Do not include hw/boards.h if it's not really necessary
[qemu/ar7.git] / hw / intc / arm_gicv3_cpuif.c
blob43ef1d7a8405b4bc8b87654885a066d3cff2c754
1 /*
2 * ARM Generic Interrupt Controller v3
4 * Copyright (c) 2016 Linaro Limited
5 * Written by Peter Maydell
7 * This code is licensed under the GPL, version 2 or (at your option)
8 * any later version.
9 */
11 /* This file contains the code for the system register interface
12 * portions of the GICv3.
15 #include "qemu/osdep.h"
16 #include "qemu/bitops.h"
17 #include "qemu/main-loop.h"
18 #include "trace.h"
19 #include "gicv3_internal.h"
20 #include "hw/irq.h"
21 #include "cpu.h"
23 void gicv3_set_gicv3state(CPUState *cpu, GICv3CPUState *s)
25 ARMCPU *arm_cpu = ARM_CPU(cpu);
26 CPUARMState *env = &arm_cpu->env;
28 env->gicv3state = (void *)s;
31 static GICv3CPUState *icc_cs_from_env(CPUARMState *env)
33 return env->gicv3state;
36 static bool gicv3_use_ns_bank(CPUARMState *env)
38 /* Return true if we should use the NonSecure bank for a banked GIC
39 * CPU interface register. Note that this differs from the
40 * access_secure_reg() function because GICv3 banked registers are
41 * banked even for AArch64, unlike the other CPU system registers.
43 return !arm_is_secure_below_el3(env);
46 /* The minimum BPR for the virtual interface is a configurable property */
47 static inline int icv_min_vbpr(GICv3CPUState *cs)
49 return 7 - cs->vprebits;
52 /* Simple accessor functions for LR fields */
53 static uint32_t ich_lr_vintid(uint64_t lr)
55 return extract64(lr, ICH_LR_EL2_VINTID_SHIFT, ICH_LR_EL2_VINTID_LENGTH);
58 static uint32_t ich_lr_pintid(uint64_t lr)
60 return extract64(lr, ICH_LR_EL2_PINTID_SHIFT, ICH_LR_EL2_PINTID_LENGTH);
63 static uint32_t ich_lr_prio(uint64_t lr)
65 return extract64(lr, ICH_LR_EL2_PRIORITY_SHIFT, ICH_LR_EL2_PRIORITY_LENGTH);
68 static int ich_lr_state(uint64_t lr)
70 return extract64(lr, ICH_LR_EL2_STATE_SHIFT, ICH_LR_EL2_STATE_LENGTH);
73 static bool icv_access(CPUARMState *env, int hcr_flags)
75 /* Return true if this ICC_ register access should really be
76 * directed to an ICV_ access. hcr_flags is a mask of
77 * HCR_EL2 bits to check: we treat this as an ICV_ access
78 * if we are in NS EL1 and at least one of the specified
79 * HCR_EL2 bits is set.
81 * ICV registers fall into four categories:
82 * * access if NS EL1 and HCR_EL2.FMO == 1:
83 * all ICV regs with '0' in their name
84 * * access if NS EL1 and HCR_EL2.IMO == 1:
85 * all ICV regs with '1' in their name
86 * * access if NS EL1 and either IMO or FMO == 1:
87 * CTLR, DIR, PMR, RPR
89 uint64_t hcr_el2 = arm_hcr_el2_eff(env);
90 bool flagmatch = hcr_el2 & hcr_flags & (HCR_IMO | HCR_FMO);
92 return flagmatch && arm_current_el(env) == 1
93 && !arm_is_secure_below_el3(env);
96 static int read_vbpr(GICv3CPUState *cs, int grp)
98 /* Read VBPR value out of the VMCR field (caller must handle
99 * VCBPR effects if required)
101 if (grp == GICV3_G0) {
102 return extract64(cs->ich_vmcr_el2, ICH_VMCR_EL2_VBPR0_SHIFT,
103 ICH_VMCR_EL2_VBPR0_LENGTH);
104 } else {
105 return extract64(cs->ich_vmcr_el2, ICH_VMCR_EL2_VBPR1_SHIFT,
106 ICH_VMCR_EL2_VBPR1_LENGTH);
110 static void write_vbpr(GICv3CPUState *cs, int grp, int value)
112 /* Write new VBPR1 value, handling the "writing a value less than
113 * the minimum sets it to the minimum" semantics.
115 int min = icv_min_vbpr(cs);
117 if (grp != GICV3_G0) {
118 min++;
121 value = MAX(value, min);
123 if (grp == GICV3_G0) {
124 cs->ich_vmcr_el2 = deposit64(cs->ich_vmcr_el2, ICH_VMCR_EL2_VBPR0_SHIFT,
125 ICH_VMCR_EL2_VBPR0_LENGTH, value);
126 } else {
127 cs->ich_vmcr_el2 = deposit64(cs->ich_vmcr_el2, ICH_VMCR_EL2_VBPR1_SHIFT,
128 ICH_VMCR_EL2_VBPR1_LENGTH, value);
132 static uint32_t icv_fullprio_mask(GICv3CPUState *cs)
134 /* Return a mask word which clears the unimplemented priority bits
135 * from a priority value for a virtual interrupt. (Not to be confused
136 * with the group priority, whose mask depends on the value of VBPR
137 * for the interrupt group.)
139 return ~0U << (8 - cs->vpribits);
142 static int ich_highest_active_virt_prio(GICv3CPUState *cs)
144 /* Calculate the current running priority based on the set bits
145 * in the ICH Active Priority Registers.
147 int i;
148 int aprmax = 1 << (cs->vprebits - 5);
150 assert(aprmax <= ARRAY_SIZE(cs->ich_apr[0]));
152 for (i = 0; i < aprmax; i++) {
153 uint32_t apr = cs->ich_apr[GICV3_G0][i] |
154 cs->ich_apr[GICV3_G1NS][i];
156 if (!apr) {
157 continue;
159 return (i * 32 + ctz32(apr)) << (icv_min_vbpr(cs) + 1);
161 /* No current active interrupts: return idle priority */
162 return 0xff;
165 static int hppvi_index(GICv3CPUState *cs)
167 /* Return the list register index of the highest priority pending
168 * virtual interrupt, as per the HighestPriorityVirtualInterrupt
169 * pseudocode. If no pending virtual interrupts, return -1.
171 int idx = -1;
172 int i;
173 /* Note that a list register entry with a priority of 0xff will
174 * never be reported by this function; this is the architecturally
175 * correct behaviour.
177 int prio = 0xff;
179 if (!(cs->ich_vmcr_el2 & (ICH_VMCR_EL2_VENG0 | ICH_VMCR_EL2_VENG1))) {
180 /* Both groups disabled, definitely nothing to do */
181 return idx;
184 for (i = 0; i < cs->num_list_regs; i++) {
185 uint64_t lr = cs->ich_lr_el2[i];
186 int thisprio;
188 if (ich_lr_state(lr) != ICH_LR_EL2_STATE_PENDING) {
189 /* Not Pending */
190 continue;
193 /* Ignore interrupts if relevant group enable not set */
194 if (lr & ICH_LR_EL2_GROUP) {
195 if (!(cs->ich_vmcr_el2 & ICH_VMCR_EL2_VENG1)) {
196 continue;
198 } else {
199 if (!(cs->ich_vmcr_el2 & ICH_VMCR_EL2_VENG0)) {
200 continue;
204 thisprio = ich_lr_prio(lr);
206 if (thisprio < prio) {
207 prio = thisprio;
208 idx = i;
212 return idx;
215 static uint32_t icv_gprio_mask(GICv3CPUState *cs, int group)
217 /* Return a mask word which clears the subpriority bits from
218 * a priority value for a virtual interrupt in the specified group.
219 * This depends on the VBPR value.
220 * If using VBPR0 then:
221 * a BPR of 0 means the group priority bits are [7:1];
222 * a BPR of 1 means they are [7:2], and so on down to
223 * a BPR of 7 meaning no group priority bits at all.
224 * If using VBPR1 then:
225 * a BPR of 0 is impossible (the minimum value is 1)
226 * a BPR of 1 means the group priority bits are [7:1];
227 * a BPR of 2 means they are [7:2], and so on down to
228 * a BPR of 7 meaning the group priority is [7].
230 * Which BPR to use depends on the group of the interrupt and
231 * the current ICH_VMCR_EL2.VCBPR settings.
233 * This corresponds to the VGroupBits() pseudocode.
235 int bpr;
237 if (group == GICV3_G1NS && cs->ich_vmcr_el2 & ICH_VMCR_EL2_VCBPR) {
238 group = GICV3_G0;
241 bpr = read_vbpr(cs, group);
242 if (group == GICV3_G1NS) {
243 assert(bpr > 0);
244 bpr--;
247 return ~0U << (bpr + 1);
250 static bool icv_hppi_can_preempt(GICv3CPUState *cs, uint64_t lr)
252 /* Return true if we can signal this virtual interrupt defined by
253 * the given list register value; see the pseudocode functions
254 * CanSignalVirtualInterrupt and CanSignalVirtualInt.
255 * Compare also icc_hppi_can_preempt() which is the non-virtual
256 * equivalent of these checks.
258 int grp;
259 uint32_t mask, prio, rprio, vpmr;
261 if (!(cs->ich_hcr_el2 & ICH_HCR_EL2_EN)) {
262 /* Virtual interface disabled */
263 return false;
266 /* We don't need to check that this LR is in Pending state because
267 * that has already been done in hppvi_index().
270 prio = ich_lr_prio(lr);
271 vpmr = extract64(cs->ich_vmcr_el2, ICH_VMCR_EL2_VPMR_SHIFT,
272 ICH_VMCR_EL2_VPMR_LENGTH);
274 if (prio >= vpmr) {
275 /* Priority mask masks this interrupt */
276 return false;
279 rprio = ich_highest_active_virt_prio(cs);
280 if (rprio == 0xff) {
281 /* No running interrupt so we can preempt */
282 return true;
285 grp = (lr & ICH_LR_EL2_GROUP) ? GICV3_G1NS : GICV3_G0;
287 mask = icv_gprio_mask(cs, grp);
289 /* We only preempt a running interrupt if the pending interrupt's
290 * group priority is sufficient (the subpriorities are not considered).
292 if ((prio & mask) < (rprio & mask)) {
293 return true;
296 return false;
299 static uint32_t eoi_maintenance_interrupt_state(GICv3CPUState *cs,
300 uint32_t *misr)
302 /* Return a set of bits indicating the EOI maintenance interrupt status
303 * for each list register. The EOI maintenance interrupt status is
304 * 1 if LR.State == 0 && LR.HW == 0 && LR.EOI == 1
305 * (see the GICv3 spec for the ICH_EISR_EL2 register).
306 * If misr is not NULL then we should also collect the information
307 * about the MISR.EOI, MISR.NP and MISR.U bits.
309 uint32_t value = 0;
310 int validcount = 0;
311 bool seenpending = false;
312 int i;
314 for (i = 0; i < cs->num_list_regs; i++) {
315 uint64_t lr = cs->ich_lr_el2[i];
317 if ((lr & (ICH_LR_EL2_STATE_MASK | ICH_LR_EL2_HW | ICH_LR_EL2_EOI))
318 == ICH_LR_EL2_EOI) {
319 value |= (1 << i);
321 if ((lr & ICH_LR_EL2_STATE_MASK)) {
322 validcount++;
324 if (ich_lr_state(lr) == ICH_LR_EL2_STATE_PENDING) {
325 seenpending = true;
329 if (misr) {
330 if (validcount < 2 && (cs->ich_hcr_el2 & ICH_HCR_EL2_UIE)) {
331 *misr |= ICH_MISR_EL2_U;
333 if (!seenpending && (cs->ich_hcr_el2 & ICH_HCR_EL2_NPIE)) {
334 *misr |= ICH_MISR_EL2_NP;
336 if (value) {
337 *misr |= ICH_MISR_EL2_EOI;
340 return value;
343 static uint32_t maintenance_interrupt_state(GICv3CPUState *cs)
345 /* Return a set of bits indicating the maintenance interrupt status
346 * (as seen in the ICH_MISR_EL2 register).
348 uint32_t value = 0;
350 /* Scan list registers and fill in the U, NP and EOI bits */
351 eoi_maintenance_interrupt_state(cs, &value);
353 if (cs->ich_hcr_el2 & (ICH_HCR_EL2_LRENPIE | ICH_HCR_EL2_EOICOUNT_MASK)) {
354 value |= ICH_MISR_EL2_LRENP;
357 if ((cs->ich_hcr_el2 & ICH_HCR_EL2_VGRP0EIE) &&
358 (cs->ich_vmcr_el2 & ICH_VMCR_EL2_VENG0)) {
359 value |= ICH_MISR_EL2_VGRP0E;
362 if ((cs->ich_hcr_el2 & ICH_HCR_EL2_VGRP0DIE) &&
363 !(cs->ich_vmcr_el2 & ICH_VMCR_EL2_VENG1)) {
364 value |= ICH_MISR_EL2_VGRP0D;
366 if ((cs->ich_hcr_el2 & ICH_HCR_EL2_VGRP1EIE) &&
367 (cs->ich_vmcr_el2 & ICH_VMCR_EL2_VENG1)) {
368 value |= ICH_MISR_EL2_VGRP1E;
371 if ((cs->ich_hcr_el2 & ICH_HCR_EL2_VGRP1DIE) &&
372 !(cs->ich_vmcr_el2 & ICH_VMCR_EL2_VENG1)) {
373 value |= ICH_MISR_EL2_VGRP1D;
376 return value;
379 static void gicv3_cpuif_virt_update(GICv3CPUState *cs)
381 /* Tell the CPU about any pending virtual interrupts or
382 * maintenance interrupts, following a change to the state
383 * of the CPU interface relevant to virtual interrupts.
385 * CAUTION: this function will call qemu_set_irq() on the
386 * CPU maintenance IRQ line, which is typically wired up
387 * to the GIC as a per-CPU interrupt. This means that it
388 * will recursively call back into the GIC code via
389 * gicv3_redist_set_irq() and thus into the CPU interface code's
390 * gicv3_cpuif_update(). It is therefore important that this
391 * function is only called as the final action of a CPU interface
392 * register write implementation, after all the GIC state
393 * fields have been updated. gicv3_cpuif_update() also must
394 * not cause this function to be called, but that happens
395 * naturally as a result of there being no architectural
396 * linkage between the physical and virtual GIC logic.
398 int idx;
399 int irqlevel = 0;
400 int fiqlevel = 0;
401 int maintlevel = 0;
402 ARMCPU *cpu = ARM_CPU(cs->cpu);
404 idx = hppvi_index(cs);
405 trace_gicv3_cpuif_virt_update(gicv3_redist_affid(cs), idx);
406 if (idx >= 0) {
407 uint64_t lr = cs->ich_lr_el2[idx];
409 if (icv_hppi_can_preempt(cs, lr)) {
410 /* Virtual interrupts are simple: G0 are always FIQ, and G1 IRQ */
411 if (lr & ICH_LR_EL2_GROUP) {
412 irqlevel = 1;
413 } else {
414 fiqlevel = 1;
419 if (cs->ich_hcr_el2 & ICH_HCR_EL2_EN) {
420 maintlevel = maintenance_interrupt_state(cs);
423 trace_gicv3_cpuif_virt_set_irqs(gicv3_redist_affid(cs), fiqlevel,
424 irqlevel, maintlevel);
426 qemu_set_irq(cs->parent_vfiq, fiqlevel);
427 qemu_set_irq(cs->parent_virq, irqlevel);
428 qemu_set_irq(cpu->gicv3_maintenance_interrupt, maintlevel);
431 static uint64_t icv_ap_read(CPUARMState *env, const ARMCPRegInfo *ri)
433 GICv3CPUState *cs = icc_cs_from_env(env);
434 int regno = ri->opc2 & 3;
435 int grp = (ri->crm & 1) ? GICV3_G1NS : GICV3_G0;
436 uint64_t value = cs->ich_apr[grp][regno];
438 trace_gicv3_icv_ap_read(ri->crm & 1, regno, gicv3_redist_affid(cs), value);
439 return value;
442 static void icv_ap_write(CPUARMState *env, const ARMCPRegInfo *ri,
443 uint64_t value)
445 GICv3CPUState *cs = icc_cs_from_env(env);
446 int regno = ri->opc2 & 3;
447 int grp = (ri->crm & 1) ? GICV3_G1NS : GICV3_G0;
449 trace_gicv3_icv_ap_write(ri->crm & 1, regno, gicv3_redist_affid(cs), value);
451 cs->ich_apr[grp][regno] = value & 0xFFFFFFFFU;
453 gicv3_cpuif_virt_update(cs);
454 return;
457 static uint64_t icv_bpr_read(CPUARMState *env, const ARMCPRegInfo *ri)
459 GICv3CPUState *cs = icc_cs_from_env(env);
460 int grp = (ri->crm == 8) ? GICV3_G0 : GICV3_G1NS;
461 uint64_t bpr;
462 bool satinc = false;
464 if (grp == GICV3_G1NS && (cs->ich_vmcr_el2 & ICH_VMCR_EL2_VCBPR)) {
465 /* reads return bpr0 + 1 saturated to 7, writes ignored */
466 grp = GICV3_G0;
467 satinc = true;
470 bpr = read_vbpr(cs, grp);
472 if (satinc) {
473 bpr++;
474 bpr = MIN(bpr, 7);
477 trace_gicv3_icv_bpr_read(ri->crm == 8 ? 0 : 1, gicv3_redist_affid(cs), bpr);
479 return bpr;
482 static void icv_bpr_write(CPUARMState *env, const ARMCPRegInfo *ri,
483 uint64_t value)
485 GICv3CPUState *cs = icc_cs_from_env(env);
486 int grp = (ri->crm == 8) ? GICV3_G0 : GICV3_G1NS;
488 trace_gicv3_icv_bpr_write(ri->crm == 8 ? 0 : 1,
489 gicv3_redist_affid(cs), value);
491 if (grp == GICV3_G1NS && (cs->ich_vmcr_el2 & ICH_VMCR_EL2_VCBPR)) {
492 /* reads return bpr0 + 1 saturated to 7, writes ignored */
493 return;
496 write_vbpr(cs, grp, value);
498 gicv3_cpuif_virt_update(cs);
501 static uint64_t icv_pmr_read(CPUARMState *env, const ARMCPRegInfo *ri)
503 GICv3CPUState *cs = icc_cs_from_env(env);
504 uint64_t value;
506 value = extract64(cs->ich_vmcr_el2, ICH_VMCR_EL2_VPMR_SHIFT,
507 ICH_VMCR_EL2_VPMR_LENGTH);
509 trace_gicv3_icv_pmr_read(gicv3_redist_affid(cs), value);
510 return value;
513 static void icv_pmr_write(CPUARMState *env, const ARMCPRegInfo *ri,
514 uint64_t value)
516 GICv3CPUState *cs = icc_cs_from_env(env);
518 trace_gicv3_icv_pmr_write(gicv3_redist_affid(cs), value);
520 value &= icv_fullprio_mask(cs);
522 cs->ich_vmcr_el2 = deposit64(cs->ich_vmcr_el2, ICH_VMCR_EL2_VPMR_SHIFT,
523 ICH_VMCR_EL2_VPMR_LENGTH, value);
525 gicv3_cpuif_virt_update(cs);
528 static uint64_t icv_igrpen_read(CPUARMState *env, const ARMCPRegInfo *ri)
530 GICv3CPUState *cs = icc_cs_from_env(env);
531 int enbit;
532 uint64_t value;
534 enbit = ri->opc2 & 1 ? ICH_VMCR_EL2_VENG1_SHIFT : ICH_VMCR_EL2_VENG0_SHIFT;
535 value = extract64(cs->ich_vmcr_el2, enbit, 1);
537 trace_gicv3_icv_igrpen_read(ri->opc2 & 1 ? 1 : 0,
538 gicv3_redist_affid(cs), value);
539 return value;
542 static void icv_igrpen_write(CPUARMState *env, const ARMCPRegInfo *ri,
543 uint64_t value)
545 GICv3CPUState *cs = icc_cs_from_env(env);
546 int enbit;
548 trace_gicv3_icv_igrpen_write(ri->opc2 & 1 ? 1 : 0,
549 gicv3_redist_affid(cs), value);
551 enbit = ri->opc2 & 1 ? ICH_VMCR_EL2_VENG1_SHIFT : ICH_VMCR_EL2_VENG0_SHIFT;
553 cs->ich_vmcr_el2 = deposit64(cs->ich_vmcr_el2, enbit, 1, value);
554 gicv3_cpuif_virt_update(cs);
557 static uint64_t icv_ctlr_read(CPUARMState *env, const ARMCPRegInfo *ri)
559 GICv3CPUState *cs = icc_cs_from_env(env);
560 uint64_t value;
562 /* Note that the fixed fields here (A3V, SEIS, IDbits, PRIbits)
563 * should match the ones reported in ich_vtr_read().
565 value = ICC_CTLR_EL1_A3V | (1 << ICC_CTLR_EL1_IDBITS_SHIFT) |
566 (7 << ICC_CTLR_EL1_PRIBITS_SHIFT);
568 if (cs->ich_vmcr_el2 & ICH_VMCR_EL2_VEOIM) {
569 value |= ICC_CTLR_EL1_EOIMODE;
572 if (cs->ich_vmcr_el2 & ICH_VMCR_EL2_VCBPR) {
573 value |= ICC_CTLR_EL1_CBPR;
576 trace_gicv3_icv_ctlr_read(gicv3_redist_affid(cs), value);
577 return value;
580 static void icv_ctlr_write(CPUARMState *env, const ARMCPRegInfo *ri,
581 uint64_t value)
583 GICv3CPUState *cs = icc_cs_from_env(env);
585 trace_gicv3_icv_ctlr_write(gicv3_redist_affid(cs), value);
587 cs->ich_vmcr_el2 = deposit64(cs->ich_vmcr_el2, ICH_VMCR_EL2_VCBPR_SHIFT,
588 1, value & ICC_CTLR_EL1_CBPR ? 1 : 0);
589 cs->ich_vmcr_el2 = deposit64(cs->ich_vmcr_el2, ICH_VMCR_EL2_VEOIM_SHIFT,
590 1, value & ICC_CTLR_EL1_EOIMODE ? 1 : 0);
592 gicv3_cpuif_virt_update(cs);
595 static uint64_t icv_rpr_read(CPUARMState *env, const ARMCPRegInfo *ri)
597 GICv3CPUState *cs = icc_cs_from_env(env);
598 int prio = ich_highest_active_virt_prio(cs);
600 trace_gicv3_icv_rpr_read(gicv3_redist_affid(cs), prio);
601 return prio;
604 static uint64_t icv_hppir_read(CPUARMState *env, const ARMCPRegInfo *ri)
606 GICv3CPUState *cs = icc_cs_from_env(env);
607 int grp = ri->crm == 8 ? GICV3_G0 : GICV3_G1NS;
608 int idx = hppvi_index(cs);
609 uint64_t value = INTID_SPURIOUS;
611 if (idx >= 0) {
612 uint64_t lr = cs->ich_lr_el2[idx];
613 int thisgrp = (lr & ICH_LR_EL2_GROUP) ? GICV3_G1NS : GICV3_G0;
615 if (grp == thisgrp) {
616 value = ich_lr_vintid(lr);
620 trace_gicv3_icv_hppir_read(grp, gicv3_redist_affid(cs), value);
621 return value;
624 static void icv_activate_irq(GICv3CPUState *cs, int idx, int grp)
626 /* Activate the interrupt in the specified list register
627 * by moving it from Pending to Active state, and update the
628 * Active Priority Registers.
630 uint32_t mask = icv_gprio_mask(cs, grp);
631 int prio = ich_lr_prio(cs->ich_lr_el2[idx]) & mask;
632 int aprbit = prio >> (8 - cs->vprebits);
633 int regno = aprbit / 32;
634 int regbit = aprbit % 32;
636 cs->ich_lr_el2[idx] &= ~ICH_LR_EL2_STATE_PENDING_BIT;
637 cs->ich_lr_el2[idx] |= ICH_LR_EL2_STATE_ACTIVE_BIT;
638 cs->ich_apr[grp][regno] |= (1 << regbit);
641 static uint64_t icv_iar_read(CPUARMState *env, const ARMCPRegInfo *ri)
643 GICv3CPUState *cs = icc_cs_from_env(env);
644 int grp = ri->crm == 8 ? GICV3_G0 : GICV3_G1NS;
645 int idx = hppvi_index(cs);
646 uint64_t intid = INTID_SPURIOUS;
648 if (idx >= 0) {
649 uint64_t lr = cs->ich_lr_el2[idx];
650 int thisgrp = (lr & ICH_LR_EL2_GROUP) ? GICV3_G1NS : GICV3_G0;
652 if (thisgrp == grp && icv_hppi_can_preempt(cs, lr)) {
653 intid = ich_lr_vintid(lr);
654 if (intid < INTID_SECURE) {
655 icv_activate_irq(cs, idx, grp);
656 } else {
657 /* Interrupt goes from Pending to Invalid */
658 cs->ich_lr_el2[idx] &= ~ICH_LR_EL2_STATE_PENDING_BIT;
659 /* We will now return the (bogus) ID from the list register,
660 * as per the pseudocode.
666 trace_gicv3_icv_iar_read(ri->crm == 8 ? 0 : 1,
667 gicv3_redist_affid(cs), intid);
669 gicv3_cpuif_virt_update(cs);
671 return intid;
674 static int icc_highest_active_prio(GICv3CPUState *cs)
676 /* Calculate the current running priority based on the set bits
677 * in the Active Priority Registers.
679 int i;
681 for (i = 0; i < ARRAY_SIZE(cs->icc_apr[0]); i++) {
682 uint32_t apr = cs->icc_apr[GICV3_G0][i] |
683 cs->icc_apr[GICV3_G1][i] | cs->icc_apr[GICV3_G1NS][i];
685 if (!apr) {
686 continue;
688 return (i * 32 + ctz32(apr)) << (GIC_MIN_BPR + 1);
690 /* No current active interrupts: return idle priority */
691 return 0xff;
694 static uint32_t icc_gprio_mask(GICv3CPUState *cs, int group)
696 /* Return a mask word which clears the subpriority bits from
697 * a priority value for an interrupt in the specified group.
698 * This depends on the BPR value. For CBPR0 (S or NS):
699 * a BPR of 0 means the group priority bits are [7:1];
700 * a BPR of 1 means they are [7:2], and so on down to
701 * a BPR of 7 meaning no group priority bits at all.
702 * For CBPR1 NS:
703 * a BPR of 0 is impossible (the minimum value is 1)
704 * a BPR of 1 means the group priority bits are [7:1];
705 * a BPR of 2 means they are [7:2], and so on down to
706 * a BPR of 7 meaning the group priority is [7].
708 * Which BPR to use depends on the group of the interrupt and
709 * the current ICC_CTLR.CBPR settings.
711 * This corresponds to the GroupBits() pseudocode.
713 int bpr;
715 if ((group == GICV3_G1 && cs->icc_ctlr_el1[GICV3_S] & ICC_CTLR_EL1_CBPR) ||
716 (group == GICV3_G1NS &&
717 cs->icc_ctlr_el1[GICV3_NS] & ICC_CTLR_EL1_CBPR)) {
718 group = GICV3_G0;
721 bpr = cs->icc_bpr[group] & 7;
723 if (group == GICV3_G1NS) {
724 assert(bpr > 0);
725 bpr--;
728 return ~0U << (bpr + 1);
731 static bool icc_no_enabled_hppi(GICv3CPUState *cs)
733 /* Return true if there is no pending interrupt, or the
734 * highest priority pending interrupt is in a group which has been
735 * disabled at the CPU interface by the ICC_IGRPEN* register enable bits.
737 return cs->hppi.prio == 0xff || (cs->icc_igrpen[cs->hppi.grp] == 0);
740 static bool icc_hppi_can_preempt(GICv3CPUState *cs)
742 /* Return true if we have a pending interrupt of sufficient
743 * priority to preempt.
745 int rprio;
746 uint32_t mask;
748 if (icc_no_enabled_hppi(cs)) {
749 return false;
752 if (cs->hppi.prio >= cs->icc_pmr_el1) {
753 /* Priority mask masks this interrupt */
754 return false;
757 rprio = icc_highest_active_prio(cs);
758 if (rprio == 0xff) {
759 /* No currently running interrupt so we can preempt */
760 return true;
763 mask = icc_gprio_mask(cs, cs->hppi.grp);
765 /* We only preempt a running interrupt if the pending interrupt's
766 * group priority is sufficient (the subpriorities are not considered).
768 if ((cs->hppi.prio & mask) < (rprio & mask)) {
769 return true;
772 return false;
775 void gicv3_cpuif_update(GICv3CPUState *cs)
777 /* Tell the CPU about its highest priority pending interrupt */
778 int irqlevel = 0;
779 int fiqlevel = 0;
780 ARMCPU *cpu = ARM_CPU(cs->cpu);
781 CPUARMState *env = &cpu->env;
783 g_assert(qemu_mutex_iothread_locked());
785 trace_gicv3_cpuif_update(gicv3_redist_affid(cs), cs->hppi.irq,
786 cs->hppi.grp, cs->hppi.prio);
788 if (cs->hppi.grp == GICV3_G1 && !arm_feature(env, ARM_FEATURE_EL3)) {
789 /* If a Security-enabled GIC sends a G1S interrupt to a
790 * Security-disabled CPU, we must treat it as if it were G0.
792 cs->hppi.grp = GICV3_G0;
795 if (icc_hppi_can_preempt(cs)) {
796 /* We have an interrupt: should we signal it as IRQ or FIQ?
797 * This is described in the GICv3 spec section 4.6.2.
799 bool isfiq;
801 switch (cs->hppi.grp) {
802 case GICV3_G0:
803 isfiq = true;
804 break;
805 case GICV3_G1:
806 isfiq = (!arm_is_secure(env) ||
807 (arm_current_el(env) == 3 && arm_el_is_aa64(env, 3)));
808 break;
809 case GICV3_G1NS:
810 isfiq = arm_is_secure(env);
811 break;
812 default:
813 g_assert_not_reached();
816 if (isfiq) {
817 fiqlevel = 1;
818 } else {
819 irqlevel = 1;
823 trace_gicv3_cpuif_set_irqs(gicv3_redist_affid(cs), fiqlevel, irqlevel);
825 qemu_set_irq(cs->parent_fiq, fiqlevel);
826 qemu_set_irq(cs->parent_irq, irqlevel);
829 static uint64_t icc_pmr_read(CPUARMState *env, const ARMCPRegInfo *ri)
831 GICv3CPUState *cs = icc_cs_from_env(env);
832 uint32_t value = cs->icc_pmr_el1;
834 if (icv_access(env, HCR_FMO | HCR_IMO)) {
835 return icv_pmr_read(env, ri);
838 if (arm_feature(env, ARM_FEATURE_EL3) && !arm_is_secure(env) &&
839 (env->cp15.scr_el3 & SCR_FIQ)) {
840 /* NS access and Group 0 is inaccessible to NS: return the
841 * NS view of the current priority
843 if ((value & 0x80) == 0) {
844 /* Secure priorities not visible to NS */
845 value = 0;
846 } else if (value != 0xff) {
847 value = (value << 1) & 0xff;
851 trace_gicv3_icc_pmr_read(gicv3_redist_affid(cs), value);
853 return value;
856 static void icc_pmr_write(CPUARMState *env, const ARMCPRegInfo *ri,
857 uint64_t value)
859 GICv3CPUState *cs = icc_cs_from_env(env);
861 if (icv_access(env, HCR_FMO | HCR_IMO)) {
862 return icv_pmr_write(env, ri, value);
865 trace_gicv3_icc_pmr_write(gicv3_redist_affid(cs), value);
867 value &= 0xff;
869 if (arm_feature(env, ARM_FEATURE_EL3) && !arm_is_secure(env) &&
870 (env->cp15.scr_el3 & SCR_FIQ)) {
871 /* NS access and Group 0 is inaccessible to NS: return the
872 * NS view of the current priority
874 if (!(cs->icc_pmr_el1 & 0x80)) {
875 /* Current PMR in the secure range, don't allow NS to change it */
876 return;
878 value = (value >> 1) | 0x80;
880 cs->icc_pmr_el1 = value;
881 gicv3_cpuif_update(cs);
884 static void icc_activate_irq(GICv3CPUState *cs, int irq)
886 /* Move the interrupt from the Pending state to Active, and update
887 * the Active Priority Registers
889 uint32_t mask = icc_gprio_mask(cs, cs->hppi.grp);
890 int prio = cs->hppi.prio & mask;
891 int aprbit = prio >> 1;
892 int regno = aprbit / 32;
893 int regbit = aprbit % 32;
895 cs->icc_apr[cs->hppi.grp][regno] |= (1 << regbit);
897 if (irq < GIC_INTERNAL) {
898 cs->gicr_iactiver0 = deposit32(cs->gicr_iactiver0, irq, 1, 1);
899 cs->gicr_ipendr0 = deposit32(cs->gicr_ipendr0, irq, 1, 0);
900 gicv3_redist_update(cs);
901 } else {
902 gicv3_gicd_active_set(cs->gic, irq);
903 gicv3_gicd_pending_clear(cs->gic, irq);
904 gicv3_update(cs->gic, irq, 1);
908 static uint64_t icc_hppir0_value(GICv3CPUState *cs, CPUARMState *env)
910 /* Return the highest priority pending interrupt register value
911 * for group 0.
913 bool irq_is_secure;
915 if (cs->hppi.prio == 0xff) {
916 return INTID_SPURIOUS;
919 /* Check whether we can return the interrupt or if we should return
920 * a special identifier, as per the CheckGroup0ForSpecialIdentifiers
921 * pseudocode. (We can simplify a little because for us ICC_SRE_EL1.RM
922 * is always zero.)
924 irq_is_secure = (!(cs->gic->gicd_ctlr & GICD_CTLR_DS) &&
925 (cs->hppi.grp != GICV3_G1NS));
927 if (cs->hppi.grp != GICV3_G0 && !arm_is_el3_or_mon(env)) {
928 return INTID_SPURIOUS;
930 if (irq_is_secure && !arm_is_secure(env)) {
931 /* Secure interrupts not visible to Nonsecure */
932 return INTID_SPURIOUS;
935 if (cs->hppi.grp != GICV3_G0) {
936 /* Indicate to EL3 that there's a Group 1 interrupt for the other
937 * state pending.
939 return irq_is_secure ? INTID_SECURE : INTID_NONSECURE;
942 return cs->hppi.irq;
945 static uint64_t icc_hppir1_value(GICv3CPUState *cs, CPUARMState *env)
947 /* Return the highest priority pending interrupt register value
948 * for group 1.
950 bool irq_is_secure;
952 if (cs->hppi.prio == 0xff) {
953 return INTID_SPURIOUS;
956 /* Check whether we can return the interrupt or if we should return
957 * a special identifier, as per the CheckGroup1ForSpecialIdentifiers
958 * pseudocode. (We can simplify a little because for us ICC_SRE_EL1.RM
959 * is always zero.)
961 irq_is_secure = (!(cs->gic->gicd_ctlr & GICD_CTLR_DS) &&
962 (cs->hppi.grp != GICV3_G1NS));
964 if (cs->hppi.grp == GICV3_G0) {
965 /* Group 0 interrupts not visible via HPPIR1 */
966 return INTID_SPURIOUS;
968 if (irq_is_secure) {
969 if (!arm_is_secure(env)) {
970 /* Secure interrupts not visible in Non-secure */
971 return INTID_SPURIOUS;
973 } else if (!arm_is_el3_or_mon(env) && arm_is_secure(env)) {
974 /* Group 1 non-secure interrupts not visible in Secure EL1 */
975 return INTID_SPURIOUS;
978 return cs->hppi.irq;
981 static uint64_t icc_iar0_read(CPUARMState *env, const ARMCPRegInfo *ri)
983 GICv3CPUState *cs = icc_cs_from_env(env);
984 uint64_t intid;
986 if (icv_access(env, HCR_FMO)) {
987 return icv_iar_read(env, ri);
990 if (!icc_hppi_can_preempt(cs)) {
991 intid = INTID_SPURIOUS;
992 } else {
993 intid = icc_hppir0_value(cs, env);
996 if (!(intid >= INTID_SECURE && intid <= INTID_SPURIOUS)) {
997 icc_activate_irq(cs, intid);
1000 trace_gicv3_icc_iar0_read(gicv3_redist_affid(cs), intid);
1001 return intid;
1004 static uint64_t icc_iar1_read(CPUARMState *env, const ARMCPRegInfo *ri)
1006 GICv3CPUState *cs = icc_cs_from_env(env);
1007 uint64_t intid;
1009 if (icv_access(env, HCR_IMO)) {
1010 return icv_iar_read(env, ri);
1013 if (!icc_hppi_can_preempt(cs)) {
1014 intid = INTID_SPURIOUS;
1015 } else {
1016 intid = icc_hppir1_value(cs, env);
1019 if (!(intid >= INTID_SECURE && intid <= INTID_SPURIOUS)) {
1020 icc_activate_irq(cs, intid);
1023 trace_gicv3_icc_iar1_read(gicv3_redist_affid(cs), intid);
1024 return intid;
1027 static void icc_drop_prio(GICv3CPUState *cs, int grp)
1029 /* Drop the priority of the currently active interrupt in
1030 * the specified group.
1032 * Note that we can guarantee (because of the requirement to nest
1033 * ICC_IAR reads [which activate an interrupt and raise priority]
1034 * with ICC_EOIR writes [which drop the priority for the interrupt])
1035 * that the interrupt we're being called for is the highest priority
1036 * active interrupt, meaning that it has the lowest set bit in the
1037 * APR registers.
1039 * If the guest does not honour the ordering constraints then the
1040 * behaviour of the GIC is UNPREDICTABLE, which for us means that
1041 * the values of the APR registers might become incorrect and the
1042 * running priority will be wrong, so interrupts that should preempt
1043 * might not do so, and interrupts that should not preempt might do so.
1045 int i;
1047 for (i = 0; i < ARRAY_SIZE(cs->icc_apr[grp]); i++) {
1048 uint64_t *papr = &cs->icc_apr[grp][i];
1050 if (!*papr) {
1051 continue;
1053 /* Clear the lowest set bit */
1054 *papr &= *papr - 1;
1055 break;
1058 /* running priority change means we need an update for this cpu i/f */
1059 gicv3_cpuif_update(cs);
1062 static bool icc_eoi_split(CPUARMState *env, GICv3CPUState *cs)
1064 /* Return true if we should split priority drop and interrupt
1065 * deactivation, ie whether the relevant EOIMode bit is set.
1067 if (arm_is_el3_or_mon(env)) {
1068 return cs->icc_ctlr_el3 & ICC_CTLR_EL3_EOIMODE_EL3;
1070 if (arm_is_secure_below_el3(env)) {
1071 return cs->icc_ctlr_el1[GICV3_S] & ICC_CTLR_EL1_EOIMODE;
1072 } else {
1073 return cs->icc_ctlr_el1[GICV3_NS] & ICC_CTLR_EL1_EOIMODE;
1077 static int icc_highest_active_group(GICv3CPUState *cs)
1079 /* Return the group with the highest priority active interrupt.
1080 * We can do this by just comparing the APRs to see which one
1081 * has the lowest set bit.
1082 * (If more than one group is active at the same priority then
1083 * we're in UNPREDICTABLE territory.)
1085 int i;
1087 for (i = 0; i < ARRAY_SIZE(cs->icc_apr[0]); i++) {
1088 int g0ctz = ctz32(cs->icc_apr[GICV3_G0][i]);
1089 int g1ctz = ctz32(cs->icc_apr[GICV3_G1][i]);
1090 int g1nsctz = ctz32(cs->icc_apr[GICV3_G1NS][i]);
1092 if (g1nsctz < g0ctz && g1nsctz < g1ctz) {
1093 return GICV3_G1NS;
1095 if (g1ctz < g0ctz) {
1096 return GICV3_G1;
1098 if (g0ctz < 32) {
1099 return GICV3_G0;
1102 /* No set active bits? UNPREDICTABLE; return -1 so the caller
1103 * ignores the spurious EOI attempt.
1105 return -1;
1108 static void icc_deactivate_irq(GICv3CPUState *cs, int irq)
1110 if (irq < GIC_INTERNAL) {
1111 cs->gicr_iactiver0 = deposit32(cs->gicr_iactiver0, irq, 1, 0);
1112 gicv3_redist_update(cs);
1113 } else {
1114 gicv3_gicd_active_clear(cs->gic, irq);
1115 gicv3_update(cs->gic, irq, 1);
1119 static bool icv_eoi_split(CPUARMState *env, GICv3CPUState *cs)
1121 /* Return true if we should split priority drop and interrupt
1122 * deactivation, ie whether the virtual EOIMode bit is set.
1124 return cs->ich_vmcr_el2 & ICH_VMCR_EL2_VEOIM;
1127 static int icv_find_active(GICv3CPUState *cs, int irq)
1129 /* Given an interrupt number for an active interrupt, return the index
1130 * of the corresponding list register, or -1 if there is no match.
1131 * Corresponds to FindActiveVirtualInterrupt pseudocode.
1133 int i;
1135 for (i = 0; i < cs->num_list_regs; i++) {
1136 uint64_t lr = cs->ich_lr_el2[i];
1138 if ((lr & ICH_LR_EL2_STATE_ACTIVE_BIT) && ich_lr_vintid(lr) == irq) {
1139 return i;
1143 return -1;
1146 static void icv_deactivate_irq(GICv3CPUState *cs, int idx)
1148 /* Deactivate the interrupt in the specified list register index */
1149 uint64_t lr = cs->ich_lr_el2[idx];
1151 if (lr & ICH_LR_EL2_HW) {
1152 /* Deactivate the associated physical interrupt */
1153 int pirq = ich_lr_pintid(lr);
1155 if (pirq < INTID_SECURE) {
1156 icc_deactivate_irq(cs, pirq);
1160 /* Clear the 'active' part of the state, so ActivePending->Pending
1161 * and Active->Invalid.
1163 lr &= ~ICH_LR_EL2_STATE_ACTIVE_BIT;
1164 cs->ich_lr_el2[idx] = lr;
1167 static void icv_increment_eoicount(GICv3CPUState *cs)
1169 /* Increment the EOICOUNT field in ICH_HCR_EL2 */
1170 int eoicount = extract64(cs->ich_hcr_el2, ICH_HCR_EL2_EOICOUNT_SHIFT,
1171 ICH_HCR_EL2_EOICOUNT_LENGTH);
1173 cs->ich_hcr_el2 = deposit64(cs->ich_hcr_el2, ICH_HCR_EL2_EOICOUNT_SHIFT,
1174 ICH_HCR_EL2_EOICOUNT_LENGTH, eoicount + 1);
1177 static int icv_drop_prio(GICv3CPUState *cs)
1179 /* Drop the priority of the currently active virtual interrupt
1180 * (favouring group 0 if there is a set active bit at
1181 * the same priority for both group 0 and group 1).
1182 * Return the priority value for the bit we just cleared,
1183 * or 0xff if no bits were set in the AP registers at all.
1184 * Note that though the ich_apr[] are uint64_t only the low
1185 * 32 bits are actually relevant.
1187 int i;
1188 int aprmax = 1 << (cs->vprebits - 5);
1190 assert(aprmax <= ARRAY_SIZE(cs->ich_apr[0]));
1192 for (i = 0; i < aprmax; i++) {
1193 uint64_t *papr0 = &cs->ich_apr[GICV3_G0][i];
1194 uint64_t *papr1 = &cs->ich_apr[GICV3_G1NS][i];
1195 int apr0count, apr1count;
1197 if (!*papr0 && !*papr1) {
1198 continue;
1201 /* We can't just use the bit-twiddling hack icc_drop_prio() does
1202 * because we need to return the bit number we cleared so
1203 * it can be compared against the list register's priority field.
1205 apr0count = ctz32(*papr0);
1206 apr1count = ctz32(*papr1);
1208 if (apr0count <= apr1count) {
1209 *papr0 &= *papr0 - 1;
1210 return (apr0count + i * 32) << (icv_min_vbpr(cs) + 1);
1211 } else {
1212 *papr1 &= *papr1 - 1;
1213 return (apr1count + i * 32) << (icv_min_vbpr(cs) + 1);
1216 return 0xff;
1219 static void icv_dir_write(CPUARMState *env, const ARMCPRegInfo *ri,
1220 uint64_t value)
1222 /* Deactivate interrupt */
1223 GICv3CPUState *cs = icc_cs_from_env(env);
1224 int idx;
1225 int irq = value & 0xffffff;
1227 trace_gicv3_icv_dir_write(gicv3_redist_affid(cs), value);
1229 if (irq >= cs->gic->num_irq) {
1230 /* Also catches special interrupt numbers and LPIs */
1231 return;
1234 if (!icv_eoi_split(env, cs)) {
1235 return;
1238 idx = icv_find_active(cs, irq);
1240 if (idx < 0) {
1241 /* No list register matching this, so increment the EOI count
1242 * (might trigger a maintenance interrupt)
1244 icv_increment_eoicount(cs);
1245 } else {
1246 icv_deactivate_irq(cs, idx);
1249 gicv3_cpuif_virt_update(cs);
1252 static void icv_eoir_write(CPUARMState *env, const ARMCPRegInfo *ri,
1253 uint64_t value)
1255 /* End of Interrupt */
1256 GICv3CPUState *cs = icc_cs_from_env(env);
1257 int irq = value & 0xffffff;
1258 int grp = ri->crm == 8 ? GICV3_G0 : GICV3_G1NS;
1259 int idx, dropprio;
1261 trace_gicv3_icv_eoir_write(ri->crm == 8 ? 0 : 1,
1262 gicv3_redist_affid(cs), value);
1264 if (irq >= cs->gic->num_irq) {
1265 /* Also catches special interrupt numbers and LPIs */
1266 return;
1269 /* We implement the IMPDEF choice of "drop priority before doing
1270 * error checks" (because that lets us avoid scanning the AP
1271 * registers twice).
1273 dropprio = icv_drop_prio(cs);
1274 if (dropprio == 0xff) {
1275 /* No active interrupt. It is CONSTRAINED UNPREDICTABLE
1276 * whether the list registers are checked in this
1277 * situation; we choose not to.
1279 return;
1282 idx = icv_find_active(cs, irq);
1284 if (idx < 0) {
1285 /* No valid list register corresponding to EOI ID */
1286 icv_increment_eoicount(cs);
1287 } else {
1288 uint64_t lr = cs->ich_lr_el2[idx];
1289 int thisgrp = (lr & ICH_LR_EL2_GROUP) ? GICV3_G1NS : GICV3_G0;
1290 int lr_gprio = ich_lr_prio(lr) & icv_gprio_mask(cs, grp);
1292 if (thisgrp == grp && lr_gprio == dropprio) {
1293 if (!icv_eoi_split(env, cs)) {
1294 /* Priority drop and deactivate not split: deactivate irq now */
1295 icv_deactivate_irq(cs, idx);
1300 gicv3_cpuif_virt_update(cs);
1303 static void icc_eoir_write(CPUARMState *env, const ARMCPRegInfo *ri,
1304 uint64_t value)
1306 /* End of Interrupt */
1307 GICv3CPUState *cs = icc_cs_from_env(env);
1308 int irq = value & 0xffffff;
1309 int grp;
1311 if (icv_access(env, ri->crm == 8 ? HCR_FMO : HCR_IMO)) {
1312 icv_eoir_write(env, ri, value);
1313 return;
1316 trace_gicv3_icc_eoir_write(ri->crm == 8 ? 0 : 1,
1317 gicv3_redist_affid(cs), value);
1319 if (ri->crm == 8) {
1320 /* EOIR0 */
1321 grp = GICV3_G0;
1322 } else {
1323 /* EOIR1 */
1324 if (arm_is_secure(env)) {
1325 grp = GICV3_G1;
1326 } else {
1327 grp = GICV3_G1NS;
1331 if (irq >= cs->gic->num_irq) {
1332 /* This handles two cases:
1333 * 1. If software writes the ID of a spurious interrupt [ie 1020-1023]
1334 * to the GICC_EOIR, the GIC ignores that write.
1335 * 2. If software writes the number of a non-existent interrupt
1336 * this must be a subcase of "value written does not match the last
1337 * valid interrupt value read from the Interrupt Acknowledge
1338 * register" and so this is UNPREDICTABLE. We choose to ignore it.
1340 return;
1343 if (icc_highest_active_group(cs) != grp) {
1344 return;
1347 icc_drop_prio(cs, grp);
1349 if (!icc_eoi_split(env, cs)) {
1350 /* Priority drop and deactivate not split: deactivate irq now */
1351 icc_deactivate_irq(cs, irq);
1355 static uint64_t icc_hppir0_read(CPUARMState *env, const ARMCPRegInfo *ri)
1357 GICv3CPUState *cs = icc_cs_from_env(env);
1358 uint64_t value;
1360 if (icv_access(env, HCR_FMO)) {
1361 return icv_hppir_read(env, ri);
1364 value = icc_hppir0_value(cs, env);
1365 trace_gicv3_icc_hppir0_read(gicv3_redist_affid(cs), value);
1366 return value;
1369 static uint64_t icc_hppir1_read(CPUARMState *env, const ARMCPRegInfo *ri)
1371 GICv3CPUState *cs = icc_cs_from_env(env);
1372 uint64_t value;
1374 if (icv_access(env, HCR_IMO)) {
1375 return icv_hppir_read(env, ri);
1378 value = icc_hppir1_value(cs, env);
1379 trace_gicv3_icc_hppir1_read(gicv3_redist_affid(cs), value);
1380 return value;
1383 static uint64_t icc_bpr_read(CPUARMState *env, const ARMCPRegInfo *ri)
1385 GICv3CPUState *cs = icc_cs_from_env(env);
1386 int grp = (ri->crm == 8) ? GICV3_G0 : GICV3_G1;
1387 bool satinc = false;
1388 uint64_t bpr;
1390 if (icv_access(env, grp == GICV3_G0 ? HCR_FMO : HCR_IMO)) {
1391 return icv_bpr_read(env, ri);
1394 if (grp == GICV3_G1 && gicv3_use_ns_bank(env)) {
1395 grp = GICV3_G1NS;
1398 if (grp == GICV3_G1 && !arm_is_el3_or_mon(env) &&
1399 (cs->icc_ctlr_el1[GICV3_S] & ICC_CTLR_EL1_CBPR)) {
1400 /* CBPR_EL1S means secure EL1 or AArch32 EL3 !Mon BPR1 accesses
1401 * modify BPR0
1403 grp = GICV3_G0;
1406 if (grp == GICV3_G1NS && arm_current_el(env) < 3 &&
1407 (cs->icc_ctlr_el1[GICV3_NS] & ICC_CTLR_EL1_CBPR)) {
1408 /* reads return bpr0 + 1 sat to 7, writes ignored */
1409 grp = GICV3_G0;
1410 satinc = true;
1413 bpr = cs->icc_bpr[grp];
1414 if (satinc) {
1415 bpr++;
1416 bpr = MIN(bpr, 7);
1419 trace_gicv3_icc_bpr_read(ri->crm == 8 ? 0 : 1, gicv3_redist_affid(cs), bpr);
1421 return bpr;
1424 static void icc_bpr_write(CPUARMState *env, const ARMCPRegInfo *ri,
1425 uint64_t value)
1427 GICv3CPUState *cs = icc_cs_from_env(env);
1428 int grp = (ri->crm == 8) ? GICV3_G0 : GICV3_G1;
1429 uint64_t minval;
1431 if (icv_access(env, grp == GICV3_G0 ? HCR_FMO : HCR_IMO)) {
1432 icv_bpr_write(env, ri, value);
1433 return;
1436 trace_gicv3_icc_bpr_write(ri->crm == 8 ? 0 : 1,
1437 gicv3_redist_affid(cs), value);
1439 if (grp == GICV3_G1 && gicv3_use_ns_bank(env)) {
1440 grp = GICV3_G1NS;
1443 if (grp == GICV3_G1 && !arm_is_el3_or_mon(env) &&
1444 (cs->icc_ctlr_el1[GICV3_S] & ICC_CTLR_EL1_CBPR)) {
1445 /* CBPR_EL1S means secure EL1 or AArch32 EL3 !Mon BPR1 accesses
1446 * modify BPR0
1448 grp = GICV3_G0;
1451 if (grp == GICV3_G1NS && arm_current_el(env) < 3 &&
1452 (cs->icc_ctlr_el1[GICV3_NS] & ICC_CTLR_EL1_CBPR)) {
1453 /* reads return bpr0 + 1 sat to 7, writes ignored */
1454 return;
1457 minval = (grp == GICV3_G1NS) ? GIC_MIN_BPR_NS : GIC_MIN_BPR;
1458 if (value < minval) {
1459 value = minval;
1462 cs->icc_bpr[grp] = value & 7;
1463 gicv3_cpuif_update(cs);
1466 static uint64_t icc_ap_read(CPUARMState *env, const ARMCPRegInfo *ri)
1468 GICv3CPUState *cs = icc_cs_from_env(env);
1469 uint64_t value;
1471 int regno = ri->opc2 & 3;
1472 int grp = (ri->crm & 1) ? GICV3_G1 : GICV3_G0;
1474 if (icv_access(env, grp == GICV3_G0 ? HCR_FMO : HCR_IMO)) {
1475 return icv_ap_read(env, ri);
1478 if (grp == GICV3_G1 && gicv3_use_ns_bank(env)) {
1479 grp = GICV3_G1NS;
1482 value = cs->icc_apr[grp][regno];
1484 trace_gicv3_icc_ap_read(ri->crm & 1, regno, gicv3_redist_affid(cs), value);
1485 return value;
1488 static void icc_ap_write(CPUARMState *env, const ARMCPRegInfo *ri,
1489 uint64_t value)
1491 GICv3CPUState *cs = icc_cs_from_env(env);
1493 int regno = ri->opc2 & 3;
1494 int grp = (ri->crm & 1) ? GICV3_G1 : GICV3_G0;
1496 if (icv_access(env, grp == GICV3_G0 ? HCR_FMO : HCR_IMO)) {
1497 icv_ap_write(env, ri, value);
1498 return;
1501 trace_gicv3_icc_ap_write(ri->crm & 1, regno, gicv3_redist_affid(cs), value);
1503 if (grp == GICV3_G1 && gicv3_use_ns_bank(env)) {
1504 grp = GICV3_G1NS;
1507 /* It's not possible to claim that a Non-secure interrupt is active
1508 * at a priority outside the Non-secure range (128..255), since this
1509 * would otherwise allow malicious NS code to block delivery of S interrupts
1510 * by writing a bad value to these registers.
1512 if (grp == GICV3_G1NS && regno < 2 && arm_feature(env, ARM_FEATURE_EL3)) {
1513 return;
1516 cs->icc_apr[grp][regno] = value & 0xFFFFFFFFU;
1517 gicv3_cpuif_update(cs);
1520 static void icc_dir_write(CPUARMState *env, const ARMCPRegInfo *ri,
1521 uint64_t value)
1523 /* Deactivate interrupt */
1524 GICv3CPUState *cs = icc_cs_from_env(env);
1525 int irq = value & 0xffffff;
1526 bool irq_is_secure, single_sec_state, irq_is_grp0;
1527 bool route_fiq_to_el3, route_irq_to_el3, route_fiq_to_el2, route_irq_to_el2;
1529 if (icv_access(env, HCR_FMO | HCR_IMO)) {
1530 icv_dir_write(env, ri, value);
1531 return;
1534 trace_gicv3_icc_dir_write(gicv3_redist_affid(cs), value);
1536 if (irq >= cs->gic->num_irq) {
1537 /* Also catches special interrupt numbers and LPIs */
1538 return;
1541 if (!icc_eoi_split(env, cs)) {
1542 return;
1545 int grp = gicv3_irq_group(cs->gic, cs, irq);
1547 single_sec_state = cs->gic->gicd_ctlr & GICD_CTLR_DS;
1548 irq_is_secure = !single_sec_state && (grp != GICV3_G1NS);
1549 irq_is_grp0 = grp == GICV3_G0;
1551 /* Check whether we're allowed to deactivate this interrupt based
1552 * on its group and the current CPU state.
1553 * These checks are laid out to correspond to the spec's pseudocode.
1555 route_fiq_to_el3 = env->cp15.scr_el3 & SCR_FIQ;
1556 route_irq_to_el3 = env->cp15.scr_el3 & SCR_IRQ;
1557 /* No need to include !IsSecure in route_*_to_el2 as it's only
1558 * tested in cases where we know !IsSecure is true.
1560 uint64_t hcr_el2 = arm_hcr_el2_eff(env);
1561 route_fiq_to_el2 = hcr_el2 & HCR_FMO;
1562 route_irq_to_el2 = hcr_el2 & HCR_IMO;
1564 switch (arm_current_el(env)) {
1565 case 3:
1566 break;
1567 case 2:
1568 if (single_sec_state && irq_is_grp0 && !route_fiq_to_el3) {
1569 break;
1571 if (!irq_is_secure && !irq_is_grp0 && !route_irq_to_el3) {
1572 break;
1574 return;
1575 case 1:
1576 if (!arm_is_secure_below_el3(env)) {
1577 if (single_sec_state && irq_is_grp0 &&
1578 !route_fiq_to_el3 && !route_fiq_to_el2) {
1579 break;
1581 if (!irq_is_secure && !irq_is_grp0 &&
1582 !route_irq_to_el3 && !route_irq_to_el2) {
1583 break;
1585 } else {
1586 if (irq_is_grp0 && !route_fiq_to_el3) {
1587 break;
1589 if (!irq_is_grp0 &&
1590 (!irq_is_secure || !single_sec_state) &&
1591 !route_irq_to_el3) {
1592 break;
1595 return;
1596 default:
1597 g_assert_not_reached();
1600 icc_deactivate_irq(cs, irq);
1603 static uint64_t icc_rpr_read(CPUARMState *env, const ARMCPRegInfo *ri)
1605 GICv3CPUState *cs = icc_cs_from_env(env);
1606 int prio;
1608 if (icv_access(env, HCR_FMO | HCR_IMO)) {
1609 return icv_rpr_read(env, ri);
1612 prio = icc_highest_active_prio(cs);
1614 if (arm_feature(env, ARM_FEATURE_EL3) &&
1615 !arm_is_secure(env) && (env->cp15.scr_el3 & SCR_FIQ)) {
1616 /* NS GIC access and Group 0 is inaccessible to NS */
1617 if ((prio & 0x80) == 0) {
1618 /* NS mustn't see priorities in the Secure half of the range */
1619 prio = 0;
1620 } else if (prio != 0xff) {
1621 /* Non-idle priority: show the Non-secure view of it */
1622 prio = (prio << 1) & 0xff;
1626 trace_gicv3_icc_rpr_read(gicv3_redist_affid(cs), prio);
1627 return prio;
1630 static void icc_generate_sgi(CPUARMState *env, GICv3CPUState *cs,
1631 uint64_t value, int grp, bool ns)
1633 GICv3State *s = cs->gic;
1635 /* Extract Aff3/Aff2/Aff1 and shift into the bottom 24 bits */
1636 uint64_t aff = extract64(value, 48, 8) << 16 |
1637 extract64(value, 32, 8) << 8 |
1638 extract64(value, 16, 8);
1639 uint32_t targetlist = extract64(value, 0, 16);
1640 uint32_t irq = extract64(value, 24, 4);
1641 bool irm = extract64(value, 40, 1);
1642 int i;
1644 if (grp == GICV3_G1 && s->gicd_ctlr & GICD_CTLR_DS) {
1645 /* If GICD_CTLR.DS == 1, the Distributor treats Secure Group 1
1646 * interrupts as Group 0 interrupts and must send Secure Group 0
1647 * interrupts to the target CPUs.
1649 grp = GICV3_G0;
1652 trace_gicv3_icc_generate_sgi(gicv3_redist_affid(cs), irq, irm,
1653 aff, targetlist);
1655 for (i = 0; i < s->num_cpu; i++) {
1656 GICv3CPUState *ocs = &s->cpu[i];
1658 if (irm) {
1659 /* IRM == 1 : route to all CPUs except self */
1660 if (cs == ocs) {
1661 continue;
1663 } else {
1664 /* IRM == 0 : route to Aff3.Aff2.Aff1.n for all n in [0..15]
1665 * where the corresponding bit is set in targetlist
1667 int aff0;
1669 if (ocs->gicr_typer >> 40 != aff) {
1670 continue;
1672 aff0 = extract64(ocs->gicr_typer, 32, 8);
1673 if (aff0 > 15 || extract32(targetlist, aff0, 1) == 0) {
1674 continue;
1678 /* The redistributor will check against its own GICR_NSACR as needed */
1679 gicv3_redist_send_sgi(ocs, grp, irq, ns);
1683 static void icc_sgi0r_write(CPUARMState *env, const ARMCPRegInfo *ri,
1684 uint64_t value)
1686 /* Generate Secure Group 0 SGI. */
1687 GICv3CPUState *cs = icc_cs_from_env(env);
1688 bool ns = !arm_is_secure(env);
1690 icc_generate_sgi(env, cs, value, GICV3_G0, ns);
1693 static void icc_sgi1r_write(CPUARMState *env, const ARMCPRegInfo *ri,
1694 uint64_t value)
1696 /* Generate Group 1 SGI for the current Security state */
1697 GICv3CPUState *cs = icc_cs_from_env(env);
1698 int grp;
1699 bool ns = !arm_is_secure(env);
1701 grp = ns ? GICV3_G1NS : GICV3_G1;
1702 icc_generate_sgi(env, cs, value, grp, ns);
1705 static void icc_asgi1r_write(CPUARMState *env, const ARMCPRegInfo *ri,
1706 uint64_t value)
1708 /* Generate Group 1 SGI for the Security state that is not
1709 * the current state
1711 GICv3CPUState *cs = icc_cs_from_env(env);
1712 int grp;
1713 bool ns = !arm_is_secure(env);
1715 grp = ns ? GICV3_G1 : GICV3_G1NS;
1716 icc_generate_sgi(env, cs, value, grp, ns);
1719 static uint64_t icc_igrpen_read(CPUARMState *env, const ARMCPRegInfo *ri)
1721 GICv3CPUState *cs = icc_cs_from_env(env);
1722 int grp = ri->opc2 & 1 ? GICV3_G1 : GICV3_G0;
1723 uint64_t value;
1725 if (icv_access(env, grp == GICV3_G0 ? HCR_FMO : HCR_IMO)) {
1726 return icv_igrpen_read(env, ri);
1729 if (grp == GICV3_G1 && gicv3_use_ns_bank(env)) {
1730 grp = GICV3_G1NS;
1733 value = cs->icc_igrpen[grp];
1734 trace_gicv3_icc_igrpen_read(ri->opc2 & 1 ? 1 : 0,
1735 gicv3_redist_affid(cs), value);
1736 return value;
1739 static void icc_igrpen_write(CPUARMState *env, const ARMCPRegInfo *ri,
1740 uint64_t value)
1742 GICv3CPUState *cs = icc_cs_from_env(env);
1743 int grp = ri->opc2 & 1 ? GICV3_G1 : GICV3_G0;
1745 if (icv_access(env, grp == GICV3_G0 ? HCR_FMO : HCR_IMO)) {
1746 icv_igrpen_write(env, ri, value);
1747 return;
1750 trace_gicv3_icc_igrpen_write(ri->opc2 & 1 ? 1 : 0,
1751 gicv3_redist_affid(cs), value);
1753 if (grp == GICV3_G1 && gicv3_use_ns_bank(env)) {
1754 grp = GICV3_G1NS;
1757 cs->icc_igrpen[grp] = value & ICC_IGRPEN_ENABLE;
1758 gicv3_cpuif_update(cs);
1761 static uint64_t icc_igrpen1_el3_read(CPUARMState *env, const ARMCPRegInfo *ri)
1763 GICv3CPUState *cs = icc_cs_from_env(env);
1764 uint64_t value;
1766 /* IGRPEN1_EL3 bits 0 and 1 are r/w aliases into IGRPEN1_EL1 NS and S */
1767 value = cs->icc_igrpen[GICV3_G1NS] | (cs->icc_igrpen[GICV3_G1] << 1);
1768 trace_gicv3_icc_igrpen1_el3_read(gicv3_redist_affid(cs), value);
1769 return value;
1772 static void icc_igrpen1_el3_write(CPUARMState *env, const ARMCPRegInfo *ri,
1773 uint64_t value)
1775 GICv3CPUState *cs = icc_cs_from_env(env);
1777 trace_gicv3_icc_igrpen1_el3_write(gicv3_redist_affid(cs), value);
1779 /* IGRPEN1_EL3 bits 0 and 1 are r/w aliases into IGRPEN1_EL1 NS and S */
1780 cs->icc_igrpen[GICV3_G1NS] = extract32(value, 0, 1);
1781 cs->icc_igrpen[GICV3_G1] = extract32(value, 1, 1);
1782 gicv3_cpuif_update(cs);
1785 static uint64_t icc_ctlr_el1_read(CPUARMState *env, const ARMCPRegInfo *ri)
1787 GICv3CPUState *cs = icc_cs_from_env(env);
1788 int bank = gicv3_use_ns_bank(env) ? GICV3_NS : GICV3_S;
1789 uint64_t value;
1791 if (icv_access(env, HCR_FMO | HCR_IMO)) {
1792 return icv_ctlr_read(env, ri);
1795 value = cs->icc_ctlr_el1[bank];
1796 trace_gicv3_icc_ctlr_read(gicv3_redist_affid(cs), value);
1797 return value;
1800 static void icc_ctlr_el1_write(CPUARMState *env, const ARMCPRegInfo *ri,
1801 uint64_t value)
1803 GICv3CPUState *cs = icc_cs_from_env(env);
1804 int bank = gicv3_use_ns_bank(env) ? GICV3_NS : GICV3_S;
1805 uint64_t mask;
1807 if (icv_access(env, HCR_FMO | HCR_IMO)) {
1808 icv_ctlr_write(env, ri, value);
1809 return;
1812 trace_gicv3_icc_ctlr_write(gicv3_redist_affid(cs), value);
1814 /* Only CBPR and EOIMODE can be RW;
1815 * for us PMHE is RAZ/WI (we don't implement 1-of-N interrupts or
1816 * the asseciated priority-based routing of them);
1817 * if EL3 is implemented and GICD_CTLR.DS == 0, then PMHE and CBPR are RO.
1819 if (arm_feature(env, ARM_FEATURE_EL3) &&
1820 ((cs->gic->gicd_ctlr & GICD_CTLR_DS) == 0)) {
1821 mask = ICC_CTLR_EL1_EOIMODE;
1822 } else {
1823 mask = ICC_CTLR_EL1_CBPR | ICC_CTLR_EL1_EOIMODE;
1826 cs->icc_ctlr_el1[bank] &= ~mask;
1827 cs->icc_ctlr_el1[bank] |= (value & mask);
1828 gicv3_cpuif_update(cs);
1832 static uint64_t icc_ctlr_el3_read(CPUARMState *env, const ARMCPRegInfo *ri)
1834 GICv3CPUState *cs = icc_cs_from_env(env);
1835 uint64_t value;
1837 value = cs->icc_ctlr_el3;
1838 if (cs->icc_ctlr_el1[GICV3_NS] & ICC_CTLR_EL1_EOIMODE) {
1839 value |= ICC_CTLR_EL3_EOIMODE_EL1NS;
1841 if (cs->icc_ctlr_el1[GICV3_NS] & ICC_CTLR_EL1_CBPR) {
1842 value |= ICC_CTLR_EL3_CBPR_EL1NS;
1844 if (cs->icc_ctlr_el1[GICV3_NS] & ICC_CTLR_EL1_EOIMODE) {
1845 value |= ICC_CTLR_EL3_EOIMODE_EL1S;
1847 if (cs->icc_ctlr_el1[GICV3_NS] & ICC_CTLR_EL1_CBPR) {
1848 value |= ICC_CTLR_EL3_CBPR_EL1S;
1851 trace_gicv3_icc_ctlr_el3_read(gicv3_redist_affid(cs), value);
1852 return value;
1855 static void icc_ctlr_el3_write(CPUARMState *env, const ARMCPRegInfo *ri,
1856 uint64_t value)
1858 GICv3CPUState *cs = icc_cs_from_env(env);
1859 uint64_t mask;
1861 trace_gicv3_icc_ctlr_el3_write(gicv3_redist_affid(cs), value);
1863 /* *_EL1NS and *_EL1S bits are aliases into the ICC_CTLR_EL1 bits. */
1864 cs->icc_ctlr_el1[GICV3_NS] &= ~(ICC_CTLR_EL1_CBPR | ICC_CTLR_EL1_EOIMODE);
1865 if (value & ICC_CTLR_EL3_EOIMODE_EL1NS) {
1866 cs->icc_ctlr_el1[GICV3_NS] |= ICC_CTLR_EL1_EOIMODE;
1868 if (value & ICC_CTLR_EL3_CBPR_EL1NS) {
1869 cs->icc_ctlr_el1[GICV3_NS] |= ICC_CTLR_EL1_CBPR;
1872 cs->icc_ctlr_el1[GICV3_S] &= ~(ICC_CTLR_EL1_CBPR | ICC_CTLR_EL1_EOIMODE);
1873 if (value & ICC_CTLR_EL3_EOIMODE_EL1S) {
1874 cs->icc_ctlr_el1[GICV3_S] |= ICC_CTLR_EL1_EOIMODE;
1876 if (value & ICC_CTLR_EL3_CBPR_EL1S) {
1877 cs->icc_ctlr_el1[GICV3_S] |= ICC_CTLR_EL1_CBPR;
1880 /* The only bit stored in icc_ctlr_el3 which is writeable is EOIMODE_EL3: */
1881 mask = ICC_CTLR_EL3_EOIMODE_EL3;
1883 cs->icc_ctlr_el3 &= ~mask;
1884 cs->icc_ctlr_el3 |= (value & mask);
1885 gicv3_cpuif_update(cs);
1888 static CPAccessResult gicv3_irqfiq_access(CPUARMState *env,
1889 const ARMCPRegInfo *ri, bool isread)
1891 CPAccessResult r = CP_ACCESS_OK;
1892 GICv3CPUState *cs = icc_cs_from_env(env);
1893 int el = arm_current_el(env);
1895 if ((cs->ich_hcr_el2 & ICH_HCR_EL2_TC) &&
1896 el == 1 && !arm_is_secure_below_el3(env)) {
1897 /* Takes priority over a possible EL3 trap */
1898 return CP_ACCESS_TRAP_EL2;
1901 if ((env->cp15.scr_el3 & (SCR_FIQ | SCR_IRQ)) == (SCR_FIQ | SCR_IRQ)) {
1902 switch (el) {
1903 case 1:
1904 /* Note that arm_hcr_el2_eff takes secure state into account. */
1905 if ((arm_hcr_el2_eff(env) & (HCR_IMO | HCR_FMO)) == 0) {
1906 r = CP_ACCESS_TRAP_EL3;
1908 break;
1909 case 2:
1910 r = CP_ACCESS_TRAP_EL3;
1911 break;
1912 case 3:
1913 if (!is_a64(env) && !arm_is_el3_or_mon(env)) {
1914 r = CP_ACCESS_TRAP_EL3;
1916 break;
1917 default:
1918 g_assert_not_reached();
1922 if (r == CP_ACCESS_TRAP_EL3 && !arm_el_is_aa64(env, 3)) {
1923 r = CP_ACCESS_TRAP;
1925 return r;
1928 static CPAccessResult gicv3_dir_access(CPUARMState *env,
1929 const ARMCPRegInfo *ri, bool isread)
1931 GICv3CPUState *cs = icc_cs_from_env(env);
1933 if ((cs->ich_hcr_el2 & ICH_HCR_EL2_TDIR) &&
1934 arm_current_el(env) == 1 && !arm_is_secure_below_el3(env)) {
1935 /* Takes priority over a possible EL3 trap */
1936 return CP_ACCESS_TRAP_EL2;
1939 return gicv3_irqfiq_access(env, ri, isread);
1942 static CPAccessResult gicv3_sgi_access(CPUARMState *env,
1943 const ARMCPRegInfo *ri, bool isread)
1945 if (arm_current_el(env) == 1 &&
1946 (arm_hcr_el2_eff(env) & (HCR_IMO | HCR_FMO)) != 0) {
1947 /* Takes priority over a possible EL3 trap */
1948 return CP_ACCESS_TRAP_EL2;
1951 return gicv3_irqfiq_access(env, ri, isread);
1954 static CPAccessResult gicv3_fiq_access(CPUARMState *env,
1955 const ARMCPRegInfo *ri, bool isread)
1957 CPAccessResult r = CP_ACCESS_OK;
1958 GICv3CPUState *cs = icc_cs_from_env(env);
1959 int el = arm_current_el(env);
1961 if ((cs->ich_hcr_el2 & ICH_HCR_EL2_TALL0) &&
1962 el == 1 && !arm_is_secure_below_el3(env)) {
1963 /* Takes priority over a possible EL3 trap */
1964 return CP_ACCESS_TRAP_EL2;
1967 if (env->cp15.scr_el3 & SCR_FIQ) {
1968 switch (el) {
1969 case 1:
1970 if ((arm_hcr_el2_eff(env) & HCR_FMO) == 0) {
1971 r = CP_ACCESS_TRAP_EL3;
1973 break;
1974 case 2:
1975 r = CP_ACCESS_TRAP_EL3;
1976 break;
1977 case 3:
1978 if (!is_a64(env) && !arm_is_el3_or_mon(env)) {
1979 r = CP_ACCESS_TRAP_EL3;
1981 break;
1982 default:
1983 g_assert_not_reached();
1987 if (r == CP_ACCESS_TRAP_EL3 && !arm_el_is_aa64(env, 3)) {
1988 r = CP_ACCESS_TRAP;
1990 return r;
1993 static CPAccessResult gicv3_irq_access(CPUARMState *env,
1994 const ARMCPRegInfo *ri, bool isread)
1996 CPAccessResult r = CP_ACCESS_OK;
1997 GICv3CPUState *cs = icc_cs_from_env(env);
1998 int el = arm_current_el(env);
2000 if ((cs->ich_hcr_el2 & ICH_HCR_EL2_TALL1) &&
2001 el == 1 && !arm_is_secure_below_el3(env)) {
2002 /* Takes priority over a possible EL3 trap */
2003 return CP_ACCESS_TRAP_EL2;
2006 if (env->cp15.scr_el3 & SCR_IRQ) {
2007 switch (el) {
2008 case 1:
2009 if ((arm_hcr_el2_eff(env) & HCR_IMO) == 0) {
2010 r = CP_ACCESS_TRAP_EL3;
2012 break;
2013 case 2:
2014 r = CP_ACCESS_TRAP_EL3;
2015 break;
2016 case 3:
2017 if (!is_a64(env) && !arm_is_el3_or_mon(env)) {
2018 r = CP_ACCESS_TRAP_EL3;
2020 break;
2021 default:
2022 g_assert_not_reached();
2026 if (r == CP_ACCESS_TRAP_EL3 && !arm_el_is_aa64(env, 3)) {
2027 r = CP_ACCESS_TRAP;
2029 return r;
2032 static void icc_reset(CPUARMState *env, const ARMCPRegInfo *ri)
2034 GICv3CPUState *cs = icc_cs_from_env(env);
2036 cs->icc_ctlr_el1[GICV3_S] = ICC_CTLR_EL1_A3V |
2037 (1 << ICC_CTLR_EL1_IDBITS_SHIFT) |
2038 (7 << ICC_CTLR_EL1_PRIBITS_SHIFT);
2039 cs->icc_ctlr_el1[GICV3_NS] = ICC_CTLR_EL1_A3V |
2040 (1 << ICC_CTLR_EL1_IDBITS_SHIFT) |
2041 (7 << ICC_CTLR_EL1_PRIBITS_SHIFT);
2042 cs->icc_pmr_el1 = 0;
2043 cs->icc_bpr[GICV3_G0] = GIC_MIN_BPR;
2044 cs->icc_bpr[GICV3_G1] = GIC_MIN_BPR;
2045 cs->icc_bpr[GICV3_G1NS] = GIC_MIN_BPR_NS;
2046 memset(cs->icc_apr, 0, sizeof(cs->icc_apr));
2047 memset(cs->icc_igrpen, 0, sizeof(cs->icc_igrpen));
2048 cs->icc_ctlr_el3 = ICC_CTLR_EL3_NDS | ICC_CTLR_EL3_A3V |
2049 (1 << ICC_CTLR_EL3_IDBITS_SHIFT) |
2050 (7 << ICC_CTLR_EL3_PRIBITS_SHIFT);
2052 memset(cs->ich_apr, 0, sizeof(cs->ich_apr));
2053 cs->ich_hcr_el2 = 0;
2054 memset(cs->ich_lr_el2, 0, sizeof(cs->ich_lr_el2));
2055 cs->ich_vmcr_el2 = ICH_VMCR_EL2_VFIQEN |
2056 ((icv_min_vbpr(cs) + 1) << ICH_VMCR_EL2_VBPR1_SHIFT) |
2057 (icv_min_vbpr(cs) << ICH_VMCR_EL2_VBPR0_SHIFT);
2060 static const ARMCPRegInfo gicv3_cpuif_reginfo[] = {
2061 { .name = "ICC_PMR_EL1", .state = ARM_CP_STATE_BOTH,
2062 .opc0 = 3, .opc1 = 0, .crn = 4, .crm = 6, .opc2 = 0,
2063 .type = ARM_CP_IO | ARM_CP_NO_RAW,
2064 .access = PL1_RW, .accessfn = gicv3_irqfiq_access,
2065 .readfn = icc_pmr_read,
2066 .writefn = icc_pmr_write,
2067 /* We hang the whole cpu interface reset routine off here
2068 * rather than parcelling it out into one little function
2069 * per register
2071 .resetfn = icc_reset,
2073 { .name = "ICC_IAR0_EL1", .state = ARM_CP_STATE_BOTH,
2074 .opc0 = 3, .opc1 = 0, .crn = 12, .crm = 8, .opc2 = 0,
2075 .type = ARM_CP_IO | ARM_CP_NO_RAW,
2076 .access = PL1_R, .accessfn = gicv3_fiq_access,
2077 .readfn = icc_iar0_read,
2079 { .name = "ICC_EOIR0_EL1", .state = ARM_CP_STATE_BOTH,
2080 .opc0 = 3, .opc1 = 0, .crn = 12, .crm = 8, .opc2 = 1,
2081 .type = ARM_CP_IO | ARM_CP_NO_RAW,
2082 .access = PL1_W, .accessfn = gicv3_fiq_access,
2083 .writefn = icc_eoir_write,
2085 { .name = "ICC_HPPIR0_EL1", .state = ARM_CP_STATE_BOTH,
2086 .opc0 = 3, .opc1 = 0, .crn = 12, .crm = 8, .opc2 = 2,
2087 .type = ARM_CP_IO | ARM_CP_NO_RAW,
2088 .access = PL1_R, .accessfn = gicv3_fiq_access,
2089 .readfn = icc_hppir0_read,
2091 { .name = "ICC_BPR0_EL1", .state = ARM_CP_STATE_BOTH,
2092 .opc0 = 3, .opc1 = 0, .crn = 12, .crm = 8, .opc2 = 3,
2093 .type = ARM_CP_IO | ARM_CP_NO_RAW,
2094 .access = PL1_RW, .accessfn = gicv3_fiq_access,
2095 .readfn = icc_bpr_read,
2096 .writefn = icc_bpr_write,
2098 { .name = "ICC_AP0R0_EL1", .state = ARM_CP_STATE_BOTH,
2099 .opc0 = 3, .opc1 = 0, .crn = 12, .crm = 8, .opc2 = 4,
2100 .type = ARM_CP_IO | ARM_CP_NO_RAW,
2101 .access = PL1_RW, .accessfn = gicv3_fiq_access,
2102 .readfn = icc_ap_read,
2103 .writefn = icc_ap_write,
2105 { .name = "ICC_AP0R1_EL1", .state = ARM_CP_STATE_BOTH,
2106 .opc0 = 3, .opc1 = 0, .crn = 12, .crm = 8, .opc2 = 5,
2107 .type = ARM_CP_IO | ARM_CP_NO_RAW,
2108 .access = PL1_RW, .accessfn = gicv3_fiq_access,
2109 .readfn = icc_ap_read,
2110 .writefn = icc_ap_write,
2112 { .name = "ICC_AP0R2_EL1", .state = ARM_CP_STATE_BOTH,
2113 .opc0 = 3, .opc1 = 0, .crn = 12, .crm = 8, .opc2 = 6,
2114 .type = ARM_CP_IO | ARM_CP_NO_RAW,
2115 .access = PL1_RW, .accessfn = gicv3_fiq_access,
2116 .readfn = icc_ap_read,
2117 .writefn = icc_ap_write,
2119 { .name = "ICC_AP0R3_EL1", .state = ARM_CP_STATE_BOTH,
2120 .opc0 = 3, .opc1 = 0, .crn = 12, .crm = 8, .opc2 = 7,
2121 .type = ARM_CP_IO | ARM_CP_NO_RAW,
2122 .access = PL1_RW, .accessfn = gicv3_fiq_access,
2123 .readfn = icc_ap_read,
2124 .writefn = icc_ap_write,
2126 /* All the ICC_AP1R*_EL1 registers are banked */
2127 { .name = "ICC_AP1R0_EL1", .state = ARM_CP_STATE_BOTH,
2128 .opc0 = 3, .opc1 = 0, .crn = 12, .crm = 9, .opc2 = 0,
2129 .type = ARM_CP_IO | ARM_CP_NO_RAW,
2130 .access = PL1_RW, .accessfn = gicv3_irq_access,
2131 .readfn = icc_ap_read,
2132 .writefn = icc_ap_write,
2134 { .name = "ICC_AP1R1_EL1", .state = ARM_CP_STATE_BOTH,
2135 .opc0 = 3, .opc1 = 0, .crn = 12, .crm = 9, .opc2 = 1,
2136 .type = ARM_CP_IO | ARM_CP_NO_RAW,
2137 .access = PL1_RW, .accessfn = gicv3_irq_access,
2138 .readfn = icc_ap_read,
2139 .writefn = icc_ap_write,
2141 { .name = "ICC_AP1R2_EL1", .state = ARM_CP_STATE_BOTH,
2142 .opc0 = 3, .opc1 = 0, .crn = 12, .crm = 9, .opc2 = 2,
2143 .type = ARM_CP_IO | ARM_CP_NO_RAW,
2144 .access = PL1_RW, .accessfn = gicv3_irq_access,
2145 .readfn = icc_ap_read,
2146 .writefn = icc_ap_write,
2148 { .name = "ICC_AP1R3_EL1", .state = ARM_CP_STATE_BOTH,
2149 .opc0 = 3, .opc1 = 0, .crn = 12, .crm = 9, .opc2 = 3,
2150 .type = ARM_CP_IO | ARM_CP_NO_RAW,
2151 .access = PL1_RW, .accessfn = gicv3_irq_access,
2152 .readfn = icc_ap_read,
2153 .writefn = icc_ap_write,
2155 { .name = "ICC_DIR_EL1", .state = ARM_CP_STATE_BOTH,
2156 .opc0 = 3, .opc1 = 0, .crn = 12, .crm = 11, .opc2 = 1,
2157 .type = ARM_CP_IO | ARM_CP_NO_RAW,
2158 .access = PL1_W, .accessfn = gicv3_dir_access,
2159 .writefn = icc_dir_write,
2161 { .name = "ICC_RPR_EL1", .state = ARM_CP_STATE_BOTH,
2162 .opc0 = 3, .opc1 = 0, .crn = 12, .crm = 11, .opc2 = 3,
2163 .type = ARM_CP_IO | ARM_CP_NO_RAW,
2164 .access = PL1_R, .accessfn = gicv3_irqfiq_access,
2165 .readfn = icc_rpr_read,
2167 { .name = "ICC_SGI1R_EL1", .state = ARM_CP_STATE_AA64,
2168 .opc0 = 3, .opc1 = 0, .crn = 12, .crm = 11, .opc2 = 5,
2169 .type = ARM_CP_IO | ARM_CP_NO_RAW,
2170 .access = PL1_W, .accessfn = gicv3_sgi_access,
2171 .writefn = icc_sgi1r_write,
2173 { .name = "ICC_SGI1R",
2174 .cp = 15, .opc1 = 0, .crm = 12,
2175 .type = ARM_CP_64BIT | ARM_CP_IO | ARM_CP_NO_RAW,
2176 .access = PL1_W, .accessfn = gicv3_sgi_access,
2177 .writefn = icc_sgi1r_write,
2179 { .name = "ICC_ASGI1R_EL1", .state = ARM_CP_STATE_AA64,
2180 .opc0 = 3, .opc1 = 0, .crn = 12, .crm = 11, .opc2 = 6,
2181 .type = ARM_CP_IO | ARM_CP_NO_RAW,
2182 .access = PL1_W, .accessfn = gicv3_sgi_access,
2183 .writefn = icc_asgi1r_write,
2185 { .name = "ICC_ASGI1R",
2186 .cp = 15, .opc1 = 1, .crm = 12,
2187 .type = ARM_CP_64BIT | ARM_CP_IO | ARM_CP_NO_RAW,
2188 .access = PL1_W, .accessfn = gicv3_sgi_access,
2189 .writefn = icc_asgi1r_write,
2191 { .name = "ICC_SGI0R_EL1", .state = ARM_CP_STATE_AA64,
2192 .opc0 = 3, .opc1 = 0, .crn = 12, .crm = 11, .opc2 = 7,
2193 .type = ARM_CP_IO | ARM_CP_NO_RAW,
2194 .access = PL1_W, .accessfn = gicv3_sgi_access,
2195 .writefn = icc_sgi0r_write,
2197 { .name = "ICC_SGI0R",
2198 .cp = 15, .opc1 = 2, .crm = 12,
2199 .type = ARM_CP_64BIT | ARM_CP_IO | ARM_CP_NO_RAW,
2200 .access = PL1_W, .accessfn = gicv3_sgi_access,
2201 .writefn = icc_sgi0r_write,
2203 { .name = "ICC_IAR1_EL1", .state = ARM_CP_STATE_BOTH,
2204 .opc0 = 3, .opc1 = 0, .crn = 12, .crm = 12, .opc2 = 0,
2205 .type = ARM_CP_IO | ARM_CP_NO_RAW,
2206 .access = PL1_R, .accessfn = gicv3_irq_access,
2207 .readfn = icc_iar1_read,
2209 { .name = "ICC_EOIR1_EL1", .state = ARM_CP_STATE_BOTH,
2210 .opc0 = 3, .opc1 = 0, .crn = 12, .crm = 12, .opc2 = 1,
2211 .type = ARM_CP_IO | ARM_CP_NO_RAW,
2212 .access = PL1_W, .accessfn = gicv3_irq_access,
2213 .writefn = icc_eoir_write,
2215 { .name = "ICC_HPPIR1_EL1", .state = ARM_CP_STATE_BOTH,
2216 .opc0 = 3, .opc1 = 0, .crn = 12, .crm = 12, .opc2 = 2,
2217 .type = ARM_CP_IO | ARM_CP_NO_RAW,
2218 .access = PL1_R, .accessfn = gicv3_irq_access,
2219 .readfn = icc_hppir1_read,
2221 /* This register is banked */
2222 { .name = "ICC_BPR1_EL1", .state = ARM_CP_STATE_BOTH,
2223 .opc0 = 3, .opc1 = 0, .crn = 12, .crm = 12, .opc2 = 3,
2224 .type = ARM_CP_IO | ARM_CP_NO_RAW,
2225 .access = PL1_RW, .accessfn = gicv3_irq_access,
2226 .readfn = icc_bpr_read,
2227 .writefn = icc_bpr_write,
2229 /* This register is banked */
2230 { .name = "ICC_CTLR_EL1", .state = ARM_CP_STATE_BOTH,
2231 .opc0 = 3, .opc1 = 0, .crn = 12, .crm = 12, .opc2 = 4,
2232 .type = ARM_CP_IO | ARM_CP_NO_RAW,
2233 .access = PL1_RW, .accessfn = gicv3_irqfiq_access,
2234 .readfn = icc_ctlr_el1_read,
2235 .writefn = icc_ctlr_el1_write,
2237 { .name = "ICC_SRE_EL1", .state = ARM_CP_STATE_BOTH,
2238 .opc0 = 3, .opc1 = 0, .crn = 12, .crm = 12, .opc2 = 5,
2239 .type = ARM_CP_NO_RAW | ARM_CP_CONST,
2240 .access = PL1_RW,
2241 /* We don't support IRQ/FIQ bypass and system registers are
2242 * always enabled, so all our bits are RAZ/WI or RAO/WI.
2243 * This register is banked but since it's constant we don't
2244 * need to do anything special.
2246 .resetvalue = 0x7,
2248 { .name = "ICC_IGRPEN0_EL1", .state = ARM_CP_STATE_BOTH,
2249 .opc0 = 3, .opc1 = 0, .crn = 12, .crm = 12, .opc2 = 6,
2250 .type = ARM_CP_IO | ARM_CP_NO_RAW,
2251 .access = PL1_RW, .accessfn = gicv3_fiq_access,
2252 .readfn = icc_igrpen_read,
2253 .writefn = icc_igrpen_write,
2255 /* This register is banked */
2256 { .name = "ICC_IGRPEN1_EL1", .state = ARM_CP_STATE_BOTH,
2257 .opc0 = 3, .opc1 = 0, .crn = 12, .crm = 12, .opc2 = 7,
2258 .type = ARM_CP_IO | ARM_CP_NO_RAW,
2259 .access = PL1_RW, .accessfn = gicv3_irq_access,
2260 .readfn = icc_igrpen_read,
2261 .writefn = icc_igrpen_write,
2263 { .name = "ICC_SRE_EL2", .state = ARM_CP_STATE_BOTH,
2264 .opc0 = 3, .opc1 = 4, .crn = 12, .crm = 9, .opc2 = 5,
2265 .type = ARM_CP_NO_RAW | ARM_CP_CONST,
2266 .access = PL2_RW,
2267 /* We don't support IRQ/FIQ bypass and system registers are
2268 * always enabled, so all our bits are RAZ/WI or RAO/WI.
2270 .resetvalue = 0xf,
2272 { .name = "ICC_CTLR_EL3", .state = ARM_CP_STATE_BOTH,
2273 .opc0 = 3, .opc1 = 6, .crn = 12, .crm = 12, .opc2 = 4,
2274 .type = ARM_CP_IO | ARM_CP_NO_RAW,
2275 .access = PL3_RW,
2276 .readfn = icc_ctlr_el3_read,
2277 .writefn = icc_ctlr_el3_write,
2279 { .name = "ICC_SRE_EL3", .state = ARM_CP_STATE_BOTH,
2280 .opc0 = 3, .opc1 = 6, .crn = 12, .crm = 12, .opc2 = 5,
2281 .type = ARM_CP_NO_RAW | ARM_CP_CONST,
2282 .access = PL3_RW,
2283 /* We don't support IRQ/FIQ bypass and system registers are
2284 * always enabled, so all our bits are RAZ/WI or RAO/WI.
2286 .resetvalue = 0xf,
2288 { .name = "ICC_IGRPEN1_EL3", .state = ARM_CP_STATE_BOTH,
2289 .opc0 = 3, .opc1 = 6, .crn = 12, .crm = 12, .opc2 = 7,
2290 .type = ARM_CP_IO | ARM_CP_NO_RAW,
2291 .access = PL3_RW,
2292 .readfn = icc_igrpen1_el3_read,
2293 .writefn = icc_igrpen1_el3_write,
2295 REGINFO_SENTINEL
2298 static uint64_t ich_ap_read(CPUARMState *env, const ARMCPRegInfo *ri)
2300 GICv3CPUState *cs = icc_cs_from_env(env);
2301 int regno = ri->opc2 & 3;
2302 int grp = (ri->crm & 1) ? GICV3_G1NS : GICV3_G0;
2303 uint64_t value;
2305 value = cs->ich_apr[grp][regno];
2306 trace_gicv3_ich_ap_read(ri->crm & 1, regno, gicv3_redist_affid(cs), value);
2307 return value;
2310 static void ich_ap_write(CPUARMState *env, const ARMCPRegInfo *ri,
2311 uint64_t value)
2313 GICv3CPUState *cs = icc_cs_from_env(env);
2314 int regno = ri->opc2 & 3;
2315 int grp = (ri->crm & 1) ? GICV3_G1NS : GICV3_G0;
2317 trace_gicv3_ich_ap_write(ri->crm & 1, regno, gicv3_redist_affid(cs), value);
2319 cs->ich_apr[grp][regno] = value & 0xFFFFFFFFU;
2320 gicv3_cpuif_virt_update(cs);
2323 static uint64_t ich_hcr_read(CPUARMState *env, const ARMCPRegInfo *ri)
2325 GICv3CPUState *cs = icc_cs_from_env(env);
2326 uint64_t value = cs->ich_hcr_el2;
2328 trace_gicv3_ich_hcr_read(gicv3_redist_affid(cs), value);
2329 return value;
2332 static void ich_hcr_write(CPUARMState *env, const ARMCPRegInfo *ri,
2333 uint64_t value)
2335 GICv3CPUState *cs = icc_cs_from_env(env);
2337 trace_gicv3_ich_hcr_write(gicv3_redist_affid(cs), value);
2339 value &= ICH_HCR_EL2_EN | ICH_HCR_EL2_UIE | ICH_HCR_EL2_LRENPIE |
2340 ICH_HCR_EL2_NPIE | ICH_HCR_EL2_VGRP0EIE | ICH_HCR_EL2_VGRP0DIE |
2341 ICH_HCR_EL2_VGRP1EIE | ICH_HCR_EL2_VGRP1DIE | ICH_HCR_EL2_TC |
2342 ICH_HCR_EL2_TALL0 | ICH_HCR_EL2_TALL1 | ICH_HCR_EL2_TSEI |
2343 ICH_HCR_EL2_TDIR | ICH_HCR_EL2_EOICOUNT_MASK;
2345 cs->ich_hcr_el2 = value;
2346 gicv3_cpuif_virt_update(cs);
2349 static uint64_t ich_vmcr_read(CPUARMState *env, const ARMCPRegInfo *ri)
2351 GICv3CPUState *cs = icc_cs_from_env(env);
2352 uint64_t value = cs->ich_vmcr_el2;
2354 trace_gicv3_ich_vmcr_read(gicv3_redist_affid(cs), value);
2355 return value;
2358 static void ich_vmcr_write(CPUARMState *env, const ARMCPRegInfo *ri,
2359 uint64_t value)
2361 GICv3CPUState *cs = icc_cs_from_env(env);
2363 trace_gicv3_ich_vmcr_write(gicv3_redist_affid(cs), value);
2365 value &= ICH_VMCR_EL2_VENG0 | ICH_VMCR_EL2_VENG1 | ICH_VMCR_EL2_VCBPR |
2366 ICH_VMCR_EL2_VEOIM | ICH_VMCR_EL2_VBPR1_MASK |
2367 ICH_VMCR_EL2_VBPR0_MASK | ICH_VMCR_EL2_VPMR_MASK;
2368 value |= ICH_VMCR_EL2_VFIQEN;
2370 cs->ich_vmcr_el2 = value;
2371 /* Enforce "writing BPRs to less than minimum sets them to the minimum"
2372 * by reading and writing back the fields.
2374 write_vbpr(cs, GICV3_G0, read_vbpr(cs, GICV3_G0));
2375 write_vbpr(cs, GICV3_G1, read_vbpr(cs, GICV3_G1));
2377 gicv3_cpuif_virt_update(cs);
2380 static uint64_t ich_lr_read(CPUARMState *env, const ARMCPRegInfo *ri)
2382 GICv3CPUState *cs = icc_cs_from_env(env);
2383 int regno = ri->opc2 | ((ri->crm & 1) << 3);
2384 uint64_t value;
2386 /* This read function handles all of:
2387 * 64-bit reads of the whole LR
2388 * 32-bit reads of the low half of the LR
2389 * 32-bit reads of the high half of the LR
2391 if (ri->state == ARM_CP_STATE_AA32) {
2392 if (ri->crm >= 14) {
2393 value = extract64(cs->ich_lr_el2[regno], 32, 32);
2394 trace_gicv3_ich_lrc_read(regno, gicv3_redist_affid(cs), value);
2395 } else {
2396 value = extract64(cs->ich_lr_el2[regno], 0, 32);
2397 trace_gicv3_ich_lr32_read(regno, gicv3_redist_affid(cs), value);
2399 } else {
2400 value = cs->ich_lr_el2[regno];
2401 trace_gicv3_ich_lr_read(regno, gicv3_redist_affid(cs), value);
2404 return value;
2407 static void ich_lr_write(CPUARMState *env, const ARMCPRegInfo *ri,
2408 uint64_t value)
2410 GICv3CPUState *cs = icc_cs_from_env(env);
2411 int regno = ri->opc2 | ((ri->crm & 1) << 3);
2413 /* This write function handles all of:
2414 * 64-bit writes to the whole LR
2415 * 32-bit writes to the low half of the LR
2416 * 32-bit writes to the high half of the LR
2418 if (ri->state == ARM_CP_STATE_AA32) {
2419 if (ri->crm >= 14) {
2420 trace_gicv3_ich_lrc_write(regno, gicv3_redist_affid(cs), value);
2421 value = deposit64(cs->ich_lr_el2[regno], 32, 32, value);
2422 } else {
2423 trace_gicv3_ich_lr32_write(regno, gicv3_redist_affid(cs), value);
2424 value = deposit64(cs->ich_lr_el2[regno], 0, 32, value);
2426 } else {
2427 trace_gicv3_ich_lr_write(regno, gicv3_redist_affid(cs), value);
2430 /* Enforce RES0 bits in priority field */
2431 if (cs->vpribits < 8) {
2432 value = deposit64(value, ICH_LR_EL2_PRIORITY_SHIFT,
2433 8 - cs->vpribits, 0);
2436 cs->ich_lr_el2[regno] = value;
2437 gicv3_cpuif_virt_update(cs);
2440 static uint64_t ich_vtr_read(CPUARMState *env, const ARMCPRegInfo *ri)
2442 GICv3CPUState *cs = icc_cs_from_env(env);
2443 uint64_t value;
2445 value = ((cs->num_list_regs - 1) << ICH_VTR_EL2_LISTREGS_SHIFT)
2446 | ICH_VTR_EL2_TDS | ICH_VTR_EL2_NV4 | ICH_VTR_EL2_A3V
2447 | (1 << ICH_VTR_EL2_IDBITS_SHIFT)
2448 | ((cs->vprebits - 1) << ICH_VTR_EL2_PREBITS_SHIFT)
2449 | ((cs->vpribits - 1) << ICH_VTR_EL2_PRIBITS_SHIFT);
2451 trace_gicv3_ich_vtr_read(gicv3_redist_affid(cs), value);
2452 return value;
2455 static uint64_t ich_misr_read(CPUARMState *env, const ARMCPRegInfo *ri)
2457 GICv3CPUState *cs = icc_cs_from_env(env);
2458 uint64_t value = maintenance_interrupt_state(cs);
2460 trace_gicv3_ich_misr_read(gicv3_redist_affid(cs), value);
2461 return value;
2464 static uint64_t ich_eisr_read(CPUARMState *env, const ARMCPRegInfo *ri)
2466 GICv3CPUState *cs = icc_cs_from_env(env);
2467 uint64_t value = eoi_maintenance_interrupt_state(cs, NULL);
2469 trace_gicv3_ich_eisr_read(gicv3_redist_affid(cs), value);
2470 return value;
2473 static uint64_t ich_elrsr_read(CPUARMState *env, const ARMCPRegInfo *ri)
2475 GICv3CPUState *cs = icc_cs_from_env(env);
2476 uint64_t value = 0;
2477 int i;
2479 for (i = 0; i < cs->num_list_regs; i++) {
2480 uint64_t lr = cs->ich_lr_el2[i];
2482 if ((lr & ICH_LR_EL2_STATE_MASK) == 0 &&
2483 ((lr & ICH_LR_EL2_HW) != 0 || (lr & ICH_LR_EL2_EOI) == 0)) {
2484 value |= (1 << i);
2488 trace_gicv3_ich_elrsr_read(gicv3_redist_affid(cs), value);
2489 return value;
2492 static const ARMCPRegInfo gicv3_cpuif_hcr_reginfo[] = {
2493 { .name = "ICH_AP0R0_EL2", .state = ARM_CP_STATE_BOTH,
2494 .opc0 = 3, .opc1 = 4, .crn = 12, .crm = 8, .opc2 = 0,
2495 .type = ARM_CP_IO | ARM_CP_NO_RAW,
2496 .access = PL2_RW,
2497 .readfn = ich_ap_read,
2498 .writefn = ich_ap_write,
2500 { .name = "ICH_AP1R0_EL2", .state = ARM_CP_STATE_BOTH,
2501 .opc0 = 3, .opc1 = 4, .crn = 12, .crm = 9, .opc2 = 0,
2502 .type = ARM_CP_IO | ARM_CP_NO_RAW,
2503 .access = PL2_RW,
2504 .readfn = ich_ap_read,
2505 .writefn = ich_ap_write,
2507 { .name = "ICH_HCR_EL2", .state = ARM_CP_STATE_BOTH,
2508 .opc0 = 3, .opc1 = 4, .crn = 12, .crm = 11, .opc2 = 0,
2509 .type = ARM_CP_IO | ARM_CP_NO_RAW,
2510 .access = PL2_RW,
2511 .readfn = ich_hcr_read,
2512 .writefn = ich_hcr_write,
2514 { .name = "ICH_VTR_EL2", .state = ARM_CP_STATE_BOTH,
2515 .opc0 = 3, .opc1 = 4, .crn = 12, .crm = 11, .opc2 = 1,
2516 .type = ARM_CP_IO | ARM_CP_NO_RAW,
2517 .access = PL2_R,
2518 .readfn = ich_vtr_read,
2520 { .name = "ICH_MISR_EL2", .state = ARM_CP_STATE_BOTH,
2521 .opc0 = 3, .opc1 = 4, .crn = 12, .crm = 11, .opc2 = 2,
2522 .type = ARM_CP_IO | ARM_CP_NO_RAW,
2523 .access = PL2_R,
2524 .readfn = ich_misr_read,
2526 { .name = "ICH_EISR_EL2", .state = ARM_CP_STATE_BOTH,
2527 .opc0 = 3, .opc1 = 4, .crn = 12, .crm = 11, .opc2 = 3,
2528 .type = ARM_CP_IO | ARM_CP_NO_RAW,
2529 .access = PL2_R,
2530 .readfn = ich_eisr_read,
2532 { .name = "ICH_ELRSR_EL2", .state = ARM_CP_STATE_BOTH,
2533 .opc0 = 3, .opc1 = 4, .crn = 12, .crm = 11, .opc2 = 5,
2534 .type = ARM_CP_IO | ARM_CP_NO_RAW,
2535 .access = PL2_R,
2536 .readfn = ich_elrsr_read,
2538 { .name = "ICH_VMCR_EL2", .state = ARM_CP_STATE_BOTH,
2539 .opc0 = 3, .opc1 = 4, .crn = 12, .crm = 11, .opc2 = 7,
2540 .type = ARM_CP_IO | ARM_CP_NO_RAW,
2541 .access = PL2_RW,
2542 .readfn = ich_vmcr_read,
2543 .writefn = ich_vmcr_write,
2545 REGINFO_SENTINEL
2548 static const ARMCPRegInfo gicv3_cpuif_ich_apxr1_reginfo[] = {
2549 { .name = "ICH_AP0R1_EL2", .state = ARM_CP_STATE_BOTH,
2550 .opc0 = 3, .opc1 = 4, .crn = 12, .crm = 8, .opc2 = 1,
2551 .type = ARM_CP_IO | ARM_CP_NO_RAW,
2552 .access = PL2_RW,
2553 .readfn = ich_ap_read,
2554 .writefn = ich_ap_write,
2556 { .name = "ICH_AP1R1_EL2", .state = ARM_CP_STATE_BOTH,
2557 .opc0 = 3, .opc1 = 4, .crn = 12, .crm = 9, .opc2 = 1,
2558 .type = ARM_CP_IO | ARM_CP_NO_RAW,
2559 .access = PL2_RW,
2560 .readfn = ich_ap_read,
2561 .writefn = ich_ap_write,
2563 REGINFO_SENTINEL
2566 static const ARMCPRegInfo gicv3_cpuif_ich_apxr23_reginfo[] = {
2567 { .name = "ICH_AP0R2_EL2", .state = ARM_CP_STATE_BOTH,
2568 .opc0 = 3, .opc1 = 4, .crn = 12, .crm = 8, .opc2 = 2,
2569 .type = ARM_CP_IO | ARM_CP_NO_RAW,
2570 .access = PL2_RW,
2571 .readfn = ich_ap_read,
2572 .writefn = ich_ap_write,
2574 { .name = "ICH_AP0R3_EL2", .state = ARM_CP_STATE_BOTH,
2575 .opc0 = 3, .opc1 = 4, .crn = 12, .crm = 8, .opc2 = 3,
2576 .type = ARM_CP_IO | ARM_CP_NO_RAW,
2577 .access = PL2_RW,
2578 .readfn = ich_ap_read,
2579 .writefn = ich_ap_write,
2581 { .name = "ICH_AP1R2_EL2", .state = ARM_CP_STATE_BOTH,
2582 .opc0 = 3, .opc1 = 4, .crn = 12, .crm = 9, .opc2 = 2,
2583 .type = ARM_CP_IO | ARM_CP_NO_RAW,
2584 .access = PL2_RW,
2585 .readfn = ich_ap_read,
2586 .writefn = ich_ap_write,
2588 { .name = "ICH_AP1R3_EL2", .state = ARM_CP_STATE_BOTH,
2589 .opc0 = 3, .opc1 = 4, .crn = 12, .crm = 9, .opc2 = 3,
2590 .type = ARM_CP_IO | ARM_CP_NO_RAW,
2591 .access = PL2_RW,
2592 .readfn = ich_ap_read,
2593 .writefn = ich_ap_write,
2595 REGINFO_SENTINEL
2598 static void gicv3_cpuif_el_change_hook(ARMCPU *cpu, void *opaque)
2600 GICv3CPUState *cs = opaque;
2602 gicv3_cpuif_update(cs);
2605 void gicv3_init_cpuif(GICv3State *s)
2607 /* Called from the GICv3 realize function; register our system
2608 * registers with the CPU
2610 int i;
2612 for (i = 0; i < s->num_cpu; i++) {
2613 ARMCPU *cpu = ARM_CPU(qemu_get_cpu(i));
2614 GICv3CPUState *cs = &s->cpu[i];
2616 /* Note that we can't just use the GICv3CPUState as an opaque pointer
2617 * in define_arm_cp_regs_with_opaque(), because when we're called back
2618 * it might be with code translated by CPU 0 but run by CPU 1, in
2619 * which case we'd get the wrong value.
2620 * So instead we define the regs with no ri->opaque info, and
2621 * get back to the GICv3CPUState from the CPUARMState.
2623 define_arm_cp_regs(cpu, gicv3_cpuif_reginfo);
2624 if (arm_feature(&cpu->env, ARM_FEATURE_EL2)
2625 && cpu->gic_num_lrs) {
2626 int j;
2628 cs->num_list_regs = cpu->gic_num_lrs;
2629 cs->vpribits = cpu->gic_vpribits;
2630 cs->vprebits = cpu->gic_vprebits;
2632 /* Check against architectural constraints: getting these
2633 * wrong would be a bug in the CPU code defining these,
2634 * and the implementation relies on them holding.
2636 g_assert(cs->vprebits <= cs->vpribits);
2637 g_assert(cs->vprebits >= 5 && cs->vprebits <= 7);
2638 g_assert(cs->vpribits >= 5 && cs->vpribits <= 8);
2640 define_arm_cp_regs(cpu, gicv3_cpuif_hcr_reginfo);
2642 for (j = 0; j < cs->num_list_regs; j++) {
2643 /* Note that the AArch64 LRs are 64-bit; the AArch32 LRs
2644 * are split into two cp15 regs, LR (the low part, with the
2645 * same encoding as the AArch64 LR) and LRC (the high part).
2647 ARMCPRegInfo lr_regset[] = {
2648 { .name = "ICH_LRn_EL2", .state = ARM_CP_STATE_BOTH,
2649 .opc0 = 3, .opc1 = 4, .crn = 12,
2650 .crm = 12 + (j >> 3), .opc2 = j & 7,
2651 .type = ARM_CP_IO | ARM_CP_NO_RAW,
2652 .access = PL2_RW,
2653 .readfn = ich_lr_read,
2654 .writefn = ich_lr_write,
2656 { .name = "ICH_LRCn_EL2", .state = ARM_CP_STATE_AA32,
2657 .cp = 15, .opc1 = 4, .crn = 12,
2658 .crm = 14 + (j >> 3), .opc2 = j & 7,
2659 .type = ARM_CP_IO | ARM_CP_NO_RAW,
2660 .access = PL2_RW,
2661 .readfn = ich_lr_read,
2662 .writefn = ich_lr_write,
2664 REGINFO_SENTINEL
2666 define_arm_cp_regs(cpu, lr_regset);
2668 if (cs->vprebits >= 6) {
2669 define_arm_cp_regs(cpu, gicv3_cpuif_ich_apxr1_reginfo);
2671 if (cs->vprebits == 7) {
2672 define_arm_cp_regs(cpu, gicv3_cpuif_ich_apxr23_reginfo);
2675 arm_register_el_change_hook(cpu, gicv3_cpuif_el_change_hook, cs);