950 QTAILQ_INIT(&env->watchpoints);
1951 #if defined(TARGET_HAS_ICE)
1952 QTAILQ_FOREACH(bp, &env->breakpoints, entry) {
1953 cpu_breakpoint_insert(new_env, bp->pc, bp->flags, NULL);
1955 QTAILQ_FOREACH(wp, &env->watchpoints, entry) {
1956 cpu_watchpoint_insert(new_env, wp->vaddr, (~wp->len_mask) + 1,
1957 wp->flags, NULL);
1959 #endif
1961 return new_env;
1964 #if !defined(CONFIG_USER_ONLY)
1966 static inline void tlb_flush_jmp_cache(CPUState *env, target_ulong addr)
1968 unsigned int i;
1970 /* Discard jump cache entries for any tb which might potentially
1971 overlap the flushed page. */
1972 i = tb_jmp_cache_hash_page(addr - TARGET_PAGE_SIZE);
1973 memset (&env->tb_jmp_cache[i], 0,
1974 TB_JMP_PAGE_SIZE * sizeof(TranslationBlock *));
1976 i = tb_jmp_cache_hash_page(addr);
1977 memset (&env->tb_jmp_cache[i], 0,
1978 TB_JMP_PAGE_SIZE * sizeof(TranslationBlock *));
1981 static CPUTLBEntry s_cputlb_empty_entry = {
1982 .addr_read = -1,
1983 .addr_write = -1,
1984 .addr_code = -1,
1985 .addend = -1,
1988 /* NOTE: if flush_global is true, also flush global entries (not
1989 implemented yet) */
1990 void tlb_flush(CPUState *env, int flush_global)
1992 int i;
1994 #if defined(DEBUG_TLB)
1995 printf("tlb_flush:\n");
1996 #endif
1997 /* must reset current TB so that interrupts cannot modify the
1998 links while we are modifying them */
1999 env->current_tb = NULL;
2001 for(i = 0; i < CPU_TLB_SIZE; i++) {
2002 int mmu_idx;
2003 for (mmu_idx = 0; mmu_idx < NB_MMU_MODES; mmu_idx++) {
2004 env->tlb_table[mmu_idx][i] = s_cputlb_empty_entry;
2008 memset (env->tb_jmp_cache, 0, TB_JMP_CACHE_SIZE * sizeof (void *));
2010 env->tlb_flush_addr = -1;
2011 env->tlb_flush_mask = 0;
2012 tlb_flush_count++;
2015 static inline void tlb_flush_entry(CPUTLBEntry *tlb_entry, target_ulong addr)
2017 if (addr == (tlb_entry->addr_read &
2018 (TARGET_PAGE_MASK | TLB_INVALID_MASK)) ||
2019 addr == (tlb_entry->addr_write &
2020 (TARGET_PAGE_MASK | TLB_INVALID_MASK)) ||
2021 addr == (tlb_entry->addr_code &
2022 (TARGET_PAGE_MASK | TLB_INVALID_MASK))) {
2023 *tlb_entry = s_cputlb_empty_entry;
2027 void tlb_flush_page(CPUState *env, target_ulong addr)
2029 int i;
2030 int mmu_idx;
2032 #if defined(DEBUG_TLB)
2033 printf("tlb_flush_page: " TARGET_FMT_lx "\n", addr);
2034 #endif
2035 /* Check if we need to flush due to large pages. */
2036 if ((addr & env->tlb_flush_mask) == env->tlb_flush_addr) {
2037 #if defined(DEBUG_TLB)
2038 printf("tlb_flush_page: forced full flush ("
2039 TARGET_FMT_lx "/" TARGET_FMT_lx ")\n",
2040 env->tlb_flush_addr, env->tlb_flush_mask);
2041 #endif
2042 tlb_flush(env, 1);
2043 return;
2045 /* must reset current TB so that interrupts cannot modify the
2046 links while we are modifying them */
2047 env->current_tb = NULL;
2049 addr &= TARGET_PAGE_MASK;
2050 i = (addr >> TARGET_PAGE_BITS) & (CPU_TLB_SIZE - 1);
2051 for (mmu_idx = 0; mmu_idx < NB_MMU_MODES; mmu_idx++)
2052 tlb_flush_entry(&env->tlb_table[mmu_idx][i], addr);
2054 tlb_flush_jmp_cache(env, addr);
2057 /* update the TLBs so that writes to code in the virtual page 'addr'
2058 can be detected */
2059 static void tlb_protect_code(ram_addr_t ram_addr)
2061 cpu_physical_memory_reset_dirty(ram_addr,
2062 ram_addr + TARGET_PAGE_SIZE,
2063 CODE_DIRTY_FLAG);
2066 /* update the TLB so that writes in physical page 'phys_addr' are no longer
2067 tested for self modifying code */
2068 static void tlb_unprotect_code_phys(CPUState *env, ram_addr_t ram_addr,
2069 target_ulong vaddr)
2071 cpu_physical_memory_set_dirty_flags(ram_addr, CODE_DIRTY_FLAG);
2074 static inline void tlb_reset_dirty_range(CPUTLBEntry *tlb_entry,
2075 unsigned long start, unsigned long length)
2077 unsigned long addr;
2078 if ((tlb_entry->addr_write & ~TARGET_PAGE_MASK) == IO_MEM_RAM) {
2079 addr = (tlb_entry->addr_write & TARGET_PAGE_MASK) + tlb_entry->addend;
2080 if ((addr - start) < length) {
2081 tlb_entry->addr_write = (tlb_entry->addr_write & TARGET_PAGE_MASK) | TLB_NOTDIRTY;
2086 /* Note: start and end must be within the same ram block. */
2087 void cpu_physical_memory_reset_dirty(ram_addr_t start, ram_addr_t end,
2088 int dirty_flags)
2090 CPUState *env;
2091 unsigned long length, start1;
2092 int i;
2094 start &= TARGET_PAGE_MASK;
2095 end = TARGET_PAGE_ALIGN(end);
2097 length = end - start;
2098 if (length == 0)
2099 return;
2100 cpu_physical_memory_mask_dirty_range(start, length, dirty_flags);
2102 /* we modify the TLB cache so that the dirty bit will be set again
2103 when accessing the range */
2104 start1 = (unsigned long)qemu_safe_ram_ptr(start);
2105 /* Check that we don't span multiple blocks - this breaks the
2106 address comparisons below. */
2107 if ((unsigned long)qemu_safe_ram_ptr(end - 1) - start1
2108 != (end - 1) - start) {
2109 abort();
2112 for(env = first_cpu; env != NULL; env = env->next_cpu) {
2113 int mmu_idx;
2114 for (mmu_idx = 0; mmu_idx < NB_MMU_MODES; mmu_idx++) {
2115 for(i = 0; i < CPU_TLB_SIZE; i++)
2116 tlb_reset_dirty_range(&env->tlb_table[mmu_idx][i],
2117 start1, length);
2122 int cpu_physical_memory_set_dirty_tracking(int enable)
2124 int ret = 0;
2125 in_migration = enable;
2126 ret = cpu_notify_migration_log(!!enable);
2127 return ret;
2130 int cpu_physical_memory_get_dirty_tracking(void)
2132 return in_migration;
2135 int cpu_physical_sync_dirty_bitmap(target_phys_addr_t start_addr,
2136 target_phys_addr_t end_addr)
2138 int ret;
2140 ret = cpu_notify_sync_dirty_bitmap(start_addr, end_addr);
2141 return ret;
2144 int cpu_physical_log_start(target_phys_addr_t start_addr,
2145 ram_addr_t size)
2147 CPUPhysMemoryClient *client;
2148 QLIST_FOREACH(client, &memory_client_list, list) {
2149 if (client->log_start) {
2150 int r = client->log_start(client, start_addr, size);
2151 if (r < 0) {
2152 return r;
2156 return 0;
2159 int cpu_physical_log_stop(target_phys_addr_t start_addr,
2160 ram_addr_t size)
2162 CPUPhysMemoryClient *client;
2163 QLIST_FOREACH(client, &memory_client_list, list) {
2164 if (client->log_stop) {
2165 int r = client->log_stop(client, start_addr, size);
2166 if (r < 0) {
2167 return r;
2171 return 0;
2174 static inline void tlb_update_dirty(CPUTLBEntry *tlb_entry)
2176 ram_addr_t ram_addr;
2177 void *p;
2179 if ((tlb_entry->addr_write & ~TARGET_PAGE_MASK) == IO_MEM_RAM) {
2180 p = (void *)(unsigned long)((tlb_entry->addr_write & TARGET_PAGE_MASK)
2181 + tlb_entry->addend);
2182 ram_addr = qemu_ram_addr_from_host_nofail(p);
2183 if (!cpu_physical_memory_is_dirty(ram_addr)) {
2184 tlb_entry->addr_write |= TLB_NOTDIRTY;
2189 /* update the TLB according to the current state of the dirty bits */
2190 void cpu_tlb_update_dirty(CPUState *env)
2192 int i;
2193 int mmu_idx;
2194 for (mmu_idx = 0; mmu_idx < NB_MMU_MODES; mmu_idx++) {
2195 for(i = 0; i < CPU_TLB_SIZE; i++)
2196 tlb_update_dirty(&env->tlb_table[mmu_idx][i]);
2200 static inline void tlb_set_dirty1(CPUTLBEntry *tlb_entry, target_ulong vaddr)
2202 if (tlb_entry->addr_write == (vaddr | TLB_NOTDIRTY))
2203 tlb_entry->addr_write = vaddr;
2206 /* update the TLB corresponding to virtual page vaddr
2207 so that it is no longer dirty */
2208 static inline void tlb_set_dirty(CPUState *env, target_ulong vaddr)
2210 int i;
2211 int mmu_idx;
2213 vaddr &= TARGET_PAGE_MASK;
2214 i = (vaddr >> TARGET_PAGE_BITS) & (CPU_TLB_SIZE - 1);
2215 for (mmu_idx = 0; mmu_idx < NB_MMU_MODES; mmu_idx++)
2216 tlb_set_dirty1(&env->tlb_table[mmu_idx][i], vaddr);
2219 /* Our TLB does not support large pages, so remember the area covered by
2220 large pages and trigger a full TLB flush if these are invalidated. */
2221 static void tlb_add_large_page(CPUState *env, target_ulong vaddr,
2222 target_ulong size)
2224 target_ulong mask = ~(size - 1);
2226 if (env->tlb_flush_addr == (target_ulong)-1) {
2227 env->tlb_flush_addr = vaddr & mask;
2228 env->tlb_flush_mask = mask;
2229 return;
2231 /* Extend the existing region to include the new page.
2232 This is a compromise between unnecessary flushes and the cost
2233 of maintaining a full variable size TLB. */
2234 mask &= env->tlb_flush_mask;
2235 while (((env->tlb_flush_addr ^ vaddr) & mask) != 0) {
2236 mask <<= 1;
2238 env->tlb_flush_addr &= mask;
2239 env->tlb_flush_mask = mask;
2242 /* Add a new TLB entry. At most one entry for a given virtual address
2243 is permitted. Only a single TARGET_PAGE_SIZE region is mapped, the
2244 supplied size is only used by tlb_flush_page. */
2245 void tlb_set_page(CPUState *env, target_ulong vaddr,
2246 target_phys_addr_t paddr, int prot,
2247 int mmu_idx, target_ulong size)
2249 PhysPageDesc *p;
2250 unsigned long pd;
2251 unsigned int index;
2252 target_ulong address;
2253 target_ulong code_address;
2254 unsigned long addend;
2255 CPUTLBEntry *te;
2256 CPUWatchpoint *wp;
2257 target_phys_addr_t iotlb;
2259 assert(size >= TARGET_PAGE_SIZE);
2260 if (size != TARGET_PAGE_SIZE) {
2261 tlb_add_large_page(env, vaddr, size);
2263 p = phys_page_find(paddr >> TARGET_PAGE_BITS);
2264 if (!p) {
2265 pd = IO_MEM_UNASSIGNED;
2266 } else {
2267 pd = p->phys_offset;
2269 #if defined(DEBUG_TLB)
2270 printf("tlb_set_page: vaddr=" TARGET_FMT_lx " paddr=0x" TARGET_FMT_plx
2271 " prot=%x idx=%d pd=0x%08lx\n",
2272 vaddr, paddr, prot, mmu_idx, pd);
2273 #endif
2275 address = vaddr;
2276 if ((pd & ~TARGET_PAGE_MASK) > IO_MEM_ROM && !(pd & IO_MEM_ROMD)) {
2277 /* IO memory case (romd handled later) */
2278 address |= TLB_MMIO;
2280 addend = (unsigned long)qemu_get_ram_ptr(pd & TARGET_PAGE_MASK);
2281 if ((pd & ~TARGET_PAGE_MASK) <= IO_MEM_ROM) {
2282 /* Normal RAM. */
2283 iotlb = pd & TARGET_PAGE_MASK;
2284 if ((pd & ~TARGET_PAGE_MASK) == IO_MEM_RAM)
2285 iotlb |= IO_MEM_NOTDIRTY;
2286 else
2287 iotlb |= IO_MEM_ROM;
2288 } else {
2289 /* IO handlers are currently passed a physical address.
2290 It would be nice to pass an offset from the base address
2291 of that region. This would avoid having to special case RAM,
2292 and avoid full address decoding in every device.
2293 We can't use the high bits of pd for this because
2294 IO_MEM_ROMD uses these as a ram address. */
2295 iotlb = (pd & ~TARGET_PAGE_MASK);
2296 if (p) {
2297 iotlb += p->region_offset;
2298 } else {
2299 iotlb += paddr;
2303 code_address = address;
2304 /* Make accesses to pages with watchpoints go via the
2305 watchpoint trap routines. */
2306 QTAILQ_FOREACH(wp, &env->watchpoints, entry) {
2307 if (vaddr == (wp->vaddr & TARGET_PAGE_MASK)) {
2308 /* Avoid trapping reads of pages with a write breakpoint. */
2309 if ((prot & PAGE_WRITE) || (wp->flags & BP_MEM_READ)) {
2310 iotlb = io_mem_watch + paddr;
2311 address |= TLB_MMIO;
2312 break;
2317 index = (vaddr >> TARGET_PAGE_BITS) & (CPU_TLB_SIZE - 1);
2318 env->iotlb[mmu_idx][index] = iotlb - vaddr;
2319 te = &env->tlb_table[mmu_idx][index];
2320 te->addend = addend - vaddr;
2321 if (prot & PAGE_READ) {
2322 te->addr_read = address;
2323 } else {
2324 te->addr_read = -1;
2327 if (prot & PAGE_EXEC) {
2328 te->addr_code = code_address;
2329 } else {
2330 te->addr_code = -1;
2332 if (prot & PAGE_WRITE) {
2333 if ((pd & ~TARGET_PAGE_MASK) == IO_MEM_ROM ||
2334 (pd & IO_MEM_ROMD)) {
2335 /* Write access calls the I/O callback. */
2336 te->addr_write = address | TLB_MMIO;
2337 } else if ((pd & ~TARGET_PAGE_MASK) == IO_MEM_RAM &&
2338 !cpu_physical_memory_is_dirty(pd)) {
2339 te->addr_write = address | TLB_NOTDIRTY;
2340 } else {
2341 te->addr_write = address;
2343 } else {
2344 te->addr_write = -1;
2348 #else
2350 void tlb_flush(CPUState *env, int flush_global)
2354 void tlb_flush_page(CPUState *env, target_ulong addr)
2359 * Walks guest process memory "regions" one by one
2360 * and calls callback function 'fn' for each region.
2363 struct walk_memory_regions_data
2365 walk_memory_regions_fn fn;
2366 void *priv;
2367 unsigned long start;
2368 int prot;
2371 static int walk_memory_regions_end(struct walk_memory_regions_data *data,
2372 abi_ulong end, int new_prot)
2374 if (data->start != -1ul) {
2375 int rc = data->fn(data->priv, data->start, end, data->prot);
2376 if (rc != 0) {
2377 return rc;
2381 data->start = (new_prot ? end : -1ul);
2382 data->prot = new_prot;
2384 return 0;
2387 static int walk_memory_regions_1(struct walk_memory_regions_data *data,
2388 abi_ulong base, int level, void **lp)
2390 abi_ulong pa;
2391 int i, rc;
2393 if (*lp == NULL) {
2394 return walk_memory_regions_end(data, base, 0);
2397 if (level == 0) {
2398 PageDesc *pd = *lp;
2399 for (i = 0; i < L2_SIZE; ++i) {
2400 int prot = pd[i].flags;
2402 pa = base | (i << TARGET_PAGE_BITS);
2403 if (prot != data->prot) {
2404 rc = walk_memory_regions_end(data, pa, prot);
2405 if (rc != 0) {
2406 return rc;
2410 } else {
2411 void **pp = *lp;
2412 for (i = 0; i < L2_SIZE; ++i) {
2413 pa = base | ((abi_ulong)i <<
2414 (TARGET_PAGE_BITS + L2_BITS * level));
2415 rc = walk_memory_regions_1(data, pa, level - 1, pp + i);
2416 if (rc != 0) {
2417 return rc;
2422 return 0;
2425 int walk_memory_regions(void *priv, walk_memory_regions_fn fn)
2427 struct walk_memory_regions_data data;
2428 unsigned long i;
2430 data.fn = fn;
2431 data.priv = priv;
2432 data.start = -1ul;
2433 data.prot = 0;
2435 for (i = 0; i < V_L1_SIZE; i++) {
2436 int rc = walk_memory_regions_1(&data, (abi_ulong)i << V_L1_SHIFT,
2437 V_L1_SHIFT / L2_BITS - 1, l1_map + i);
2438 if (rc != 0) {
2439 return rc;
2443 return walk_memory_regions_end(&data, 0, 0);
2446 static int dump_region(void *priv, abi_ulong start,
2447 abi_ulong end, unsigned long prot)
2449 FILE *f = (FILE *)priv;
2451 (void) fprintf(f, TARGET_ABI_FMT_lx"-"TARGET_ABI_FMT_lx
2452 " "TARGET_ABI_FMT_lx" %c%c%c\n",
2453 start, end, end - start,
2454 ((prot & PAGE_READ) ? 'r' : '-'),
2455 ((prot & PAGE_WRITE) ? 'w' : '-'),
2456 ((prot & PAGE_EXEC) ? 'x' : '-'));
2458 return (0);
2461 /* dump memory mappings */
2462 void page_dump(FILE *f)
2464 (void) fprintf(f, "%-8s %-8s %-8s %s\n",
2465 "start", "end", "size", "prot");
2466 walk_memory_regions(f, dump_region);
2469 int page_get_flags(target_ulong address)
2471 PageDesc *p;
2473 p = page_find(address >> TARGET_PAGE_BITS);
2474 if (!p)
2475 return 0;
2476 return p->flags;
2479 /* Modify the flags of a page and invalidate the code if necessary.
2480 The flag PAGE_WRITE_ORG is positioned automatically depending
2481 on PAGE_WRITE. The mmap_lock should already be held. */
2482 void page_set_flags(target_ulong start, target_ulong end, int flags)
2484 target_ulong addr, len;
2486 /* This function should never be called with addresses outside the
2487 guest address space. If this assert fires, it probably indicates
2488 a missing call to h2g_valid. */
2489 #if TARGET_ABI_BITS > L1_MAP_ADDR_SPACE_BITS
2490 assert(end < ((abi_ulong)1 << L1_MAP_ADDR_SPACE_BITS));
2491 #endif
2492 assert(start < end);
2494 start = start & TARGET_PAGE_MASK;
2495 end = TARGET_PAGE_ALIGN(end);
2497 if (flags & PAGE_WRITE) {
2498 flags |= PAGE_WRITE_ORG;
2501 for (addr = start, len = end - start;
2502 len != 0;
2503 len -= TARGET_PAGE_SIZE, addr += TARGET_PAGE_SIZE) {
2504 PageDesc *p = page_find_alloc(addr >> TARGET_PAGE_BITS, 1);
2506 /* If the write protection bit is set, then we invalidate
2507 the code inside. */
2508 if (!(p->flags & PAGE_WRITE) &&
2509 (flags & PAGE_WRITE) &&
2510 p->first_tb) {
2511 tb_invalidate_phys_page(addr, 0, NULL);
2513 p->flags = flags;
2517 int page_check_range(target_ulong start, target_ulong len, int flags)
2519 PageDesc *p;
2520 target_ulong end;
2521 target_ulong addr;
2523 /* This function should never be called with addresses outside the
2524 guest address space. If this assert fires, it probably indicates
2525 a missing call to h2g_valid. */
2526 #if TARGET_ABI_BITS > L1_MAP_ADDR_SPACE_BITS
2527 assert(start < ((abi_ulong)1 << L1_MAP_ADDR_SPACE_BITS));
2528 #endif
2530 if (len == 0) {
2531 return 0;
2533 if (start + len - 1 < start) {
2534 /* We've wrapped around. */
2535 return -1;
2538 end = TARGET_PAGE_ALIGN(start+len); /* must do before we loose bits in the next step */
2539 start = start & TARGET_PAGE_MASK;
2541 for (addr = start, len = end - start;
2542 len != 0;
2543 len -= TARGET_PAGE_SIZE, addr += TARGET_PAGE_SIZE) {
2544 p = page_find(addr >> TARGET_PAGE_BITS);
2545 if( !p )
2546 return -1;
2547 if( !(p->flags & PAGE_VALID) )
2548 return -1;
2550 if ((flags & PAGE_READ) && !(p->flags & PAGE_READ))
2551 return -1;
2552 if (flags & PAGE_WRITE) {
2553 if (!(p->flags & PAGE_WRITE_ORG))
2554 return -1;
2555 /* unprotect the page if it was put read-only because it
2556 contains translated code */
2557 if (!(p->flags & PAGE_WRITE)) {
2558 if (!page_unprotect(addr, 0, NULL))
2559 return -1;
2561 return 0;
2564 return 0;
2567 /* called from signal handler: invalidate the code and unprotect the
2568 page. Return TRUE if the fault was successfully handled. */
2569 int page_unprotect(target_ulong address, unsigned long pc, void *puc)
2571 unsigned int prot;
2572 PageDesc *p;
2573 target_ulong host_start, host_end, addr;
2575 /* Technically this isn't safe inside a signal handler. However we
2576 know this only ever happens in a synchronous SEGV handler, so in
2577 practice it seems to be ok. */
2578 mmap_lock();
2580 p = page_find(address >> TARGET_PAGE_BITS);
2581 if (!p) {
2582 mmap_unlock();
2583 return 0;
2586 /* if the page was really writable, then we change its
2587 protection back to writable */
2588 if ((p->flags & PAGE_WRITE_ORG) && !(p->flags & PAGE_WRITE)) {
2589 host_start = address & qemu_host_page_mask;
2590 host_end = host_start + qemu_host_page_size;
2592 prot = 0;
2593 for (addr = host_start ; addr < host_end ; addr += TARGET_PAGE_SIZE) {
2594 p = page_find(addr >> TARGET_PAGE_BITS);
2595 p->flags |= PAGE_WRITE;
2596 prot |= p->flags;
2598 /* and since the content will be modified, we must invalidate
2599 the corresponding translated code. */
2600 tb_invalidate_phys_page(addr, pc, puc);
2601 #ifdef DEBUG_TB_CHECK
2602 tb_invalidate_check(addr);
2603 #endif
2605 mprotect((void *)g2h(host_start), qemu_host_page_size,
2606 prot & PAGE_BITS);
2608 mmap_unlock();
2609 return 1;
2611 mmap_unlock();
2612 return 0;
2615 static inline void tlb_set_dirty(CPUState *env,
2616 unsigned long addr, target_ulong vaddr)
2619 #endif /* defined(CONFIG_USER_ONLY) */
2621 #if !defined(CONFIG_USER_ONLY)
2623 #define SUBPAGE_IDX(addr) ((addr) & ~TARGET_PAGE_MASK)
2624 typedef struct subpage_t {
2625 target_phys_addr_t base;
2626 ram_addr_t sub_io_index[TARGET_PAGE_SIZE];
2627 ram_addr_t region_offset[TARGET_PAGE_SIZE];
2628 } subpage_t;
2630 static int subpage_register (subpage_t *mmio, uint32_t start, uint32_t end,
2631 ram_addr_t memory, ram_addr_t region_offset);
2632 static subpage_t *subpage_init (target_phys_addr_t base, ram_addr_t *phys,
2633 ram_addr_t orig_memory,
2634 ram_addr_t region_offset);
2635 #define CHECK_SUBPAGE(addr, start_addr, start_addr2, end_addr, end_addr2, \
2636 need_subpage) \
2637 do { \
2638 if (addr > start_addr) \
2639 start_addr2 = 0; \
2640 else { \
2641 start_addr2 = start_addr & ~TARGET_PAGE_MASK; \
2642 if (start_addr2 > 0) \
2643 need_subpage = 1; \
2646 if ((start_addr + orig_size) - addr >= TARGET_PAGE_SIZE) \
2647 end_addr2 = TARGET_PAGE_SIZE - 1; \
2648 else { \
2649 end_addr2 = (start_addr + orig_size - 1) & ~TARGET_PAGE_MASK; \
2650 if (end_addr2 < TARGET_PAGE_SIZE - 1) \
2651 need_subpage = 1; \
2653 } while (0)
2655 /* register physical memory.
2656 For RAM, 'size' must be a multiple of the target page size.
2657 If (phys_offset & ~TARGET_PAGE_MASK) != 0, then it is an
2658 io memory page. The address used when calling the IO function is
2659 the offset from the start of the region, plus region_offset. Both
2660 start_addr and region_offset are rounded down to a page boundary
2661 before calculating this offset. This should not be a problem unless
2662 the low bits of start_addr and region_offset differ. */
2663 void cpu_register_physical_memory_log(target_phys_addr_t start_addr,
2664 ram_addr_t size,
2665 ram_addr_t phys_offset,
2666 ram_addr_t region_offset,
2667 bool log_dirty)
2669 target_phys_addr_t addr, end_addr;
2670 PhysPageDesc *p;
2671 CPUState *env;
2672 ram_addr_t orig_size = size;
2673 subpage_t *subpage;
2675 assert(size);
2676 cpu_notify_set_memory(start_addr, size, phys_offset, log_dirty);
2678 if (phys_offset == IO_MEM_UNASSIGNED) {
2679 region_offset = start_addr;
2681 region_offset &= TARGET_PAGE_MASK;
2682 size = (size + TARGET_PAGE_SIZE - 1) & TARGET_PAGE_MASK;
2683 end_addr = start_addr + (target_phys_addr_t)size;
2685 addr = start_addr;
2686 do {
2687 p = phys_page_find(addr >> TARGET_PAGE_BITS);
2688 if (p && p->phys_offset != IO_MEM_UNASSIGNED) {
2689 ram_addr_t orig_memory = p->phys_offset;
2690 target_phys_addr_t start_addr2, end_addr2;
2691 int need_subpage = 0;
2693 CHECK_SUBPAGE(addr, start_addr, start_addr2, end_addr, end_addr2,
2694 need_subpage);
2695 if (need_subpage) {
2696 if (!(orig_memory & IO_MEM_SUBPAGE)) {
2697 subpage = subpage_init((addr & TARGET_PAGE_MASK),
2698 &p->phys_offset, orig_memory,
2699 p->region_offset);
2700 } else {
2701 subpage = io_mem_opaque[(orig_memory & ~TARGET_PAGE_MASK)
2702 >> IO_MEM_SHIFT];
2704 subpage_register(subpage, start_addr2, end_addr2, phys_offset,
2705 region_offset);
2706 p->region_offset = 0;
2707 } else {
2708 p->phys_offset = phys_offset;
2709 if ((phys_offset & ~TARGET_PAGE_MASK) <= IO_MEM_ROM ||
2710 (phys_offset & IO_MEM_ROMD))
2711 phys_offset += TARGET_PAGE_SIZE;
2713 } else {
2714 p = phys_page_find_alloc(addr >> TARGET_PAGE_BITS, 1);
2715 p->phys_offset = phys_offset;
2716 p->region_offset = region_offset;
2717 if ((phys_offset & ~TARGET_PAGE_MASK) <= IO_MEM_ROM ||
2718 (phys_offset & IO_MEM_ROMD)) {
2719 phys_offset += TARGET_PAGE_SIZE;
2720 } else {
2721 target_phys_addr_t start_addr2, end_addr2;
2722 int need_subpage = 0;
2724 CHECK_SUBPAGE(addr, start_addr, start_addr2, end_addr,
2725 end_addr2, need_subpage);
2727 if (need_subpage) {
2728 subpage = subpage_init((addr & TARGET_PAGE_MASK),
2729 &p->phys_offset, IO_MEM_UNASSIGNED,
2730 addr & TARGET_PAGE_MASK);
2731 subpage_register(subpage, start_addr2, end_addr2,
2732 phys_offset, region_offset);
2733 p->region_offset = 0;
2737 region_offset += TARGET_PAGE_SIZE;
2738 addr += TARGET_PAGE_SIZE;
2739 } while (addr != end_addr);
2741 /* since each CPU stores ram addresses in its TLB cache, we must
2742 reset the modified entries */
2743 /* XXX: slow ! */
2744 for(env = first_cpu; env != NULL; env = env->next_cpu) {
2745 tlb_flush(env, 1);
2749 /* XXX: temporary until new memory mapping API */
2750 ram_addr_t cpu_get_physical_page_desc(target_phys_addr_t addr)
2752 PhysPageDesc *p;
2754 p = phys_page_find(addr >> TARGET_PAGE_BITS);
2755 if (!p)
2756 return IO_MEM_UNASSIGNED;
2757 return p->phys_offset;
2760 void qemu_register_coalesced_mmio(target_phys_addr_t addr, ram_addr_t size)
2762 if (kvm_enabled())
2763 kvm_coalesce_mmio_region(addr, size);
2766 void qemu_unregister_coalesced_mmio(target_phys_addr_t addr, ram_addr_t size)
2768 if (kvm_enabled())
2769 kvm_uncoalesce_mmio_region(addr, size);
2772 void qemu_flush_coalesced_mmio_buffer(void)
2774 if (kvm_enabled())
2775 kvm_flush_coalesced_mmio_buffer();
2778 #if defined(__linux__) && !defined(TARGET_S390X)
2780 #include <sys/vfs.h>
2782 #define HUGETLBFS_MAGIC 0x958458f6
2784 static long gethugepagesize(const char *path)
2786 struct statfs fs;
2787 int ret;
2789 do {
2790 ret = statfs(path, &fs);
2791 } while (ret != 0 && errno == EINTR);
2793 if (ret != 0) {
2794 perror(path);
2795 return 0;
2798 if (fs.f_type != HUGETLBFS_MAGIC)
2799 fprintf(stderr, "Warning: path not on HugeTLBFS: %s\n", path);
2801 return fs.f_bsize;
2804 static void *file_ram_alloc(RAMBlock *block,
2805 ram_addr_t memory,
2806 const char *path)
2808 char *filename;
2809 void *area;
2810 int fd;
2811 #ifdef MAP_POPULATE
2812 int flags;
2813 #endif
2814 unsigned long hpagesize;
2816 hpagesize = gethugepagesize(path);
2817 if (!hpagesize) {
2818 return NULL;
2821 if (memory < hpagesize) {
2822 return NULL;
2825 if (kvm_enabled() && !kvm_has_sync_mmu()) {
2826 fprintf(stderr, "host lacks kvm mmu notifiers, -mem-path unsupported\n");
2827 return NULL;
2830 if (asprintf(&filename, "%s/qemu_back_mem.XXXXXX", path) == -1) {
2831 return NULL;
2834 fd = mkstemp(filename);
2835 if (fd < 0) {
2836 perror("unable to create backing store for hugepages");
2837 free(filename);
2838 return NULL;
2840 unlink(filename);
2841 free(filename);
2843 memory = (memory+hpagesize-1) & ~(hpagesize-1);
2846 * ftruncate is not supported by hugetlbfs in older
2847 * hosts, so don't bother bailing out on errors.
2848 * If anything goes wrong with it under other filesystems,
2849 * mmap will fail.
2851 if (ftruncate(fd, memory))
2852 perror("ftruncate");
2854 #ifdef MAP_POPULATE
2855 /* NB: MAP_POPULATE won't exhaustively alloc all phys pages in the case
2856 * MAP_PRIVATE is requested. For mem_prealloc we mmap as MAP_SHARED
2857 * to sidestep this quirk.
2859 flags = mem_prealloc ? MAP_POPULATE | MAP_SHARED : MAP_PRIVATE;
2860 area = mmap(0, memory, PROT_READ | PROT_WRITE, flags, fd, 0);
2861 #else
2862 area = mmap(0, memory, PROT_READ | PROT_WRITE, MAP_PRIVATE, fd, 0);
2863 #endif
2864 if (area == MAP_FAILED) {
2865 perror("file_ram_alloc: can't mmap RAM pages");
2866 close(fd);
2867 return (NULL);
2869 block->fd = fd;
2870 return area;
2872 #endif
2874 static ram_addr_t find_ram_offset(ram_addr_t size)
2876 RAMBlock *block, *next_block;
2877 ram_addr_t offset = RAM_ADDR_MAX, mingap = RAM_ADDR_MAX;
2879 if (QLIST_EMPTY(&ram_list.blocks))
2880 return 0;
2882 QLIST_FOREACH(block, &ram_list.blocks, next) {
2883 ram_addr_t end, next = RAM_ADDR_MAX;
2885 end = block->offset + block->length;
2887 QLIST_FOREACH(next_block, &ram_list.blocks, next) {
2888 if (next_block->offset >= end) {
2889 next = MIN(next, next_block->offset);
2892 if (next - end >= size && next - end < mingap) {
2893 offset = end;
2894 mingap = next - end;
2898 if (offset == RAM_ADDR_MAX) {
2899 fprintf(stderr, "Failed to find gap of requested size: %" PRIu64 "\n",
2900 (uint64_t)size);
2901 abort();
2904 return offset;
2907 static ram_addr_t last_ram_offset(void)
2909 RAMBlock *block;
2910 ram_addr_t last = 0;
2912 QLIST_FOREACH(block, &ram_list.blocks, next)
2913 last = MAX(last, block->offset + block->length);
2915 return last;
2918 ram_addr_t qemu_ram_alloc_from_ptr(DeviceState *dev, const char *name,
2919 ram_addr_t size, void *host)
2921 RAMBlock *new_block, *block;
2923 size = TARGET_PAGE_ALIGN(size);
2924 new_block = g_malloc0(sizeof(*new_block));
2926 if (dev && dev->parent_bus && dev->parent_bus->info->get_dev_path) {
2927 char *id = dev->parent_bus->info->get_dev_path(dev);
2928 if (id) {
2929 snprintf(new_block->idstr, sizeof(new_block->idstr), "%s/", id);
2930 g_free(id);
2933 pstrcat(new_block->idstr, sizeof(new_block->idstr), name);
2935 QLIST_FOREACH(block, &ram_list.blocks, next) {
2936 if (!strcmp(block->idstr, new_block->idstr)) {
2937 fprintf(stderr, "RAMBlock \"%s\" already registered, abort!\n",
2938 new_block->idstr);
2939 abort();
2943 new_block->offset = find_ram_offset(size);
2944 if (host) {
2945 new_block->host = host;
2946 new_block->flags |= RAM_PREALLOC_MASK;
2947 } else {
2948 if (mem_path) {
2949 #if defined (__linux__) && !defined(TARGET_S390X)
2950 new_block->host = file_ram_alloc(new_block, size, mem_path);
2951 if (!new_block->host) {
2952 new_block->host = qemu_vmalloc(size);
2953 qemu_madvise(new_block->host, size, QEMU_MADV_MERGEABLE);
2955 #else
2956 fprintf(stderr, "-mem-path option unsupported\n");
2957 exit(1);
2958 #endif
2959 } else {
2960 #if defined(TARGET_S390X) && defined(CONFIG_KVM)
2961 /* S390 KVM requires the topmost vma of the RAM to be smaller than
2962 an system defined value, which is at least 256GB. Larger systems
2963 have larger values. We put the guest between the end of data
2964 segment (system break) and this value. We use 32GB as a base to
2965 have enough room for the system break to grow. */
2966 new_block->host = mmap((void*)0x800000000, size,
2967 PROT_EXEC|PROT_READ|PROT_WRITE,
2968 MAP_SHARED | MAP_ANONYMOUS | MAP_FIXED, -1, 0);
2969 if (new_block->host == MAP_FAILED) {
2970 fprintf(stderr, "Allocating RAM failed\n");
2971 abort();
2973 #else
2974 if (xen_enabled()) {
2975 xen_ram_alloc(new_block->offset, size);
2976 } else {
2977 new_block->host = qemu_vmalloc(size);
2979 #endif
2980 qemu_madvise(new_block->host, size, QEMU_MADV_MERGEABLE);
2983 new_block->length = size;
2985 QLIST_INSERT_HEAD(&ram_list.blocks, new_block, next);
2987 ram_list.phys_dirty = g_realloc(ram_list.phys_dirty,
2988 last_ram_offset() >> TARGET_PAGE_BITS);
2989 memset(ram_list.phys_dirty + (new_block->offset >> TARGET_PAGE_BITS),
2990 0xff, size >> TARGET_PAGE_BITS);
2992 if (kvm_enabled())
2993 kvm_setup_guest_memory(new_block->host, size);
2995 return new_block->offset;
2998 ram_addr_t qemu_ram_alloc(DeviceState *dev, const char *name, ram_addr_t size)
3000 return qemu_ram_alloc_from_ptr(dev, name, size, NULL);
3003 void qemu_ram_free_from_ptr(ram_addr_t addr)
3005 RAMBlock *block;
3007 QLIST_FOREACH(block, &ram_list.blocks, next) {
3008 if (addr == block->offset) {
3009 QLIST_REMOVE(block, next);
3010 g_free(block);
3011 return;
3016 void qemu_ram_free(ram_addr_t addr)
3018 RAMBlock *block;
3020 QLIST_FOREACH(block, &ram_list.blocks, next) {
3021 if (addr == block->offset) {
3022 QLIST_REMOVE(block, next);
3023 if (block->flags & RAM_PREALLOC_MASK) {
3025 } else if (mem_path) {
3026 #if defined (__linux__) && !defined(TARGET_S390X)
3027 if (block->fd) {
3028 munmap(block->host, block->length);
3029 close(block->fd);
3030 } else {
3031 qemu_vfree(block->host);
3033 #else
3034 abort();
3035 #endif
3036 } else {
3037 #if defined(TARGET_S390X) && defined(CONFIG_KVM)
3038 munmap(block->host, block->length);
3039 #else
3040 if (xen_enabled()) {
3041 xen_invalidate_map_cache_entry(block->host);
3042 } else {
3043 qemu_vfree(block->host);
3045 #endif
3047 g_free(block);
3048 return;
3054 #ifndef _WIN32
3055 void qemu_ram_remap(ram_addr_t addr, ram_addr_t length)
3057 RAMBlock *block;
3058 ram_addr_t offset;
3059 int flags;
3060 void *area, *vaddr;
3062 QLIST_FOREACH(block, &ram_list.blocks, next) {
3063 offset = addr - block->offset;
3064 if (offset < block->length) {
3065 vaddr = block->host + offset;
3066 if (block->flags & RAM_PREALLOC_MASK) {
3068 } else {
3069 flags = MAP_FIXED;
3070 munmap(vaddr, length);
3071 if (mem_path) {
3072 #if defined(__linux__) && !defined(TARGET_S390X)
3073 if (block->fd) {
3074 #ifdef MAP_POPULATE
3075 flags |= mem_prealloc ? MAP_POPULATE | MAP_SHARED :
3076 MAP_PRIVATE;
3077 #else
3078 flags |= MAP_PRIVATE;
3079 #endif
3080 area = mmap(vaddr, length, PROT_READ | PROT_WRITE,
3081 flags, block->fd, offset);
3082 } else {
3083 flags |= MAP_PRIVATE | MAP_ANONYMOUS;
3084 area = mmap(vaddr, length, PROT_READ | PROT_WRITE,
3085 flags, -1, 0);
3087 #else
3088 abort();
3089 #endif
3090 } else {
3091 #if defined(TARGET_S390X) && defined(CONFIG_KVM)
3092 flags |= MAP_SHARED | MAP_ANONYMOUS;
3093 area = mmap(vaddr, length, PROT_EXEC|PROT_READ|PROT_WRITE,
3094 flags, -1, 0);
3095 #else
3096 flags |= MAP_PRIVATE | MAP_ANONYMOUS;
3097 area = mmap(vaddr, length, PROT_READ | PROT_WRITE,
3098 flags, -1, 0);
3099 #endif
3101 if (area != vaddr) {
3102 fprintf(stderr, "Could not remap addr: "
3103 RAM_ADDR_FMT "@" RAM_ADDR_FMT "\n",
3104 length, addr);
3105 exit(1);
3107 qemu_madvise(vaddr, length, QEMU_MADV_MERGEABLE);
3109 return;
3113 #endif /* !_WIN32 */
3115 /* Return a host pointer to ram allocated with qemu_ram_alloc.
3116 With the exception of the softmmu code in this file, this should
3117 only be used for local memory (e.g. video ram) that the device owns,
3118 and knows it isn't going to access beyond the end of the block.
3120 It should not be used for general purpose DMA.
3121 Use cpu_physical_memory_map/cpu_physical_memory_rw instead.
3123 void *qemu_get_ram_ptr(ram_addr_t addr)
3125 RAMBlock *block;
3127 QLIST_FOREACH(block, &ram_list.blocks, next) {
3128 if (addr - block->offset < block->length) {
3129 /* Move this entry to to start of the list. */
3130 if (block != QLIST_FIRST(&ram_list.blocks)) {
3131 QLIST_REMOVE(block, next);
3132 QLIST_INSERT_HEAD(&ram_list.blocks, block, next);
3134 if (xen_enabled()) {
3135 /* We need to check if the requested address is in the RAM
3136 * because we don't want to map the entire memory in QEMU.
3137 * In that case just map until the end of the page.
3139 if (block->offset == 0) {
3140 return xen_map_cache(addr, 0, 0);
3141 } else if (block->host == NULL) {
3142 block->host =
3143 xen_map_cache(block->offset, block->length, 1);
3146 return block->host + (addr - block->offset);
3150 fprintf(stderr, "Bad ram offset %" PRIx64 "\n", (uint64_t)addr);
3151 abort();
3153 return NULL;
3156 /* Return a host pointer to ram allocated with qemu_ram_alloc.
3157 * Same as qemu_get_ram_ptr but avoid reordering ramblocks.
3159 void *qemu_safe_ram_ptr(ram_addr_t addr)
3161 RAMBlock *block;
3163 QLIST_FOREACH(block, &ram_list.blocks, next) {
3164 if (addr - block->offset < block->length) {
3165 if (xen_enabled()) {
3166 /* We need to check if the requested address is in the RAM
3167 * because we don't want to map the entire memory in QEMU.
3168 * In that case just map until the end of the page.
3170 if (block->offset == 0) {
3171 return xen_map_cache(addr, 0, 0);
3172 } else if (block->host == NULL) {
3173 block->host =
3174 xen_map_cache(block->offset, block->length, 1);
3177 return block->host + (addr - block->offset);
3181 fprintf(stderr, "Bad ram offset %" PRIx64 "\n", (uint64_t)addr);
3182 abort();
3184 return NULL;
3187 /* Return a host pointer to guest's ram. Similar to qemu_get_ram_ptr
3188 * but takes a size argument */
3189 void *qemu_ram_ptr_length(ram_addr_t addr, ram_addr_t *size)
3191 if (*size == 0) {
3192 return NULL;
3194 if (xen_enabled()) {
3195 return xen_map_cache(addr, *size, 1);
3196 } else {
3197 RAMBlock *block;
3199 QLIST_FOREACH(block, &ram_list.blocks, next) {
3200 if (addr - block->offset < block->length) {
3201 if (addr - block->offset + *size > block->length)
3202 *size = block->length - addr + block->offset;
3203 return block->host + (addr - block->offset);
3207 fprintf(stderr, "Bad ram offset %" PRIx64 "\n", (uint64_t)addr);
3208 abort();
3212 void qemu_put_ram_ptr(void *addr)
3214 trace_qemu_put_ram_ptr(addr);
3217 int qemu_ram_addr_from_host(void *ptr, ram_addr_t *ram_addr)
3219 RAMBlock *block;
3220 uint8_t *host = ptr;
3222 if (xen_enabled()) {
3223 *ram_addr = xen_ram_addr_from_mapcache(ptr);
3224 return 0;
3227 QLIST_FOREACH(block, &ram_list.blocks, next) {
3228 /* This case append when the block is not mapped. */
3229 if (block->host == NULL) {
3230 continue;
3232 if (host - block->host < block->length) {
3233 *ram_addr = block->offset + (host - block->host);
3234 return 0;
3238 return -1;
3241 /* Some of the softmmu routines need to translate from a host pointer
3242 (typically a TLB entry) back to a ram offset. */
3243 ram_addr_t qemu_ram_addr_from_host_nofail(void *ptr)
3245 ram_addr_t ram_addr;
3247 if (qemu_ram_addr_from_host(ptr, &ram_addr)) {
3248 fprintf(stderr, "Bad ram pointer %p\n", ptr);
3249 abort();
3251 return ram_addr;
3254 static uint32_t unassigned_mem_readb(void *opaque, target_phys_addr_t addr)
3256 #ifdef DEBUG_UNASSIGNED
3257 printf("Unassigned mem read " TARGET_FMT_plx "\n", addr);
3258 #endif
3259 #if defined(TARGET_ALPHA) || defined(TARGET_SPARC) || defined(TARGET_MICROBLAZE)
3260 cpu_unassigned_access(cpu_single_env, addr, 0, 0, 0, 1);
3261 #endif
3262 return 0;
3265 static uint32_t unassigned_mem_readw(void *opaque, target_phys_addr_t addr)
3267 #ifdef DEBUG_UNASSIGNED
3268 printf("Unassigned mem read " TARGET_FMT_plx "\n", addr);
3269 #endif
3270 #if defined(TARGET_ALPHA) || defined(TARGET_SPARC) || defined(TARGET_MICROBLAZE)
3271 cpu_unassigned_access(cpu_single_env, addr, 0, 0, 0, 2);
3272 #endif
3273 return 0;
3276 static uint32_t unassigned_mem_readl(void *opaque, target_phys_addr_t addr)
3278 #ifdef DEBUG_UNASSIGNED
3279 printf("Unassigned mem read " TARGET_FMT_plx "\n", addr);
3280 #endif
3281 #if defined(TARGET_ALPHA) || defined(TARGET_SPARC) || defined(TARGET_MICROBLAZE)
3282 cpu_unassigned_access(cpu_single_env, addr, 0, 0, 0, 4);
3283 #endif
3284 return 0;
3287 static void unassigned_mem_writeb(void *opaque, target_phys_addr_t addr, uint32_t val)
3289 #ifdef DEBUG_UNASSIGNED
3290 printf("Unassigned mem write " TARGET_FMT_plx " = 0x%x\n", addr, val);
3291 #endif
3292 #if defined(TARGET_ALPHA) || defined(TARGET_SPARC) || defined(TARGET_MICROBLAZE)
3293 cpu_unassigned_access(cpu_single_env, addr, 1, 0, 0, 1);
3294 #endif
3297 static void unassigned_mem_writew(void *opaque, target_phys_addr_t addr, uint32_t val)
3299 #ifdef DEBUG_UNASSIGNED
3300 printf("Unassigned mem write " TARGET_FMT_plx " = 0x%x\n", addr, val);
3301 #endif
3302 #if defined(TARGET_ALPHA) || defined(TARGET_SPARC) || defined(TARGET_MICROBLAZE)
3303 cpu_unassigned_access(cpu_single_env, addr, 1, 0, 0, 2);
3304 #endif
3307 static void unassigned_mem_writel(void *opaque, target_phys_addr_t addr, uint32_t val)
3309 #ifdef DEBUG_UNASSIGNED
3310 printf("Unassigned mem write " TARGET_FMT_plx " = 0x%x\n", addr, val);
3311 #endif
3312 #if defined(TARGET_ALPHA) || defined(TARGET_SPARC) || defined(TARGET_MICROBLAZE)
3313 cpu_unassigned_access(cpu_single_env, addr, 1, 0, 0, 4);
3314 #endif
3317 static CPUReadMemoryFunc * const unassigned_mem_read[3] = {
3318 unassigned_mem_readb,
3319 unassigned_mem_readw,
3320 unassigned_mem_readl,
3323 static CPUWriteMemoryFunc * const unassigned_mem_write[3] = {
3324 unassigned_mem_writeb,
3325 unassigned_mem_writew,
3326 unassigned_mem_writel,
3329 static void notdirty_mem_writeb(void *opaque, target_phys_addr_t ram_addr,
3330 uint32_t val)
3332 int dirty_flags;
3333 dirty_flags = cpu_physical_memory_get_dirty_flags(ram_addr);
3334 if (!(dirty_flags & CODE_DIRTY_FLAG)) {
3335 #if !defined(CONFIG_USER_ONLY)
3336 tb_invalidate_phys_page_fast(ram_addr, 1);
3337 dirty_flags = cpu_physical_memory_get_dirty_flags(ram_addr);
3338 #endif
3340 stb_p(qemu_get_ram_ptr(ram_addr), val);
3341 dirty_flags |= (0xff & ~CODE_DIRTY_FLAG);
3342 cpu_physical_memory_set_dirty_flags(ram_addr, dirty_flags);
3343 /* we remove the notdirty callback only if the code has been
3344 flushed */
3345 if (dirty_flags == 0xff)
3346 tlb_set_dirty(cpu_single_env, cpu_single_env->mem_io_vaddr);
3349 static void notdirty_mem_writew(void *opaque, target_phys_addr_t ram_addr,
3350 uint32_t val)
3352 int dirty_flags;
3353 dirty_flags = cpu_physical_memory_get_dirty_flags(ram_addr);
3354 if (!(dirty_flags & CODE_DIRTY_FLAG)) {
3355 #if !defined(CONFIG_USER_ONLY)
3356 tb_invalidate_phys_page_fast(ram_addr, 2);
3357 dirty_flags = cpu_physical_memory_get_dirty_flags(ram_addr);
3358 #endif
3360 stw_p(qemu_get_ram_ptr(ram_addr), val);
3361 dirty_flags |= (0xff & ~CODE_DIRTY_FLAG);
3362 cpu_physical_memory_set_dirty_flags(ram_addr, dirty_flags);
3363 /* we remove the notdirty callback only if the code has been
3364 flushed */
3365 if (dirty_flags == 0xff)
3366 tlb_set_dirty(cpu_single_env, cpu_single_env->mem_io_vaddr);
3369 static void notdirty_mem_writel(void *opaque, target_phys_addr_t ram_addr,
3370 uint32_t val)
3372 int dirty_flags;
3373 dirty_flags = cpu_physical_memory_get_dirty_flags(ram_addr);
3374 if (!(dirty_flags & CODE_DIRTY_FLAG)) {
3375 #if !defined(CONFIG_USER_ONLY)
3376 tb_invalidate_phys_page_fast(ram_addr, 4);
3377 dirty_flags = cpu_physical_memory_get_dirty_flags(ram_addr);
3378 #endif
3380 stl_p(qemu_get_ram_ptr(ram_addr), val);
3381 dirty_flags |= (0xff & ~CODE_DIRTY_FLAG);
3382 cpu_physical_memory_set_dirty_flags(ram_addr, dirty_flags);
3383 /* we remove the notdirty callback only if the code has been
3384 flushed */
3385 if (dirty_flags == 0xff)
3386 tlb_set_dirty(cpu_single_env, cpu_single_env->mem_io_vaddr);
3389 static CPUReadMemoryFunc * const error_mem_read[3] = {
3390 NULL, /* never used */
3391 NULL, /* never used */
3392 NULL, /* never used */
3395 static CPUWriteMemoryFunc * const notdirty_mem_write[3] = {
3396 notdirty_mem_writeb,
3397 notdirty_mem_writew,
3398 notdirty_mem_writel,
3401 /* Generate a debug exception if a watchpoint has been hit. */
3402 static void check_watchpoint(int offset, int len_mask, int flags)
3404 CPUState *env = cpu_single_env;
3405 target_ulong pc, cs_base;
3406 TranslationBlock *tb;
3407 target_ulong vaddr;
3408 CPUWatchpoint *wp;
3409 int cpu_flags;
3411 if (env->watchpoint_hit) {
3412 /* We re-entered the check after replacing the TB. Now raise
3413 * the debug interrupt so that is will trigger after the
3414 * current instruction. */
3415 cpu_interrupt(env, CPU_INTERRUPT_DEBUG);
3416 return;
3418 vaddr = (env->mem_io_vaddr & TARGET_PAGE_MASK) + offset;
3419 QTAILQ_FOREACH(wp, &env->watchpoints, entry) {
3420 if ((vaddr == (wp->vaddr & len_mask) ||
3421 (vaddr & wp->len_mask) == wp->vaddr) && (wp->flags & flags)) {
3422 wp->flags |= BP_WATCHPOINT_HIT;
3423 if (!env->watchpoint_hit) {
3424 env->watchpoint_hit = wp;
3425 tb = tb_find_pc(env->mem_io_pc);
3426 if (!tb) {
3427 cpu_abort(env, "check_watchpoint: could not find TB for "
3428 "pc=%p", (void *)env->mem_io_pc);
3430 cpu_restore_state(tb, env, env->mem_io_pc);
3431 tb_phys_invalidate(tb, -1);
3432 if (wp->flags & BP_STOP_BEFORE_ACCESS) {
3433 env->exception_index = EXCP_DEBUG;
3434 } else {
3435 cpu_get_tb_cpu_state(env, &pc, &cs_base, &cpu_flags);
3436 tb_gen_code(env, pc, cs_base, cpu_flags, 1);
3438 cpu_resume_from_signal(env, NULL);
3440 } else {
3441 wp->flags &= ~BP_WATCHPOINT_HIT;
3446 /* Watchpoint access routines. Watchpoints are inserted using TLB tricks,
3447 so these check for a hit then pass through to the normal out-of-line
3448 phys routines. */
3449 static uint32_t watch_mem_readb(void *opaque, target_phys_addr_t addr)
3451 check_watchpoint(addr & ~TARGET_PAGE_MASK, ~0x0, BP_MEM_READ);
3452 return ldub_phys(addr);
3455 static uint32_t watch_mem_readw(void *opaque, target_phys_addr_t addr)
3457 check_watchpoint(addr & ~TARGET_PAGE_MASK, ~0x1, BP_MEM_READ);
3458 return lduw_phys(addr);
3461 static uint32_t watch_mem_readl(void *opaque, target_phys_addr_t addr)
3463 check_watchpoint(addr & ~TARGET_PAGE_MASK, ~0x3, BP_MEM_READ);
3464 return ldl_phys(addr);
3467 static void watch_mem_writeb(void *opaque, target_phys_addr_t addr,
3468 uint32_t val)
3470 check_watchpoint(addr & ~TARGET_PAGE_MASK, ~0x0, BP_MEM_WRITE);
3471 stb_phys(addr, val);
3474 static void watch_mem_writew(void *opaque, target_phys_addr_t addr,
3475 uint32_t val)
3477 check_watchpoint(addr & ~TARGET_PAGE_MASK, ~0x1, BP_MEM_WRITE);
3478 stw_phys(addr, val);
3481 static void watch_mem_writel(void *opaque, target_phys_addr_t addr,
3482 uint32_t val)
3484 check_watchpoint(addr & ~TARGET_PAGE_MASK, ~0x3, BP_MEM_WRITE);
3485 stl_phys(addr, val);
3488 static CPUReadMemoryFunc * const watch_mem_read[3] = {
3489 watch_mem_readb,
3490 watch_mem_readw,
3491 watch_mem_readl,
3494 static CPUWriteMemoryFunc * const watch_mem_write[3] = {
3495 watch_mem_writeb,
3496 watch_mem_writew,
3497 watch_mem_writel,
3500 static inline uint32_t subpage_readlen (subpage_t *mmio,
3501 target_phys_addr_t addr,
3502 unsigned int len)
3504 unsigned int idx = SUBPAGE_IDX(addr);
3505 #if defined(DEBUG_SUBPAGE)
3506 printf("%s: subpage %p len %d addr " TARGET_FMT_plx " idx %d\n", __func__,
3507 mmio, len, addr, idx);
3508 #endif
3510 addr += mmio->region_offset[idx];
3511 idx = mmio->sub_io_index[idx];
3512 return io_mem_read[idx][len](io_mem_opaque[idx], addr);
3515 static inline void subpage_writelen (subpage_t *mmio, target_phys_addr_t addr,
3516 uint32_t value, unsigned int len)
3518 unsigned int idx = SUBPAGE_IDX(addr);
3519 #if defined(DEBUG_SUBPAGE)
3520 printf("%s: subpage %p len %d addr " TARGET_FMT_plx " idx %d value %08x\n",
3521 __func__, mmio, len, addr, idx, value);
3522 #endif
3524 addr += mmio->region_offset[idx];
3525 idx = mmio->sub_io_index[idx];
3526 io_mem_write[idx][len](io_mem_opaque[idx], addr, value);
3529 static uint32_t subpage_readb (void *opaque, target_phys_addr_t addr)
3531 return subpage_readlen(opaque, addr, 0);
3534 static void subpage_writeb (void *opaque, target_phys_addr_t addr,
3535 uint32_t value)
3537 subpage_writelen(opaque, addr, value, 0);
3540 static uint32_t subpage_readw (void *opaque, target_phys_addr_t addr)
3542 return subpage_readlen(opaque, addr, 1);
3545 static void subpage_writew (void *opaque, target_phys_addr_t addr,
3546 uint32_t value)
3548 subpage_writelen(opaque, addr, value, 1);
3551 static uint32_t subpage_readl (void *opaque, target_phys_addr_t addr)
3553 return subpage_readlen(opaque, addr, 2);
3556 static void subpage_writel (void *opaque, target_phys_addr_t addr,
3557 uint32_t value)
3559 subpage_writelen(opaque, addr, value, 2);
3562 static CPUReadMemoryFunc * const subpage_read[] = {
3563 &subpage_readb,
3564 &subpage_readw,
3565 &subpage_readl,
3568 static CPUWriteMemoryFunc * const subpage_write[] = {
3569 &subpage_writeb,
3570 &subpage_writew,
3571 &subpage_writel,
3574 static uint32_t subpage_ram_readb(void *opaque, target_phys_addr_t addr)
3576 ram_addr_t raddr = addr;
3577 void *ptr = qemu_get_ram_ptr(raddr);
3578 return ldub_p(ptr);
3581 static void subpage_ram_writeb(void *opaque, target_phys_addr_t addr,
3582 uint32_t value)
3584 ram_addr_t raddr = addr;
3585 void *ptr = qemu_get_ram_ptr(raddr);
3586 stb_p(ptr, value);
3589 static uint32_t subpage_ram_readw(void *opaque, target_phys_addr_t addr)
3591 ram_addr_t raddr = addr;
3592 void *ptr = qemu_get_ram_ptr(raddr);
3593 return lduw_p(ptr);
3596 static void subpage_ram_writew(void *opaque, target_phys_addr_t addr,
3597 uint32_t value)
3599 ram_addr_t raddr = addr;
3600 void *ptr = qemu_get_ram_ptr(raddr);
3601 stw_p(ptr, value);
3604 static uint32_t subpage_ram_readl(void *opaque, target_phys_addr_t addr)
3606 ram_addr_t raddr = addr;
3607 void *ptr = qemu_get_ram_ptr(raddr);
3608 return ldl_p(ptr);
3611 static void subpage_ram_writel(void *opaque, target_phys_addr_t addr,
3612 uint32_t value)
3614 ram_addr_t raddr = addr;
3615 void *ptr = qemu_get_ram_ptr(raddr);
3616 stl_p(ptr, value);
3619 static CPUReadMemoryFunc * const subpage_ram_read[] = {
3620 &subpage_ram_readb,
3621 &subpage_ram_readw,
3622 &subpage_ram_readl,
3625 static CPUWriteMemoryFunc * const subpage_ram_write[] = {
3626 &subpage_ram_writeb,
3627 &subpage_ram_writew,
3628 &subpage_ram_writel,
3631 static int subpage_register (subpage_t *mmio, uint32_t start, uint32_t end,
3632 ram_addr_t memory, ram_addr_t region_offset)
3634 int idx, eidx;
3636 if (start >= TARGET_PAGE_SIZE || end >= TARGET_PAGE_SIZE)
3637 return -1;
3638 idx = SUBPAGE_IDX(start);
3639 eidx = SUBPAGE_IDX(end);
3640 #if defined(DEBUG_SUBPAGE)
3641 printf("%s: %p start %08x end %08x idx %08x eidx %08x mem %ld\n", __func__,
3642 mmio, start, end, idx, eidx, memory);
3643 #endif
3644 if ((memory & ~TARGET_PAGE_MASK) == IO_MEM_RAM) {
3645 memory = IO_MEM_SUBPAGE_RAM;
3647 memory = (memory >> IO_MEM_SHIFT) & (IO_MEM_NB_ENTRIES - 1);
3648 for (; idx <= eidx; idx++) {
3649 mmio->sub_io_index[idx] = memory;
3650 mmio->region_offset[idx] = region_offset;
3653 return 0;
3656 static subpage_t *subpage_init (target_phys_addr_t base, ram_addr_t *phys,
3657 ram_addr_t orig_memory,
3658 ram_addr_t region_offset)
3660 subpage_t *mmio;
3661 int subpage_memory;
3663 mmio = g_malloc0(sizeof(subpage_t));
3665 mmio->base = base;
3666 subpage_memory = cpu_register_io_memory(subpage_read, subpage_write, mmio,
3667 DEVICE_NATIVE_ENDIAN);
3668 #if defined(DEBUG_SUBPAGE)
3669 printf("%s: %p base " TARGET_FMT_plx " len %08x %d\n", __func__,
3670 mmio, base, TARGET_PAGE_SIZE, subpage_memory);
3671 #endif
3672 *phys = subpage_memory | IO_MEM_SUBPAGE;
3673 subpage_register(mmio, 0, TARGET_PAGE_SIZE-1, orig_memory, region_offset);
3675 return mmio;
3678 static int get_free_io_mem_idx(void)
3680 int i;
3682 for (i = 0; i<IO_MEM_NB_ENTRIES; i++)
3683 if (!io_mem_used[i]) {
3684 io_mem_used[i] = 1;
3685 return i;
3687 fprintf(stderr, "RAN out out io_mem_idx, max %d !\n", IO_MEM_NB_ENTRIES);
3688 return -1;
3692 * Usually, devices operate in little endian mode. There are devices out
3693 * there that operate in big endian too. Each device gets byte swapped
3694 * mmio if plugged onto a CPU that does the other endianness.
3696 * CPU Device swap?
3698 * little little no
3699 * little big yes
3700 * big little yes
3701 * big big no
3704 typedef struct SwapEndianContainer {
3705 CPUReadMemoryFunc *read[3];
3706 CPUWriteMemoryFunc *write[3];
3707 void *opaque;
3708 } SwapEndianContainer;
3710 static uint32_t swapendian_mem_readb (void *opaque, target_phys_addr_t addr)
3712 uint32_t val;
3713 SwapEndianContainer *c = opaque;
3714 val = c->read[0](c->opaque, addr);
3715 return val;
3718 static uint32_t swapendian_mem_readw(void *opaque, target_phys_addr_t addr)
3720 uint32_t val;
3721 SwapEndianContainer *c = opaque;
3722 val = bswap16(c->read[1](c->opaque, addr));
3723 return val;
3726 static uint32_t swapendian_mem_readl(void *opaque, target_phys_addr_t addr)
3728 uint32_t val;
3729 SwapEndianContainer *c = opaque;
3730 val = bswap32(c->read[2](c->opaque, addr));
3731 return val;
3734 static CPUReadMemoryFunc * const swapendian_readfn[3]={
3735 swapendian_mem_readb,
3736 swapendian_mem_readw,
3737 swapendian_mem_readl
3740 static void swapendian_mem_writeb(void *opaque, target_phys_addr_t addr,
3741 uint32_t val)
3743 SwapEndianContainer *c = opaque;
3744 c->write[0](c->opaque, addr, val);
3747 static void swapendian_mem_writew(void *opaque, target_phys_addr_t addr,
3748 uint32_t val)
3750 SwapEndianContainer *c = opaque;
3751 c->write[1](c->opaque, addr, bswap16(val));
3754 static void swapendian_mem_writel(void *opaque, target_phys_addr_t addr,
3755 uint32_t val)
3757 SwapEndianContainer *c = opaque;
3758 c->write[2](c->opaque, addr, bswap32(val));
3761 static CPUWriteMemoryFunc * const swapendian_writefn[3]={
3762 swapendian_mem_writeb,
3763 swapendian_mem_writew,
3764 swapendian_mem_writel
3767 static void swapendian_init(int io_index)
3769 SwapEndianContainer *c = g_malloc(sizeof(SwapEndianContainer));
3770 int i;
3772 /* Swap mmio for big endian targets */
3773 c->opaque = io_mem_opaque[io_index];
3774 for (i = 0; i < 3; i++) {
3775 c->read[i] = io_mem_read[io_index][i];
3776 c->write[i] = io_mem_write[io_index][i];
3778 io_mem_read[io_index][i] = swapendian_readfn[i];
3779 io_mem_write[io_index][i] = swapendian_writefn[i];
3781 io_mem_opaque[io_index] = c;
3784 static void swapendian_del(int io_index)
3786 if (io_mem_read[io_index][0] == swapendian_readfn[0]) {
3787 g_free(io_mem_opaque[io_index]);
3791 /* mem_read and mem_write are arrays of functions containing the
3792 function to access byte (index 0), word (index 1) and dword (index
3793 2). Functions can be omitted with a NULL function pointer.
3794 If io_index is non zero, the corresponding io zone is
3795 modified. If it is zero, a new io zone is allocated. The return
3796 value can be used with cpu_register_physical_memory(). (-1) is
3797 returned if error. */
3798 static int cpu_register_io_memory_fixed(int io_index,
3799 CPUReadMemoryFunc * const *mem_read,
3800 CPUWriteMemoryFunc * const *mem_write,
3801 void *opaque, enum device_endian endian)
3803 int i;
3805 if (io_index <= 0) {
3806 io_index = get_free_io_mem_idx();
3807 if (io_index == -1)
3808 return io_index;
3809 } else {
3810 io_index >>= IO_MEM_SHIFT;
3811 if (io_index >= IO_MEM_NB_ENTRIES)
3812 return -1;
3815 for (i = 0; i < 3; ++i) {
3816 io_mem_read[io_index][i]
3817 = (mem_read[i] ? mem_read[i] : unassigned_mem_read[i]);
3819 for (i = 0; i < 3; ++i) {
3820 io_mem_write[io_index][i]
3821 = (mem_write[i] ? mem_write[i] : unassigned_mem_write[i]);
3823 io_mem_opaque[io_index] = opaque;
3825 switch (endian) {
3826 case DEVICE_BIG_ENDIAN:
3827 #ifndef TARGET_WORDS_BIGENDIAN
3828 swapendian_init(io_index);
3829 #endif
3830 break;
3831 case DEVICE_LITTLE_ENDIAN:
3832 #ifdef TARGET_WORDS_BIGENDIAN
3833 swapendian_init(io_index);
3834 #endif
3835 break;
3836 case DEVICE_NATIVE_ENDIAN:
3837 default:
3838 break;
3841 return (io_index << IO_MEM_SHIFT);
3844 int cpu_register_io_memory(CPUReadMemoryFunc * const *mem_read,
3845 CPUWriteMemoryFunc * const *mem_write,
3846 void *opaque, enum device_endian endian)
3848 return cpu_register_io_memory_fixed(0, mem_read, mem_write, opaque, endian);
3851 void cpu_unregister_io_memory(int io_table_address)
3853 int i;
3854 int io_index = io_table_address >> IO_MEM_SHIFT;
3856 swapendian_del(io_index);
3858 for (i=0;i < 3; i++) {
3859 io_mem_read[io_index][i] = unassigned_mem_read[i];
3860 io_mem_write[io_index][i] = unassigned_mem_write[i];
3862 io_mem_opaque[io_index] = NULL;
3863 io_mem_used[io_index] = 0;
3866 static void io_mem_init(void)
3868 int i;
3870 cpu_register_io_memory_fixed(IO_MEM_ROM, error_mem_read,
3871 unassigned_mem_write, NULL,
3872 DEVICE_NATIVE_ENDIAN);
3873 cpu_register_io_memory_fixed(IO_MEM_UNASSIGNED, unassigned_mem_read,
3874 unassigned_mem_write, NULL,
3875 DEVICE_NATIVE_ENDIAN);
3876 cpu_register_io_memory_fixed(IO_MEM_NOTDIRTY, error_mem_read,
3877 notdirty_mem_write, NULL,
3878 DEVICE_NATIVE_ENDIAN);
3879 cpu_register_io_memory_fixed(IO_MEM_SUBPAGE_RAM, subpage_ram_read,
3880 subpage_ram_write, NULL,
3881 DEVICE_NATIVE_ENDIAN);
3882 for (i=0; i<5; i++)
3883 io_mem_used[i] = 1;
3885 io_mem_watch = cpu_register_io_memory(watch_mem_read,
3886 watch_mem_write, NULL,
3887 DEVICE_NATIVE_ENDIAN);
3890 static void memory_map_init(void)
3892 system_memory = g_malloc(sizeof(*system_memory));
3893 memory_region_init(system_memory, "system", INT64_MAX);
3894 set_system_memory_map(system_memory);
3896 system_io = g_malloc(sizeof(*system_io));
3897 memory_region_init(system_io, "io", 65536);
3898 set_system_io_map(system_io);
3901 MemoryRegion *get_system_memory(void)
3903 return system_memory;
3906 MemoryRegion *get_system_io(void)
3908 return system_io;
3911 #endif /* !defined(CONFIG_USER_ONLY) */
3913 /* physical memory access (slow version, mainly for debug) */
3914 #if defined(CONFIG_USER_ONLY)
3915 int cpu_memory_rw_debug(CPUState *env, target_ulong addr,
3916 uint8_t *buf, int len, int is_write)
3918 int l, flags;
3919 target_ulong page;
3920 void * p;
3922 while (len > 0) {
3923 page = addr & TARGET_PAGE_MASK;
3924 l = (page + TARGET_PAGE_SIZE) - addr;
3925 if (l > len)
3926 l = len;
3927 flags = page_get_flags(page);
3928 if (!(flags & PAGE_VALID))
3929 return -1;
3930 if (is_write) {
3931 if (!(flags & PAGE_WRITE))
3932 return -1;
3933 /* XXX: this code should not depend on lock_user */
3934 if (!(p = lock_user(VERIFY_WRITE, addr, l, 0)))
3935 return -1;
3936 memcpy(p, buf, l);
3937 unlock_user(p, addr, l);
3938 } else {
3939 if (!(flags & PAGE_READ))
3940 return -1;
3941 /* XXX: this code should not depend on lock_user */
3942 if (!(p = lock_user(VERIFY_READ, addr, l, 1)))
3943 return -1;
3944 memcpy(buf, p, l);
3945 unlock_user(p, addr, 0);
3947 len -= l;
3948 buf += l;
3949 addr += l;
3951 return 0;
3954 #else
3955 void cpu_physical_memory_rw(target_phys_addr_t addr, uint8_t *buf,
3956 int len, int is_write)
3958 int l, io_index;
3959 uint8_t *ptr;
3960 uint32_t val;
3961 target_phys_addr_t page;
3962 ram_addr_t pd;
3963 PhysPageDesc *p;
3965 while (len > 0) {
3966 page = addr & TARGET_PAGE_MASK;
3967 l = (page + TARGET_PAGE_SIZE) - addr;
3968 if (l > len)
3969 l = len;
3970 p = phys_page_find(page >> TARGET_PAGE_BITS);
3971 if (!p) {
3972 pd = IO_MEM_UNASSIGNED;
3973 } else {
3974 pd = p->phys_offset;
3977 if (is_write) {
3978 if ((pd & ~TARGET_PAGE_MASK) != IO_MEM_RAM) {
3979 target_phys_addr_t addr1 = addr;
3980 io_index = (pd >> IO_MEM_SHIFT) & (IO_MEM_NB_ENTRIES - 1);
3981 if (p)
3982 addr1 = (addr & ~TARGET_PAGE_MASK) + p->region_offset;
3983 /* XXX: could force cpu_single_env to NULL to avoid
3984 potential bugs */
3985 if (l >= 4 && ((addr1 & 3) == 0)) {
3986 /* 32 bit write access */
3987 val = ldl_p(buf);
3988 io_mem_write[io_index][2](io_mem_opaque[io_index], addr1, val);
3989 l = 4;
3990 } else if (l >= 2 && ((addr1 & 1) == 0)) {
3991 /* 16 bit write access */
3992 val = lduw_p(buf);
3993 io_mem_write[io_index][1](io_mem_opaque[io_index], addr1, val);
3994 l = 2;
3995 } else {
3996 /* 8 bit write access */
3997 val = ldub_p(buf);
3998 io_mem_write[io_index][0](io_mem_opaque[io_index], addr1, val);
3999 l = 1;
4001 } else {
4002 ram_addr_t addr1;
4003 addr1 = (pd & TARGET_PAGE_MASK) + (addr & ~TARGET_PAGE_MASK);
4004 /* RAM case */
4005 ptr = qemu_get_ram_ptr(addr1);
4006 memcpy(ptr, buf, l);
4007 if (!cpu_physical_memory_is_dirty(addr1)) {
4008 /* invalidate code */
4009 tb_invalidate_phys_page_range(addr1, addr1 + l, 0);
4010 /* set dirty bit */
4011 cpu_physical_memory_set_dirty_flags(
4012 addr1, (0xff & ~CODE_DIRTY_FLAG));
4014 qemu_put_ram_ptr(ptr);
4016 } else {
4017 if ((pd & ~TARGET_PAGE_MASK) > IO_MEM_ROM &&
4018 !(pd & IO_MEM_ROMD)) {
4019 target_phys_addr_t addr1 = addr;
4020 /* I/O case */
4021 io_index = (pd >> IO_MEM_SHIFT) & (IO_MEM_NB_ENTRIES - 1);
4022 if (p)
4023 addr1 = (addr & ~TARGET_PAGE_MASK) + p->region_offset;
4024 if (l >= 4 && ((addr1 & 3) == 0)) {
4025 /* 32 bit read access */
4026 val = io_mem_read[io_index][2](io_mem_opaque[io_index], addr1);
4027 stl_p(buf, val);
4028 l = 4;
4029 } else if (l >= 2 && ((addr1 & 1) == 0)) {
4030 /* 16 bit read access */
4031 val = io_mem_read[io_index][1](io_mem_opaque[io_index], addr1);
4032 stw_p(buf, val);
4033 l = 2;
4034 } else {
4035 /* 8 bit read access */
4036 val = io_mem_read[io_index][0](io_mem_opaque[io_index], addr1);
4037 stb_p(buf, val);
4038 l = 1;
4040 } else {
4041 /* RAM case */
4042 ptr = qemu_get_ram_ptr(pd & TARGET_PAGE_MASK);
4043 memcpy(buf, ptr + (addr & ~TARGET_PAGE_MASK), l);
4044 qemu_put_ram_ptr(ptr);
4047 len -= l;
4048 buf += l;
4049 addr += l;
4053 /* used for ROM loading : can write in RAM and ROM */
4054 void cpu_physical_memory_write_rom(target_phys_addr_t addr,
4055 const uint8_t *buf, int len)
4057 int l;
4058 uint8_t *ptr;
4059 target_phys_addr_t page;
4060 unsigned long pd;
4061 PhysPageDesc *p;
4063 while (len > 0) {
4064 page = addr & TARGET_PAGE_MASK;
4065 l = (page + TARGET_PAGE_SIZE) - addr;
4066 if (l > len)
4067 l = len;
4068 p = phys_page_find(page >> TARGET_PAGE_BITS);
4069 if (!p) {
4070 pd = IO_MEM_UNASSIGNED;
4071 } else {
4072 pd = p->phys_offset;
4075 if ((pd & ~TARGET_PAGE_MASK) != IO_MEM_RAM &&
4076 (pd & ~TARGET_PAGE_MASK) != IO_MEM_ROM &&
4077 !(pd & IO_MEM_ROMD)) {
4078 /* do nothing */
4079 } else {
4080 unsigned long addr1;
4081 addr1 = (pd & TARGET_PAGE_MASK) + (addr & ~TARGET_PAGE_MASK);
4082 /* ROM/RAM case */
4083 ptr = qemu_get_ram_ptr(addr1);
4084 memcpy(ptr, buf, l);
4085 qemu_put_ram_ptr(ptr);
4087 len -= l;
4088 buf += l;
4089 addr += l;
4093 typedef struct {
4094 void *buffer;
4095 target_phys_addr_t addr;
4096 target_phys_addr_t len;
4097 } BounceBuffer;
4099 static BounceBuffer bounce;
4101 typedef struct MapClient {
4102 void *opaque;
4103 void (*callback)(void *opaque);
4104 QLIST_ENTRY(MapClient) link;
4105 } MapClient;
4107 static QLIST_HEAD(map_client_list, MapClient) map_client_list
4108 = QLIST_HEAD_INITIALIZER(map_client_list);
4110 void *cpu_register_map_client(void *opaque, void (*callback)(void *opaque))
4112 MapClient *client = g_malloc(sizeof(*client));
4114 client->opaque = opaque;
4115 client->callback = callback;
4116 QLIST_INSERT_HEAD(&map_client_list, client, link);
4117 return client;
4120 void cpu_unregister_map_client(void *_client)
4122 MapClient *client = (MapClient *)_client;
4124 QLIST_REMOVE(client, link);
4125 g_free(client);
4128 static void cpu_notify_map_clients(void)
4130 MapClient *client;
4132 while (!QLIST_EMPTY(&map_client_list)) {
4133 client = QLIST_FIRST(&map_client_list);
4134 client->callback(client->opaque);
4135 cpu_unregister_map_client(client);
4139 /* Map a physical memory region into a host virtual address.
4140 * May map a subset of the requested range, given by and returned in *plen.
4141 * May return NULL if resources needed to perform the mapping are exhausted.
4142 * Use only for reads OR writes - not for read-modify-write operations.
4143 * Use cpu_register_map_client() to know when retrying the map operation is
4144 * likely to succeed.
4146 void *cpu_physical_memory_map(target_phys_addr_t addr,
4147 target_phys_addr_t *plen,
4148 int is_write)
4150 target_phys_addr_t len = *plen;
4151 target_phys_addr_t todo = 0;
4152 int l;
4153 target_phys_addr_t page;
4154 unsigned long pd;
4155 PhysPageDesc *p;
4156 ram_addr_t raddr = RAM_ADDR_MAX;
4157 ram_addr_t rlen;
4158 void *ret;
4160 while (len > 0) {
4161 page = addr & TARGET_PAGE_MASK;
4162 l = (page + TARGET_PAGE_SIZE) - addr;
4163 if (l > len)
4164 l = len;
4165 p = phys_page_find(page >> TARGET_PAGE_BITS);
4166 if (!p) {
4167 pd = IO_MEM_UNASSIGNED;
4168 } else {
4169 pd = p->phys_offset;
4172 if ((pd & ~TARGET_PAGE_MASK) != IO_MEM_RAM) {
4173 if (todo || bounce.buffer) {
4174 break;
4176 bounce.buffer = qemu_memalign(TARGET_PAGE_SIZE, TARGET_PAGE_SIZE);
4177 bounce.addr = addr;
4178 bounce.len = l;
4179 if (!is_write) {
4180 cpu_physical_memory_read(addr, bounce.buffer, l);
4183 *plen = l;
4184 return bounce.buffer;
4186 if (!todo) {
4187 raddr = (pd & TARGET_PAGE_MASK) + (addr & ~TARGET_PAGE_MASK);
4190 len -= l;
4191 addr += l;
4192 todo += l;
4194 rlen = todo;
4195 ret = qemu_ram_ptr_length(raddr, &rlen);
4196 *plen = rlen;
4197 return ret;
4200 /* Unmaps a memory region previously mapped by cpu_physical_memory_map().
4201 * Will also mark the memory as dirty if is_write == 1. access_len gives
4202 * the amount of memory that was actually read or written by the caller.
4204 void cpu_physical_memory_unmap(void *buffer, target_phys_addr_t len,
4205 int is_write, target_phys_addr_t access_len)
4207 if (buffer != bounce.buffer) {
4208 if (is_write) {
4209 ram_addr_t addr1 = qemu_ram_addr_from_host_nofail(buffer);
4210 while (access_len) {
4211 unsigned l;
4212 l = TARGET_PAGE_SIZE;
4213 if (l > access_len)
4214 l = access_len;
4215 if (!cpu_physical_memory_is_dirty(addr1)) {
4216 /* invalidate code */
4217 tb_invalidate_phys_page_range(addr1, addr1 + l, 0);
4218 /* set dirty bit */
4219 cpu_physical_memory_set_dirty_flags(
4220 addr1, (0xff & ~CODE_DIRTY_FLAG));
4222 addr1 += l;
4223 access_len -= l;
4226 if (xen_enabled()) {
4227 xen_invalidate_map_cache_entry(buffer);
4229 return;
4231 if (is_write) {
4232 cpu_physical_memory_write(bounce.addr, bounce.buffer, access_len);
4234 qemu_vfree(bounce.buffer);
4235 bounce.buffer = NULL;
4236 cpu_notify_map_clients();
4239 /* warning: addr must be aligned */
4240 static inline uint32_t ldl_phys_internal(target_phys_addr_t addr,
4241 enum device_endian endian)
4243 int io_index;
4244 uint8_t *ptr;
4245 uint32_t val;
4246 unsigned long pd;
4247 PhysPageDesc *p;
4249 p = phys_page_find(addr >> TARGET_PAGE_BITS);
4250 if (!p) {
4251 pd = IO_MEM_UNASSIGNED;
4252 } else {
4253 pd = p->phys_offset;
4256 if ((pd & ~TARGET_PAGE_MASK) > IO_MEM_ROM &&
4257 !(pd & IO_MEM_ROMD)) {
4258 /* I/O case */
4259 io_index = (pd >> IO_MEM_SHIFT) & (IO_MEM_NB_ENTRIES - 1);
4260 if (p)
4261 addr = (addr & ~TARGET_PAGE_MASK) + p->region_offset;
4262 val = io_mem_read[io_index][2](io_mem_opaque[io_index], addr);
4263 #if defined(TARGET_WORDS_BIGENDIAN)
4264 if (endian == DEVICE_LITTLE_ENDIAN) {
4265 val = bswap32(val);
4267 #else
4268 if (endian == DEVICE_BIG_ENDIAN) {
4269 val = bswap32(val);
4271 #endif
4272 } else {
4273 /* RAM case */
4274 ptr = qemu_get_ram_ptr(pd & TARGET_PAGE_MASK) +
4275 (addr & ~TARGET_PAGE_MASK);
4276 switch (endian) {
4277 case DEVICE_LITTLE_ENDIAN:
4278 val = ldl_le_p(ptr);
4279 break;
4280 case DEVICE_BIG_ENDIAN:
4281 val = ldl_be_p(ptr);
4282 break;
4283 default:
4284 val = ldl_p(ptr);
4285 break;
4288 return val;
4291 uint32_t ldl_phys(target_phys_addr_t addr)
4293 return ldl_phys_internal(addr, DEVICE_NATIVE_ENDIAN);
4296 uint32_t ldl_le_phys(target_phys_addr_t addr)
4298 return ldl_phys_internal(addr, DEVICE_LITTLE_ENDIAN);
4301 uint32_t ldl_be_phys(target_phys_addr_t addr)
4303 return ldl_phys_internal(addr, DEVICE_BIG_ENDIAN);
4306 /* warning: addr must be aligned */
4307 static inline uint64_t ldq_phys_internal(target_phys_addr_t addr,
4308 enum device_endian endian)
4310 int io_index;
4311 uint8_t *ptr;
4312 uint64_t val;
4313 unsigned long pd;
4314 PhysPageDesc *p;
4316 p = phys_page_find(addr >> TARGET_PAGE_BITS);
4317 if (!p) {
4318 pd = IO_MEM_UNASSIGNED;
4319 } else {
4320 pd = p->phys_offset;
4323 if ((pd & ~TARGET_PAGE_MASK) > IO_MEM_ROM &&
4324 !(pd & IO_MEM_ROMD)) {
4325 /* I/O case */
4326 io_index = (pd >> IO_MEM_SHIFT) & (IO_MEM_NB_ENTRIES - 1);
4327 if (p)
4328 addr = (addr & ~TARGET_PAGE_MASK) + p->region_offset;
4330 /* XXX This is broken when device endian != cpu endian.
4331 Fix and add "endian" variable check */
4332 #ifdef TARGET_WORDS_BIGENDIAN
4333 val = (uint64_t)io_mem_read[io_index][2](io_mem_opaque[io_index], addr) << 32;
4334 val |= io_mem_read[io_index][2](io_mem_opaque[io_index], addr + 4);
4335 #else
4336 val = io_mem_read[io_index][2](io_mem_opaque[io_index], addr);
4337 val |= (uint64_t)io_mem_read[io_index][2](io_mem_opaque[io_index], addr + 4) << 32;
4338 #endif
4339 } else {
4340 /* RAM case */
4341 ptr = qemu_get_ram_ptr(pd & TARGET_PAGE_MASK) +
4342 (addr & ~TARGET_PAGE_MASK);
4343 switch (endian) {
4344 case DEVICE_LITTLE_ENDIAN:
4345 val = ldq_le_p(ptr);
4346 break;
4347 case DEVICE_BIG_ENDIAN:
4348 val = ldq_be_p(ptr);
4349 break;
4350 default:
4351 val = ldq_p(ptr);
4352 break;
4355 return val;
4358 uint64_t ldq_phys(target_phys_addr_t addr)
4360 return ldq_phys_internal(addr, DEVICE_NATIVE_ENDIAN);
4363 uint64_t ldq_le_phys(target_phys_addr_t addr)
4365 return ldq_phys_internal(addr, DEVICE_LITTLE_ENDIAN);
4368 uint64_t ldq_be_phys(target_phys_addr_t addr)
4370 return ldq_phys_internal(addr, DEVICE_BIG_ENDIAN);
4373 /* XXX: optimize */
4374 uint32_t ldub_phys(target_phys_addr_t addr)
4376 uint8_t val;
4377 cpu_physical_memory_read(addr, &val, 1);
4378 return val;
4381 /* warning: addr must be aligned */
4382 static inline uint32_t lduw_phys_internal(target_phys_addr_t addr,
4383 enum device_endian endian)
4385 int io_index;
4386 uint8_t *ptr;
4387 uint64_t val;
4388 unsigned long pd;
4389 PhysPageDesc *p;
4391 p = phys_page_find(addr >> TARGET_PAGE_BITS);
4392 if (!p) {
4393 pd = IO_MEM_UNASSIGNED;
4394 } else {
4395 pd = p->phys_offset;
4398 if ((pd & ~TARGET_PAGE_MASK) > IO_MEM_ROM &&
4399 !(pd & IO_MEM_ROMD)) {
4400 /* I/O case */
4401 io_index = (pd >> IO_MEM_SHIFT) & (IO_MEM_NB_ENTRIES - 1);
4402 if (p)
4403 addr = (addr & ~TARGET_PAGE_MASK) + p->region_offset;
4404 val = io_mem_read[io_index][1](io_mem_opaque[io_index], addr);
4405 #if defined(TARGET_WORDS_BIGENDIAN)
4406 if (endian == DEVICE_LITTLE_ENDIAN) {
4407 val = bswap16(val);
4409 #else
4410 if (endian == DEVICE_BIG_ENDIAN) {
4411 val = bswap16(val);
4413 #endif
4414 } else {
4415 /* RAM case */
4416 ptr = qemu_get_ram_ptr(pd & TARGET_PAGE_MASK) +
4417 (addr & ~TARGET_PAGE_MASK);
4418 switch (endian) {
4419 case DEVICE_LITTLE_ENDIAN:
4420 val = lduw_le_p(ptr);
4421 break;
4422 case DEVICE_BIG_ENDIAN:
4423 val = lduw_be_p(ptr);
4424 break;
4425 default:
4426 val = lduw_p(ptr);
4427 break;
4430 return val;
4433 uint32_t lduw_phys(target_phys_addr_t addr)
4435 return lduw_phys_internal(addr, DEVICE_NATIVE_ENDIAN);
4438 uint32_t lduw_le_phys(target_phys_addr_t addr)
4440 return lduw_phys_internal(addr, DEVICE_LITTLE_ENDIAN);
4443 uint32_t lduw_be_phys(target_phys_addr_t addr)
4445 return lduw_phys_internal(addr, DEVICE_BIG_ENDIAN);
4448 /* warning: addr must be aligned. The ram page is not masked as dirty
4449 and the code inside is not invalidated. It is useful if the dirty
4450 bits are used to track modified PTEs */
4451 void stl_phys_notdirty(target_phys_addr_t addr, uint32_t val)
4453 int io_index;
4454 uint8_t *ptr;
4455 unsigned long pd;
4456 PhysPageDesc *p;
4458 p = phys_page_find(addr >> TARGET_PAGE_BITS);
4459 if (!p) {
4460 pd = IO_MEM_UNASSIGNED;
4461 } else {
4462 pd = p->phys_offset;
4465 if ((pd & ~TARGET_PAGE_MASK) != IO_MEM_RAM) {
4466 io_index = (pd >> IO_MEM_SHIFT) & (IO_MEM_NB_ENTRIES - 1);
4467 if (p)
4468 addr = (addr & ~TARGET_PAGE_MASK) + p->region_offset;
4469 io_mem_write[io_index][2](io_mem_opaque[io_index], addr, val);
4470 } else {
4471 unsigned long addr1 = (pd & TARGET_PAGE_MASK) + (addr & ~TARGET_PAGE_MASK);
4472 ptr = qemu_get_ram_ptr(addr1);
4473 stl_p(ptr, val);
4475 if (unlikely(in_migration)) {
4476 if (!cpu_physical_memory_is_dirty(addr1)) {
4477 /* invalidate code */
4478 tb_invalidate_phys_page_range(addr1, addr1 + 4, 0);
4479 /* set dirty bit */
4480 cpu_physical_memory_set_dirty_flags(
4481 addr1, (0xff & ~CODE_DIRTY_FLAG));
4487 void stq_phys_notdirty(target_phys_addr_t addr, uint64_t val)
4489 int io_index;
4490 uint8_t *ptr;
4491 unsigned long pd;
4492 PhysPageDesc *p;
4494 p = phys_page_find(addr >> TARGET_PAGE_BITS);
4495 if (!p) {
4496 pd = IO_MEM_UNASSIGNED;
4497 } else {
4498 pd = p->phys_offset;
4501 if ((pd & ~TARGET_PAGE_MASK) != IO_MEM_RAM) {
4502 io_index = (pd >> IO_MEM_SHIFT) & (IO_MEM_NB_ENTRIES - 1);
4503 if (p)
4504 addr = (addr & ~TARGET_PAGE_MASK) + p->region_offset;
4505 #ifdef TARGET_WORDS_BIGENDIAN
4506 io_mem_write[io_index][2](io_mem_opaque[io_index], addr, val >> 32);
4507 io_mem_write[io_index][2](io_mem_opaque[io_index], addr + 4, val);
4508 #else
4509 io_mem_write[io_index][2](io_mem_opaque[io_index], addr, val);
4510 io_mem_write[io_index][2](io_mem_opaque[io_index], addr + 4, val >> 32);
4511 #endif
4512 } else {
4513 ptr = qemu_get_ram_ptr(pd & TARGET_PAGE_MASK) +
4514 (addr & ~TARGET_PAGE_MASK);
4515 stq_p(ptr, val);
4519 /* warning: addr must be aligned */
4520 static inline void stl_phys_internal(target_phys_addr_t addr, uint32_t val,
4521 enum device_endian endian)
4523 int io_index;
4524 uint8_t *ptr;
4525 unsigned long pd;
4526 PhysPageDesc *p;
4528 p = phys_page_find(addr >> TARGET_PAGE_BITS);
4529 if (!p) {
4530 pd = IO_MEM_UNASSIGNED;
4531 } else {
4532 pd = p->phys_offset;
4535 if ((pd & ~TARGET_PAGE_MASK) != IO_MEM_RAM) {
4536 io_index = (pd >> IO_MEM_SHIFT) & (IO_MEM_NB_ENTRIES - 1);
4537 if (p)
4538 addr = (addr & ~TARGET_PAGE_MASK) + p->region_offset;
4539 #if defined(TARGET_WORDS_BIGENDIAN)
4540 if (endian == DEVICE_LITTLE_ENDIAN) {
4541 val = bswap32(val);
4543 #else
4544 if (endian == DEVICE_BIG_ENDIAN) {
4545 val = bswap32(val);
4547 #endif
4548 io_mem_write[io_index][2](io_mem_opaque[io_index], addr, val);
4549 } else {
4550 unsigned long addr1;
4551 addr1 = (pd & TARGET_PAGE_MASK) + (addr & ~TARGET_PAGE_MASK);
4552 /* RAM case */
4553 ptr = qemu_get_ram_ptr(addr1);
4554 switch (endian) {
4555 case DEVICE_LITTLE_ENDIAN:
4556 stl_le_p(ptr, val);
4557 break;
4558 case DEVICE_BIG_ENDIAN:
4559 stl_be_p(ptr, val);
4560 break;
4561 default:
4562 stl_p(ptr, val);
4563 break;
4565 if (!cpu_physical_memory_is_dirty(addr1)) {
4566 /* invalidate code */
4567 tb_invalidate_phys_page_range(addr1, addr1 + 4, 0);
4568 /* set dirty bit */
4569 cpu_physical_memory_set_dirty_flags(addr1,
4570 (0xff & ~CODE_DIRTY_FLAG));
4575 void stl_phys(target_phys_addr_t addr, uint32_t val)
4577 stl_phys_internal(addr, val, DEVICE_NATIVE_ENDIAN);
4580 void stl_le_phys(target_phys_addr_t addr, uint32_t val)
4582 stl_phys_internal(addr, val, DEVICE_LITTLE_ENDIAN);
4585 void stl_be_phys(target_phys_addr_t addr, uint32_t val)
4587 stl_phys_internal(addr, val, DEVICE_BIG_ENDIAN);
4590 /* XXX: optimize */
4591 void stb_phys(target_phys_addr_t addr, uint32_t val)
4593 uint8_t v = val;
4594 cpu_physical_memory_write(addr, &v, 1);
4597 /* warning: addr must be aligned */
4598 static inline void stw_phys_internal(target_phys_addr_t addr, uint32_t val,
4599 enum device_endian endian)
4601 int io_index;
4602 uint8_t *ptr;
4603 unsigned long pd;
4604 PhysPageDesc *p;
4606 p = phys_page_find(addr >> TARGET_PAGE_BITS);
4607 if (!p) {
4608 pd = IO_MEM_UNASSIGNED;
4609 } else {
4610 pd = p->phys_offset;
4613 if ((pd & ~TARGET_PAGE_MASK) != IO_MEM_RAM) {
4614 io_index = (pd >> IO_MEM_SHIFT) & (IO_MEM_NB_ENTRIES - 1);
4615 if (p)
4616 addr = (addr & ~TARGET_PAGE_MASK) + p->region_offset;
4617 #if defined(TARGET_WORDS_BIGENDIAN)
4618 if (endian == DEVICE_LITTLE_ENDIAN) {
4619 val = bswap16(val);
4621 #else
4622 if (endian == DEVICE_BIG_ENDIAN) {
4623 val = bswap16(val);
4625 #endif
4626 io_mem_write[io_index][1](io_mem_opaque[io_index], addr, val);
4627 } else {
4628 unsigned long addr1;
4629 addr1 = (pd & TARGET_PAGE_MASK) + (addr & ~TARGET_PAGE_MASK);
4630 /* RAM case */
4631 ptr = qemu_get_ram_ptr(addr1);
4632 switch (endian) {
4633 case DEVICE_LITTLE_ENDIAN:
4634 stw_le_p(ptr, val);
4635 break;
4636 case DEVICE_BIG_ENDIAN:
4637 stw_be_p(ptr, val);
4638 break;
4639 default:
4640 stw_p(ptr, val);
4641 break;
4643 if (!cpu_physical_memory_is_dirty(addr1)) {
4644 /* invalidate code */
4645 tb_invalidate_phys_page_range(addr1, addr1 + 2, 0);
4646 /* set dirty bit */
4647 cpu_physical_memory_set_dirty_flags(addr1,
4648 (0xff & ~CODE_DIRTY_FLAG));
4653 void stw_phys(target_phys_addr_t addr, uint32_t val)
4655 stw_phys_internal(addr, val, DEVICE_NATIVE_ENDIAN);
4658 void stw_le_phys(target_phys_addr_t addr, uint32_t val)
4660 stw_phys_internal(addr, val, DEVICE_LITTLE_ENDIAN);
4663 void stw_be_phys(target_phys_addr_t addr, uint32_t val)
4665 stw_phys_internal(addr, val, DEVICE_BIG_ENDIAN);
4668 /* XXX: optimize */
4669 void stq_phys(target_phys_addr_t addr, uint64_t val)
4671 val = tswap64(val);
4672 cpu_physical_memory_write(addr, &val, 8);
4675 void stq_le_phys(target_phys_addr_t addr, uint64_t val)
4677 val = cpu_to_le64(val);
4678 cpu_physical_memory_write(addr, &val, 8);
4681 void stq_be_phys(target_phys_addr_t addr, uint64_t val)
4683 val = cpu_to_be64(val);
4684 cpu_physical_memory_write(addr, &val, 8);
4687 /* virtual memory access for debug (includes writing to ROM) */
4688 int cpu_memory_rw_debug(CPUState *env, target_ulong addr,
4689 uint8_t *buf, int len, int is_write)
4691 int l;
4692 target_phys_addr_t phys_addr;
4693 target_ulong page;
4695 while (len > 0) {
4696 page = addr & TARGET_PAGE_MASK;
4697 phys_addr = cpu_get_phys_page_debug(env, page);
4698 /* if no physical page mapped, return an error */
4699 if (phys_addr == -1)
4700 return -1;
4701 l = (page + TARGET_PAGE_SIZE) - addr;
4702 if (l > len)
4703 l = len;
4704 phys_addr += (addr & ~TARGET_PAGE_MASK);
4705 if (is_write)
4706 cpu_physical_memory_write_rom(phys_addr, buf, l);
4707 else
4708 cpu_physical_memory_rw(phys_addr, buf, l, is_write);
4709 len -= l;
4710 buf += l;
4711 addr += l;
4713 return 0;
4715 #endif
4717 /* in deterministic execution mode, instructions doing device I/Os
4718 must be at the end of the TB */
4719 void cpu_io_recompile(CPUState *env, void *retaddr)
4721 TranslationBlock *tb;
4722 uint32_t n, cflags;
4723 target_ulong pc, cs_base;
4724 uint64_t flags;
4726 tb = tb_find_pc((unsigned long)retaddr);
4727 if (!tb) {
4728 cpu_abort(env, "cpu_io_recompile: could not find TB for pc=%p",
4729 retaddr);
4731 n = env->icount_decr.u16.low + tb->icount;
4732 cpu_restore_state(tb, env, (unsigned long)retaddr);
4733 /* Calculate how many instructions had been executed before the fault
4734 occurred. */
4735 n = n - env->icount_decr.u16.low;
4736 /* Generate a new TB ending on the I/O insn. */
4737 n++;
4738 /* On MIPS and SH, delay slot instructions can only be restarted if
4739 they were already the first instruction in the TB. If this is not
4740 the first instruction in a TB then re-execute the preceding
4741 branch. */
4742 #if defined(TARGET_MIPS)
4743 if ((env->hflags & MIPS_HFLAG_BMASK) != 0 && n > 1) {
4744 env->active_tc.PC -= 4;
4745 env->icount_decr.u16.low++;
4746 env->hflags &= ~MIPS_HFLAG_BMASK;
4748 #elif defined(TARGET_SH4)
4749 if ((env->flags & ((DELAY_SLOT | DELAY_SLOT_CONDITIONAL))) != 0
4750 && n > 1) {
4751 env->pc -= 2;
4752 env->icount_decr.u16.low++;
4753 env->flags &= ~(DELAY_SLOT | DELAY_SLOT_CONDITIONAL);
4755 #endif
4756 /* This should never happen. */
4757 if (n > CF_COUNT_MASK)
4758 cpu_abort(env, "TB too big during recompile");
4760 cflags = n | CF_LAST_IO;
4761 pc = tb->pc;
4762 cs_base = tb->cs_base;
4763 flags = tb->flags;
4764 tb_phys_invalidate(tb, -1);
4765 /* FIXME: In theory this could raise an exception. In practice
4766 we have already translated the block once so it's probably ok. */
4767 tb_gen_code(env, pc, cs_base, flags, cflags);
4768 /* TODO: If env->pc != tb->pc (i.e. the faulting instruction was not
4769 the first in the TB) then we end up generating a whole new TB and
4770 repeating the fault, which is horribly inefficient.
4771 Better would be to execute just this insn uncached, or generate a
4772 second new TB. */
4773 cpu_resume_from_signal(env, NULL);
4776 #if !defined(CONFIG_USER_ONLY)
4778 void dump_exec_info(FILE *f, fprintf_function cpu_fprintf)
4780 int i, target_code_size, max_target_code_size;
4781 int direct_jmp_count, direct_jmp2_count, cross_page;
4782 TranslationBlock *tb;
4784 target_code_size = 0;
4785 max_target_code_size = 0;
4786 cross_page = 0;
4787 direct_jmp_count = 0;
4788 direct_jmp2_count = 0;
4789 for(i = 0; i < nb_tbs; i++) {
4790 tb = &tbs[i];
4791 target_code_size += tb->size;
4792 if (tb->size > max_target_code_size)
4793 max_target_code_size = tb->size;
4794 if (tb->page_addr[1] != -1)
4795 cross_page++;
4796 if (tb->tb_next_offset[0] != 0xffff) {
4797 direct_jmp_count++;
4798 if (tb->tb_next_offset[1] != 0xffff) {
4799 direct_jmp2_count++;
4803 /* XXX: avoid using doubles ? */
4804 cpu_fprintf(f, "Translation buffer state:\n");
4805 cpu_fprintf(f, "gen code size %td/%ld\n",
4806 code_gen_ptr - code_gen_buffer, code_gen_buffer_max_size);
4807 cpu_fprintf(f, "TB count %d/%d\n",
4808 nb_tbs, code_gen_max_blocks);
4809 cpu_fprintf(f, "TB avg target size %d max=%d bytes\n",
4810 nb_tbs ? target_code_size / nb_tbs : 0,
4811 max_target_code_size);
4812 cpu_fprintf(f, "TB avg host size %td bytes (expansion ratio: %0.1f)\n",
4813 nb_tbs ? (code_gen_ptr - code_gen_buffer) / nb_tbs : 0,
4814 target_code_size ? (double) (code_gen_ptr - code_gen_buffer) / target_code_size : 0);
4815 cpu_fprintf(f, "cross page TB count %d (%d%%)\n",
4816 cross_page,
4817 nb_tbs ? (cross_page * 100) / nb_tbs : 0);
4818 cpu_fprintf(f, "direct jump count %d (%d%%) (2 jumps=%d %d%%)\n",
4819 direct_jmp_count,
4820 nb_tbs ? (direct_jmp_count * 100) / nb_tbs : 0,
4821 direct_jmp2_count,
4822 nb_tbs ? (direct_jmp2_count * 100) / nb_tbs : 0);
4823 cpu_fprintf(f, "\nStatistics:\n");
4824 cpu_fprintf(f, "TB flush count %d\n", tb_flush_count);
4825 cpu_fprintf(f, "TB invalidate count %d\n", tb_phys_invalidate_count);
4826 cpu_fprintf(f, "TLB flush count %d\n", tlb_flush_count);
4827 tcg_dump_info(f, cpu_fprintf);
4830 #define MMUSUFFIX _cmmu
4831 #undef GETPC
4832 #define GETPC() NULL
4833 #define env cpu_single_env
4834 #define SOFTMMU_CODE_ACCESS
4836 #define SHIFT 0
4837 #include "softmmu_template.h"
4839 #define SHIFT 1
4840 #include "softmmu_template.h"
4842 #define SHIFT 2
4843 #include "softmmu_template.h"
4845 #define SHIFT 3
4846 #include "softmmu_template.h"
4848 #undef env
4850 #endif