hw/tpm: Move few declarations from 'tpm_util.h' to 'tpm_int.h'
[qemu/ar7.git] / tcg / ppc / tcg-target.inc.c
blob7da67086c68ad75e883d005b3f5034928330bd7c
1 /*
2 * Tiny Code Generator for QEMU
4 * Copyright (c) 2008 Fabrice Bellard
6 * Permission is hereby granted, free of charge, to any person obtaining a copy
7 * of this software and associated documentation files (the "Software"), to deal
8 * in the Software without restriction, including without limitation the rights
9 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
10 * copies of the Software, and to permit persons to whom the Software is
11 * furnished to do so, subject to the following conditions:
13 * The above copyright notice and this permission notice shall be included in
14 * all copies or substantial portions of the Software.
16 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
17 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
18 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
19 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
20 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
21 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
22 * THE SOFTWARE.
25 #include "elf.h"
26 #include "../tcg-pool.inc.c"
28 #if defined _CALL_DARWIN || defined __APPLE__
29 #define TCG_TARGET_CALL_DARWIN
30 #endif
31 #ifdef _CALL_SYSV
32 # define TCG_TARGET_CALL_ALIGN_ARGS 1
33 #endif
35 /* For some memory operations, we need a scratch that isn't R0. For the AIX
36 calling convention, we can re-use the TOC register since we'll be reloading
37 it at every call. Otherwise R12 will do nicely as neither a call-saved
38 register nor a parameter register. */
39 #ifdef _CALL_AIX
40 # define TCG_REG_TMP1 TCG_REG_R2
41 #else
42 # define TCG_REG_TMP1 TCG_REG_R12
43 #endif
45 #define TCG_VEC_TMP1 TCG_REG_V0
46 #define TCG_VEC_TMP2 TCG_REG_V1
48 #define TCG_REG_TB TCG_REG_R31
49 #define USE_REG_TB (TCG_TARGET_REG_BITS == 64)
51 /* Shorthand for size of a pointer. Avoid promotion to unsigned. */
52 #define SZP ((int)sizeof(void *))
54 /* Shorthand for size of a register. */
55 #define SZR (TCG_TARGET_REG_BITS / 8)
57 #define TCG_CT_CONST_S16 0x100
58 #define TCG_CT_CONST_U16 0x200
59 #define TCG_CT_CONST_S32 0x400
60 #define TCG_CT_CONST_U32 0x800
61 #define TCG_CT_CONST_ZERO 0x1000
62 #define TCG_CT_CONST_MONE 0x2000
63 #define TCG_CT_CONST_WSZ 0x4000
65 static tcg_insn_unit *tb_ret_addr;
67 TCGPowerISA have_isa;
68 static bool have_isel;
69 bool have_altivec;
70 bool have_vsx;
72 #ifndef CONFIG_SOFTMMU
73 #define TCG_GUEST_BASE_REG 30
74 #endif
76 #ifdef CONFIG_DEBUG_TCG
77 static const char tcg_target_reg_names[TCG_TARGET_NB_REGS][4] = {
78 "r0", "r1", "r2", "r3", "r4", "r5", "r6", "r7",
79 "r8", "r9", "r10", "r11", "r12", "r13", "r14", "r15",
80 "r16", "r17", "r18", "r19", "r20", "r21", "r22", "r23",
81 "r24", "r25", "r26", "r27", "r28", "r29", "r30", "r31",
82 "v0", "v1", "v2", "v3", "v4", "v5", "v6", "v7",
83 "v8", "v9", "v10", "v11", "v12", "v13", "v14", "v15",
84 "v16", "v17", "v18", "v19", "v20", "v21", "v22", "v23",
85 "v24", "v25", "v26", "v27", "v28", "v29", "v30", "v31",
87 #endif
89 static const int tcg_target_reg_alloc_order[] = {
90 TCG_REG_R14, /* call saved registers */
91 TCG_REG_R15,
92 TCG_REG_R16,
93 TCG_REG_R17,
94 TCG_REG_R18,
95 TCG_REG_R19,
96 TCG_REG_R20,
97 TCG_REG_R21,
98 TCG_REG_R22,
99 TCG_REG_R23,
100 TCG_REG_R24,
101 TCG_REG_R25,
102 TCG_REG_R26,
103 TCG_REG_R27,
104 TCG_REG_R28,
105 TCG_REG_R29,
106 TCG_REG_R30,
107 TCG_REG_R31,
108 TCG_REG_R12, /* call clobbered, non-arguments */
109 TCG_REG_R11,
110 TCG_REG_R2,
111 TCG_REG_R13,
112 TCG_REG_R10, /* call clobbered, arguments */
113 TCG_REG_R9,
114 TCG_REG_R8,
115 TCG_REG_R7,
116 TCG_REG_R6,
117 TCG_REG_R5,
118 TCG_REG_R4,
119 TCG_REG_R3,
121 /* V0 and V1 reserved as temporaries; V20 - V31 are call-saved */
122 TCG_REG_V2, /* call clobbered, vectors */
123 TCG_REG_V3,
124 TCG_REG_V4,
125 TCG_REG_V5,
126 TCG_REG_V6,
127 TCG_REG_V7,
128 TCG_REG_V8,
129 TCG_REG_V9,
130 TCG_REG_V10,
131 TCG_REG_V11,
132 TCG_REG_V12,
133 TCG_REG_V13,
134 TCG_REG_V14,
135 TCG_REG_V15,
136 TCG_REG_V16,
137 TCG_REG_V17,
138 TCG_REG_V18,
139 TCG_REG_V19,
142 static const int tcg_target_call_iarg_regs[] = {
143 TCG_REG_R3,
144 TCG_REG_R4,
145 TCG_REG_R5,
146 TCG_REG_R6,
147 TCG_REG_R7,
148 TCG_REG_R8,
149 TCG_REG_R9,
150 TCG_REG_R10
153 static const int tcg_target_call_oarg_regs[] = {
154 TCG_REG_R3,
155 TCG_REG_R4
158 static const int tcg_target_callee_save_regs[] = {
159 #ifdef TCG_TARGET_CALL_DARWIN
160 TCG_REG_R11,
161 #endif
162 TCG_REG_R14,
163 TCG_REG_R15,
164 TCG_REG_R16,
165 TCG_REG_R17,
166 TCG_REG_R18,
167 TCG_REG_R19,
168 TCG_REG_R20,
169 TCG_REG_R21,
170 TCG_REG_R22,
171 TCG_REG_R23,
172 TCG_REG_R24,
173 TCG_REG_R25,
174 TCG_REG_R26,
175 TCG_REG_R27, /* currently used for the global env */
176 TCG_REG_R28,
177 TCG_REG_R29,
178 TCG_REG_R30,
179 TCG_REG_R31
182 static inline bool in_range_b(tcg_target_long target)
184 return target == sextract64(target, 0, 26);
187 static uint32_t reloc_pc24_val(tcg_insn_unit *pc, tcg_insn_unit *target)
189 ptrdiff_t disp = tcg_ptr_byte_diff(target, pc);
190 tcg_debug_assert(in_range_b(disp));
191 return disp & 0x3fffffc;
194 static bool reloc_pc24(tcg_insn_unit *pc, tcg_insn_unit *target)
196 ptrdiff_t disp = tcg_ptr_byte_diff(target, pc);
197 if (in_range_b(disp)) {
198 *pc = (*pc & ~0x3fffffc) | (disp & 0x3fffffc);
199 return true;
201 return false;
204 static uint16_t reloc_pc14_val(tcg_insn_unit *pc, tcg_insn_unit *target)
206 ptrdiff_t disp = tcg_ptr_byte_diff(target, pc);
207 tcg_debug_assert(disp == (int16_t) disp);
208 return disp & 0xfffc;
211 static bool reloc_pc14(tcg_insn_unit *pc, tcg_insn_unit *target)
213 ptrdiff_t disp = tcg_ptr_byte_diff(target, pc);
214 if (disp == (int16_t) disp) {
215 *pc = (*pc & ~0xfffc) | (disp & 0xfffc);
216 return true;
218 return false;
221 /* parse target specific constraints */
222 static const char *target_parse_constraint(TCGArgConstraint *ct,
223 const char *ct_str, TCGType type)
225 switch (*ct_str++) {
226 case 'A': case 'B': case 'C': case 'D':
227 ct->ct |= TCG_CT_REG;
228 tcg_regset_set_reg(ct->u.regs, 3 + ct_str[0] - 'A');
229 break;
230 case 'r':
231 ct->ct |= TCG_CT_REG;
232 ct->u.regs = 0xffffffff;
233 break;
234 case 'v':
235 ct->ct |= TCG_CT_REG;
236 ct->u.regs = 0xffffffff00000000ull;
237 break;
238 case 'L': /* qemu_ld constraint */
239 ct->ct |= TCG_CT_REG;
240 ct->u.regs = 0xffffffff;
241 tcg_regset_reset_reg(ct->u.regs, TCG_REG_R3);
242 #ifdef CONFIG_SOFTMMU
243 tcg_regset_reset_reg(ct->u.regs, TCG_REG_R4);
244 tcg_regset_reset_reg(ct->u.regs, TCG_REG_R5);
245 #endif
246 break;
247 case 'S': /* qemu_st constraint */
248 ct->ct |= TCG_CT_REG;
249 ct->u.regs = 0xffffffff;
250 tcg_regset_reset_reg(ct->u.regs, TCG_REG_R3);
251 #ifdef CONFIG_SOFTMMU
252 tcg_regset_reset_reg(ct->u.regs, TCG_REG_R4);
253 tcg_regset_reset_reg(ct->u.regs, TCG_REG_R5);
254 tcg_regset_reset_reg(ct->u.regs, TCG_REG_R6);
255 #endif
256 break;
257 case 'I':
258 ct->ct |= TCG_CT_CONST_S16;
259 break;
260 case 'J':
261 ct->ct |= TCG_CT_CONST_U16;
262 break;
263 case 'M':
264 ct->ct |= TCG_CT_CONST_MONE;
265 break;
266 case 'T':
267 ct->ct |= TCG_CT_CONST_S32;
268 break;
269 case 'U':
270 ct->ct |= TCG_CT_CONST_U32;
271 break;
272 case 'W':
273 ct->ct |= TCG_CT_CONST_WSZ;
274 break;
275 case 'Z':
276 ct->ct |= TCG_CT_CONST_ZERO;
277 break;
278 default:
279 return NULL;
281 return ct_str;
284 /* test if a constant matches the constraint */
285 static int tcg_target_const_match(tcg_target_long val, TCGType type,
286 const TCGArgConstraint *arg_ct)
288 int ct = arg_ct->ct;
289 if (ct & TCG_CT_CONST) {
290 return 1;
293 /* The only 32-bit constraint we use aside from
294 TCG_CT_CONST is TCG_CT_CONST_S16. */
295 if (type == TCG_TYPE_I32) {
296 val = (int32_t)val;
299 if ((ct & TCG_CT_CONST_S16) && val == (int16_t)val) {
300 return 1;
301 } else if ((ct & TCG_CT_CONST_U16) && val == (uint16_t)val) {
302 return 1;
303 } else if ((ct & TCG_CT_CONST_S32) && val == (int32_t)val) {
304 return 1;
305 } else if ((ct & TCG_CT_CONST_U32) && val == (uint32_t)val) {
306 return 1;
307 } else if ((ct & TCG_CT_CONST_ZERO) && val == 0) {
308 return 1;
309 } else if ((ct & TCG_CT_CONST_MONE) && val == -1) {
310 return 1;
311 } else if ((ct & TCG_CT_CONST_WSZ)
312 && val == (type == TCG_TYPE_I32 ? 32 : 64)) {
313 return 1;
315 return 0;
318 #define OPCD(opc) ((opc)<<26)
319 #define XO19(opc) (OPCD(19)|((opc)<<1))
320 #define MD30(opc) (OPCD(30)|((opc)<<2))
321 #define MDS30(opc) (OPCD(30)|((opc)<<1))
322 #define XO31(opc) (OPCD(31)|((opc)<<1))
323 #define XO58(opc) (OPCD(58)|(opc))
324 #define XO62(opc) (OPCD(62)|(opc))
325 #define VX4(opc) (OPCD(4)|(opc))
327 #define B OPCD( 18)
328 #define BC OPCD( 16)
329 #define LBZ OPCD( 34)
330 #define LHZ OPCD( 40)
331 #define LHA OPCD( 42)
332 #define LWZ OPCD( 32)
333 #define LWZUX XO31( 55)
334 #define STB OPCD( 38)
335 #define STH OPCD( 44)
336 #define STW OPCD( 36)
338 #define STD XO62( 0)
339 #define STDU XO62( 1)
340 #define STDX XO31(149)
342 #define LD XO58( 0)
343 #define LDX XO31( 21)
344 #define LDU XO58( 1)
345 #define LDUX XO31( 53)
346 #define LWA XO58( 2)
347 #define LWAX XO31(341)
349 #define ADDIC OPCD( 12)
350 #define ADDI OPCD( 14)
351 #define ADDIS OPCD( 15)
352 #define ORI OPCD( 24)
353 #define ORIS OPCD( 25)
354 #define XORI OPCD( 26)
355 #define XORIS OPCD( 27)
356 #define ANDI OPCD( 28)
357 #define ANDIS OPCD( 29)
358 #define MULLI OPCD( 7)
359 #define CMPLI OPCD( 10)
360 #define CMPI OPCD( 11)
361 #define SUBFIC OPCD( 8)
363 #define LWZU OPCD( 33)
364 #define STWU OPCD( 37)
366 #define RLWIMI OPCD( 20)
367 #define RLWINM OPCD( 21)
368 #define RLWNM OPCD( 23)
370 #define RLDICL MD30( 0)
371 #define RLDICR MD30( 1)
372 #define RLDIMI MD30( 3)
373 #define RLDCL MDS30( 8)
375 #define BCLR XO19( 16)
376 #define BCCTR XO19(528)
377 #define CRAND XO19(257)
378 #define CRANDC XO19(129)
379 #define CRNAND XO19(225)
380 #define CROR XO19(449)
381 #define CRNOR XO19( 33)
383 #define EXTSB XO31(954)
384 #define EXTSH XO31(922)
385 #define EXTSW XO31(986)
386 #define ADD XO31(266)
387 #define ADDE XO31(138)
388 #define ADDME XO31(234)
389 #define ADDZE XO31(202)
390 #define ADDC XO31( 10)
391 #define AND XO31( 28)
392 #define SUBF XO31( 40)
393 #define SUBFC XO31( 8)
394 #define SUBFE XO31(136)
395 #define SUBFME XO31(232)
396 #define SUBFZE XO31(200)
397 #define OR XO31(444)
398 #define XOR XO31(316)
399 #define MULLW XO31(235)
400 #define MULHW XO31( 75)
401 #define MULHWU XO31( 11)
402 #define DIVW XO31(491)
403 #define DIVWU XO31(459)
404 #define CMP XO31( 0)
405 #define CMPL XO31( 32)
406 #define LHBRX XO31(790)
407 #define LWBRX XO31(534)
408 #define LDBRX XO31(532)
409 #define STHBRX XO31(918)
410 #define STWBRX XO31(662)
411 #define STDBRX XO31(660)
412 #define MFSPR XO31(339)
413 #define MTSPR XO31(467)
414 #define SRAWI XO31(824)
415 #define NEG XO31(104)
416 #define MFCR XO31( 19)
417 #define MFOCRF (MFCR | (1u << 20))
418 #define NOR XO31(124)
419 #define CNTLZW XO31( 26)
420 #define CNTLZD XO31( 58)
421 #define CNTTZW XO31(538)
422 #define CNTTZD XO31(570)
423 #define CNTPOPW XO31(378)
424 #define CNTPOPD XO31(506)
425 #define ANDC XO31( 60)
426 #define ORC XO31(412)
427 #define EQV XO31(284)
428 #define NAND XO31(476)
429 #define ISEL XO31( 15)
431 #define MULLD XO31(233)
432 #define MULHD XO31( 73)
433 #define MULHDU XO31( 9)
434 #define DIVD XO31(489)
435 #define DIVDU XO31(457)
437 #define LBZX XO31( 87)
438 #define LHZX XO31(279)
439 #define LHAX XO31(343)
440 #define LWZX XO31( 23)
441 #define STBX XO31(215)
442 #define STHX XO31(407)
443 #define STWX XO31(151)
445 #define EIEIO XO31(854)
446 #define HWSYNC XO31(598)
447 #define LWSYNC (HWSYNC | (1u << 21))
449 #define SPR(a, b) ((((a)<<5)|(b))<<11)
450 #define LR SPR(8, 0)
451 #define CTR SPR(9, 0)
453 #define SLW XO31( 24)
454 #define SRW XO31(536)
455 #define SRAW XO31(792)
457 #define SLD XO31( 27)
458 #define SRD XO31(539)
459 #define SRAD XO31(794)
460 #define SRADI XO31(413<<1)
462 #define TW XO31( 4)
463 #define TRAP (TW | TO(31))
465 #define NOP ORI /* ori 0,0,0 */
467 #define LVX XO31(103)
468 #define LVEBX XO31(7)
469 #define LVEHX XO31(39)
470 #define LVEWX XO31(71)
471 #define LXSDX (XO31(588) | 1) /* v2.06, force tx=1 */
472 #define LXVDSX (XO31(332) | 1) /* v2.06, force tx=1 */
473 #define LXSIWZX (XO31(12) | 1) /* v2.07, force tx=1 */
474 #define LXV (OPCD(61) | 8 | 1) /* v3.00, force tx=1 */
475 #define LXSD (OPCD(57) | 2) /* v3.00 */
476 #define LXVWSX (XO31(364) | 1) /* v3.00, force tx=1 */
478 #define STVX XO31(231)
479 #define STVEWX XO31(199)
480 #define STXSDX (XO31(716) | 1) /* v2.06, force sx=1 */
481 #define STXSIWX (XO31(140) | 1) /* v2.07, force sx=1 */
482 #define STXV (OPCD(61) | 8 | 5) /* v3.00, force sx=1 */
483 #define STXSD (OPCD(61) | 2) /* v3.00 */
485 #define VADDSBS VX4(768)
486 #define VADDUBS VX4(512)
487 #define VADDUBM VX4(0)
488 #define VADDSHS VX4(832)
489 #define VADDUHS VX4(576)
490 #define VADDUHM VX4(64)
491 #define VADDSWS VX4(896)
492 #define VADDUWS VX4(640)
493 #define VADDUWM VX4(128)
494 #define VADDUDM VX4(192) /* v2.07 */
496 #define VSUBSBS VX4(1792)
497 #define VSUBUBS VX4(1536)
498 #define VSUBUBM VX4(1024)
499 #define VSUBSHS VX4(1856)
500 #define VSUBUHS VX4(1600)
501 #define VSUBUHM VX4(1088)
502 #define VSUBSWS VX4(1920)
503 #define VSUBUWS VX4(1664)
504 #define VSUBUWM VX4(1152)
505 #define VSUBUDM VX4(1216) /* v2.07 */
507 #define VNEGW (VX4(1538) | (6 << 16)) /* v3.00 */
508 #define VNEGD (VX4(1538) | (7 << 16)) /* v3.00 */
510 #define VMAXSB VX4(258)
511 #define VMAXSH VX4(322)
512 #define VMAXSW VX4(386)
513 #define VMAXSD VX4(450) /* v2.07 */
514 #define VMAXUB VX4(2)
515 #define VMAXUH VX4(66)
516 #define VMAXUW VX4(130)
517 #define VMAXUD VX4(194) /* v2.07 */
518 #define VMINSB VX4(770)
519 #define VMINSH VX4(834)
520 #define VMINSW VX4(898)
521 #define VMINSD VX4(962) /* v2.07 */
522 #define VMINUB VX4(514)
523 #define VMINUH VX4(578)
524 #define VMINUW VX4(642)
525 #define VMINUD VX4(706) /* v2.07 */
527 #define VCMPEQUB VX4(6)
528 #define VCMPEQUH VX4(70)
529 #define VCMPEQUW VX4(134)
530 #define VCMPEQUD VX4(199) /* v2.07 */
531 #define VCMPGTSB VX4(774)
532 #define VCMPGTSH VX4(838)
533 #define VCMPGTSW VX4(902)
534 #define VCMPGTSD VX4(967) /* v2.07 */
535 #define VCMPGTUB VX4(518)
536 #define VCMPGTUH VX4(582)
537 #define VCMPGTUW VX4(646)
538 #define VCMPGTUD VX4(711) /* v2.07 */
539 #define VCMPNEB VX4(7) /* v3.00 */
540 #define VCMPNEH VX4(71) /* v3.00 */
541 #define VCMPNEW VX4(135) /* v3.00 */
543 #define VSLB VX4(260)
544 #define VSLH VX4(324)
545 #define VSLW VX4(388)
546 #define VSLD VX4(1476) /* v2.07 */
547 #define VSRB VX4(516)
548 #define VSRH VX4(580)
549 #define VSRW VX4(644)
550 #define VSRD VX4(1732) /* v2.07 */
551 #define VSRAB VX4(772)
552 #define VSRAH VX4(836)
553 #define VSRAW VX4(900)
554 #define VSRAD VX4(964) /* v2.07 */
555 #define VRLB VX4(4)
556 #define VRLH VX4(68)
557 #define VRLW VX4(132)
558 #define VRLD VX4(196) /* v2.07 */
560 #define VMULEUB VX4(520)
561 #define VMULEUH VX4(584)
562 #define VMULEUW VX4(648) /* v2.07 */
563 #define VMULOUB VX4(8)
564 #define VMULOUH VX4(72)
565 #define VMULOUW VX4(136) /* v2.07 */
566 #define VMULUWM VX4(137) /* v2.07 */
567 #define VMSUMUHM VX4(38)
569 #define VMRGHB VX4(12)
570 #define VMRGHH VX4(76)
571 #define VMRGHW VX4(140)
572 #define VMRGLB VX4(268)
573 #define VMRGLH VX4(332)
574 #define VMRGLW VX4(396)
576 #define VPKUHUM VX4(14)
577 #define VPKUWUM VX4(78)
579 #define VAND VX4(1028)
580 #define VANDC VX4(1092)
581 #define VNOR VX4(1284)
582 #define VOR VX4(1156)
583 #define VXOR VX4(1220)
584 #define VEQV VX4(1668) /* v2.07 */
585 #define VNAND VX4(1412) /* v2.07 */
586 #define VORC VX4(1348) /* v2.07 */
588 #define VSPLTB VX4(524)
589 #define VSPLTH VX4(588)
590 #define VSPLTW VX4(652)
591 #define VSPLTISB VX4(780)
592 #define VSPLTISH VX4(844)
593 #define VSPLTISW VX4(908)
595 #define VSLDOI VX4(44)
597 #define XXPERMDI (OPCD(60) | (10 << 3) | 7) /* v2.06, force ax=bx=tx=1 */
598 #define XXSEL (OPCD(60) | (3 << 4) | 0xf) /* v2.06, force ax=bx=cx=tx=1 */
599 #define XXSPLTIB (OPCD(60) | (360 << 1) | 1) /* v3.00, force tx=1 */
601 #define MFVSRD (XO31(51) | 1) /* v2.07, force sx=1 */
602 #define MFVSRWZ (XO31(115) | 1) /* v2.07, force sx=1 */
603 #define MTVSRD (XO31(179) | 1) /* v2.07, force tx=1 */
604 #define MTVSRWZ (XO31(243) | 1) /* v2.07, force tx=1 */
605 #define MTVSRDD (XO31(435) | 1) /* v3.00, force tx=1 */
606 #define MTVSRWS (XO31(403) | 1) /* v3.00, force tx=1 */
608 #define RT(r) ((r)<<21)
609 #define RS(r) ((r)<<21)
610 #define RA(r) ((r)<<16)
611 #define RB(r) ((r)<<11)
612 #define TO(t) ((t)<<21)
613 #define SH(s) ((s)<<11)
614 #define MB(b) ((b)<<6)
615 #define ME(e) ((e)<<1)
616 #define BO(o) ((o)<<21)
617 #define MB64(b) ((b)<<5)
618 #define FXM(b) (1 << (19 - (b)))
620 #define VRT(r) (((r) & 31) << 21)
621 #define VRA(r) (((r) & 31) << 16)
622 #define VRB(r) (((r) & 31) << 11)
623 #define VRC(r) (((r) & 31) << 6)
625 #define LK 1
627 #define TAB(t, a, b) (RT(t) | RA(a) | RB(b))
628 #define SAB(s, a, b) (RS(s) | RA(a) | RB(b))
629 #define TAI(s, a, i) (RT(s) | RA(a) | ((i) & 0xffff))
630 #define SAI(s, a, i) (RS(s) | RA(a) | ((i) & 0xffff))
632 #define BF(n) ((n)<<23)
633 #define BI(n, c) (((c)+((n)*4))<<16)
634 #define BT(n, c) (((c)+((n)*4))<<21)
635 #define BA(n, c) (((c)+((n)*4))<<16)
636 #define BB(n, c) (((c)+((n)*4))<<11)
637 #define BC_(n, c) (((c)+((n)*4))<<6)
639 #define BO_COND_TRUE BO(12)
640 #define BO_COND_FALSE BO( 4)
641 #define BO_ALWAYS BO(20)
643 enum {
644 CR_LT,
645 CR_GT,
646 CR_EQ,
647 CR_SO
650 static const uint32_t tcg_to_bc[] = {
651 [TCG_COND_EQ] = BC | BI(7, CR_EQ) | BO_COND_TRUE,
652 [TCG_COND_NE] = BC | BI(7, CR_EQ) | BO_COND_FALSE,
653 [TCG_COND_LT] = BC | BI(7, CR_LT) | BO_COND_TRUE,
654 [TCG_COND_GE] = BC | BI(7, CR_LT) | BO_COND_FALSE,
655 [TCG_COND_LE] = BC | BI(7, CR_GT) | BO_COND_FALSE,
656 [TCG_COND_GT] = BC | BI(7, CR_GT) | BO_COND_TRUE,
657 [TCG_COND_LTU] = BC | BI(7, CR_LT) | BO_COND_TRUE,
658 [TCG_COND_GEU] = BC | BI(7, CR_LT) | BO_COND_FALSE,
659 [TCG_COND_LEU] = BC | BI(7, CR_GT) | BO_COND_FALSE,
660 [TCG_COND_GTU] = BC | BI(7, CR_GT) | BO_COND_TRUE,
663 /* The low bit here is set if the RA and RB fields must be inverted. */
664 static const uint32_t tcg_to_isel[] = {
665 [TCG_COND_EQ] = ISEL | BC_(7, CR_EQ),
666 [TCG_COND_NE] = ISEL | BC_(7, CR_EQ) | 1,
667 [TCG_COND_LT] = ISEL | BC_(7, CR_LT),
668 [TCG_COND_GE] = ISEL | BC_(7, CR_LT) | 1,
669 [TCG_COND_LE] = ISEL | BC_(7, CR_GT) | 1,
670 [TCG_COND_GT] = ISEL | BC_(7, CR_GT),
671 [TCG_COND_LTU] = ISEL | BC_(7, CR_LT),
672 [TCG_COND_GEU] = ISEL | BC_(7, CR_LT) | 1,
673 [TCG_COND_LEU] = ISEL | BC_(7, CR_GT) | 1,
674 [TCG_COND_GTU] = ISEL | BC_(7, CR_GT),
677 static bool patch_reloc(tcg_insn_unit *code_ptr, int type,
678 intptr_t value, intptr_t addend)
680 tcg_insn_unit *target;
681 int16_t lo;
682 int32_t hi;
684 value += addend;
685 target = (tcg_insn_unit *)value;
687 switch (type) {
688 case R_PPC_REL14:
689 return reloc_pc14(code_ptr, target);
690 case R_PPC_REL24:
691 return reloc_pc24(code_ptr, target);
692 case R_PPC_ADDR16:
694 * We are (slightly) abusing this relocation type. In particular,
695 * assert that the low 2 bits are zero, and do not modify them.
696 * That way we can use this with LD et al that have opcode bits
697 * in the low 2 bits of the insn.
699 if ((value & 3) || value != (int16_t)value) {
700 return false;
702 *code_ptr = (*code_ptr & ~0xfffc) | (value & 0xfffc);
703 break;
704 case R_PPC_ADDR32:
706 * We are abusing this relocation type. Again, this points to
707 * a pair of insns, lis + load. This is an absolute address
708 * relocation for PPC32 so the lis cannot be removed.
710 lo = value;
711 hi = value - lo;
712 if (hi + lo != value) {
713 return false;
715 code_ptr[0] = deposit32(code_ptr[0], 0, 16, hi >> 16);
716 code_ptr[1] = deposit32(code_ptr[1], 0, 16, lo);
717 break;
718 default:
719 g_assert_not_reached();
721 return true;
724 static void tcg_out_mem_long(TCGContext *s, int opi, int opx, TCGReg rt,
725 TCGReg base, tcg_target_long offset);
727 static bool tcg_out_mov(TCGContext *s, TCGType type, TCGReg ret, TCGReg arg)
729 if (ret == arg) {
730 return true;
732 switch (type) {
733 case TCG_TYPE_I64:
734 tcg_debug_assert(TCG_TARGET_REG_BITS == 64);
735 /* fallthru */
736 case TCG_TYPE_I32:
737 if (ret < TCG_REG_V0) {
738 if (arg < TCG_REG_V0) {
739 tcg_out32(s, OR | SAB(arg, ret, arg));
740 break;
741 } else if (have_isa_2_07) {
742 tcg_out32(s, (type == TCG_TYPE_I32 ? MFVSRWZ : MFVSRD)
743 | VRT(arg) | RA(ret));
744 break;
745 } else {
746 /* Altivec does not support vector->integer moves. */
747 return false;
749 } else if (arg < TCG_REG_V0) {
750 if (have_isa_2_07) {
751 tcg_out32(s, (type == TCG_TYPE_I32 ? MTVSRWZ : MTVSRD)
752 | VRT(ret) | RA(arg));
753 break;
754 } else {
755 /* Altivec does not support integer->vector moves. */
756 return false;
759 /* fallthru */
760 case TCG_TYPE_V64:
761 case TCG_TYPE_V128:
762 tcg_debug_assert(ret >= TCG_REG_V0 && arg >= TCG_REG_V0);
763 tcg_out32(s, VOR | VRT(ret) | VRA(arg) | VRB(arg));
764 break;
765 default:
766 g_assert_not_reached();
768 return true;
771 static inline void tcg_out_rld(TCGContext *s, int op, TCGReg ra, TCGReg rs,
772 int sh, int mb)
774 tcg_debug_assert(TCG_TARGET_REG_BITS == 64);
775 sh = SH(sh & 0x1f) | (((sh >> 5) & 1) << 1);
776 mb = MB64((mb >> 5) | ((mb << 1) & 0x3f));
777 tcg_out32(s, op | RA(ra) | RS(rs) | sh | mb);
780 static inline void tcg_out_rlw(TCGContext *s, int op, TCGReg ra, TCGReg rs,
781 int sh, int mb, int me)
783 tcg_out32(s, op | RA(ra) | RS(rs) | SH(sh) | MB(mb) | ME(me));
786 static inline void tcg_out_ext32u(TCGContext *s, TCGReg dst, TCGReg src)
788 tcg_out_rld(s, RLDICL, dst, src, 0, 32);
791 static inline void tcg_out_shli32(TCGContext *s, TCGReg dst, TCGReg src, int c)
793 tcg_out_rlw(s, RLWINM, dst, src, c, 0, 31 - c);
796 static inline void tcg_out_shli64(TCGContext *s, TCGReg dst, TCGReg src, int c)
798 tcg_out_rld(s, RLDICR, dst, src, c, 63 - c);
801 static inline void tcg_out_shri32(TCGContext *s, TCGReg dst, TCGReg src, int c)
803 tcg_out_rlw(s, RLWINM, dst, src, 32 - c, c, 31);
806 static inline void tcg_out_shri64(TCGContext *s, TCGReg dst, TCGReg src, int c)
808 tcg_out_rld(s, RLDICL, dst, src, 64 - c, c);
811 /* Emit a move into ret of arg, if it can be done in one insn. */
812 static bool tcg_out_movi_one(TCGContext *s, TCGReg ret, tcg_target_long arg)
814 if (arg == (int16_t)arg) {
815 tcg_out32(s, ADDI | TAI(ret, 0, arg));
816 return true;
818 if (arg == (int32_t)arg && (arg & 0xffff) == 0) {
819 tcg_out32(s, ADDIS | TAI(ret, 0, arg >> 16));
820 return true;
822 return false;
825 static void tcg_out_movi_int(TCGContext *s, TCGType type, TCGReg ret,
826 tcg_target_long arg, bool in_prologue)
828 intptr_t tb_diff;
829 tcg_target_long tmp;
830 int shift;
832 tcg_debug_assert(TCG_TARGET_REG_BITS == 64 || type == TCG_TYPE_I32);
834 if (TCG_TARGET_REG_BITS == 64 && type == TCG_TYPE_I32) {
835 arg = (int32_t)arg;
838 /* Load 16-bit immediates with one insn. */
839 if (tcg_out_movi_one(s, ret, arg)) {
840 return;
843 /* Load addresses within the TB with one insn. */
844 tb_diff = arg - (intptr_t)s->code_gen_ptr;
845 if (!in_prologue && USE_REG_TB && tb_diff == (int16_t)tb_diff) {
846 tcg_out32(s, ADDI | TAI(ret, TCG_REG_TB, tb_diff));
847 return;
850 /* Load 32-bit immediates with two insns. Note that we've already
851 eliminated bare ADDIS, so we know both insns are required. */
852 if (TCG_TARGET_REG_BITS == 32 || arg == (int32_t)arg) {
853 tcg_out32(s, ADDIS | TAI(ret, 0, arg >> 16));
854 tcg_out32(s, ORI | SAI(ret, ret, arg));
855 return;
857 if (arg == (uint32_t)arg && !(arg & 0x8000)) {
858 tcg_out32(s, ADDI | TAI(ret, 0, arg));
859 tcg_out32(s, ORIS | SAI(ret, ret, arg >> 16));
860 return;
863 /* Load masked 16-bit value. */
864 if (arg > 0 && (arg & 0x8000)) {
865 tmp = arg | 0x7fff;
866 if ((tmp & (tmp + 1)) == 0) {
867 int mb = clz64(tmp + 1) + 1;
868 tcg_out32(s, ADDI | TAI(ret, 0, arg));
869 tcg_out_rld(s, RLDICL, ret, ret, 0, mb);
870 return;
874 /* Load common masks with 2 insns. */
875 shift = ctz64(arg);
876 tmp = arg >> shift;
877 if (tmp == (int16_t)tmp) {
878 tcg_out32(s, ADDI | TAI(ret, 0, tmp));
879 tcg_out_shli64(s, ret, ret, shift);
880 return;
882 shift = clz64(arg);
883 if (tcg_out_movi_one(s, ret, arg << shift)) {
884 tcg_out_shri64(s, ret, ret, shift);
885 return;
888 /* Load addresses within 2GB of TB with 2 (or rarely 3) insns. */
889 if (!in_prologue && USE_REG_TB && tb_diff == (int32_t)tb_diff) {
890 tcg_out_mem_long(s, ADDI, ADD, ret, TCG_REG_TB, tb_diff);
891 return;
894 /* Use the constant pool, if possible. */
895 if (!in_prologue && USE_REG_TB) {
896 new_pool_label(s, arg, R_PPC_ADDR16, s->code_ptr,
897 -(intptr_t)s->code_gen_ptr);
898 tcg_out32(s, LD | TAI(ret, TCG_REG_TB, 0));
899 return;
902 tmp = arg >> 31 >> 1;
903 tcg_out_movi(s, TCG_TYPE_I32, ret, tmp);
904 if (tmp) {
905 tcg_out_shli64(s, ret, ret, 32);
907 if (arg & 0xffff0000) {
908 tcg_out32(s, ORIS | SAI(ret, ret, arg >> 16));
910 if (arg & 0xffff) {
911 tcg_out32(s, ORI | SAI(ret, ret, arg));
915 static void tcg_out_dupi_vec(TCGContext *s, TCGType type, TCGReg ret,
916 tcg_target_long val)
918 uint32_t load_insn;
919 int rel, low;
920 intptr_t add;
922 low = (int8_t)val;
923 if (low >= -16 && low < 16) {
924 if (val == (tcg_target_long)dup_const(MO_8, low)) {
925 tcg_out32(s, VSPLTISB | VRT(ret) | ((val & 31) << 16));
926 return;
928 if (val == (tcg_target_long)dup_const(MO_16, low)) {
929 tcg_out32(s, VSPLTISH | VRT(ret) | ((val & 31) << 16));
930 return;
932 if (val == (tcg_target_long)dup_const(MO_32, low)) {
933 tcg_out32(s, VSPLTISW | VRT(ret) | ((val & 31) << 16));
934 return;
937 if (have_isa_3_00 && val == (tcg_target_long)dup_const(MO_8, val)) {
938 tcg_out32(s, XXSPLTIB | VRT(ret) | ((val & 0xff) << 11));
939 return;
943 * Otherwise we must load the value from the constant pool.
945 if (USE_REG_TB) {
946 rel = R_PPC_ADDR16;
947 add = -(intptr_t)s->code_gen_ptr;
948 } else {
949 rel = R_PPC_ADDR32;
950 add = 0;
953 if (have_vsx) {
954 load_insn = type == TCG_TYPE_V64 ? LXSDX : LXVDSX;
955 load_insn |= VRT(ret) | RB(TCG_REG_TMP1);
956 if (TCG_TARGET_REG_BITS == 64) {
957 new_pool_label(s, val, rel, s->code_ptr, add);
958 } else {
959 new_pool_l2(s, rel, s->code_ptr, add, val, val);
961 } else {
962 load_insn = LVX | VRT(ret) | RB(TCG_REG_TMP1);
963 if (TCG_TARGET_REG_BITS == 64) {
964 new_pool_l2(s, rel, s->code_ptr, add, val, val);
965 } else {
966 new_pool_l4(s, rel, s->code_ptr, add, val, val, val, val);
970 if (USE_REG_TB) {
971 tcg_out32(s, ADDI | TAI(TCG_REG_TMP1, 0, 0));
972 load_insn |= RA(TCG_REG_TB);
973 } else {
974 tcg_out32(s, ADDIS | TAI(TCG_REG_TMP1, 0, 0));
975 tcg_out32(s, ADDI | TAI(TCG_REG_TMP1, TCG_REG_TMP1, 0));
977 tcg_out32(s, load_insn);
980 static void tcg_out_movi(TCGContext *s, TCGType type, TCGReg ret,
981 tcg_target_long arg)
983 switch (type) {
984 case TCG_TYPE_I32:
985 case TCG_TYPE_I64:
986 tcg_debug_assert(ret < TCG_REG_V0);
987 tcg_out_movi_int(s, type, ret, arg, false);
988 break;
990 case TCG_TYPE_V64:
991 case TCG_TYPE_V128:
992 tcg_debug_assert(ret >= TCG_REG_V0);
993 tcg_out_dupi_vec(s, type, ret, arg);
994 break;
996 default:
997 g_assert_not_reached();
1001 static bool mask_operand(uint32_t c, int *mb, int *me)
1003 uint32_t lsb, test;
1005 /* Accept a bit pattern like:
1006 0....01....1
1007 1....10....0
1008 0..01..10..0
1009 Keep track of the transitions. */
1010 if (c == 0 || c == -1) {
1011 return false;
1013 test = c;
1014 lsb = test & -test;
1015 test += lsb;
1016 if (test & (test - 1)) {
1017 return false;
1020 *me = clz32(lsb);
1021 *mb = test ? clz32(test & -test) + 1 : 0;
1022 return true;
1025 static bool mask64_operand(uint64_t c, int *mb, int *me)
1027 uint64_t lsb;
1029 if (c == 0) {
1030 return false;
1033 lsb = c & -c;
1034 /* Accept 1..10..0. */
1035 if (c == -lsb) {
1036 *mb = 0;
1037 *me = clz64(lsb);
1038 return true;
1040 /* Accept 0..01..1. */
1041 if (lsb == 1 && (c & (c + 1)) == 0) {
1042 *mb = clz64(c + 1) + 1;
1043 *me = 63;
1044 return true;
1046 return false;
1049 static void tcg_out_andi32(TCGContext *s, TCGReg dst, TCGReg src, uint32_t c)
1051 int mb, me;
1053 if (mask_operand(c, &mb, &me)) {
1054 tcg_out_rlw(s, RLWINM, dst, src, 0, mb, me);
1055 } else if ((c & 0xffff) == c) {
1056 tcg_out32(s, ANDI | SAI(src, dst, c));
1057 return;
1058 } else if ((c & 0xffff0000) == c) {
1059 tcg_out32(s, ANDIS | SAI(src, dst, c >> 16));
1060 return;
1061 } else {
1062 tcg_out_movi(s, TCG_TYPE_I32, TCG_REG_R0, c);
1063 tcg_out32(s, AND | SAB(src, dst, TCG_REG_R0));
1067 static void tcg_out_andi64(TCGContext *s, TCGReg dst, TCGReg src, uint64_t c)
1069 int mb, me;
1071 tcg_debug_assert(TCG_TARGET_REG_BITS == 64);
1072 if (mask64_operand(c, &mb, &me)) {
1073 if (mb == 0) {
1074 tcg_out_rld(s, RLDICR, dst, src, 0, me);
1075 } else {
1076 tcg_out_rld(s, RLDICL, dst, src, 0, mb);
1078 } else if ((c & 0xffff) == c) {
1079 tcg_out32(s, ANDI | SAI(src, dst, c));
1080 return;
1081 } else if ((c & 0xffff0000) == c) {
1082 tcg_out32(s, ANDIS | SAI(src, dst, c >> 16));
1083 return;
1084 } else {
1085 tcg_out_movi(s, TCG_TYPE_I64, TCG_REG_R0, c);
1086 tcg_out32(s, AND | SAB(src, dst, TCG_REG_R0));
1090 static void tcg_out_zori32(TCGContext *s, TCGReg dst, TCGReg src, uint32_t c,
1091 int op_lo, int op_hi)
1093 if (c >> 16) {
1094 tcg_out32(s, op_hi | SAI(src, dst, c >> 16));
1095 src = dst;
1097 if (c & 0xffff) {
1098 tcg_out32(s, op_lo | SAI(src, dst, c));
1099 src = dst;
1103 static void tcg_out_ori32(TCGContext *s, TCGReg dst, TCGReg src, uint32_t c)
1105 tcg_out_zori32(s, dst, src, c, ORI, ORIS);
1108 static void tcg_out_xori32(TCGContext *s, TCGReg dst, TCGReg src, uint32_t c)
1110 tcg_out_zori32(s, dst, src, c, XORI, XORIS);
1113 static void tcg_out_b(TCGContext *s, int mask, tcg_insn_unit *target)
1115 ptrdiff_t disp = tcg_pcrel_diff(s, target);
1116 if (in_range_b(disp)) {
1117 tcg_out32(s, B | (disp & 0x3fffffc) | mask);
1118 } else {
1119 tcg_out_movi(s, TCG_TYPE_PTR, TCG_REG_R0, (uintptr_t)target);
1120 tcg_out32(s, MTSPR | RS(TCG_REG_R0) | CTR);
1121 tcg_out32(s, BCCTR | BO_ALWAYS | mask);
1125 static void tcg_out_mem_long(TCGContext *s, int opi, int opx, TCGReg rt,
1126 TCGReg base, tcg_target_long offset)
1128 tcg_target_long orig = offset, l0, l1, extra = 0, align = 0;
1129 bool is_int_store = false;
1130 TCGReg rs = TCG_REG_TMP1;
1132 switch (opi) {
1133 case LD: case LWA:
1134 align = 3;
1135 /* FALLTHRU */
1136 default:
1137 if (rt > TCG_REG_R0 && rt < TCG_REG_V0) {
1138 rs = rt;
1139 break;
1141 break;
1142 case LXSD:
1143 case STXSD:
1144 align = 3;
1145 break;
1146 case LXV:
1147 case STXV:
1148 align = 15;
1149 break;
1150 case STD:
1151 align = 3;
1152 /* FALLTHRU */
1153 case STB: case STH: case STW:
1154 is_int_store = true;
1155 break;
1158 /* For unaligned, or very large offsets, use the indexed form. */
1159 if (offset & align || offset != (int32_t)offset || opi == 0) {
1160 if (rs == base) {
1161 rs = TCG_REG_R0;
1163 tcg_debug_assert(!is_int_store || rs != rt);
1164 tcg_out_movi(s, TCG_TYPE_PTR, rs, orig);
1165 tcg_out32(s, opx | TAB(rt & 31, base, rs));
1166 return;
1169 l0 = (int16_t)offset;
1170 offset = (offset - l0) >> 16;
1171 l1 = (int16_t)offset;
1173 if (l1 < 0 && orig >= 0) {
1174 extra = 0x4000;
1175 l1 = (int16_t)(offset - 0x4000);
1177 if (l1) {
1178 tcg_out32(s, ADDIS | TAI(rs, base, l1));
1179 base = rs;
1181 if (extra) {
1182 tcg_out32(s, ADDIS | TAI(rs, base, extra));
1183 base = rs;
1185 if (opi != ADDI || base != rt || l0 != 0) {
1186 tcg_out32(s, opi | TAI(rt & 31, base, l0));
1190 static void tcg_out_vsldoi(TCGContext *s, TCGReg ret,
1191 TCGReg va, TCGReg vb, int shb)
1193 tcg_out32(s, VSLDOI | VRT(ret) | VRA(va) | VRB(vb) | (shb << 6));
1196 static void tcg_out_ld(TCGContext *s, TCGType type, TCGReg ret,
1197 TCGReg base, intptr_t offset)
1199 int shift;
1201 switch (type) {
1202 case TCG_TYPE_I32:
1203 if (ret < TCG_REG_V0) {
1204 tcg_out_mem_long(s, LWZ, LWZX, ret, base, offset);
1205 break;
1207 if (have_isa_2_07 && have_vsx) {
1208 tcg_out_mem_long(s, 0, LXSIWZX, ret, base, offset);
1209 break;
1211 tcg_debug_assert((offset & 3) == 0);
1212 tcg_out_mem_long(s, 0, LVEWX, ret, base, offset);
1213 shift = (offset - 4) & 0xc;
1214 if (shift) {
1215 tcg_out_vsldoi(s, ret, ret, ret, shift);
1217 break;
1218 case TCG_TYPE_I64:
1219 if (ret < TCG_REG_V0) {
1220 tcg_debug_assert(TCG_TARGET_REG_BITS == 64);
1221 tcg_out_mem_long(s, LD, LDX, ret, base, offset);
1222 break;
1224 /* fallthru */
1225 case TCG_TYPE_V64:
1226 tcg_debug_assert(ret >= TCG_REG_V0);
1227 if (have_vsx) {
1228 tcg_out_mem_long(s, have_isa_3_00 ? LXSD : 0, LXSDX,
1229 ret, base, offset);
1230 break;
1232 tcg_debug_assert((offset & 7) == 0);
1233 tcg_out_mem_long(s, 0, LVX, ret, base, offset & -16);
1234 if (offset & 8) {
1235 tcg_out_vsldoi(s, ret, ret, ret, 8);
1237 break;
1238 case TCG_TYPE_V128:
1239 tcg_debug_assert(ret >= TCG_REG_V0);
1240 tcg_debug_assert((offset & 15) == 0);
1241 tcg_out_mem_long(s, have_isa_3_00 ? LXV : 0,
1242 LVX, ret, base, offset);
1243 break;
1244 default:
1245 g_assert_not_reached();
1249 static void tcg_out_st(TCGContext *s, TCGType type, TCGReg arg,
1250 TCGReg base, intptr_t offset)
1252 int shift;
1254 switch (type) {
1255 case TCG_TYPE_I32:
1256 if (arg < TCG_REG_V0) {
1257 tcg_out_mem_long(s, STW, STWX, arg, base, offset);
1258 break;
1260 if (have_isa_2_07 && have_vsx) {
1261 tcg_out_mem_long(s, 0, STXSIWX, arg, base, offset);
1262 break;
1264 assert((offset & 3) == 0);
1265 tcg_debug_assert((offset & 3) == 0);
1266 shift = (offset - 4) & 0xc;
1267 if (shift) {
1268 tcg_out_vsldoi(s, TCG_VEC_TMP1, arg, arg, shift);
1269 arg = TCG_VEC_TMP1;
1271 tcg_out_mem_long(s, 0, STVEWX, arg, base, offset);
1272 break;
1273 case TCG_TYPE_I64:
1274 if (arg < TCG_REG_V0) {
1275 tcg_debug_assert(TCG_TARGET_REG_BITS == 64);
1276 tcg_out_mem_long(s, STD, STDX, arg, base, offset);
1277 break;
1279 /* fallthru */
1280 case TCG_TYPE_V64:
1281 tcg_debug_assert(arg >= TCG_REG_V0);
1282 if (have_vsx) {
1283 tcg_out_mem_long(s, have_isa_3_00 ? STXSD : 0,
1284 STXSDX, arg, base, offset);
1285 break;
1287 tcg_debug_assert((offset & 7) == 0);
1288 if (offset & 8) {
1289 tcg_out_vsldoi(s, TCG_VEC_TMP1, arg, arg, 8);
1290 arg = TCG_VEC_TMP1;
1292 tcg_out_mem_long(s, 0, STVEWX, arg, base, offset);
1293 tcg_out_mem_long(s, 0, STVEWX, arg, base, offset + 4);
1294 break;
1295 case TCG_TYPE_V128:
1296 tcg_debug_assert(arg >= TCG_REG_V0);
1297 tcg_out_mem_long(s, have_isa_3_00 ? STXV : 0,
1298 STVX, arg, base, offset);
1299 break;
1300 default:
1301 g_assert_not_reached();
1305 static inline bool tcg_out_sti(TCGContext *s, TCGType type, TCGArg val,
1306 TCGReg base, intptr_t ofs)
1308 return false;
1311 static void tcg_out_cmp(TCGContext *s, int cond, TCGArg arg1, TCGArg arg2,
1312 int const_arg2, int cr, TCGType type)
1314 int imm;
1315 uint32_t op;
1317 tcg_debug_assert(TCG_TARGET_REG_BITS == 64 || type == TCG_TYPE_I32);
1319 /* Simplify the comparisons below wrt CMPI. */
1320 if (type == TCG_TYPE_I32) {
1321 arg2 = (int32_t)arg2;
1324 switch (cond) {
1325 case TCG_COND_EQ:
1326 case TCG_COND_NE:
1327 if (const_arg2) {
1328 if ((int16_t) arg2 == arg2) {
1329 op = CMPI;
1330 imm = 1;
1331 break;
1332 } else if ((uint16_t) arg2 == arg2) {
1333 op = CMPLI;
1334 imm = 1;
1335 break;
1338 op = CMPL;
1339 imm = 0;
1340 break;
1342 case TCG_COND_LT:
1343 case TCG_COND_GE:
1344 case TCG_COND_LE:
1345 case TCG_COND_GT:
1346 if (const_arg2) {
1347 if ((int16_t) arg2 == arg2) {
1348 op = CMPI;
1349 imm = 1;
1350 break;
1353 op = CMP;
1354 imm = 0;
1355 break;
1357 case TCG_COND_LTU:
1358 case TCG_COND_GEU:
1359 case TCG_COND_LEU:
1360 case TCG_COND_GTU:
1361 if (const_arg2) {
1362 if ((uint16_t) arg2 == arg2) {
1363 op = CMPLI;
1364 imm = 1;
1365 break;
1368 op = CMPL;
1369 imm = 0;
1370 break;
1372 default:
1373 tcg_abort();
1375 op |= BF(cr) | ((type == TCG_TYPE_I64) << 21);
1377 if (imm) {
1378 tcg_out32(s, op | RA(arg1) | (arg2 & 0xffff));
1379 } else {
1380 if (const_arg2) {
1381 tcg_out_movi(s, type, TCG_REG_R0, arg2);
1382 arg2 = TCG_REG_R0;
1384 tcg_out32(s, op | RA(arg1) | RB(arg2));
1388 static void tcg_out_setcond_eq0(TCGContext *s, TCGType type,
1389 TCGReg dst, TCGReg src)
1391 if (type == TCG_TYPE_I32) {
1392 tcg_out32(s, CNTLZW | RS(src) | RA(dst));
1393 tcg_out_shri32(s, dst, dst, 5);
1394 } else {
1395 tcg_out32(s, CNTLZD | RS(src) | RA(dst));
1396 tcg_out_shri64(s, dst, dst, 6);
1400 static void tcg_out_setcond_ne0(TCGContext *s, TCGReg dst, TCGReg src)
1402 /* X != 0 implies X + -1 generates a carry. Extra addition
1403 trickery means: R = X-1 + ~X + C = X-1 + (-X+1) + C = C. */
1404 if (dst != src) {
1405 tcg_out32(s, ADDIC | TAI(dst, src, -1));
1406 tcg_out32(s, SUBFE | TAB(dst, dst, src));
1407 } else {
1408 tcg_out32(s, ADDIC | TAI(TCG_REG_R0, src, -1));
1409 tcg_out32(s, SUBFE | TAB(dst, TCG_REG_R0, src));
1413 static TCGReg tcg_gen_setcond_xor(TCGContext *s, TCGReg arg1, TCGArg arg2,
1414 bool const_arg2)
1416 if (const_arg2) {
1417 if ((uint32_t)arg2 == arg2) {
1418 tcg_out_xori32(s, TCG_REG_R0, arg1, arg2);
1419 } else {
1420 tcg_out_movi(s, TCG_TYPE_I64, TCG_REG_R0, arg2);
1421 tcg_out32(s, XOR | SAB(arg1, TCG_REG_R0, TCG_REG_R0));
1423 } else {
1424 tcg_out32(s, XOR | SAB(arg1, TCG_REG_R0, arg2));
1426 return TCG_REG_R0;
1429 static void tcg_out_setcond(TCGContext *s, TCGType type, TCGCond cond,
1430 TCGArg arg0, TCGArg arg1, TCGArg arg2,
1431 int const_arg2)
1433 int crop, sh;
1435 tcg_debug_assert(TCG_TARGET_REG_BITS == 64 || type == TCG_TYPE_I32);
1437 /* Ignore high bits of a potential constant arg2. */
1438 if (type == TCG_TYPE_I32) {
1439 arg2 = (uint32_t)arg2;
1442 /* Handle common and trivial cases before handling anything else. */
1443 if (arg2 == 0) {
1444 switch (cond) {
1445 case TCG_COND_EQ:
1446 tcg_out_setcond_eq0(s, type, arg0, arg1);
1447 return;
1448 case TCG_COND_NE:
1449 if (TCG_TARGET_REG_BITS == 64 && type == TCG_TYPE_I32) {
1450 tcg_out_ext32u(s, TCG_REG_R0, arg1);
1451 arg1 = TCG_REG_R0;
1453 tcg_out_setcond_ne0(s, arg0, arg1);
1454 return;
1455 case TCG_COND_GE:
1456 tcg_out32(s, NOR | SAB(arg1, arg0, arg1));
1457 arg1 = arg0;
1458 /* FALLTHRU */
1459 case TCG_COND_LT:
1460 /* Extract the sign bit. */
1461 if (type == TCG_TYPE_I32) {
1462 tcg_out_shri32(s, arg0, arg1, 31);
1463 } else {
1464 tcg_out_shri64(s, arg0, arg1, 63);
1466 return;
1467 default:
1468 break;
1472 /* If we have ISEL, we can implement everything with 3 or 4 insns.
1473 All other cases below are also at least 3 insns, so speed up the
1474 code generator by not considering them and always using ISEL. */
1475 if (have_isel) {
1476 int isel, tab;
1478 tcg_out_cmp(s, cond, arg1, arg2, const_arg2, 7, type);
1480 isel = tcg_to_isel[cond];
1482 tcg_out_movi(s, type, arg0, 1);
1483 if (isel & 1) {
1484 /* arg0 = (bc ? 0 : 1) */
1485 tab = TAB(arg0, 0, arg0);
1486 isel &= ~1;
1487 } else {
1488 /* arg0 = (bc ? 1 : 0) */
1489 tcg_out_movi(s, type, TCG_REG_R0, 0);
1490 tab = TAB(arg0, arg0, TCG_REG_R0);
1492 tcg_out32(s, isel | tab);
1493 return;
1496 switch (cond) {
1497 case TCG_COND_EQ:
1498 arg1 = tcg_gen_setcond_xor(s, arg1, arg2, const_arg2);
1499 tcg_out_setcond_eq0(s, type, arg0, arg1);
1500 return;
1502 case TCG_COND_NE:
1503 arg1 = tcg_gen_setcond_xor(s, arg1, arg2, const_arg2);
1504 /* Discard the high bits only once, rather than both inputs. */
1505 if (TCG_TARGET_REG_BITS == 64 && type == TCG_TYPE_I32) {
1506 tcg_out_ext32u(s, TCG_REG_R0, arg1);
1507 arg1 = TCG_REG_R0;
1509 tcg_out_setcond_ne0(s, arg0, arg1);
1510 return;
1512 case TCG_COND_GT:
1513 case TCG_COND_GTU:
1514 sh = 30;
1515 crop = 0;
1516 goto crtest;
1518 case TCG_COND_LT:
1519 case TCG_COND_LTU:
1520 sh = 29;
1521 crop = 0;
1522 goto crtest;
1524 case TCG_COND_GE:
1525 case TCG_COND_GEU:
1526 sh = 31;
1527 crop = CRNOR | BT(7, CR_EQ) | BA(7, CR_LT) | BB(7, CR_LT);
1528 goto crtest;
1530 case TCG_COND_LE:
1531 case TCG_COND_LEU:
1532 sh = 31;
1533 crop = CRNOR | BT(7, CR_EQ) | BA(7, CR_GT) | BB(7, CR_GT);
1534 crtest:
1535 tcg_out_cmp(s, cond, arg1, arg2, const_arg2, 7, type);
1536 if (crop) {
1537 tcg_out32(s, crop);
1539 tcg_out32(s, MFOCRF | RT(TCG_REG_R0) | FXM(7));
1540 tcg_out_rlw(s, RLWINM, arg0, TCG_REG_R0, sh, 31, 31);
1541 break;
1543 default:
1544 tcg_abort();
1548 static void tcg_out_bc(TCGContext *s, int bc, TCGLabel *l)
1550 if (l->has_value) {
1551 bc |= reloc_pc14_val(s->code_ptr, l->u.value_ptr);
1552 } else {
1553 tcg_out_reloc(s, s->code_ptr, R_PPC_REL14, l, 0);
1555 tcg_out32(s, bc);
1558 static void tcg_out_brcond(TCGContext *s, TCGCond cond,
1559 TCGArg arg1, TCGArg arg2, int const_arg2,
1560 TCGLabel *l, TCGType type)
1562 tcg_out_cmp(s, cond, arg1, arg2, const_arg2, 7, type);
1563 tcg_out_bc(s, tcg_to_bc[cond], l);
1566 static void tcg_out_movcond(TCGContext *s, TCGType type, TCGCond cond,
1567 TCGArg dest, TCGArg c1, TCGArg c2, TCGArg v1,
1568 TCGArg v2, bool const_c2)
1570 /* If for some reason both inputs are zero, don't produce bad code. */
1571 if (v1 == 0 && v2 == 0) {
1572 tcg_out_movi(s, type, dest, 0);
1573 return;
1576 tcg_out_cmp(s, cond, c1, c2, const_c2, 7, type);
1578 if (have_isel) {
1579 int isel = tcg_to_isel[cond];
1581 /* Swap the V operands if the operation indicates inversion. */
1582 if (isel & 1) {
1583 int t = v1;
1584 v1 = v2;
1585 v2 = t;
1586 isel &= ~1;
1588 /* V1 == 0 is handled by isel; V2 == 0 must be handled by hand. */
1589 if (v2 == 0) {
1590 tcg_out_movi(s, type, TCG_REG_R0, 0);
1592 tcg_out32(s, isel | TAB(dest, v1, v2));
1593 } else {
1594 if (dest == v2) {
1595 cond = tcg_invert_cond(cond);
1596 v2 = v1;
1597 } else if (dest != v1) {
1598 if (v1 == 0) {
1599 tcg_out_movi(s, type, dest, 0);
1600 } else {
1601 tcg_out_mov(s, type, dest, v1);
1604 /* Branch forward over one insn */
1605 tcg_out32(s, tcg_to_bc[cond] | 8);
1606 if (v2 == 0) {
1607 tcg_out_movi(s, type, dest, 0);
1608 } else {
1609 tcg_out_mov(s, type, dest, v2);
1614 static void tcg_out_cntxz(TCGContext *s, TCGType type, uint32_t opc,
1615 TCGArg a0, TCGArg a1, TCGArg a2, bool const_a2)
1617 if (const_a2 && a2 == (type == TCG_TYPE_I32 ? 32 : 64)) {
1618 tcg_out32(s, opc | RA(a0) | RS(a1));
1619 } else {
1620 tcg_out_cmp(s, TCG_COND_EQ, a1, 0, 1, 7, type);
1621 /* Note that the only other valid constant for a2 is 0. */
1622 if (have_isel) {
1623 tcg_out32(s, opc | RA(TCG_REG_R0) | RS(a1));
1624 tcg_out32(s, tcg_to_isel[TCG_COND_EQ] | TAB(a0, a2, TCG_REG_R0));
1625 } else if (!const_a2 && a0 == a2) {
1626 tcg_out32(s, tcg_to_bc[TCG_COND_EQ] | 8);
1627 tcg_out32(s, opc | RA(a0) | RS(a1));
1628 } else {
1629 tcg_out32(s, opc | RA(a0) | RS(a1));
1630 tcg_out32(s, tcg_to_bc[TCG_COND_NE] | 8);
1631 if (const_a2) {
1632 tcg_out_movi(s, type, a0, 0);
1633 } else {
1634 tcg_out_mov(s, type, a0, a2);
1640 static void tcg_out_cmp2(TCGContext *s, const TCGArg *args,
1641 const int *const_args)
1643 static const struct { uint8_t bit1, bit2; } bits[] = {
1644 [TCG_COND_LT ] = { CR_LT, CR_LT },
1645 [TCG_COND_LE ] = { CR_LT, CR_GT },
1646 [TCG_COND_GT ] = { CR_GT, CR_GT },
1647 [TCG_COND_GE ] = { CR_GT, CR_LT },
1648 [TCG_COND_LTU] = { CR_LT, CR_LT },
1649 [TCG_COND_LEU] = { CR_LT, CR_GT },
1650 [TCG_COND_GTU] = { CR_GT, CR_GT },
1651 [TCG_COND_GEU] = { CR_GT, CR_LT },
1654 TCGCond cond = args[4], cond2;
1655 TCGArg al, ah, bl, bh;
1656 int blconst, bhconst;
1657 int op, bit1, bit2;
1659 al = args[0];
1660 ah = args[1];
1661 bl = args[2];
1662 bh = args[3];
1663 blconst = const_args[2];
1664 bhconst = const_args[3];
1666 switch (cond) {
1667 case TCG_COND_EQ:
1668 op = CRAND;
1669 goto do_equality;
1670 case TCG_COND_NE:
1671 op = CRNAND;
1672 do_equality:
1673 tcg_out_cmp(s, cond, al, bl, blconst, 6, TCG_TYPE_I32);
1674 tcg_out_cmp(s, cond, ah, bh, bhconst, 7, TCG_TYPE_I32);
1675 tcg_out32(s, op | BT(7, CR_EQ) | BA(6, CR_EQ) | BB(7, CR_EQ));
1676 break;
1678 case TCG_COND_LT:
1679 case TCG_COND_LE:
1680 case TCG_COND_GT:
1681 case TCG_COND_GE:
1682 case TCG_COND_LTU:
1683 case TCG_COND_LEU:
1684 case TCG_COND_GTU:
1685 case TCG_COND_GEU:
1686 bit1 = bits[cond].bit1;
1687 bit2 = bits[cond].bit2;
1688 op = (bit1 != bit2 ? CRANDC : CRAND);
1689 cond2 = tcg_unsigned_cond(cond);
1691 tcg_out_cmp(s, cond, ah, bh, bhconst, 6, TCG_TYPE_I32);
1692 tcg_out_cmp(s, cond2, al, bl, blconst, 7, TCG_TYPE_I32);
1693 tcg_out32(s, op | BT(7, CR_EQ) | BA(6, CR_EQ) | BB(7, bit2));
1694 tcg_out32(s, CROR | BT(7, CR_EQ) | BA(6, bit1) | BB(7, CR_EQ));
1695 break;
1697 default:
1698 tcg_abort();
1702 static void tcg_out_setcond2(TCGContext *s, const TCGArg *args,
1703 const int *const_args)
1705 tcg_out_cmp2(s, args + 1, const_args + 1);
1706 tcg_out32(s, MFOCRF | RT(TCG_REG_R0) | FXM(7));
1707 tcg_out_rlw(s, RLWINM, args[0], TCG_REG_R0, 31, 31, 31);
1710 static void tcg_out_brcond2 (TCGContext *s, const TCGArg *args,
1711 const int *const_args)
1713 tcg_out_cmp2(s, args, const_args);
1714 tcg_out_bc(s, BC | BI(7, CR_EQ) | BO_COND_TRUE, arg_label(args[5]));
1717 static void tcg_out_mb(TCGContext *s, TCGArg a0)
1719 uint32_t insn = HWSYNC;
1720 a0 &= TCG_MO_ALL;
1721 if (a0 == TCG_MO_LD_LD) {
1722 insn = LWSYNC;
1723 } else if (a0 == TCG_MO_ST_ST) {
1724 insn = EIEIO;
1726 tcg_out32(s, insn);
1729 void tb_target_set_jmp_target(uintptr_t tc_ptr, uintptr_t jmp_addr,
1730 uintptr_t addr)
1732 if (TCG_TARGET_REG_BITS == 64) {
1733 tcg_insn_unit i1, i2;
1734 intptr_t tb_diff = addr - tc_ptr;
1735 intptr_t br_diff = addr - (jmp_addr + 4);
1736 uint64_t pair;
1738 /* This does not exercise the range of the branch, but we do
1739 still need to be able to load the new value of TCG_REG_TB.
1740 But this does still happen quite often. */
1741 if (tb_diff == (int16_t)tb_diff) {
1742 i1 = ADDI | TAI(TCG_REG_TB, TCG_REG_TB, tb_diff);
1743 i2 = B | (br_diff & 0x3fffffc);
1744 } else {
1745 intptr_t lo = (int16_t)tb_diff;
1746 intptr_t hi = (int32_t)(tb_diff - lo);
1747 assert(tb_diff == hi + lo);
1748 i1 = ADDIS | TAI(TCG_REG_TB, TCG_REG_TB, hi >> 16);
1749 i2 = ADDI | TAI(TCG_REG_TB, TCG_REG_TB, lo);
1751 #ifdef HOST_WORDS_BIGENDIAN
1752 pair = (uint64_t)i1 << 32 | i2;
1753 #else
1754 pair = (uint64_t)i2 << 32 | i1;
1755 #endif
1757 /* As per the enclosing if, this is ppc64. Avoid the _Static_assert
1758 within atomic_set that would fail to build a ppc32 host. */
1759 atomic_set__nocheck((uint64_t *)jmp_addr, pair);
1760 flush_icache_range(jmp_addr, jmp_addr + 8);
1761 } else {
1762 intptr_t diff = addr - jmp_addr;
1763 tcg_debug_assert(in_range_b(diff));
1764 atomic_set((uint32_t *)jmp_addr, B | (diff & 0x3fffffc));
1765 flush_icache_range(jmp_addr, jmp_addr + 4);
1769 static void tcg_out_call(TCGContext *s, tcg_insn_unit *target)
1771 #ifdef _CALL_AIX
1772 /* Look through the descriptor. If the branch is in range, and we
1773 don't have to spend too much effort on building the toc. */
1774 void *tgt = ((void **)target)[0];
1775 uintptr_t toc = ((uintptr_t *)target)[1];
1776 intptr_t diff = tcg_pcrel_diff(s, tgt);
1778 if (in_range_b(diff) && toc == (uint32_t)toc) {
1779 tcg_out_movi(s, TCG_TYPE_PTR, TCG_REG_TMP1, toc);
1780 tcg_out_b(s, LK, tgt);
1781 } else {
1782 /* Fold the low bits of the constant into the addresses below. */
1783 intptr_t arg = (intptr_t)target;
1784 int ofs = (int16_t)arg;
1786 if (ofs + 8 < 0x8000) {
1787 arg -= ofs;
1788 } else {
1789 ofs = 0;
1791 tcg_out_movi(s, TCG_TYPE_PTR, TCG_REG_TMP1, arg);
1792 tcg_out_ld(s, TCG_TYPE_PTR, TCG_REG_R0, TCG_REG_TMP1, ofs);
1793 tcg_out32(s, MTSPR | RA(TCG_REG_R0) | CTR);
1794 tcg_out_ld(s, TCG_TYPE_PTR, TCG_REG_R2, TCG_REG_TMP1, ofs + SZP);
1795 tcg_out32(s, BCCTR | BO_ALWAYS | LK);
1797 #elif defined(_CALL_ELF) && _CALL_ELF == 2
1798 intptr_t diff;
1800 /* In the ELFv2 ABI, we have to set up r12 to contain the destination
1801 address, which the callee uses to compute its TOC address. */
1802 /* FIXME: when the branch is in range, we could avoid r12 load if we
1803 knew that the destination uses the same TOC, and what its local
1804 entry point offset is. */
1805 tcg_out_movi(s, TCG_TYPE_PTR, TCG_REG_R12, (intptr_t)target);
1807 diff = tcg_pcrel_diff(s, target);
1808 if (in_range_b(diff)) {
1809 tcg_out_b(s, LK, target);
1810 } else {
1811 tcg_out32(s, MTSPR | RS(TCG_REG_R12) | CTR);
1812 tcg_out32(s, BCCTR | BO_ALWAYS | LK);
1814 #else
1815 tcg_out_b(s, LK, target);
1816 #endif
1819 static const uint32_t qemu_ldx_opc[16] = {
1820 [MO_UB] = LBZX,
1821 [MO_UW] = LHZX,
1822 [MO_UL] = LWZX,
1823 [MO_Q] = LDX,
1824 [MO_SW] = LHAX,
1825 [MO_SL] = LWAX,
1826 [MO_BSWAP | MO_UB] = LBZX,
1827 [MO_BSWAP | MO_UW] = LHBRX,
1828 [MO_BSWAP | MO_UL] = LWBRX,
1829 [MO_BSWAP | MO_Q] = LDBRX,
1832 static const uint32_t qemu_stx_opc[16] = {
1833 [MO_UB] = STBX,
1834 [MO_UW] = STHX,
1835 [MO_UL] = STWX,
1836 [MO_Q] = STDX,
1837 [MO_BSWAP | MO_UB] = STBX,
1838 [MO_BSWAP | MO_UW] = STHBRX,
1839 [MO_BSWAP | MO_UL] = STWBRX,
1840 [MO_BSWAP | MO_Q] = STDBRX,
1843 static const uint32_t qemu_exts_opc[4] = {
1844 EXTSB, EXTSH, EXTSW, 0
1847 #if defined (CONFIG_SOFTMMU)
1848 #include "../tcg-ldst.inc.c"
1850 /* helper signature: helper_ld_mmu(CPUState *env, target_ulong addr,
1851 * int mmu_idx, uintptr_t ra)
1853 static void * const qemu_ld_helpers[16] = {
1854 [MO_UB] = helper_ret_ldub_mmu,
1855 [MO_LEUW] = helper_le_lduw_mmu,
1856 [MO_LEUL] = helper_le_ldul_mmu,
1857 [MO_LEQ] = helper_le_ldq_mmu,
1858 [MO_BEUW] = helper_be_lduw_mmu,
1859 [MO_BEUL] = helper_be_ldul_mmu,
1860 [MO_BEQ] = helper_be_ldq_mmu,
1863 /* helper signature: helper_st_mmu(CPUState *env, target_ulong addr,
1864 * uintxx_t val, int mmu_idx, uintptr_t ra)
1866 static void * const qemu_st_helpers[16] = {
1867 [MO_UB] = helper_ret_stb_mmu,
1868 [MO_LEUW] = helper_le_stw_mmu,
1869 [MO_LEUL] = helper_le_stl_mmu,
1870 [MO_LEQ] = helper_le_stq_mmu,
1871 [MO_BEUW] = helper_be_stw_mmu,
1872 [MO_BEUL] = helper_be_stl_mmu,
1873 [MO_BEQ] = helper_be_stq_mmu,
1876 /* We expect to use a 16-bit negative offset from ENV. */
1877 QEMU_BUILD_BUG_ON(TLB_MASK_TABLE_OFS(0) > 0);
1878 QEMU_BUILD_BUG_ON(TLB_MASK_TABLE_OFS(0) < -32768);
1880 /* Perform the TLB load and compare. Places the result of the comparison
1881 in CR7, loads the addend of the TLB into R3, and returns the register
1882 containing the guest address (zero-extended into R4). Clobbers R0 and R2. */
1884 static TCGReg tcg_out_tlb_read(TCGContext *s, MemOp opc,
1885 TCGReg addrlo, TCGReg addrhi,
1886 int mem_index, bool is_read)
1888 int cmp_off
1889 = (is_read
1890 ? offsetof(CPUTLBEntry, addr_read)
1891 : offsetof(CPUTLBEntry, addr_write));
1892 int fast_off = TLB_MASK_TABLE_OFS(mem_index);
1893 int mask_off = fast_off + offsetof(CPUTLBDescFast, mask);
1894 int table_off = fast_off + offsetof(CPUTLBDescFast, table);
1895 unsigned s_bits = opc & MO_SIZE;
1896 unsigned a_bits = get_alignment_bits(opc);
1898 /* Load tlb_mask[mmu_idx] and tlb_table[mmu_idx]. */
1899 tcg_out_ld(s, TCG_TYPE_PTR, TCG_REG_R3, TCG_AREG0, mask_off);
1900 tcg_out_ld(s, TCG_TYPE_PTR, TCG_REG_R4, TCG_AREG0, table_off);
1902 /* Extract the page index, shifted into place for tlb index. */
1903 if (TCG_TARGET_REG_BITS == 32) {
1904 tcg_out_shri32(s, TCG_REG_TMP1, addrlo,
1905 TARGET_PAGE_BITS - CPU_TLB_ENTRY_BITS);
1906 } else {
1907 tcg_out_shri64(s, TCG_REG_TMP1, addrlo,
1908 TARGET_PAGE_BITS - CPU_TLB_ENTRY_BITS);
1910 tcg_out32(s, AND | SAB(TCG_REG_R3, TCG_REG_R3, TCG_REG_TMP1));
1912 /* Load the TLB comparator. */
1913 if (cmp_off == 0 && TCG_TARGET_REG_BITS >= TARGET_LONG_BITS) {
1914 uint32_t lxu = (TCG_TARGET_REG_BITS == 32 || TARGET_LONG_BITS == 32
1915 ? LWZUX : LDUX);
1916 tcg_out32(s, lxu | TAB(TCG_REG_TMP1, TCG_REG_R3, TCG_REG_R4));
1917 } else {
1918 tcg_out32(s, ADD | TAB(TCG_REG_R3, TCG_REG_R3, TCG_REG_R4));
1919 if (TCG_TARGET_REG_BITS < TARGET_LONG_BITS) {
1920 tcg_out_ld(s, TCG_TYPE_I32, TCG_REG_TMP1, TCG_REG_R3, cmp_off + 4);
1921 tcg_out_ld(s, TCG_TYPE_I32, TCG_REG_R4, TCG_REG_R3, cmp_off);
1922 } else {
1923 tcg_out_ld(s, TCG_TYPE_TL, TCG_REG_TMP1, TCG_REG_R3, cmp_off);
1927 /* Load the TLB addend for use on the fast path. Do this asap
1928 to minimize any load use delay. */
1929 tcg_out_ld(s, TCG_TYPE_PTR, TCG_REG_R3, TCG_REG_R3,
1930 offsetof(CPUTLBEntry, addend));
1932 /* Clear the non-page, non-alignment bits from the address */
1933 if (TCG_TARGET_REG_BITS == 32) {
1934 /* We don't support unaligned accesses on 32-bits.
1935 * Preserve the bottom bits and thus trigger a comparison
1936 * failure on unaligned accesses.
1938 if (a_bits < s_bits) {
1939 a_bits = s_bits;
1941 tcg_out_rlw(s, RLWINM, TCG_REG_R0, addrlo, 0,
1942 (32 - a_bits) & 31, 31 - TARGET_PAGE_BITS);
1943 } else {
1944 TCGReg t = addrlo;
1946 /* If the access is unaligned, we need to make sure we fail if we
1947 * cross a page boundary. The trick is to add the access size-1
1948 * to the address before masking the low bits. That will make the
1949 * address overflow to the next page if we cross a page boundary,
1950 * which will then force a mismatch of the TLB compare.
1952 if (a_bits < s_bits) {
1953 unsigned a_mask = (1 << a_bits) - 1;
1954 unsigned s_mask = (1 << s_bits) - 1;
1955 tcg_out32(s, ADDI | TAI(TCG_REG_R0, t, s_mask - a_mask));
1956 t = TCG_REG_R0;
1959 /* Mask the address for the requested alignment. */
1960 if (TARGET_LONG_BITS == 32) {
1961 tcg_out_rlw(s, RLWINM, TCG_REG_R0, t, 0,
1962 (32 - a_bits) & 31, 31 - TARGET_PAGE_BITS);
1963 /* Zero-extend the address for use in the final address. */
1964 tcg_out_ext32u(s, TCG_REG_R4, addrlo);
1965 addrlo = TCG_REG_R4;
1966 } else if (a_bits == 0) {
1967 tcg_out_rld(s, RLDICR, TCG_REG_R0, t, 0, 63 - TARGET_PAGE_BITS);
1968 } else {
1969 tcg_out_rld(s, RLDICL, TCG_REG_R0, t,
1970 64 - TARGET_PAGE_BITS, TARGET_PAGE_BITS - a_bits);
1971 tcg_out_rld(s, RLDICL, TCG_REG_R0, TCG_REG_R0, TARGET_PAGE_BITS, 0);
1975 if (TCG_TARGET_REG_BITS < TARGET_LONG_BITS) {
1976 tcg_out_cmp(s, TCG_COND_EQ, TCG_REG_R0, TCG_REG_TMP1,
1977 0, 7, TCG_TYPE_I32);
1978 tcg_out_cmp(s, TCG_COND_EQ, addrhi, TCG_REG_R4, 0, 6, TCG_TYPE_I32);
1979 tcg_out32(s, CRAND | BT(7, CR_EQ) | BA(6, CR_EQ) | BB(7, CR_EQ));
1980 } else {
1981 tcg_out_cmp(s, TCG_COND_EQ, TCG_REG_R0, TCG_REG_TMP1,
1982 0, 7, TCG_TYPE_TL);
1985 return addrlo;
1988 /* Record the context of a call to the out of line helper code for the slow
1989 path for a load or store, so that we can later generate the correct
1990 helper code. */
1991 static void add_qemu_ldst_label(TCGContext *s, bool is_ld, TCGMemOpIdx oi,
1992 TCGReg datalo_reg, TCGReg datahi_reg,
1993 TCGReg addrlo_reg, TCGReg addrhi_reg,
1994 tcg_insn_unit *raddr, tcg_insn_unit *lptr)
1996 TCGLabelQemuLdst *label = new_ldst_label(s);
1998 label->is_ld = is_ld;
1999 label->oi = oi;
2000 label->datalo_reg = datalo_reg;
2001 label->datahi_reg = datahi_reg;
2002 label->addrlo_reg = addrlo_reg;
2003 label->addrhi_reg = addrhi_reg;
2004 label->raddr = raddr;
2005 label->label_ptr[0] = lptr;
2008 static bool tcg_out_qemu_ld_slow_path(TCGContext *s, TCGLabelQemuLdst *lb)
2010 TCGMemOpIdx oi = lb->oi;
2011 MemOp opc = get_memop(oi);
2012 TCGReg hi, lo, arg = TCG_REG_R3;
2014 if (!reloc_pc14(lb->label_ptr[0], s->code_ptr)) {
2015 return false;
2018 tcg_out_mov(s, TCG_TYPE_PTR, arg++, TCG_AREG0);
2020 lo = lb->addrlo_reg;
2021 hi = lb->addrhi_reg;
2022 if (TCG_TARGET_REG_BITS < TARGET_LONG_BITS) {
2023 #ifdef TCG_TARGET_CALL_ALIGN_ARGS
2024 arg |= 1;
2025 #endif
2026 tcg_out_mov(s, TCG_TYPE_I32, arg++, hi);
2027 tcg_out_mov(s, TCG_TYPE_I32, arg++, lo);
2028 } else {
2029 /* If the address needed to be zero-extended, we'll have already
2030 placed it in R4. The only remaining case is 64-bit guest. */
2031 tcg_out_mov(s, TCG_TYPE_TL, arg++, lo);
2034 tcg_out_movi(s, TCG_TYPE_I32, arg++, oi);
2035 tcg_out32(s, MFSPR | RT(arg) | LR);
2037 tcg_out_call(s, qemu_ld_helpers[opc & (MO_BSWAP | MO_SIZE)]);
2039 lo = lb->datalo_reg;
2040 hi = lb->datahi_reg;
2041 if (TCG_TARGET_REG_BITS == 32 && (opc & MO_SIZE) == MO_64) {
2042 tcg_out_mov(s, TCG_TYPE_I32, lo, TCG_REG_R4);
2043 tcg_out_mov(s, TCG_TYPE_I32, hi, TCG_REG_R3);
2044 } else if (opc & MO_SIGN) {
2045 uint32_t insn = qemu_exts_opc[opc & MO_SIZE];
2046 tcg_out32(s, insn | RA(lo) | RS(TCG_REG_R3));
2047 } else {
2048 tcg_out_mov(s, TCG_TYPE_REG, lo, TCG_REG_R3);
2051 tcg_out_b(s, 0, lb->raddr);
2052 return true;
2055 static bool tcg_out_qemu_st_slow_path(TCGContext *s, TCGLabelQemuLdst *lb)
2057 TCGMemOpIdx oi = lb->oi;
2058 MemOp opc = get_memop(oi);
2059 MemOp s_bits = opc & MO_SIZE;
2060 TCGReg hi, lo, arg = TCG_REG_R3;
2062 if (!reloc_pc14(lb->label_ptr[0], s->code_ptr)) {
2063 return false;
2066 tcg_out_mov(s, TCG_TYPE_PTR, arg++, TCG_AREG0);
2068 lo = lb->addrlo_reg;
2069 hi = lb->addrhi_reg;
2070 if (TCG_TARGET_REG_BITS < TARGET_LONG_BITS) {
2071 #ifdef TCG_TARGET_CALL_ALIGN_ARGS
2072 arg |= 1;
2073 #endif
2074 tcg_out_mov(s, TCG_TYPE_I32, arg++, hi);
2075 tcg_out_mov(s, TCG_TYPE_I32, arg++, lo);
2076 } else {
2077 /* If the address needed to be zero-extended, we'll have already
2078 placed it in R4. The only remaining case is 64-bit guest. */
2079 tcg_out_mov(s, TCG_TYPE_TL, arg++, lo);
2082 lo = lb->datalo_reg;
2083 hi = lb->datahi_reg;
2084 if (TCG_TARGET_REG_BITS == 32) {
2085 switch (s_bits) {
2086 case MO_64:
2087 #ifdef TCG_TARGET_CALL_ALIGN_ARGS
2088 arg |= 1;
2089 #endif
2090 tcg_out_mov(s, TCG_TYPE_I32, arg++, hi);
2091 /* FALLTHRU */
2092 case MO_32:
2093 tcg_out_mov(s, TCG_TYPE_I32, arg++, lo);
2094 break;
2095 default:
2096 tcg_out_rlw(s, RLWINM, arg++, lo, 0, 32 - (8 << s_bits), 31);
2097 break;
2099 } else {
2100 if (s_bits == MO_64) {
2101 tcg_out_mov(s, TCG_TYPE_I64, arg++, lo);
2102 } else {
2103 tcg_out_rld(s, RLDICL, arg++, lo, 0, 64 - (8 << s_bits));
2107 tcg_out_movi(s, TCG_TYPE_I32, arg++, oi);
2108 tcg_out32(s, MFSPR | RT(arg) | LR);
2110 tcg_out_call(s, qemu_st_helpers[opc & (MO_BSWAP | MO_SIZE)]);
2112 tcg_out_b(s, 0, lb->raddr);
2113 return true;
2115 #endif /* SOFTMMU */
2117 static void tcg_out_qemu_ld(TCGContext *s, const TCGArg *args, bool is_64)
2119 TCGReg datalo, datahi, addrlo, rbase;
2120 TCGReg addrhi __attribute__((unused));
2121 TCGMemOpIdx oi;
2122 MemOp opc, s_bits;
2123 #ifdef CONFIG_SOFTMMU
2124 int mem_index;
2125 tcg_insn_unit *label_ptr;
2126 #endif
2128 datalo = *args++;
2129 datahi = (TCG_TARGET_REG_BITS == 32 && is_64 ? *args++ : 0);
2130 addrlo = *args++;
2131 addrhi = (TCG_TARGET_REG_BITS < TARGET_LONG_BITS ? *args++ : 0);
2132 oi = *args++;
2133 opc = get_memop(oi);
2134 s_bits = opc & MO_SIZE;
2136 #ifdef CONFIG_SOFTMMU
2137 mem_index = get_mmuidx(oi);
2138 addrlo = tcg_out_tlb_read(s, opc, addrlo, addrhi, mem_index, true);
2140 /* Load a pointer into the current opcode w/conditional branch-link. */
2141 label_ptr = s->code_ptr;
2142 tcg_out32(s, BC | BI(7, CR_EQ) | BO_COND_FALSE | LK);
2144 rbase = TCG_REG_R3;
2145 #else /* !CONFIG_SOFTMMU */
2146 rbase = guest_base ? TCG_GUEST_BASE_REG : 0;
2147 if (TCG_TARGET_REG_BITS > TARGET_LONG_BITS) {
2148 tcg_out_ext32u(s, TCG_REG_TMP1, addrlo);
2149 addrlo = TCG_REG_TMP1;
2151 #endif
2153 if (TCG_TARGET_REG_BITS == 32 && s_bits == MO_64) {
2154 if (opc & MO_BSWAP) {
2155 tcg_out32(s, ADDI | TAI(TCG_REG_R0, addrlo, 4));
2156 tcg_out32(s, LWBRX | TAB(datalo, rbase, addrlo));
2157 tcg_out32(s, LWBRX | TAB(datahi, rbase, TCG_REG_R0));
2158 } else if (rbase != 0) {
2159 tcg_out32(s, ADDI | TAI(TCG_REG_R0, addrlo, 4));
2160 tcg_out32(s, LWZX | TAB(datahi, rbase, addrlo));
2161 tcg_out32(s, LWZX | TAB(datalo, rbase, TCG_REG_R0));
2162 } else if (addrlo == datahi) {
2163 tcg_out32(s, LWZ | TAI(datalo, addrlo, 4));
2164 tcg_out32(s, LWZ | TAI(datahi, addrlo, 0));
2165 } else {
2166 tcg_out32(s, LWZ | TAI(datahi, addrlo, 0));
2167 tcg_out32(s, LWZ | TAI(datalo, addrlo, 4));
2169 } else {
2170 uint32_t insn = qemu_ldx_opc[opc & (MO_BSWAP | MO_SSIZE)];
2171 if (!have_isa_2_06 && insn == LDBRX) {
2172 tcg_out32(s, ADDI | TAI(TCG_REG_R0, addrlo, 4));
2173 tcg_out32(s, LWBRX | TAB(datalo, rbase, addrlo));
2174 tcg_out32(s, LWBRX | TAB(TCG_REG_R0, rbase, TCG_REG_R0));
2175 tcg_out_rld(s, RLDIMI, datalo, TCG_REG_R0, 32, 0);
2176 } else if (insn) {
2177 tcg_out32(s, insn | TAB(datalo, rbase, addrlo));
2178 } else {
2179 insn = qemu_ldx_opc[opc & (MO_SIZE | MO_BSWAP)];
2180 tcg_out32(s, insn | TAB(datalo, rbase, addrlo));
2181 insn = qemu_exts_opc[s_bits];
2182 tcg_out32(s, insn | RA(datalo) | RS(datalo));
2186 #ifdef CONFIG_SOFTMMU
2187 add_qemu_ldst_label(s, true, oi, datalo, datahi, addrlo, addrhi,
2188 s->code_ptr, label_ptr);
2189 #endif
2192 static void tcg_out_qemu_st(TCGContext *s, const TCGArg *args, bool is_64)
2194 TCGReg datalo, datahi, addrlo, rbase;
2195 TCGReg addrhi __attribute__((unused));
2196 TCGMemOpIdx oi;
2197 MemOp opc, s_bits;
2198 #ifdef CONFIG_SOFTMMU
2199 int mem_index;
2200 tcg_insn_unit *label_ptr;
2201 #endif
2203 datalo = *args++;
2204 datahi = (TCG_TARGET_REG_BITS == 32 && is_64 ? *args++ : 0);
2205 addrlo = *args++;
2206 addrhi = (TCG_TARGET_REG_BITS < TARGET_LONG_BITS ? *args++ : 0);
2207 oi = *args++;
2208 opc = get_memop(oi);
2209 s_bits = opc & MO_SIZE;
2211 #ifdef CONFIG_SOFTMMU
2212 mem_index = get_mmuidx(oi);
2213 addrlo = tcg_out_tlb_read(s, opc, addrlo, addrhi, mem_index, false);
2215 /* Load a pointer into the current opcode w/conditional branch-link. */
2216 label_ptr = s->code_ptr;
2217 tcg_out32(s, BC | BI(7, CR_EQ) | BO_COND_FALSE | LK);
2219 rbase = TCG_REG_R3;
2220 #else /* !CONFIG_SOFTMMU */
2221 rbase = guest_base ? TCG_GUEST_BASE_REG : 0;
2222 if (TCG_TARGET_REG_BITS > TARGET_LONG_BITS) {
2223 tcg_out_ext32u(s, TCG_REG_TMP1, addrlo);
2224 addrlo = TCG_REG_TMP1;
2226 #endif
2228 if (TCG_TARGET_REG_BITS == 32 && s_bits == MO_64) {
2229 if (opc & MO_BSWAP) {
2230 tcg_out32(s, ADDI | TAI(TCG_REG_R0, addrlo, 4));
2231 tcg_out32(s, STWBRX | SAB(datalo, rbase, addrlo));
2232 tcg_out32(s, STWBRX | SAB(datahi, rbase, TCG_REG_R0));
2233 } else if (rbase != 0) {
2234 tcg_out32(s, ADDI | TAI(TCG_REG_R0, addrlo, 4));
2235 tcg_out32(s, STWX | SAB(datahi, rbase, addrlo));
2236 tcg_out32(s, STWX | SAB(datalo, rbase, TCG_REG_R0));
2237 } else {
2238 tcg_out32(s, STW | TAI(datahi, addrlo, 0));
2239 tcg_out32(s, STW | TAI(datalo, addrlo, 4));
2241 } else {
2242 uint32_t insn = qemu_stx_opc[opc & (MO_BSWAP | MO_SIZE)];
2243 if (!have_isa_2_06 && insn == STDBRX) {
2244 tcg_out32(s, STWBRX | SAB(datalo, rbase, addrlo));
2245 tcg_out32(s, ADDI | TAI(TCG_REG_TMP1, addrlo, 4));
2246 tcg_out_shri64(s, TCG_REG_R0, datalo, 32);
2247 tcg_out32(s, STWBRX | SAB(TCG_REG_R0, rbase, TCG_REG_TMP1));
2248 } else {
2249 tcg_out32(s, insn | SAB(datalo, rbase, addrlo));
2253 #ifdef CONFIG_SOFTMMU
2254 add_qemu_ldst_label(s, false, oi, datalo, datahi, addrlo, addrhi,
2255 s->code_ptr, label_ptr);
2256 #endif
2259 static void tcg_out_nop_fill(tcg_insn_unit *p, int count)
2261 int i;
2262 for (i = 0; i < count; ++i) {
2263 p[i] = NOP;
2267 /* Parameters for function call generation, used in tcg.c. */
2268 #define TCG_TARGET_STACK_ALIGN 16
2269 #define TCG_TARGET_EXTEND_ARGS 1
2271 #ifdef _CALL_AIX
2272 # define LINK_AREA_SIZE (6 * SZR)
2273 # define LR_OFFSET (1 * SZR)
2274 # define TCG_TARGET_CALL_STACK_OFFSET (LINK_AREA_SIZE + 8 * SZR)
2275 #elif defined(TCG_TARGET_CALL_DARWIN)
2276 # define LINK_AREA_SIZE (6 * SZR)
2277 # define LR_OFFSET (2 * SZR)
2278 #elif TCG_TARGET_REG_BITS == 64
2279 # if defined(_CALL_ELF) && _CALL_ELF == 2
2280 # define LINK_AREA_SIZE (4 * SZR)
2281 # define LR_OFFSET (1 * SZR)
2282 # endif
2283 #else /* TCG_TARGET_REG_BITS == 32 */
2284 # if defined(_CALL_SYSV)
2285 # define LINK_AREA_SIZE (2 * SZR)
2286 # define LR_OFFSET (1 * SZR)
2287 # endif
2288 #endif
2289 #ifndef LR_OFFSET
2290 # error "Unhandled abi"
2291 #endif
2292 #ifndef TCG_TARGET_CALL_STACK_OFFSET
2293 # define TCG_TARGET_CALL_STACK_OFFSET LINK_AREA_SIZE
2294 #endif
2296 #define CPU_TEMP_BUF_SIZE (CPU_TEMP_BUF_NLONGS * (int)sizeof(long))
2297 #define REG_SAVE_SIZE ((int)ARRAY_SIZE(tcg_target_callee_save_regs) * SZR)
2299 #define FRAME_SIZE ((TCG_TARGET_CALL_STACK_OFFSET \
2300 + TCG_STATIC_CALL_ARGS_SIZE \
2301 + CPU_TEMP_BUF_SIZE \
2302 + REG_SAVE_SIZE \
2303 + TCG_TARGET_STACK_ALIGN - 1) \
2304 & -TCG_TARGET_STACK_ALIGN)
2306 #define REG_SAVE_BOT (FRAME_SIZE - REG_SAVE_SIZE)
2308 static void tcg_target_qemu_prologue(TCGContext *s)
2310 int i;
2312 #ifdef _CALL_AIX
2313 void **desc = (void **)s->code_ptr;
2314 desc[0] = desc + 2; /* entry point */
2315 desc[1] = 0; /* environment pointer */
2316 s->code_ptr = (void *)(desc + 2); /* skip over descriptor */
2317 #endif
2319 tcg_set_frame(s, TCG_REG_CALL_STACK, REG_SAVE_BOT - CPU_TEMP_BUF_SIZE,
2320 CPU_TEMP_BUF_SIZE);
2322 /* Prologue */
2323 tcg_out32(s, MFSPR | RT(TCG_REG_R0) | LR);
2324 tcg_out32(s, (SZR == 8 ? STDU : STWU)
2325 | SAI(TCG_REG_R1, TCG_REG_R1, -FRAME_SIZE));
2327 for (i = 0; i < ARRAY_SIZE(tcg_target_callee_save_regs); ++i) {
2328 tcg_out_st(s, TCG_TYPE_REG, tcg_target_callee_save_regs[i],
2329 TCG_REG_R1, REG_SAVE_BOT + i * SZR);
2331 tcg_out_st(s, TCG_TYPE_PTR, TCG_REG_R0, TCG_REG_R1, FRAME_SIZE+LR_OFFSET);
2333 #ifndef CONFIG_SOFTMMU
2334 if (guest_base) {
2335 tcg_out_movi_int(s, TCG_TYPE_PTR, TCG_GUEST_BASE_REG, guest_base, true);
2336 tcg_regset_set_reg(s->reserved_regs, TCG_GUEST_BASE_REG);
2338 #endif
2340 tcg_out_mov(s, TCG_TYPE_PTR, TCG_AREG0, tcg_target_call_iarg_regs[0]);
2341 tcg_out32(s, MTSPR | RS(tcg_target_call_iarg_regs[1]) | CTR);
2342 if (USE_REG_TB) {
2343 tcg_out_mov(s, TCG_TYPE_PTR, TCG_REG_TB, tcg_target_call_iarg_regs[1]);
2345 tcg_out32(s, BCCTR | BO_ALWAYS);
2347 /* Epilogue */
2348 s->code_gen_epilogue = tb_ret_addr = s->code_ptr;
2350 tcg_out_ld(s, TCG_TYPE_PTR, TCG_REG_R0, TCG_REG_R1, FRAME_SIZE+LR_OFFSET);
2351 for (i = 0; i < ARRAY_SIZE(tcg_target_callee_save_regs); ++i) {
2352 tcg_out_ld(s, TCG_TYPE_REG, tcg_target_callee_save_regs[i],
2353 TCG_REG_R1, REG_SAVE_BOT + i * SZR);
2355 tcg_out32(s, MTSPR | RS(TCG_REG_R0) | LR);
2356 tcg_out32(s, ADDI | TAI(TCG_REG_R1, TCG_REG_R1, FRAME_SIZE));
2357 tcg_out32(s, BCLR | BO_ALWAYS);
2360 static void tcg_out_op(TCGContext *s, TCGOpcode opc, const TCGArg *args,
2361 const int *const_args)
2363 TCGArg a0, a1, a2;
2364 int c;
2366 switch (opc) {
2367 case INDEX_op_exit_tb:
2368 tcg_out_movi(s, TCG_TYPE_PTR, TCG_REG_R3, args[0]);
2369 tcg_out_b(s, 0, tb_ret_addr);
2370 break;
2371 case INDEX_op_goto_tb:
2372 if (s->tb_jmp_insn_offset) {
2373 /* Direct jump. */
2374 if (TCG_TARGET_REG_BITS == 64) {
2375 /* Ensure the next insns are 8-byte aligned. */
2376 if ((uintptr_t)s->code_ptr & 7) {
2377 tcg_out32(s, NOP);
2379 s->tb_jmp_insn_offset[args[0]] = tcg_current_code_size(s);
2380 tcg_out32(s, ADDIS | TAI(TCG_REG_TB, TCG_REG_TB, 0));
2381 tcg_out32(s, ADDI | TAI(TCG_REG_TB, TCG_REG_TB, 0));
2382 } else {
2383 s->tb_jmp_insn_offset[args[0]] = tcg_current_code_size(s);
2384 tcg_out32(s, B);
2385 s->tb_jmp_reset_offset[args[0]] = tcg_current_code_size(s);
2386 break;
2388 } else {
2389 /* Indirect jump. */
2390 tcg_debug_assert(s->tb_jmp_insn_offset == NULL);
2391 tcg_out_ld(s, TCG_TYPE_PTR, TCG_REG_TB, 0,
2392 (intptr_t)(s->tb_jmp_insn_offset + args[0]));
2394 tcg_out32(s, MTSPR | RS(TCG_REG_TB) | CTR);
2395 tcg_out32(s, BCCTR | BO_ALWAYS);
2396 set_jmp_reset_offset(s, args[0]);
2397 if (USE_REG_TB) {
2398 /* For the unlinked case, need to reset TCG_REG_TB. */
2399 c = -tcg_current_code_size(s);
2400 assert(c == (int16_t)c);
2401 tcg_out32(s, ADDI | TAI(TCG_REG_TB, TCG_REG_TB, c));
2403 break;
2404 case INDEX_op_goto_ptr:
2405 tcg_out32(s, MTSPR | RS(args[0]) | CTR);
2406 if (USE_REG_TB) {
2407 tcg_out_mov(s, TCG_TYPE_PTR, TCG_REG_TB, args[0]);
2409 tcg_out32(s, ADDI | TAI(TCG_REG_R3, 0, 0));
2410 tcg_out32(s, BCCTR | BO_ALWAYS);
2411 break;
2412 case INDEX_op_br:
2414 TCGLabel *l = arg_label(args[0]);
2415 uint32_t insn = B;
2417 if (l->has_value) {
2418 insn |= reloc_pc24_val(s->code_ptr, l->u.value_ptr);
2419 } else {
2420 tcg_out_reloc(s, s->code_ptr, R_PPC_REL24, l, 0);
2422 tcg_out32(s, insn);
2424 break;
2425 case INDEX_op_ld8u_i32:
2426 case INDEX_op_ld8u_i64:
2427 tcg_out_mem_long(s, LBZ, LBZX, args[0], args[1], args[2]);
2428 break;
2429 case INDEX_op_ld8s_i32:
2430 case INDEX_op_ld8s_i64:
2431 tcg_out_mem_long(s, LBZ, LBZX, args[0], args[1], args[2]);
2432 tcg_out32(s, EXTSB | RS(args[0]) | RA(args[0]));
2433 break;
2434 case INDEX_op_ld16u_i32:
2435 case INDEX_op_ld16u_i64:
2436 tcg_out_mem_long(s, LHZ, LHZX, args[0], args[1], args[2]);
2437 break;
2438 case INDEX_op_ld16s_i32:
2439 case INDEX_op_ld16s_i64:
2440 tcg_out_mem_long(s, LHA, LHAX, args[0], args[1], args[2]);
2441 break;
2442 case INDEX_op_ld_i32:
2443 case INDEX_op_ld32u_i64:
2444 tcg_out_mem_long(s, LWZ, LWZX, args[0], args[1], args[2]);
2445 break;
2446 case INDEX_op_ld32s_i64:
2447 tcg_out_mem_long(s, LWA, LWAX, args[0], args[1], args[2]);
2448 break;
2449 case INDEX_op_ld_i64:
2450 tcg_out_mem_long(s, LD, LDX, args[0], args[1], args[2]);
2451 break;
2452 case INDEX_op_st8_i32:
2453 case INDEX_op_st8_i64:
2454 tcg_out_mem_long(s, STB, STBX, args[0], args[1], args[2]);
2455 break;
2456 case INDEX_op_st16_i32:
2457 case INDEX_op_st16_i64:
2458 tcg_out_mem_long(s, STH, STHX, args[0], args[1], args[2]);
2459 break;
2460 case INDEX_op_st_i32:
2461 case INDEX_op_st32_i64:
2462 tcg_out_mem_long(s, STW, STWX, args[0], args[1], args[2]);
2463 break;
2464 case INDEX_op_st_i64:
2465 tcg_out_mem_long(s, STD, STDX, args[0], args[1], args[2]);
2466 break;
2468 case INDEX_op_add_i32:
2469 a0 = args[0], a1 = args[1], a2 = args[2];
2470 if (const_args[2]) {
2471 do_addi_32:
2472 tcg_out_mem_long(s, ADDI, ADD, a0, a1, (int32_t)a2);
2473 } else {
2474 tcg_out32(s, ADD | TAB(a0, a1, a2));
2476 break;
2477 case INDEX_op_sub_i32:
2478 a0 = args[0], a1 = args[1], a2 = args[2];
2479 if (const_args[1]) {
2480 if (const_args[2]) {
2481 tcg_out_movi(s, TCG_TYPE_I32, a0, a1 - a2);
2482 } else {
2483 tcg_out32(s, SUBFIC | TAI(a0, a2, a1));
2485 } else if (const_args[2]) {
2486 a2 = -a2;
2487 goto do_addi_32;
2488 } else {
2489 tcg_out32(s, SUBF | TAB(a0, a2, a1));
2491 break;
2493 case INDEX_op_and_i32:
2494 a0 = args[0], a1 = args[1], a2 = args[2];
2495 if (const_args[2]) {
2496 tcg_out_andi32(s, a0, a1, a2);
2497 } else {
2498 tcg_out32(s, AND | SAB(a1, a0, a2));
2500 break;
2501 case INDEX_op_and_i64:
2502 a0 = args[0], a1 = args[1], a2 = args[2];
2503 if (const_args[2]) {
2504 tcg_out_andi64(s, a0, a1, a2);
2505 } else {
2506 tcg_out32(s, AND | SAB(a1, a0, a2));
2508 break;
2509 case INDEX_op_or_i64:
2510 case INDEX_op_or_i32:
2511 a0 = args[0], a1 = args[1], a2 = args[2];
2512 if (const_args[2]) {
2513 tcg_out_ori32(s, a0, a1, a2);
2514 } else {
2515 tcg_out32(s, OR | SAB(a1, a0, a2));
2517 break;
2518 case INDEX_op_xor_i64:
2519 case INDEX_op_xor_i32:
2520 a0 = args[0], a1 = args[1], a2 = args[2];
2521 if (const_args[2]) {
2522 tcg_out_xori32(s, a0, a1, a2);
2523 } else {
2524 tcg_out32(s, XOR | SAB(a1, a0, a2));
2526 break;
2527 case INDEX_op_andc_i32:
2528 a0 = args[0], a1 = args[1], a2 = args[2];
2529 if (const_args[2]) {
2530 tcg_out_andi32(s, a0, a1, ~a2);
2531 } else {
2532 tcg_out32(s, ANDC | SAB(a1, a0, a2));
2534 break;
2535 case INDEX_op_andc_i64:
2536 a0 = args[0], a1 = args[1], a2 = args[2];
2537 if (const_args[2]) {
2538 tcg_out_andi64(s, a0, a1, ~a2);
2539 } else {
2540 tcg_out32(s, ANDC | SAB(a1, a0, a2));
2542 break;
2543 case INDEX_op_orc_i32:
2544 if (const_args[2]) {
2545 tcg_out_ori32(s, args[0], args[1], ~args[2]);
2546 break;
2548 /* FALLTHRU */
2549 case INDEX_op_orc_i64:
2550 tcg_out32(s, ORC | SAB(args[1], args[0], args[2]));
2551 break;
2552 case INDEX_op_eqv_i32:
2553 if (const_args[2]) {
2554 tcg_out_xori32(s, args[0], args[1], ~args[2]);
2555 break;
2557 /* FALLTHRU */
2558 case INDEX_op_eqv_i64:
2559 tcg_out32(s, EQV | SAB(args[1], args[0], args[2]));
2560 break;
2561 case INDEX_op_nand_i32:
2562 case INDEX_op_nand_i64:
2563 tcg_out32(s, NAND | SAB(args[1], args[0], args[2]));
2564 break;
2565 case INDEX_op_nor_i32:
2566 case INDEX_op_nor_i64:
2567 tcg_out32(s, NOR | SAB(args[1], args[0], args[2]));
2568 break;
2570 case INDEX_op_clz_i32:
2571 tcg_out_cntxz(s, TCG_TYPE_I32, CNTLZW, args[0], args[1],
2572 args[2], const_args[2]);
2573 break;
2574 case INDEX_op_ctz_i32:
2575 tcg_out_cntxz(s, TCG_TYPE_I32, CNTTZW, args[0], args[1],
2576 args[2], const_args[2]);
2577 break;
2578 case INDEX_op_ctpop_i32:
2579 tcg_out32(s, CNTPOPW | SAB(args[1], args[0], 0));
2580 break;
2582 case INDEX_op_clz_i64:
2583 tcg_out_cntxz(s, TCG_TYPE_I64, CNTLZD, args[0], args[1],
2584 args[2], const_args[2]);
2585 break;
2586 case INDEX_op_ctz_i64:
2587 tcg_out_cntxz(s, TCG_TYPE_I64, CNTTZD, args[0], args[1],
2588 args[2], const_args[2]);
2589 break;
2590 case INDEX_op_ctpop_i64:
2591 tcg_out32(s, CNTPOPD | SAB(args[1], args[0], 0));
2592 break;
2594 case INDEX_op_mul_i32:
2595 a0 = args[0], a1 = args[1], a2 = args[2];
2596 if (const_args[2]) {
2597 tcg_out32(s, MULLI | TAI(a0, a1, a2));
2598 } else {
2599 tcg_out32(s, MULLW | TAB(a0, a1, a2));
2601 break;
2603 case INDEX_op_div_i32:
2604 tcg_out32(s, DIVW | TAB(args[0], args[1], args[2]));
2605 break;
2607 case INDEX_op_divu_i32:
2608 tcg_out32(s, DIVWU | TAB(args[0], args[1], args[2]));
2609 break;
2611 case INDEX_op_shl_i32:
2612 if (const_args[2]) {
2613 tcg_out_shli32(s, args[0], args[1], args[2]);
2614 } else {
2615 tcg_out32(s, SLW | SAB(args[1], args[0], args[2]));
2617 break;
2618 case INDEX_op_shr_i32:
2619 if (const_args[2]) {
2620 tcg_out_shri32(s, args[0], args[1], args[2]);
2621 } else {
2622 tcg_out32(s, SRW | SAB(args[1], args[0], args[2]));
2624 break;
2625 case INDEX_op_sar_i32:
2626 if (const_args[2]) {
2627 tcg_out32(s, SRAWI | RS(args[1]) | RA(args[0]) | SH(args[2]));
2628 } else {
2629 tcg_out32(s, SRAW | SAB(args[1], args[0], args[2]));
2631 break;
2632 case INDEX_op_rotl_i32:
2633 if (const_args[2]) {
2634 tcg_out_rlw(s, RLWINM, args[0], args[1], args[2], 0, 31);
2635 } else {
2636 tcg_out32(s, RLWNM | SAB(args[1], args[0], args[2])
2637 | MB(0) | ME(31));
2639 break;
2640 case INDEX_op_rotr_i32:
2641 if (const_args[2]) {
2642 tcg_out_rlw(s, RLWINM, args[0], args[1], 32 - args[2], 0, 31);
2643 } else {
2644 tcg_out32(s, SUBFIC | TAI(TCG_REG_R0, args[2], 32));
2645 tcg_out32(s, RLWNM | SAB(args[1], args[0], TCG_REG_R0)
2646 | MB(0) | ME(31));
2648 break;
2650 case INDEX_op_brcond_i32:
2651 tcg_out_brcond(s, args[2], args[0], args[1], const_args[1],
2652 arg_label(args[3]), TCG_TYPE_I32);
2653 break;
2654 case INDEX_op_brcond_i64:
2655 tcg_out_brcond(s, args[2], args[0], args[1], const_args[1],
2656 arg_label(args[3]), TCG_TYPE_I64);
2657 break;
2658 case INDEX_op_brcond2_i32:
2659 tcg_out_brcond2(s, args, const_args);
2660 break;
2662 case INDEX_op_neg_i32:
2663 case INDEX_op_neg_i64:
2664 tcg_out32(s, NEG | RT(args[0]) | RA(args[1]));
2665 break;
2667 case INDEX_op_not_i32:
2668 case INDEX_op_not_i64:
2669 tcg_out32(s, NOR | SAB(args[1], args[0], args[1]));
2670 break;
2672 case INDEX_op_add_i64:
2673 a0 = args[0], a1 = args[1], a2 = args[2];
2674 if (const_args[2]) {
2675 do_addi_64:
2676 tcg_out_mem_long(s, ADDI, ADD, a0, a1, a2);
2677 } else {
2678 tcg_out32(s, ADD | TAB(a0, a1, a2));
2680 break;
2681 case INDEX_op_sub_i64:
2682 a0 = args[0], a1 = args[1], a2 = args[2];
2683 if (const_args[1]) {
2684 if (const_args[2]) {
2685 tcg_out_movi(s, TCG_TYPE_I64, a0, a1 - a2);
2686 } else {
2687 tcg_out32(s, SUBFIC | TAI(a0, a2, a1));
2689 } else if (const_args[2]) {
2690 a2 = -a2;
2691 goto do_addi_64;
2692 } else {
2693 tcg_out32(s, SUBF | TAB(a0, a2, a1));
2695 break;
2697 case INDEX_op_shl_i64:
2698 if (const_args[2]) {
2699 tcg_out_shli64(s, args[0], args[1], args[2]);
2700 } else {
2701 tcg_out32(s, SLD | SAB(args[1], args[0], args[2]));
2703 break;
2704 case INDEX_op_shr_i64:
2705 if (const_args[2]) {
2706 tcg_out_shri64(s, args[0], args[1], args[2]);
2707 } else {
2708 tcg_out32(s, SRD | SAB(args[1], args[0], args[2]));
2710 break;
2711 case INDEX_op_sar_i64:
2712 if (const_args[2]) {
2713 int sh = SH(args[2] & 0x1f) | (((args[2] >> 5) & 1) << 1);
2714 tcg_out32(s, SRADI | RA(args[0]) | RS(args[1]) | sh);
2715 } else {
2716 tcg_out32(s, SRAD | SAB(args[1], args[0], args[2]));
2718 break;
2719 case INDEX_op_rotl_i64:
2720 if (const_args[2]) {
2721 tcg_out_rld(s, RLDICL, args[0], args[1], args[2], 0);
2722 } else {
2723 tcg_out32(s, RLDCL | SAB(args[1], args[0], args[2]) | MB64(0));
2725 break;
2726 case INDEX_op_rotr_i64:
2727 if (const_args[2]) {
2728 tcg_out_rld(s, RLDICL, args[0], args[1], 64 - args[2], 0);
2729 } else {
2730 tcg_out32(s, SUBFIC | TAI(TCG_REG_R0, args[2], 64));
2731 tcg_out32(s, RLDCL | SAB(args[1], args[0], TCG_REG_R0) | MB64(0));
2733 break;
2735 case INDEX_op_mul_i64:
2736 a0 = args[0], a1 = args[1], a2 = args[2];
2737 if (const_args[2]) {
2738 tcg_out32(s, MULLI | TAI(a0, a1, a2));
2739 } else {
2740 tcg_out32(s, MULLD | TAB(a0, a1, a2));
2742 break;
2743 case INDEX_op_div_i64:
2744 tcg_out32(s, DIVD | TAB(args[0], args[1], args[2]));
2745 break;
2746 case INDEX_op_divu_i64:
2747 tcg_out32(s, DIVDU | TAB(args[0], args[1], args[2]));
2748 break;
2750 case INDEX_op_qemu_ld_i32:
2751 tcg_out_qemu_ld(s, args, false);
2752 break;
2753 case INDEX_op_qemu_ld_i64:
2754 tcg_out_qemu_ld(s, args, true);
2755 break;
2756 case INDEX_op_qemu_st_i32:
2757 tcg_out_qemu_st(s, args, false);
2758 break;
2759 case INDEX_op_qemu_st_i64:
2760 tcg_out_qemu_st(s, args, true);
2761 break;
2763 case INDEX_op_ext8s_i32:
2764 case INDEX_op_ext8s_i64:
2765 c = EXTSB;
2766 goto gen_ext;
2767 case INDEX_op_ext16s_i32:
2768 case INDEX_op_ext16s_i64:
2769 c = EXTSH;
2770 goto gen_ext;
2771 case INDEX_op_ext_i32_i64:
2772 case INDEX_op_ext32s_i64:
2773 c = EXTSW;
2774 goto gen_ext;
2775 gen_ext:
2776 tcg_out32(s, c | RS(args[1]) | RA(args[0]));
2777 break;
2778 case INDEX_op_extu_i32_i64:
2779 tcg_out_ext32u(s, args[0], args[1]);
2780 break;
2782 case INDEX_op_setcond_i32:
2783 tcg_out_setcond(s, TCG_TYPE_I32, args[3], args[0], args[1], args[2],
2784 const_args[2]);
2785 break;
2786 case INDEX_op_setcond_i64:
2787 tcg_out_setcond(s, TCG_TYPE_I64, args[3], args[0], args[1], args[2],
2788 const_args[2]);
2789 break;
2790 case INDEX_op_setcond2_i32:
2791 tcg_out_setcond2(s, args, const_args);
2792 break;
2794 case INDEX_op_bswap16_i32:
2795 case INDEX_op_bswap16_i64:
2796 a0 = args[0], a1 = args[1];
2797 /* a1 = abcd */
2798 if (a0 != a1) {
2799 /* a0 = (a1 r<< 24) & 0xff # 000c */
2800 tcg_out_rlw(s, RLWINM, a0, a1, 24, 24, 31);
2801 /* a0 = (a0 & ~0xff00) | (a1 r<< 8) & 0xff00 # 00dc */
2802 tcg_out_rlw(s, RLWIMI, a0, a1, 8, 16, 23);
2803 } else {
2804 /* r0 = (a1 r<< 8) & 0xff00 # 00d0 */
2805 tcg_out_rlw(s, RLWINM, TCG_REG_R0, a1, 8, 16, 23);
2806 /* a0 = (a1 r<< 24) & 0xff # 000c */
2807 tcg_out_rlw(s, RLWINM, a0, a1, 24, 24, 31);
2808 /* a0 = a0 | r0 # 00dc */
2809 tcg_out32(s, OR | SAB(TCG_REG_R0, a0, a0));
2811 break;
2813 case INDEX_op_bswap32_i32:
2814 case INDEX_op_bswap32_i64:
2815 /* Stolen from gcc's builtin_bswap32 */
2816 a1 = args[1];
2817 a0 = args[0] == a1 ? TCG_REG_R0 : args[0];
2819 /* a1 = args[1] # abcd */
2820 /* a0 = rotate_left (a1, 8) # bcda */
2821 tcg_out_rlw(s, RLWINM, a0, a1, 8, 0, 31);
2822 /* a0 = (a0 & ~0xff000000) | ((a1 r<< 24) & 0xff000000) # dcda */
2823 tcg_out_rlw(s, RLWIMI, a0, a1, 24, 0, 7);
2824 /* a0 = (a0 & ~0x0000ff00) | ((a1 r<< 24) & 0x0000ff00) # dcba */
2825 tcg_out_rlw(s, RLWIMI, a0, a1, 24, 16, 23);
2827 if (a0 == TCG_REG_R0) {
2828 tcg_out_mov(s, TCG_TYPE_REG, args[0], a0);
2830 break;
2832 case INDEX_op_bswap64_i64:
2833 a0 = args[0], a1 = args[1], a2 = TCG_REG_R0;
2834 if (a0 == a1) {
2835 a0 = TCG_REG_R0;
2836 a2 = a1;
2839 /* a1 = # abcd efgh */
2840 /* a0 = rl32(a1, 8) # 0000 fghe */
2841 tcg_out_rlw(s, RLWINM, a0, a1, 8, 0, 31);
2842 /* a0 = dep(a0, rl32(a1, 24), 0xff000000) # 0000 hghe */
2843 tcg_out_rlw(s, RLWIMI, a0, a1, 24, 0, 7);
2844 /* a0 = dep(a0, rl32(a1, 24), 0x0000ff00) # 0000 hgfe */
2845 tcg_out_rlw(s, RLWIMI, a0, a1, 24, 16, 23);
2847 /* a0 = rl64(a0, 32) # hgfe 0000 */
2848 /* a2 = rl64(a1, 32) # efgh abcd */
2849 tcg_out_rld(s, RLDICL, a0, a0, 32, 0);
2850 tcg_out_rld(s, RLDICL, a2, a1, 32, 0);
2852 /* a0 = dep(a0, rl32(a2, 8), 0xffffffff) # hgfe bcda */
2853 tcg_out_rlw(s, RLWIMI, a0, a2, 8, 0, 31);
2854 /* a0 = dep(a0, rl32(a2, 24), 0xff000000) # hgfe dcda */
2855 tcg_out_rlw(s, RLWIMI, a0, a2, 24, 0, 7);
2856 /* a0 = dep(a0, rl32(a2, 24), 0x0000ff00) # hgfe dcba */
2857 tcg_out_rlw(s, RLWIMI, a0, a2, 24, 16, 23);
2859 if (a0 == 0) {
2860 tcg_out_mov(s, TCG_TYPE_REG, args[0], a0);
2862 break;
2864 case INDEX_op_deposit_i32:
2865 if (const_args[2]) {
2866 uint32_t mask = ((2u << (args[4] - 1)) - 1) << args[3];
2867 tcg_out_andi32(s, args[0], args[0], ~mask);
2868 } else {
2869 tcg_out_rlw(s, RLWIMI, args[0], args[2], args[3],
2870 32 - args[3] - args[4], 31 - args[3]);
2872 break;
2873 case INDEX_op_deposit_i64:
2874 if (const_args[2]) {
2875 uint64_t mask = ((2ull << (args[4] - 1)) - 1) << args[3];
2876 tcg_out_andi64(s, args[0], args[0], ~mask);
2877 } else {
2878 tcg_out_rld(s, RLDIMI, args[0], args[2], args[3],
2879 64 - args[3] - args[4]);
2881 break;
2883 case INDEX_op_extract_i32:
2884 tcg_out_rlw(s, RLWINM, args[0], args[1],
2885 32 - args[2], 32 - args[3], 31);
2886 break;
2887 case INDEX_op_extract_i64:
2888 tcg_out_rld(s, RLDICL, args[0], args[1], 64 - args[2], 64 - args[3]);
2889 break;
2891 case INDEX_op_movcond_i32:
2892 tcg_out_movcond(s, TCG_TYPE_I32, args[5], args[0], args[1], args[2],
2893 args[3], args[4], const_args[2]);
2894 break;
2895 case INDEX_op_movcond_i64:
2896 tcg_out_movcond(s, TCG_TYPE_I64, args[5], args[0], args[1], args[2],
2897 args[3], args[4], const_args[2]);
2898 break;
2900 #if TCG_TARGET_REG_BITS == 64
2901 case INDEX_op_add2_i64:
2902 #else
2903 case INDEX_op_add2_i32:
2904 #endif
2905 /* Note that the CA bit is defined based on the word size of the
2906 environment. So in 64-bit mode it's always carry-out of bit 63.
2907 The fallback code using deposit works just as well for 32-bit. */
2908 a0 = args[0], a1 = args[1];
2909 if (a0 == args[3] || (!const_args[5] && a0 == args[5])) {
2910 a0 = TCG_REG_R0;
2912 if (const_args[4]) {
2913 tcg_out32(s, ADDIC | TAI(a0, args[2], args[4]));
2914 } else {
2915 tcg_out32(s, ADDC | TAB(a0, args[2], args[4]));
2917 if (const_args[5]) {
2918 tcg_out32(s, (args[5] ? ADDME : ADDZE) | RT(a1) | RA(args[3]));
2919 } else {
2920 tcg_out32(s, ADDE | TAB(a1, args[3], args[5]));
2922 if (a0 != args[0]) {
2923 tcg_out_mov(s, TCG_TYPE_REG, args[0], a0);
2925 break;
2927 #if TCG_TARGET_REG_BITS == 64
2928 case INDEX_op_sub2_i64:
2929 #else
2930 case INDEX_op_sub2_i32:
2931 #endif
2932 a0 = args[0], a1 = args[1];
2933 if (a0 == args[5] || (!const_args[3] && a0 == args[3])) {
2934 a0 = TCG_REG_R0;
2936 if (const_args[2]) {
2937 tcg_out32(s, SUBFIC | TAI(a0, args[4], args[2]));
2938 } else {
2939 tcg_out32(s, SUBFC | TAB(a0, args[4], args[2]));
2941 if (const_args[3]) {
2942 tcg_out32(s, (args[3] ? SUBFME : SUBFZE) | RT(a1) | RA(args[5]));
2943 } else {
2944 tcg_out32(s, SUBFE | TAB(a1, args[5], args[3]));
2946 if (a0 != args[0]) {
2947 tcg_out_mov(s, TCG_TYPE_REG, args[0], a0);
2949 break;
2951 case INDEX_op_muluh_i32:
2952 tcg_out32(s, MULHWU | TAB(args[0], args[1], args[2]));
2953 break;
2954 case INDEX_op_mulsh_i32:
2955 tcg_out32(s, MULHW | TAB(args[0], args[1], args[2]));
2956 break;
2957 case INDEX_op_muluh_i64:
2958 tcg_out32(s, MULHDU | TAB(args[0], args[1], args[2]));
2959 break;
2960 case INDEX_op_mulsh_i64:
2961 tcg_out32(s, MULHD | TAB(args[0], args[1], args[2]));
2962 break;
2964 case INDEX_op_mb:
2965 tcg_out_mb(s, args[0]);
2966 break;
2968 case INDEX_op_mov_i32: /* Always emitted via tcg_out_mov. */
2969 case INDEX_op_mov_i64:
2970 case INDEX_op_movi_i32: /* Always emitted via tcg_out_movi. */
2971 case INDEX_op_movi_i64:
2972 case INDEX_op_call: /* Always emitted via tcg_out_call. */
2973 default:
2974 tcg_abort();
2978 int tcg_can_emit_vec_op(TCGOpcode opc, TCGType type, unsigned vece)
2980 switch (opc) {
2981 case INDEX_op_and_vec:
2982 case INDEX_op_or_vec:
2983 case INDEX_op_xor_vec:
2984 case INDEX_op_andc_vec:
2985 case INDEX_op_not_vec:
2986 return 1;
2987 case INDEX_op_orc_vec:
2988 return have_isa_2_07;
2989 case INDEX_op_add_vec:
2990 case INDEX_op_sub_vec:
2991 case INDEX_op_smax_vec:
2992 case INDEX_op_smin_vec:
2993 case INDEX_op_umax_vec:
2994 case INDEX_op_umin_vec:
2995 case INDEX_op_shlv_vec:
2996 case INDEX_op_shrv_vec:
2997 case INDEX_op_sarv_vec:
2998 case INDEX_op_rotlv_vec:
2999 return vece <= MO_32 || have_isa_2_07;
3000 case INDEX_op_ssadd_vec:
3001 case INDEX_op_sssub_vec:
3002 case INDEX_op_usadd_vec:
3003 case INDEX_op_ussub_vec:
3004 return vece <= MO_32;
3005 case INDEX_op_cmp_vec:
3006 case INDEX_op_shli_vec:
3007 case INDEX_op_shri_vec:
3008 case INDEX_op_sari_vec:
3009 case INDEX_op_rotli_vec:
3010 return vece <= MO_32 || have_isa_2_07 ? -1 : 0;
3011 case INDEX_op_neg_vec:
3012 return vece >= MO_32 && have_isa_3_00;
3013 case INDEX_op_mul_vec:
3014 switch (vece) {
3015 case MO_8:
3016 case MO_16:
3017 return -1;
3018 case MO_32:
3019 return have_isa_2_07 ? 1 : -1;
3021 return 0;
3022 case INDEX_op_bitsel_vec:
3023 return have_vsx;
3024 case INDEX_op_rotrv_vec:
3025 return -1;
3026 default:
3027 return 0;
3031 static bool tcg_out_dup_vec(TCGContext *s, TCGType type, unsigned vece,
3032 TCGReg dst, TCGReg src)
3034 tcg_debug_assert(dst >= TCG_REG_V0);
3036 /* Splat from integer reg allowed via constraints for v3.00. */
3037 if (src < TCG_REG_V0) {
3038 tcg_debug_assert(have_isa_3_00);
3039 switch (vece) {
3040 case MO_64:
3041 tcg_out32(s, MTVSRDD | VRT(dst) | RA(src) | RB(src));
3042 return true;
3043 case MO_32:
3044 tcg_out32(s, MTVSRWS | VRT(dst) | RA(src));
3045 return true;
3046 default:
3047 /* Fail, so that we fall back on either dupm or mov+dup. */
3048 return false;
3053 * Recall we use (or emulate) VSX integer loads, so the integer is
3054 * right justified within the left (zero-index) double-word.
3056 switch (vece) {
3057 case MO_8:
3058 tcg_out32(s, VSPLTB | VRT(dst) | VRB(src) | (7 << 16));
3059 break;
3060 case MO_16:
3061 tcg_out32(s, VSPLTH | VRT(dst) | VRB(src) | (3 << 16));
3062 break;
3063 case MO_32:
3064 tcg_out32(s, VSPLTW | VRT(dst) | VRB(src) | (1 << 16));
3065 break;
3066 case MO_64:
3067 if (have_vsx) {
3068 tcg_out32(s, XXPERMDI | VRT(dst) | VRA(src) | VRB(src));
3069 break;
3071 tcg_out_vsldoi(s, TCG_VEC_TMP1, src, src, 8);
3072 tcg_out_vsldoi(s, dst, TCG_VEC_TMP1, src, 8);
3073 break;
3074 default:
3075 g_assert_not_reached();
3077 return true;
3080 static bool tcg_out_dupm_vec(TCGContext *s, TCGType type, unsigned vece,
3081 TCGReg out, TCGReg base, intptr_t offset)
3083 int elt;
3085 tcg_debug_assert(out >= TCG_REG_V0);
3086 switch (vece) {
3087 case MO_8:
3088 if (have_isa_3_00) {
3089 tcg_out_mem_long(s, LXV, LVX, out, base, offset & -16);
3090 } else {
3091 tcg_out_mem_long(s, 0, LVEBX, out, base, offset);
3093 elt = extract32(offset, 0, 4);
3094 #ifndef HOST_WORDS_BIGENDIAN
3095 elt ^= 15;
3096 #endif
3097 tcg_out32(s, VSPLTB | VRT(out) | VRB(out) | (elt << 16));
3098 break;
3099 case MO_16:
3100 tcg_debug_assert((offset & 1) == 0);
3101 if (have_isa_3_00) {
3102 tcg_out_mem_long(s, LXV | 8, LVX, out, base, offset & -16);
3103 } else {
3104 tcg_out_mem_long(s, 0, LVEHX, out, base, offset);
3106 elt = extract32(offset, 1, 3);
3107 #ifndef HOST_WORDS_BIGENDIAN
3108 elt ^= 7;
3109 #endif
3110 tcg_out32(s, VSPLTH | VRT(out) | VRB(out) | (elt << 16));
3111 break;
3112 case MO_32:
3113 if (have_isa_3_00) {
3114 tcg_out_mem_long(s, 0, LXVWSX, out, base, offset);
3115 break;
3117 tcg_debug_assert((offset & 3) == 0);
3118 tcg_out_mem_long(s, 0, LVEWX, out, base, offset);
3119 elt = extract32(offset, 2, 2);
3120 #ifndef HOST_WORDS_BIGENDIAN
3121 elt ^= 3;
3122 #endif
3123 tcg_out32(s, VSPLTW | VRT(out) | VRB(out) | (elt << 16));
3124 break;
3125 case MO_64:
3126 if (have_vsx) {
3127 tcg_out_mem_long(s, 0, LXVDSX, out, base, offset);
3128 break;
3130 tcg_debug_assert((offset & 7) == 0);
3131 tcg_out_mem_long(s, 0, LVX, out, base, offset & -16);
3132 tcg_out_vsldoi(s, TCG_VEC_TMP1, out, out, 8);
3133 elt = extract32(offset, 3, 1);
3134 #ifndef HOST_WORDS_BIGENDIAN
3135 elt = !elt;
3136 #endif
3137 if (elt) {
3138 tcg_out_vsldoi(s, out, out, TCG_VEC_TMP1, 8);
3139 } else {
3140 tcg_out_vsldoi(s, out, TCG_VEC_TMP1, out, 8);
3142 break;
3143 default:
3144 g_assert_not_reached();
3146 return true;
3149 static void tcg_out_vec_op(TCGContext *s, TCGOpcode opc,
3150 unsigned vecl, unsigned vece,
3151 const TCGArg *args, const int *const_args)
3153 static const uint32_t
3154 add_op[4] = { VADDUBM, VADDUHM, VADDUWM, VADDUDM },
3155 sub_op[4] = { VSUBUBM, VSUBUHM, VSUBUWM, VSUBUDM },
3156 neg_op[4] = { 0, 0, VNEGW, VNEGD },
3157 eq_op[4] = { VCMPEQUB, VCMPEQUH, VCMPEQUW, VCMPEQUD },
3158 ne_op[4] = { VCMPNEB, VCMPNEH, VCMPNEW, 0 },
3159 gts_op[4] = { VCMPGTSB, VCMPGTSH, VCMPGTSW, VCMPGTSD },
3160 gtu_op[4] = { VCMPGTUB, VCMPGTUH, VCMPGTUW, VCMPGTUD },
3161 ssadd_op[4] = { VADDSBS, VADDSHS, VADDSWS, 0 },
3162 usadd_op[4] = { VADDUBS, VADDUHS, VADDUWS, 0 },
3163 sssub_op[4] = { VSUBSBS, VSUBSHS, VSUBSWS, 0 },
3164 ussub_op[4] = { VSUBUBS, VSUBUHS, VSUBUWS, 0 },
3165 umin_op[4] = { VMINUB, VMINUH, VMINUW, VMINUD },
3166 smin_op[4] = { VMINSB, VMINSH, VMINSW, VMINSD },
3167 umax_op[4] = { VMAXUB, VMAXUH, VMAXUW, VMAXUD },
3168 smax_op[4] = { VMAXSB, VMAXSH, VMAXSW, VMAXSD },
3169 shlv_op[4] = { VSLB, VSLH, VSLW, VSLD },
3170 shrv_op[4] = { VSRB, VSRH, VSRW, VSRD },
3171 sarv_op[4] = { VSRAB, VSRAH, VSRAW, VSRAD },
3172 mrgh_op[4] = { VMRGHB, VMRGHH, VMRGHW, 0 },
3173 mrgl_op[4] = { VMRGLB, VMRGLH, VMRGLW, 0 },
3174 muleu_op[4] = { VMULEUB, VMULEUH, VMULEUW, 0 },
3175 mulou_op[4] = { VMULOUB, VMULOUH, VMULOUW, 0 },
3176 pkum_op[4] = { VPKUHUM, VPKUWUM, 0, 0 },
3177 rotl_op[4] = { VRLB, VRLH, VRLW, VRLD };
3179 TCGType type = vecl + TCG_TYPE_V64;
3180 TCGArg a0 = args[0], a1 = args[1], a2 = args[2];
3181 uint32_t insn;
3183 switch (opc) {
3184 case INDEX_op_ld_vec:
3185 tcg_out_ld(s, type, a0, a1, a2);
3186 return;
3187 case INDEX_op_st_vec:
3188 tcg_out_st(s, type, a0, a1, a2);
3189 return;
3190 case INDEX_op_dupm_vec:
3191 tcg_out_dupm_vec(s, type, vece, a0, a1, a2);
3192 return;
3194 case INDEX_op_add_vec:
3195 insn = add_op[vece];
3196 break;
3197 case INDEX_op_sub_vec:
3198 insn = sub_op[vece];
3199 break;
3200 case INDEX_op_neg_vec:
3201 insn = neg_op[vece];
3202 a2 = a1;
3203 a1 = 0;
3204 break;
3205 case INDEX_op_mul_vec:
3206 tcg_debug_assert(vece == MO_32 && have_isa_2_07);
3207 insn = VMULUWM;
3208 break;
3209 case INDEX_op_ssadd_vec:
3210 insn = ssadd_op[vece];
3211 break;
3212 case INDEX_op_sssub_vec:
3213 insn = sssub_op[vece];
3214 break;
3215 case INDEX_op_usadd_vec:
3216 insn = usadd_op[vece];
3217 break;
3218 case INDEX_op_ussub_vec:
3219 insn = ussub_op[vece];
3220 break;
3221 case INDEX_op_smin_vec:
3222 insn = smin_op[vece];
3223 break;
3224 case INDEX_op_umin_vec:
3225 insn = umin_op[vece];
3226 break;
3227 case INDEX_op_smax_vec:
3228 insn = smax_op[vece];
3229 break;
3230 case INDEX_op_umax_vec:
3231 insn = umax_op[vece];
3232 break;
3233 case INDEX_op_shlv_vec:
3234 insn = shlv_op[vece];
3235 break;
3236 case INDEX_op_shrv_vec:
3237 insn = shrv_op[vece];
3238 break;
3239 case INDEX_op_sarv_vec:
3240 insn = sarv_op[vece];
3241 break;
3242 case INDEX_op_and_vec:
3243 insn = VAND;
3244 break;
3245 case INDEX_op_or_vec:
3246 insn = VOR;
3247 break;
3248 case INDEX_op_xor_vec:
3249 insn = VXOR;
3250 break;
3251 case INDEX_op_andc_vec:
3252 insn = VANDC;
3253 break;
3254 case INDEX_op_not_vec:
3255 insn = VNOR;
3256 a2 = a1;
3257 break;
3258 case INDEX_op_orc_vec:
3259 insn = VORC;
3260 break;
3262 case INDEX_op_cmp_vec:
3263 switch (args[3]) {
3264 case TCG_COND_EQ:
3265 insn = eq_op[vece];
3266 break;
3267 case TCG_COND_NE:
3268 insn = ne_op[vece];
3269 break;
3270 case TCG_COND_GT:
3271 insn = gts_op[vece];
3272 break;
3273 case TCG_COND_GTU:
3274 insn = gtu_op[vece];
3275 break;
3276 default:
3277 g_assert_not_reached();
3279 break;
3281 case INDEX_op_bitsel_vec:
3282 tcg_out32(s, XXSEL | VRT(a0) | VRC(a1) | VRB(a2) | VRA(args[3]));
3283 return;
3285 case INDEX_op_dup2_vec:
3286 assert(TCG_TARGET_REG_BITS == 32);
3287 /* With inputs a1 = xLxx, a2 = xHxx */
3288 tcg_out32(s, VMRGHW | VRT(a0) | VRA(a2) | VRB(a1)); /* a0 = xxHL */
3289 tcg_out_vsldoi(s, TCG_VEC_TMP1, a0, a0, 8); /* tmp = HLxx */
3290 tcg_out_vsldoi(s, a0, a0, TCG_VEC_TMP1, 8); /* a0 = HLHL */
3291 return;
3293 case INDEX_op_ppc_mrgh_vec:
3294 insn = mrgh_op[vece];
3295 break;
3296 case INDEX_op_ppc_mrgl_vec:
3297 insn = mrgl_op[vece];
3298 break;
3299 case INDEX_op_ppc_muleu_vec:
3300 insn = muleu_op[vece];
3301 break;
3302 case INDEX_op_ppc_mulou_vec:
3303 insn = mulou_op[vece];
3304 break;
3305 case INDEX_op_ppc_pkum_vec:
3306 insn = pkum_op[vece];
3307 break;
3308 case INDEX_op_rotlv_vec:
3309 insn = rotl_op[vece];
3310 break;
3311 case INDEX_op_ppc_msum_vec:
3312 tcg_debug_assert(vece == MO_16);
3313 tcg_out32(s, VMSUMUHM | VRT(a0) | VRA(a1) | VRB(a2) | VRC(args[3]));
3314 return;
3316 case INDEX_op_mov_vec: /* Always emitted via tcg_out_mov. */
3317 case INDEX_op_dupi_vec: /* Always emitted via tcg_out_movi. */
3318 case INDEX_op_dup_vec: /* Always emitted via tcg_out_dup_vec. */
3319 default:
3320 g_assert_not_reached();
3323 tcg_debug_assert(insn != 0);
3324 tcg_out32(s, insn | VRT(a0) | VRA(a1) | VRB(a2));
3327 static void expand_vec_shi(TCGType type, unsigned vece, TCGv_vec v0,
3328 TCGv_vec v1, TCGArg imm, TCGOpcode opci)
3330 TCGv_vec t1 = tcg_temp_new_vec(type);
3332 /* Splat w/bytes for xxspltib. */
3333 tcg_gen_dupi_vec(MO_8, t1, imm & ((8 << vece) - 1));
3334 vec_gen_3(opci, type, vece, tcgv_vec_arg(v0),
3335 tcgv_vec_arg(v1), tcgv_vec_arg(t1));
3336 tcg_temp_free_vec(t1);
3339 static void expand_vec_cmp(TCGType type, unsigned vece, TCGv_vec v0,
3340 TCGv_vec v1, TCGv_vec v2, TCGCond cond)
3342 bool need_swap = false, need_inv = false;
3344 tcg_debug_assert(vece <= MO_32 || have_isa_2_07);
3346 switch (cond) {
3347 case TCG_COND_EQ:
3348 case TCG_COND_GT:
3349 case TCG_COND_GTU:
3350 break;
3351 case TCG_COND_NE:
3352 if (have_isa_3_00 && vece <= MO_32) {
3353 break;
3355 /* fall through */
3356 case TCG_COND_LE:
3357 case TCG_COND_LEU:
3358 need_inv = true;
3359 break;
3360 case TCG_COND_LT:
3361 case TCG_COND_LTU:
3362 need_swap = true;
3363 break;
3364 case TCG_COND_GE:
3365 case TCG_COND_GEU:
3366 need_swap = need_inv = true;
3367 break;
3368 default:
3369 g_assert_not_reached();
3372 if (need_inv) {
3373 cond = tcg_invert_cond(cond);
3375 if (need_swap) {
3376 TCGv_vec t1;
3377 t1 = v1, v1 = v2, v2 = t1;
3378 cond = tcg_swap_cond(cond);
3381 vec_gen_4(INDEX_op_cmp_vec, type, vece, tcgv_vec_arg(v0),
3382 tcgv_vec_arg(v1), tcgv_vec_arg(v2), cond);
3384 if (need_inv) {
3385 tcg_gen_not_vec(vece, v0, v0);
3389 static void expand_vec_mul(TCGType type, unsigned vece, TCGv_vec v0,
3390 TCGv_vec v1, TCGv_vec v2)
3392 TCGv_vec t1 = tcg_temp_new_vec(type);
3393 TCGv_vec t2 = tcg_temp_new_vec(type);
3394 TCGv_vec t3, t4;
3396 switch (vece) {
3397 case MO_8:
3398 case MO_16:
3399 vec_gen_3(INDEX_op_ppc_muleu_vec, type, vece, tcgv_vec_arg(t1),
3400 tcgv_vec_arg(v1), tcgv_vec_arg(v2));
3401 vec_gen_3(INDEX_op_ppc_mulou_vec, type, vece, tcgv_vec_arg(t2),
3402 tcgv_vec_arg(v1), tcgv_vec_arg(v2));
3403 vec_gen_3(INDEX_op_ppc_mrgh_vec, type, vece + 1, tcgv_vec_arg(v0),
3404 tcgv_vec_arg(t1), tcgv_vec_arg(t2));
3405 vec_gen_3(INDEX_op_ppc_mrgl_vec, type, vece + 1, tcgv_vec_arg(t1),
3406 tcgv_vec_arg(t1), tcgv_vec_arg(t2));
3407 vec_gen_3(INDEX_op_ppc_pkum_vec, type, vece, tcgv_vec_arg(v0),
3408 tcgv_vec_arg(v0), tcgv_vec_arg(t1));
3409 break;
3411 case MO_32:
3412 tcg_debug_assert(!have_isa_2_07);
3413 t3 = tcg_temp_new_vec(type);
3414 t4 = tcg_temp_new_vec(type);
3415 tcg_gen_dupi_vec(MO_8, t4, -16);
3416 vec_gen_3(INDEX_op_rotlv_vec, type, MO_32, tcgv_vec_arg(t1),
3417 tcgv_vec_arg(v2), tcgv_vec_arg(t4));
3418 vec_gen_3(INDEX_op_ppc_mulou_vec, type, MO_16, tcgv_vec_arg(t2),
3419 tcgv_vec_arg(v1), tcgv_vec_arg(v2));
3420 tcg_gen_dupi_vec(MO_8, t3, 0);
3421 vec_gen_4(INDEX_op_ppc_msum_vec, type, MO_16, tcgv_vec_arg(t3),
3422 tcgv_vec_arg(v1), tcgv_vec_arg(t1), tcgv_vec_arg(t3));
3423 vec_gen_3(INDEX_op_shlv_vec, type, MO_32, tcgv_vec_arg(t3),
3424 tcgv_vec_arg(t3), tcgv_vec_arg(t4));
3425 tcg_gen_add_vec(MO_32, v0, t2, t3);
3426 tcg_temp_free_vec(t3);
3427 tcg_temp_free_vec(t4);
3428 break;
3430 default:
3431 g_assert_not_reached();
3433 tcg_temp_free_vec(t1);
3434 tcg_temp_free_vec(t2);
3437 void tcg_expand_vec_op(TCGOpcode opc, TCGType type, unsigned vece,
3438 TCGArg a0, ...)
3440 va_list va;
3441 TCGv_vec v0, v1, v2, t0;
3442 TCGArg a2;
3444 va_start(va, a0);
3445 v0 = temp_tcgv_vec(arg_temp(a0));
3446 v1 = temp_tcgv_vec(arg_temp(va_arg(va, TCGArg)));
3447 a2 = va_arg(va, TCGArg);
3449 switch (opc) {
3450 case INDEX_op_shli_vec:
3451 expand_vec_shi(type, vece, v0, v1, a2, INDEX_op_shlv_vec);
3452 break;
3453 case INDEX_op_shri_vec:
3454 expand_vec_shi(type, vece, v0, v1, a2, INDEX_op_shrv_vec);
3455 break;
3456 case INDEX_op_sari_vec:
3457 expand_vec_shi(type, vece, v0, v1, a2, INDEX_op_sarv_vec);
3458 break;
3459 case INDEX_op_rotli_vec:
3460 expand_vec_shi(type, vece, v0, v1, a2, INDEX_op_rotlv_vec);
3461 break;
3462 case INDEX_op_cmp_vec:
3463 v2 = temp_tcgv_vec(arg_temp(a2));
3464 expand_vec_cmp(type, vece, v0, v1, v2, va_arg(va, TCGArg));
3465 break;
3466 case INDEX_op_mul_vec:
3467 v2 = temp_tcgv_vec(arg_temp(a2));
3468 expand_vec_mul(type, vece, v0, v1, v2);
3469 break;
3470 case INDEX_op_rotlv_vec:
3471 v2 = temp_tcgv_vec(arg_temp(a2));
3472 t0 = tcg_temp_new_vec(type);
3473 tcg_gen_neg_vec(vece, t0, v2);
3474 tcg_gen_rotlv_vec(vece, v0, v1, t0);
3475 tcg_temp_free_vec(t0);
3476 break;
3477 default:
3478 g_assert_not_reached();
3480 va_end(va);
3483 static const TCGTargetOpDef *tcg_target_op_def(TCGOpcode op)
3485 static const TCGTargetOpDef r = { .args_ct_str = { "r" } };
3486 static const TCGTargetOpDef r_r = { .args_ct_str = { "r", "r" } };
3487 static const TCGTargetOpDef r_L = { .args_ct_str = { "r", "L" } };
3488 static const TCGTargetOpDef S_S = { .args_ct_str = { "S", "S" } };
3489 static const TCGTargetOpDef r_ri = { .args_ct_str = { "r", "ri" } };
3490 static const TCGTargetOpDef r_r_r = { .args_ct_str = { "r", "r", "r" } };
3491 static const TCGTargetOpDef r_L_L = { .args_ct_str = { "r", "L", "L" } };
3492 static const TCGTargetOpDef L_L_L = { .args_ct_str = { "L", "L", "L" } };
3493 static const TCGTargetOpDef S_S_S = { .args_ct_str = { "S", "S", "S" } };
3494 static const TCGTargetOpDef r_r_ri = { .args_ct_str = { "r", "r", "ri" } };
3495 static const TCGTargetOpDef r_r_rI = { .args_ct_str = { "r", "r", "rI" } };
3496 static const TCGTargetOpDef r_r_rT = { .args_ct_str = { "r", "r", "rT" } };
3497 static const TCGTargetOpDef r_r_rU = { .args_ct_str = { "r", "r", "rU" } };
3498 static const TCGTargetOpDef r_rI_ri
3499 = { .args_ct_str = { "r", "rI", "ri" } };
3500 static const TCGTargetOpDef r_rI_rT
3501 = { .args_ct_str = { "r", "rI", "rT" } };
3502 static const TCGTargetOpDef r_r_rZW
3503 = { .args_ct_str = { "r", "r", "rZW" } };
3504 static const TCGTargetOpDef L_L_L_L
3505 = { .args_ct_str = { "L", "L", "L", "L" } };
3506 static const TCGTargetOpDef S_S_S_S
3507 = { .args_ct_str = { "S", "S", "S", "S" } };
3508 static const TCGTargetOpDef movc
3509 = { .args_ct_str = { "r", "r", "ri", "rZ", "rZ" } };
3510 static const TCGTargetOpDef dep
3511 = { .args_ct_str = { "r", "0", "rZ" } };
3512 static const TCGTargetOpDef br2
3513 = { .args_ct_str = { "r", "r", "ri", "ri" } };
3514 static const TCGTargetOpDef setc2
3515 = { .args_ct_str = { "r", "r", "r", "ri", "ri" } };
3516 static const TCGTargetOpDef add2
3517 = { .args_ct_str = { "r", "r", "r", "r", "rI", "rZM" } };
3518 static const TCGTargetOpDef sub2
3519 = { .args_ct_str = { "r", "r", "rI", "rZM", "r", "r" } };
3520 static const TCGTargetOpDef v_r = { .args_ct_str = { "v", "r" } };
3521 static const TCGTargetOpDef v_vr = { .args_ct_str = { "v", "vr" } };
3522 static const TCGTargetOpDef v_v = { .args_ct_str = { "v", "v" } };
3523 static const TCGTargetOpDef v_v_v = { .args_ct_str = { "v", "v", "v" } };
3524 static const TCGTargetOpDef v_v_v_v
3525 = { .args_ct_str = { "v", "v", "v", "v" } };
3527 switch (op) {
3528 case INDEX_op_goto_ptr:
3529 return &r;
3531 case INDEX_op_ld8u_i32:
3532 case INDEX_op_ld8s_i32:
3533 case INDEX_op_ld16u_i32:
3534 case INDEX_op_ld16s_i32:
3535 case INDEX_op_ld_i32:
3536 case INDEX_op_st8_i32:
3537 case INDEX_op_st16_i32:
3538 case INDEX_op_st_i32:
3539 case INDEX_op_ctpop_i32:
3540 case INDEX_op_neg_i32:
3541 case INDEX_op_not_i32:
3542 case INDEX_op_ext8s_i32:
3543 case INDEX_op_ext16s_i32:
3544 case INDEX_op_bswap16_i32:
3545 case INDEX_op_bswap32_i32:
3546 case INDEX_op_extract_i32:
3547 case INDEX_op_ld8u_i64:
3548 case INDEX_op_ld8s_i64:
3549 case INDEX_op_ld16u_i64:
3550 case INDEX_op_ld16s_i64:
3551 case INDEX_op_ld32u_i64:
3552 case INDEX_op_ld32s_i64:
3553 case INDEX_op_ld_i64:
3554 case INDEX_op_st8_i64:
3555 case INDEX_op_st16_i64:
3556 case INDEX_op_st32_i64:
3557 case INDEX_op_st_i64:
3558 case INDEX_op_ctpop_i64:
3559 case INDEX_op_neg_i64:
3560 case INDEX_op_not_i64:
3561 case INDEX_op_ext8s_i64:
3562 case INDEX_op_ext16s_i64:
3563 case INDEX_op_ext32s_i64:
3564 case INDEX_op_ext_i32_i64:
3565 case INDEX_op_extu_i32_i64:
3566 case INDEX_op_bswap16_i64:
3567 case INDEX_op_bswap32_i64:
3568 case INDEX_op_bswap64_i64:
3569 case INDEX_op_extract_i64:
3570 return &r_r;
3572 case INDEX_op_add_i32:
3573 case INDEX_op_and_i32:
3574 case INDEX_op_or_i32:
3575 case INDEX_op_xor_i32:
3576 case INDEX_op_andc_i32:
3577 case INDEX_op_orc_i32:
3578 case INDEX_op_eqv_i32:
3579 case INDEX_op_shl_i32:
3580 case INDEX_op_shr_i32:
3581 case INDEX_op_sar_i32:
3582 case INDEX_op_rotl_i32:
3583 case INDEX_op_rotr_i32:
3584 case INDEX_op_setcond_i32:
3585 case INDEX_op_and_i64:
3586 case INDEX_op_andc_i64:
3587 case INDEX_op_shl_i64:
3588 case INDEX_op_shr_i64:
3589 case INDEX_op_sar_i64:
3590 case INDEX_op_rotl_i64:
3591 case INDEX_op_rotr_i64:
3592 case INDEX_op_setcond_i64:
3593 return &r_r_ri;
3594 case INDEX_op_mul_i32:
3595 case INDEX_op_mul_i64:
3596 return &r_r_rI;
3597 case INDEX_op_div_i32:
3598 case INDEX_op_divu_i32:
3599 case INDEX_op_nand_i32:
3600 case INDEX_op_nor_i32:
3601 case INDEX_op_muluh_i32:
3602 case INDEX_op_mulsh_i32:
3603 case INDEX_op_orc_i64:
3604 case INDEX_op_eqv_i64:
3605 case INDEX_op_nand_i64:
3606 case INDEX_op_nor_i64:
3607 case INDEX_op_div_i64:
3608 case INDEX_op_divu_i64:
3609 case INDEX_op_mulsh_i64:
3610 case INDEX_op_muluh_i64:
3611 return &r_r_r;
3612 case INDEX_op_sub_i32:
3613 return &r_rI_ri;
3614 case INDEX_op_add_i64:
3615 return &r_r_rT;
3616 case INDEX_op_or_i64:
3617 case INDEX_op_xor_i64:
3618 return &r_r_rU;
3619 case INDEX_op_sub_i64:
3620 return &r_rI_rT;
3621 case INDEX_op_clz_i32:
3622 case INDEX_op_ctz_i32:
3623 case INDEX_op_clz_i64:
3624 case INDEX_op_ctz_i64:
3625 return &r_r_rZW;
3627 case INDEX_op_brcond_i32:
3628 case INDEX_op_brcond_i64:
3629 return &r_ri;
3631 case INDEX_op_movcond_i32:
3632 case INDEX_op_movcond_i64:
3633 return &movc;
3634 case INDEX_op_deposit_i32:
3635 case INDEX_op_deposit_i64:
3636 return &dep;
3637 case INDEX_op_brcond2_i32:
3638 return &br2;
3639 case INDEX_op_setcond2_i32:
3640 return &setc2;
3641 case INDEX_op_add2_i64:
3642 case INDEX_op_add2_i32:
3643 return &add2;
3644 case INDEX_op_sub2_i64:
3645 case INDEX_op_sub2_i32:
3646 return &sub2;
3648 case INDEX_op_qemu_ld_i32:
3649 return (TCG_TARGET_REG_BITS == 64 || TARGET_LONG_BITS == 32
3650 ? &r_L : &r_L_L);
3651 case INDEX_op_qemu_st_i32:
3652 return (TCG_TARGET_REG_BITS == 64 || TARGET_LONG_BITS == 32
3653 ? &S_S : &S_S_S);
3654 case INDEX_op_qemu_ld_i64:
3655 return (TCG_TARGET_REG_BITS == 64 ? &r_L
3656 : TARGET_LONG_BITS == 32 ? &L_L_L : &L_L_L_L);
3657 case INDEX_op_qemu_st_i64:
3658 return (TCG_TARGET_REG_BITS == 64 ? &S_S
3659 : TARGET_LONG_BITS == 32 ? &S_S_S : &S_S_S_S);
3661 case INDEX_op_add_vec:
3662 case INDEX_op_sub_vec:
3663 case INDEX_op_mul_vec:
3664 case INDEX_op_and_vec:
3665 case INDEX_op_or_vec:
3666 case INDEX_op_xor_vec:
3667 case INDEX_op_andc_vec:
3668 case INDEX_op_orc_vec:
3669 case INDEX_op_cmp_vec:
3670 case INDEX_op_ssadd_vec:
3671 case INDEX_op_sssub_vec:
3672 case INDEX_op_usadd_vec:
3673 case INDEX_op_ussub_vec:
3674 case INDEX_op_smax_vec:
3675 case INDEX_op_smin_vec:
3676 case INDEX_op_umax_vec:
3677 case INDEX_op_umin_vec:
3678 case INDEX_op_shlv_vec:
3679 case INDEX_op_shrv_vec:
3680 case INDEX_op_sarv_vec:
3681 case INDEX_op_rotlv_vec:
3682 case INDEX_op_rotrv_vec:
3683 case INDEX_op_ppc_mrgh_vec:
3684 case INDEX_op_ppc_mrgl_vec:
3685 case INDEX_op_ppc_muleu_vec:
3686 case INDEX_op_ppc_mulou_vec:
3687 case INDEX_op_ppc_pkum_vec:
3688 case INDEX_op_dup2_vec:
3689 return &v_v_v;
3690 case INDEX_op_not_vec:
3691 case INDEX_op_neg_vec:
3692 return &v_v;
3693 case INDEX_op_dup_vec:
3694 return have_isa_3_00 ? &v_vr : &v_v;
3695 case INDEX_op_ld_vec:
3696 case INDEX_op_st_vec:
3697 case INDEX_op_dupm_vec:
3698 return &v_r;
3699 case INDEX_op_bitsel_vec:
3700 case INDEX_op_ppc_msum_vec:
3701 return &v_v_v_v;
3703 default:
3704 return NULL;
3708 static void tcg_target_init(TCGContext *s)
3710 unsigned long hwcap = qemu_getauxval(AT_HWCAP);
3711 unsigned long hwcap2 = qemu_getauxval(AT_HWCAP2);
3713 have_isa = tcg_isa_base;
3714 if (hwcap & PPC_FEATURE_ARCH_2_06) {
3715 have_isa = tcg_isa_2_06;
3717 #ifdef PPC_FEATURE2_ARCH_2_07
3718 if (hwcap2 & PPC_FEATURE2_ARCH_2_07) {
3719 have_isa = tcg_isa_2_07;
3721 #endif
3722 #ifdef PPC_FEATURE2_ARCH_3_00
3723 if (hwcap2 & PPC_FEATURE2_ARCH_3_00) {
3724 have_isa = tcg_isa_3_00;
3726 #endif
3728 #ifdef PPC_FEATURE2_HAS_ISEL
3729 /* Prefer explicit instruction from the kernel. */
3730 have_isel = (hwcap2 & PPC_FEATURE2_HAS_ISEL) != 0;
3731 #else
3732 /* Fall back to knowing Power7 (2.06) has ISEL. */
3733 have_isel = have_isa_2_06;
3734 #endif
3736 if (hwcap & PPC_FEATURE_HAS_ALTIVEC) {
3737 have_altivec = true;
3738 /* We only care about the portion of VSX that overlaps Altivec. */
3739 if (hwcap & PPC_FEATURE_HAS_VSX) {
3740 have_vsx = true;
3744 tcg_target_available_regs[TCG_TYPE_I32] = 0xffffffff;
3745 tcg_target_available_regs[TCG_TYPE_I64] = 0xffffffff;
3746 if (have_altivec) {
3747 tcg_target_available_regs[TCG_TYPE_V64] = 0xffffffff00000000ull;
3748 tcg_target_available_regs[TCG_TYPE_V128] = 0xffffffff00000000ull;
3751 tcg_target_call_clobber_regs = 0;
3752 tcg_regset_set_reg(tcg_target_call_clobber_regs, TCG_REG_R0);
3753 tcg_regset_set_reg(tcg_target_call_clobber_regs, TCG_REG_R2);
3754 tcg_regset_set_reg(tcg_target_call_clobber_regs, TCG_REG_R3);
3755 tcg_regset_set_reg(tcg_target_call_clobber_regs, TCG_REG_R4);
3756 tcg_regset_set_reg(tcg_target_call_clobber_regs, TCG_REG_R5);
3757 tcg_regset_set_reg(tcg_target_call_clobber_regs, TCG_REG_R6);
3758 tcg_regset_set_reg(tcg_target_call_clobber_regs, TCG_REG_R7);
3759 tcg_regset_set_reg(tcg_target_call_clobber_regs, TCG_REG_R8);
3760 tcg_regset_set_reg(tcg_target_call_clobber_regs, TCG_REG_R9);
3761 tcg_regset_set_reg(tcg_target_call_clobber_regs, TCG_REG_R10);
3762 tcg_regset_set_reg(tcg_target_call_clobber_regs, TCG_REG_R11);
3763 tcg_regset_set_reg(tcg_target_call_clobber_regs, TCG_REG_R12);
3765 tcg_regset_set_reg(tcg_target_call_clobber_regs, TCG_REG_V0);
3766 tcg_regset_set_reg(tcg_target_call_clobber_regs, TCG_REG_V1);
3767 tcg_regset_set_reg(tcg_target_call_clobber_regs, TCG_REG_V2);
3768 tcg_regset_set_reg(tcg_target_call_clobber_regs, TCG_REG_V3);
3769 tcg_regset_set_reg(tcg_target_call_clobber_regs, TCG_REG_V4);
3770 tcg_regset_set_reg(tcg_target_call_clobber_regs, TCG_REG_V5);
3771 tcg_regset_set_reg(tcg_target_call_clobber_regs, TCG_REG_V6);
3772 tcg_regset_set_reg(tcg_target_call_clobber_regs, TCG_REG_V7);
3773 tcg_regset_set_reg(tcg_target_call_clobber_regs, TCG_REG_V8);
3774 tcg_regset_set_reg(tcg_target_call_clobber_regs, TCG_REG_V9);
3775 tcg_regset_set_reg(tcg_target_call_clobber_regs, TCG_REG_V10);
3776 tcg_regset_set_reg(tcg_target_call_clobber_regs, TCG_REG_V11);
3777 tcg_regset_set_reg(tcg_target_call_clobber_regs, TCG_REG_V12);
3778 tcg_regset_set_reg(tcg_target_call_clobber_regs, TCG_REG_V13);
3779 tcg_regset_set_reg(tcg_target_call_clobber_regs, TCG_REG_V14);
3780 tcg_regset_set_reg(tcg_target_call_clobber_regs, TCG_REG_V15);
3781 tcg_regset_set_reg(tcg_target_call_clobber_regs, TCG_REG_V16);
3782 tcg_regset_set_reg(tcg_target_call_clobber_regs, TCG_REG_V17);
3783 tcg_regset_set_reg(tcg_target_call_clobber_regs, TCG_REG_V18);
3784 tcg_regset_set_reg(tcg_target_call_clobber_regs, TCG_REG_V19);
3786 s->reserved_regs = 0;
3787 tcg_regset_set_reg(s->reserved_regs, TCG_REG_R0); /* tcg temp */
3788 tcg_regset_set_reg(s->reserved_regs, TCG_REG_R1); /* stack pointer */
3789 #if defined(_CALL_SYSV)
3790 tcg_regset_set_reg(s->reserved_regs, TCG_REG_R2); /* toc pointer */
3791 #endif
3792 #if defined(_CALL_SYSV) || TCG_TARGET_REG_BITS == 64
3793 tcg_regset_set_reg(s->reserved_regs, TCG_REG_R13); /* thread pointer */
3794 #endif
3795 tcg_regset_set_reg(s->reserved_regs, TCG_REG_TMP1); /* mem temp */
3796 tcg_regset_set_reg(s->reserved_regs, TCG_VEC_TMP1);
3797 tcg_regset_set_reg(s->reserved_regs, TCG_VEC_TMP2);
3798 if (USE_REG_TB) {
3799 tcg_regset_set_reg(s->reserved_regs, TCG_REG_TB); /* tb->tc_ptr */
3803 #ifdef __ELF__
3804 typedef struct {
3805 DebugFrameCIE cie;
3806 DebugFrameFDEHeader fde;
3807 uint8_t fde_def_cfa[4];
3808 uint8_t fde_reg_ofs[ARRAY_SIZE(tcg_target_callee_save_regs) * 2 + 3];
3809 } DebugFrame;
3811 /* We're expecting a 2 byte uleb128 encoded value. */
3812 QEMU_BUILD_BUG_ON(FRAME_SIZE >= (1 << 14));
3814 #if TCG_TARGET_REG_BITS == 64
3815 # define ELF_HOST_MACHINE EM_PPC64
3816 #else
3817 # define ELF_HOST_MACHINE EM_PPC
3818 #endif
3820 static DebugFrame debug_frame = {
3821 .cie.len = sizeof(DebugFrameCIE)-4, /* length after .len member */
3822 .cie.id = -1,
3823 .cie.version = 1,
3824 .cie.code_align = 1,
3825 .cie.data_align = (-SZR & 0x7f), /* sleb128 -SZR */
3826 .cie.return_column = 65,
3828 /* Total FDE size does not include the "len" member. */
3829 .fde.len = sizeof(DebugFrame) - offsetof(DebugFrame, fde.cie_offset),
3831 .fde_def_cfa = {
3832 12, TCG_REG_R1, /* DW_CFA_def_cfa r1, ... */
3833 (FRAME_SIZE & 0x7f) | 0x80, /* ... uleb128 FRAME_SIZE */
3834 (FRAME_SIZE >> 7)
3836 .fde_reg_ofs = {
3837 /* DW_CFA_offset_extended_sf, lr, LR_OFFSET */
3838 0x11, 65, (LR_OFFSET / -SZR) & 0x7f,
3842 void tcg_register_jit(void *buf, size_t buf_size)
3844 uint8_t *p = &debug_frame.fde_reg_ofs[3];
3845 int i;
3847 for (i = 0; i < ARRAY_SIZE(tcg_target_callee_save_regs); ++i, p += 2) {
3848 p[0] = 0x80 + tcg_target_callee_save_regs[i];
3849 p[1] = (FRAME_SIZE - (REG_SAVE_BOT + i * SZR)) / SZR;
3852 debug_frame.fde.func_start = (uintptr_t)buf;
3853 debug_frame.fde.func_len = buf_size;
3855 tcg_register_jit_int(buf, buf_size, &debug_frame, sizeof(debug_frame));
3857 #endif /* __ELF__ */
3859 void flush_icache_range(uintptr_t start, uintptr_t stop)
3861 uintptr_t p, start1, stop1;
3862 size_t dsize = qemu_dcache_linesize;
3863 size_t isize = qemu_icache_linesize;
3865 start1 = start & ~(dsize - 1);
3866 stop1 = (stop + dsize - 1) & ~(dsize - 1);
3867 for (p = start1; p < stop1; p += dsize) {
3868 asm volatile ("dcbst 0,%0" : : "r"(p) : "memory");
3870 asm volatile ("sync" : : : "memory");
3872 start &= start & ~(isize - 1);
3873 stop1 = (stop + isize - 1) & ~(isize - 1);
3874 for (p = start1; p < stop1; p += isize) {
3875 asm volatile ("icbi 0,%0" : : "r"(p) : "memory");
3877 asm volatile ("sync" : : : "memory");
3878 asm volatile ("isync" : : : "memory");