rocker: fix memory leak
[qemu/ar7.git] / kvm-all.c
blobedff01ca03ee6314b7e7c48c24167736ccdd3ceb
1 /*
2 * QEMU KVM support
4 * Copyright IBM, Corp. 2008
5 * Red Hat, Inc. 2008
7 * Authors:
8 * Anthony Liguori <aliguori@us.ibm.com>
9 * Glauber Costa <gcosta@redhat.com>
11 * This work is licensed under the terms of the GNU GPL, version 2 or later.
12 * See the COPYING file in the top-level directory.
16 #include <sys/types.h>
17 #include <sys/ioctl.h>
18 #include <sys/mman.h>
19 #include <stdarg.h>
21 #include <linux/kvm.h>
23 #include "qemu-common.h"
24 #include "qemu/atomic.h"
25 #include "qemu/option.h"
26 #include "qemu/config-file.h"
27 #include "hw/hw.h"
28 #include "hw/pci/msi.h"
29 #include "hw/s390x/adapter.h"
30 #include "exec/gdbstub.h"
31 #include "sysemu/kvm_int.h"
32 #include "qemu/bswap.h"
33 #include "exec/memory.h"
34 #include "exec/ram_addr.h"
35 #include "exec/address-spaces.h"
36 #include "qemu/event_notifier.h"
37 #include "trace.h"
39 #include "hw/boards.h"
41 /* This check must be after config-host.h is included */
42 #ifdef CONFIG_EVENTFD
43 #include <sys/eventfd.h>
44 #endif
46 /* KVM uses PAGE_SIZE in its definition of COALESCED_MMIO_MAX */
47 #define PAGE_SIZE TARGET_PAGE_SIZE
49 //#define DEBUG_KVM
51 #ifdef DEBUG_KVM
52 #define DPRINTF(fmt, ...) \
53 do { fprintf(stderr, fmt, ## __VA_ARGS__); } while (0)
54 #else
55 #define DPRINTF(fmt, ...) \
56 do { } while (0)
57 #endif
59 #define KVM_MSI_HASHTAB_SIZE 256
61 struct KVMState
63 AccelState parent_obj;
65 int nr_slots;
66 int fd;
67 int vmfd;
68 int coalesced_mmio;
69 struct kvm_coalesced_mmio_ring *coalesced_mmio_ring;
70 bool coalesced_flush_in_progress;
71 int broken_set_mem_region;
72 int vcpu_events;
73 int robust_singlestep;
74 int debugregs;
75 #ifdef KVM_CAP_SET_GUEST_DEBUG
76 struct kvm_sw_breakpoint_head kvm_sw_breakpoints;
77 #endif
78 int pit_state2;
79 int xsave, xcrs;
80 int many_ioeventfds;
81 int intx_set_mask;
82 /* The man page (and posix) say ioctl numbers are signed int, but
83 * they're not. Linux, glibc and *BSD all treat ioctl numbers as
84 * unsigned, and treating them as signed here can break things */
85 unsigned irq_set_ioctl;
86 unsigned int sigmask_len;
87 #ifdef KVM_CAP_IRQ_ROUTING
88 struct kvm_irq_routing *irq_routes;
89 int nr_allocated_irq_routes;
90 uint32_t *used_gsi_bitmap;
91 unsigned int gsi_count;
92 QTAILQ_HEAD(msi_hashtab, KVMMSIRoute) msi_hashtab[KVM_MSI_HASHTAB_SIZE];
93 bool direct_msi;
94 #endif
95 KVMMemoryListener memory_listener;
98 KVMState *kvm_state;
99 bool kvm_kernel_irqchip;
100 bool kvm_async_interrupts_allowed;
101 bool kvm_halt_in_kernel_allowed;
102 bool kvm_eventfds_allowed;
103 bool kvm_irqfds_allowed;
104 bool kvm_resamplefds_allowed;
105 bool kvm_msi_via_irqfd_allowed;
106 bool kvm_gsi_routing_allowed;
107 bool kvm_gsi_direct_mapping;
108 bool kvm_allowed;
109 bool kvm_readonly_mem_allowed;
110 bool kvm_vm_attributes_allowed;
112 static const KVMCapabilityInfo kvm_required_capabilites[] = {
113 KVM_CAP_INFO(USER_MEMORY),
114 KVM_CAP_INFO(DESTROY_MEMORY_REGION_WORKS),
115 KVM_CAP_LAST_INFO
118 static KVMSlot *kvm_get_free_slot(KVMMemoryListener *kml)
120 KVMState *s = kvm_state;
121 int i;
123 for (i = 0; i < s->nr_slots; i++) {
124 if (kml->slots[i].memory_size == 0) {
125 return &kml->slots[i];
129 return NULL;
132 bool kvm_has_free_slot(MachineState *ms)
134 KVMState *s = KVM_STATE(ms->accelerator);
136 return kvm_get_free_slot(&s->memory_listener);
139 static KVMSlot *kvm_alloc_slot(KVMMemoryListener *kml)
141 KVMSlot *slot = kvm_get_free_slot(kml);
143 if (slot) {
144 return slot;
147 fprintf(stderr, "%s: no free slot available\n", __func__);
148 abort();
151 static KVMSlot *kvm_lookup_matching_slot(KVMMemoryListener *kml,
152 hwaddr start_addr,
153 hwaddr end_addr)
155 KVMState *s = kvm_state;
156 int i;
158 for (i = 0; i < s->nr_slots; i++) {
159 KVMSlot *mem = &kml->slots[i];
161 if (start_addr == mem->start_addr &&
162 end_addr == mem->start_addr + mem->memory_size) {
163 return mem;
167 return NULL;
171 * Find overlapping slot with lowest start address
173 static KVMSlot *kvm_lookup_overlapping_slot(KVMMemoryListener *kml,
174 hwaddr start_addr,
175 hwaddr end_addr)
177 KVMState *s = kvm_state;
178 KVMSlot *found = NULL;
179 int i;
181 for (i = 0; i < s->nr_slots; i++) {
182 KVMSlot *mem = &kml->slots[i];
184 if (mem->memory_size == 0 ||
185 (found && found->start_addr < mem->start_addr)) {
186 continue;
189 if (end_addr > mem->start_addr &&
190 start_addr < mem->start_addr + mem->memory_size) {
191 found = mem;
195 return found;
198 int kvm_physical_memory_addr_from_host(KVMState *s, void *ram,
199 hwaddr *phys_addr)
201 KVMMemoryListener *kml = &s->memory_listener;
202 int i;
204 for (i = 0; i < s->nr_slots; i++) {
205 KVMSlot *mem = &kml->slots[i];
207 if (ram >= mem->ram && ram < mem->ram + mem->memory_size) {
208 *phys_addr = mem->start_addr + (ram - mem->ram);
209 return 1;
213 return 0;
216 static int kvm_set_user_memory_region(KVMMemoryListener *kml, KVMSlot *slot)
218 KVMState *s = kvm_state;
219 struct kvm_userspace_memory_region mem;
221 mem.slot = slot->slot | (kml->as_id << 16);
222 mem.guest_phys_addr = slot->start_addr;
223 mem.userspace_addr = (unsigned long)slot->ram;
224 mem.flags = slot->flags;
226 if (slot->memory_size && mem.flags & KVM_MEM_READONLY) {
227 /* Set the slot size to 0 before setting the slot to the desired
228 * value. This is needed based on KVM commit 75d61fbc. */
229 mem.memory_size = 0;
230 kvm_vm_ioctl(s, KVM_SET_USER_MEMORY_REGION, &mem);
232 mem.memory_size = slot->memory_size;
233 return kvm_vm_ioctl(s, KVM_SET_USER_MEMORY_REGION, &mem);
236 int kvm_init_vcpu(CPUState *cpu)
238 KVMState *s = kvm_state;
239 long mmap_size;
240 int ret;
242 DPRINTF("kvm_init_vcpu\n");
244 ret = kvm_vm_ioctl(s, KVM_CREATE_VCPU, (void *)kvm_arch_vcpu_id(cpu));
245 if (ret < 0) {
246 DPRINTF("kvm_create_vcpu failed\n");
247 goto err;
250 cpu->kvm_fd = ret;
251 cpu->kvm_state = s;
252 cpu->kvm_vcpu_dirty = true;
254 mmap_size = kvm_ioctl(s, KVM_GET_VCPU_MMAP_SIZE, 0);
255 if (mmap_size < 0) {
256 ret = mmap_size;
257 DPRINTF("KVM_GET_VCPU_MMAP_SIZE failed\n");
258 goto err;
261 cpu->kvm_run = mmap(NULL, mmap_size, PROT_READ | PROT_WRITE, MAP_SHARED,
262 cpu->kvm_fd, 0);
263 if (cpu->kvm_run == MAP_FAILED) {
264 ret = -errno;
265 DPRINTF("mmap'ing vcpu state failed\n");
266 goto err;
269 if (s->coalesced_mmio && !s->coalesced_mmio_ring) {
270 s->coalesced_mmio_ring =
271 (void *)cpu->kvm_run + s->coalesced_mmio * PAGE_SIZE;
274 ret = kvm_arch_init_vcpu(cpu);
275 err:
276 return ret;
280 * dirty pages logging control
283 static int kvm_mem_flags(MemoryRegion *mr)
285 bool readonly = mr->readonly || memory_region_is_romd(mr);
286 int flags = 0;
288 if (memory_region_get_dirty_log_mask(mr) != 0) {
289 flags |= KVM_MEM_LOG_DIRTY_PAGES;
291 if (readonly && kvm_readonly_mem_allowed) {
292 flags |= KVM_MEM_READONLY;
294 return flags;
297 static int kvm_slot_update_flags(KVMMemoryListener *kml, KVMSlot *mem,
298 MemoryRegion *mr)
300 int old_flags;
302 old_flags = mem->flags;
303 mem->flags = kvm_mem_flags(mr);
305 /* If nothing changed effectively, no need to issue ioctl */
306 if (mem->flags == old_flags) {
307 return 0;
310 return kvm_set_user_memory_region(kml, mem);
313 static int kvm_section_update_flags(KVMMemoryListener *kml,
314 MemoryRegionSection *section)
316 hwaddr phys_addr = section->offset_within_address_space;
317 ram_addr_t size = int128_get64(section->size);
318 KVMSlot *mem = kvm_lookup_matching_slot(kml, phys_addr, phys_addr + size);
320 if (mem == NULL) {
321 return 0;
322 } else {
323 return kvm_slot_update_flags(kml, mem, section->mr);
327 static void kvm_log_start(MemoryListener *listener,
328 MemoryRegionSection *section,
329 int old, int new)
331 KVMMemoryListener *kml = container_of(listener, KVMMemoryListener, listener);
332 int r;
334 if (old != 0) {
335 return;
338 r = kvm_section_update_flags(kml, section);
339 if (r < 0) {
340 abort();
344 static void kvm_log_stop(MemoryListener *listener,
345 MemoryRegionSection *section,
346 int old, int new)
348 KVMMemoryListener *kml = container_of(listener, KVMMemoryListener, listener);
349 int r;
351 if (new != 0) {
352 return;
355 r = kvm_section_update_flags(kml, section);
356 if (r < 0) {
357 abort();
361 /* get kvm's dirty pages bitmap and update qemu's */
362 static int kvm_get_dirty_pages_log_range(MemoryRegionSection *section,
363 unsigned long *bitmap)
365 ram_addr_t start = section->offset_within_region + section->mr->ram_addr;
366 ram_addr_t pages = int128_get64(section->size) / getpagesize();
368 cpu_physical_memory_set_dirty_lebitmap(bitmap, start, pages);
369 return 0;
372 #define ALIGN(x, y) (((x)+(y)-1) & ~((y)-1))
375 * kvm_physical_sync_dirty_bitmap - Grab dirty bitmap from kernel space
376 * This function updates qemu's dirty bitmap using
377 * memory_region_set_dirty(). This means all bits are set
378 * to dirty.
380 * @start_add: start of logged region.
381 * @end_addr: end of logged region.
383 static int kvm_physical_sync_dirty_bitmap(KVMMemoryListener *kml,
384 MemoryRegionSection *section)
386 KVMState *s = kvm_state;
387 unsigned long size, allocated_size = 0;
388 struct kvm_dirty_log d = {};
389 KVMSlot *mem;
390 int ret = 0;
391 hwaddr start_addr = section->offset_within_address_space;
392 hwaddr end_addr = start_addr + int128_get64(section->size);
394 d.dirty_bitmap = NULL;
395 while (start_addr < end_addr) {
396 mem = kvm_lookup_overlapping_slot(kml, start_addr, end_addr);
397 if (mem == NULL) {
398 break;
401 /* XXX bad kernel interface alert
402 * For dirty bitmap, kernel allocates array of size aligned to
403 * bits-per-long. But for case when the kernel is 64bits and
404 * the userspace is 32bits, userspace can't align to the same
405 * bits-per-long, since sizeof(long) is different between kernel
406 * and user space. This way, userspace will provide buffer which
407 * may be 4 bytes less than the kernel will use, resulting in
408 * userspace memory corruption (which is not detectable by valgrind
409 * too, in most cases).
410 * So for now, let's align to 64 instead of HOST_LONG_BITS here, in
411 * a hope that sizeof(long) wont become >8 any time soon.
413 size = ALIGN(((mem->memory_size) >> TARGET_PAGE_BITS),
414 /*HOST_LONG_BITS*/ 64) / 8;
415 if (!d.dirty_bitmap) {
416 d.dirty_bitmap = g_malloc(size);
417 } else if (size > allocated_size) {
418 d.dirty_bitmap = g_realloc(d.dirty_bitmap, size);
420 allocated_size = size;
421 memset(d.dirty_bitmap, 0, allocated_size);
423 d.slot = mem->slot | (kml->as_id << 16);
424 if (kvm_vm_ioctl(s, KVM_GET_DIRTY_LOG, &d) == -1) {
425 DPRINTF("ioctl failed %d\n", errno);
426 ret = -1;
427 break;
430 kvm_get_dirty_pages_log_range(section, d.dirty_bitmap);
431 start_addr = mem->start_addr + mem->memory_size;
433 g_free(d.dirty_bitmap);
435 return ret;
438 static void kvm_coalesce_mmio_region(MemoryListener *listener,
439 MemoryRegionSection *secion,
440 hwaddr start, hwaddr size)
442 KVMState *s = kvm_state;
444 if (s->coalesced_mmio) {
445 struct kvm_coalesced_mmio_zone zone;
447 zone.addr = start;
448 zone.size = size;
449 zone.pad = 0;
451 (void)kvm_vm_ioctl(s, KVM_REGISTER_COALESCED_MMIO, &zone);
455 static void kvm_uncoalesce_mmio_region(MemoryListener *listener,
456 MemoryRegionSection *secion,
457 hwaddr start, hwaddr size)
459 KVMState *s = kvm_state;
461 if (s->coalesced_mmio) {
462 struct kvm_coalesced_mmio_zone zone;
464 zone.addr = start;
465 zone.size = size;
466 zone.pad = 0;
468 (void)kvm_vm_ioctl(s, KVM_UNREGISTER_COALESCED_MMIO, &zone);
472 int kvm_check_extension(KVMState *s, unsigned int extension)
474 int ret;
476 ret = kvm_ioctl(s, KVM_CHECK_EXTENSION, extension);
477 if (ret < 0) {
478 ret = 0;
481 return ret;
484 int kvm_vm_check_extension(KVMState *s, unsigned int extension)
486 int ret;
488 ret = kvm_vm_ioctl(s, KVM_CHECK_EXTENSION, extension);
489 if (ret < 0) {
490 /* VM wide version not implemented, use global one instead */
491 ret = kvm_check_extension(s, extension);
494 return ret;
497 static uint32_t adjust_ioeventfd_endianness(uint32_t val, uint32_t size)
499 #if defined(HOST_WORDS_BIGENDIAN) != defined(TARGET_WORDS_BIGENDIAN)
500 /* The kernel expects ioeventfd values in HOST_WORDS_BIGENDIAN
501 * endianness, but the memory core hands them in target endianness.
502 * For example, PPC is always treated as big-endian even if running
503 * on KVM and on PPC64LE. Correct here.
505 switch (size) {
506 case 2:
507 val = bswap16(val);
508 break;
509 case 4:
510 val = bswap32(val);
511 break;
513 #endif
514 return val;
517 static int kvm_set_ioeventfd_mmio(int fd, hwaddr addr, uint32_t val,
518 bool assign, uint32_t size, bool datamatch)
520 int ret;
521 struct kvm_ioeventfd iofd = {
522 .datamatch = datamatch ? adjust_ioeventfd_endianness(val, size) : 0,
523 .addr = addr,
524 .len = size,
525 .flags = 0,
526 .fd = fd,
529 if (!kvm_enabled()) {
530 return -ENOSYS;
533 if (datamatch) {
534 iofd.flags |= KVM_IOEVENTFD_FLAG_DATAMATCH;
536 if (!assign) {
537 iofd.flags |= KVM_IOEVENTFD_FLAG_DEASSIGN;
540 ret = kvm_vm_ioctl(kvm_state, KVM_IOEVENTFD, &iofd);
542 if (ret < 0) {
543 return -errno;
546 return 0;
549 static int kvm_set_ioeventfd_pio(int fd, uint16_t addr, uint16_t val,
550 bool assign, uint32_t size, bool datamatch)
552 struct kvm_ioeventfd kick = {
553 .datamatch = datamatch ? adjust_ioeventfd_endianness(val, size) : 0,
554 .addr = addr,
555 .flags = KVM_IOEVENTFD_FLAG_PIO,
556 .len = size,
557 .fd = fd,
559 int r;
560 if (!kvm_enabled()) {
561 return -ENOSYS;
563 if (datamatch) {
564 kick.flags |= KVM_IOEVENTFD_FLAG_DATAMATCH;
566 if (!assign) {
567 kick.flags |= KVM_IOEVENTFD_FLAG_DEASSIGN;
569 r = kvm_vm_ioctl(kvm_state, KVM_IOEVENTFD, &kick);
570 if (r < 0) {
571 return r;
573 return 0;
577 static int kvm_check_many_ioeventfds(void)
579 /* Userspace can use ioeventfd for io notification. This requires a host
580 * that supports eventfd(2) and an I/O thread; since eventfd does not
581 * support SIGIO it cannot interrupt the vcpu.
583 * Older kernels have a 6 device limit on the KVM io bus. Find out so we
584 * can avoid creating too many ioeventfds.
586 #if defined(CONFIG_EVENTFD)
587 int ioeventfds[7];
588 int i, ret = 0;
589 for (i = 0; i < ARRAY_SIZE(ioeventfds); i++) {
590 ioeventfds[i] = eventfd(0, EFD_CLOEXEC);
591 if (ioeventfds[i] < 0) {
592 break;
594 ret = kvm_set_ioeventfd_pio(ioeventfds[i], 0, i, true, 2, true);
595 if (ret < 0) {
596 close(ioeventfds[i]);
597 break;
601 /* Decide whether many devices are supported or not */
602 ret = i == ARRAY_SIZE(ioeventfds);
604 while (i-- > 0) {
605 kvm_set_ioeventfd_pio(ioeventfds[i], 0, i, false, 2, true);
606 close(ioeventfds[i]);
608 return ret;
609 #else
610 return 0;
611 #endif
614 static const KVMCapabilityInfo *
615 kvm_check_extension_list(KVMState *s, const KVMCapabilityInfo *list)
617 while (list->name) {
618 if (!kvm_check_extension(s, list->value)) {
619 return list;
621 list++;
623 return NULL;
626 static void kvm_set_phys_mem(KVMMemoryListener *kml,
627 MemoryRegionSection *section, bool add)
629 KVMState *s = kvm_state;
630 KVMSlot *mem, old;
631 int err;
632 MemoryRegion *mr = section->mr;
633 bool writeable = !mr->readonly && !mr->rom_device;
634 hwaddr start_addr = section->offset_within_address_space;
635 ram_addr_t size = int128_get64(section->size);
636 void *ram = NULL;
637 unsigned delta;
639 /* kvm works in page size chunks, but the function may be called
640 with sub-page size and unaligned start address. Pad the start
641 address to next and truncate size to previous page boundary. */
642 delta = (TARGET_PAGE_SIZE - (start_addr & ~TARGET_PAGE_MASK));
643 delta &= ~TARGET_PAGE_MASK;
644 if (delta > size) {
645 return;
647 start_addr += delta;
648 size -= delta;
649 size &= TARGET_PAGE_MASK;
650 if (!size || (start_addr & ~TARGET_PAGE_MASK)) {
651 return;
654 if (!memory_region_is_ram(mr)) {
655 if (writeable || !kvm_readonly_mem_allowed) {
656 return;
657 } else if (!mr->romd_mode) {
658 /* If the memory device is not in romd_mode, then we actually want
659 * to remove the kvm memory slot so all accesses will trap. */
660 add = false;
664 ram = memory_region_get_ram_ptr(mr) + section->offset_within_region + delta;
666 while (1) {
667 mem = kvm_lookup_overlapping_slot(kml, start_addr, start_addr + size);
668 if (!mem) {
669 break;
672 if (add && start_addr >= mem->start_addr &&
673 (start_addr + size <= mem->start_addr + mem->memory_size) &&
674 (ram - start_addr == mem->ram - mem->start_addr)) {
675 /* The new slot fits into the existing one and comes with
676 * identical parameters - update flags and done. */
677 kvm_slot_update_flags(kml, mem, mr);
678 return;
681 old = *mem;
683 if (mem->flags & KVM_MEM_LOG_DIRTY_PAGES) {
684 kvm_physical_sync_dirty_bitmap(kml, section);
687 /* unregister the overlapping slot */
688 mem->memory_size = 0;
689 err = kvm_set_user_memory_region(kml, mem);
690 if (err) {
691 fprintf(stderr, "%s: error unregistering overlapping slot: %s\n",
692 __func__, strerror(-err));
693 abort();
696 /* Workaround for older KVM versions: we can't join slots, even not by
697 * unregistering the previous ones and then registering the larger
698 * slot. We have to maintain the existing fragmentation. Sigh.
700 * This workaround assumes that the new slot starts at the same
701 * address as the first existing one. If not or if some overlapping
702 * slot comes around later, we will fail (not seen in practice so far)
703 * - and actually require a recent KVM version. */
704 if (s->broken_set_mem_region &&
705 old.start_addr == start_addr && old.memory_size < size && add) {
706 mem = kvm_alloc_slot(kml);
707 mem->memory_size = old.memory_size;
708 mem->start_addr = old.start_addr;
709 mem->ram = old.ram;
710 mem->flags = kvm_mem_flags(mr);
712 err = kvm_set_user_memory_region(kml, mem);
713 if (err) {
714 fprintf(stderr, "%s: error updating slot: %s\n", __func__,
715 strerror(-err));
716 abort();
719 start_addr += old.memory_size;
720 ram += old.memory_size;
721 size -= old.memory_size;
722 continue;
725 /* register prefix slot */
726 if (old.start_addr < start_addr) {
727 mem = kvm_alloc_slot(kml);
728 mem->memory_size = start_addr - old.start_addr;
729 mem->start_addr = old.start_addr;
730 mem->ram = old.ram;
731 mem->flags = kvm_mem_flags(mr);
733 err = kvm_set_user_memory_region(kml, mem);
734 if (err) {
735 fprintf(stderr, "%s: error registering prefix slot: %s\n",
736 __func__, strerror(-err));
737 #ifdef TARGET_PPC
738 fprintf(stderr, "%s: This is probably because your kernel's " \
739 "PAGE_SIZE is too big. Please try to use 4k " \
740 "PAGE_SIZE!\n", __func__);
741 #endif
742 abort();
746 /* register suffix slot */
747 if (old.start_addr + old.memory_size > start_addr + size) {
748 ram_addr_t size_delta;
750 mem = kvm_alloc_slot(kml);
751 mem->start_addr = start_addr + size;
752 size_delta = mem->start_addr - old.start_addr;
753 mem->memory_size = old.memory_size - size_delta;
754 mem->ram = old.ram + size_delta;
755 mem->flags = kvm_mem_flags(mr);
757 err = kvm_set_user_memory_region(kml, mem);
758 if (err) {
759 fprintf(stderr, "%s: error registering suffix slot: %s\n",
760 __func__, strerror(-err));
761 abort();
766 /* in case the KVM bug workaround already "consumed" the new slot */
767 if (!size) {
768 return;
770 if (!add) {
771 return;
773 mem = kvm_alloc_slot(kml);
774 mem->memory_size = size;
775 mem->start_addr = start_addr;
776 mem->ram = ram;
777 mem->flags = kvm_mem_flags(mr);
779 err = kvm_set_user_memory_region(kml, mem);
780 if (err) {
781 fprintf(stderr, "%s: error registering slot: %s\n", __func__,
782 strerror(-err));
783 abort();
787 static void kvm_region_add(MemoryListener *listener,
788 MemoryRegionSection *section)
790 KVMMemoryListener *kml = container_of(listener, KVMMemoryListener, listener);
792 memory_region_ref(section->mr);
793 kvm_set_phys_mem(kml, section, true);
796 static void kvm_region_del(MemoryListener *listener,
797 MemoryRegionSection *section)
799 KVMMemoryListener *kml = container_of(listener, KVMMemoryListener, listener);
801 kvm_set_phys_mem(kml, section, false);
802 memory_region_unref(section->mr);
805 static void kvm_log_sync(MemoryListener *listener,
806 MemoryRegionSection *section)
808 KVMMemoryListener *kml = container_of(listener, KVMMemoryListener, listener);
809 int r;
811 r = kvm_physical_sync_dirty_bitmap(kml, section);
812 if (r < 0) {
813 abort();
817 static void kvm_mem_ioeventfd_add(MemoryListener *listener,
818 MemoryRegionSection *section,
819 bool match_data, uint64_t data,
820 EventNotifier *e)
822 int fd = event_notifier_get_fd(e);
823 int r;
825 r = kvm_set_ioeventfd_mmio(fd, section->offset_within_address_space,
826 data, true, int128_get64(section->size),
827 match_data);
828 if (r < 0) {
829 fprintf(stderr, "%s: error adding ioeventfd: %s\n",
830 __func__, strerror(-r));
831 abort();
835 static void kvm_mem_ioeventfd_del(MemoryListener *listener,
836 MemoryRegionSection *section,
837 bool match_data, uint64_t data,
838 EventNotifier *e)
840 int fd = event_notifier_get_fd(e);
841 int r;
843 r = kvm_set_ioeventfd_mmio(fd, section->offset_within_address_space,
844 data, false, int128_get64(section->size),
845 match_data);
846 if (r < 0) {
847 abort();
851 static void kvm_io_ioeventfd_add(MemoryListener *listener,
852 MemoryRegionSection *section,
853 bool match_data, uint64_t data,
854 EventNotifier *e)
856 int fd = event_notifier_get_fd(e);
857 int r;
859 r = kvm_set_ioeventfd_pio(fd, section->offset_within_address_space,
860 data, true, int128_get64(section->size),
861 match_data);
862 if (r < 0) {
863 fprintf(stderr, "%s: error adding ioeventfd: %s\n",
864 __func__, strerror(-r));
865 abort();
869 static void kvm_io_ioeventfd_del(MemoryListener *listener,
870 MemoryRegionSection *section,
871 bool match_data, uint64_t data,
872 EventNotifier *e)
875 int fd = event_notifier_get_fd(e);
876 int r;
878 r = kvm_set_ioeventfd_pio(fd, section->offset_within_address_space,
879 data, false, int128_get64(section->size),
880 match_data);
881 if (r < 0) {
882 abort();
886 void kvm_memory_listener_register(KVMState *s, KVMMemoryListener *kml,
887 AddressSpace *as, int as_id)
889 int i;
891 kml->slots = g_malloc0(s->nr_slots * sizeof(KVMSlot));
892 kml->as_id = as_id;
894 for (i = 0; i < s->nr_slots; i++) {
895 kml->slots[i].slot = i;
898 kml->listener.region_add = kvm_region_add;
899 kml->listener.region_del = kvm_region_del;
900 kml->listener.log_start = kvm_log_start;
901 kml->listener.log_stop = kvm_log_stop;
902 kml->listener.log_sync = kvm_log_sync;
903 kml->listener.priority = 10;
905 memory_listener_register(&kml->listener, as);
908 static MemoryListener kvm_io_listener = {
909 .eventfd_add = kvm_io_ioeventfd_add,
910 .eventfd_del = kvm_io_ioeventfd_del,
911 .priority = 10,
914 static void kvm_handle_interrupt(CPUState *cpu, int mask)
916 cpu->interrupt_request |= mask;
918 if (!qemu_cpu_is_self(cpu)) {
919 qemu_cpu_kick(cpu);
923 int kvm_set_irq(KVMState *s, int irq, int level)
925 struct kvm_irq_level event;
926 int ret;
928 assert(kvm_async_interrupts_enabled());
930 event.level = level;
931 event.irq = irq;
932 ret = kvm_vm_ioctl(s, s->irq_set_ioctl, &event);
933 if (ret < 0) {
934 perror("kvm_set_irq");
935 abort();
938 return (s->irq_set_ioctl == KVM_IRQ_LINE) ? 1 : event.status;
941 #ifdef KVM_CAP_IRQ_ROUTING
942 typedef struct KVMMSIRoute {
943 struct kvm_irq_routing_entry kroute;
944 QTAILQ_ENTRY(KVMMSIRoute) entry;
945 } KVMMSIRoute;
947 static void set_gsi(KVMState *s, unsigned int gsi)
949 s->used_gsi_bitmap[gsi / 32] |= 1U << (gsi % 32);
952 static void clear_gsi(KVMState *s, unsigned int gsi)
954 s->used_gsi_bitmap[gsi / 32] &= ~(1U << (gsi % 32));
957 void kvm_init_irq_routing(KVMState *s)
959 int gsi_count, i;
961 gsi_count = kvm_check_extension(s, KVM_CAP_IRQ_ROUTING) - 1;
962 if (gsi_count > 0) {
963 unsigned int gsi_bits, i;
965 /* Round up so we can search ints using ffs */
966 gsi_bits = ALIGN(gsi_count, 32);
967 s->used_gsi_bitmap = g_malloc0(gsi_bits / 8);
968 s->gsi_count = gsi_count;
970 /* Mark any over-allocated bits as already in use */
971 for (i = gsi_count; i < gsi_bits; i++) {
972 set_gsi(s, i);
976 s->irq_routes = g_malloc0(sizeof(*s->irq_routes));
977 s->nr_allocated_irq_routes = 0;
979 if (!s->direct_msi) {
980 for (i = 0; i < KVM_MSI_HASHTAB_SIZE; i++) {
981 QTAILQ_INIT(&s->msi_hashtab[i]);
985 kvm_arch_init_irq_routing(s);
988 void kvm_irqchip_commit_routes(KVMState *s)
990 int ret;
992 s->irq_routes->flags = 0;
993 ret = kvm_vm_ioctl(s, KVM_SET_GSI_ROUTING, s->irq_routes);
994 assert(ret == 0);
997 static void kvm_add_routing_entry(KVMState *s,
998 struct kvm_irq_routing_entry *entry)
1000 struct kvm_irq_routing_entry *new;
1001 int n, size;
1003 if (s->irq_routes->nr == s->nr_allocated_irq_routes) {
1004 n = s->nr_allocated_irq_routes * 2;
1005 if (n < 64) {
1006 n = 64;
1008 size = sizeof(struct kvm_irq_routing);
1009 size += n * sizeof(*new);
1010 s->irq_routes = g_realloc(s->irq_routes, size);
1011 s->nr_allocated_irq_routes = n;
1013 n = s->irq_routes->nr++;
1014 new = &s->irq_routes->entries[n];
1016 *new = *entry;
1018 set_gsi(s, entry->gsi);
1021 static int kvm_update_routing_entry(KVMState *s,
1022 struct kvm_irq_routing_entry *new_entry)
1024 struct kvm_irq_routing_entry *entry;
1025 int n;
1027 for (n = 0; n < s->irq_routes->nr; n++) {
1028 entry = &s->irq_routes->entries[n];
1029 if (entry->gsi != new_entry->gsi) {
1030 continue;
1033 if(!memcmp(entry, new_entry, sizeof *entry)) {
1034 return 0;
1037 *entry = *new_entry;
1039 kvm_irqchip_commit_routes(s);
1041 return 0;
1044 return -ESRCH;
1047 void kvm_irqchip_add_irq_route(KVMState *s, int irq, int irqchip, int pin)
1049 struct kvm_irq_routing_entry e = {};
1051 assert(pin < s->gsi_count);
1053 e.gsi = irq;
1054 e.type = KVM_IRQ_ROUTING_IRQCHIP;
1055 e.flags = 0;
1056 e.u.irqchip.irqchip = irqchip;
1057 e.u.irqchip.pin = pin;
1058 kvm_add_routing_entry(s, &e);
1061 void kvm_irqchip_release_virq(KVMState *s, int virq)
1063 struct kvm_irq_routing_entry *e;
1064 int i;
1066 if (kvm_gsi_direct_mapping()) {
1067 return;
1070 for (i = 0; i < s->irq_routes->nr; i++) {
1071 e = &s->irq_routes->entries[i];
1072 if (e->gsi == virq) {
1073 s->irq_routes->nr--;
1074 *e = s->irq_routes->entries[s->irq_routes->nr];
1077 clear_gsi(s, virq);
1080 static unsigned int kvm_hash_msi(uint32_t data)
1082 /* This is optimized for IA32 MSI layout. However, no other arch shall
1083 * repeat the mistake of not providing a direct MSI injection API. */
1084 return data & 0xff;
1087 static void kvm_flush_dynamic_msi_routes(KVMState *s)
1089 KVMMSIRoute *route, *next;
1090 unsigned int hash;
1092 for (hash = 0; hash < KVM_MSI_HASHTAB_SIZE; hash++) {
1093 QTAILQ_FOREACH_SAFE(route, &s->msi_hashtab[hash], entry, next) {
1094 kvm_irqchip_release_virq(s, route->kroute.gsi);
1095 QTAILQ_REMOVE(&s->msi_hashtab[hash], route, entry);
1096 g_free(route);
1101 static int kvm_irqchip_get_virq(KVMState *s)
1103 uint32_t *word = s->used_gsi_bitmap;
1104 int max_words = ALIGN(s->gsi_count, 32) / 32;
1105 int i, zeroes;
1108 * PIC and IOAPIC share the first 16 GSI numbers, thus the available
1109 * GSI numbers are more than the number of IRQ route. Allocating a GSI
1110 * number can succeed even though a new route entry cannot be added.
1111 * When this happens, flush dynamic MSI entries to free IRQ route entries.
1113 if (!s->direct_msi && s->irq_routes->nr == s->gsi_count) {
1114 kvm_flush_dynamic_msi_routes(s);
1117 /* Return the lowest unused GSI in the bitmap */
1118 for (i = 0; i < max_words; i++) {
1119 zeroes = ctz32(~word[i]);
1120 if (zeroes == 32) {
1121 continue;
1124 return zeroes + i * 32;
1126 return -ENOSPC;
1130 static KVMMSIRoute *kvm_lookup_msi_route(KVMState *s, MSIMessage msg)
1132 unsigned int hash = kvm_hash_msi(msg.data);
1133 KVMMSIRoute *route;
1135 QTAILQ_FOREACH(route, &s->msi_hashtab[hash], entry) {
1136 if (route->kroute.u.msi.address_lo == (uint32_t)msg.address &&
1137 route->kroute.u.msi.address_hi == (msg.address >> 32) &&
1138 route->kroute.u.msi.data == le32_to_cpu(msg.data)) {
1139 return route;
1142 return NULL;
1145 int kvm_irqchip_send_msi(KVMState *s, MSIMessage msg)
1147 struct kvm_msi msi;
1148 KVMMSIRoute *route;
1150 if (s->direct_msi) {
1151 msi.address_lo = (uint32_t)msg.address;
1152 msi.address_hi = msg.address >> 32;
1153 msi.data = le32_to_cpu(msg.data);
1154 msi.flags = 0;
1155 memset(msi.pad, 0, sizeof(msi.pad));
1157 return kvm_vm_ioctl(s, KVM_SIGNAL_MSI, &msi);
1160 route = kvm_lookup_msi_route(s, msg);
1161 if (!route) {
1162 int virq;
1164 virq = kvm_irqchip_get_virq(s);
1165 if (virq < 0) {
1166 return virq;
1169 route = g_malloc0(sizeof(KVMMSIRoute));
1170 route->kroute.gsi = virq;
1171 route->kroute.type = KVM_IRQ_ROUTING_MSI;
1172 route->kroute.flags = 0;
1173 route->kroute.u.msi.address_lo = (uint32_t)msg.address;
1174 route->kroute.u.msi.address_hi = msg.address >> 32;
1175 route->kroute.u.msi.data = le32_to_cpu(msg.data);
1177 kvm_add_routing_entry(s, &route->kroute);
1178 kvm_irqchip_commit_routes(s);
1180 QTAILQ_INSERT_TAIL(&s->msi_hashtab[kvm_hash_msi(msg.data)], route,
1181 entry);
1184 assert(route->kroute.type == KVM_IRQ_ROUTING_MSI);
1186 return kvm_set_irq(s, route->kroute.gsi, 1);
1189 int kvm_irqchip_add_msi_route(KVMState *s, MSIMessage msg)
1191 struct kvm_irq_routing_entry kroute = {};
1192 int virq;
1194 if (kvm_gsi_direct_mapping()) {
1195 return kvm_arch_msi_data_to_gsi(msg.data);
1198 if (!kvm_gsi_routing_enabled()) {
1199 return -ENOSYS;
1202 virq = kvm_irqchip_get_virq(s);
1203 if (virq < 0) {
1204 return virq;
1207 kroute.gsi = virq;
1208 kroute.type = KVM_IRQ_ROUTING_MSI;
1209 kroute.flags = 0;
1210 kroute.u.msi.address_lo = (uint32_t)msg.address;
1211 kroute.u.msi.address_hi = msg.address >> 32;
1212 kroute.u.msi.data = le32_to_cpu(msg.data);
1213 if (kvm_arch_fixup_msi_route(&kroute, msg.address, msg.data)) {
1214 kvm_irqchip_release_virq(s, virq);
1215 return -EINVAL;
1218 kvm_add_routing_entry(s, &kroute);
1219 kvm_irqchip_commit_routes(s);
1221 return virq;
1224 int kvm_irqchip_update_msi_route(KVMState *s, int virq, MSIMessage msg)
1226 struct kvm_irq_routing_entry kroute = {};
1228 if (kvm_gsi_direct_mapping()) {
1229 return 0;
1232 if (!kvm_irqchip_in_kernel()) {
1233 return -ENOSYS;
1236 kroute.gsi = virq;
1237 kroute.type = KVM_IRQ_ROUTING_MSI;
1238 kroute.flags = 0;
1239 kroute.u.msi.address_lo = (uint32_t)msg.address;
1240 kroute.u.msi.address_hi = msg.address >> 32;
1241 kroute.u.msi.data = le32_to_cpu(msg.data);
1242 if (kvm_arch_fixup_msi_route(&kroute, msg.address, msg.data)) {
1243 return -EINVAL;
1246 return kvm_update_routing_entry(s, &kroute);
1249 static int kvm_irqchip_assign_irqfd(KVMState *s, int fd, int rfd, int virq,
1250 bool assign)
1252 struct kvm_irqfd irqfd = {
1253 .fd = fd,
1254 .gsi = virq,
1255 .flags = assign ? 0 : KVM_IRQFD_FLAG_DEASSIGN,
1258 if (rfd != -1) {
1259 irqfd.flags |= KVM_IRQFD_FLAG_RESAMPLE;
1260 irqfd.resamplefd = rfd;
1263 if (!kvm_irqfds_enabled()) {
1264 return -ENOSYS;
1267 return kvm_vm_ioctl(s, KVM_IRQFD, &irqfd);
1270 int kvm_irqchip_add_adapter_route(KVMState *s, AdapterInfo *adapter)
1272 struct kvm_irq_routing_entry kroute = {};
1273 int virq;
1275 if (!kvm_gsi_routing_enabled()) {
1276 return -ENOSYS;
1279 virq = kvm_irqchip_get_virq(s);
1280 if (virq < 0) {
1281 return virq;
1284 kroute.gsi = virq;
1285 kroute.type = KVM_IRQ_ROUTING_S390_ADAPTER;
1286 kroute.flags = 0;
1287 kroute.u.adapter.summary_addr = adapter->summary_addr;
1288 kroute.u.adapter.ind_addr = adapter->ind_addr;
1289 kroute.u.adapter.summary_offset = adapter->summary_offset;
1290 kroute.u.adapter.ind_offset = adapter->ind_offset;
1291 kroute.u.adapter.adapter_id = adapter->adapter_id;
1293 kvm_add_routing_entry(s, &kroute);
1294 kvm_irqchip_commit_routes(s);
1296 return virq;
1299 #else /* !KVM_CAP_IRQ_ROUTING */
1301 void kvm_init_irq_routing(KVMState *s)
1305 void kvm_irqchip_release_virq(KVMState *s, int virq)
1309 int kvm_irqchip_send_msi(KVMState *s, MSIMessage msg)
1311 abort();
1314 int kvm_irqchip_add_msi_route(KVMState *s, MSIMessage msg)
1316 return -ENOSYS;
1319 int kvm_irqchip_add_adapter_route(KVMState *s, AdapterInfo *adapter)
1321 return -ENOSYS;
1324 static int kvm_irqchip_assign_irqfd(KVMState *s, int fd, int virq, bool assign)
1326 abort();
1329 int kvm_irqchip_update_msi_route(KVMState *s, int virq, MSIMessage msg)
1331 return -ENOSYS;
1333 #endif /* !KVM_CAP_IRQ_ROUTING */
1335 int kvm_irqchip_add_irqfd_notifier(KVMState *s, EventNotifier *n,
1336 EventNotifier *rn, int virq)
1338 return kvm_irqchip_assign_irqfd(s, event_notifier_get_fd(n),
1339 rn ? event_notifier_get_fd(rn) : -1, virq, true);
1342 int kvm_irqchip_remove_irqfd_notifier(KVMState *s, EventNotifier *n, int virq)
1344 return kvm_irqchip_assign_irqfd(s, event_notifier_get_fd(n), -1, virq,
1345 false);
1348 static void kvm_irqchip_create(MachineState *machine, KVMState *s)
1350 int ret;
1352 if (kvm_check_extension(s, KVM_CAP_IRQCHIP)) {
1354 } else if (kvm_check_extension(s, KVM_CAP_S390_IRQCHIP)) {
1355 ret = kvm_vm_enable_cap(s, KVM_CAP_S390_IRQCHIP, 0);
1356 if (ret < 0) {
1357 fprintf(stderr, "Enable kernel irqchip failed: %s\n", strerror(-ret));
1358 exit(1);
1360 } else {
1361 return;
1364 /* First probe and see if there's a arch-specific hook to create the
1365 * in-kernel irqchip for us */
1366 ret = kvm_arch_irqchip_create(s);
1367 if (ret == 0) {
1368 ret = kvm_vm_ioctl(s, KVM_CREATE_IRQCHIP);
1370 if (ret < 0) {
1371 fprintf(stderr, "Create kernel irqchip failed: %s\n", strerror(-ret));
1372 exit(1);
1375 kvm_kernel_irqchip = true;
1376 /* If we have an in-kernel IRQ chip then we must have asynchronous
1377 * interrupt delivery (though the reverse is not necessarily true)
1379 kvm_async_interrupts_allowed = true;
1380 kvm_halt_in_kernel_allowed = true;
1382 kvm_init_irq_routing(s);
1385 /* Find number of supported CPUs using the recommended
1386 * procedure from the kernel API documentation to cope with
1387 * older kernels that may be missing capabilities.
1389 static int kvm_recommended_vcpus(KVMState *s)
1391 int ret = kvm_check_extension(s, KVM_CAP_NR_VCPUS);
1392 return (ret) ? ret : 4;
1395 static int kvm_max_vcpus(KVMState *s)
1397 int ret = kvm_check_extension(s, KVM_CAP_MAX_VCPUS);
1398 return (ret) ? ret : kvm_recommended_vcpus(s);
1401 static int kvm_init(MachineState *ms)
1403 MachineClass *mc = MACHINE_GET_CLASS(ms);
1404 static const char upgrade_note[] =
1405 "Please upgrade to at least kernel 2.6.29 or recent kvm-kmod\n"
1406 "(see http://sourceforge.net/projects/kvm).\n";
1407 struct {
1408 const char *name;
1409 int num;
1410 } num_cpus[] = {
1411 { "SMP", smp_cpus },
1412 { "hotpluggable", max_cpus },
1413 { NULL, }
1414 }, *nc = num_cpus;
1415 int soft_vcpus_limit, hard_vcpus_limit;
1416 KVMState *s;
1417 const KVMCapabilityInfo *missing_cap;
1418 int ret;
1419 int type = 0;
1420 const char *kvm_type;
1422 s = KVM_STATE(ms->accelerator);
1425 * On systems where the kernel can support different base page
1426 * sizes, host page size may be different from TARGET_PAGE_SIZE,
1427 * even with KVM. TARGET_PAGE_SIZE is assumed to be the minimum
1428 * page size for the system though.
1430 assert(TARGET_PAGE_SIZE <= getpagesize());
1431 page_size_init();
1433 s->sigmask_len = 8;
1435 #ifdef KVM_CAP_SET_GUEST_DEBUG
1436 QTAILQ_INIT(&s->kvm_sw_breakpoints);
1437 #endif
1438 s->vmfd = -1;
1439 s->fd = qemu_open("/dev/kvm", O_RDWR);
1440 if (s->fd == -1) {
1441 fprintf(stderr, "Could not access KVM kernel module: %m\n");
1442 ret = -errno;
1443 goto err;
1446 ret = kvm_ioctl(s, KVM_GET_API_VERSION, 0);
1447 if (ret < KVM_API_VERSION) {
1448 if (ret >= 0) {
1449 ret = -EINVAL;
1451 fprintf(stderr, "kvm version too old\n");
1452 goto err;
1455 if (ret > KVM_API_VERSION) {
1456 ret = -EINVAL;
1457 fprintf(stderr, "kvm version not supported\n");
1458 goto err;
1461 s->nr_slots = kvm_check_extension(s, KVM_CAP_NR_MEMSLOTS);
1463 /* If unspecified, use the default value */
1464 if (!s->nr_slots) {
1465 s->nr_slots = 32;
1468 /* check the vcpu limits */
1469 soft_vcpus_limit = kvm_recommended_vcpus(s);
1470 hard_vcpus_limit = kvm_max_vcpus(s);
1472 while (nc->name) {
1473 if (nc->num > soft_vcpus_limit) {
1474 fprintf(stderr,
1475 "Warning: Number of %s cpus requested (%d) exceeds "
1476 "the recommended cpus supported by KVM (%d)\n",
1477 nc->name, nc->num, soft_vcpus_limit);
1479 if (nc->num > hard_vcpus_limit) {
1480 fprintf(stderr, "Number of %s cpus requested (%d) exceeds "
1481 "the maximum cpus supported by KVM (%d)\n",
1482 nc->name, nc->num, hard_vcpus_limit);
1483 exit(1);
1486 nc++;
1489 kvm_type = qemu_opt_get(qemu_get_machine_opts(), "kvm-type");
1490 if (mc->kvm_type) {
1491 type = mc->kvm_type(kvm_type);
1492 } else if (kvm_type) {
1493 ret = -EINVAL;
1494 fprintf(stderr, "Invalid argument kvm-type=%s\n", kvm_type);
1495 goto err;
1498 do {
1499 ret = kvm_ioctl(s, KVM_CREATE_VM, type);
1500 } while (ret == -EINTR);
1502 if (ret < 0) {
1503 fprintf(stderr, "ioctl(KVM_CREATE_VM) failed: %d %s\n", -ret,
1504 strerror(-ret));
1506 #ifdef TARGET_S390X
1507 if (ret == -EINVAL) {
1508 fprintf(stderr,
1509 "Host kernel setup problem detected. Please verify:\n");
1510 fprintf(stderr, "- for kernels supporting the switch_amode or"
1511 " user_mode parameters, whether\n");
1512 fprintf(stderr,
1513 " user space is running in primary address space\n");
1514 fprintf(stderr,
1515 "- for kernels supporting the vm.allocate_pgste sysctl, "
1516 "whether it is enabled\n");
1518 #endif
1519 goto err;
1522 s->vmfd = ret;
1523 missing_cap = kvm_check_extension_list(s, kvm_required_capabilites);
1524 if (!missing_cap) {
1525 missing_cap =
1526 kvm_check_extension_list(s, kvm_arch_required_capabilities);
1528 if (missing_cap) {
1529 ret = -EINVAL;
1530 fprintf(stderr, "kvm does not support %s\n%s",
1531 missing_cap->name, upgrade_note);
1532 goto err;
1535 s->coalesced_mmio = kvm_check_extension(s, KVM_CAP_COALESCED_MMIO);
1537 s->broken_set_mem_region = 1;
1538 ret = kvm_check_extension(s, KVM_CAP_JOIN_MEMORY_REGIONS_WORKS);
1539 if (ret > 0) {
1540 s->broken_set_mem_region = 0;
1543 #ifdef KVM_CAP_VCPU_EVENTS
1544 s->vcpu_events = kvm_check_extension(s, KVM_CAP_VCPU_EVENTS);
1545 #endif
1547 s->robust_singlestep =
1548 kvm_check_extension(s, KVM_CAP_X86_ROBUST_SINGLESTEP);
1550 #ifdef KVM_CAP_DEBUGREGS
1551 s->debugregs = kvm_check_extension(s, KVM_CAP_DEBUGREGS);
1552 #endif
1554 #ifdef KVM_CAP_XSAVE
1555 s->xsave = kvm_check_extension(s, KVM_CAP_XSAVE);
1556 #endif
1558 #ifdef KVM_CAP_XCRS
1559 s->xcrs = kvm_check_extension(s, KVM_CAP_XCRS);
1560 #endif
1562 #ifdef KVM_CAP_PIT_STATE2
1563 s->pit_state2 = kvm_check_extension(s, KVM_CAP_PIT_STATE2);
1564 #endif
1566 #ifdef KVM_CAP_IRQ_ROUTING
1567 s->direct_msi = (kvm_check_extension(s, KVM_CAP_SIGNAL_MSI) > 0);
1568 #endif
1570 s->intx_set_mask = kvm_check_extension(s, KVM_CAP_PCI_2_3);
1572 s->irq_set_ioctl = KVM_IRQ_LINE;
1573 if (kvm_check_extension(s, KVM_CAP_IRQ_INJECT_STATUS)) {
1574 s->irq_set_ioctl = KVM_IRQ_LINE_STATUS;
1577 #ifdef KVM_CAP_READONLY_MEM
1578 kvm_readonly_mem_allowed =
1579 (kvm_check_extension(s, KVM_CAP_READONLY_MEM) > 0);
1580 #endif
1582 kvm_eventfds_allowed =
1583 (kvm_check_extension(s, KVM_CAP_IOEVENTFD) > 0);
1585 kvm_irqfds_allowed =
1586 (kvm_check_extension(s, KVM_CAP_IRQFD) > 0);
1588 kvm_resamplefds_allowed =
1589 (kvm_check_extension(s, KVM_CAP_IRQFD_RESAMPLE) > 0);
1591 kvm_vm_attributes_allowed =
1592 (kvm_check_extension(s, KVM_CAP_VM_ATTRIBUTES) > 0);
1594 ret = kvm_arch_init(ms, s);
1595 if (ret < 0) {
1596 goto err;
1599 if (machine_kernel_irqchip_allowed(ms)) {
1600 kvm_irqchip_create(ms, s);
1603 kvm_state = s;
1605 s->memory_listener.listener.eventfd_add = kvm_mem_ioeventfd_add;
1606 s->memory_listener.listener.eventfd_del = kvm_mem_ioeventfd_del;
1607 s->memory_listener.listener.coalesced_mmio_add = kvm_coalesce_mmio_region;
1608 s->memory_listener.listener.coalesced_mmio_del = kvm_uncoalesce_mmio_region;
1610 kvm_memory_listener_register(s, &s->memory_listener,
1611 &address_space_memory, 0);
1612 memory_listener_register(&kvm_io_listener,
1613 &address_space_io);
1615 s->many_ioeventfds = kvm_check_many_ioeventfds();
1617 cpu_interrupt_handler = kvm_handle_interrupt;
1619 return 0;
1621 err:
1622 assert(ret < 0);
1623 if (s->vmfd >= 0) {
1624 close(s->vmfd);
1626 if (s->fd != -1) {
1627 close(s->fd);
1629 g_free(s->memory_listener.slots);
1631 return ret;
1634 void kvm_set_sigmask_len(KVMState *s, unsigned int sigmask_len)
1636 s->sigmask_len = sigmask_len;
1639 static void kvm_handle_io(uint16_t port, MemTxAttrs attrs, void *data, int direction,
1640 int size, uint32_t count)
1642 int i;
1643 uint8_t *ptr = data;
1645 for (i = 0; i < count; i++) {
1646 address_space_rw(&address_space_io, port, attrs,
1647 ptr, size,
1648 direction == KVM_EXIT_IO_OUT);
1649 ptr += size;
1653 static int kvm_handle_internal_error(CPUState *cpu, struct kvm_run *run)
1655 fprintf(stderr, "KVM internal error. Suberror: %d\n",
1656 run->internal.suberror);
1658 if (kvm_check_extension(kvm_state, KVM_CAP_INTERNAL_ERROR_DATA)) {
1659 int i;
1661 for (i = 0; i < run->internal.ndata; ++i) {
1662 fprintf(stderr, "extra data[%d]: %"PRIx64"\n",
1663 i, (uint64_t)run->internal.data[i]);
1666 if (run->internal.suberror == KVM_INTERNAL_ERROR_EMULATION) {
1667 fprintf(stderr, "emulation failure\n");
1668 if (!kvm_arch_stop_on_emulation_error(cpu)) {
1669 cpu_dump_state(cpu, stderr, fprintf, CPU_DUMP_CODE);
1670 return EXCP_INTERRUPT;
1673 /* FIXME: Should trigger a qmp message to let management know
1674 * something went wrong.
1676 return -1;
1679 void kvm_flush_coalesced_mmio_buffer(void)
1681 KVMState *s = kvm_state;
1683 if (s->coalesced_flush_in_progress) {
1684 return;
1687 s->coalesced_flush_in_progress = true;
1689 if (s->coalesced_mmio_ring) {
1690 struct kvm_coalesced_mmio_ring *ring = s->coalesced_mmio_ring;
1691 while (ring->first != ring->last) {
1692 struct kvm_coalesced_mmio *ent;
1694 ent = &ring->coalesced_mmio[ring->first];
1696 cpu_physical_memory_write(ent->phys_addr, ent->data, ent->len);
1697 smp_wmb();
1698 ring->first = (ring->first + 1) % KVM_COALESCED_MMIO_MAX;
1702 s->coalesced_flush_in_progress = false;
1705 static void do_kvm_cpu_synchronize_state(void *arg)
1707 CPUState *cpu = arg;
1709 if (!cpu->kvm_vcpu_dirty) {
1710 kvm_arch_get_registers(cpu);
1711 cpu->kvm_vcpu_dirty = true;
1715 void kvm_cpu_synchronize_state(CPUState *cpu)
1717 if (!cpu->kvm_vcpu_dirty) {
1718 run_on_cpu(cpu, do_kvm_cpu_synchronize_state, cpu);
1722 static void do_kvm_cpu_synchronize_post_reset(void *arg)
1724 CPUState *cpu = arg;
1726 kvm_arch_put_registers(cpu, KVM_PUT_RESET_STATE);
1727 cpu->kvm_vcpu_dirty = false;
1730 void kvm_cpu_synchronize_post_reset(CPUState *cpu)
1732 run_on_cpu(cpu, do_kvm_cpu_synchronize_post_reset, cpu);
1735 static void do_kvm_cpu_synchronize_post_init(void *arg)
1737 CPUState *cpu = arg;
1739 kvm_arch_put_registers(cpu, KVM_PUT_FULL_STATE);
1740 cpu->kvm_vcpu_dirty = false;
1743 void kvm_cpu_synchronize_post_init(CPUState *cpu)
1745 run_on_cpu(cpu, do_kvm_cpu_synchronize_post_init, cpu);
1748 void kvm_cpu_clean_state(CPUState *cpu)
1750 cpu->kvm_vcpu_dirty = false;
1753 int kvm_cpu_exec(CPUState *cpu)
1755 struct kvm_run *run = cpu->kvm_run;
1756 int ret, run_ret;
1758 DPRINTF("kvm_cpu_exec()\n");
1760 if (kvm_arch_process_async_events(cpu)) {
1761 cpu->exit_request = 0;
1762 return EXCP_HLT;
1765 qemu_mutex_unlock_iothread();
1767 do {
1768 MemTxAttrs attrs;
1770 if (cpu->kvm_vcpu_dirty) {
1771 kvm_arch_put_registers(cpu, KVM_PUT_RUNTIME_STATE);
1772 cpu->kvm_vcpu_dirty = false;
1775 kvm_arch_pre_run(cpu, run);
1776 if (cpu->exit_request) {
1777 DPRINTF("interrupt exit requested\n");
1779 * KVM requires us to reenter the kernel after IO exits to complete
1780 * instruction emulation. This self-signal will ensure that we
1781 * leave ASAP again.
1783 qemu_cpu_kick_self();
1786 run_ret = kvm_vcpu_ioctl(cpu, KVM_RUN, 0);
1788 attrs = kvm_arch_post_run(cpu, run);
1790 if (run_ret < 0) {
1791 if (run_ret == -EINTR || run_ret == -EAGAIN) {
1792 DPRINTF("io window exit\n");
1793 ret = EXCP_INTERRUPT;
1794 break;
1796 fprintf(stderr, "error: kvm run failed %s\n",
1797 strerror(-run_ret));
1798 #ifdef TARGET_PPC
1799 if (run_ret == -EBUSY) {
1800 fprintf(stderr,
1801 "This is probably because your SMT is enabled.\n"
1802 "VCPU can only run on primary threads with all "
1803 "secondary threads offline.\n");
1805 #endif
1806 ret = -1;
1807 break;
1810 trace_kvm_run_exit(cpu->cpu_index, run->exit_reason);
1811 switch (run->exit_reason) {
1812 case KVM_EXIT_IO:
1813 DPRINTF("handle_io\n");
1814 /* Called outside BQL */
1815 kvm_handle_io(run->io.port, attrs,
1816 (uint8_t *)run + run->io.data_offset,
1817 run->io.direction,
1818 run->io.size,
1819 run->io.count);
1820 ret = 0;
1821 break;
1822 case KVM_EXIT_MMIO:
1823 DPRINTF("handle_mmio\n");
1824 /* Called outside BQL */
1825 address_space_rw(&address_space_memory,
1826 run->mmio.phys_addr, attrs,
1827 run->mmio.data,
1828 run->mmio.len,
1829 run->mmio.is_write);
1830 ret = 0;
1831 break;
1832 case KVM_EXIT_IRQ_WINDOW_OPEN:
1833 DPRINTF("irq_window_open\n");
1834 ret = EXCP_INTERRUPT;
1835 break;
1836 case KVM_EXIT_SHUTDOWN:
1837 DPRINTF("shutdown\n");
1838 qemu_system_reset_request();
1839 ret = EXCP_INTERRUPT;
1840 break;
1841 case KVM_EXIT_UNKNOWN:
1842 fprintf(stderr, "KVM: unknown exit, hardware reason %" PRIx64 "\n",
1843 (uint64_t)run->hw.hardware_exit_reason);
1844 ret = -1;
1845 break;
1846 case KVM_EXIT_INTERNAL_ERROR:
1847 ret = kvm_handle_internal_error(cpu, run);
1848 break;
1849 case KVM_EXIT_SYSTEM_EVENT:
1850 switch (run->system_event.type) {
1851 case KVM_SYSTEM_EVENT_SHUTDOWN:
1852 qemu_system_shutdown_request();
1853 ret = EXCP_INTERRUPT;
1854 break;
1855 case KVM_SYSTEM_EVENT_RESET:
1856 qemu_system_reset_request();
1857 ret = EXCP_INTERRUPT;
1858 break;
1859 default:
1860 DPRINTF("kvm_arch_handle_exit\n");
1861 ret = kvm_arch_handle_exit(cpu, run);
1862 break;
1864 break;
1865 default:
1866 DPRINTF("kvm_arch_handle_exit\n");
1867 ret = kvm_arch_handle_exit(cpu, run);
1868 break;
1870 } while (ret == 0);
1872 qemu_mutex_lock_iothread();
1874 if (ret < 0) {
1875 cpu_dump_state(cpu, stderr, fprintf, CPU_DUMP_CODE);
1876 vm_stop(RUN_STATE_INTERNAL_ERROR);
1879 cpu->exit_request = 0;
1880 return ret;
1883 int kvm_ioctl(KVMState *s, int type, ...)
1885 int ret;
1886 void *arg;
1887 va_list ap;
1889 va_start(ap, type);
1890 arg = va_arg(ap, void *);
1891 va_end(ap);
1893 trace_kvm_ioctl(type, arg);
1894 ret = ioctl(s->fd, type, arg);
1895 if (ret == -1) {
1896 ret = -errno;
1898 return ret;
1901 int kvm_vm_ioctl(KVMState *s, int type, ...)
1903 int ret;
1904 void *arg;
1905 va_list ap;
1907 va_start(ap, type);
1908 arg = va_arg(ap, void *);
1909 va_end(ap);
1911 trace_kvm_vm_ioctl(type, arg);
1912 ret = ioctl(s->vmfd, type, arg);
1913 if (ret == -1) {
1914 ret = -errno;
1916 return ret;
1919 int kvm_vcpu_ioctl(CPUState *cpu, int type, ...)
1921 int ret;
1922 void *arg;
1923 va_list ap;
1925 va_start(ap, type);
1926 arg = va_arg(ap, void *);
1927 va_end(ap);
1929 trace_kvm_vcpu_ioctl(cpu->cpu_index, type, arg);
1930 ret = ioctl(cpu->kvm_fd, type, arg);
1931 if (ret == -1) {
1932 ret = -errno;
1934 return ret;
1937 int kvm_device_ioctl(int fd, int type, ...)
1939 int ret;
1940 void *arg;
1941 va_list ap;
1943 va_start(ap, type);
1944 arg = va_arg(ap, void *);
1945 va_end(ap);
1947 trace_kvm_device_ioctl(fd, type, arg);
1948 ret = ioctl(fd, type, arg);
1949 if (ret == -1) {
1950 ret = -errno;
1952 return ret;
1955 int kvm_vm_check_attr(KVMState *s, uint32_t group, uint64_t attr)
1957 int ret;
1958 struct kvm_device_attr attribute = {
1959 .group = group,
1960 .attr = attr,
1963 if (!kvm_vm_attributes_allowed) {
1964 return 0;
1967 ret = kvm_vm_ioctl(s, KVM_HAS_DEVICE_ATTR, &attribute);
1968 /* kvm returns 0 on success for HAS_DEVICE_ATTR */
1969 return ret ? 0 : 1;
1972 int kvm_has_sync_mmu(void)
1974 return kvm_check_extension(kvm_state, KVM_CAP_SYNC_MMU);
1977 int kvm_has_vcpu_events(void)
1979 return kvm_state->vcpu_events;
1982 int kvm_has_robust_singlestep(void)
1984 return kvm_state->robust_singlestep;
1987 int kvm_has_debugregs(void)
1989 return kvm_state->debugregs;
1992 int kvm_has_xsave(void)
1994 return kvm_state->xsave;
1997 int kvm_has_xcrs(void)
1999 return kvm_state->xcrs;
2002 int kvm_has_pit_state2(void)
2004 return kvm_state->pit_state2;
2007 int kvm_has_many_ioeventfds(void)
2009 if (!kvm_enabled()) {
2010 return 0;
2012 return kvm_state->many_ioeventfds;
2015 int kvm_has_gsi_routing(void)
2017 #ifdef KVM_CAP_IRQ_ROUTING
2018 return kvm_check_extension(kvm_state, KVM_CAP_IRQ_ROUTING);
2019 #else
2020 return false;
2021 #endif
2024 int kvm_has_intx_set_mask(void)
2026 return kvm_state->intx_set_mask;
2029 void kvm_setup_guest_memory(void *start, size_t size)
2031 if (!kvm_has_sync_mmu()) {
2032 int ret = qemu_madvise(start, size, QEMU_MADV_DONTFORK);
2034 if (ret) {
2035 perror("qemu_madvise");
2036 fprintf(stderr,
2037 "Need MADV_DONTFORK in absence of synchronous KVM MMU\n");
2038 exit(1);
2043 #ifdef KVM_CAP_SET_GUEST_DEBUG
2044 struct kvm_sw_breakpoint *kvm_find_sw_breakpoint(CPUState *cpu,
2045 target_ulong pc)
2047 struct kvm_sw_breakpoint *bp;
2049 QTAILQ_FOREACH(bp, &cpu->kvm_state->kvm_sw_breakpoints, entry) {
2050 if (bp->pc == pc) {
2051 return bp;
2054 return NULL;
2057 int kvm_sw_breakpoints_active(CPUState *cpu)
2059 return !QTAILQ_EMPTY(&cpu->kvm_state->kvm_sw_breakpoints);
2062 struct kvm_set_guest_debug_data {
2063 struct kvm_guest_debug dbg;
2064 CPUState *cpu;
2065 int err;
2068 static void kvm_invoke_set_guest_debug(void *data)
2070 struct kvm_set_guest_debug_data *dbg_data = data;
2072 dbg_data->err = kvm_vcpu_ioctl(dbg_data->cpu, KVM_SET_GUEST_DEBUG,
2073 &dbg_data->dbg);
2076 int kvm_update_guest_debug(CPUState *cpu, unsigned long reinject_trap)
2078 struct kvm_set_guest_debug_data data;
2080 data.dbg.control = reinject_trap;
2082 if (cpu->singlestep_enabled) {
2083 data.dbg.control |= KVM_GUESTDBG_ENABLE | KVM_GUESTDBG_SINGLESTEP;
2085 kvm_arch_update_guest_debug(cpu, &data.dbg);
2086 data.cpu = cpu;
2088 run_on_cpu(cpu, kvm_invoke_set_guest_debug, &data);
2089 return data.err;
2092 int kvm_insert_breakpoint(CPUState *cpu, target_ulong addr,
2093 target_ulong len, int type)
2095 struct kvm_sw_breakpoint *bp;
2096 int err;
2098 if (type == GDB_BREAKPOINT_SW) {
2099 bp = kvm_find_sw_breakpoint(cpu, addr);
2100 if (bp) {
2101 bp->use_count++;
2102 return 0;
2105 bp = g_malloc(sizeof(struct kvm_sw_breakpoint));
2106 bp->pc = addr;
2107 bp->use_count = 1;
2108 err = kvm_arch_insert_sw_breakpoint(cpu, bp);
2109 if (err) {
2110 g_free(bp);
2111 return err;
2114 QTAILQ_INSERT_HEAD(&cpu->kvm_state->kvm_sw_breakpoints, bp, entry);
2115 } else {
2116 err = kvm_arch_insert_hw_breakpoint(addr, len, type);
2117 if (err) {
2118 return err;
2122 CPU_FOREACH(cpu) {
2123 err = kvm_update_guest_debug(cpu, 0);
2124 if (err) {
2125 return err;
2128 return 0;
2131 int kvm_remove_breakpoint(CPUState *cpu, target_ulong addr,
2132 target_ulong len, int type)
2134 struct kvm_sw_breakpoint *bp;
2135 int err;
2137 if (type == GDB_BREAKPOINT_SW) {
2138 bp = kvm_find_sw_breakpoint(cpu, addr);
2139 if (!bp) {
2140 return -ENOENT;
2143 if (bp->use_count > 1) {
2144 bp->use_count--;
2145 return 0;
2148 err = kvm_arch_remove_sw_breakpoint(cpu, bp);
2149 if (err) {
2150 return err;
2153 QTAILQ_REMOVE(&cpu->kvm_state->kvm_sw_breakpoints, bp, entry);
2154 g_free(bp);
2155 } else {
2156 err = kvm_arch_remove_hw_breakpoint(addr, len, type);
2157 if (err) {
2158 return err;
2162 CPU_FOREACH(cpu) {
2163 err = kvm_update_guest_debug(cpu, 0);
2164 if (err) {
2165 return err;
2168 return 0;
2171 void kvm_remove_all_breakpoints(CPUState *cpu)
2173 struct kvm_sw_breakpoint *bp, *next;
2174 KVMState *s = cpu->kvm_state;
2175 CPUState *tmpcpu;
2177 QTAILQ_FOREACH_SAFE(bp, &s->kvm_sw_breakpoints, entry, next) {
2178 if (kvm_arch_remove_sw_breakpoint(cpu, bp) != 0) {
2179 /* Try harder to find a CPU that currently sees the breakpoint. */
2180 CPU_FOREACH(tmpcpu) {
2181 if (kvm_arch_remove_sw_breakpoint(tmpcpu, bp) == 0) {
2182 break;
2186 QTAILQ_REMOVE(&s->kvm_sw_breakpoints, bp, entry);
2187 g_free(bp);
2189 kvm_arch_remove_all_hw_breakpoints();
2191 CPU_FOREACH(cpu) {
2192 kvm_update_guest_debug(cpu, 0);
2196 #else /* !KVM_CAP_SET_GUEST_DEBUG */
2198 int kvm_update_guest_debug(CPUState *cpu, unsigned long reinject_trap)
2200 return -EINVAL;
2203 int kvm_insert_breakpoint(CPUState *cpu, target_ulong addr,
2204 target_ulong len, int type)
2206 return -EINVAL;
2209 int kvm_remove_breakpoint(CPUState *cpu, target_ulong addr,
2210 target_ulong len, int type)
2212 return -EINVAL;
2215 void kvm_remove_all_breakpoints(CPUState *cpu)
2218 #endif /* !KVM_CAP_SET_GUEST_DEBUG */
2220 int kvm_set_signal_mask(CPUState *cpu, const sigset_t *sigset)
2222 KVMState *s = kvm_state;
2223 struct kvm_signal_mask *sigmask;
2224 int r;
2226 if (!sigset) {
2227 return kvm_vcpu_ioctl(cpu, KVM_SET_SIGNAL_MASK, NULL);
2230 sigmask = g_malloc(sizeof(*sigmask) + sizeof(*sigset));
2232 sigmask->len = s->sigmask_len;
2233 memcpy(sigmask->sigset, sigset, sizeof(*sigset));
2234 r = kvm_vcpu_ioctl(cpu, KVM_SET_SIGNAL_MASK, sigmask);
2235 g_free(sigmask);
2237 return r;
2239 int kvm_on_sigbus_vcpu(CPUState *cpu, int code, void *addr)
2241 return kvm_arch_on_sigbus_vcpu(cpu, code, addr);
2244 int kvm_on_sigbus(int code, void *addr)
2246 return kvm_arch_on_sigbus(code, addr);
2249 int kvm_create_device(KVMState *s, uint64_t type, bool test)
2251 int ret;
2252 struct kvm_create_device create_dev;
2254 create_dev.type = type;
2255 create_dev.fd = -1;
2256 create_dev.flags = test ? KVM_CREATE_DEVICE_TEST : 0;
2258 if (!kvm_check_extension(s, KVM_CAP_DEVICE_CTRL)) {
2259 return -ENOTSUP;
2262 ret = kvm_vm_ioctl(s, KVM_CREATE_DEVICE, &create_dev);
2263 if (ret) {
2264 return ret;
2267 return test ? 0 : create_dev.fd;
2270 int kvm_set_one_reg(CPUState *cs, uint64_t id, void *source)
2272 struct kvm_one_reg reg;
2273 int r;
2275 reg.id = id;
2276 reg.addr = (uintptr_t) source;
2277 r = kvm_vcpu_ioctl(cs, KVM_SET_ONE_REG, &reg);
2278 if (r) {
2279 trace_kvm_failed_reg_set(id, strerror(r));
2281 return r;
2284 int kvm_get_one_reg(CPUState *cs, uint64_t id, void *target)
2286 struct kvm_one_reg reg;
2287 int r;
2289 reg.id = id;
2290 reg.addr = (uintptr_t) target;
2291 r = kvm_vcpu_ioctl(cs, KVM_GET_ONE_REG, &reg);
2292 if (r) {
2293 trace_kvm_failed_reg_get(id, strerror(r));
2295 return r;
2298 static void kvm_accel_class_init(ObjectClass *oc, void *data)
2300 AccelClass *ac = ACCEL_CLASS(oc);
2301 ac->name = "KVM";
2302 ac->init_machine = kvm_init;
2303 ac->allowed = &kvm_allowed;
2306 static const TypeInfo kvm_accel_type = {
2307 .name = TYPE_KVM_ACCEL,
2308 .parent = TYPE_ACCEL,
2309 .class_init = kvm_accel_class_init,
2310 .instance_size = sizeof(KVMState),
2313 static void kvm_type_init(void)
2315 type_register_static(&kvm_accel_type);
2318 type_init(kvm_type_init);