Merge remote-tracking branch 'qemu/master'
[qemu/ar7.git] / exec.c
blob85492af802b96b72dd1ed2b521e6d44cbc6f62f7
1 /*
2 * Virtual page mapping
4 * Copyright (c) 2003 Fabrice Bellard
6 * This library is free software; you can redistribute it and/or
7 * modify it under the terms of the GNU Lesser General Public
8 * License as published by the Free Software Foundation; either
9 * version 2 of the License, or (at your option) any later version.
11 * This library is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
14 * Lesser General Public License for more details.
16 * You should have received a copy of the GNU Lesser General Public
17 * License along with this library; if not, see <http://www.gnu.org/licenses/>.
19 #include "qemu/osdep.h"
20 #include "qapi/error.h"
21 #ifndef _WIN32
22 #endif
24 #include "qemu/cutils.h"
25 #include "cpu.h"
26 #include "exec/exec-all.h"
27 #include "exec/target_page.h"
28 #include "tcg.h"
29 #include "hw/qdev-core.h"
30 #if !defined(CONFIG_USER_ONLY)
31 #include "hw/boards.h"
32 #include "hw/xen/xen.h"
33 #endif
34 #include "sysemu/kvm.h"
35 #include "sysemu/sysemu.h"
36 #include "qemu/timer.h"
37 #include "qemu/config-file.h"
38 #include "qemu/error-report.h"
39 #if defined(CONFIG_USER_ONLY)
40 #include "qemu.h"
41 #else /* !CONFIG_USER_ONLY */
42 #include "hw/hw.h"
43 #include "exec/memory.h"
44 #include "exec/ioport.h"
45 #include "sysemu/dma.h"
46 #include "sysemu/numa.h"
47 #include "sysemu/hw_accel.h"
48 #include "exec/address-spaces.h"
49 #include "sysemu/xen-mapcache.h"
50 #include "trace-root.h"
52 #ifdef CONFIG_FALLOCATE_PUNCH_HOLE
53 #include <fcntl.h>
54 #include <linux/falloc.h>
55 #endif
57 #endif
58 #include "exec/cpu-all.h"
59 #include "qemu/rcu_queue.h"
60 #include "qemu/main-loop.h"
61 #include "translate-all.h"
62 #include "sysemu/replay.h"
64 #include "exec/memory-internal.h"
65 #include "exec/ram_addr.h"
66 #include "exec/log.h"
68 #include "migration/vmstate.h"
70 #include "qemu/range.h"
71 #ifndef _WIN32
72 #include "qemu/mmap-alloc.h"
73 #endif
75 #include "monitor/monitor.h"
77 //#define DEBUG_SUBPAGE
79 #if !defined(CONFIG_USER_ONLY)
80 /* ram_list is read under rcu_read_lock()/rcu_read_unlock(). Writes
81 * are protected by the ramlist lock.
83 RAMList ram_list = { .blocks = QLIST_HEAD_INITIALIZER(ram_list.blocks) };
85 static MemoryRegion *system_memory;
86 static MemoryRegion *system_io;
88 AddressSpace address_space_io;
89 AddressSpace address_space_memory;
91 MemoryRegion io_mem_rom, io_mem_notdirty;
92 static MemoryRegion io_mem_unassigned;
94 /* RAM is pre-allocated and passed into qemu_ram_alloc_from_ptr */
95 #define RAM_PREALLOC (1 << 0)
97 /* RAM is mmap-ed with MAP_SHARED */
98 #define RAM_SHARED (1 << 1)
100 /* Only a portion of RAM (used_length) is actually used, and migrated.
101 * This used_length size can change across reboots.
103 #define RAM_RESIZEABLE (1 << 2)
105 #endif
107 #ifdef TARGET_PAGE_BITS_VARY
108 int target_page_bits;
109 bool target_page_bits_decided;
110 #endif
112 struct CPUTailQ cpus = QTAILQ_HEAD_INITIALIZER(cpus);
113 /* current CPU in the current thread. It is only valid inside
114 cpu_exec() */
115 __thread CPUState *current_cpu;
116 /* 0 = Do not count executed instructions.
117 1 = Precise instruction counting.
118 2 = Adaptive rate instruction counting. */
119 int use_icount;
121 bool set_preferred_target_page_bits(int bits)
123 /* The target page size is the lowest common denominator for all
124 * the CPUs in the system, so we can only make it smaller, never
125 * larger. And we can't make it smaller once we've committed to
126 * a particular size.
128 #ifdef TARGET_PAGE_BITS_VARY
129 assert(bits >= TARGET_PAGE_BITS_MIN);
130 if (target_page_bits == 0 || target_page_bits > bits) {
131 if (target_page_bits_decided) {
132 return false;
134 target_page_bits = bits;
136 #endif
137 return true;
140 #if !defined(CONFIG_USER_ONLY)
142 static void finalize_target_page_bits(void)
144 #ifdef TARGET_PAGE_BITS_VARY
145 if (target_page_bits == 0) {
146 target_page_bits = TARGET_PAGE_BITS_MIN;
148 target_page_bits_decided = true;
149 #endif
152 typedef struct PhysPageEntry PhysPageEntry;
154 struct PhysPageEntry {
155 /* How many bits skip to next level (in units of L2_SIZE). 0 for a leaf. */
156 uint32_t skip : 6;
157 /* index into phys_sections (!skip) or phys_map_nodes (skip) */
158 uint32_t ptr : 26;
161 #define PHYS_MAP_NODE_NIL (((uint32_t)~0) >> 6)
163 /* Size of the L2 (and L3, etc) page tables. */
164 #define ADDR_SPACE_BITS 64
166 #define P_L2_BITS 9
167 #define P_L2_SIZE (1 << P_L2_BITS)
169 #define P_L2_LEVELS (((ADDR_SPACE_BITS - TARGET_PAGE_BITS - 1) / P_L2_BITS) + 1)
171 typedef PhysPageEntry Node[P_L2_SIZE];
173 typedef struct PhysPageMap {
174 struct rcu_head rcu;
176 unsigned sections_nb;
177 unsigned sections_nb_alloc;
178 unsigned nodes_nb;
179 unsigned nodes_nb_alloc;
180 Node *nodes;
181 MemoryRegionSection *sections;
182 } PhysPageMap;
184 struct AddressSpaceDispatch {
185 struct rcu_head rcu;
187 MemoryRegionSection *mru_section;
188 /* This is a multi-level map on the physical address space.
189 * The bottom level has pointers to MemoryRegionSections.
191 PhysPageEntry phys_map;
192 PhysPageMap map;
193 AddressSpace *as;
196 #define SUBPAGE_IDX(addr) ((addr) & ~TARGET_PAGE_MASK)
197 typedef struct subpage_t {
198 MemoryRegion iomem;
199 AddressSpace *as;
200 hwaddr base;
201 uint16_t sub_section[];
202 } subpage_t;
204 #define PHYS_SECTION_UNASSIGNED 0
205 #define PHYS_SECTION_NOTDIRTY 1
206 #define PHYS_SECTION_ROM 2
207 #define PHYS_SECTION_WATCH 3
209 static void io_mem_init(void);
210 static void memory_map_init(void);
211 static void tcg_commit(MemoryListener *listener);
213 static MemoryRegion io_mem_watch;
216 * CPUAddressSpace: all the information a CPU needs about an AddressSpace
217 * @cpu: the CPU whose AddressSpace this is
218 * @as: the AddressSpace itself
219 * @memory_dispatch: its dispatch pointer (cached, RCU protected)
220 * @tcg_as_listener: listener for tracking changes to the AddressSpace
222 struct CPUAddressSpace {
223 CPUState *cpu;
224 AddressSpace *as;
225 struct AddressSpaceDispatch *memory_dispatch;
226 MemoryListener tcg_as_listener;
229 struct DirtyBitmapSnapshot {
230 ram_addr_t start;
231 ram_addr_t end;
232 unsigned long dirty[];
235 #endif
237 #if !defined(CONFIG_USER_ONLY)
239 static void phys_map_node_reserve(PhysPageMap *map, unsigned nodes)
241 static unsigned alloc_hint = 16;
242 if (map->nodes_nb + nodes > map->nodes_nb_alloc) {
243 map->nodes_nb_alloc = MAX(map->nodes_nb_alloc, alloc_hint);
244 map->nodes_nb_alloc = MAX(map->nodes_nb_alloc, map->nodes_nb + nodes);
245 map->nodes = g_renew(Node, map->nodes, map->nodes_nb_alloc);
246 alloc_hint = map->nodes_nb_alloc;
250 static uint32_t phys_map_node_alloc(PhysPageMap *map, bool leaf)
252 unsigned i;
253 uint32_t ret;
254 PhysPageEntry e;
255 PhysPageEntry *p;
257 ret = map->nodes_nb++;
258 p = map->nodes[ret];
259 assert(ret != PHYS_MAP_NODE_NIL);
260 assert(ret != map->nodes_nb_alloc);
262 e.skip = leaf ? 0 : 1;
263 e.ptr = leaf ? PHYS_SECTION_UNASSIGNED : PHYS_MAP_NODE_NIL;
264 for (i = 0; i < P_L2_SIZE; ++i) {
265 memcpy(&p[i], &e, sizeof(e));
267 return ret;
270 static void phys_page_set_level(PhysPageMap *map, PhysPageEntry *lp,
271 hwaddr *index, hwaddr *nb, uint16_t leaf,
272 int level)
274 PhysPageEntry *p;
275 hwaddr step = (hwaddr)1 << (level * P_L2_BITS);
277 if (lp->skip && lp->ptr == PHYS_MAP_NODE_NIL) {
278 lp->ptr = phys_map_node_alloc(map, level == 0);
280 p = map->nodes[lp->ptr];
281 lp = &p[(*index >> (level * P_L2_BITS)) & (P_L2_SIZE - 1)];
283 while (*nb && lp < &p[P_L2_SIZE]) {
284 if ((*index & (step - 1)) == 0 && *nb >= step) {
285 lp->skip = 0;
286 lp->ptr = leaf;
287 *index += step;
288 *nb -= step;
289 } else {
290 phys_page_set_level(map, lp, index, nb, leaf, level - 1);
292 ++lp;
296 static void phys_page_set(AddressSpaceDispatch *d,
297 hwaddr index, hwaddr nb,
298 uint16_t leaf)
300 /* Wildly overreserve - it doesn't matter much. */
301 phys_map_node_reserve(&d->map, 3 * P_L2_LEVELS);
303 phys_page_set_level(&d->map, &d->phys_map, &index, &nb, leaf, P_L2_LEVELS - 1);
306 /* Compact a non leaf page entry. Simply detect that the entry has a single child,
307 * and update our entry so we can skip it and go directly to the destination.
309 static void phys_page_compact(PhysPageEntry *lp, Node *nodes)
311 unsigned valid_ptr = P_L2_SIZE;
312 int valid = 0;
313 PhysPageEntry *p;
314 int i;
316 if (lp->ptr == PHYS_MAP_NODE_NIL) {
317 return;
320 p = nodes[lp->ptr];
321 for (i = 0; i < P_L2_SIZE; i++) {
322 if (p[i].ptr == PHYS_MAP_NODE_NIL) {
323 continue;
326 valid_ptr = i;
327 valid++;
328 if (p[i].skip) {
329 phys_page_compact(&p[i], nodes);
333 /* We can only compress if there's only one child. */
334 if (valid != 1) {
335 return;
338 assert(valid_ptr < P_L2_SIZE);
340 /* Don't compress if it won't fit in the # of bits we have. */
341 if (lp->skip + p[valid_ptr].skip >= (1 << 3)) {
342 return;
345 lp->ptr = p[valid_ptr].ptr;
346 if (!p[valid_ptr].skip) {
347 /* If our only child is a leaf, make this a leaf. */
348 /* By design, we should have made this node a leaf to begin with so we
349 * should never reach here.
350 * But since it's so simple to handle this, let's do it just in case we
351 * change this rule.
353 lp->skip = 0;
354 } else {
355 lp->skip += p[valid_ptr].skip;
359 static void phys_page_compact_all(AddressSpaceDispatch *d, int nodes_nb)
361 if (d->phys_map.skip) {
362 phys_page_compact(&d->phys_map, d->map.nodes);
366 static inline bool section_covers_addr(const MemoryRegionSection *section,
367 hwaddr addr)
369 /* Memory topology clips a memory region to [0, 2^64); size.hi > 0 means
370 * the section must cover the entire address space.
372 return int128_gethi(section->size) ||
373 range_covers_byte(section->offset_within_address_space,
374 int128_getlo(section->size), addr);
377 static MemoryRegionSection *phys_page_find(AddressSpaceDispatch *d, hwaddr addr)
379 PhysPageEntry lp = d->phys_map, *p;
380 Node *nodes = d->map.nodes;
381 MemoryRegionSection *sections = d->map.sections;
382 hwaddr index = addr >> TARGET_PAGE_BITS;
383 int i;
385 for (i = P_L2_LEVELS; lp.skip && (i -= lp.skip) >= 0;) {
386 if (lp.ptr == PHYS_MAP_NODE_NIL) {
387 return &sections[PHYS_SECTION_UNASSIGNED];
389 p = nodes[lp.ptr];
390 lp = p[(index >> (i * P_L2_BITS)) & (P_L2_SIZE - 1)];
393 if (section_covers_addr(&sections[lp.ptr], addr)) {
394 return &sections[lp.ptr];
395 } else {
396 return &sections[PHYS_SECTION_UNASSIGNED];
400 bool memory_region_is_unassigned(MemoryRegion *mr)
402 return mr != &io_mem_rom && mr != &io_mem_notdirty && !mr->rom_device
403 && mr != &io_mem_watch;
406 /* Called from RCU critical section */
407 static MemoryRegionSection *address_space_lookup_region(AddressSpaceDispatch *d,
408 hwaddr addr,
409 bool resolve_subpage)
411 MemoryRegionSection *section = atomic_read(&d->mru_section);
412 subpage_t *subpage;
413 bool update;
415 if (section && section != &d->map.sections[PHYS_SECTION_UNASSIGNED] &&
416 section_covers_addr(section, addr)) {
417 update = false;
418 } else {
419 section = phys_page_find(d, addr);
420 update = true;
422 if (resolve_subpage && section->mr->subpage) {
423 subpage = container_of(section->mr, subpage_t, iomem);
424 section = &d->map.sections[subpage->sub_section[SUBPAGE_IDX(addr)]];
426 if (update) {
427 atomic_set(&d->mru_section, section);
429 return section;
432 /* Called from RCU critical section */
433 static MemoryRegionSection *
434 address_space_translate_internal(AddressSpaceDispatch *d, hwaddr addr, hwaddr *xlat,
435 hwaddr *plen, bool resolve_subpage)
437 MemoryRegionSection *section;
438 MemoryRegion *mr;
439 Int128 diff;
441 section = address_space_lookup_region(d, addr, resolve_subpage);
442 /* Compute offset within MemoryRegionSection */
443 addr -= section->offset_within_address_space;
445 /* Compute offset within MemoryRegion */
446 *xlat = addr + section->offset_within_region;
448 mr = section->mr;
450 /* MMIO registers can be expected to perform full-width accesses based only
451 * on their address, without considering adjacent registers that could
452 * decode to completely different MemoryRegions. When such registers
453 * exist (e.g. I/O ports 0xcf8 and 0xcf9 on most PC chipsets), MMIO
454 * regions overlap wildly. For this reason we cannot clamp the accesses
455 * here.
457 * If the length is small (as is the case for address_space_ldl/stl),
458 * everything works fine. If the incoming length is large, however,
459 * the caller really has to do the clamping through memory_access_size.
461 if (memory_region_is_ram(mr)) {
462 diff = int128_sub(section->size, int128_make64(addr));
463 *plen = int128_get64(int128_min(diff, int128_make64(*plen)));
465 return section;
468 /* Called from RCU critical section */
469 static MemoryRegionSection address_space_do_translate(AddressSpace *as,
470 hwaddr addr,
471 hwaddr *xlat,
472 hwaddr *plen,
473 bool is_write,
474 bool is_mmio)
476 IOMMUTLBEntry iotlb;
477 MemoryRegionSection *section;
478 MemoryRegion *mr;
480 for (;;) {
481 AddressSpaceDispatch *d = atomic_rcu_read(&as->dispatch);
482 section = address_space_translate_internal(d, addr, &addr, plen, is_mmio);
483 mr = section->mr;
485 if (!mr->iommu_ops) {
486 break;
489 iotlb = mr->iommu_ops->translate(mr, addr, is_write ?
490 IOMMU_WO : IOMMU_RO);
491 addr = ((iotlb.translated_addr & ~iotlb.addr_mask)
492 | (addr & iotlb.addr_mask));
493 *plen = MIN(*plen, (addr | iotlb.addr_mask) - addr + 1);
494 if (!(iotlb.perm & (1 << is_write))) {
495 goto translate_fail;
498 as = iotlb.target_as;
501 *xlat = addr;
503 return *section;
505 translate_fail:
506 return (MemoryRegionSection) { .mr = &io_mem_unassigned };
509 /* Called from RCU critical section */
510 IOMMUTLBEntry address_space_get_iotlb_entry(AddressSpace *as, hwaddr addr,
511 bool is_write)
513 MemoryRegionSection section;
514 hwaddr xlat, plen;
516 /* Try to get maximum page mask during translation. */
517 plen = (hwaddr)-1;
519 /* This can never be MMIO. */
520 section = address_space_do_translate(as, addr, &xlat, &plen,
521 is_write, false);
523 /* Illegal translation */
524 if (section.mr == &io_mem_unassigned) {
525 goto iotlb_fail;
528 /* Convert memory region offset into address space offset */
529 xlat += section.offset_within_address_space -
530 section.offset_within_region;
532 if (plen == (hwaddr)-1) {
534 * We use default page size here. Logically it only happens
535 * for identity mappings.
537 plen = TARGET_PAGE_SIZE;
540 /* Convert to address mask */
541 plen -= 1;
543 return (IOMMUTLBEntry) {
544 .target_as = section.address_space,
545 .iova = addr & ~plen,
546 .translated_addr = xlat & ~plen,
547 .addr_mask = plen,
548 /* IOTLBs are for DMAs, and DMA only allows on RAMs. */
549 .perm = IOMMU_RW,
552 iotlb_fail:
553 return (IOMMUTLBEntry) {0};
556 /* Called from RCU critical section */
557 MemoryRegion *address_space_translate(AddressSpace *as, hwaddr addr,
558 hwaddr *xlat, hwaddr *plen,
559 bool is_write)
561 MemoryRegion *mr;
562 MemoryRegionSection section;
564 /* This can be MMIO, so setup MMIO bit. */
565 section = address_space_do_translate(as, addr, xlat, plen, is_write, true);
566 mr = section.mr;
568 if (xen_enabled() && memory_access_is_direct(mr, is_write)) {
569 hwaddr page = ((addr & TARGET_PAGE_MASK) + TARGET_PAGE_SIZE) - addr;
570 *plen = MIN(page, *plen);
573 return mr;
576 /* Called from RCU critical section */
577 MemoryRegionSection *
578 address_space_translate_for_iotlb(CPUState *cpu, int asidx, hwaddr addr,
579 hwaddr *xlat, hwaddr *plen)
581 MemoryRegionSection *section;
582 AddressSpaceDispatch *d = atomic_rcu_read(&cpu->cpu_ases[asidx].memory_dispatch);
584 section = address_space_translate_internal(d, addr, xlat, plen, false);
586 assert(!section->mr->iommu_ops);
587 return section;
589 #endif
591 #if !defined(CONFIG_USER_ONLY)
593 static int cpu_common_post_load(void *opaque, int version_id)
595 CPUState *cpu = opaque;
597 /* 0x01 was CPU_INTERRUPT_EXIT. This line can be removed when the
598 version_id is increased. */
599 cpu->interrupt_request &= ~0x01;
600 tlb_flush(cpu);
602 return 0;
605 static int cpu_common_pre_load(void *opaque)
607 CPUState *cpu = opaque;
609 cpu->exception_index = -1;
611 return 0;
614 static bool cpu_common_exception_index_needed(void *opaque)
616 CPUState *cpu = opaque;
618 return tcg_enabled() && cpu->exception_index != -1;
621 static const VMStateDescription vmstate_cpu_common_exception_index = {
622 .name = "cpu_common/exception_index",
623 .version_id = 1,
624 .minimum_version_id = 1,
625 .needed = cpu_common_exception_index_needed,
626 .fields = (VMStateField[]) {
627 VMSTATE_INT32(exception_index, CPUState),
628 VMSTATE_END_OF_LIST()
632 static bool cpu_common_crash_occurred_needed(void *opaque)
634 CPUState *cpu = opaque;
636 return cpu->crash_occurred;
639 static const VMStateDescription vmstate_cpu_common_crash_occurred = {
640 .name = "cpu_common/crash_occurred",
641 .version_id = 1,
642 .minimum_version_id = 1,
643 .needed = cpu_common_crash_occurred_needed,
644 .fields = (VMStateField[]) {
645 VMSTATE_BOOL(crash_occurred, CPUState),
646 VMSTATE_END_OF_LIST()
650 const VMStateDescription vmstate_cpu_common = {
651 .name = "cpu_common",
652 .version_id = 1,
653 .minimum_version_id = 1,
654 .pre_load = cpu_common_pre_load,
655 .post_load = cpu_common_post_load,
656 .fields = (VMStateField[]) {
657 VMSTATE_UINT32(halted, CPUState),
658 VMSTATE_UINT32(interrupt_request, CPUState),
659 VMSTATE_END_OF_LIST()
661 .subsections = (const VMStateDescription*[]) {
662 &vmstate_cpu_common_exception_index,
663 &vmstate_cpu_common_crash_occurred,
664 NULL
668 #endif
670 CPUState *qemu_get_cpu(int index)
672 CPUState *cpu;
674 CPU_FOREACH(cpu) {
675 if (cpu->cpu_index == index) {
676 return cpu;
680 return NULL;
683 #if !defined(CONFIG_USER_ONLY)
684 void cpu_address_space_init(CPUState *cpu, AddressSpace *as, int asidx)
686 CPUAddressSpace *newas;
688 /* Target code should have set num_ases before calling us */
689 assert(asidx < cpu->num_ases);
691 if (asidx == 0) {
692 /* address space 0 gets the convenience alias */
693 cpu->as = as;
696 /* KVM cannot currently support multiple address spaces. */
697 assert(asidx == 0 || !kvm_enabled());
699 if (!cpu->cpu_ases) {
700 cpu->cpu_ases = g_new0(CPUAddressSpace, cpu->num_ases);
703 newas = &cpu->cpu_ases[asidx];
704 newas->cpu = cpu;
705 newas->as = as;
706 if (tcg_enabled()) {
707 newas->tcg_as_listener.commit = tcg_commit;
708 memory_listener_register(&newas->tcg_as_listener, as);
712 AddressSpace *cpu_get_address_space(CPUState *cpu, int asidx)
714 /* Return the AddressSpace corresponding to the specified index */
715 return cpu->cpu_ases[asidx].as;
717 #endif
719 void cpu_exec_unrealizefn(CPUState *cpu)
721 CPUClass *cc = CPU_GET_CLASS(cpu);
723 cpu_list_remove(cpu);
725 if (cc->vmsd != NULL) {
726 vmstate_unregister(NULL, cc->vmsd, cpu);
728 if (qdev_get_vmsd(DEVICE(cpu)) == NULL) {
729 vmstate_unregister(NULL, &vmstate_cpu_common, cpu);
733 void cpu_exec_initfn(CPUState *cpu)
735 #ifdef TARGET_WORDS_BIGENDIAN
736 cpu->bigendian = true;
737 #else
738 cpu->bigendian = false;
739 #endif
740 cpu->as = NULL;
741 cpu->num_ases = 0;
743 #ifndef CONFIG_USER_ONLY
744 cpu->thread_id = qemu_get_thread_id();
746 /* This is a softmmu CPU object, so create a property for it
747 * so users can wire up its memory. (This can't go in qom/cpu.c
748 * because that file is compiled only once for both user-mode
749 * and system builds.) The default if no link is set up is to use
750 * the system address space.
752 object_property_add_link(OBJECT(cpu), "memory", TYPE_MEMORY_REGION,
753 (Object **)&cpu->memory,
754 qdev_prop_allow_set_link_before_realize,
755 OBJ_PROP_LINK_UNREF_ON_RELEASE,
756 &error_abort);
757 cpu->memory = system_memory;
758 object_ref(OBJECT(cpu->memory));
759 #endif
762 void cpu_exec_realizefn(CPUState *cpu, Error **errp)
764 CPUClass *cc ATTRIBUTE_UNUSED = CPU_GET_CLASS(cpu);
766 cpu_list_add(cpu);
768 #ifndef CONFIG_USER_ONLY
769 if (qdev_get_vmsd(DEVICE(cpu)) == NULL) {
770 vmstate_register(NULL, cpu->cpu_index, &vmstate_cpu_common, cpu);
772 if (cc->vmsd != NULL) {
773 vmstate_register(NULL, cpu->cpu_index, cc->vmsd, cpu);
775 #endif
778 static void breakpoint_invalidate(CPUState *cpu, target_ulong pc)
780 /* Flush the whole TB as this will not have race conditions
781 * even if we don't have proper locking yet.
782 * Ideally we would just invalidate the TBs for the
783 * specified PC.
785 tb_flush(cpu);
788 #if defined(CONFIG_USER_ONLY)
789 void cpu_watchpoint_remove_all(CPUState *cpu, int mask)
794 int cpu_watchpoint_remove(CPUState *cpu, vaddr addr, vaddr len,
795 int flags)
797 return -ENOSYS;
800 void cpu_watchpoint_remove_by_ref(CPUState *cpu, CPUWatchpoint *watchpoint)
804 int cpu_watchpoint_insert(CPUState *cpu, vaddr addr, vaddr len,
805 int flags, CPUWatchpoint **watchpoint)
807 return -ENOSYS;
809 #else
810 /* Add a watchpoint. */
811 int cpu_watchpoint_insert(CPUState *cpu, vaddr addr, vaddr len,
812 int flags, CPUWatchpoint **watchpoint)
814 CPUWatchpoint *wp;
816 /* forbid ranges which are empty or run off the end of the address space */
817 if (len == 0 || (addr + len - 1) < addr) {
818 error_report("tried to set invalid watchpoint at %"
819 VADDR_PRIx ", len=%" VADDR_PRIu, addr, len);
820 return -EINVAL;
822 wp = g_malloc(sizeof(*wp));
824 wp->vaddr = addr;
825 wp->len = len;
826 wp->flags = flags;
828 /* keep all GDB-injected watchpoints in front */
829 if (flags & BP_GDB) {
830 QTAILQ_INSERT_HEAD(&cpu->watchpoints, wp, entry);
831 } else {
832 QTAILQ_INSERT_TAIL(&cpu->watchpoints, wp, entry);
835 tlb_flush_page(cpu, addr);
837 if (watchpoint)
838 *watchpoint = wp;
839 return 0;
842 /* Remove a specific watchpoint. */
843 int cpu_watchpoint_remove(CPUState *cpu, vaddr addr, vaddr len,
844 int flags)
846 CPUWatchpoint *wp;
848 QTAILQ_FOREACH(wp, &cpu->watchpoints, entry) {
849 if (addr == wp->vaddr && len == wp->len
850 && flags == (wp->flags & ~BP_WATCHPOINT_HIT)) {
851 cpu_watchpoint_remove_by_ref(cpu, wp);
852 return 0;
855 return -ENOENT;
858 /* Remove a specific watchpoint by reference. */
859 void cpu_watchpoint_remove_by_ref(CPUState *cpu, CPUWatchpoint *watchpoint)
861 QTAILQ_REMOVE(&cpu->watchpoints, watchpoint, entry);
863 tlb_flush_page(cpu, watchpoint->vaddr);
865 g_free(watchpoint);
868 /* Remove all matching watchpoints. */
869 void cpu_watchpoint_remove_all(CPUState *cpu, int mask)
871 CPUWatchpoint *wp, *next;
873 QTAILQ_FOREACH_SAFE(wp, &cpu->watchpoints, entry, next) {
874 if (wp->flags & mask) {
875 cpu_watchpoint_remove_by_ref(cpu, wp);
880 /* Return true if this watchpoint address matches the specified
881 * access (ie the address range covered by the watchpoint overlaps
882 * partially or completely with the address range covered by the
883 * access).
885 static inline bool cpu_watchpoint_address_matches(CPUWatchpoint *wp,
886 vaddr addr,
887 vaddr len)
889 /* We know the lengths are non-zero, but a little caution is
890 * required to avoid errors in the case where the range ends
891 * exactly at the top of the address space and so addr + len
892 * wraps round to zero.
894 vaddr wpend = wp->vaddr + wp->len - 1;
895 vaddr addrend = addr + len - 1;
897 return !(addr > wpend || wp->vaddr > addrend);
900 #endif
902 /* Add a breakpoint. */
903 int cpu_breakpoint_insert(CPUState *cpu, vaddr pc, int flags,
904 CPUBreakpoint **breakpoint)
906 CPUBreakpoint *bp;
908 bp = g_malloc(sizeof(*bp));
910 bp->pc = pc;
911 bp->flags = flags;
913 /* keep all GDB-injected breakpoints in front */
914 if (flags & BP_GDB) {
915 QTAILQ_INSERT_HEAD(&cpu->breakpoints, bp, entry);
916 } else {
917 QTAILQ_INSERT_TAIL(&cpu->breakpoints, bp, entry);
920 breakpoint_invalidate(cpu, pc);
922 if (breakpoint) {
923 *breakpoint = bp;
925 return 0;
928 /* Remove a specific breakpoint. */
929 int cpu_breakpoint_remove(CPUState *cpu, vaddr pc, int flags)
931 CPUBreakpoint *bp;
933 QTAILQ_FOREACH(bp, &cpu->breakpoints, entry) {
934 if (bp->pc == pc && bp->flags == flags) {
935 cpu_breakpoint_remove_by_ref(cpu, bp);
936 return 0;
939 return -ENOENT;
942 /* Remove a specific breakpoint by reference. */
943 void cpu_breakpoint_remove_by_ref(CPUState *cpu, CPUBreakpoint *breakpoint)
945 QTAILQ_REMOVE(&cpu->breakpoints, breakpoint, entry);
947 breakpoint_invalidate(cpu, breakpoint->pc);
949 g_free(breakpoint);
952 /* Remove all matching breakpoints. */
953 void cpu_breakpoint_remove_all(CPUState *cpu, int mask)
955 CPUBreakpoint *bp, *next;
957 QTAILQ_FOREACH_SAFE(bp, &cpu->breakpoints, entry, next) {
958 if (bp->flags & mask) {
959 cpu_breakpoint_remove_by_ref(cpu, bp);
964 /* enable or disable single step mode. EXCP_DEBUG is returned by the
965 CPU loop after each instruction */
966 void cpu_single_step(CPUState *cpu, int enabled)
968 if (cpu->singlestep_enabled != enabled) {
969 cpu->singlestep_enabled = enabled;
970 if (kvm_enabled()) {
971 kvm_update_guest_debug(cpu, 0);
972 } else {
973 /* must flush all the translated code to avoid inconsistencies */
974 /* XXX: only flush what is necessary */
975 tb_flush(cpu);
980 void QEMU_NORETURN cpu_abort(CPUState *cpu, const char *fmt, ...)
982 va_list ap;
983 va_list ap2;
985 va_start(ap, fmt);
986 va_copy(ap2, ap);
987 fprintf(stderr, "qemu: fatal: ");
988 vfprintf(stderr, fmt, ap);
989 fprintf(stderr, "\n");
990 cpu_dump_state(cpu, stderr, fprintf, CPU_DUMP_FPU | CPU_DUMP_CCOP);
991 if (qemu_log_separate()) {
992 qemu_log_lock();
993 qemu_log("qemu: fatal: ");
994 qemu_log_vprintf(fmt, ap2);
995 qemu_log("\n");
996 log_cpu_state(cpu, CPU_DUMP_FPU | CPU_DUMP_CCOP);
997 qemu_log_flush();
998 qemu_log_unlock();
999 qemu_log_close();
1001 va_end(ap2);
1002 va_end(ap);
1003 replay_finish();
1004 #if defined(CONFIG_USER_ONLY)
1006 struct sigaction act;
1007 sigfillset(&act.sa_mask);
1008 act.sa_handler = SIG_DFL;
1009 sigaction(SIGABRT, &act, NULL);
1011 #endif
1012 abort();
1015 #if !defined(CONFIG_USER_ONLY)
1016 /* Called from RCU critical section */
1017 static RAMBlock *qemu_get_ram_block(ram_addr_t addr)
1019 RAMBlock *block;
1021 block = atomic_rcu_read(&ram_list.mru_block);
1022 if (block && addr - block->offset < block->max_length) {
1023 return block;
1025 RAMBLOCK_FOREACH(block) {
1026 if (addr - block->offset < block->max_length) {
1027 goto found;
1031 fprintf(stderr, "Bad ram offset %" PRIx64 "\n", (uint64_t)addr);
1032 abort();
1034 found:
1035 /* It is safe to write mru_block outside the iothread lock. This
1036 * is what happens:
1038 * mru_block = xxx
1039 * rcu_read_unlock()
1040 * xxx removed from list
1041 * rcu_read_lock()
1042 * read mru_block
1043 * mru_block = NULL;
1044 * call_rcu(reclaim_ramblock, xxx);
1045 * rcu_read_unlock()
1047 * atomic_rcu_set is not needed here. The block was already published
1048 * when it was placed into the list. Here we're just making an extra
1049 * copy of the pointer.
1051 ram_list.mru_block = block;
1052 return block;
1055 static void tlb_reset_dirty_range_all(ram_addr_t start, ram_addr_t length)
1057 CPUState *cpu;
1058 ram_addr_t start1;
1059 RAMBlock *block;
1060 ram_addr_t end;
1062 end = TARGET_PAGE_ALIGN(start + length);
1063 start &= TARGET_PAGE_MASK;
1065 rcu_read_lock();
1066 block = qemu_get_ram_block(start);
1067 assert(block == qemu_get_ram_block(end - 1));
1068 start1 = (uintptr_t)ramblock_ptr(block, start - block->offset);
1069 CPU_FOREACH(cpu) {
1070 tlb_reset_dirty(cpu, start1, length);
1072 rcu_read_unlock();
1075 /* Note: start and end must be within the same ram block. */
1076 bool cpu_physical_memory_test_and_clear_dirty(ram_addr_t start,
1077 ram_addr_t length,
1078 unsigned client)
1080 DirtyMemoryBlocks *blocks;
1081 unsigned long end, page;
1082 bool dirty = false;
1084 if (length == 0) {
1085 return false;
1088 end = TARGET_PAGE_ALIGN(start + length) >> TARGET_PAGE_BITS;
1089 page = start >> TARGET_PAGE_BITS;
1091 rcu_read_lock();
1093 blocks = atomic_rcu_read(&ram_list.dirty_memory[client]);
1095 while (page < end) {
1096 unsigned long idx = page / DIRTY_MEMORY_BLOCK_SIZE;
1097 unsigned long offset = page % DIRTY_MEMORY_BLOCK_SIZE;
1098 unsigned long num = MIN(end - page, DIRTY_MEMORY_BLOCK_SIZE - offset);
1100 dirty |= bitmap_test_and_clear_atomic(blocks->blocks[idx],
1101 offset, num);
1102 page += num;
1105 rcu_read_unlock();
1107 if (dirty && tcg_enabled()) {
1108 tlb_reset_dirty_range_all(start, length);
1111 return dirty;
1114 DirtyBitmapSnapshot *cpu_physical_memory_snapshot_and_clear_dirty
1115 (ram_addr_t start, ram_addr_t length, unsigned client)
1117 DirtyMemoryBlocks *blocks;
1118 unsigned long align = 1UL << (TARGET_PAGE_BITS + BITS_PER_LEVEL);
1119 ram_addr_t first = QEMU_ALIGN_DOWN(start, align);
1120 ram_addr_t last = QEMU_ALIGN_UP(start + length, align);
1121 DirtyBitmapSnapshot *snap;
1122 unsigned long page, end, dest;
1124 snap = g_malloc0(sizeof(*snap) +
1125 ((last - first) >> (TARGET_PAGE_BITS + 3)));
1126 snap->start = first;
1127 snap->end = last;
1129 page = first >> TARGET_PAGE_BITS;
1130 end = last >> TARGET_PAGE_BITS;
1131 dest = 0;
1133 rcu_read_lock();
1135 blocks = atomic_rcu_read(&ram_list.dirty_memory[client]);
1137 while (page < end) {
1138 unsigned long idx = page / DIRTY_MEMORY_BLOCK_SIZE;
1139 unsigned long offset = page % DIRTY_MEMORY_BLOCK_SIZE;
1140 unsigned long num = MIN(end - page, DIRTY_MEMORY_BLOCK_SIZE - offset);
1142 assert(QEMU_IS_ALIGNED(offset, (1 << BITS_PER_LEVEL)));
1143 assert(QEMU_IS_ALIGNED(num, (1 << BITS_PER_LEVEL)));
1144 offset >>= BITS_PER_LEVEL;
1146 bitmap_copy_and_clear_atomic(snap->dirty + dest,
1147 blocks->blocks[idx] + offset,
1148 num);
1149 page += num;
1150 dest += num >> BITS_PER_LEVEL;
1153 rcu_read_unlock();
1155 if (tcg_enabled()) {
1156 tlb_reset_dirty_range_all(start, length);
1159 return snap;
1162 bool cpu_physical_memory_snapshot_get_dirty(DirtyBitmapSnapshot *snap,
1163 ram_addr_t start,
1164 ram_addr_t length)
1166 unsigned long page, end;
1168 assert(start >= snap->start);
1169 assert(start + length <= snap->end);
1171 end = TARGET_PAGE_ALIGN(start + length - snap->start) >> TARGET_PAGE_BITS;
1172 page = (start - snap->start) >> TARGET_PAGE_BITS;
1174 while (page < end) {
1175 if (test_bit(page, snap->dirty)) {
1176 return true;
1178 page++;
1180 return false;
1183 /* Called from RCU critical section */
1184 hwaddr memory_region_section_get_iotlb(CPUState *cpu,
1185 MemoryRegionSection *section,
1186 target_ulong vaddr,
1187 hwaddr paddr, hwaddr xlat,
1188 int prot,
1189 target_ulong *address)
1191 hwaddr iotlb;
1192 CPUWatchpoint *wp;
1194 if (memory_region_is_ram(section->mr)) {
1195 /* Normal RAM. */
1196 iotlb = memory_region_get_ram_addr(section->mr) + xlat;
1197 if (!section->readonly) {
1198 iotlb |= PHYS_SECTION_NOTDIRTY;
1199 } else {
1200 iotlb |= PHYS_SECTION_ROM;
1202 } else {
1203 AddressSpaceDispatch *d;
1205 d = atomic_rcu_read(&section->address_space->dispatch);
1206 iotlb = section - d->map.sections;
1207 iotlb += xlat;
1210 /* Make accesses to pages with watchpoints go via the
1211 watchpoint trap routines. */
1212 QTAILQ_FOREACH(wp, &cpu->watchpoints, entry) {
1213 if (cpu_watchpoint_address_matches(wp, vaddr, TARGET_PAGE_SIZE)) {
1214 /* Avoid trapping reads of pages with a write breakpoint. */
1215 if ((prot & PAGE_WRITE) || (wp->flags & BP_MEM_READ)) {
1216 iotlb = PHYS_SECTION_WATCH + paddr;
1217 *address |= TLB_MMIO;
1218 break;
1223 return iotlb;
1225 #endif /* defined(CONFIG_USER_ONLY) */
1227 #if !defined(CONFIG_USER_ONLY)
1229 static int subpage_register (subpage_t *mmio, uint32_t start, uint32_t end,
1230 uint16_t section);
1231 static subpage_t *subpage_init(AddressSpace *as, hwaddr base);
1233 static void *(*phys_mem_alloc)(size_t size, uint64_t *align) =
1234 qemu_anon_ram_alloc;
1237 * Set a custom physical guest memory alloator.
1238 * Accelerators with unusual needs may need this. Hopefully, we can
1239 * get rid of it eventually.
1241 void phys_mem_set_alloc(void *(*alloc)(size_t, uint64_t *align))
1243 phys_mem_alloc = alloc;
1246 static uint16_t phys_section_add(PhysPageMap *map,
1247 MemoryRegionSection *section)
1249 /* The physical section number is ORed with a page-aligned
1250 * pointer to produce the iotlb entries. Thus it should
1251 * never overflow into the page-aligned value.
1253 assert(map->sections_nb < TARGET_PAGE_SIZE);
1255 if (map->sections_nb == map->sections_nb_alloc) {
1256 map->sections_nb_alloc = MAX(map->sections_nb_alloc * 2, 16);
1257 map->sections = g_renew(MemoryRegionSection, map->sections,
1258 map->sections_nb_alloc);
1260 map->sections[map->sections_nb] = *section;
1261 memory_region_ref(section->mr);
1262 return map->sections_nb++;
1265 static void phys_section_destroy(MemoryRegion *mr)
1267 bool have_sub_page = mr->subpage;
1269 memory_region_unref(mr);
1271 if (have_sub_page) {
1272 subpage_t *subpage = container_of(mr, subpage_t, iomem);
1273 object_unref(OBJECT(&subpage->iomem));
1274 g_free(subpage);
1278 static void phys_sections_free(PhysPageMap *map)
1280 while (map->sections_nb > 0) {
1281 MemoryRegionSection *section = &map->sections[--map->sections_nb];
1282 phys_section_destroy(section->mr);
1284 g_free(map->sections);
1285 g_free(map->nodes);
1288 static void register_subpage(AddressSpaceDispatch *d, MemoryRegionSection *section)
1290 subpage_t *subpage;
1291 hwaddr base = section->offset_within_address_space
1292 & TARGET_PAGE_MASK;
1293 MemoryRegionSection *existing = phys_page_find(d, base);
1294 MemoryRegionSection subsection = {
1295 .offset_within_address_space = base,
1296 .size = int128_make64(TARGET_PAGE_SIZE),
1298 hwaddr start, end;
1300 assert(existing->mr->subpage || existing->mr == &io_mem_unassigned);
1302 if (!(existing->mr->subpage)) {
1303 subpage = subpage_init(d->as, base);
1304 subsection.address_space = d->as;
1305 subsection.mr = &subpage->iomem;
1306 phys_page_set(d, base >> TARGET_PAGE_BITS, 1,
1307 phys_section_add(&d->map, &subsection));
1308 } else {
1309 subpage = container_of(existing->mr, subpage_t, iomem);
1311 start = section->offset_within_address_space & ~TARGET_PAGE_MASK;
1312 end = start + int128_get64(section->size) - 1;
1313 subpage_register(subpage, start, end,
1314 phys_section_add(&d->map, section));
1318 static void register_multipage(AddressSpaceDispatch *d,
1319 MemoryRegionSection *section)
1321 hwaddr start_addr = section->offset_within_address_space;
1322 uint16_t section_index = phys_section_add(&d->map, section);
1323 uint64_t num_pages = int128_get64(int128_rshift(section->size,
1324 TARGET_PAGE_BITS));
1326 assert(num_pages);
1327 phys_page_set(d, start_addr >> TARGET_PAGE_BITS, num_pages, section_index);
1330 static void mem_add(MemoryListener *listener, MemoryRegionSection *section)
1332 AddressSpace *as = container_of(listener, AddressSpace, dispatch_listener);
1333 AddressSpaceDispatch *d = as->next_dispatch;
1334 MemoryRegionSection now = *section, remain = *section;
1335 Int128 page_size = int128_make64(TARGET_PAGE_SIZE);
1337 if (now.offset_within_address_space & ~TARGET_PAGE_MASK) {
1338 uint64_t left = TARGET_PAGE_ALIGN(now.offset_within_address_space)
1339 - now.offset_within_address_space;
1341 now.size = int128_min(int128_make64(left), now.size);
1342 register_subpage(d, &now);
1343 } else {
1344 now.size = int128_zero();
1346 while (int128_ne(remain.size, now.size)) {
1347 remain.size = int128_sub(remain.size, now.size);
1348 remain.offset_within_address_space += int128_get64(now.size);
1349 remain.offset_within_region += int128_get64(now.size);
1350 now = remain;
1351 if (int128_lt(remain.size, page_size)) {
1352 register_subpage(d, &now);
1353 } else if (remain.offset_within_address_space & ~TARGET_PAGE_MASK) {
1354 now.size = page_size;
1355 register_subpage(d, &now);
1356 } else {
1357 now.size = int128_and(now.size, int128_neg(page_size));
1358 register_multipage(d, &now);
1363 void qemu_flush_coalesced_mmio_buffer(void)
1365 if (kvm_enabled())
1366 kvm_flush_coalesced_mmio_buffer();
1369 void qemu_mutex_lock_ramlist(void)
1371 qemu_mutex_lock(&ram_list.mutex);
1374 void qemu_mutex_unlock_ramlist(void)
1376 qemu_mutex_unlock(&ram_list.mutex);
1379 void ram_block_dump(Monitor *mon)
1381 RAMBlock *block;
1382 char *psize;
1384 rcu_read_lock();
1385 monitor_printf(mon, "%24s %8s %18s %18s %18s\n",
1386 "Block Name", "PSize", "Offset", "Used", "Total");
1387 RAMBLOCK_FOREACH(block) {
1388 psize = size_to_str(block->page_size);
1389 monitor_printf(mon, "%24s %8s 0x%016" PRIx64 " 0x%016" PRIx64
1390 " 0x%016" PRIx64 "\n", block->idstr, psize,
1391 (uint64_t)block->offset,
1392 (uint64_t)block->used_length,
1393 (uint64_t)block->max_length);
1394 g_free(psize);
1396 rcu_read_unlock();
1399 #ifdef __linux__
1401 * FIXME TOCTTOU: this iterates over memory backends' mem-path, which
1402 * may or may not name the same files / on the same filesystem now as
1403 * when we actually open and map them. Iterate over the file
1404 * descriptors instead, and use qemu_fd_getpagesize().
1406 static int find_max_supported_pagesize(Object *obj, void *opaque)
1408 char *mem_path;
1409 long *hpsize_min = opaque;
1411 if (object_dynamic_cast(obj, TYPE_MEMORY_BACKEND)) {
1412 mem_path = object_property_get_str(obj, "mem-path", NULL);
1413 if (mem_path) {
1414 long hpsize = qemu_mempath_getpagesize(mem_path);
1415 if (hpsize < *hpsize_min) {
1416 *hpsize_min = hpsize;
1418 } else {
1419 *hpsize_min = getpagesize();
1423 return 0;
1426 long qemu_getrampagesize(void)
1428 long hpsize = LONG_MAX;
1429 long mainrampagesize;
1430 Object *memdev_root;
1432 if (mem_path) {
1433 mainrampagesize = qemu_mempath_getpagesize(mem_path);
1434 } else {
1435 mainrampagesize = getpagesize();
1438 /* it's possible we have memory-backend objects with
1439 * hugepage-backed RAM. these may get mapped into system
1440 * address space via -numa parameters or memory hotplug
1441 * hooks. we want to take these into account, but we
1442 * also want to make sure these supported hugepage
1443 * sizes are applicable across the entire range of memory
1444 * we may boot from, so we take the min across all
1445 * backends, and assume normal pages in cases where a
1446 * backend isn't backed by hugepages.
1448 memdev_root = object_resolve_path("/objects", NULL);
1449 if (memdev_root) {
1450 object_child_foreach(memdev_root, find_max_supported_pagesize, &hpsize);
1452 if (hpsize == LONG_MAX) {
1453 /* No additional memory regions found ==> Report main RAM page size */
1454 return mainrampagesize;
1457 /* If NUMA is disabled or the NUMA nodes are not backed with a
1458 * memory-backend, then there is at least one node using "normal" RAM,
1459 * so if its page size is smaller we have got to report that size instead.
1461 if (hpsize > mainrampagesize &&
1462 (nb_numa_nodes == 0 || numa_info[0].node_memdev == NULL)) {
1463 static bool warned;
1464 if (!warned) {
1465 error_report("Huge page support disabled (n/a for main memory).");
1466 warned = true;
1468 return mainrampagesize;
1471 return hpsize;
1473 #else
1474 long qemu_getrampagesize(void)
1476 return getpagesize();
1478 #endif
1480 #ifdef __linux__
1481 static int64_t get_file_size(int fd)
1483 int64_t size = lseek(fd, 0, SEEK_END);
1484 if (size < 0) {
1485 return -errno;
1487 return size;
1490 static int file_ram_open(const char *path,
1491 const char *region_name,
1492 bool *created,
1493 Error **errp)
1495 char *filename;
1496 char *sanitized_name;
1497 char *c;
1498 int fd = -1;
1500 *created = false;
1501 for (;;) {
1502 fd = open(path, O_RDWR);
1503 if (fd >= 0) {
1504 /* @path names an existing file, use it */
1505 break;
1507 if (errno == ENOENT) {
1508 /* @path names a file that doesn't exist, create it */
1509 fd = open(path, O_RDWR | O_CREAT | O_EXCL, 0644);
1510 if (fd >= 0) {
1511 *created = true;
1512 break;
1514 } else if (errno == EISDIR) {
1515 /* @path names a directory, create a file there */
1516 /* Make name safe to use with mkstemp by replacing '/' with '_'. */
1517 sanitized_name = g_strdup(region_name);
1518 for (c = sanitized_name; *c != '\0'; c++) {
1519 if (*c == '/') {
1520 *c = '_';
1524 filename = g_strdup_printf("%s/qemu_back_mem.%s.XXXXXX", path,
1525 sanitized_name);
1526 g_free(sanitized_name);
1528 fd = mkstemp(filename);
1529 if (fd >= 0) {
1530 unlink(filename);
1531 g_free(filename);
1532 break;
1534 g_free(filename);
1536 if (errno != EEXIST && errno != EINTR) {
1537 error_setg_errno(errp, errno,
1538 "can't open backing store %s for guest RAM",
1539 path);
1540 return -1;
1543 * Try again on EINTR and EEXIST. The latter happens when
1544 * something else creates the file between our two open().
1548 return fd;
1551 static void *file_ram_alloc(RAMBlock *block,
1552 ram_addr_t memory,
1553 int fd,
1554 bool truncate,
1555 Error **errp)
1557 void *area;
1559 block->page_size = qemu_fd_getpagesize(fd);
1560 block->mr->align = block->page_size;
1561 #if defined(__s390x__)
1562 if (kvm_enabled()) {
1563 block->mr->align = MAX(block->mr->align, QEMU_VMALLOC_ALIGN);
1565 #endif
1567 if (memory < block->page_size) {
1568 error_setg(errp, "memory size 0x" RAM_ADDR_FMT " must be equal to "
1569 "or larger than page size 0x%zx",
1570 memory, block->page_size);
1571 return NULL;
1574 memory = ROUND_UP(memory, block->page_size);
1577 * ftruncate is not supported by hugetlbfs in older
1578 * hosts, so don't bother bailing out on errors.
1579 * If anything goes wrong with it under other filesystems,
1580 * mmap will fail.
1582 * Do not truncate the non-empty backend file to avoid corrupting
1583 * the existing data in the file. Disabling shrinking is not
1584 * enough. For example, the current vNVDIMM implementation stores
1585 * the guest NVDIMM labels at the end of the backend file. If the
1586 * backend file is later extended, QEMU will not be able to find
1587 * those labels. Therefore, extending the non-empty backend file
1588 * is disabled as well.
1590 if (truncate && ftruncate(fd, memory)) {
1591 perror("ftruncate");
1594 area = qemu_ram_mmap(fd, memory, block->mr->align,
1595 block->flags & RAM_SHARED);
1596 if (area == MAP_FAILED) {
1597 error_setg_errno(errp, errno,
1598 "unable to map backing store for guest RAM");
1599 return NULL;
1602 if (mem_prealloc) {
1603 os_mem_prealloc(fd, area, memory, smp_cpus, errp);
1604 if (errp && *errp) {
1605 qemu_ram_munmap(area, memory);
1606 return NULL;
1610 block->fd = fd;
1611 return area;
1613 #endif
1615 /* Called with the ramlist lock held. */
1616 static ram_addr_t find_ram_offset(ram_addr_t size)
1618 RAMBlock *block, *next_block;
1619 ram_addr_t offset = RAM_ADDR_MAX, mingap = RAM_ADDR_MAX;
1621 assert(size != 0); /* it would hand out same offset multiple times */
1623 if (QLIST_EMPTY_RCU(&ram_list.blocks)) {
1624 return 0;
1627 RAMBLOCK_FOREACH(block) {
1628 ram_addr_t end, next = RAM_ADDR_MAX;
1630 end = block->offset + block->max_length;
1632 RAMBLOCK_FOREACH(next_block) {
1633 if (next_block->offset >= end) {
1634 next = MIN(next, next_block->offset);
1637 if (next - end >= size && next - end < mingap) {
1638 offset = end;
1639 mingap = next - end;
1643 if (offset == RAM_ADDR_MAX) {
1644 fprintf(stderr, "Failed to find gap of requested size: %" PRIu64 "\n",
1645 (uint64_t)size);
1646 abort();
1649 return offset;
1652 unsigned long last_ram_page(void)
1654 RAMBlock *block;
1655 ram_addr_t last = 0;
1657 rcu_read_lock();
1658 RAMBLOCK_FOREACH(block) {
1659 last = MAX(last, block->offset + block->max_length);
1661 rcu_read_unlock();
1662 return last >> TARGET_PAGE_BITS;
1665 static void qemu_ram_setup_dump(void *addr, ram_addr_t size)
1667 int ret;
1669 /* Use MADV_DONTDUMP, if user doesn't want the guest memory in the core */
1670 if (!machine_dump_guest_core(current_machine)) {
1671 ret = qemu_madvise(addr, size, QEMU_MADV_DONTDUMP);
1672 if (ret) {
1673 perror("qemu_madvise");
1674 fprintf(stderr, "madvise doesn't support MADV_DONTDUMP, "
1675 "but dump_guest_core=off specified\n");
1680 const char *qemu_ram_get_idstr(RAMBlock *rb)
1682 return rb->idstr;
1685 bool qemu_ram_is_shared(RAMBlock *rb)
1687 return rb->flags & RAM_SHARED;
1690 /* Called with iothread lock held. */
1691 void qemu_ram_set_idstr(RAMBlock *new_block, const char *name, DeviceState *dev)
1693 RAMBlock *block;
1695 assert(new_block);
1696 assert(!new_block->idstr[0]);
1698 if (dev) {
1699 char *id = qdev_get_dev_path(dev);
1700 if (id) {
1701 snprintf(new_block->idstr, sizeof(new_block->idstr), "%s/", id);
1702 g_free(id);
1705 pstrcat(new_block->idstr, sizeof(new_block->idstr), name);
1707 rcu_read_lock();
1708 RAMBLOCK_FOREACH(block) {
1709 if (block != new_block &&
1710 !strcmp(block->idstr, new_block->idstr)) {
1711 fprintf(stderr, "RAMBlock \"%s\" already registered, abort!\n",
1712 new_block->idstr);
1713 abort();
1716 rcu_read_unlock();
1719 /* Called with iothread lock held. */
1720 void qemu_ram_unset_idstr(RAMBlock *block)
1722 /* FIXME: arch_init.c assumes that this is not called throughout
1723 * migration. Ignore the problem since hot-unplug during migration
1724 * does not work anyway.
1726 if (block) {
1727 memset(block->idstr, 0, sizeof(block->idstr));
1731 size_t qemu_ram_pagesize(RAMBlock *rb)
1733 return rb->page_size;
1736 /* Returns the largest size of page in use */
1737 size_t qemu_ram_pagesize_largest(void)
1739 RAMBlock *block;
1740 size_t largest = 0;
1742 RAMBLOCK_FOREACH(block) {
1743 largest = MAX(largest, qemu_ram_pagesize(block));
1746 return largest;
1749 static int memory_try_enable_merging(void *addr, size_t len)
1751 if (!machine_mem_merge(current_machine)) {
1752 /* disabled by the user */
1753 return 0;
1756 return qemu_madvise(addr, len, QEMU_MADV_MERGEABLE);
1759 /* Only legal before guest might have detected the memory size: e.g. on
1760 * incoming migration, or right after reset.
1762 * As memory core doesn't know how is memory accessed, it is up to
1763 * resize callback to update device state and/or add assertions to detect
1764 * misuse, if necessary.
1766 int qemu_ram_resize(RAMBlock *block, ram_addr_t newsize, Error **errp)
1768 assert(block);
1770 newsize = HOST_PAGE_ALIGN(newsize);
1772 if (block->used_length == newsize) {
1773 return 0;
1776 if (!(block->flags & RAM_RESIZEABLE)) {
1777 error_setg_errno(errp, EINVAL,
1778 "Length mismatch: %s: 0x" RAM_ADDR_FMT
1779 " in != 0x" RAM_ADDR_FMT, block->idstr,
1780 newsize, block->used_length);
1781 return -EINVAL;
1784 if (block->max_length < newsize) {
1785 error_setg_errno(errp, EINVAL,
1786 "Length too large: %s: 0x" RAM_ADDR_FMT
1787 " > 0x" RAM_ADDR_FMT, block->idstr,
1788 newsize, block->max_length);
1789 return -EINVAL;
1792 cpu_physical_memory_clear_dirty_range(block->offset, block->used_length);
1793 block->used_length = newsize;
1794 cpu_physical_memory_set_dirty_range(block->offset, block->used_length,
1795 DIRTY_CLIENTS_ALL);
1796 memory_region_set_size(block->mr, newsize);
1797 if (block->resized) {
1798 block->resized(block->idstr, newsize, block->host);
1800 return 0;
1803 /* Called with ram_list.mutex held */
1804 static void dirty_memory_extend(ram_addr_t old_ram_size,
1805 ram_addr_t new_ram_size)
1807 ram_addr_t old_num_blocks = DIV_ROUND_UP(old_ram_size,
1808 DIRTY_MEMORY_BLOCK_SIZE);
1809 ram_addr_t new_num_blocks = DIV_ROUND_UP(new_ram_size,
1810 DIRTY_MEMORY_BLOCK_SIZE);
1811 int i;
1813 /* Only need to extend if block count increased */
1814 if (new_num_blocks <= old_num_blocks) {
1815 return;
1818 for (i = 0; i < DIRTY_MEMORY_NUM; i++) {
1819 DirtyMemoryBlocks *old_blocks;
1820 DirtyMemoryBlocks *new_blocks;
1821 int j;
1823 old_blocks = atomic_rcu_read(&ram_list.dirty_memory[i]);
1824 new_blocks = g_malloc(sizeof(*new_blocks) +
1825 sizeof(new_blocks->blocks[0]) * new_num_blocks);
1827 if (old_num_blocks) {
1828 memcpy(new_blocks->blocks, old_blocks->blocks,
1829 old_num_blocks * sizeof(old_blocks->blocks[0]));
1832 for (j = old_num_blocks; j < new_num_blocks; j++) {
1833 new_blocks->blocks[j] = bitmap_new(DIRTY_MEMORY_BLOCK_SIZE);
1836 atomic_rcu_set(&ram_list.dirty_memory[i], new_blocks);
1838 if (old_blocks) {
1839 g_free_rcu(old_blocks, rcu);
1844 static void ram_block_add(RAMBlock *new_block, Error **errp)
1846 RAMBlock *block;
1847 RAMBlock *last_block = NULL;
1848 ram_addr_t old_ram_size, new_ram_size;
1849 Error *err = NULL;
1851 old_ram_size = last_ram_page();
1853 qemu_mutex_lock_ramlist();
1854 new_block->offset = find_ram_offset(new_block->max_length);
1856 if (!new_block->host) {
1857 if (xen_enabled()) {
1858 xen_ram_alloc(new_block->offset, new_block->max_length,
1859 new_block->mr, &err);
1860 if (err) {
1861 error_propagate(errp, err);
1862 qemu_mutex_unlock_ramlist();
1863 return;
1865 } else {
1866 new_block->host = phys_mem_alloc(new_block->max_length,
1867 &new_block->mr->align);
1868 if (!new_block->host) {
1869 error_setg_errno(errp, errno,
1870 "cannot set up guest memory '%s'",
1871 memory_region_name(new_block->mr));
1872 qemu_mutex_unlock_ramlist();
1873 return;
1875 memory_try_enable_merging(new_block->host, new_block->max_length);
1879 new_ram_size = MAX(old_ram_size,
1880 (new_block->offset + new_block->max_length) >> TARGET_PAGE_BITS);
1881 if (new_ram_size > old_ram_size) {
1882 dirty_memory_extend(old_ram_size, new_ram_size);
1884 /* Keep the list sorted from biggest to smallest block. Unlike QTAILQ,
1885 * QLIST (which has an RCU-friendly variant) does not have insertion at
1886 * tail, so save the last element in last_block.
1888 RAMBLOCK_FOREACH(block) {
1889 last_block = block;
1890 if (block->max_length < new_block->max_length) {
1891 break;
1894 if (block) {
1895 QLIST_INSERT_BEFORE_RCU(block, new_block, next);
1896 } else if (last_block) {
1897 QLIST_INSERT_AFTER_RCU(last_block, new_block, next);
1898 } else { /* list is empty */
1899 QLIST_INSERT_HEAD_RCU(&ram_list.blocks, new_block, next);
1901 ram_list.mru_block = NULL;
1903 /* Write list before version */
1904 smp_wmb();
1905 ram_list.version++;
1906 qemu_mutex_unlock_ramlist();
1908 cpu_physical_memory_set_dirty_range(new_block->offset,
1909 new_block->used_length,
1910 DIRTY_CLIENTS_ALL);
1912 if (new_block->host) {
1913 qemu_ram_setup_dump(new_block->host, new_block->max_length);
1914 qemu_madvise(new_block->host, new_block->max_length, QEMU_MADV_HUGEPAGE);
1915 /* MADV_DONTFORK is also needed by KVM in absence of synchronous MMU */
1916 qemu_madvise(new_block->host, new_block->max_length, QEMU_MADV_DONTFORK);
1917 ram_block_notify_add(new_block->host, new_block->max_length);
1921 #ifdef __linux__
1922 RAMBlock *qemu_ram_alloc_from_fd(ram_addr_t size, MemoryRegion *mr,
1923 bool share, int fd,
1924 Error **errp)
1926 RAMBlock *new_block;
1927 Error *local_err = NULL;
1928 int64_t file_size;
1930 if (xen_enabled()) {
1931 error_setg(errp, "-mem-path not supported with Xen");
1932 return NULL;
1935 if (kvm_enabled() && !kvm_has_sync_mmu()) {
1936 error_setg(errp,
1937 "host lacks kvm mmu notifiers, -mem-path unsupported");
1938 return NULL;
1941 if (phys_mem_alloc != qemu_anon_ram_alloc) {
1943 * file_ram_alloc() needs to allocate just like
1944 * phys_mem_alloc, but we haven't bothered to provide
1945 * a hook there.
1947 error_setg(errp,
1948 "-mem-path not supported with this accelerator");
1949 return NULL;
1952 size = HOST_PAGE_ALIGN(size);
1953 file_size = get_file_size(fd);
1954 if (file_size > 0 && file_size < size) {
1955 error_setg(errp, "backing store %s size 0x%" PRIx64
1956 " does not match 'size' option 0x" RAM_ADDR_FMT,
1957 mem_path, file_size, size);
1958 return NULL;
1961 new_block = g_malloc0(sizeof(*new_block));
1962 new_block->mr = mr;
1963 new_block->used_length = size;
1964 new_block->max_length = size;
1965 new_block->flags = share ? RAM_SHARED : 0;
1966 new_block->host = file_ram_alloc(new_block, size, fd, !file_size, errp);
1967 if (!new_block->host) {
1968 g_free(new_block);
1969 return NULL;
1972 ram_block_add(new_block, &local_err);
1973 if (local_err) {
1974 g_free(new_block);
1975 error_propagate(errp, local_err);
1976 return NULL;
1978 return new_block;
1983 RAMBlock *qemu_ram_alloc_from_file(ram_addr_t size, MemoryRegion *mr,
1984 bool share, const char *mem_path,
1985 Error **errp)
1987 int fd;
1988 bool created;
1989 RAMBlock *block;
1991 fd = file_ram_open(mem_path, memory_region_name(mr), &created, errp);
1992 if (fd < 0) {
1993 return NULL;
1996 block = qemu_ram_alloc_from_fd(size, mr, share, fd, errp);
1997 if (!block) {
1998 if (created) {
1999 unlink(mem_path);
2001 close(fd);
2002 return NULL;
2005 return block;
2007 #endif
2009 static
2010 RAMBlock *qemu_ram_alloc_internal(ram_addr_t size, ram_addr_t max_size,
2011 void (*resized)(const char*,
2012 uint64_t length,
2013 void *host),
2014 void *host, bool resizeable,
2015 MemoryRegion *mr, Error **errp)
2017 RAMBlock *new_block;
2018 Error *local_err = NULL;
2020 size = HOST_PAGE_ALIGN(size);
2021 max_size = HOST_PAGE_ALIGN(max_size);
2022 new_block = g_malloc0(sizeof(*new_block));
2023 new_block->mr = mr;
2024 new_block->resized = resized;
2025 new_block->used_length = size;
2026 new_block->max_length = max_size;
2027 assert(max_size >= size);
2028 new_block->fd = -1;
2029 new_block->page_size = getpagesize();
2030 new_block->host = host;
2031 if (host) {
2032 new_block->flags |= RAM_PREALLOC;
2034 if (resizeable) {
2035 new_block->flags |= RAM_RESIZEABLE;
2037 ram_block_add(new_block, &local_err);
2038 if (local_err) {
2039 g_free(new_block);
2040 error_propagate(errp, local_err);
2041 return NULL;
2043 return new_block;
2046 RAMBlock *qemu_ram_alloc_from_ptr(ram_addr_t size, void *host,
2047 MemoryRegion *mr, Error **errp)
2049 return qemu_ram_alloc_internal(size, size, NULL, host, false, mr, errp);
2052 RAMBlock *qemu_ram_alloc(ram_addr_t size, MemoryRegion *mr, Error **errp)
2054 return qemu_ram_alloc_internal(size, size, NULL, NULL, false, mr, errp);
2057 RAMBlock *qemu_ram_alloc_resizeable(ram_addr_t size, ram_addr_t maxsz,
2058 void (*resized)(const char*,
2059 uint64_t length,
2060 void *host),
2061 MemoryRegion *mr, Error **errp)
2063 return qemu_ram_alloc_internal(size, maxsz, resized, NULL, true, mr, errp);
2066 static void reclaim_ramblock(RAMBlock *block)
2068 if (block->flags & RAM_PREALLOC) {
2070 } else if (xen_enabled()) {
2071 xen_invalidate_map_cache_entry(block->host);
2072 #ifndef _WIN32
2073 } else if (block->fd >= 0) {
2074 qemu_ram_munmap(block->host, block->max_length);
2075 close(block->fd);
2076 #endif
2077 } else {
2078 qemu_anon_ram_free(block->host, block->max_length);
2080 g_free(block);
2083 void qemu_ram_free(RAMBlock *block)
2085 if (!block) {
2086 return;
2089 if (block->host) {
2090 ram_block_notify_remove(block->host, block->max_length);
2093 qemu_mutex_lock_ramlist();
2094 QLIST_REMOVE_RCU(block, next);
2095 ram_list.mru_block = NULL;
2096 /* Write list before version */
2097 smp_wmb();
2098 ram_list.version++;
2099 call_rcu(block, reclaim_ramblock, rcu);
2100 qemu_mutex_unlock_ramlist();
2103 #ifndef _WIN32
2104 void qemu_ram_remap(ram_addr_t addr, ram_addr_t length)
2106 RAMBlock *block;
2107 ram_addr_t offset;
2108 int flags;
2109 void *area, *vaddr;
2111 RAMBLOCK_FOREACH(block) {
2112 offset = addr - block->offset;
2113 if (offset < block->max_length) {
2114 vaddr = ramblock_ptr(block, offset);
2115 if (block->flags & RAM_PREALLOC) {
2117 } else if (xen_enabled()) {
2118 abort();
2119 } else {
2120 flags = MAP_FIXED;
2121 if (block->fd >= 0) {
2122 flags |= (block->flags & RAM_SHARED ?
2123 MAP_SHARED : MAP_PRIVATE);
2124 area = mmap(vaddr, length, PROT_READ | PROT_WRITE,
2125 flags, block->fd, offset);
2126 } else {
2128 * Remap needs to match alloc. Accelerators that
2129 * set phys_mem_alloc never remap. If they did,
2130 * we'd need a remap hook here.
2132 assert(phys_mem_alloc == qemu_anon_ram_alloc);
2134 flags |= MAP_PRIVATE | MAP_ANONYMOUS;
2135 area = mmap(vaddr, length, PROT_READ | PROT_WRITE,
2136 flags, -1, 0);
2138 if (area != vaddr) {
2139 fprintf(stderr, "Could not remap addr: "
2140 RAM_ADDR_FMT "@" RAM_ADDR_FMT "\n",
2141 length, addr);
2142 exit(1);
2144 memory_try_enable_merging(vaddr, length);
2145 qemu_ram_setup_dump(vaddr, length);
2150 #endif /* !_WIN32 */
2152 /* Return a host pointer to ram allocated with qemu_ram_alloc.
2153 * This should not be used for general purpose DMA. Use address_space_map
2154 * or address_space_rw instead. For local memory (e.g. video ram) that the
2155 * device owns, use memory_region_get_ram_ptr.
2157 * Called within RCU critical section.
2159 void *qemu_map_ram_ptr(RAMBlock *ram_block, ram_addr_t addr)
2161 RAMBlock *block = ram_block;
2163 if (block == NULL) {
2164 block = qemu_get_ram_block(addr);
2165 addr -= block->offset;
2168 if (xen_enabled() && block->host == NULL) {
2169 /* We need to check if the requested address is in the RAM
2170 * because we don't want to map the entire memory in QEMU.
2171 * In that case just map until the end of the page.
2173 if (block->offset == 0) {
2174 return xen_map_cache(addr, 0, 0, false);
2177 block->host = xen_map_cache(block->offset, block->max_length, 1, false);
2179 return ramblock_ptr(block, addr);
2182 /* Return a host pointer to guest's ram. Similar to qemu_map_ram_ptr
2183 * but takes a size argument.
2185 * Called within RCU critical section.
2187 static void *qemu_ram_ptr_length(RAMBlock *ram_block, ram_addr_t addr,
2188 hwaddr *size)
2190 RAMBlock *block = ram_block;
2191 if (*size == 0) {
2192 return NULL;
2195 if (block == NULL) {
2196 block = qemu_get_ram_block(addr);
2197 addr -= block->offset;
2199 *size = MIN(*size, block->max_length - addr);
2201 if (xen_enabled() && block->host == NULL) {
2202 /* We need to check if the requested address is in the RAM
2203 * because we don't want to map the entire memory in QEMU.
2204 * In that case just map the requested area.
2206 if (block->offset == 0) {
2207 return xen_map_cache(addr, *size, 1, true);
2210 block->host = xen_map_cache(block->offset, block->max_length, 1, true);
2213 return ramblock_ptr(block, addr);
2217 * Translates a host ptr back to a RAMBlock, a ram_addr and an offset
2218 * in that RAMBlock.
2220 * ptr: Host pointer to look up
2221 * round_offset: If true round the result offset down to a page boundary
2222 * *ram_addr: set to result ram_addr
2223 * *offset: set to result offset within the RAMBlock
2225 * Returns: RAMBlock (or NULL if not found)
2227 * By the time this function returns, the returned pointer is not protected
2228 * by RCU anymore. If the caller is not within an RCU critical section and
2229 * does not hold the iothread lock, it must have other means of protecting the
2230 * pointer, such as a reference to the region that includes the incoming
2231 * ram_addr_t.
2233 RAMBlock *qemu_ram_block_from_host(void *ptr, bool round_offset,
2234 ram_addr_t *offset)
2236 RAMBlock *block;
2237 uint8_t *host = ptr;
2239 if (xen_enabled()) {
2240 ram_addr_t ram_addr;
2241 rcu_read_lock();
2242 ram_addr = xen_ram_addr_from_mapcache(ptr);
2243 block = qemu_get_ram_block(ram_addr);
2244 if (block) {
2245 *offset = ram_addr - block->offset;
2247 rcu_read_unlock();
2248 return block;
2251 rcu_read_lock();
2252 block = atomic_rcu_read(&ram_list.mru_block);
2253 if (block && block->host && host - block->host < block->max_length) {
2254 goto found;
2257 RAMBLOCK_FOREACH(block) {
2258 /* This case append when the block is not mapped. */
2259 if (block->host == NULL) {
2260 continue;
2262 if (host - block->host < block->max_length) {
2263 goto found;
2267 rcu_read_unlock();
2268 return NULL;
2270 found:
2271 *offset = (host - block->host);
2272 if (round_offset) {
2273 *offset &= TARGET_PAGE_MASK;
2275 rcu_read_unlock();
2276 return block;
2280 * Finds the named RAMBlock
2282 * name: The name of RAMBlock to find
2284 * Returns: RAMBlock (or NULL if not found)
2286 RAMBlock *qemu_ram_block_by_name(const char *name)
2288 RAMBlock *block;
2290 RAMBLOCK_FOREACH(block) {
2291 if (!strcmp(name, block->idstr)) {
2292 return block;
2296 return NULL;
2299 /* Some of the softmmu routines need to translate from a host pointer
2300 (typically a TLB entry) back to a ram offset. */
2301 ram_addr_t qemu_ram_addr_from_host(void *ptr)
2303 RAMBlock *block;
2304 ram_addr_t offset;
2306 block = qemu_ram_block_from_host(ptr, false, &offset);
2307 if (!block) {
2308 return RAM_ADDR_INVALID;
2311 return block->offset + offset;
2314 /* Called within RCU critical section. */
2315 static void notdirty_mem_write(void *opaque, hwaddr ram_addr,
2316 uint64_t val, unsigned size)
2318 bool locked = false;
2320 if (!cpu_physical_memory_get_dirty_flag(ram_addr, DIRTY_MEMORY_CODE)) {
2321 locked = true;
2322 tb_lock();
2323 tb_invalidate_phys_page_fast(ram_addr, size);
2325 switch (size) {
2326 case 1:
2327 stb_p(qemu_map_ram_ptr(NULL, ram_addr), val);
2328 break;
2329 case 2:
2330 stw_p(qemu_map_ram_ptr(NULL, ram_addr), val);
2331 break;
2332 case 4:
2333 stl_p(qemu_map_ram_ptr(NULL, ram_addr), val);
2334 break;
2335 default:
2336 abort();
2339 if (locked) {
2340 tb_unlock();
2343 /* Set both VGA and migration bits for simplicity and to remove
2344 * the notdirty callback faster.
2346 cpu_physical_memory_set_dirty_range(ram_addr, size,
2347 DIRTY_CLIENTS_NOCODE);
2348 /* we remove the notdirty callback only if the code has been
2349 flushed */
2350 if (!cpu_physical_memory_is_clean(ram_addr)) {
2351 tlb_set_dirty(current_cpu, current_cpu->mem_io_vaddr);
2355 static bool notdirty_mem_accepts(void *opaque, hwaddr addr,
2356 unsigned size, bool is_write)
2358 return is_write;
2361 static const MemoryRegionOps notdirty_mem_ops = {
2362 .write = notdirty_mem_write,
2363 .valid.accepts = notdirty_mem_accepts,
2364 .endianness = DEVICE_NATIVE_ENDIAN,
2367 /* Generate a debug exception if a watchpoint has been hit. */
2368 static void check_watchpoint(int offset, int len, MemTxAttrs attrs, int flags)
2370 CPUState *cpu = current_cpu;
2371 CPUClass *cc = CPU_GET_CLASS(cpu);
2372 CPUArchState *env = cpu->env_ptr;
2373 target_ulong pc, cs_base;
2374 target_ulong vaddr;
2375 CPUWatchpoint *wp;
2376 uint32_t cpu_flags;
2378 if (cpu->watchpoint_hit) {
2379 /* We re-entered the check after replacing the TB. Now raise
2380 * the debug interrupt so that is will trigger after the
2381 * current instruction. */
2382 cpu_interrupt(cpu, CPU_INTERRUPT_DEBUG);
2383 return;
2385 vaddr = (cpu->mem_io_vaddr & TARGET_PAGE_MASK) + offset;
2386 vaddr = cc->adjust_watchpoint_address(cpu, vaddr, len);
2387 QTAILQ_FOREACH(wp, &cpu->watchpoints, entry) {
2388 if (cpu_watchpoint_address_matches(wp, vaddr, len)
2389 && (wp->flags & flags)) {
2390 if (flags == BP_MEM_READ) {
2391 wp->flags |= BP_WATCHPOINT_HIT_READ;
2392 } else {
2393 wp->flags |= BP_WATCHPOINT_HIT_WRITE;
2395 wp->hitaddr = vaddr;
2396 wp->hitattrs = attrs;
2397 if (!cpu->watchpoint_hit) {
2398 if (wp->flags & BP_CPU &&
2399 !cc->debug_check_watchpoint(cpu, wp)) {
2400 wp->flags &= ~BP_WATCHPOINT_HIT;
2401 continue;
2403 cpu->watchpoint_hit = wp;
2405 /* Both tb_lock and iothread_mutex will be reset when
2406 * cpu_loop_exit or cpu_loop_exit_noexc longjmp
2407 * back into the cpu_exec main loop.
2409 tb_lock();
2410 tb_check_watchpoint(cpu);
2411 if (wp->flags & BP_STOP_BEFORE_ACCESS) {
2412 cpu->exception_index = EXCP_DEBUG;
2413 cpu_loop_exit(cpu);
2414 } else {
2415 cpu_get_tb_cpu_state(env, &pc, &cs_base, &cpu_flags);
2416 tb_gen_code(cpu, pc, cs_base, cpu_flags, 1);
2417 cpu_loop_exit_noexc(cpu);
2420 } else {
2421 wp->flags &= ~BP_WATCHPOINT_HIT;
2426 /* Watchpoint access routines. Watchpoints are inserted using TLB tricks,
2427 so these check for a hit then pass through to the normal out-of-line
2428 phys routines. */
2429 static MemTxResult watch_mem_read(void *opaque, hwaddr addr, uint64_t *pdata,
2430 unsigned size, MemTxAttrs attrs)
2432 MemTxResult res;
2433 uint64_t data;
2434 int asidx = cpu_asidx_from_attrs(current_cpu, attrs);
2435 AddressSpace *as = current_cpu->cpu_ases[asidx].as;
2437 check_watchpoint(addr & ~TARGET_PAGE_MASK, size, attrs, BP_MEM_READ);
2438 switch (size) {
2439 case 1:
2440 data = address_space_ldub(as, addr, attrs, &res);
2441 break;
2442 case 2:
2443 data = address_space_lduw(as, addr, attrs, &res);
2444 break;
2445 case 4:
2446 data = address_space_ldl(as, addr, attrs, &res);
2447 break;
2448 default: abort();
2450 *pdata = data;
2451 return res;
2454 static MemTxResult watch_mem_write(void *opaque, hwaddr addr,
2455 uint64_t val, unsigned size,
2456 MemTxAttrs attrs)
2458 MemTxResult res;
2459 int asidx = cpu_asidx_from_attrs(current_cpu, attrs);
2460 AddressSpace *as = current_cpu->cpu_ases[asidx].as;
2462 check_watchpoint(addr & ~TARGET_PAGE_MASK, size, attrs, BP_MEM_WRITE);
2463 switch (size) {
2464 case 1:
2465 address_space_stb(as, addr, val, attrs, &res);
2466 break;
2467 case 2:
2468 address_space_stw(as, addr, val, attrs, &res);
2469 break;
2470 case 4:
2471 address_space_stl(as, addr, val, attrs, &res);
2472 break;
2473 default: abort();
2475 return res;
2478 static const MemoryRegionOps watch_mem_ops = {
2479 .read_with_attrs = watch_mem_read,
2480 .write_with_attrs = watch_mem_write,
2481 .endianness = DEVICE_NATIVE_ENDIAN,
2484 static MemTxResult subpage_read(void *opaque, hwaddr addr, uint64_t *data,
2485 unsigned len, MemTxAttrs attrs)
2487 subpage_t *subpage = opaque;
2488 uint8_t buf[8];
2489 MemTxResult res;
2491 #if defined(DEBUG_SUBPAGE)
2492 printf("%s: subpage %p len %u addr " TARGET_FMT_plx "\n", __func__,
2493 subpage, len, addr);
2494 #endif
2495 res = address_space_read(subpage->as, addr + subpage->base,
2496 attrs, buf, len);
2497 if (res) {
2498 return res;
2500 switch (len) {
2501 case 1:
2502 *data = ldub_p(buf);
2503 return MEMTX_OK;
2504 case 2:
2505 *data = lduw_p(buf);
2506 return MEMTX_OK;
2507 case 4:
2508 *data = ldl_p(buf);
2509 return MEMTX_OK;
2510 case 8:
2511 *data = ldq_p(buf);
2512 return MEMTX_OK;
2513 default:
2514 abort();
2518 static MemTxResult subpage_write(void *opaque, hwaddr addr,
2519 uint64_t value, unsigned len, MemTxAttrs attrs)
2521 subpage_t *subpage = opaque;
2522 uint8_t buf[8];
2524 #if defined(DEBUG_SUBPAGE)
2525 printf("%s: subpage %p len %u addr " TARGET_FMT_plx
2526 " value %"PRIx64"\n",
2527 __func__, subpage, len, addr, value);
2528 #endif
2529 switch (len) {
2530 case 1:
2531 stb_p(buf, value);
2532 break;
2533 case 2:
2534 stw_p(buf, value);
2535 break;
2536 case 4:
2537 stl_p(buf, value);
2538 break;
2539 case 8:
2540 stq_p(buf, value);
2541 break;
2542 default:
2543 abort();
2545 return address_space_write(subpage->as, addr + subpage->base,
2546 attrs, buf, len);
2549 static bool subpage_accepts(void *opaque, hwaddr addr,
2550 unsigned len, bool is_write)
2552 subpage_t *subpage = opaque;
2553 #if defined(DEBUG_SUBPAGE)
2554 printf("%s: subpage %p %c len %u addr " TARGET_FMT_plx "\n",
2555 __func__, subpage, is_write ? 'w' : 'r', len, addr);
2556 #endif
2558 return address_space_access_valid(subpage->as, addr + subpage->base,
2559 len, is_write);
2562 static const MemoryRegionOps subpage_ops = {
2563 .read_with_attrs = subpage_read,
2564 .write_with_attrs = subpage_write,
2565 .impl.min_access_size = 1,
2566 .impl.max_access_size = 8,
2567 .valid.min_access_size = 1,
2568 .valid.max_access_size = 8,
2569 .valid.accepts = subpage_accepts,
2570 .endianness = DEVICE_NATIVE_ENDIAN,
2573 static int subpage_register (subpage_t *mmio, uint32_t start, uint32_t end,
2574 uint16_t section)
2576 int idx, eidx;
2578 if (start >= TARGET_PAGE_SIZE || end >= TARGET_PAGE_SIZE)
2579 return -1;
2580 idx = SUBPAGE_IDX(start);
2581 eidx = SUBPAGE_IDX(end);
2582 #if defined(DEBUG_SUBPAGE)
2583 printf("%s: %p start %08x end %08x idx %08x eidx %08x section %d\n",
2584 __func__, mmio, start, end, idx, eidx, section);
2585 #endif
2586 for (; idx <= eidx; idx++) {
2587 mmio->sub_section[idx] = section;
2590 return 0;
2593 static subpage_t *subpage_init(AddressSpace *as, hwaddr base)
2595 subpage_t *mmio;
2597 mmio = g_malloc0(sizeof(subpage_t) + TARGET_PAGE_SIZE * sizeof(uint16_t));
2598 mmio->as = as;
2599 mmio->base = base;
2600 memory_region_init_io(&mmio->iomem, NULL, &subpage_ops, mmio,
2601 NULL, TARGET_PAGE_SIZE);
2602 mmio->iomem.subpage = true;
2603 #if defined(DEBUG_SUBPAGE)
2604 printf("%s: %p base " TARGET_FMT_plx " len %08x\n", __func__,
2605 mmio, base, TARGET_PAGE_SIZE);
2606 #endif
2607 subpage_register(mmio, 0, TARGET_PAGE_SIZE-1, PHYS_SECTION_UNASSIGNED);
2609 return mmio;
2612 static uint16_t dummy_section(PhysPageMap *map, AddressSpace *as,
2613 MemoryRegion *mr)
2615 assert(as);
2616 MemoryRegionSection section = {
2617 .address_space = as,
2618 .mr = mr,
2619 .offset_within_address_space = 0,
2620 .offset_within_region = 0,
2621 .size = int128_2_64(),
2624 return phys_section_add(map, &section);
2627 MemoryRegion *iotlb_to_region(CPUState *cpu, hwaddr index, MemTxAttrs attrs)
2629 int asidx = cpu_asidx_from_attrs(cpu, attrs);
2630 CPUAddressSpace *cpuas = &cpu->cpu_ases[asidx];
2631 AddressSpaceDispatch *d = atomic_rcu_read(&cpuas->memory_dispatch);
2632 MemoryRegionSection *sections = d->map.sections;
2634 return sections[index & ~TARGET_PAGE_MASK].mr;
2637 static void io_mem_init(void)
2639 memory_region_init_io(&io_mem_rom, NULL, &unassigned_mem_ops, NULL, NULL, UINT64_MAX);
2640 memory_region_init_io(&io_mem_unassigned, NULL, &unassigned_mem_ops, NULL,
2641 NULL, UINT64_MAX);
2643 /* io_mem_notdirty calls tb_invalidate_phys_page_fast,
2644 * which can be called without the iothread mutex.
2646 memory_region_init_io(&io_mem_notdirty, NULL, &notdirty_mem_ops, NULL,
2647 NULL, UINT64_MAX);
2648 memory_region_clear_global_locking(&io_mem_notdirty);
2650 memory_region_init_io(&io_mem_watch, NULL, &watch_mem_ops, NULL,
2651 NULL, UINT64_MAX);
2654 static void mem_begin(MemoryListener *listener)
2656 AddressSpace *as = container_of(listener, AddressSpace, dispatch_listener);
2657 AddressSpaceDispatch *d = g_new0(AddressSpaceDispatch, 1);
2658 uint16_t n;
2660 n = dummy_section(&d->map, as, &io_mem_unassigned);
2661 assert(n == PHYS_SECTION_UNASSIGNED);
2662 n = dummy_section(&d->map, as, &io_mem_notdirty);
2663 assert(n == PHYS_SECTION_NOTDIRTY);
2664 n = dummy_section(&d->map, as, &io_mem_rom);
2665 assert(n == PHYS_SECTION_ROM);
2666 n = dummy_section(&d->map, as, &io_mem_watch);
2667 assert(n == PHYS_SECTION_WATCH);
2669 d->phys_map = (PhysPageEntry) { .ptr = PHYS_MAP_NODE_NIL, .skip = 1 };
2670 d->as = as;
2671 as->next_dispatch = d;
2674 static void address_space_dispatch_free(AddressSpaceDispatch *d)
2676 phys_sections_free(&d->map);
2677 g_free(d);
2680 static void mem_commit(MemoryListener *listener)
2682 AddressSpace *as = container_of(listener, AddressSpace, dispatch_listener);
2683 AddressSpaceDispatch *cur = as->dispatch;
2684 AddressSpaceDispatch *next = as->next_dispatch;
2686 phys_page_compact_all(next, next->map.nodes_nb);
2688 atomic_rcu_set(&as->dispatch, next);
2689 if (cur) {
2690 call_rcu(cur, address_space_dispatch_free, rcu);
2694 static void tcg_commit(MemoryListener *listener)
2696 CPUAddressSpace *cpuas;
2697 AddressSpaceDispatch *d;
2699 /* since each CPU stores ram addresses in its TLB cache, we must
2700 reset the modified entries */
2701 cpuas = container_of(listener, CPUAddressSpace, tcg_as_listener);
2702 cpu_reloading_memory_map();
2703 /* The CPU and TLB are protected by the iothread lock.
2704 * We reload the dispatch pointer now because cpu_reloading_memory_map()
2705 * may have split the RCU critical section.
2707 d = atomic_rcu_read(&cpuas->as->dispatch);
2708 atomic_rcu_set(&cpuas->memory_dispatch, d);
2709 tlb_flush(cpuas->cpu);
2712 void address_space_init_dispatch(AddressSpace *as)
2714 as->dispatch = NULL;
2715 as->dispatch_listener = (MemoryListener) {
2716 .begin = mem_begin,
2717 .commit = mem_commit,
2718 .region_add = mem_add,
2719 .region_nop = mem_add,
2720 .priority = 0,
2722 memory_listener_register(&as->dispatch_listener, as);
2725 void address_space_unregister(AddressSpace *as)
2727 memory_listener_unregister(&as->dispatch_listener);
2730 void address_space_destroy_dispatch(AddressSpace *as)
2732 AddressSpaceDispatch *d = as->dispatch;
2734 atomic_rcu_set(&as->dispatch, NULL);
2735 if (d) {
2736 call_rcu(d, address_space_dispatch_free, rcu);
2740 static void memory_map_init(void)
2742 system_memory = g_malloc(sizeof(*system_memory));
2744 memory_region_init(system_memory, NULL, "system", UINT64_MAX);
2745 address_space_init(&address_space_memory, system_memory, "memory");
2747 system_io = g_malloc(sizeof(*system_io));
2748 memory_region_init_io(system_io, NULL, &unassigned_io_ops, NULL, "io",
2749 65536);
2750 address_space_init(&address_space_io, system_io, "I/O");
2753 MemoryRegion *get_system_memory(void)
2755 return system_memory;
2758 MemoryRegion *get_system_io(void)
2760 return system_io;
2763 #endif /* !defined(CONFIG_USER_ONLY) */
2765 /* physical memory access (slow version, mainly for debug) */
2766 #if defined(CONFIG_USER_ONLY)
2767 int cpu_memory_rw_debug(CPUState *cpu, target_ulong addr,
2768 uint8_t *buf, int len, int is_write)
2770 int l, flags;
2771 target_ulong page;
2772 void * p;
2774 while (len > 0) {
2775 page = addr & TARGET_PAGE_MASK;
2776 l = (page + TARGET_PAGE_SIZE) - addr;
2777 if (l > len)
2778 l = len;
2779 flags = page_get_flags(page);
2780 if (!(flags & PAGE_VALID))
2781 return -1;
2782 if (is_write) {
2783 if (!(flags & PAGE_WRITE))
2784 return -1;
2785 /* XXX: this code should not depend on lock_user */
2786 if (!(p = lock_user(VERIFY_WRITE, addr, l, 0)))
2787 return -1;
2788 memcpy(p, buf, l);
2789 unlock_user(p, addr, l);
2790 } else {
2791 if (!(flags & PAGE_READ))
2792 return -1;
2793 /* XXX: this code should not depend on lock_user */
2794 if (!(p = lock_user(VERIFY_READ, addr, l, 1)))
2795 return -1;
2796 memcpy(buf, p, l);
2797 unlock_user(p, addr, 0);
2799 len -= l;
2800 buf += l;
2801 addr += l;
2803 return 0;
2806 #else
2808 static void invalidate_and_set_dirty(MemoryRegion *mr, hwaddr addr,
2809 hwaddr length)
2811 uint8_t dirty_log_mask = memory_region_get_dirty_log_mask(mr);
2812 addr += memory_region_get_ram_addr(mr);
2814 /* No early return if dirty_log_mask is or becomes 0, because
2815 * cpu_physical_memory_set_dirty_range will still call
2816 * xen_modified_memory.
2818 if (dirty_log_mask) {
2819 dirty_log_mask =
2820 cpu_physical_memory_range_includes_clean(addr, length, dirty_log_mask);
2822 if (dirty_log_mask & (1 << DIRTY_MEMORY_CODE)) {
2823 tb_lock();
2824 tb_invalidate_phys_range(addr, addr + length);
2825 tb_unlock();
2826 dirty_log_mask &= ~(1 << DIRTY_MEMORY_CODE);
2828 cpu_physical_memory_set_dirty_range(addr, length, dirty_log_mask);
2831 static int memory_access_size(MemoryRegion *mr, unsigned l, hwaddr addr)
2833 unsigned access_size_max = mr->ops->valid.max_access_size;
2835 /* Regions are assumed to support 1-4 byte accesses unless
2836 otherwise specified. */
2837 if (access_size_max == 0) {
2838 access_size_max = 4;
2841 /* Bound the maximum access by the alignment of the address. */
2842 if (!mr->ops->impl.unaligned) {
2843 unsigned align_size_max = addr & -addr;
2844 if (align_size_max != 0 && align_size_max < access_size_max) {
2845 access_size_max = align_size_max;
2849 /* Don't attempt accesses larger than the maximum. */
2850 if (l > access_size_max) {
2851 l = access_size_max;
2853 l = pow2floor(l);
2855 return l;
2858 static bool prepare_mmio_access(MemoryRegion *mr)
2860 bool unlocked = !qemu_mutex_iothread_locked();
2861 bool release_lock = false;
2863 if (unlocked && mr->global_locking) {
2864 qemu_mutex_lock_iothread();
2865 unlocked = false;
2866 release_lock = true;
2868 if (mr->flush_coalesced_mmio) {
2869 if (unlocked) {
2870 qemu_mutex_lock_iothread();
2872 qemu_flush_coalesced_mmio_buffer();
2873 if (unlocked) {
2874 qemu_mutex_unlock_iothread();
2878 return release_lock;
2881 /* Called within RCU critical section. */
2882 static MemTxResult address_space_write_continue(AddressSpace *as, hwaddr addr,
2883 MemTxAttrs attrs,
2884 const uint8_t *buf,
2885 int len, hwaddr addr1,
2886 hwaddr l, MemoryRegion *mr)
2888 uint8_t *ptr;
2889 uint64_t val;
2890 MemTxResult result = MEMTX_OK;
2891 bool release_lock = false;
2893 for (;;) {
2894 if (!memory_access_is_direct(mr, true)) {
2895 release_lock |= prepare_mmio_access(mr);
2896 l = memory_access_size(mr, l, addr1);
2897 /* XXX: could force current_cpu to NULL to avoid
2898 potential bugs */
2899 switch (l) {
2900 case 8:
2901 /* 64 bit write access */
2902 val = ldq_p(buf);
2903 result |= memory_region_dispatch_write(mr, addr1, val, 8,
2904 attrs);
2905 break;
2906 case 4:
2907 /* 32 bit write access */
2908 val = (uint32_t)ldl_p(buf);
2909 result |= memory_region_dispatch_write(mr, addr1, val, 4,
2910 attrs);
2911 break;
2912 case 2:
2913 /* 16 bit write access */
2914 val = lduw_p(buf);
2915 result |= memory_region_dispatch_write(mr, addr1, val, 2,
2916 attrs);
2917 break;
2918 case 1:
2919 /* 8 bit write access */
2920 val = ldub_p(buf);
2921 result |= memory_region_dispatch_write(mr, addr1, val, 1,
2922 attrs);
2923 break;
2924 default:
2925 abort();
2927 } else {
2928 /* RAM case */
2929 ptr = qemu_map_ram_ptr(mr->ram_block, addr1);
2930 memcpy(ptr, buf, l);
2931 invalidate_and_set_dirty(mr, addr1, l);
2934 if (release_lock) {
2935 qemu_mutex_unlock_iothread();
2936 release_lock = false;
2939 len -= l;
2940 buf += l;
2941 addr += l;
2943 if (!len) {
2944 break;
2947 l = len;
2948 mr = address_space_translate(as, addr, &addr1, &l, true);
2951 return result;
2954 MemTxResult address_space_write(AddressSpace *as, hwaddr addr, MemTxAttrs attrs,
2955 const uint8_t *buf, int len)
2957 hwaddr l;
2958 hwaddr addr1;
2959 MemoryRegion *mr;
2960 MemTxResult result = MEMTX_OK;
2962 if (len > 0) {
2963 rcu_read_lock();
2964 l = len;
2965 mr = address_space_translate(as, addr, &addr1, &l, true);
2966 result = address_space_write_continue(as, addr, attrs, buf, len,
2967 addr1, l, mr);
2968 rcu_read_unlock();
2971 return result;
2974 /* Called within RCU critical section. */
2975 MemTxResult address_space_read_continue(AddressSpace *as, hwaddr addr,
2976 MemTxAttrs attrs, uint8_t *buf,
2977 int len, hwaddr addr1, hwaddr l,
2978 MemoryRegion *mr)
2980 uint8_t *ptr;
2981 uint64_t val;
2982 MemTxResult result = MEMTX_OK;
2983 bool release_lock = false;
2985 for (;;) {
2986 if (!memory_access_is_direct(mr, false)) {
2987 /* I/O case */
2988 release_lock |= prepare_mmio_access(mr);
2989 l = memory_access_size(mr, l, addr1);
2990 switch (l) {
2991 case 8:
2992 /* 64 bit read access */
2993 result |= memory_region_dispatch_read(mr, addr1, &val, 8,
2994 attrs);
2995 stq_p(buf, val);
2996 break;
2997 case 4:
2998 /* 32 bit read access */
2999 result |= memory_region_dispatch_read(mr, addr1, &val, 4,
3000 attrs);
3001 stl_p(buf, val);
3002 break;
3003 case 2:
3004 /* 16 bit read access */
3005 result |= memory_region_dispatch_read(mr, addr1, &val, 2,
3006 attrs);
3007 stw_p(buf, val);
3008 break;
3009 case 1:
3010 /* 8 bit read access */
3011 result |= memory_region_dispatch_read(mr, addr1, &val, 1,
3012 attrs);
3013 stb_p(buf, val);
3014 break;
3015 default:
3016 abort();
3018 } else {
3019 /* RAM case */
3020 ptr = qemu_map_ram_ptr(mr->ram_block, addr1);
3021 memcpy(buf, ptr, l);
3024 if (release_lock) {
3025 qemu_mutex_unlock_iothread();
3026 release_lock = false;
3029 len -= l;
3030 buf += l;
3031 addr += l;
3033 if (!len) {
3034 break;
3037 l = len;
3038 mr = address_space_translate(as, addr, &addr1, &l, false);
3041 return result;
3044 MemTxResult address_space_read_full(AddressSpace *as, hwaddr addr,
3045 MemTxAttrs attrs, uint8_t *buf, int len)
3047 hwaddr l;
3048 hwaddr addr1;
3049 MemoryRegion *mr;
3050 MemTxResult result = MEMTX_OK;
3052 if (len > 0) {
3053 rcu_read_lock();
3054 l = len;
3055 mr = address_space_translate(as, addr, &addr1, &l, false);
3056 result = address_space_read_continue(as, addr, attrs, buf, len,
3057 addr1, l, mr);
3058 rcu_read_unlock();
3061 return result;
3064 MemTxResult address_space_rw(AddressSpace *as, hwaddr addr, MemTxAttrs attrs,
3065 uint8_t *buf, int len, bool is_write)
3067 if (is_write) {
3068 return address_space_write(as, addr, attrs, (uint8_t *)buf, len);
3069 } else {
3070 return address_space_read(as, addr, attrs, (uint8_t *)buf, len);
3074 void cpu_physical_memory_rw(hwaddr addr, uint8_t *buf,
3075 int len, int is_write)
3077 address_space_rw(&address_space_memory, addr, MEMTXATTRS_UNSPECIFIED,
3078 buf, len, is_write);
3081 enum write_rom_type {
3082 WRITE_DATA,
3083 FLUSH_CACHE,
3086 static inline void cpu_physical_memory_write_rom_internal(AddressSpace *as,
3087 hwaddr addr, const uint8_t *buf, int len, enum write_rom_type type)
3089 hwaddr l;
3090 uint8_t *ptr;
3091 hwaddr addr1;
3092 MemoryRegion *mr;
3094 rcu_read_lock();
3095 while (len > 0) {
3096 l = len;
3097 mr = address_space_translate(as, addr, &addr1, &l, true);
3099 if (!(memory_region_is_ram(mr) ||
3100 memory_region_is_romd(mr))) {
3101 l = memory_access_size(mr, l, addr1);
3102 } else {
3103 /* ROM/RAM case */
3104 ptr = qemu_map_ram_ptr(mr->ram_block, addr1);
3105 switch (type) {
3106 case WRITE_DATA:
3107 memcpy(ptr, buf, l);
3108 invalidate_and_set_dirty(mr, addr1, l);
3109 break;
3110 case FLUSH_CACHE:
3111 flush_icache_range((uintptr_t)ptr, (uintptr_t)ptr + l);
3112 break;
3115 len -= l;
3116 buf += l;
3117 addr += l;
3119 rcu_read_unlock();
3122 /* used for ROM loading : can write in RAM and ROM */
3123 void cpu_physical_memory_write_rom(AddressSpace *as, hwaddr addr,
3124 const uint8_t *buf, int len)
3126 cpu_physical_memory_write_rom_internal(as, addr, buf, len, WRITE_DATA);
3129 void cpu_flush_icache_range(hwaddr start, int len)
3132 * This function should do the same thing as an icache flush that was
3133 * triggered from within the guest. For TCG we are always cache coherent,
3134 * so there is no need to flush anything. For KVM / Xen we need to flush
3135 * the host's instruction cache at least.
3137 if (tcg_enabled()) {
3138 return;
3141 cpu_physical_memory_write_rom_internal(&address_space_memory,
3142 start, NULL, len, FLUSH_CACHE);
3145 typedef struct {
3146 MemoryRegion *mr;
3147 void *buffer;
3148 hwaddr addr;
3149 hwaddr len;
3150 bool in_use;
3151 } BounceBuffer;
3153 static BounceBuffer bounce;
3155 typedef struct MapClient {
3156 QEMUBH *bh;
3157 QLIST_ENTRY(MapClient) link;
3158 } MapClient;
3160 QemuMutex map_client_list_lock;
3161 static QLIST_HEAD(map_client_list, MapClient) map_client_list
3162 = QLIST_HEAD_INITIALIZER(map_client_list);
3164 static void cpu_unregister_map_client_do(MapClient *client)
3166 QLIST_REMOVE(client, link);
3167 g_free(client);
3170 static void cpu_notify_map_clients_locked(void)
3172 MapClient *client;
3174 while (!QLIST_EMPTY(&map_client_list)) {
3175 client = QLIST_FIRST(&map_client_list);
3176 qemu_bh_schedule(client->bh);
3177 cpu_unregister_map_client_do(client);
3181 void cpu_register_map_client(QEMUBH *bh)
3183 MapClient *client = g_malloc(sizeof(*client));
3185 qemu_mutex_lock(&map_client_list_lock);
3186 client->bh = bh;
3187 QLIST_INSERT_HEAD(&map_client_list, client, link);
3188 if (!atomic_read(&bounce.in_use)) {
3189 cpu_notify_map_clients_locked();
3191 qemu_mutex_unlock(&map_client_list_lock);
3194 void cpu_exec_init_all(void)
3196 qemu_mutex_init(&ram_list.mutex);
3197 /* The data structures we set up here depend on knowing the page size,
3198 * so no more changes can be made after this point.
3199 * In an ideal world, nothing we did before we had finished the
3200 * machine setup would care about the target page size, and we could
3201 * do this much later, rather than requiring board models to state
3202 * up front what their requirements are.
3204 finalize_target_page_bits();
3205 io_mem_init();
3206 memory_map_init();
3207 qemu_mutex_init(&map_client_list_lock);
3210 void cpu_unregister_map_client(QEMUBH *bh)
3212 MapClient *client;
3214 qemu_mutex_lock(&map_client_list_lock);
3215 QLIST_FOREACH(client, &map_client_list, link) {
3216 if (client->bh == bh) {
3217 cpu_unregister_map_client_do(client);
3218 break;
3221 qemu_mutex_unlock(&map_client_list_lock);
3224 static void cpu_notify_map_clients(void)
3226 qemu_mutex_lock(&map_client_list_lock);
3227 cpu_notify_map_clients_locked();
3228 qemu_mutex_unlock(&map_client_list_lock);
3231 bool address_space_access_valid(AddressSpace *as, hwaddr addr, int len, bool is_write)
3233 MemoryRegion *mr;
3234 hwaddr l, xlat;
3236 rcu_read_lock();
3237 while (len > 0) {
3238 l = len;
3239 mr = address_space_translate(as, addr, &xlat, &l, is_write);
3240 if (!memory_access_is_direct(mr, is_write)) {
3241 l = memory_access_size(mr, l, addr);
3242 if (!memory_region_access_valid(mr, xlat, l, is_write)) {
3243 rcu_read_unlock();
3244 return false;
3248 len -= l;
3249 addr += l;
3251 rcu_read_unlock();
3252 return true;
3255 static hwaddr
3256 address_space_extend_translation(AddressSpace *as, hwaddr addr, hwaddr target_len,
3257 MemoryRegion *mr, hwaddr base, hwaddr len,
3258 bool is_write)
3260 hwaddr done = 0;
3261 hwaddr xlat;
3262 MemoryRegion *this_mr;
3264 for (;;) {
3265 target_len -= len;
3266 addr += len;
3267 done += len;
3268 if (target_len == 0) {
3269 return done;
3272 len = target_len;
3273 this_mr = address_space_translate(as, addr, &xlat, &len, is_write);
3274 if (this_mr != mr || xlat != base + done) {
3275 return done;
3280 /* Map a physical memory region into a host virtual address.
3281 * May map a subset of the requested range, given by and returned in *plen.
3282 * May return NULL if resources needed to perform the mapping are exhausted.
3283 * Use only for reads OR writes - not for read-modify-write operations.
3284 * Use cpu_register_map_client() to know when retrying the map operation is
3285 * likely to succeed.
3287 void *address_space_map(AddressSpace *as,
3288 hwaddr addr,
3289 hwaddr *plen,
3290 bool is_write)
3292 hwaddr len = *plen;
3293 hwaddr l, xlat;
3294 MemoryRegion *mr;
3295 void *ptr;
3297 if (len == 0) {
3298 return NULL;
3301 l = len;
3302 rcu_read_lock();
3303 mr = address_space_translate(as, addr, &xlat, &l, is_write);
3305 if (!memory_access_is_direct(mr, is_write)) {
3306 if (atomic_xchg(&bounce.in_use, true)) {
3307 rcu_read_unlock();
3308 return NULL;
3310 /* Avoid unbounded allocations */
3311 l = MIN(l, TARGET_PAGE_SIZE);
3312 bounce.buffer = qemu_memalign(TARGET_PAGE_SIZE, l);
3313 bounce.addr = addr;
3314 bounce.len = l;
3316 memory_region_ref(mr);
3317 bounce.mr = mr;
3318 if (!is_write) {
3319 address_space_read(as, addr, MEMTXATTRS_UNSPECIFIED,
3320 bounce.buffer, l);
3323 rcu_read_unlock();
3324 *plen = l;
3325 return bounce.buffer;
3329 memory_region_ref(mr);
3330 *plen = address_space_extend_translation(as, addr, len, mr, xlat, l, is_write);
3331 ptr = qemu_ram_ptr_length(mr->ram_block, xlat, plen);
3332 rcu_read_unlock();
3334 return ptr;
3337 /* Unmaps a memory region previously mapped by address_space_map().
3338 * Will also mark the memory as dirty if is_write == 1. access_len gives
3339 * the amount of memory that was actually read or written by the caller.
3341 void address_space_unmap(AddressSpace *as, void *buffer, hwaddr len,
3342 int is_write, hwaddr access_len)
3344 if (buffer != bounce.buffer) {
3345 MemoryRegion *mr;
3346 ram_addr_t addr1;
3348 mr = memory_region_from_host(buffer, &addr1);
3349 assert(mr != NULL);
3350 if (is_write) {
3351 invalidate_and_set_dirty(mr, addr1, access_len);
3353 if (xen_enabled()) {
3354 xen_invalidate_map_cache_entry(buffer);
3356 memory_region_unref(mr);
3357 return;
3359 if (is_write) {
3360 address_space_write(as, bounce.addr, MEMTXATTRS_UNSPECIFIED,
3361 bounce.buffer, access_len);
3363 qemu_vfree(bounce.buffer);
3364 bounce.buffer = NULL;
3365 memory_region_unref(bounce.mr);
3366 atomic_mb_set(&bounce.in_use, false);
3367 cpu_notify_map_clients();
3370 void *cpu_physical_memory_map(hwaddr addr,
3371 hwaddr *plen,
3372 int is_write)
3374 return address_space_map(&address_space_memory, addr, plen, is_write);
3377 void cpu_physical_memory_unmap(void *buffer, hwaddr len,
3378 int is_write, hwaddr access_len)
3380 return address_space_unmap(&address_space_memory, buffer, len, is_write, access_len);
3383 #define ARG1_DECL AddressSpace *as
3384 #define ARG1 as
3385 #define SUFFIX
3386 #define TRANSLATE(...) address_space_translate(as, __VA_ARGS__)
3387 #define IS_DIRECT(mr, is_write) memory_access_is_direct(mr, is_write)
3388 #define MAP_RAM(mr, ofs) qemu_map_ram_ptr((mr)->ram_block, ofs)
3389 #define INVALIDATE(mr, ofs, len) invalidate_and_set_dirty(mr, ofs, len)
3390 #define RCU_READ_LOCK(...) rcu_read_lock()
3391 #define RCU_READ_UNLOCK(...) rcu_read_unlock()
3392 #include "memory_ldst.inc.c"
3394 int64_t address_space_cache_init(MemoryRegionCache *cache,
3395 AddressSpace *as,
3396 hwaddr addr,
3397 hwaddr len,
3398 bool is_write)
3400 cache->len = len;
3401 cache->as = as;
3402 cache->xlat = addr;
3403 return len;
3406 void address_space_cache_invalidate(MemoryRegionCache *cache,
3407 hwaddr addr,
3408 hwaddr access_len)
3412 void address_space_cache_destroy(MemoryRegionCache *cache)
3414 cache->as = NULL;
3417 #define ARG1_DECL MemoryRegionCache *cache
3418 #define ARG1 cache
3419 #define SUFFIX _cached
3420 #define TRANSLATE(addr, ...) \
3421 address_space_translate(cache->as, cache->xlat + (addr), __VA_ARGS__)
3422 #define IS_DIRECT(mr, is_write) true
3423 #define MAP_RAM(mr, ofs) qemu_map_ram_ptr((mr)->ram_block, ofs)
3424 #define INVALIDATE(mr, ofs, len) invalidate_and_set_dirty(mr, ofs, len)
3425 #define RCU_READ_LOCK() rcu_read_lock()
3426 #define RCU_READ_UNLOCK() rcu_read_unlock()
3427 #include "memory_ldst.inc.c"
3429 /* virtual memory access for debug (includes writing to ROM) */
3430 int cpu_memory_rw_debug(CPUState *cpu, target_ulong addr,
3431 uint8_t *buf, int len, int is_write)
3433 int l;
3434 hwaddr phys_addr;
3435 target_ulong page;
3437 cpu_synchronize_state(cpu);
3438 while (len > 0) {
3439 int asidx;
3440 MemTxAttrs attrs;
3442 page = addr & TARGET_PAGE_MASK;
3443 phys_addr = cpu_get_phys_page_attrs_debug(cpu, page, &attrs);
3444 asidx = cpu_asidx_from_attrs(cpu, attrs);
3445 /* if no physical page mapped, return an error */
3446 if (phys_addr == -1)
3447 return -1;
3448 l = (page + TARGET_PAGE_SIZE) - addr;
3449 if (l > len)
3450 l = len;
3451 phys_addr += (addr & ~TARGET_PAGE_MASK);
3452 if (is_write) {
3453 cpu_physical_memory_write_rom(cpu->cpu_ases[asidx].as,
3454 phys_addr, buf, l);
3455 } else {
3456 address_space_rw(cpu->cpu_ases[asidx].as, phys_addr,
3457 MEMTXATTRS_UNSPECIFIED,
3458 buf, l, 0);
3460 len -= l;
3461 buf += l;
3462 addr += l;
3464 return 0;
3468 * Allows code that needs to deal with migration bitmaps etc to still be built
3469 * target independent.
3471 size_t qemu_target_page_size(void)
3473 return TARGET_PAGE_SIZE;
3476 int qemu_target_page_bits(void)
3478 return TARGET_PAGE_BITS;
3481 int qemu_target_page_bits_min(void)
3483 return TARGET_PAGE_BITS_MIN;
3485 #endif
3488 * A helper function for the _utterly broken_ virtio device model to find out if
3489 * it's running on a big endian machine. Don't do this at home kids!
3491 bool target_words_bigendian(void);
3492 bool target_words_bigendian(void)
3494 #if defined(TARGET_WORDS_BIGENDIAN)
3495 return true;
3496 #else
3497 return false;
3498 #endif
3501 #ifndef CONFIG_USER_ONLY
3502 bool cpu_physical_memory_is_io(hwaddr phys_addr)
3504 MemoryRegion*mr;
3505 hwaddr l = 1;
3506 bool res;
3508 rcu_read_lock();
3509 mr = address_space_translate(&address_space_memory,
3510 phys_addr, &phys_addr, &l, false);
3512 res = !(memory_region_is_ram(mr) || memory_region_is_romd(mr));
3513 rcu_read_unlock();
3514 return res;
3517 int qemu_ram_foreach_block(RAMBlockIterFunc func, void *opaque)
3519 RAMBlock *block;
3520 int ret = 0;
3522 rcu_read_lock();
3523 RAMBLOCK_FOREACH(block) {
3524 ret = func(block->idstr, block->host, block->offset,
3525 block->used_length, opaque);
3526 if (ret) {
3527 break;
3530 rcu_read_unlock();
3531 return ret;
3535 * Unmap pages of memory from start to start+length such that
3536 * they a) read as 0, b) Trigger whatever fault mechanism
3537 * the OS provides for postcopy.
3538 * The pages must be unmapped by the end of the function.
3539 * Returns: 0 on success, none-0 on failure
3542 int ram_block_discard_range(RAMBlock *rb, uint64_t start, size_t length)
3544 int ret = -1;
3546 uint8_t *host_startaddr = rb->host + start;
3548 if ((uintptr_t)host_startaddr & (rb->page_size - 1)) {
3549 error_report("ram_block_discard_range: Unaligned start address: %p",
3550 host_startaddr);
3551 goto err;
3554 if ((start + length) <= rb->used_length) {
3555 uint8_t *host_endaddr = host_startaddr + length;
3556 if ((uintptr_t)host_endaddr & (rb->page_size - 1)) {
3557 error_report("ram_block_discard_range: Unaligned end address: %p",
3558 host_endaddr);
3559 goto err;
3562 errno = ENOTSUP; /* If we are missing MADVISE etc */
3564 if (rb->page_size == qemu_host_page_size) {
3565 #if defined(CONFIG_MADVISE)
3566 /* Note: We need the madvise MADV_DONTNEED behaviour of definitely
3567 * freeing the page.
3569 ret = madvise(host_startaddr, length, MADV_DONTNEED);
3570 #endif
3571 } else {
3572 /* Huge page case - unfortunately it can't do DONTNEED, but
3573 * it can do the equivalent by FALLOC_FL_PUNCH_HOLE in the
3574 * huge page file.
3576 #ifdef CONFIG_FALLOCATE_PUNCH_HOLE
3577 ret = fallocate(rb->fd, FALLOC_FL_PUNCH_HOLE | FALLOC_FL_KEEP_SIZE,
3578 start, length);
3579 #endif
3581 if (ret) {
3582 ret = -errno;
3583 error_report("ram_block_discard_range: Failed to discard range "
3584 "%s:%" PRIx64 " +%zx (%d)",
3585 rb->idstr, start, length, ret);
3587 } else {
3588 error_report("ram_block_discard_range: Overrun block '%s' (%" PRIu64
3589 "/%zx/" RAM_ADDR_FMT")",
3590 rb->idstr, start, length, rb->used_length);
3593 err:
3594 return ret;
3597 #endif