hw/arm: QOM'ify musicpal.c
[qemu/ar7.git] / hw / net / mcf_fec.c
blobdc61bac2fce373a9ba0e035ed473015e45735d94
1 /*
2 * ColdFire Fast Ethernet Controller emulation.
4 * Copyright (c) 2007 CodeSourcery.
6 * This code is licensed under the GPL
7 */
8 #include "qemu/osdep.h"
9 #include "hw/hw.h"
10 #include "net/net.h"
11 #include "hw/m68k/mcf.h"
12 #include "hw/net/mii.h"
13 /* For crc32 */
14 #include <zlib.h>
15 #include "exec/address-spaces.h"
17 //#define DEBUG_FEC 1
19 #ifdef DEBUG_FEC
20 #define DPRINTF(fmt, ...) \
21 do { printf("mcf_fec: " fmt , ## __VA_ARGS__); } while (0)
22 #else
23 #define DPRINTF(fmt, ...) do {} while(0)
24 #endif
26 #define FEC_MAX_DESC 1024
27 #define FEC_MAX_FRAME_SIZE 2032
29 typedef struct {
30 MemoryRegion *sysmem;
31 MemoryRegion iomem;
32 qemu_irq *irq;
33 NICState *nic;
34 NICConf conf;
35 uint32_t irq_state;
36 uint32_t eir;
37 uint32_t eimr;
38 int rx_enabled;
39 uint32_t rx_descriptor;
40 uint32_t tx_descriptor;
41 uint32_t ecr;
42 uint32_t mmfr;
43 uint32_t mscr;
44 uint32_t rcr;
45 uint32_t tcr;
46 uint32_t tfwr;
47 uint32_t rfsr;
48 uint32_t erdsr;
49 uint32_t etdsr;
50 uint32_t emrbr;
51 } mcf_fec_state;
53 #define FEC_INT_HB 0x80000000
54 #define FEC_INT_BABR 0x40000000
55 #define FEC_INT_BABT 0x20000000
56 #define FEC_INT_GRA 0x10000000
57 #define FEC_INT_TXF 0x08000000
58 #define FEC_INT_TXB 0x04000000
59 #define FEC_INT_RXF 0x02000000
60 #define FEC_INT_RXB 0x01000000
61 #define FEC_INT_MII 0x00800000
62 #define FEC_INT_EB 0x00400000
63 #define FEC_INT_LC 0x00200000
64 #define FEC_INT_RL 0x00100000
65 #define FEC_INT_UN 0x00080000
67 #define FEC_EN 2
68 #define FEC_RESET 1
70 /* Map interrupt flags onto IRQ lines. */
71 #define FEC_NUM_IRQ 13
72 static const uint32_t mcf_fec_irq_map[FEC_NUM_IRQ] = {
73 FEC_INT_TXF,
74 FEC_INT_TXB,
75 FEC_INT_UN,
76 FEC_INT_RL,
77 FEC_INT_RXF,
78 FEC_INT_RXB,
79 FEC_INT_MII,
80 FEC_INT_LC,
81 FEC_INT_HB,
82 FEC_INT_GRA,
83 FEC_INT_EB,
84 FEC_INT_BABT,
85 FEC_INT_BABR
88 /* Buffer Descriptor. */
89 typedef struct {
90 uint16_t flags;
91 uint16_t length;
92 uint32_t data;
93 } mcf_fec_bd;
95 #define FEC_BD_R 0x8000
96 #define FEC_BD_E 0x8000
97 #define FEC_BD_O1 0x4000
98 #define FEC_BD_W 0x2000
99 #define FEC_BD_O2 0x1000
100 #define FEC_BD_L 0x0800
101 #define FEC_BD_TC 0x0400
102 #define FEC_BD_ABC 0x0200
103 #define FEC_BD_M 0x0100
104 #define FEC_BD_BC 0x0080
105 #define FEC_BD_MC 0x0040
106 #define FEC_BD_LG 0x0020
107 #define FEC_BD_NO 0x0010
108 #define FEC_BD_CR 0x0004
109 #define FEC_BD_OV 0x0002
110 #define FEC_BD_TR 0x0001
112 static void mcf_fec_read_bd(mcf_fec_bd *bd, uint32_t addr)
114 cpu_physical_memory_read(addr, bd, sizeof(*bd));
115 be16_to_cpus(&bd->flags);
116 be16_to_cpus(&bd->length);
117 be32_to_cpus(&bd->data);
120 static void mcf_fec_write_bd(mcf_fec_bd *bd, uint32_t addr)
122 mcf_fec_bd tmp;
123 tmp.flags = cpu_to_be16(bd->flags);
124 tmp.length = cpu_to_be16(bd->length);
125 tmp.data = cpu_to_be32(bd->data);
126 cpu_physical_memory_write(addr, &tmp, sizeof(tmp));
129 static void mcf_fec_update(mcf_fec_state *s)
131 uint32_t active;
132 uint32_t changed;
133 uint32_t mask;
134 int i;
136 active = s->eir & s->eimr;
137 changed = active ^s->irq_state;
138 for (i = 0; i < FEC_NUM_IRQ; i++) {
139 mask = mcf_fec_irq_map[i];
140 if (changed & mask) {
141 DPRINTF("IRQ %d = %d\n", i, (active & mask) != 0);
142 qemu_set_irq(s->irq[i], (active & mask) != 0);
145 s->irq_state = active;
148 static void mcf_fec_do_tx(mcf_fec_state *s)
150 uint32_t addr;
151 mcf_fec_bd bd;
152 int frame_size;
153 int len, descnt = 0;
154 uint8_t frame[FEC_MAX_FRAME_SIZE];
155 uint8_t *ptr;
157 DPRINTF("do_tx\n");
158 ptr = frame;
159 frame_size = 0;
160 addr = s->tx_descriptor;
161 while (descnt++ < FEC_MAX_DESC) {
162 mcf_fec_read_bd(&bd, addr);
163 DPRINTF("tx_bd %x flags %04x len %d data %08x\n",
164 addr, bd.flags, bd.length, bd.data);
165 if ((bd.flags & FEC_BD_R) == 0) {
166 /* Run out of descriptors to transmit. */
167 break;
169 len = bd.length;
170 if (frame_size + len > FEC_MAX_FRAME_SIZE) {
171 len = FEC_MAX_FRAME_SIZE - frame_size;
172 s->eir |= FEC_INT_BABT;
174 cpu_physical_memory_read(bd.data, ptr, len);
175 ptr += len;
176 frame_size += len;
177 if (bd.flags & FEC_BD_L) {
178 /* Last buffer in frame. */
179 DPRINTF("Sending packet\n");
180 qemu_send_packet(qemu_get_queue(s->nic), frame, frame_size);
181 ptr = frame;
182 frame_size = 0;
183 s->eir |= FEC_INT_TXF;
185 s->eir |= FEC_INT_TXB;
186 bd.flags &= ~FEC_BD_R;
187 /* Write back the modified descriptor. */
188 mcf_fec_write_bd(&bd, addr);
189 /* Advance to the next descriptor. */
190 if ((bd.flags & FEC_BD_W) != 0) {
191 addr = s->etdsr;
192 } else {
193 addr += 8;
196 s->tx_descriptor = addr;
199 static void mcf_fec_enable_rx(mcf_fec_state *s)
201 NetClientState *nc = qemu_get_queue(s->nic);
202 mcf_fec_bd bd;
204 mcf_fec_read_bd(&bd, s->rx_descriptor);
205 s->rx_enabled = ((bd.flags & FEC_BD_E) != 0);
206 if (s->rx_enabled) {
207 qemu_flush_queued_packets(nc);
211 static void mcf_fec_reset(mcf_fec_state *s)
213 s->eir = 0;
214 s->eimr = 0;
215 s->rx_enabled = 0;
216 s->ecr = 0;
217 s->mscr = 0;
218 s->rcr = 0x05ee0001;
219 s->tcr = 0;
220 s->tfwr = 0;
221 s->rfsr = 0x500;
224 #define MMFR_WRITE_OP (1 << 28)
225 #define MMFR_READ_OP (2 << 28)
226 #define MMFR_PHYADDR(v) (((v) >> 23) & 0x1f)
227 #define MMFR_REGNUM(v) (((v) >> 18) & 0x1f)
229 static uint64_t mcf_fec_read_mdio(mcf_fec_state *s)
231 uint64_t v;
233 if (s->mmfr & MMFR_WRITE_OP)
234 return s->mmfr;
235 if (MMFR_PHYADDR(s->mmfr) != 1)
236 return s->mmfr |= 0xffff;
238 switch (MMFR_REGNUM(s->mmfr)) {
239 case MII_BMCR:
240 v = MII_BMCR_SPEED | MII_BMCR_AUTOEN | MII_BMCR_FD;
241 break;
242 case MII_BMSR:
243 v = MII_BMSR_100TX_FD | MII_BMSR_100TX_HD | MII_BMSR_10T_FD |
244 MII_BMSR_10T_HD | MII_BMSR_MFPS | MII_BMSR_AN_COMP |
245 MII_BMSR_AUTONEG | MII_BMSR_LINK_ST;
246 break;
247 case MII_PHYID1:
248 v = DP83848_PHYID1;
249 break;
250 case MII_PHYID2:
251 v = DP83848_PHYID2;
252 break;
253 case MII_ANAR:
254 v = MII_ANAR_TXFD | MII_ANAR_TX | MII_ANAR_10FD |
255 MII_ANAR_10 | MII_ANAR_CSMACD;
256 break;
257 case MII_ANLPAR:
258 v = MII_ANLPAR_ACK | MII_ANLPAR_TXFD | MII_ANLPAR_TX |
259 MII_ANLPAR_10FD | MII_ANLPAR_10 | MII_ANLPAR_CSMACD;
260 break;
261 default:
262 v = 0xffff;
263 break;
265 s->mmfr = (s->mmfr & ~0xffff) | v;
266 return s->mmfr;
269 static uint64_t mcf_fec_read(void *opaque, hwaddr addr,
270 unsigned size)
272 mcf_fec_state *s = (mcf_fec_state *)opaque;
273 switch (addr & 0x3ff) {
274 case 0x004: return s->eir;
275 case 0x008: return s->eimr;
276 case 0x010: return s->rx_enabled ? (1 << 24) : 0; /* RDAR */
277 case 0x014: return 0; /* TDAR */
278 case 0x024: return s->ecr;
279 case 0x040: return mcf_fec_read_mdio(s);
280 case 0x044: return s->mscr;
281 case 0x064: return 0; /* MIBC */
282 case 0x084: return s->rcr;
283 case 0x0c4: return s->tcr;
284 case 0x0e4: /* PALR */
285 return (s->conf.macaddr.a[0] << 24) | (s->conf.macaddr.a[1] << 16)
286 | (s->conf.macaddr.a[2] << 8) | s->conf.macaddr.a[3];
287 break;
288 case 0x0e8: /* PAUR */
289 return (s->conf.macaddr.a[4] << 24) | (s->conf.macaddr.a[5] << 16) | 0x8808;
290 case 0x0ec: return 0x10000; /* OPD */
291 case 0x118: return 0;
292 case 0x11c: return 0;
293 case 0x120: return 0;
294 case 0x124: return 0;
295 case 0x144: return s->tfwr;
296 case 0x14c: return 0x600;
297 case 0x150: return s->rfsr;
298 case 0x180: return s->erdsr;
299 case 0x184: return s->etdsr;
300 case 0x188: return s->emrbr;
301 default:
302 hw_error("mcf_fec_read: Bad address 0x%x\n", (int)addr);
303 return 0;
307 static void mcf_fec_write(void *opaque, hwaddr addr,
308 uint64_t value, unsigned size)
310 mcf_fec_state *s = (mcf_fec_state *)opaque;
311 switch (addr & 0x3ff) {
312 case 0x004:
313 s->eir &= ~value;
314 break;
315 case 0x008:
316 s->eimr = value;
317 break;
318 case 0x010: /* RDAR */
319 if ((s->ecr & FEC_EN) && !s->rx_enabled) {
320 DPRINTF("RX enable\n");
321 mcf_fec_enable_rx(s);
323 break;
324 case 0x014: /* TDAR */
325 if (s->ecr & FEC_EN) {
326 mcf_fec_do_tx(s);
328 break;
329 case 0x024:
330 s->ecr = value;
331 if (value & FEC_RESET) {
332 DPRINTF("Reset\n");
333 mcf_fec_reset(s);
335 if ((s->ecr & FEC_EN) == 0) {
336 s->rx_enabled = 0;
338 break;
339 case 0x040:
340 s->mmfr = value;
341 s->eir |= FEC_INT_MII;
342 break;
343 case 0x044:
344 s->mscr = value & 0xfe;
345 break;
346 case 0x064:
347 /* TODO: Implement MIB. */
348 break;
349 case 0x084:
350 s->rcr = value & 0x07ff003f;
351 /* TODO: Implement LOOP mode. */
352 break;
353 case 0x0c4: /* TCR */
354 /* We transmit immediately, so raise GRA immediately. */
355 s->tcr = value;
356 if (value & 1)
357 s->eir |= FEC_INT_GRA;
358 break;
359 case 0x0e4: /* PALR */
360 s->conf.macaddr.a[0] = value >> 24;
361 s->conf.macaddr.a[1] = value >> 16;
362 s->conf.macaddr.a[2] = value >> 8;
363 s->conf.macaddr.a[3] = value;
364 break;
365 case 0x0e8: /* PAUR */
366 s->conf.macaddr.a[4] = value >> 24;
367 s->conf.macaddr.a[5] = value >> 16;
368 break;
369 case 0x0ec:
370 /* OPD */
371 break;
372 case 0x118:
373 case 0x11c:
374 case 0x120:
375 case 0x124:
376 /* TODO: implement MAC hash filtering. */
377 break;
378 case 0x144:
379 s->tfwr = value & 3;
380 break;
381 case 0x14c:
382 /* FRBR writes ignored. */
383 break;
384 case 0x150:
385 s->rfsr = (value & 0x3fc) | 0x400;
386 break;
387 case 0x180:
388 s->erdsr = value & ~3;
389 s->rx_descriptor = s->erdsr;
390 break;
391 case 0x184:
392 s->etdsr = value & ~3;
393 s->tx_descriptor = s->etdsr;
394 break;
395 case 0x188:
396 s->emrbr = value & 0x7f0;
397 break;
398 default:
399 hw_error("mcf_fec_write Bad address 0x%x\n", (int)addr);
401 mcf_fec_update(s);
404 static int mcf_fec_have_receive_space(mcf_fec_state *s, size_t want)
406 mcf_fec_bd bd;
407 uint32_t addr;
409 /* Walk descriptor list to determine if we have enough buffer */
410 addr = s->rx_descriptor;
411 while (want > 0) {
412 mcf_fec_read_bd(&bd, addr);
413 if ((bd.flags & FEC_BD_E) == 0) {
414 return 0;
416 if (want < s->emrbr) {
417 return 1;
419 want -= s->emrbr;
420 /* Advance to the next descriptor. */
421 if ((bd.flags & FEC_BD_W) != 0) {
422 addr = s->erdsr;
423 } else {
424 addr += 8;
427 return 0;
430 static ssize_t mcf_fec_receive(NetClientState *nc, const uint8_t *buf, size_t size)
432 mcf_fec_state *s = qemu_get_nic_opaque(nc);
433 mcf_fec_bd bd;
434 uint32_t flags = 0;
435 uint32_t addr;
436 uint32_t crc;
437 uint32_t buf_addr;
438 uint8_t *crc_ptr;
439 unsigned int buf_len;
440 size_t retsize;
442 DPRINTF("do_rx len %d\n", size);
443 if (!s->rx_enabled) {
444 return -1;
446 /* 4 bytes for the CRC. */
447 size += 4;
448 crc = cpu_to_be32(crc32(~0, buf, size));
449 crc_ptr = (uint8_t *)&crc;
450 /* Huge frames are truncted. */
451 if (size > FEC_MAX_FRAME_SIZE) {
452 size = FEC_MAX_FRAME_SIZE;
453 flags |= FEC_BD_TR | FEC_BD_LG;
455 /* Frames larger than the user limit just set error flags. */
456 if (size > (s->rcr >> 16)) {
457 flags |= FEC_BD_LG;
459 /* Check if we have enough space in current descriptors */
460 if (!mcf_fec_have_receive_space(s, size)) {
461 return 0;
463 addr = s->rx_descriptor;
464 retsize = size;
465 while (size > 0) {
466 mcf_fec_read_bd(&bd, addr);
467 buf_len = (size <= s->emrbr) ? size: s->emrbr;
468 bd.length = buf_len;
469 size -= buf_len;
470 DPRINTF("rx_bd %x length %d\n", addr, bd.length);
471 /* The last 4 bytes are the CRC. */
472 if (size < 4)
473 buf_len += size - 4;
474 buf_addr = bd.data;
475 cpu_physical_memory_write(buf_addr, buf, buf_len);
476 buf += buf_len;
477 if (size < 4) {
478 cpu_physical_memory_write(buf_addr + buf_len, crc_ptr, 4 - size);
479 crc_ptr += 4 - size;
481 bd.flags &= ~FEC_BD_E;
482 if (size == 0) {
483 /* Last buffer in frame. */
484 bd.flags |= flags | FEC_BD_L;
485 DPRINTF("rx frame flags %04x\n", bd.flags);
486 s->eir |= FEC_INT_RXF;
487 } else {
488 s->eir |= FEC_INT_RXB;
490 mcf_fec_write_bd(&bd, addr);
491 /* Advance to the next descriptor. */
492 if ((bd.flags & FEC_BD_W) != 0) {
493 addr = s->erdsr;
494 } else {
495 addr += 8;
498 s->rx_descriptor = addr;
499 mcf_fec_enable_rx(s);
500 mcf_fec_update(s);
501 return retsize;
504 static const MemoryRegionOps mcf_fec_ops = {
505 .read = mcf_fec_read,
506 .write = mcf_fec_write,
507 .endianness = DEVICE_NATIVE_ENDIAN,
510 static NetClientInfo net_mcf_fec_info = {
511 .type = NET_CLIENT_DRIVER_NIC,
512 .size = sizeof(NICState),
513 .receive = mcf_fec_receive,
516 void mcf_fec_init(MemoryRegion *sysmem, NICInfo *nd,
517 hwaddr base, qemu_irq *irq)
519 mcf_fec_state *s;
521 qemu_check_nic_model(nd, "mcf_fec");
523 s = (mcf_fec_state *)g_malloc0(sizeof(mcf_fec_state));
524 s->sysmem = sysmem;
525 s->irq = irq;
527 memory_region_init_io(&s->iomem, NULL, &mcf_fec_ops, s, "fec", 0x400);
528 memory_region_add_subregion(sysmem, base, &s->iomem);
530 s->conf.macaddr = nd->macaddr;
531 s->conf.peers.ncs[0] = nd->netdev;
533 s->nic = qemu_new_nic(&net_mcf_fec_info, &s->conf, nd->model, nd->name, s);
535 qemu_format_nic_info_str(qemu_get_queue(s->nic), s->conf.macaddr.a);