target-arm: Implement pmccntr_sync function
[qemu/ar7.git] / target-arm / cpu.h
blob51bedc826299b8caaebf303f94e289c21aa87ce5
1 /*
2 * ARM virtual CPU header
4 * Copyright (c) 2003 Fabrice Bellard
6 * This library is free software; you can redistribute it and/or
7 * modify it under the terms of the GNU Lesser General Public
8 * License as published by the Free Software Foundation; either
9 * version 2 of the License, or (at your option) any later version.
11 * This library is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
14 * Lesser General Public License for more details.
16 * You should have received a copy of the GNU Lesser General Public
17 * License along with this library; if not, see <http://www.gnu.org/licenses/>.
19 #ifndef CPU_ARM_H
20 #define CPU_ARM_H
22 #include "config.h"
24 #include "kvm-consts.h"
26 #if defined(TARGET_AARCH64)
27 /* AArch64 definitions */
28 # define TARGET_LONG_BITS 64
29 # define ELF_MACHINE EM_AARCH64
30 #else
31 # define TARGET_LONG_BITS 32
32 # define ELF_MACHINE EM_ARM
33 #endif
35 #define CPUArchState struct CPUARMState
37 #include "qemu-common.h"
38 #include "exec/cpu-defs.h"
40 #include "fpu/softfloat.h"
42 #define TARGET_HAS_ICE 1
44 #define EXCP_UDEF 1 /* undefined instruction */
45 #define EXCP_SWI 2 /* software interrupt */
46 #define EXCP_PREFETCH_ABORT 3
47 #define EXCP_DATA_ABORT 4
48 #define EXCP_IRQ 5
49 #define EXCP_FIQ 6
50 #define EXCP_BKPT 7
51 #define EXCP_EXCEPTION_EXIT 8 /* Return from v7M exception. */
52 #define EXCP_KERNEL_TRAP 9 /* Jumped to kernel code page. */
53 #define EXCP_STREX 10
55 #define ARMV7M_EXCP_RESET 1
56 #define ARMV7M_EXCP_NMI 2
57 #define ARMV7M_EXCP_HARD 3
58 #define ARMV7M_EXCP_MEM 4
59 #define ARMV7M_EXCP_BUS 5
60 #define ARMV7M_EXCP_USAGE 6
61 #define ARMV7M_EXCP_SVC 11
62 #define ARMV7M_EXCP_DEBUG 12
63 #define ARMV7M_EXCP_PENDSV 14
64 #define ARMV7M_EXCP_SYSTICK 15
66 /* ARM-specific interrupt pending bits. */
67 #define CPU_INTERRUPT_FIQ CPU_INTERRUPT_TGT_EXT_1
69 /* The usual mapping for an AArch64 system register to its AArch32
70 * counterpart is for the 32 bit world to have access to the lower
71 * half only (with writes leaving the upper half untouched). It's
72 * therefore useful to be able to pass TCG the offset of the least
73 * significant half of a uint64_t struct member.
75 #ifdef HOST_WORDS_BIGENDIAN
76 #define offsetoflow32(S, M) (offsetof(S, M) + sizeof(uint32_t))
77 #define offsetofhigh32(S, M) offsetof(S, M)
78 #else
79 #define offsetoflow32(S, M) offsetof(S, M)
80 #define offsetofhigh32(S, M) (offsetof(S, M) + sizeof(uint32_t))
81 #endif
83 /* Meanings of the ARMCPU object's two inbound GPIO lines */
84 #define ARM_CPU_IRQ 0
85 #define ARM_CPU_FIQ 1
87 typedef void ARMWriteCPFunc(void *opaque, int cp_info,
88 int srcreg, int operand, uint32_t value);
89 typedef uint32_t ARMReadCPFunc(void *opaque, int cp_info,
90 int dstreg, int operand);
92 struct arm_boot_info;
94 #define NB_MMU_MODES 2
96 /* We currently assume float and double are IEEE single and double
97 precision respectively.
98 Doing runtime conversions is tricky because VFP registers may contain
99 integer values (eg. as the result of a FTOSI instruction).
100 s<2n> maps to the least significant half of d<n>
101 s<2n+1> maps to the most significant half of d<n>
104 /* CPU state for each instance of a generic timer (in cp15 c14) */
105 typedef struct ARMGenericTimer {
106 uint64_t cval; /* Timer CompareValue register */
107 uint64_t ctl; /* Timer Control register */
108 } ARMGenericTimer;
110 #define GTIMER_PHYS 0
111 #define GTIMER_VIRT 1
112 #define NUM_GTIMERS 2
114 typedef struct CPUARMState {
115 /* Regs for current mode. */
116 uint32_t regs[16];
118 /* 32/64 switch only happens when taking and returning from
119 * exceptions so the overlap semantics are taken care of then
120 * instead of having a complicated union.
122 /* Regs for A64 mode. */
123 uint64_t xregs[32];
124 uint64_t pc;
125 /* PSTATE isn't an architectural register for ARMv8. However, it is
126 * convenient for us to assemble the underlying state into a 32 bit format
127 * identical to the architectural format used for the SPSR. (This is also
128 * what the Linux kernel's 'pstate' field in signal handlers and KVM's
129 * 'pstate' register are.) Of the PSTATE bits:
130 * NZCV are kept in the split out env->CF/VF/NF/ZF, (which have the same
131 * semantics as for AArch32, as described in the comments on each field)
132 * nRW (also known as M[4]) is kept, inverted, in env->aarch64
133 * DAIF (exception masks) are kept in env->daif
134 * all other bits are stored in their correct places in env->pstate
136 uint32_t pstate;
137 uint32_t aarch64; /* 1 if CPU is in aarch64 state; inverse of PSTATE.nRW */
139 /* Frequently accessed CPSR bits are stored separately for efficiency.
140 This contains all the other bits. Use cpsr_{read,write} to access
141 the whole CPSR. */
142 uint32_t uncached_cpsr;
143 uint32_t spsr;
145 /* Banked registers. */
146 uint64_t banked_spsr[8];
147 uint32_t banked_r13[6];
148 uint32_t banked_r14[6];
150 /* These hold r8-r12. */
151 uint32_t usr_regs[5];
152 uint32_t fiq_regs[5];
154 /* cpsr flag cache for faster execution */
155 uint32_t CF; /* 0 or 1 */
156 uint32_t VF; /* V is the bit 31. All other bits are undefined */
157 uint32_t NF; /* N is bit 31. All other bits are undefined. */
158 uint32_t ZF; /* Z set if zero. */
159 uint32_t QF; /* 0 or 1 */
160 uint32_t GE; /* cpsr[19:16] */
161 uint32_t thumb; /* cpsr[5]. 0 = arm mode, 1 = thumb mode. */
162 uint32_t condexec_bits; /* IT bits. cpsr[15:10,26:25]. */
163 uint64_t daif; /* exception masks, in the bits they are in in PSTATE */
165 uint64_t elr_el[4]; /* AArch64 exception link regs */
166 uint64_t sp_el[4]; /* AArch64 banked stack pointers */
168 /* System control coprocessor (cp15) */
169 struct {
170 uint32_t c0_cpuid;
171 uint64_t c0_cssel; /* Cache size selection. */
172 uint64_t c1_sys; /* System control register. */
173 uint64_t c1_coproc; /* Coprocessor access register. */
174 uint32_t c1_xscaleauxcr; /* XScale auxiliary control register. */
175 uint32_t c1_scr; /* secure config register. */
176 uint64_t ttbr0_el1; /* MMU translation table base 0. */
177 uint64_t ttbr1_el1; /* MMU translation table base 1. */
178 uint64_t c2_control; /* MMU translation table base control. */
179 uint32_t c2_mask; /* MMU translation table base selection mask. */
180 uint32_t c2_base_mask; /* MMU translation table base 0 mask. */
181 uint32_t c2_data; /* MPU data cachable bits. */
182 uint32_t c2_insn; /* MPU instruction cachable bits. */
183 uint32_t c3; /* MMU domain access control register
184 MPU write buffer control. */
185 uint32_t pmsav5_data_ap; /* PMSAv5 MPU data access permissions */
186 uint32_t pmsav5_insn_ap; /* PMSAv5 MPU insn access permissions */
187 uint32_t ifsr_el2; /* Fault status registers. */
188 uint64_t esr_el[4];
189 uint32_t c6_region[8]; /* MPU base/size registers. */
190 uint64_t far_el[4]; /* Fault address registers. */
191 uint64_t par_el1; /* Translation result. */
192 uint32_t c9_insn; /* Cache lockdown registers. */
193 uint32_t c9_data;
194 uint64_t c9_pmcr; /* performance monitor control register */
195 uint64_t c9_pmcnten; /* perf monitor counter enables */
196 uint32_t c9_pmovsr; /* perf monitor overflow status */
197 uint32_t c9_pmxevtyper; /* perf monitor event type */
198 uint32_t c9_pmuserenr; /* perf monitor user enable */
199 uint32_t c9_pminten; /* perf monitor interrupt enables */
200 uint64_t mair_el1;
201 uint64_t vbar_el[4]; /* vector base address register */
202 uint32_t c13_fcse; /* FCSE PID. */
203 uint64_t contextidr_el1; /* Context ID. */
204 uint64_t tpidr_el0; /* User RW Thread register. */
205 uint64_t tpidrro_el0; /* User RO Thread register. */
206 uint64_t tpidr_el1; /* Privileged Thread register. */
207 uint64_t c14_cntfrq; /* Counter Frequency register */
208 uint64_t c14_cntkctl; /* Timer Control register */
209 ARMGenericTimer c14_timer[NUM_GTIMERS];
210 uint32_t c15_cpar; /* XScale Coprocessor Access Register */
211 uint32_t c15_ticonfig; /* TI925T configuration byte. */
212 uint32_t c15_i_max; /* Maximum D-cache dirty line index. */
213 uint32_t c15_i_min; /* Minimum D-cache dirty line index. */
214 uint32_t c15_threadid; /* TI debugger thread-ID. */
215 uint32_t c15_config_base_address; /* SCU base address. */
216 uint32_t c15_diagnostic; /* diagnostic register */
217 uint32_t c15_power_diagnostic;
218 uint32_t c15_power_control; /* power control */
219 uint64_t dbgbvr[16]; /* breakpoint value registers */
220 uint64_t dbgbcr[16]; /* breakpoint control registers */
221 uint64_t dbgwvr[16]; /* watchpoint value registers */
222 uint64_t dbgwcr[16]; /* watchpoint control registers */
223 uint64_t mdscr_el1;
224 /* If the counter is enabled, this stores the last time the counter
225 * was reset. Otherwise it stores the counter value
227 uint64_t c15_ccnt;
228 uint64_t pmccfiltr_el0; /* Performance Monitor Filter Register */
229 } cp15;
231 struct {
232 uint32_t other_sp;
233 uint32_t vecbase;
234 uint32_t basepri;
235 uint32_t control;
236 int current_sp;
237 int exception;
238 int pending_exception;
239 } v7m;
241 /* Information associated with an exception about to be taken:
242 * code which raises an exception must set cs->exception_index and
243 * the relevant parts of this structure; the cpu_do_interrupt function
244 * will then set the guest-visible registers as part of the exception
245 * entry process.
247 struct {
248 uint32_t syndrome; /* AArch64 format syndrome register */
249 uint32_t fsr; /* AArch32 format fault status register info */
250 uint64_t vaddress; /* virtual addr associated with exception, if any */
251 /* If we implement EL2 we will also need to store information
252 * about the intermediate physical address for stage 2 faults.
254 } exception;
256 /* Thumb-2 EE state. */
257 uint32_t teecr;
258 uint32_t teehbr;
260 /* VFP coprocessor state. */
261 struct {
262 /* VFP/Neon register state. Note that the mapping between S, D and Q
263 * views of the register bank differs between AArch64 and AArch32:
264 * In AArch32:
265 * Qn = regs[2n+1]:regs[2n]
266 * Dn = regs[n]
267 * Sn = regs[n/2] bits 31..0 for even n, and bits 63..32 for odd n
268 * (and regs[32] to regs[63] are inaccessible)
269 * In AArch64:
270 * Qn = regs[2n+1]:regs[2n]
271 * Dn = regs[2n]
272 * Sn = regs[2n] bits 31..0
273 * This corresponds to the architecturally defined mapping between
274 * the two execution states, and means we do not need to explicitly
275 * map these registers when changing states.
277 float64 regs[64];
279 uint32_t xregs[16];
280 /* We store these fpcsr fields separately for convenience. */
281 int vec_len;
282 int vec_stride;
284 /* scratch space when Tn are not sufficient. */
285 uint32_t scratch[8];
287 /* fp_status is the "normal" fp status. standard_fp_status retains
288 * values corresponding to the ARM "Standard FPSCR Value", ie
289 * default-NaN, flush-to-zero, round-to-nearest and is used by
290 * any operations (generally Neon) which the architecture defines
291 * as controlled by the standard FPSCR value rather than the FPSCR.
293 * To avoid having to transfer exception bits around, we simply
294 * say that the FPSCR cumulative exception flags are the logical
295 * OR of the flags in the two fp statuses. This relies on the
296 * only thing which needs to read the exception flags being
297 * an explicit FPSCR read.
299 float_status fp_status;
300 float_status standard_fp_status;
301 } vfp;
302 uint64_t exclusive_addr;
303 uint64_t exclusive_val;
304 uint64_t exclusive_high;
305 #if defined(CONFIG_USER_ONLY)
306 uint64_t exclusive_test;
307 uint32_t exclusive_info;
308 #endif
310 /* iwMMXt coprocessor state. */
311 struct {
312 uint64_t regs[16];
313 uint64_t val;
315 uint32_t cregs[16];
316 } iwmmxt;
318 /* For mixed endian mode. */
319 bool bswap_code;
321 #if defined(CONFIG_USER_ONLY)
322 /* For usermode syscall translation. */
323 int eabi;
324 #endif
326 CPU_COMMON
328 /* These fields after the common ones so they are preserved on reset. */
330 /* Internal CPU feature flags. */
331 uint64_t features;
333 void *nvic;
334 const struct arm_boot_info *boot_info;
335 } CPUARMState;
337 #include "cpu-qom.h"
339 ARMCPU *cpu_arm_init(const char *cpu_model);
340 int cpu_arm_exec(CPUARMState *s);
341 uint32_t do_arm_semihosting(CPUARMState *env);
343 static inline bool is_a64(CPUARMState *env)
345 return env->aarch64;
348 /* you can call this signal handler from your SIGBUS and SIGSEGV
349 signal handlers to inform the virtual CPU of exceptions. non zero
350 is returned if the signal was handled by the virtual CPU. */
351 int cpu_arm_signal_handler(int host_signum, void *pinfo,
352 void *puc);
353 int arm_cpu_handle_mmu_fault(CPUState *cpu, vaddr address, int rw,
354 int mmu_idx);
357 * pmccntr_sync
358 * @env: CPUARMState
360 * Synchronises the counter in the PMCCNTR. This must always be called twice,
361 * once before any action that might affect the timer and again afterwards.
362 * The function is used to swap the state of the register if required.
363 * This only happens when not in user mode (!CONFIG_USER_ONLY)
365 void pmccntr_sync(CPUARMState *env);
367 /* SCTLR bit meanings. Several bits have been reused in newer
368 * versions of the architecture; in that case we define constants
369 * for both old and new bit meanings. Code which tests against those
370 * bits should probably check or otherwise arrange that the CPU
371 * is the architectural version it expects.
373 #define SCTLR_M (1U << 0)
374 #define SCTLR_A (1U << 1)
375 #define SCTLR_C (1U << 2)
376 #define SCTLR_W (1U << 3) /* up to v6; RAO in v7 */
377 #define SCTLR_SA (1U << 3)
378 #define SCTLR_P (1U << 4) /* up to v5; RAO in v6 and v7 */
379 #define SCTLR_SA0 (1U << 4) /* v8 onward, AArch64 only */
380 #define SCTLR_D (1U << 5) /* up to v5; RAO in v6 */
381 #define SCTLR_CP15BEN (1U << 5) /* v7 onward */
382 #define SCTLR_L (1U << 6) /* up to v5; RAO in v6 and v7; RAZ in v8 */
383 #define SCTLR_B (1U << 7) /* up to v6; RAZ in v7 */
384 #define SCTLR_ITD (1U << 7) /* v8 onward */
385 #define SCTLR_S (1U << 8) /* up to v6; RAZ in v7 */
386 #define SCTLR_SED (1U << 8) /* v8 onward */
387 #define SCTLR_R (1U << 9) /* up to v6; RAZ in v7 */
388 #define SCTLR_UMA (1U << 9) /* v8 onward, AArch64 only */
389 #define SCTLR_F (1U << 10) /* up to v6 */
390 #define SCTLR_SW (1U << 10) /* v7 onward */
391 #define SCTLR_Z (1U << 11)
392 #define SCTLR_I (1U << 12)
393 #define SCTLR_V (1U << 13)
394 #define SCTLR_RR (1U << 14) /* up to v7 */
395 #define SCTLR_DZE (1U << 14) /* v8 onward, AArch64 only */
396 #define SCTLR_L4 (1U << 15) /* up to v6; RAZ in v7 */
397 #define SCTLR_UCT (1U << 15) /* v8 onward, AArch64 only */
398 #define SCTLR_DT (1U << 16) /* up to ??, RAO in v6 and v7 */
399 #define SCTLR_nTWI (1U << 16) /* v8 onward */
400 #define SCTLR_HA (1U << 17)
401 #define SCTLR_IT (1U << 18) /* up to ??, RAO in v6 and v7 */
402 #define SCTLR_nTWE (1U << 18) /* v8 onward */
403 #define SCTLR_WXN (1U << 19)
404 #define SCTLR_ST (1U << 20) /* up to ??, RAZ in v6 */
405 #define SCTLR_UWXN (1U << 20) /* v7 onward */
406 #define SCTLR_FI (1U << 21)
407 #define SCTLR_U (1U << 22)
408 #define SCTLR_XP (1U << 23) /* up to v6; v7 onward RAO */
409 #define SCTLR_VE (1U << 24) /* up to v7 */
410 #define SCTLR_E0E (1U << 24) /* v8 onward, AArch64 only */
411 #define SCTLR_EE (1U << 25)
412 #define SCTLR_L2 (1U << 26) /* up to v6, RAZ in v7 */
413 #define SCTLR_UCI (1U << 26) /* v8 onward, AArch64 only */
414 #define SCTLR_NMFI (1U << 27)
415 #define SCTLR_TRE (1U << 28)
416 #define SCTLR_AFE (1U << 29)
417 #define SCTLR_TE (1U << 30)
419 #define CPSR_M (0x1fU)
420 #define CPSR_T (1U << 5)
421 #define CPSR_F (1U << 6)
422 #define CPSR_I (1U << 7)
423 #define CPSR_A (1U << 8)
424 #define CPSR_E (1U << 9)
425 #define CPSR_IT_2_7 (0xfc00U)
426 #define CPSR_GE (0xfU << 16)
427 #define CPSR_IL (1U << 20)
428 /* Note that the RESERVED bits include bit 21, which is PSTATE_SS in
429 * an AArch64 SPSR but RES0 in AArch32 SPSR and CPSR. In QEMU we use
430 * env->uncached_cpsr bit 21 to store PSTATE.SS when executing in AArch32,
431 * where it is live state but not accessible to the AArch32 code.
433 #define CPSR_RESERVED (0x7U << 21)
434 #define CPSR_J (1U << 24)
435 #define CPSR_IT_0_1 (3U << 25)
436 #define CPSR_Q (1U << 27)
437 #define CPSR_V (1U << 28)
438 #define CPSR_C (1U << 29)
439 #define CPSR_Z (1U << 30)
440 #define CPSR_N (1U << 31)
441 #define CPSR_NZCV (CPSR_N | CPSR_Z | CPSR_C | CPSR_V)
442 #define CPSR_AIF (CPSR_A | CPSR_I | CPSR_F)
444 #define CPSR_IT (CPSR_IT_0_1 | CPSR_IT_2_7)
445 #define CACHED_CPSR_BITS (CPSR_T | CPSR_AIF | CPSR_GE | CPSR_IT | CPSR_Q \
446 | CPSR_NZCV)
447 /* Bits writable in user mode. */
448 #define CPSR_USER (CPSR_NZCV | CPSR_Q | CPSR_GE)
449 /* Execution state bits. MRS read as zero, MSR writes ignored. */
450 #define CPSR_EXEC (CPSR_T | CPSR_IT | CPSR_J | CPSR_IL)
451 /* Mask of bits which may be set by exception return copying them from SPSR */
452 #define CPSR_ERET_MASK (~CPSR_RESERVED)
454 #define TTBCR_N (7U << 0) /* TTBCR.EAE==0 */
455 #define TTBCR_T0SZ (7U << 0) /* TTBCR.EAE==1 */
456 #define TTBCR_PD0 (1U << 4)
457 #define TTBCR_PD1 (1U << 5)
458 #define TTBCR_EPD0 (1U << 7)
459 #define TTBCR_IRGN0 (3U << 8)
460 #define TTBCR_ORGN0 (3U << 10)
461 #define TTBCR_SH0 (3U << 12)
462 #define TTBCR_T1SZ (3U << 16)
463 #define TTBCR_A1 (1U << 22)
464 #define TTBCR_EPD1 (1U << 23)
465 #define TTBCR_IRGN1 (3U << 24)
466 #define TTBCR_ORGN1 (3U << 26)
467 #define TTBCR_SH1 (1U << 28)
468 #define TTBCR_EAE (1U << 31)
470 /* Bit definitions for ARMv8 SPSR (PSTATE) format.
471 * Only these are valid when in AArch64 mode; in
472 * AArch32 mode SPSRs are basically CPSR-format.
474 #define PSTATE_SP (1U)
475 #define PSTATE_M (0xFU)
476 #define PSTATE_nRW (1U << 4)
477 #define PSTATE_F (1U << 6)
478 #define PSTATE_I (1U << 7)
479 #define PSTATE_A (1U << 8)
480 #define PSTATE_D (1U << 9)
481 #define PSTATE_IL (1U << 20)
482 #define PSTATE_SS (1U << 21)
483 #define PSTATE_V (1U << 28)
484 #define PSTATE_C (1U << 29)
485 #define PSTATE_Z (1U << 30)
486 #define PSTATE_N (1U << 31)
487 #define PSTATE_NZCV (PSTATE_N | PSTATE_Z | PSTATE_C | PSTATE_V)
488 #define PSTATE_DAIF (PSTATE_D | PSTATE_A | PSTATE_I | PSTATE_F)
489 #define CACHED_PSTATE_BITS (PSTATE_NZCV | PSTATE_DAIF)
490 /* Mode values for AArch64 */
491 #define PSTATE_MODE_EL3h 13
492 #define PSTATE_MODE_EL3t 12
493 #define PSTATE_MODE_EL2h 9
494 #define PSTATE_MODE_EL2t 8
495 #define PSTATE_MODE_EL1h 5
496 #define PSTATE_MODE_EL1t 4
497 #define PSTATE_MODE_EL0t 0
499 /* Return the current PSTATE value. For the moment we don't support 32<->64 bit
500 * interprocessing, so we don't attempt to sync with the cpsr state used by
501 * the 32 bit decoder.
503 static inline uint32_t pstate_read(CPUARMState *env)
505 int ZF;
507 ZF = (env->ZF == 0);
508 return (env->NF & 0x80000000) | (ZF << 30)
509 | (env->CF << 29) | ((env->VF & 0x80000000) >> 3)
510 | env->pstate | env->daif;
513 static inline void pstate_write(CPUARMState *env, uint32_t val)
515 env->ZF = (~val) & PSTATE_Z;
516 env->NF = val;
517 env->CF = (val >> 29) & 1;
518 env->VF = (val << 3) & 0x80000000;
519 env->daif = val & PSTATE_DAIF;
520 env->pstate = val & ~CACHED_PSTATE_BITS;
523 /* Return the current CPSR value. */
524 uint32_t cpsr_read(CPUARMState *env);
525 /* Set the CPSR. Note that some bits of mask must be all-set or all-clear. */
526 void cpsr_write(CPUARMState *env, uint32_t val, uint32_t mask);
528 /* Return the current xPSR value. */
529 static inline uint32_t xpsr_read(CPUARMState *env)
531 int ZF;
532 ZF = (env->ZF == 0);
533 return (env->NF & 0x80000000) | (ZF << 30)
534 | (env->CF << 29) | ((env->VF & 0x80000000) >> 3) | (env->QF << 27)
535 | (env->thumb << 24) | ((env->condexec_bits & 3) << 25)
536 | ((env->condexec_bits & 0xfc) << 8)
537 | env->v7m.exception;
540 /* Set the xPSR. Note that some bits of mask must be all-set or all-clear. */
541 static inline void xpsr_write(CPUARMState *env, uint32_t val, uint32_t mask)
543 if (mask & CPSR_NZCV) {
544 env->ZF = (~val) & CPSR_Z;
545 env->NF = val;
546 env->CF = (val >> 29) & 1;
547 env->VF = (val << 3) & 0x80000000;
549 if (mask & CPSR_Q)
550 env->QF = ((val & CPSR_Q) != 0);
551 if (mask & (1 << 24))
552 env->thumb = ((val & (1 << 24)) != 0);
553 if (mask & CPSR_IT_0_1) {
554 env->condexec_bits &= ~3;
555 env->condexec_bits |= (val >> 25) & 3;
557 if (mask & CPSR_IT_2_7) {
558 env->condexec_bits &= 3;
559 env->condexec_bits |= (val >> 8) & 0xfc;
561 if (mask & 0x1ff) {
562 env->v7m.exception = val & 0x1ff;
566 /* Return the current FPSCR value. */
567 uint32_t vfp_get_fpscr(CPUARMState *env);
568 void vfp_set_fpscr(CPUARMState *env, uint32_t val);
570 /* For A64 the FPSCR is split into two logically distinct registers,
571 * FPCR and FPSR. However since they still use non-overlapping bits
572 * we store the underlying state in fpscr and just mask on read/write.
574 #define FPSR_MASK 0xf800009f
575 #define FPCR_MASK 0x07f79f00
576 static inline uint32_t vfp_get_fpsr(CPUARMState *env)
578 return vfp_get_fpscr(env) & FPSR_MASK;
581 static inline void vfp_set_fpsr(CPUARMState *env, uint32_t val)
583 uint32_t new_fpscr = (vfp_get_fpscr(env) & ~FPSR_MASK) | (val & FPSR_MASK);
584 vfp_set_fpscr(env, new_fpscr);
587 static inline uint32_t vfp_get_fpcr(CPUARMState *env)
589 return vfp_get_fpscr(env) & FPCR_MASK;
592 static inline void vfp_set_fpcr(CPUARMState *env, uint32_t val)
594 uint32_t new_fpscr = (vfp_get_fpscr(env) & ~FPCR_MASK) | (val & FPCR_MASK);
595 vfp_set_fpscr(env, new_fpscr);
598 enum arm_cpu_mode {
599 ARM_CPU_MODE_USR = 0x10,
600 ARM_CPU_MODE_FIQ = 0x11,
601 ARM_CPU_MODE_IRQ = 0x12,
602 ARM_CPU_MODE_SVC = 0x13,
603 ARM_CPU_MODE_MON = 0x16,
604 ARM_CPU_MODE_ABT = 0x17,
605 ARM_CPU_MODE_HYP = 0x1a,
606 ARM_CPU_MODE_UND = 0x1b,
607 ARM_CPU_MODE_SYS = 0x1f
610 /* VFP system registers. */
611 #define ARM_VFP_FPSID 0
612 #define ARM_VFP_FPSCR 1
613 #define ARM_VFP_MVFR2 5
614 #define ARM_VFP_MVFR1 6
615 #define ARM_VFP_MVFR0 7
616 #define ARM_VFP_FPEXC 8
617 #define ARM_VFP_FPINST 9
618 #define ARM_VFP_FPINST2 10
620 /* iwMMXt coprocessor control registers. */
621 #define ARM_IWMMXT_wCID 0
622 #define ARM_IWMMXT_wCon 1
623 #define ARM_IWMMXT_wCSSF 2
624 #define ARM_IWMMXT_wCASF 3
625 #define ARM_IWMMXT_wCGR0 8
626 #define ARM_IWMMXT_wCGR1 9
627 #define ARM_IWMMXT_wCGR2 10
628 #define ARM_IWMMXT_wCGR3 11
630 /* If adding a feature bit which corresponds to a Linux ELF
631 * HWCAP bit, remember to update the feature-bit-to-hwcap
632 * mapping in linux-user/elfload.c:get_elf_hwcap().
634 enum arm_features {
635 ARM_FEATURE_VFP,
636 ARM_FEATURE_AUXCR, /* ARM1026 Auxiliary control register. */
637 ARM_FEATURE_XSCALE, /* Intel XScale extensions. */
638 ARM_FEATURE_IWMMXT, /* Intel iwMMXt extension. */
639 ARM_FEATURE_V6,
640 ARM_FEATURE_V6K,
641 ARM_FEATURE_V7,
642 ARM_FEATURE_THUMB2,
643 ARM_FEATURE_MPU, /* Only has Memory Protection Unit, not full MMU. */
644 ARM_FEATURE_VFP3,
645 ARM_FEATURE_VFP_FP16,
646 ARM_FEATURE_NEON,
647 ARM_FEATURE_THUMB_DIV, /* divide supported in Thumb encoding */
648 ARM_FEATURE_M, /* Microcontroller profile. */
649 ARM_FEATURE_OMAPCP, /* OMAP specific CP15 ops handling. */
650 ARM_FEATURE_THUMB2EE,
651 ARM_FEATURE_V7MP, /* v7 Multiprocessing Extensions */
652 ARM_FEATURE_V4T,
653 ARM_FEATURE_V5,
654 ARM_FEATURE_STRONGARM,
655 ARM_FEATURE_VAPA, /* cp15 VA to PA lookups */
656 ARM_FEATURE_ARM_DIV, /* divide supported in ARM encoding */
657 ARM_FEATURE_VFP4, /* VFPv4 (implies that NEON is v2) */
658 ARM_FEATURE_GENERIC_TIMER,
659 ARM_FEATURE_MVFR, /* Media and VFP Feature Registers 0 and 1 */
660 ARM_FEATURE_DUMMY_C15_REGS, /* RAZ/WI all of cp15 crn=15 */
661 ARM_FEATURE_CACHE_TEST_CLEAN, /* 926/1026 style test-and-clean ops */
662 ARM_FEATURE_CACHE_DIRTY_REG, /* 1136/1176 cache dirty status register */
663 ARM_FEATURE_CACHE_BLOCK_OPS, /* v6 optional cache block operations */
664 ARM_FEATURE_MPIDR, /* has cp15 MPIDR */
665 ARM_FEATURE_PXN, /* has Privileged Execute Never bit */
666 ARM_FEATURE_LPAE, /* has Large Physical Address Extension */
667 ARM_FEATURE_V8,
668 ARM_FEATURE_AARCH64, /* supports 64 bit mode */
669 ARM_FEATURE_V8_AES, /* implements AES part of v8 Crypto Extensions */
670 ARM_FEATURE_CBAR, /* has cp15 CBAR */
671 ARM_FEATURE_CRC, /* ARMv8 CRC instructions */
672 ARM_FEATURE_CBAR_RO, /* has cp15 CBAR and it is read-only */
673 ARM_FEATURE_EL2, /* has EL2 Virtualization support */
674 ARM_FEATURE_EL3, /* has EL3 Secure monitor support */
675 ARM_FEATURE_V8_SHA1, /* implements SHA1 part of v8 Crypto Extensions */
676 ARM_FEATURE_V8_SHA256, /* implements SHA256 part of v8 Crypto Extensions */
677 ARM_FEATURE_V8_PMULL, /* implements PMULL part of v8 Crypto Extensions */
680 static inline int arm_feature(CPUARMState *env, int feature)
682 return (env->features & (1ULL << feature)) != 0;
685 /* Return true if the specified exception level is running in AArch64 state. */
686 static inline bool arm_el_is_aa64(CPUARMState *env, int el)
688 /* We don't currently support EL2 or EL3, and this isn't valid for EL0
689 * (if we're in EL0, is_a64() is what you want, and if we're not in EL0
690 * then the state of EL0 isn't well defined.)
692 assert(el == 1);
693 /* AArch64-capable CPUs always run with EL1 in AArch64 mode. This
694 * is a QEMU-imposed simplification which we may wish to change later.
695 * If we in future support EL2 and/or EL3, then the state of lower
696 * exception levels is controlled by the HCR.RW and SCR.RW bits.
698 return arm_feature(env, ARM_FEATURE_AARCH64);
701 void arm_cpu_list(FILE *f, fprintf_function cpu_fprintf);
703 /* Interface between CPU and Interrupt controller. */
704 void armv7m_nvic_set_pending(void *opaque, int irq);
705 int armv7m_nvic_acknowledge_irq(void *opaque);
706 void armv7m_nvic_complete_irq(void *opaque, int irq);
708 /* Interface for defining coprocessor registers.
709 * Registers are defined in tables of arm_cp_reginfo structs
710 * which are passed to define_arm_cp_regs().
713 /* When looking up a coprocessor register we look for it
714 * via an integer which encodes all of:
715 * coprocessor number
716 * Crn, Crm, opc1, opc2 fields
717 * 32 or 64 bit register (ie is it accessed via MRC/MCR
718 * or via MRRC/MCRR?)
719 * We allow 4 bits for opc1 because MRRC/MCRR have a 4 bit field.
720 * (In this case crn and opc2 should be zero.)
721 * For AArch64, there is no 32/64 bit size distinction;
722 * instead all registers have a 2 bit op0, 3 bit op1 and op2,
723 * and 4 bit CRn and CRm. The encoding patterns are chosen
724 * to be easy to convert to and from the KVM encodings, and also
725 * so that the hashtable can contain both AArch32 and AArch64
726 * registers (to allow for interprocessing where we might run
727 * 32 bit code on a 64 bit core).
729 /* This bit is private to our hashtable cpreg; in KVM register
730 * IDs the AArch64/32 distinction is the KVM_REG_ARM/ARM64
731 * in the upper bits of the 64 bit ID.
733 #define CP_REG_AA64_SHIFT 28
734 #define CP_REG_AA64_MASK (1 << CP_REG_AA64_SHIFT)
736 #define ENCODE_CP_REG(cp, is64, crn, crm, opc1, opc2) \
737 (((cp) << 16) | ((is64) << 15) | ((crn) << 11) | \
738 ((crm) << 7) | ((opc1) << 3) | (opc2))
740 #define ENCODE_AA64_CP_REG(cp, crn, crm, op0, op1, op2) \
741 (CP_REG_AA64_MASK | \
742 ((cp) << CP_REG_ARM_COPROC_SHIFT) | \
743 ((op0) << CP_REG_ARM64_SYSREG_OP0_SHIFT) | \
744 ((op1) << CP_REG_ARM64_SYSREG_OP1_SHIFT) | \
745 ((crn) << CP_REG_ARM64_SYSREG_CRN_SHIFT) | \
746 ((crm) << CP_REG_ARM64_SYSREG_CRM_SHIFT) | \
747 ((op2) << CP_REG_ARM64_SYSREG_OP2_SHIFT))
749 /* Convert a full 64 bit KVM register ID to the truncated 32 bit
750 * version used as a key for the coprocessor register hashtable
752 static inline uint32_t kvm_to_cpreg_id(uint64_t kvmid)
754 uint32_t cpregid = kvmid;
755 if ((kvmid & CP_REG_ARCH_MASK) == CP_REG_ARM64) {
756 cpregid |= CP_REG_AA64_MASK;
757 } else if ((kvmid & CP_REG_SIZE_MASK) == CP_REG_SIZE_U64) {
758 cpregid |= (1 << 15);
760 return cpregid;
763 /* Convert a truncated 32 bit hashtable key into the full
764 * 64 bit KVM register ID.
766 static inline uint64_t cpreg_to_kvm_id(uint32_t cpregid)
768 uint64_t kvmid;
770 if (cpregid & CP_REG_AA64_MASK) {
771 kvmid = cpregid & ~CP_REG_AA64_MASK;
772 kvmid |= CP_REG_SIZE_U64 | CP_REG_ARM64;
773 } else {
774 kvmid = cpregid & ~(1 << 15);
775 if (cpregid & (1 << 15)) {
776 kvmid |= CP_REG_SIZE_U64 | CP_REG_ARM;
777 } else {
778 kvmid |= CP_REG_SIZE_U32 | CP_REG_ARM;
781 return kvmid;
784 /* ARMCPRegInfo type field bits. If the SPECIAL bit is set this is a
785 * special-behaviour cp reg and bits [15..8] indicate what behaviour
786 * it has. Otherwise it is a simple cp reg, where CONST indicates that
787 * TCG can assume the value to be constant (ie load at translate time)
788 * and 64BIT indicates a 64 bit wide coprocessor register. SUPPRESS_TB_END
789 * indicates that the TB should not be ended after a write to this register
790 * (the default is that the TB ends after cp writes). OVERRIDE permits
791 * a register definition to override a previous definition for the
792 * same (cp, is64, crn, crm, opc1, opc2) tuple: either the new or the
793 * old must have the OVERRIDE bit set.
794 * NO_MIGRATE indicates that this register should be ignored for migration;
795 * (eg because any state is accessed via some other coprocessor register).
796 * IO indicates that this register does I/O and therefore its accesses
797 * need to be surrounded by gen_io_start()/gen_io_end(). In particular,
798 * registers which implement clocks or timers require this.
800 #define ARM_CP_SPECIAL 1
801 #define ARM_CP_CONST 2
802 #define ARM_CP_64BIT 4
803 #define ARM_CP_SUPPRESS_TB_END 8
804 #define ARM_CP_OVERRIDE 16
805 #define ARM_CP_NO_MIGRATE 32
806 #define ARM_CP_IO 64
807 #define ARM_CP_NOP (ARM_CP_SPECIAL | (1 << 8))
808 #define ARM_CP_WFI (ARM_CP_SPECIAL | (2 << 8))
809 #define ARM_CP_NZCV (ARM_CP_SPECIAL | (3 << 8))
810 #define ARM_CP_CURRENTEL (ARM_CP_SPECIAL | (4 << 8))
811 #define ARM_CP_DC_ZVA (ARM_CP_SPECIAL | (5 << 8))
812 #define ARM_LAST_SPECIAL ARM_CP_DC_ZVA
813 /* Used only as a terminator for ARMCPRegInfo lists */
814 #define ARM_CP_SENTINEL 0xffff
815 /* Mask of only the flag bits in a type field */
816 #define ARM_CP_FLAG_MASK 0x7f
818 /* Valid values for ARMCPRegInfo state field, indicating which of
819 * the AArch32 and AArch64 execution states this register is visible in.
820 * If the reginfo doesn't explicitly specify then it is AArch32 only.
821 * If the reginfo is declared to be visible in both states then a second
822 * reginfo is synthesised for the AArch32 view of the AArch64 register,
823 * such that the AArch32 view is the lower 32 bits of the AArch64 one.
824 * Note that we rely on the values of these enums as we iterate through
825 * the various states in some places.
827 enum {
828 ARM_CP_STATE_AA32 = 0,
829 ARM_CP_STATE_AA64 = 1,
830 ARM_CP_STATE_BOTH = 2,
833 /* Return true if cptype is a valid type field. This is used to try to
834 * catch errors where the sentinel has been accidentally left off the end
835 * of a list of registers.
837 static inline bool cptype_valid(int cptype)
839 return ((cptype & ~ARM_CP_FLAG_MASK) == 0)
840 || ((cptype & ARM_CP_SPECIAL) &&
841 ((cptype & ~ARM_CP_FLAG_MASK) <= ARM_LAST_SPECIAL));
844 /* Access rights:
845 * We define bits for Read and Write access for what rev C of the v7-AR ARM ARM
846 * defines as PL0 (user), PL1 (fiq/irq/svc/abt/und/sys, ie privileged), and
847 * PL2 (hyp). The other level which has Read and Write bits is Secure PL1
848 * (ie any of the privileged modes in Secure state, or Monitor mode).
849 * If a register is accessible in one privilege level it's always accessible
850 * in higher privilege levels too. Since "Secure PL1" also follows this rule
851 * (ie anything visible in PL2 is visible in S-PL1, some things are only
852 * visible in S-PL1) but "Secure PL1" is a bit of a mouthful, we bend the
853 * terminology a little and call this PL3.
854 * In AArch64 things are somewhat simpler as the PLx bits line up exactly
855 * with the ELx exception levels.
857 * If access permissions for a register are more complex than can be
858 * described with these bits, then use a laxer set of restrictions, and
859 * do the more restrictive/complex check inside a helper function.
861 #define PL3_R 0x80
862 #define PL3_W 0x40
863 #define PL2_R (0x20 | PL3_R)
864 #define PL2_W (0x10 | PL3_W)
865 #define PL1_R (0x08 | PL2_R)
866 #define PL1_W (0x04 | PL2_W)
867 #define PL0_R (0x02 | PL1_R)
868 #define PL0_W (0x01 | PL1_W)
870 #define PL3_RW (PL3_R | PL3_W)
871 #define PL2_RW (PL2_R | PL2_W)
872 #define PL1_RW (PL1_R | PL1_W)
873 #define PL0_RW (PL0_R | PL0_W)
875 static inline int arm_current_pl(CPUARMState *env)
877 if (env->aarch64) {
878 return extract32(env->pstate, 2, 2);
881 if ((env->uncached_cpsr & 0x1f) == ARM_CPU_MODE_USR) {
882 return 0;
884 /* We don't currently implement the Virtualization or TrustZone
885 * extensions, so PL2 and PL3 don't exist for us.
887 return 1;
890 typedef struct ARMCPRegInfo ARMCPRegInfo;
892 typedef enum CPAccessResult {
893 /* Access is permitted */
894 CP_ACCESS_OK = 0,
895 /* Access fails due to a configurable trap or enable which would
896 * result in a categorized exception syndrome giving information about
897 * the failing instruction (ie syndrome category 0x3, 0x4, 0x5, 0x6,
898 * 0xc or 0x18).
900 CP_ACCESS_TRAP = 1,
901 /* Access fails and results in an exception syndrome 0x0 ("uncategorized").
902 * Note that this is not a catch-all case -- the set of cases which may
903 * result in this failure is specifically defined by the architecture.
905 CP_ACCESS_TRAP_UNCATEGORIZED = 2,
906 } CPAccessResult;
908 /* Access functions for coprocessor registers. These cannot fail and
909 * may not raise exceptions.
911 typedef uint64_t CPReadFn(CPUARMState *env, const ARMCPRegInfo *opaque);
912 typedef void CPWriteFn(CPUARMState *env, const ARMCPRegInfo *opaque,
913 uint64_t value);
914 /* Access permission check functions for coprocessor registers. */
915 typedef CPAccessResult CPAccessFn(CPUARMState *env, const ARMCPRegInfo *opaque);
916 /* Hook function for register reset */
917 typedef void CPResetFn(CPUARMState *env, const ARMCPRegInfo *opaque);
919 #define CP_ANY 0xff
921 /* Definition of an ARM coprocessor register */
922 struct ARMCPRegInfo {
923 /* Name of register (useful mainly for debugging, need not be unique) */
924 const char *name;
925 /* Location of register: coprocessor number and (crn,crm,opc1,opc2)
926 * tuple. Any of crm, opc1 and opc2 may be CP_ANY to indicate a
927 * 'wildcard' field -- any value of that field in the MRC/MCR insn
928 * will be decoded to this register. The register read and write
929 * callbacks will be passed an ARMCPRegInfo with the crn/crm/opc1/opc2
930 * used by the program, so it is possible to register a wildcard and
931 * then behave differently on read/write if necessary.
932 * For 64 bit registers, only crm and opc1 are relevant; crn and opc2
933 * must both be zero.
934 * For AArch64-visible registers, opc0 is also used.
935 * Since there are no "coprocessors" in AArch64, cp is purely used as a
936 * way to distinguish (for KVM's benefit) guest-visible system registers
937 * from demuxed ones provided to preserve the "no side effects on
938 * KVM register read/write from QEMU" semantics. cp==0x13 is guest
939 * visible (to match KVM's encoding); cp==0 will be converted to
940 * cp==0x13 when the ARMCPRegInfo is registered, for convenience.
942 uint8_t cp;
943 uint8_t crn;
944 uint8_t crm;
945 uint8_t opc0;
946 uint8_t opc1;
947 uint8_t opc2;
948 /* Execution state in which this register is visible: ARM_CP_STATE_* */
949 int state;
950 /* Register type: ARM_CP_* bits/values */
951 int type;
952 /* Access rights: PL*_[RW] */
953 int access;
954 /* The opaque pointer passed to define_arm_cp_regs_with_opaque() when
955 * this register was defined: can be used to hand data through to the
956 * register read/write functions, since they are passed the ARMCPRegInfo*.
958 void *opaque;
959 /* Value of this register, if it is ARM_CP_CONST. Otherwise, if
960 * fieldoffset is non-zero, the reset value of the register.
962 uint64_t resetvalue;
963 /* Offset of the field in CPUARMState for this register. This is not
964 * needed if either:
965 * 1. type is ARM_CP_CONST or one of the ARM_CP_SPECIALs
966 * 2. both readfn and writefn are specified
968 ptrdiff_t fieldoffset; /* offsetof(CPUARMState, field) */
969 /* Function for making any access checks for this register in addition to
970 * those specified by the 'access' permissions bits. If NULL, no extra
971 * checks required. The access check is performed at runtime, not at
972 * translate time.
974 CPAccessFn *accessfn;
975 /* Function for handling reads of this register. If NULL, then reads
976 * will be done by loading from the offset into CPUARMState specified
977 * by fieldoffset.
979 CPReadFn *readfn;
980 /* Function for handling writes of this register. If NULL, then writes
981 * will be done by writing to the offset into CPUARMState specified
982 * by fieldoffset.
984 CPWriteFn *writefn;
985 /* Function for doing a "raw" read; used when we need to copy
986 * coprocessor state to the kernel for KVM or out for
987 * migration. This only needs to be provided if there is also a
988 * readfn and it has side effects (for instance clear-on-read bits).
990 CPReadFn *raw_readfn;
991 /* Function for doing a "raw" write; used when we need to copy KVM
992 * kernel coprocessor state into userspace, or for inbound
993 * migration. This only needs to be provided if there is also a
994 * writefn and it masks out "unwritable" bits or has write-one-to-clear
995 * or similar behaviour.
997 CPWriteFn *raw_writefn;
998 /* Function for resetting the register. If NULL, then reset will be done
999 * by writing resetvalue to the field specified in fieldoffset. If
1000 * fieldoffset is 0 then no reset will be done.
1002 CPResetFn *resetfn;
1005 /* Macros which are lvalues for the field in CPUARMState for the
1006 * ARMCPRegInfo *ri.
1008 #define CPREG_FIELD32(env, ri) \
1009 (*(uint32_t *)((char *)(env) + (ri)->fieldoffset))
1010 #define CPREG_FIELD64(env, ri) \
1011 (*(uint64_t *)((char *)(env) + (ri)->fieldoffset))
1013 #define REGINFO_SENTINEL { .type = ARM_CP_SENTINEL }
1015 void define_arm_cp_regs_with_opaque(ARMCPU *cpu,
1016 const ARMCPRegInfo *regs, void *opaque);
1017 void define_one_arm_cp_reg_with_opaque(ARMCPU *cpu,
1018 const ARMCPRegInfo *regs, void *opaque);
1019 static inline void define_arm_cp_regs(ARMCPU *cpu, const ARMCPRegInfo *regs)
1021 define_arm_cp_regs_with_opaque(cpu, regs, 0);
1023 static inline void define_one_arm_cp_reg(ARMCPU *cpu, const ARMCPRegInfo *regs)
1025 define_one_arm_cp_reg_with_opaque(cpu, regs, 0);
1027 const ARMCPRegInfo *get_arm_cp_reginfo(GHashTable *cpregs, uint32_t encoded_cp);
1029 /* CPWriteFn that can be used to implement writes-ignored behaviour */
1030 void arm_cp_write_ignore(CPUARMState *env, const ARMCPRegInfo *ri,
1031 uint64_t value);
1032 /* CPReadFn that can be used for read-as-zero behaviour */
1033 uint64_t arm_cp_read_zero(CPUARMState *env, const ARMCPRegInfo *ri);
1035 /* CPResetFn that does nothing, for use if no reset is required even
1036 * if fieldoffset is non zero.
1038 void arm_cp_reset_ignore(CPUARMState *env, const ARMCPRegInfo *opaque);
1040 /* Return true if this reginfo struct's field in the cpu state struct
1041 * is 64 bits wide.
1043 static inline bool cpreg_field_is_64bit(const ARMCPRegInfo *ri)
1045 return (ri->state == ARM_CP_STATE_AA64) || (ri->type & ARM_CP_64BIT);
1048 static inline bool cp_access_ok(int current_pl,
1049 const ARMCPRegInfo *ri, int isread)
1051 return (ri->access >> ((current_pl * 2) + isread)) & 1;
1055 * write_list_to_cpustate
1056 * @cpu: ARMCPU
1058 * For each register listed in the ARMCPU cpreg_indexes list, write
1059 * its value from the cpreg_values list into the ARMCPUState structure.
1060 * This updates TCG's working data structures from KVM data or
1061 * from incoming migration state.
1063 * Returns: true if all register values were updated correctly,
1064 * false if some register was unknown or could not be written.
1065 * Note that we do not stop early on failure -- we will attempt
1066 * writing all registers in the list.
1068 bool write_list_to_cpustate(ARMCPU *cpu);
1071 * write_cpustate_to_list:
1072 * @cpu: ARMCPU
1074 * For each register listed in the ARMCPU cpreg_indexes list, write
1075 * its value from the ARMCPUState structure into the cpreg_values list.
1076 * This is used to copy info from TCG's working data structures into
1077 * KVM or for outbound migration.
1079 * Returns: true if all register values were read correctly,
1080 * false if some register was unknown or could not be read.
1081 * Note that we do not stop early on failure -- we will attempt
1082 * reading all registers in the list.
1084 bool write_cpustate_to_list(ARMCPU *cpu);
1086 /* Does the core conform to the the "MicroController" profile. e.g. Cortex-M3.
1087 Note the M in older cores (eg. ARM7TDMI) stands for Multiply. These are
1088 conventional cores (ie. Application or Realtime profile). */
1090 #define IS_M(env) arm_feature(env, ARM_FEATURE_M)
1092 #define ARM_CPUID_TI915T 0x54029152
1093 #define ARM_CPUID_TI925T 0x54029252
1095 #if defined(CONFIG_USER_ONLY)
1096 #define TARGET_PAGE_BITS 12
1097 #else
1098 /* The ARM MMU allows 1k pages. */
1099 /* ??? Linux doesn't actually use these, and they're deprecated in recent
1100 architecture revisions. Maybe a configure option to disable them. */
1101 #define TARGET_PAGE_BITS 10
1102 #endif
1104 #if defined(TARGET_AARCH64)
1105 # define TARGET_PHYS_ADDR_SPACE_BITS 48
1106 # define TARGET_VIRT_ADDR_SPACE_BITS 64
1107 #else
1108 # define TARGET_PHYS_ADDR_SPACE_BITS 40
1109 # define TARGET_VIRT_ADDR_SPACE_BITS 32
1110 #endif
1112 static inline CPUARMState *cpu_init(const char *cpu_model)
1114 ARMCPU *cpu = cpu_arm_init(cpu_model);
1115 if (cpu) {
1116 return &cpu->env;
1118 return NULL;
1121 #define cpu_exec cpu_arm_exec
1122 #define cpu_gen_code cpu_arm_gen_code
1123 #define cpu_signal_handler cpu_arm_signal_handler
1124 #define cpu_list arm_cpu_list
1126 /* MMU modes definitions */
1127 #define MMU_MODE0_SUFFIX _user
1128 #define MMU_MODE1_SUFFIX _kernel
1129 #define MMU_USER_IDX 0
1130 static inline int cpu_mmu_index (CPUARMState *env)
1132 return arm_current_pl(env);
1135 /* Return the Exception Level targeted by debug exceptions;
1136 * currently always EL1 since we don't implement EL2 or EL3.
1138 static inline int arm_debug_target_el(CPUARMState *env)
1140 return 1;
1143 static inline bool aa64_generate_debug_exceptions(CPUARMState *env)
1145 if (arm_current_pl(env) == arm_debug_target_el(env)) {
1146 if ((extract32(env->cp15.mdscr_el1, 13, 1) == 0)
1147 || (env->daif & PSTATE_D)) {
1148 return false;
1151 return true;
1154 static inline bool aa32_generate_debug_exceptions(CPUARMState *env)
1156 if (arm_current_pl(env) == 0 && arm_el_is_aa64(env, 1)) {
1157 return aa64_generate_debug_exceptions(env);
1159 return arm_current_pl(env) != 2;
1162 /* Return true if debugging exceptions are currently enabled.
1163 * This corresponds to what in ARM ARM pseudocode would be
1164 * if UsingAArch32() then
1165 * return AArch32.GenerateDebugExceptions()
1166 * else
1167 * return AArch64.GenerateDebugExceptions()
1168 * We choose to push the if() down into this function for clarity,
1169 * since the pseudocode has it at all callsites except for the one in
1170 * CheckSoftwareStep(), where it is elided because both branches would
1171 * always return the same value.
1173 * Parts of the pseudocode relating to EL2 and EL3 are omitted because we
1174 * don't yet implement those exception levels or their associated trap bits.
1176 static inline bool arm_generate_debug_exceptions(CPUARMState *env)
1178 if (env->aarch64) {
1179 return aa64_generate_debug_exceptions(env);
1180 } else {
1181 return aa32_generate_debug_exceptions(env);
1185 /* Is single-stepping active? (Note that the "is EL_D AArch64?" check
1186 * implicitly means this always returns false in pre-v8 CPUs.)
1188 static inline bool arm_singlestep_active(CPUARMState *env)
1190 return extract32(env->cp15.mdscr_el1, 0, 1)
1191 && arm_el_is_aa64(env, arm_debug_target_el(env))
1192 && arm_generate_debug_exceptions(env);
1195 #include "exec/cpu-all.h"
1197 /* Bit usage in the TB flags field: bit 31 indicates whether we are
1198 * in 32 or 64 bit mode. The meaning of the other bits depends on that.
1200 #define ARM_TBFLAG_AARCH64_STATE_SHIFT 31
1201 #define ARM_TBFLAG_AARCH64_STATE_MASK (1U << ARM_TBFLAG_AARCH64_STATE_SHIFT)
1203 /* Bit usage when in AArch32 state: */
1204 #define ARM_TBFLAG_THUMB_SHIFT 0
1205 #define ARM_TBFLAG_THUMB_MASK (1 << ARM_TBFLAG_THUMB_SHIFT)
1206 #define ARM_TBFLAG_VECLEN_SHIFT 1
1207 #define ARM_TBFLAG_VECLEN_MASK (0x7 << ARM_TBFLAG_VECLEN_SHIFT)
1208 #define ARM_TBFLAG_VECSTRIDE_SHIFT 4
1209 #define ARM_TBFLAG_VECSTRIDE_MASK (0x3 << ARM_TBFLAG_VECSTRIDE_SHIFT)
1210 #define ARM_TBFLAG_PRIV_SHIFT 6
1211 #define ARM_TBFLAG_PRIV_MASK (1 << ARM_TBFLAG_PRIV_SHIFT)
1212 #define ARM_TBFLAG_VFPEN_SHIFT 7
1213 #define ARM_TBFLAG_VFPEN_MASK (1 << ARM_TBFLAG_VFPEN_SHIFT)
1214 #define ARM_TBFLAG_CONDEXEC_SHIFT 8
1215 #define ARM_TBFLAG_CONDEXEC_MASK (0xff << ARM_TBFLAG_CONDEXEC_SHIFT)
1216 #define ARM_TBFLAG_BSWAP_CODE_SHIFT 16
1217 #define ARM_TBFLAG_BSWAP_CODE_MASK (1 << ARM_TBFLAG_BSWAP_CODE_SHIFT)
1218 #define ARM_TBFLAG_CPACR_FPEN_SHIFT 17
1219 #define ARM_TBFLAG_CPACR_FPEN_MASK (1 << ARM_TBFLAG_CPACR_FPEN_SHIFT)
1220 #define ARM_TBFLAG_SS_ACTIVE_SHIFT 18
1221 #define ARM_TBFLAG_SS_ACTIVE_MASK (1 << ARM_TBFLAG_SS_ACTIVE_SHIFT)
1222 #define ARM_TBFLAG_PSTATE_SS_SHIFT 19
1223 #define ARM_TBFLAG_PSTATE_SS_MASK (1 << ARM_TBFLAG_PSTATE_SS_SHIFT)
1225 /* Bit usage when in AArch64 state */
1226 #define ARM_TBFLAG_AA64_EL_SHIFT 0
1227 #define ARM_TBFLAG_AA64_EL_MASK (0x3 << ARM_TBFLAG_AA64_EL_SHIFT)
1228 #define ARM_TBFLAG_AA64_FPEN_SHIFT 2
1229 #define ARM_TBFLAG_AA64_FPEN_MASK (1 << ARM_TBFLAG_AA64_FPEN_SHIFT)
1230 #define ARM_TBFLAG_AA64_SS_ACTIVE_SHIFT 3
1231 #define ARM_TBFLAG_AA64_SS_ACTIVE_MASK (1 << ARM_TBFLAG_AA64_SS_ACTIVE_SHIFT)
1232 #define ARM_TBFLAG_AA64_PSTATE_SS_SHIFT 4
1233 #define ARM_TBFLAG_AA64_PSTATE_SS_MASK (1 << ARM_TBFLAG_AA64_PSTATE_SS_SHIFT)
1235 /* some convenience accessor macros */
1236 #define ARM_TBFLAG_AARCH64_STATE(F) \
1237 (((F) & ARM_TBFLAG_AARCH64_STATE_MASK) >> ARM_TBFLAG_AARCH64_STATE_SHIFT)
1238 #define ARM_TBFLAG_THUMB(F) \
1239 (((F) & ARM_TBFLAG_THUMB_MASK) >> ARM_TBFLAG_THUMB_SHIFT)
1240 #define ARM_TBFLAG_VECLEN(F) \
1241 (((F) & ARM_TBFLAG_VECLEN_MASK) >> ARM_TBFLAG_VECLEN_SHIFT)
1242 #define ARM_TBFLAG_VECSTRIDE(F) \
1243 (((F) & ARM_TBFLAG_VECSTRIDE_MASK) >> ARM_TBFLAG_VECSTRIDE_SHIFT)
1244 #define ARM_TBFLAG_PRIV(F) \
1245 (((F) & ARM_TBFLAG_PRIV_MASK) >> ARM_TBFLAG_PRIV_SHIFT)
1246 #define ARM_TBFLAG_VFPEN(F) \
1247 (((F) & ARM_TBFLAG_VFPEN_MASK) >> ARM_TBFLAG_VFPEN_SHIFT)
1248 #define ARM_TBFLAG_CONDEXEC(F) \
1249 (((F) & ARM_TBFLAG_CONDEXEC_MASK) >> ARM_TBFLAG_CONDEXEC_SHIFT)
1250 #define ARM_TBFLAG_BSWAP_CODE(F) \
1251 (((F) & ARM_TBFLAG_BSWAP_CODE_MASK) >> ARM_TBFLAG_BSWAP_CODE_SHIFT)
1252 #define ARM_TBFLAG_CPACR_FPEN(F) \
1253 (((F) & ARM_TBFLAG_CPACR_FPEN_MASK) >> ARM_TBFLAG_CPACR_FPEN_SHIFT)
1254 #define ARM_TBFLAG_SS_ACTIVE(F) \
1255 (((F) & ARM_TBFLAG_SS_ACTIVE_MASK) >> ARM_TBFLAG_SS_ACTIVE_SHIFT)
1256 #define ARM_TBFLAG_PSTATE_SS(F) \
1257 (((F) & ARM_TBFLAG_PSTATE_SS_MASK) >> ARM_TBFLAG_PSTATE_SS_SHIFT)
1258 #define ARM_TBFLAG_AA64_EL(F) \
1259 (((F) & ARM_TBFLAG_AA64_EL_MASK) >> ARM_TBFLAG_AA64_EL_SHIFT)
1260 #define ARM_TBFLAG_AA64_FPEN(F) \
1261 (((F) & ARM_TBFLAG_AA64_FPEN_MASK) >> ARM_TBFLAG_AA64_FPEN_SHIFT)
1262 #define ARM_TBFLAG_AA64_SS_ACTIVE(F) \
1263 (((F) & ARM_TBFLAG_AA64_SS_ACTIVE_MASK) >> ARM_TBFLAG_AA64_SS_ACTIVE_SHIFT)
1264 #define ARM_TBFLAG_AA64_PSTATE_SS(F) \
1265 (((F) & ARM_TBFLAG_AA64_PSTATE_SS_MASK) >> ARM_TBFLAG_AA64_PSTATE_SS_SHIFT)
1267 static inline void cpu_get_tb_cpu_state(CPUARMState *env, target_ulong *pc,
1268 target_ulong *cs_base, int *flags)
1270 int fpen;
1272 if (arm_feature(env, ARM_FEATURE_V6)) {
1273 fpen = extract32(env->cp15.c1_coproc, 20, 2);
1274 } else {
1275 /* CPACR doesn't exist before v6, so VFP is always accessible */
1276 fpen = 3;
1279 if (is_a64(env)) {
1280 *pc = env->pc;
1281 *flags = ARM_TBFLAG_AARCH64_STATE_MASK
1282 | (arm_current_pl(env) << ARM_TBFLAG_AA64_EL_SHIFT);
1283 if (fpen == 3 || (fpen == 1 && arm_current_pl(env) != 0)) {
1284 *flags |= ARM_TBFLAG_AA64_FPEN_MASK;
1286 /* The SS_ACTIVE and PSTATE_SS bits correspond to the state machine
1287 * states defined in the ARM ARM for software singlestep:
1288 * SS_ACTIVE PSTATE.SS State
1289 * 0 x Inactive (the TB flag for SS is always 0)
1290 * 1 0 Active-pending
1291 * 1 1 Active-not-pending
1293 if (arm_singlestep_active(env)) {
1294 *flags |= ARM_TBFLAG_AA64_SS_ACTIVE_MASK;
1295 if (env->pstate & PSTATE_SS) {
1296 *flags |= ARM_TBFLAG_AA64_PSTATE_SS_MASK;
1299 } else {
1300 int privmode;
1301 *pc = env->regs[15];
1302 *flags = (env->thumb << ARM_TBFLAG_THUMB_SHIFT)
1303 | (env->vfp.vec_len << ARM_TBFLAG_VECLEN_SHIFT)
1304 | (env->vfp.vec_stride << ARM_TBFLAG_VECSTRIDE_SHIFT)
1305 | (env->condexec_bits << ARM_TBFLAG_CONDEXEC_SHIFT)
1306 | (env->bswap_code << ARM_TBFLAG_BSWAP_CODE_SHIFT);
1307 if (arm_feature(env, ARM_FEATURE_M)) {
1308 privmode = !((env->v7m.exception == 0) && (env->v7m.control & 1));
1309 } else {
1310 privmode = (env->uncached_cpsr & CPSR_M) != ARM_CPU_MODE_USR;
1312 if (privmode) {
1313 *flags |= ARM_TBFLAG_PRIV_MASK;
1315 if (env->vfp.xregs[ARM_VFP_FPEXC] & (1 << 30)
1316 || arm_el_is_aa64(env, 1)) {
1317 *flags |= ARM_TBFLAG_VFPEN_MASK;
1319 if (fpen == 3 || (fpen == 1 && arm_current_pl(env) != 0)) {
1320 *flags |= ARM_TBFLAG_CPACR_FPEN_MASK;
1322 /* The SS_ACTIVE and PSTATE_SS bits correspond to the state machine
1323 * states defined in the ARM ARM for software singlestep:
1324 * SS_ACTIVE PSTATE.SS State
1325 * 0 x Inactive (the TB flag for SS is always 0)
1326 * 1 0 Active-pending
1327 * 1 1 Active-not-pending
1329 if (arm_singlestep_active(env)) {
1330 *flags |= ARM_TBFLAG_SS_ACTIVE_MASK;
1331 if (env->uncached_cpsr & PSTATE_SS) {
1332 *flags |= ARM_TBFLAG_PSTATE_SS_MASK;
1337 *cs_base = 0;
1340 #include "exec/exec-all.h"
1342 static inline void cpu_pc_from_tb(CPUARMState *env, TranslationBlock *tb)
1344 if (ARM_TBFLAG_AARCH64_STATE(tb->flags)) {
1345 env->pc = tb->pc;
1346 } else {
1347 env->regs[15] = tb->pc;
1351 #endif