hw/arm: versal: Add support for the RTC
[qemu/ar7.git] / hw / net / ftgmac100.c
blob041ed21017296f293a4042ff31c5acda5d286d68
1 /*
2 * Faraday FTGMAC100 Gigabit Ethernet
4 * Copyright (C) 2016-2017, IBM Corporation.
6 * Based on Coldfire Fast Ethernet Controller emulation.
8 * Copyright (c) 2007 CodeSourcery.
10 * This code is licensed under the GPL version 2 or later. See the
11 * COPYING file in the top-level directory.
14 #include "qemu/osdep.h"
15 #include "hw/irq.h"
16 #include "hw/net/ftgmac100.h"
17 #include "sysemu/dma.h"
18 #include "qapi/error.h"
19 #include "qemu/log.h"
20 #include "qemu/module.h"
21 #include "net/checksum.h"
22 #include "net/eth.h"
23 #include "hw/net/mii.h"
24 #include "hw/qdev-properties.h"
25 #include "migration/vmstate.h"
27 /* For crc32 */
28 #include <zlib.h>
31 * FTGMAC100 registers
33 #define FTGMAC100_ISR 0x00
34 #define FTGMAC100_IER 0x04
35 #define FTGMAC100_MAC_MADR 0x08
36 #define FTGMAC100_MAC_LADR 0x0c
37 #define FTGMAC100_MATH0 0x10
38 #define FTGMAC100_MATH1 0x14
39 #define FTGMAC100_NPTXPD 0x18
40 #define FTGMAC100_RXPD 0x1C
41 #define FTGMAC100_NPTXR_BADR 0x20
42 #define FTGMAC100_RXR_BADR 0x24
43 #define FTGMAC100_HPTXPD 0x28
44 #define FTGMAC100_HPTXR_BADR 0x2c
45 #define FTGMAC100_ITC 0x30
46 #define FTGMAC100_APTC 0x34
47 #define FTGMAC100_DBLAC 0x38
48 #define FTGMAC100_REVR 0x40
49 #define FTGMAC100_FEAR1 0x44
50 #define FTGMAC100_RBSR 0x4c
51 #define FTGMAC100_TPAFCR 0x48
53 #define FTGMAC100_MACCR 0x50
54 #define FTGMAC100_MACSR 0x54
55 #define FTGMAC100_PHYCR 0x60
56 #define FTGMAC100_PHYDATA 0x64
57 #define FTGMAC100_FCR 0x68
60 * Interrupt status register & interrupt enable register
62 #define FTGMAC100_INT_RPKT_BUF (1 << 0)
63 #define FTGMAC100_INT_RPKT_FIFO (1 << 1)
64 #define FTGMAC100_INT_NO_RXBUF (1 << 2)
65 #define FTGMAC100_INT_RPKT_LOST (1 << 3)
66 #define FTGMAC100_INT_XPKT_ETH (1 << 4)
67 #define FTGMAC100_INT_XPKT_FIFO (1 << 5)
68 #define FTGMAC100_INT_NO_NPTXBUF (1 << 6)
69 #define FTGMAC100_INT_XPKT_LOST (1 << 7)
70 #define FTGMAC100_INT_AHB_ERR (1 << 8)
71 #define FTGMAC100_INT_PHYSTS_CHG (1 << 9)
72 #define FTGMAC100_INT_NO_HPTXBUF (1 << 10)
75 * Automatic polling timer control register
77 #define FTGMAC100_APTC_RXPOLL_CNT(x) ((x) & 0xf)
78 #define FTGMAC100_APTC_RXPOLL_TIME_SEL (1 << 4)
79 #define FTGMAC100_APTC_TXPOLL_CNT(x) (((x) >> 8) & 0xf)
80 #define FTGMAC100_APTC_TXPOLL_TIME_SEL (1 << 12)
83 * PHY control register
85 #define FTGMAC100_PHYCR_MIIRD (1 << 26)
86 #define FTGMAC100_PHYCR_MIIWR (1 << 27)
88 #define FTGMAC100_PHYCR_DEV(x) (((x) >> 16) & 0x1f)
89 #define FTGMAC100_PHYCR_REG(x) (((x) >> 21) & 0x1f)
92 * PHY data register
94 #define FTGMAC100_PHYDATA_MIIWDATA(x) ((x) & 0xffff)
95 #define FTGMAC100_PHYDATA_MIIRDATA(x) (((x) >> 16) & 0xffff)
98 * PHY control register - New MDC/MDIO interface
100 #define FTGMAC100_PHYCR_NEW_DATA(x) (((x) >> 16) & 0xffff)
101 #define FTGMAC100_PHYCR_NEW_FIRE (1 << 15)
102 #define FTGMAC100_PHYCR_NEW_ST_22 (1 << 12)
103 #define FTGMAC100_PHYCR_NEW_OP(x) (((x) >> 10) & 3)
104 #define FTGMAC100_PHYCR_NEW_OP_WRITE 0x1
105 #define FTGMAC100_PHYCR_NEW_OP_READ 0x2
106 #define FTGMAC100_PHYCR_NEW_DEV(x) (((x) >> 5) & 0x1f)
107 #define FTGMAC100_PHYCR_NEW_REG(x) ((x) & 0x1f)
110 * Feature Register
112 #define FTGMAC100_REVR_NEW_MDIO_INTERFACE (1 << 31)
115 * MAC control register
117 #define FTGMAC100_MACCR_TXDMA_EN (1 << 0)
118 #define FTGMAC100_MACCR_RXDMA_EN (1 << 1)
119 #define FTGMAC100_MACCR_TXMAC_EN (1 << 2)
120 #define FTGMAC100_MACCR_RXMAC_EN (1 << 3)
121 #define FTGMAC100_MACCR_RM_VLAN (1 << 4)
122 #define FTGMAC100_MACCR_HPTXR_EN (1 << 5)
123 #define FTGMAC100_MACCR_LOOP_EN (1 << 6)
124 #define FTGMAC100_MACCR_ENRX_IN_HALFTX (1 << 7)
125 #define FTGMAC100_MACCR_FULLDUP (1 << 8)
126 #define FTGMAC100_MACCR_GIGA_MODE (1 << 9)
127 #define FTGMAC100_MACCR_CRC_APD (1 << 10) /* not needed */
128 #define FTGMAC100_MACCR_RX_RUNT (1 << 12)
129 #define FTGMAC100_MACCR_JUMBO_LF (1 << 13)
130 #define FTGMAC100_MACCR_RX_ALL (1 << 14)
131 #define FTGMAC100_MACCR_HT_MULTI_EN (1 << 15)
132 #define FTGMAC100_MACCR_RX_MULTIPKT (1 << 16)
133 #define FTGMAC100_MACCR_RX_BROADPKT (1 << 17)
134 #define FTGMAC100_MACCR_DISCARD_CRCERR (1 << 18)
135 #define FTGMAC100_MACCR_FAST_MODE (1 << 19)
136 #define FTGMAC100_MACCR_SW_RST (1 << 31)
139 * Transmit descriptor
141 #define FTGMAC100_TXDES0_TXBUF_SIZE(x) ((x) & 0x3fff)
142 #define FTGMAC100_TXDES0_EDOTR (1 << 15)
143 #define FTGMAC100_TXDES0_CRC_ERR (1 << 19)
144 #define FTGMAC100_TXDES0_LTS (1 << 28)
145 #define FTGMAC100_TXDES0_FTS (1 << 29)
146 #define FTGMAC100_TXDES0_EDOTR_ASPEED (1 << 30)
147 #define FTGMAC100_TXDES0_TXDMA_OWN (1 << 31)
149 #define FTGMAC100_TXDES1_VLANTAG_CI(x) ((x) & 0xffff)
150 #define FTGMAC100_TXDES1_INS_VLANTAG (1 << 16)
151 #define FTGMAC100_TXDES1_TCP_CHKSUM (1 << 17)
152 #define FTGMAC100_TXDES1_UDP_CHKSUM (1 << 18)
153 #define FTGMAC100_TXDES1_IP_CHKSUM (1 << 19)
154 #define FTGMAC100_TXDES1_LLC (1 << 22)
155 #define FTGMAC100_TXDES1_TX2FIC (1 << 30)
156 #define FTGMAC100_TXDES1_TXIC (1 << 31)
159 * Receive descriptor
161 #define FTGMAC100_RXDES0_VDBC 0x3fff
162 #define FTGMAC100_RXDES0_EDORR (1 << 15)
163 #define FTGMAC100_RXDES0_MULTICAST (1 << 16)
164 #define FTGMAC100_RXDES0_BROADCAST (1 << 17)
165 #define FTGMAC100_RXDES0_RX_ERR (1 << 18)
166 #define FTGMAC100_RXDES0_CRC_ERR (1 << 19)
167 #define FTGMAC100_RXDES0_FTL (1 << 20)
168 #define FTGMAC100_RXDES0_RUNT (1 << 21)
169 #define FTGMAC100_RXDES0_RX_ODD_NB (1 << 22)
170 #define FTGMAC100_RXDES0_FIFO_FULL (1 << 23)
171 #define FTGMAC100_RXDES0_PAUSE_OPCODE (1 << 24)
172 #define FTGMAC100_RXDES0_PAUSE_FRAME (1 << 25)
173 #define FTGMAC100_RXDES0_LRS (1 << 28)
174 #define FTGMAC100_RXDES0_FRS (1 << 29)
175 #define FTGMAC100_RXDES0_EDORR_ASPEED (1 << 30)
176 #define FTGMAC100_RXDES0_RXPKT_RDY (1 << 31)
178 #define FTGMAC100_RXDES1_VLANTAG_CI 0xffff
179 #define FTGMAC100_RXDES1_PROT_MASK (0x3 << 20)
180 #define FTGMAC100_RXDES1_PROT_NONIP (0x0 << 20)
181 #define FTGMAC100_RXDES1_PROT_IP (0x1 << 20)
182 #define FTGMAC100_RXDES1_PROT_TCPIP (0x2 << 20)
183 #define FTGMAC100_RXDES1_PROT_UDPIP (0x3 << 20)
184 #define FTGMAC100_RXDES1_LLC (1 << 22)
185 #define FTGMAC100_RXDES1_DF (1 << 23)
186 #define FTGMAC100_RXDES1_VLANTAG_AVAIL (1 << 24)
187 #define FTGMAC100_RXDES1_TCP_CHKSUM_ERR (1 << 25)
188 #define FTGMAC100_RXDES1_UDP_CHKSUM_ERR (1 << 26)
189 #define FTGMAC100_RXDES1_IP_CHKSUM_ERR (1 << 27)
192 * Receive and transmit Buffer Descriptor
194 typedef struct {
195 uint32_t des0;
196 uint32_t des1;
197 uint32_t des2; /* not used by HW */
198 uint32_t des3;
199 } FTGMAC100Desc;
201 #define FTGMAC100_DESC_ALIGNMENT 16
204 * Specific RTL8211E MII Registers
206 #define RTL8211E_MII_PHYCR 16 /* PHY Specific Control */
207 #define RTL8211E_MII_PHYSR 17 /* PHY Specific Status */
208 #define RTL8211E_MII_INER 18 /* Interrupt Enable */
209 #define RTL8211E_MII_INSR 19 /* Interrupt Status */
210 #define RTL8211E_MII_RXERC 24 /* Receive Error Counter */
211 #define RTL8211E_MII_LDPSR 27 /* Link Down Power Saving */
212 #define RTL8211E_MII_EPAGSR 30 /* Extension Page Select */
213 #define RTL8211E_MII_PAGSEL 31 /* Page Select */
216 * RTL8211E Interrupt Status
218 #define PHY_INT_AUTONEG_ERROR (1 << 15)
219 #define PHY_INT_PAGE_RECV (1 << 12)
220 #define PHY_INT_AUTONEG_COMPLETE (1 << 11)
221 #define PHY_INT_LINK_STATUS (1 << 10)
222 #define PHY_INT_ERROR (1 << 9)
223 #define PHY_INT_DOWN (1 << 8)
224 #define PHY_INT_JABBER (1 << 0)
227 * Max frame size for the receiving buffer
229 #define FTGMAC100_MAX_FRAME_SIZE 9220
231 /* Limits depending on the type of the frame
233 * 9216 for Jumbo frames (+ 4 for VLAN)
234 * 1518 for other frames (+ 4 for VLAN)
236 static int ftgmac100_max_frame_size(FTGMAC100State *s, uint16_t proto)
238 int max = (s->maccr & FTGMAC100_MACCR_JUMBO_LF ? 9216 : 1518);
240 return max + (proto == ETH_P_VLAN ? 4 : 0);
243 static void ftgmac100_update_irq(FTGMAC100State *s)
245 qemu_set_irq(s->irq, s->isr & s->ier);
249 * The MII phy could raise a GPIO to the processor which in turn
250 * could be handled as an interrpt by the OS.
251 * For now we don't handle any GPIO/interrupt line, so the OS will
252 * have to poll for the PHY status.
254 static void phy_update_irq(FTGMAC100State *s)
256 ftgmac100_update_irq(s);
259 static void phy_update_link(FTGMAC100State *s)
261 /* Autonegotiation status mirrors link status. */
262 if (qemu_get_queue(s->nic)->link_down) {
263 s->phy_status &= ~(MII_BMSR_LINK_ST | MII_BMSR_AN_COMP);
264 s->phy_int |= PHY_INT_DOWN;
265 } else {
266 s->phy_status |= (MII_BMSR_LINK_ST | MII_BMSR_AN_COMP);
267 s->phy_int |= PHY_INT_AUTONEG_COMPLETE;
269 phy_update_irq(s);
272 static void ftgmac100_set_link(NetClientState *nc)
274 phy_update_link(FTGMAC100(qemu_get_nic_opaque(nc)));
277 static void phy_reset(FTGMAC100State *s)
279 s->phy_status = (MII_BMSR_100TX_FD | MII_BMSR_100TX_HD | MII_BMSR_10T_FD |
280 MII_BMSR_10T_HD | MII_BMSR_EXTSTAT | MII_BMSR_MFPS |
281 MII_BMSR_AN_COMP | MII_BMSR_AUTONEG | MII_BMSR_LINK_ST |
282 MII_BMSR_EXTCAP);
283 s->phy_control = (MII_BMCR_AUTOEN | MII_BMCR_FD | MII_BMCR_SPEED1000);
284 s->phy_advertise = (MII_ANAR_PAUSE_ASYM | MII_ANAR_PAUSE | MII_ANAR_TXFD |
285 MII_ANAR_TX | MII_ANAR_10FD | MII_ANAR_10 |
286 MII_ANAR_CSMACD);
287 s->phy_int_mask = 0;
288 s->phy_int = 0;
291 static uint16_t do_phy_read(FTGMAC100State *s, uint8_t reg)
293 uint16_t val;
295 switch (reg) {
296 case MII_BMCR: /* Basic Control */
297 val = s->phy_control;
298 break;
299 case MII_BMSR: /* Basic Status */
300 val = s->phy_status;
301 break;
302 case MII_PHYID1: /* ID1 */
303 val = RTL8211E_PHYID1;
304 break;
305 case MII_PHYID2: /* ID2 */
306 val = RTL8211E_PHYID2;
307 break;
308 case MII_ANAR: /* Auto-neg advertisement */
309 val = s->phy_advertise;
310 break;
311 case MII_ANLPAR: /* Auto-neg Link Partner Ability */
312 val = (MII_ANLPAR_ACK | MII_ANLPAR_PAUSE | MII_ANLPAR_TXFD |
313 MII_ANLPAR_TX | MII_ANLPAR_10FD | MII_ANLPAR_10 |
314 MII_ANLPAR_CSMACD);
315 break;
316 case MII_ANER: /* Auto-neg Expansion */
317 val = MII_ANER_NWAY;
318 break;
319 case MII_CTRL1000: /* 1000BASE-T control */
320 val = (MII_CTRL1000_HALF | MII_CTRL1000_FULL);
321 break;
322 case MII_STAT1000: /* 1000BASE-T status */
323 val = MII_STAT1000_FULL;
324 break;
325 case RTL8211E_MII_INSR: /* Interrupt status. */
326 val = s->phy_int;
327 s->phy_int = 0;
328 phy_update_irq(s);
329 break;
330 case RTL8211E_MII_INER: /* Interrupt enable */
331 val = s->phy_int_mask;
332 break;
333 case RTL8211E_MII_PHYCR:
334 case RTL8211E_MII_PHYSR:
335 case RTL8211E_MII_RXERC:
336 case RTL8211E_MII_LDPSR:
337 case RTL8211E_MII_EPAGSR:
338 case RTL8211E_MII_PAGSEL:
339 qemu_log_mask(LOG_UNIMP, "%s: reg %d not implemented\n",
340 __func__, reg);
341 val = 0;
342 break;
343 default:
344 qemu_log_mask(LOG_GUEST_ERROR, "%s: Bad address at offset %d\n",
345 __func__, reg);
346 val = 0;
347 break;
350 return val;
353 #define MII_BMCR_MASK (MII_BMCR_LOOPBACK | MII_BMCR_SPEED100 | \
354 MII_BMCR_SPEED | MII_BMCR_AUTOEN | MII_BMCR_PDOWN | \
355 MII_BMCR_FD | MII_BMCR_CTST)
356 #define MII_ANAR_MASK 0x2d7f
358 static void do_phy_write(FTGMAC100State *s, uint8_t reg, uint16_t val)
360 switch (reg) {
361 case MII_BMCR: /* Basic Control */
362 if (val & MII_BMCR_RESET) {
363 phy_reset(s);
364 } else {
365 s->phy_control = val & MII_BMCR_MASK;
366 /* Complete autonegotiation immediately. */
367 if (val & MII_BMCR_AUTOEN) {
368 s->phy_status |= MII_BMSR_AN_COMP;
371 break;
372 case MII_ANAR: /* Auto-neg advertisement */
373 s->phy_advertise = (val & MII_ANAR_MASK) | MII_ANAR_TX;
374 break;
375 case RTL8211E_MII_INER: /* Interrupt enable */
376 s->phy_int_mask = val & 0xff;
377 phy_update_irq(s);
378 break;
379 case RTL8211E_MII_PHYCR:
380 case RTL8211E_MII_PHYSR:
381 case RTL8211E_MII_RXERC:
382 case RTL8211E_MII_LDPSR:
383 case RTL8211E_MII_EPAGSR:
384 case RTL8211E_MII_PAGSEL:
385 qemu_log_mask(LOG_UNIMP, "%s: reg %d not implemented\n",
386 __func__, reg);
387 break;
388 default:
389 qemu_log_mask(LOG_GUEST_ERROR, "%s: Bad address at offset %d\n",
390 __func__, reg);
391 break;
395 static void do_phy_new_ctl(FTGMAC100State *s)
397 uint8_t reg;
398 uint16_t data;
400 if (!(s->phycr & FTGMAC100_PHYCR_NEW_ST_22)) {
401 qemu_log_mask(LOG_UNIMP, "%s: unsupported ST code\n", __func__);
402 return;
405 /* Nothing to do */
406 if (!(s->phycr & FTGMAC100_PHYCR_NEW_FIRE)) {
407 return;
410 reg = FTGMAC100_PHYCR_NEW_REG(s->phycr);
411 data = FTGMAC100_PHYCR_NEW_DATA(s->phycr);
413 switch (FTGMAC100_PHYCR_NEW_OP(s->phycr)) {
414 case FTGMAC100_PHYCR_NEW_OP_WRITE:
415 do_phy_write(s, reg, data);
416 break;
417 case FTGMAC100_PHYCR_NEW_OP_READ:
418 s->phydata = do_phy_read(s, reg) & 0xffff;
419 break;
420 default:
421 qemu_log_mask(LOG_GUEST_ERROR, "%s: invalid OP code %08x\n",
422 __func__, s->phycr);
425 s->phycr &= ~FTGMAC100_PHYCR_NEW_FIRE;
428 static void do_phy_ctl(FTGMAC100State *s)
430 uint8_t reg = FTGMAC100_PHYCR_REG(s->phycr);
432 if (s->phycr & FTGMAC100_PHYCR_MIIWR) {
433 do_phy_write(s, reg, s->phydata & 0xffff);
434 s->phycr &= ~FTGMAC100_PHYCR_MIIWR;
435 } else if (s->phycr & FTGMAC100_PHYCR_MIIRD) {
436 s->phydata = do_phy_read(s, reg) << 16;
437 s->phycr &= ~FTGMAC100_PHYCR_MIIRD;
438 } else {
439 qemu_log_mask(LOG_GUEST_ERROR, "%s: no OP code %08x\n",
440 __func__, s->phycr);
444 static int ftgmac100_read_bd(FTGMAC100Desc *bd, dma_addr_t addr)
446 if (dma_memory_read(&address_space_memory, addr, bd, sizeof(*bd))) {
447 qemu_log_mask(LOG_GUEST_ERROR, "%s: failed to read descriptor @ 0x%"
448 HWADDR_PRIx "\n", __func__, addr);
449 return -1;
451 bd->des0 = le32_to_cpu(bd->des0);
452 bd->des1 = le32_to_cpu(bd->des1);
453 bd->des2 = le32_to_cpu(bd->des2);
454 bd->des3 = le32_to_cpu(bd->des3);
455 return 0;
458 static int ftgmac100_write_bd(FTGMAC100Desc *bd, dma_addr_t addr)
460 FTGMAC100Desc lebd;
462 lebd.des0 = cpu_to_le32(bd->des0);
463 lebd.des1 = cpu_to_le32(bd->des1);
464 lebd.des2 = cpu_to_le32(bd->des2);
465 lebd.des3 = cpu_to_le32(bd->des3);
466 if (dma_memory_write(&address_space_memory, addr, &lebd, sizeof(lebd))) {
467 qemu_log_mask(LOG_GUEST_ERROR, "%s: failed to write descriptor @ 0x%"
468 HWADDR_PRIx "\n", __func__, addr);
469 return -1;
471 return 0;
474 static void ftgmac100_do_tx(FTGMAC100State *s, uint32_t tx_ring,
475 uint32_t tx_descriptor)
477 int frame_size = 0;
478 uint8_t *ptr = s->frame;
479 uint32_t addr = tx_descriptor;
480 uint32_t flags = 0;
482 while (1) {
483 FTGMAC100Desc bd;
484 int len;
486 if (ftgmac100_read_bd(&bd, addr) ||
487 ((bd.des0 & FTGMAC100_TXDES0_TXDMA_OWN) == 0)) {
488 /* Run out of descriptors to transmit. */
489 s->isr |= FTGMAC100_INT_NO_NPTXBUF;
490 break;
493 /* record transmit flags as they are valid only on the first
494 * segment */
495 if (bd.des0 & FTGMAC100_TXDES0_FTS) {
496 flags = bd.des1;
499 len = FTGMAC100_TXDES0_TXBUF_SIZE(bd.des0);
500 if (frame_size + len > sizeof(s->frame)) {
501 qemu_log_mask(LOG_GUEST_ERROR, "%s: frame too big : %d bytes\n",
502 __func__, len);
503 s->isr |= FTGMAC100_INT_XPKT_LOST;
504 len = sizeof(s->frame) - frame_size;
507 if (dma_memory_read(&address_space_memory, bd.des3, ptr, len)) {
508 qemu_log_mask(LOG_GUEST_ERROR, "%s: failed to read packet @ 0x%x\n",
509 __func__, bd.des3);
510 s->isr |= FTGMAC100_INT_NO_NPTXBUF;
511 break;
514 /* Check for VLAN */
515 if (bd.des0 & FTGMAC100_TXDES0_FTS &&
516 bd.des1 & FTGMAC100_TXDES1_INS_VLANTAG &&
517 be16_to_cpu(PKT_GET_ETH_HDR(ptr)->h_proto) != ETH_P_VLAN) {
518 if (frame_size + len + 4 > sizeof(s->frame)) {
519 qemu_log_mask(LOG_GUEST_ERROR, "%s: frame too big : %d bytes\n",
520 __func__, len);
521 s->isr |= FTGMAC100_INT_XPKT_LOST;
522 len = sizeof(s->frame) - frame_size - 4;
524 memmove(ptr + 16, ptr + 12, len - 12);
525 stw_be_p(ptr + 12, ETH_P_VLAN);
526 stw_be_p(ptr + 14, bd.des1);
527 len += 4;
530 ptr += len;
531 frame_size += len;
532 if (bd.des0 & FTGMAC100_TXDES0_LTS) {
533 if (flags & FTGMAC100_TXDES1_IP_CHKSUM) {
534 net_checksum_calculate(s->frame, frame_size);
536 /* Last buffer in frame. */
537 qemu_send_packet(qemu_get_queue(s->nic), s->frame, frame_size);
538 ptr = s->frame;
539 frame_size = 0;
540 if (flags & FTGMAC100_TXDES1_TXIC) {
541 s->isr |= FTGMAC100_INT_XPKT_ETH;
545 if (flags & FTGMAC100_TXDES1_TX2FIC) {
546 s->isr |= FTGMAC100_INT_XPKT_FIFO;
548 bd.des0 &= ~FTGMAC100_TXDES0_TXDMA_OWN;
550 /* Write back the modified descriptor. */
551 ftgmac100_write_bd(&bd, addr);
552 /* Advance to the next descriptor. */
553 if (bd.des0 & s->txdes0_edotr) {
554 addr = tx_ring;
555 } else {
556 addr += sizeof(FTGMAC100Desc);
560 s->tx_descriptor = addr;
562 ftgmac100_update_irq(s);
565 static bool ftgmac100_can_receive(NetClientState *nc)
567 FTGMAC100State *s = FTGMAC100(qemu_get_nic_opaque(nc));
568 FTGMAC100Desc bd;
570 if ((s->maccr & (FTGMAC100_MACCR_RXDMA_EN | FTGMAC100_MACCR_RXMAC_EN))
571 != (FTGMAC100_MACCR_RXDMA_EN | FTGMAC100_MACCR_RXMAC_EN)) {
572 return false;
575 if (ftgmac100_read_bd(&bd, s->rx_descriptor)) {
576 return false;
578 return !(bd.des0 & FTGMAC100_RXDES0_RXPKT_RDY);
582 * This is purely informative. The HW can poll the RW (and RX) ring
583 * buffers for available descriptors but we don't need to trigger a
584 * timer for that in qemu.
586 static uint32_t ftgmac100_rxpoll(FTGMAC100State *s)
588 /* Polling times :
590 * Speed TIME_SEL=0 TIME_SEL=1
592 * 10 51.2 ms 819.2 ms
593 * 100 5.12 ms 81.92 ms
594 * 1000 1.024 ms 16.384 ms
596 static const int div[] = { 20, 200, 1000 };
598 uint32_t cnt = 1024 * FTGMAC100_APTC_RXPOLL_CNT(s->aptcr);
599 uint32_t speed = (s->maccr & FTGMAC100_MACCR_FAST_MODE) ? 1 : 0;
601 if (s->aptcr & FTGMAC100_APTC_RXPOLL_TIME_SEL) {
602 cnt <<= 4;
605 if (s->maccr & FTGMAC100_MACCR_GIGA_MODE) {
606 speed = 2;
609 return cnt / div[speed];
612 static void ftgmac100_reset(DeviceState *d)
614 FTGMAC100State *s = FTGMAC100(d);
616 /* Reset the FTGMAC100 */
617 s->isr = 0;
618 s->ier = 0;
619 s->rx_enabled = 0;
620 s->rx_ring = 0;
621 s->rbsr = 0x640;
622 s->rx_descriptor = 0;
623 s->tx_ring = 0;
624 s->tx_descriptor = 0;
625 s->math[0] = 0;
626 s->math[1] = 0;
627 s->itc = 0;
628 s->aptcr = 1;
629 s->dblac = 0x00022f00;
630 s->revr = 0;
631 s->fear1 = 0;
632 s->tpafcr = 0xf1;
634 s->maccr = 0;
635 s->phycr = 0;
636 s->phydata = 0;
637 s->fcr = 0x400;
639 /* and the PHY */
640 phy_reset(s);
643 static uint64_t ftgmac100_read(void *opaque, hwaddr addr, unsigned size)
645 FTGMAC100State *s = FTGMAC100(opaque);
647 switch (addr & 0xff) {
648 case FTGMAC100_ISR:
649 return s->isr;
650 case FTGMAC100_IER:
651 return s->ier;
652 case FTGMAC100_MAC_MADR:
653 return (s->conf.macaddr.a[0] << 8) | s->conf.macaddr.a[1];
654 case FTGMAC100_MAC_LADR:
655 return ((uint32_t) s->conf.macaddr.a[2] << 24) |
656 (s->conf.macaddr.a[3] << 16) | (s->conf.macaddr.a[4] << 8) |
657 s->conf.macaddr.a[5];
658 case FTGMAC100_MATH0:
659 return s->math[0];
660 case FTGMAC100_MATH1:
661 return s->math[1];
662 case FTGMAC100_ITC:
663 return s->itc;
664 case FTGMAC100_DBLAC:
665 return s->dblac;
666 case FTGMAC100_REVR:
667 return s->revr;
668 case FTGMAC100_FEAR1:
669 return s->fear1;
670 case FTGMAC100_TPAFCR:
671 return s->tpafcr;
672 case FTGMAC100_FCR:
673 return s->fcr;
674 case FTGMAC100_MACCR:
675 return s->maccr;
676 case FTGMAC100_PHYCR:
677 return s->phycr;
678 case FTGMAC100_PHYDATA:
679 return s->phydata;
681 /* We might want to support these one day */
682 case FTGMAC100_HPTXPD: /* High Priority Transmit Poll Demand */
683 case FTGMAC100_HPTXR_BADR: /* High Priority Transmit Ring Base Address */
684 case FTGMAC100_MACSR: /* MAC Status Register (MACSR) */
685 qemu_log_mask(LOG_UNIMP, "%s: read to unimplemented register 0x%"
686 HWADDR_PRIx "\n", __func__, addr);
687 return 0;
688 default:
689 qemu_log_mask(LOG_GUEST_ERROR, "%s: Bad address at offset 0x%"
690 HWADDR_PRIx "\n", __func__, addr);
691 return 0;
695 static void ftgmac100_write(void *opaque, hwaddr addr,
696 uint64_t value, unsigned size)
698 FTGMAC100State *s = FTGMAC100(opaque);
700 switch (addr & 0xff) {
701 case FTGMAC100_ISR: /* Interrupt status */
702 s->isr &= ~value;
703 break;
704 case FTGMAC100_IER: /* Interrupt control */
705 s->ier = value;
706 break;
707 case FTGMAC100_MAC_MADR: /* MAC */
708 s->conf.macaddr.a[0] = value >> 8;
709 s->conf.macaddr.a[1] = value;
710 break;
711 case FTGMAC100_MAC_LADR:
712 s->conf.macaddr.a[2] = value >> 24;
713 s->conf.macaddr.a[3] = value >> 16;
714 s->conf.macaddr.a[4] = value >> 8;
715 s->conf.macaddr.a[5] = value;
716 break;
717 case FTGMAC100_MATH0: /* Multicast Address Hash Table 0 */
718 s->math[0] = value;
719 break;
720 case FTGMAC100_MATH1: /* Multicast Address Hash Table 1 */
721 s->math[1] = value;
722 break;
723 case FTGMAC100_ITC: /* TODO: Interrupt Timer Control */
724 s->itc = value;
725 break;
726 case FTGMAC100_RXR_BADR: /* Ring buffer address */
727 if (!QEMU_IS_ALIGNED(value, FTGMAC100_DESC_ALIGNMENT)) {
728 qemu_log_mask(LOG_GUEST_ERROR, "%s: Bad RX buffer alignment 0x%"
729 HWADDR_PRIx "\n", __func__, value);
730 return;
733 s->rx_ring = value;
734 s->rx_descriptor = s->rx_ring;
735 break;
737 case FTGMAC100_RBSR: /* DMA buffer size */
738 s->rbsr = value;
739 break;
741 case FTGMAC100_NPTXR_BADR: /* Transmit buffer address */
742 if (!QEMU_IS_ALIGNED(value, FTGMAC100_DESC_ALIGNMENT)) {
743 qemu_log_mask(LOG_GUEST_ERROR, "%s: Bad TX buffer alignment 0x%"
744 HWADDR_PRIx "\n", __func__, value);
745 return;
747 s->tx_ring = value;
748 s->tx_descriptor = s->tx_ring;
749 break;
751 case FTGMAC100_NPTXPD: /* Trigger transmit */
752 if ((s->maccr & (FTGMAC100_MACCR_TXDMA_EN | FTGMAC100_MACCR_TXMAC_EN))
753 == (FTGMAC100_MACCR_TXDMA_EN | FTGMAC100_MACCR_TXMAC_EN)) {
754 /* TODO: high priority tx ring */
755 ftgmac100_do_tx(s, s->tx_ring, s->tx_descriptor);
757 if (ftgmac100_can_receive(qemu_get_queue(s->nic))) {
758 qemu_flush_queued_packets(qemu_get_queue(s->nic));
760 break;
762 case FTGMAC100_RXPD: /* Receive Poll Demand Register */
763 if (ftgmac100_can_receive(qemu_get_queue(s->nic))) {
764 qemu_flush_queued_packets(qemu_get_queue(s->nic));
766 break;
768 case FTGMAC100_APTC: /* Automatic polling */
769 s->aptcr = value;
771 if (FTGMAC100_APTC_RXPOLL_CNT(s->aptcr)) {
772 ftgmac100_rxpoll(s);
775 if (FTGMAC100_APTC_TXPOLL_CNT(s->aptcr)) {
776 qemu_log_mask(LOG_UNIMP, "%s: no transmit polling\n", __func__);
778 break;
780 case FTGMAC100_MACCR: /* MAC Device control */
781 s->maccr = value;
782 if (value & FTGMAC100_MACCR_SW_RST) {
783 ftgmac100_reset(DEVICE(s));
786 if (ftgmac100_can_receive(qemu_get_queue(s->nic))) {
787 qemu_flush_queued_packets(qemu_get_queue(s->nic));
789 break;
791 case FTGMAC100_PHYCR: /* PHY Device control */
792 s->phycr = value;
793 if (s->revr & FTGMAC100_REVR_NEW_MDIO_INTERFACE) {
794 do_phy_new_ctl(s);
795 } else {
796 do_phy_ctl(s);
798 break;
799 case FTGMAC100_PHYDATA:
800 s->phydata = value & 0xffff;
801 break;
802 case FTGMAC100_DBLAC: /* DMA Burst Length and Arbitration Control */
803 s->dblac = value;
804 break;
805 case FTGMAC100_REVR: /* Feature Register */
806 s->revr = value;
807 break;
808 case FTGMAC100_FEAR1: /* Feature Register 1 */
809 s->fear1 = value;
810 break;
811 case FTGMAC100_TPAFCR: /* Transmit Priority Arbitration and FIFO Control */
812 s->tpafcr = value;
813 break;
814 case FTGMAC100_FCR: /* Flow Control */
815 s->fcr = value;
816 break;
818 case FTGMAC100_HPTXPD: /* High Priority Transmit Poll Demand */
819 case FTGMAC100_HPTXR_BADR: /* High Priority Transmit Ring Base Address */
820 case FTGMAC100_MACSR: /* MAC Status Register (MACSR) */
821 qemu_log_mask(LOG_UNIMP, "%s: write to unimplemented register 0x%"
822 HWADDR_PRIx "\n", __func__, addr);
823 break;
824 default:
825 qemu_log_mask(LOG_GUEST_ERROR, "%s: Bad address at offset 0x%"
826 HWADDR_PRIx "\n", __func__, addr);
827 break;
830 ftgmac100_update_irq(s);
833 static int ftgmac100_filter(FTGMAC100State *s, const uint8_t *buf, size_t len)
835 unsigned mcast_idx;
837 if (s->maccr & FTGMAC100_MACCR_RX_ALL) {
838 return 1;
841 switch (get_eth_packet_type(PKT_GET_ETH_HDR(buf))) {
842 case ETH_PKT_BCAST:
843 if (!(s->maccr & FTGMAC100_MACCR_RX_BROADPKT)) {
844 return 0;
846 break;
847 case ETH_PKT_MCAST:
848 if (!(s->maccr & FTGMAC100_MACCR_RX_MULTIPKT)) {
849 if (!(s->maccr & FTGMAC100_MACCR_HT_MULTI_EN)) {
850 return 0;
853 mcast_idx = net_crc32_le(buf, ETH_ALEN);
854 mcast_idx = (~(mcast_idx >> 2)) & 0x3f;
855 if (!(s->math[mcast_idx / 32] & (1 << (mcast_idx % 32)))) {
856 return 0;
859 break;
860 case ETH_PKT_UCAST:
861 if (memcmp(s->conf.macaddr.a, buf, 6)) {
862 return 0;
864 break;
867 return 1;
870 static ssize_t ftgmac100_receive(NetClientState *nc, const uint8_t *buf,
871 size_t len)
873 FTGMAC100State *s = FTGMAC100(qemu_get_nic_opaque(nc));
874 FTGMAC100Desc bd;
875 uint32_t flags = 0;
876 uint32_t addr;
877 uint32_t crc;
878 uint32_t buf_addr;
879 uint8_t *crc_ptr;
880 uint32_t buf_len;
881 size_t size = len;
882 uint32_t first = FTGMAC100_RXDES0_FRS;
883 uint16_t proto = be16_to_cpu(PKT_GET_ETH_HDR(buf)->h_proto);
884 int max_frame_size = ftgmac100_max_frame_size(s, proto);
886 if ((s->maccr & (FTGMAC100_MACCR_RXDMA_EN | FTGMAC100_MACCR_RXMAC_EN))
887 != (FTGMAC100_MACCR_RXDMA_EN | FTGMAC100_MACCR_RXMAC_EN)) {
888 return -1;
891 /* TODO : Pad to minimum Ethernet frame length */
892 /* handle small packets. */
893 if (size < 10) {
894 qemu_log_mask(LOG_GUEST_ERROR, "%s: dropped frame of %zd bytes\n",
895 __func__, size);
896 return size;
899 if (!ftgmac100_filter(s, buf, size)) {
900 return size;
903 /* 4 bytes for the CRC. */
904 size += 4;
905 crc = cpu_to_be32(crc32(~0, buf, size));
906 crc_ptr = (uint8_t *) &crc;
908 /* Huge frames are truncated. */
909 if (size > max_frame_size) {
910 qemu_log_mask(LOG_GUEST_ERROR, "%s: frame too big : %zd bytes\n",
911 __func__, size);
912 size = max_frame_size;
913 flags |= FTGMAC100_RXDES0_FTL;
916 switch (get_eth_packet_type(PKT_GET_ETH_HDR(buf))) {
917 case ETH_PKT_BCAST:
918 flags |= FTGMAC100_RXDES0_BROADCAST;
919 break;
920 case ETH_PKT_MCAST:
921 flags |= FTGMAC100_RXDES0_MULTICAST;
922 break;
923 case ETH_PKT_UCAST:
924 break;
927 addr = s->rx_descriptor;
928 while (size > 0) {
929 if (!ftgmac100_can_receive(nc)) {
930 qemu_log_mask(LOG_GUEST_ERROR, "%s: Unexpected packet\n", __func__);
931 return -1;
934 if (ftgmac100_read_bd(&bd, addr) ||
935 (bd.des0 & FTGMAC100_RXDES0_RXPKT_RDY)) {
936 /* No descriptors available. Bail out. */
937 qemu_log_mask(LOG_GUEST_ERROR, "%s: Lost end of frame\n",
938 __func__);
939 s->isr |= FTGMAC100_INT_NO_RXBUF;
940 break;
942 buf_len = (size <= s->rbsr) ? size : s->rbsr;
943 bd.des0 |= buf_len & 0x3fff;
944 size -= buf_len;
946 /* The last 4 bytes are the CRC. */
947 if (size < 4) {
948 buf_len += size - 4;
950 buf_addr = bd.des3;
951 if (first && proto == ETH_P_VLAN && buf_len >= 18) {
952 bd.des1 = lduw_be_p(buf + 14) | FTGMAC100_RXDES1_VLANTAG_AVAIL;
954 if (s->maccr & FTGMAC100_MACCR_RM_VLAN) {
955 dma_memory_write(&address_space_memory, buf_addr, buf, 12);
956 dma_memory_write(&address_space_memory, buf_addr + 12, buf + 16,
957 buf_len - 16);
958 } else {
959 dma_memory_write(&address_space_memory, buf_addr, buf, buf_len);
961 } else {
962 bd.des1 = 0;
963 dma_memory_write(&address_space_memory, buf_addr, buf, buf_len);
965 buf += buf_len;
966 if (size < 4) {
967 dma_memory_write(&address_space_memory, buf_addr + buf_len,
968 crc_ptr, 4 - size);
969 crc_ptr += 4 - size;
972 bd.des0 |= first | FTGMAC100_RXDES0_RXPKT_RDY;
973 first = 0;
974 if (size == 0) {
975 /* Last buffer in frame. */
976 bd.des0 |= flags | FTGMAC100_RXDES0_LRS;
977 s->isr |= FTGMAC100_INT_RPKT_BUF;
978 } else {
979 s->isr |= FTGMAC100_INT_RPKT_FIFO;
981 ftgmac100_write_bd(&bd, addr);
982 if (bd.des0 & s->rxdes0_edorr) {
983 addr = s->rx_ring;
984 } else {
985 addr += sizeof(FTGMAC100Desc);
988 s->rx_descriptor = addr;
990 ftgmac100_update_irq(s);
991 return len;
994 static const MemoryRegionOps ftgmac100_ops = {
995 .read = ftgmac100_read,
996 .write = ftgmac100_write,
997 .valid.min_access_size = 4,
998 .valid.max_access_size = 4,
999 .endianness = DEVICE_LITTLE_ENDIAN,
1002 static void ftgmac100_cleanup(NetClientState *nc)
1004 FTGMAC100State *s = FTGMAC100(qemu_get_nic_opaque(nc));
1006 s->nic = NULL;
1009 static NetClientInfo net_ftgmac100_info = {
1010 .type = NET_CLIENT_DRIVER_NIC,
1011 .size = sizeof(NICState),
1012 .can_receive = ftgmac100_can_receive,
1013 .receive = ftgmac100_receive,
1014 .cleanup = ftgmac100_cleanup,
1015 .link_status_changed = ftgmac100_set_link,
1018 static void ftgmac100_realize(DeviceState *dev, Error **errp)
1020 FTGMAC100State *s = FTGMAC100(dev);
1021 SysBusDevice *sbd = SYS_BUS_DEVICE(dev);
1023 if (s->aspeed) {
1024 s->txdes0_edotr = FTGMAC100_TXDES0_EDOTR_ASPEED;
1025 s->rxdes0_edorr = FTGMAC100_RXDES0_EDORR_ASPEED;
1026 } else {
1027 s->txdes0_edotr = FTGMAC100_TXDES0_EDOTR;
1028 s->rxdes0_edorr = FTGMAC100_RXDES0_EDORR;
1031 memory_region_init_io(&s->iomem, OBJECT(dev), &ftgmac100_ops, s,
1032 TYPE_FTGMAC100, 0x2000);
1033 sysbus_init_mmio(sbd, &s->iomem);
1034 sysbus_init_irq(sbd, &s->irq);
1035 qemu_macaddr_default_if_unset(&s->conf.macaddr);
1037 s->nic = qemu_new_nic(&net_ftgmac100_info, &s->conf,
1038 object_get_typename(OBJECT(dev)), DEVICE(dev)->id,
1040 qemu_format_nic_info_str(qemu_get_queue(s->nic), s->conf.macaddr.a);
1043 static const VMStateDescription vmstate_ftgmac100 = {
1044 .name = TYPE_FTGMAC100,
1045 .version_id = 1,
1046 .minimum_version_id = 1,
1047 .fields = (VMStateField[]) {
1048 VMSTATE_UINT32(irq_state, FTGMAC100State),
1049 VMSTATE_UINT32(isr, FTGMAC100State),
1050 VMSTATE_UINT32(ier, FTGMAC100State),
1051 VMSTATE_UINT32(rx_enabled, FTGMAC100State),
1052 VMSTATE_UINT32(rx_ring, FTGMAC100State),
1053 VMSTATE_UINT32(rbsr, FTGMAC100State),
1054 VMSTATE_UINT32(tx_ring, FTGMAC100State),
1055 VMSTATE_UINT32(rx_descriptor, FTGMAC100State),
1056 VMSTATE_UINT32(tx_descriptor, FTGMAC100State),
1057 VMSTATE_UINT32_ARRAY(math, FTGMAC100State, 2),
1058 VMSTATE_UINT32(itc, FTGMAC100State),
1059 VMSTATE_UINT32(aptcr, FTGMAC100State),
1060 VMSTATE_UINT32(dblac, FTGMAC100State),
1061 VMSTATE_UINT32(revr, FTGMAC100State),
1062 VMSTATE_UINT32(fear1, FTGMAC100State),
1063 VMSTATE_UINT32(tpafcr, FTGMAC100State),
1064 VMSTATE_UINT32(maccr, FTGMAC100State),
1065 VMSTATE_UINT32(phycr, FTGMAC100State),
1066 VMSTATE_UINT32(phydata, FTGMAC100State),
1067 VMSTATE_UINT32(fcr, FTGMAC100State),
1068 VMSTATE_UINT32(phy_status, FTGMAC100State),
1069 VMSTATE_UINT32(phy_control, FTGMAC100State),
1070 VMSTATE_UINT32(phy_advertise, FTGMAC100State),
1071 VMSTATE_UINT32(phy_int, FTGMAC100State),
1072 VMSTATE_UINT32(phy_int_mask, FTGMAC100State),
1073 VMSTATE_UINT32(txdes0_edotr, FTGMAC100State),
1074 VMSTATE_UINT32(rxdes0_edorr, FTGMAC100State),
1075 VMSTATE_END_OF_LIST()
1079 static Property ftgmac100_properties[] = {
1080 DEFINE_PROP_BOOL("aspeed", FTGMAC100State, aspeed, false),
1081 DEFINE_NIC_PROPERTIES(FTGMAC100State, conf),
1082 DEFINE_PROP_END_OF_LIST(),
1085 static void ftgmac100_class_init(ObjectClass *klass, void *data)
1087 DeviceClass *dc = DEVICE_CLASS(klass);
1089 dc->vmsd = &vmstate_ftgmac100;
1090 dc->reset = ftgmac100_reset;
1091 device_class_set_props(dc, ftgmac100_properties);
1092 set_bit(DEVICE_CATEGORY_NETWORK, dc->categories);
1093 dc->realize = ftgmac100_realize;
1094 dc->desc = "Faraday FTGMAC100 Gigabit Ethernet emulation";
1097 static const TypeInfo ftgmac100_info = {
1098 .name = TYPE_FTGMAC100,
1099 .parent = TYPE_SYS_BUS_DEVICE,
1100 .instance_size = sizeof(FTGMAC100State),
1101 .class_init = ftgmac100_class_init,
1105 * AST2600 MII controller
1107 #define ASPEED_MII_PHYCR_FIRE BIT(31)
1108 #define ASPEED_MII_PHYCR_ST_22 BIT(28)
1109 #define ASPEED_MII_PHYCR_OP(x) ((x) & (ASPEED_MII_PHYCR_OP_WRITE | \
1110 ASPEED_MII_PHYCR_OP_READ))
1111 #define ASPEED_MII_PHYCR_OP_WRITE BIT(26)
1112 #define ASPEED_MII_PHYCR_OP_READ BIT(27)
1113 #define ASPEED_MII_PHYCR_DATA(x) (x & 0xffff)
1114 #define ASPEED_MII_PHYCR_PHY(x) (((x) >> 21) & 0x1f)
1115 #define ASPEED_MII_PHYCR_REG(x) (((x) >> 16) & 0x1f)
1117 #define ASPEED_MII_PHYDATA_IDLE BIT(16)
1119 static void aspeed_mii_transition(AspeedMiiState *s, bool fire)
1121 if (fire) {
1122 s->phycr |= ASPEED_MII_PHYCR_FIRE;
1123 s->phydata &= ~ASPEED_MII_PHYDATA_IDLE;
1124 } else {
1125 s->phycr &= ~ASPEED_MII_PHYCR_FIRE;
1126 s->phydata |= ASPEED_MII_PHYDATA_IDLE;
1130 static void aspeed_mii_do_phy_ctl(AspeedMiiState *s)
1132 uint8_t reg;
1133 uint16_t data;
1135 if (!(s->phycr & ASPEED_MII_PHYCR_ST_22)) {
1136 aspeed_mii_transition(s, !ASPEED_MII_PHYCR_FIRE);
1137 qemu_log_mask(LOG_UNIMP, "%s: unsupported ST code\n", __func__);
1138 return;
1141 /* Nothing to do */
1142 if (!(s->phycr & ASPEED_MII_PHYCR_FIRE)) {
1143 return;
1146 reg = ASPEED_MII_PHYCR_REG(s->phycr);
1147 data = ASPEED_MII_PHYCR_DATA(s->phycr);
1149 switch (ASPEED_MII_PHYCR_OP(s->phycr)) {
1150 case ASPEED_MII_PHYCR_OP_WRITE:
1151 do_phy_write(s->nic, reg, data);
1152 break;
1153 case ASPEED_MII_PHYCR_OP_READ:
1154 s->phydata = (s->phydata & ~0xffff) | do_phy_read(s->nic, reg);
1155 break;
1156 default:
1157 qemu_log_mask(LOG_GUEST_ERROR, "%s: invalid OP code %08x\n",
1158 __func__, s->phycr);
1161 aspeed_mii_transition(s, !ASPEED_MII_PHYCR_FIRE);
1164 static uint64_t aspeed_mii_read(void *opaque, hwaddr addr, unsigned size)
1166 AspeedMiiState *s = ASPEED_MII(opaque);
1168 switch (addr) {
1169 case 0x0:
1170 return s->phycr;
1171 case 0x4:
1172 return s->phydata;
1173 default:
1174 g_assert_not_reached();
1178 static void aspeed_mii_write(void *opaque, hwaddr addr,
1179 uint64_t value, unsigned size)
1181 AspeedMiiState *s = ASPEED_MII(opaque);
1183 switch (addr) {
1184 case 0x0:
1185 s->phycr = value & ~(s->phycr & ASPEED_MII_PHYCR_FIRE);
1186 break;
1187 case 0x4:
1188 s->phydata = value & ~(0xffff | ASPEED_MII_PHYDATA_IDLE);
1189 break;
1190 default:
1191 g_assert_not_reached();
1194 aspeed_mii_transition(s, !!(s->phycr & ASPEED_MII_PHYCR_FIRE));
1195 aspeed_mii_do_phy_ctl(s);
1198 static const MemoryRegionOps aspeed_mii_ops = {
1199 .read = aspeed_mii_read,
1200 .write = aspeed_mii_write,
1201 .valid.min_access_size = 4,
1202 .valid.max_access_size = 4,
1203 .endianness = DEVICE_LITTLE_ENDIAN,
1206 static void aspeed_mii_reset(DeviceState *dev)
1208 AspeedMiiState *s = ASPEED_MII(dev);
1210 s->phycr = 0;
1211 s->phydata = 0;
1213 aspeed_mii_transition(s, !!(s->phycr & ASPEED_MII_PHYCR_FIRE));
1216 static void aspeed_mii_realize(DeviceState *dev, Error **errp)
1218 AspeedMiiState *s = ASPEED_MII(dev);
1219 SysBusDevice *sbd = SYS_BUS_DEVICE(dev);
1221 assert(s->nic);
1223 memory_region_init_io(&s->iomem, OBJECT(dev), &aspeed_mii_ops, s,
1224 TYPE_ASPEED_MII, 0x8);
1225 sysbus_init_mmio(sbd, &s->iomem);
1228 static const VMStateDescription vmstate_aspeed_mii = {
1229 .name = TYPE_ASPEED_MII,
1230 .version_id = 1,
1231 .minimum_version_id = 1,
1232 .fields = (VMStateField[]) {
1233 VMSTATE_UINT32(phycr, FTGMAC100State),
1234 VMSTATE_UINT32(phydata, FTGMAC100State),
1235 VMSTATE_END_OF_LIST()
1239 static Property aspeed_mii_properties[] = {
1240 DEFINE_PROP_LINK("nic", AspeedMiiState, nic, TYPE_FTGMAC100,
1241 FTGMAC100State *),
1242 DEFINE_PROP_END_OF_LIST(),
1245 static void aspeed_mii_class_init(ObjectClass *klass, void *data)
1247 DeviceClass *dc = DEVICE_CLASS(klass);
1249 dc->vmsd = &vmstate_aspeed_mii;
1250 dc->reset = aspeed_mii_reset;
1251 dc->realize = aspeed_mii_realize;
1252 dc->desc = "Aspeed MII controller";
1253 device_class_set_props(dc, aspeed_mii_properties);
1256 static const TypeInfo aspeed_mii_info = {
1257 .name = TYPE_ASPEED_MII,
1258 .parent = TYPE_SYS_BUS_DEVICE,
1259 .instance_size = sizeof(AspeedMiiState),
1260 .class_init = aspeed_mii_class_init,
1263 static void ftgmac100_register_types(void)
1265 type_register_static(&ftgmac100_info);
1266 type_register_static(&aspeed_mii_info);
1269 type_init(ftgmac100_register_types)