net: check fragment length during fragmentation
[qemu/ar7.git] / hw / net / net_tx_pkt.c
blob53dfaa292c102afb5896c814e34cd2e728263b3d
1 /*
2 * QEMU TX packets abstractions
4 * Copyright (c) 2012 Ravello Systems LTD (http://ravellosystems.com)
6 * Developed by Daynix Computing LTD (http://www.daynix.com)
8 * Authors:
9 * Dmitry Fleytman <dmitry@daynix.com>
10 * Tamir Shomer <tamirs@daynix.com>
11 * Yan Vugenfirer <yan@daynix.com>
13 * This work is licensed under the terms of the GNU GPL, version 2 or later.
14 * See the COPYING file in the top-level directory.
18 #include "qemu/osdep.h"
19 #include "net_tx_pkt.h"
20 #include "net/eth.h"
21 #include "net/checksum.h"
22 #include "net/tap.h"
23 #include "net/net.h"
24 #include "hw/pci/pci.h"
26 enum {
27 NET_TX_PKT_VHDR_FRAG = 0,
28 NET_TX_PKT_L2HDR_FRAG,
29 NET_TX_PKT_L3HDR_FRAG,
30 NET_TX_PKT_PL_START_FRAG
33 /* TX packet private context */
34 struct NetTxPkt {
35 PCIDevice *pci_dev;
37 struct virtio_net_hdr virt_hdr;
38 bool has_virt_hdr;
40 struct iovec *raw;
41 uint32_t raw_frags;
42 uint32_t max_raw_frags;
44 struct iovec *vec;
46 uint8_t l2_hdr[ETH_MAX_L2_HDR_LEN];
47 uint8_t l3_hdr[ETH_MAX_IP_DGRAM_LEN];
49 uint32_t payload_len;
51 uint32_t payload_frags;
52 uint32_t max_payload_frags;
54 uint16_t hdr_len;
55 eth_pkt_types_e packet_type;
56 uint8_t l4proto;
58 bool is_loopback;
61 void net_tx_pkt_init(struct NetTxPkt **pkt, PCIDevice *pci_dev,
62 uint32_t max_frags, bool has_virt_hdr)
64 struct NetTxPkt *p = g_malloc0(sizeof *p);
66 p->pci_dev = pci_dev;
68 p->vec = g_malloc((sizeof *p->vec) *
69 (max_frags + NET_TX_PKT_PL_START_FRAG));
71 p->raw = g_malloc((sizeof *p->raw) * max_frags);
73 p->max_payload_frags = max_frags;
74 p->max_raw_frags = max_frags;
75 p->has_virt_hdr = has_virt_hdr;
76 p->vec[NET_TX_PKT_VHDR_FRAG].iov_base = &p->virt_hdr;
77 p->vec[NET_TX_PKT_VHDR_FRAG].iov_len =
78 p->has_virt_hdr ? sizeof p->virt_hdr : 0;
79 p->vec[NET_TX_PKT_L2HDR_FRAG].iov_base = &p->l2_hdr;
80 p->vec[NET_TX_PKT_L3HDR_FRAG].iov_base = &p->l3_hdr;
82 *pkt = p;
85 void net_tx_pkt_uninit(struct NetTxPkt *pkt)
87 if (pkt) {
88 g_free(pkt->vec);
89 g_free(pkt->raw);
90 g_free(pkt);
94 void net_tx_pkt_update_ip_hdr_checksum(struct NetTxPkt *pkt)
96 uint16_t csum;
97 assert(pkt);
98 struct ip_header *ip_hdr;
99 ip_hdr = pkt->vec[NET_TX_PKT_L3HDR_FRAG].iov_base;
101 ip_hdr->ip_len = cpu_to_be16(pkt->payload_len +
102 pkt->vec[NET_TX_PKT_L3HDR_FRAG].iov_len);
104 ip_hdr->ip_sum = 0;
105 csum = net_raw_checksum((uint8_t *)ip_hdr,
106 pkt->vec[NET_TX_PKT_L3HDR_FRAG].iov_len);
107 ip_hdr->ip_sum = cpu_to_be16(csum);
110 void net_tx_pkt_update_ip_checksums(struct NetTxPkt *pkt)
112 uint16_t csum;
113 uint32_t cntr, cso;
114 assert(pkt);
115 uint8_t gso_type = pkt->virt_hdr.gso_type & ~VIRTIO_NET_HDR_GSO_ECN;
116 void *ip_hdr = pkt->vec[NET_TX_PKT_L3HDR_FRAG].iov_base;
118 if (pkt->payload_len + pkt->vec[NET_TX_PKT_L3HDR_FRAG].iov_len >
119 ETH_MAX_IP_DGRAM_LEN) {
120 return;
123 if (gso_type == VIRTIO_NET_HDR_GSO_TCPV4 ||
124 gso_type == VIRTIO_NET_HDR_GSO_UDP) {
125 /* Calculate IP header checksum */
126 net_tx_pkt_update_ip_hdr_checksum(pkt);
128 /* Calculate IP pseudo header checksum */
129 cntr = eth_calc_ip4_pseudo_hdr_csum(ip_hdr, pkt->payload_len, &cso);
130 csum = cpu_to_be16(~net_checksum_finish(cntr));
131 } else if (gso_type == VIRTIO_NET_HDR_GSO_TCPV6) {
132 /* Calculate IP pseudo header checksum */
133 cntr = eth_calc_ip6_pseudo_hdr_csum(ip_hdr, pkt->payload_len,
134 IP_PROTO_TCP, &cso);
135 csum = cpu_to_be16(~net_checksum_finish(cntr));
136 } else {
137 return;
140 iov_from_buf(&pkt->vec[NET_TX_PKT_PL_START_FRAG], pkt->payload_frags,
141 pkt->virt_hdr.csum_offset, &csum, sizeof(csum));
144 static void net_tx_pkt_calculate_hdr_len(struct NetTxPkt *pkt)
146 pkt->hdr_len = pkt->vec[NET_TX_PKT_L2HDR_FRAG].iov_len +
147 pkt->vec[NET_TX_PKT_L3HDR_FRAG].iov_len;
150 static bool net_tx_pkt_parse_headers(struct NetTxPkt *pkt)
152 struct iovec *l2_hdr, *l3_hdr;
153 size_t bytes_read;
154 size_t full_ip6hdr_len;
155 uint16_t l3_proto;
157 assert(pkt);
159 l2_hdr = &pkt->vec[NET_TX_PKT_L2HDR_FRAG];
160 l3_hdr = &pkt->vec[NET_TX_PKT_L3HDR_FRAG];
162 bytes_read = iov_to_buf(pkt->raw, pkt->raw_frags, 0, l2_hdr->iov_base,
163 ETH_MAX_L2_HDR_LEN);
164 if (bytes_read < sizeof(struct eth_header)) {
165 l2_hdr->iov_len = 0;
166 return false;
169 l2_hdr->iov_len = sizeof(struct eth_header);
170 switch (be16_to_cpu(PKT_GET_ETH_HDR(l2_hdr->iov_base)->h_proto)) {
171 case ETH_P_VLAN:
172 l2_hdr->iov_len += sizeof(struct vlan_header);
173 break;
174 case ETH_P_DVLAN:
175 l2_hdr->iov_len += 2 * sizeof(struct vlan_header);
176 break;
179 if (bytes_read < l2_hdr->iov_len) {
180 l2_hdr->iov_len = 0;
181 l3_hdr->iov_len = 0;
182 pkt->packet_type = ETH_PKT_UCAST;
183 return false;
184 } else {
185 l2_hdr->iov_len = ETH_MAX_L2_HDR_LEN;
186 l2_hdr->iov_len = eth_get_l2_hdr_length(l2_hdr->iov_base);
187 pkt->packet_type = get_eth_packet_type(l2_hdr->iov_base);
190 l3_proto = eth_get_l3_proto(l2_hdr, 1, l2_hdr->iov_len);
192 switch (l3_proto) {
193 case ETH_P_IP:
194 bytes_read = iov_to_buf(pkt->raw, pkt->raw_frags, l2_hdr->iov_len,
195 l3_hdr->iov_base, sizeof(struct ip_header));
197 if (bytes_read < sizeof(struct ip_header)) {
198 l3_hdr->iov_len = 0;
199 return false;
202 l3_hdr->iov_len = IP_HDR_GET_LEN(l3_hdr->iov_base);
204 if (l3_hdr->iov_len < sizeof(struct ip_header)) {
205 l3_hdr->iov_len = 0;
206 return false;
209 pkt->l4proto = ((struct ip_header *) l3_hdr->iov_base)->ip_p;
211 if (IP_HDR_GET_LEN(l3_hdr->iov_base) != sizeof(struct ip_header)) {
212 /* copy optional IPv4 header data if any*/
213 bytes_read = iov_to_buf(pkt->raw, pkt->raw_frags,
214 l2_hdr->iov_len + sizeof(struct ip_header),
215 l3_hdr->iov_base + sizeof(struct ip_header),
216 l3_hdr->iov_len - sizeof(struct ip_header));
217 if (bytes_read < l3_hdr->iov_len - sizeof(struct ip_header)) {
218 l3_hdr->iov_len = 0;
219 return false;
223 break;
225 case ETH_P_IPV6:
227 eth_ip6_hdr_info hdrinfo;
229 if (!eth_parse_ipv6_hdr(pkt->raw, pkt->raw_frags, l2_hdr->iov_len,
230 &hdrinfo)) {
231 l3_hdr->iov_len = 0;
232 return false;
235 pkt->l4proto = hdrinfo.l4proto;
236 full_ip6hdr_len = hdrinfo.full_hdr_len;
238 if (full_ip6hdr_len > ETH_MAX_IP_DGRAM_LEN) {
239 l3_hdr->iov_len = 0;
240 return false;
243 bytes_read = iov_to_buf(pkt->raw, pkt->raw_frags, l2_hdr->iov_len,
244 l3_hdr->iov_base, full_ip6hdr_len);
246 if (bytes_read < full_ip6hdr_len) {
247 l3_hdr->iov_len = 0;
248 return false;
249 } else {
250 l3_hdr->iov_len = full_ip6hdr_len;
252 break;
254 default:
255 l3_hdr->iov_len = 0;
256 break;
259 net_tx_pkt_calculate_hdr_len(pkt);
260 return true;
263 static void net_tx_pkt_rebuild_payload(struct NetTxPkt *pkt)
265 pkt->payload_len = iov_size(pkt->raw, pkt->raw_frags) - pkt->hdr_len;
266 pkt->payload_frags = iov_copy(&pkt->vec[NET_TX_PKT_PL_START_FRAG],
267 pkt->max_payload_frags,
268 pkt->raw, pkt->raw_frags,
269 pkt->hdr_len, pkt->payload_len);
272 bool net_tx_pkt_parse(struct NetTxPkt *pkt)
274 if (net_tx_pkt_parse_headers(pkt)) {
275 net_tx_pkt_rebuild_payload(pkt);
276 return true;
277 } else {
278 return false;
282 struct virtio_net_hdr *net_tx_pkt_get_vhdr(struct NetTxPkt *pkt)
284 assert(pkt);
285 return &pkt->virt_hdr;
288 static uint8_t net_tx_pkt_get_gso_type(struct NetTxPkt *pkt,
289 bool tso_enable)
291 uint8_t rc = VIRTIO_NET_HDR_GSO_NONE;
292 uint16_t l3_proto;
294 l3_proto = eth_get_l3_proto(&pkt->vec[NET_TX_PKT_L2HDR_FRAG], 1,
295 pkt->vec[NET_TX_PKT_L2HDR_FRAG].iov_len);
297 if (!tso_enable) {
298 goto func_exit;
301 rc = eth_get_gso_type(l3_proto, pkt->vec[NET_TX_PKT_L3HDR_FRAG].iov_base,
302 pkt->l4proto);
304 func_exit:
305 return rc;
308 void net_tx_pkt_build_vheader(struct NetTxPkt *pkt, bool tso_enable,
309 bool csum_enable, uint32_t gso_size)
311 struct tcp_hdr l4hdr;
312 assert(pkt);
314 /* csum has to be enabled if tso is. */
315 assert(csum_enable || !tso_enable);
317 pkt->virt_hdr.gso_type = net_tx_pkt_get_gso_type(pkt, tso_enable);
319 switch (pkt->virt_hdr.gso_type & ~VIRTIO_NET_HDR_GSO_ECN) {
320 case VIRTIO_NET_HDR_GSO_NONE:
321 pkt->virt_hdr.hdr_len = 0;
322 pkt->virt_hdr.gso_size = 0;
323 break;
325 case VIRTIO_NET_HDR_GSO_UDP:
326 pkt->virt_hdr.gso_size = gso_size;
327 pkt->virt_hdr.hdr_len = pkt->hdr_len + sizeof(struct udp_header);
328 break;
330 case VIRTIO_NET_HDR_GSO_TCPV4:
331 case VIRTIO_NET_HDR_GSO_TCPV6:
332 iov_to_buf(&pkt->vec[NET_TX_PKT_PL_START_FRAG], pkt->payload_frags,
333 0, &l4hdr, sizeof(l4hdr));
334 pkt->virt_hdr.hdr_len = pkt->hdr_len + l4hdr.th_off * sizeof(uint32_t);
335 pkt->virt_hdr.gso_size = gso_size;
336 break;
338 default:
339 g_assert_not_reached();
342 if (csum_enable) {
343 switch (pkt->l4proto) {
344 case IP_PROTO_TCP:
345 pkt->virt_hdr.flags = VIRTIO_NET_HDR_F_NEEDS_CSUM;
346 pkt->virt_hdr.csum_start = pkt->hdr_len;
347 pkt->virt_hdr.csum_offset = offsetof(struct tcp_hdr, th_sum);
348 break;
349 case IP_PROTO_UDP:
350 pkt->virt_hdr.flags = VIRTIO_NET_HDR_F_NEEDS_CSUM;
351 pkt->virt_hdr.csum_start = pkt->hdr_len;
352 pkt->virt_hdr.csum_offset = offsetof(struct udp_hdr, uh_sum);
353 break;
354 default:
355 break;
360 void net_tx_pkt_setup_vlan_header_ex(struct NetTxPkt *pkt,
361 uint16_t vlan, uint16_t vlan_ethtype)
363 bool is_new;
364 assert(pkt);
366 eth_setup_vlan_headers_ex(pkt->vec[NET_TX_PKT_L2HDR_FRAG].iov_base,
367 vlan, vlan_ethtype, &is_new);
369 /* update l2hdrlen */
370 if (is_new) {
371 pkt->hdr_len += sizeof(struct vlan_header);
372 pkt->vec[NET_TX_PKT_L2HDR_FRAG].iov_len +=
373 sizeof(struct vlan_header);
377 bool net_tx_pkt_add_raw_fragment(struct NetTxPkt *pkt, hwaddr pa,
378 size_t len)
380 hwaddr mapped_len = 0;
381 struct iovec *ventry;
382 assert(pkt);
383 assert(pkt->max_raw_frags > pkt->raw_frags);
385 if (!len) {
386 return true;
389 ventry = &pkt->raw[pkt->raw_frags];
390 mapped_len = len;
392 ventry->iov_base = pci_dma_map(pkt->pci_dev, pa,
393 &mapped_len, DMA_DIRECTION_TO_DEVICE);
395 if ((ventry->iov_base != NULL) && (len == mapped_len)) {
396 ventry->iov_len = mapped_len;
397 pkt->raw_frags++;
398 return true;
399 } else {
400 return false;
404 bool net_tx_pkt_has_fragments(struct NetTxPkt *pkt)
406 return pkt->raw_frags > 0;
409 eth_pkt_types_e net_tx_pkt_get_packet_type(struct NetTxPkt *pkt)
411 assert(pkt);
413 return pkt->packet_type;
416 size_t net_tx_pkt_get_total_len(struct NetTxPkt *pkt)
418 assert(pkt);
420 return pkt->hdr_len + pkt->payload_len;
423 void net_tx_pkt_dump(struct NetTxPkt *pkt)
425 #ifdef NET_TX_PKT_DEBUG
426 assert(pkt);
428 printf("TX PKT: hdr_len: %d, pkt_type: 0x%X, l2hdr_len: %lu, "
429 "l3hdr_len: %lu, payload_len: %u\n", pkt->hdr_len, pkt->packet_type,
430 pkt->vec[NET_TX_PKT_L2HDR_FRAG].iov_len,
431 pkt->vec[NET_TX_PKT_L3HDR_FRAG].iov_len, pkt->payload_len);
432 #endif
435 void net_tx_pkt_reset(struct NetTxPkt *pkt)
437 int i;
439 /* no assert, as reset can be called before tx_pkt_init */
440 if (!pkt) {
441 return;
444 memset(&pkt->virt_hdr, 0, sizeof(pkt->virt_hdr));
446 assert(pkt->vec);
448 pkt->payload_len = 0;
449 pkt->payload_frags = 0;
451 assert(pkt->raw);
452 for (i = 0; i < pkt->raw_frags; i++) {
453 assert(pkt->raw[i].iov_base);
454 pci_dma_unmap(pkt->pci_dev, pkt->raw[i].iov_base, pkt->raw[i].iov_len,
455 DMA_DIRECTION_TO_DEVICE, 0);
457 pkt->raw_frags = 0;
459 pkt->hdr_len = 0;
460 pkt->l4proto = 0;
463 static void net_tx_pkt_do_sw_csum(struct NetTxPkt *pkt)
465 struct iovec *iov = &pkt->vec[NET_TX_PKT_L2HDR_FRAG];
466 uint32_t csum_cntr;
467 uint16_t csum = 0;
468 uint32_t cso;
469 /* num of iovec without vhdr */
470 uint32_t iov_len = pkt->payload_frags + NET_TX_PKT_PL_START_FRAG - 1;
471 uint16_t csl;
472 struct ip_header *iphdr;
473 size_t csum_offset = pkt->virt_hdr.csum_start + pkt->virt_hdr.csum_offset;
475 /* Put zero to checksum field */
476 iov_from_buf(iov, iov_len, csum_offset, &csum, sizeof csum);
478 /* Calculate L4 TCP/UDP checksum */
479 csl = pkt->payload_len;
481 /* add pseudo header to csum */
482 iphdr = pkt->vec[NET_TX_PKT_L3HDR_FRAG].iov_base;
483 csum_cntr = eth_calc_ip4_pseudo_hdr_csum(iphdr, csl, &cso);
485 /* data checksum */
486 csum_cntr +=
487 net_checksum_add_iov(iov, iov_len, pkt->virt_hdr.csum_start, csl, cso);
489 /* Put the checksum obtained into the packet */
490 csum = cpu_to_be16(net_checksum_finish(csum_cntr));
491 iov_from_buf(iov, iov_len, csum_offset, &csum, sizeof csum);
494 enum {
495 NET_TX_PKT_FRAGMENT_L2_HDR_POS = 0,
496 NET_TX_PKT_FRAGMENT_L3_HDR_POS,
497 NET_TX_PKT_FRAGMENT_HEADER_NUM
500 #define NET_MAX_FRAG_SG_LIST (64)
502 static size_t net_tx_pkt_fetch_fragment(struct NetTxPkt *pkt,
503 int *src_idx, size_t *src_offset, struct iovec *dst, int *dst_idx)
505 size_t fetched = 0;
506 struct iovec *src = pkt->vec;
508 *dst_idx = NET_TX_PKT_FRAGMENT_HEADER_NUM;
510 while (fetched < IP_FRAG_ALIGN_SIZE(pkt->virt_hdr.gso_size)) {
512 /* no more place in fragment iov */
513 if (*dst_idx == NET_MAX_FRAG_SG_LIST) {
514 break;
517 /* no more data in iovec */
518 if (*src_idx == (pkt->payload_frags + NET_TX_PKT_PL_START_FRAG)) {
519 break;
523 dst[*dst_idx].iov_base = src[*src_idx].iov_base + *src_offset;
524 dst[*dst_idx].iov_len = MIN(src[*src_idx].iov_len - *src_offset,
525 IP_FRAG_ALIGN_SIZE(pkt->virt_hdr.gso_size) - fetched);
527 *src_offset += dst[*dst_idx].iov_len;
528 fetched += dst[*dst_idx].iov_len;
530 if (*src_offset == src[*src_idx].iov_len) {
531 *src_offset = 0;
532 (*src_idx)++;
535 (*dst_idx)++;
538 return fetched;
541 static inline void net_tx_pkt_sendv(struct NetTxPkt *pkt,
542 NetClientState *nc, const struct iovec *iov, int iov_cnt)
544 if (pkt->is_loopback) {
545 nc->info->receive_iov(nc, iov, iov_cnt);
546 } else {
547 qemu_sendv_packet(nc, iov, iov_cnt);
551 static bool net_tx_pkt_do_sw_fragmentation(struct NetTxPkt *pkt,
552 NetClientState *nc)
554 struct iovec fragment[NET_MAX_FRAG_SG_LIST];
555 size_t fragment_len = 0;
556 bool more_frags = false;
558 /* some pointers for shorter code */
559 void *l2_iov_base, *l3_iov_base;
560 size_t l2_iov_len, l3_iov_len;
561 int src_idx = NET_TX_PKT_PL_START_FRAG, dst_idx;
562 size_t src_offset = 0;
563 size_t fragment_offset = 0;
565 l2_iov_base = pkt->vec[NET_TX_PKT_L2HDR_FRAG].iov_base;
566 l2_iov_len = pkt->vec[NET_TX_PKT_L2HDR_FRAG].iov_len;
567 l3_iov_base = pkt->vec[NET_TX_PKT_L3HDR_FRAG].iov_base;
568 l3_iov_len = pkt->vec[NET_TX_PKT_L3HDR_FRAG].iov_len;
570 /* Copy headers */
571 fragment[NET_TX_PKT_FRAGMENT_L2_HDR_POS].iov_base = l2_iov_base;
572 fragment[NET_TX_PKT_FRAGMENT_L2_HDR_POS].iov_len = l2_iov_len;
573 fragment[NET_TX_PKT_FRAGMENT_L3_HDR_POS].iov_base = l3_iov_base;
574 fragment[NET_TX_PKT_FRAGMENT_L3_HDR_POS].iov_len = l3_iov_len;
577 /* Put as much data as possible and send */
578 do {
579 fragment_len = net_tx_pkt_fetch_fragment(pkt, &src_idx, &src_offset,
580 fragment, &dst_idx);
582 more_frags = (fragment_offset + fragment_len < pkt->payload_len);
584 eth_setup_ip4_fragmentation(l2_iov_base, l2_iov_len, l3_iov_base,
585 l3_iov_len, fragment_len, fragment_offset, more_frags);
587 eth_fix_ip4_checksum(l3_iov_base, l3_iov_len);
589 net_tx_pkt_sendv(pkt, nc, fragment, dst_idx);
591 fragment_offset += fragment_len;
593 } while (fragment_len && more_frags);
595 return true;
598 bool net_tx_pkt_send(struct NetTxPkt *pkt, NetClientState *nc)
600 assert(pkt);
602 if (!pkt->has_virt_hdr &&
603 pkt->virt_hdr.flags & VIRTIO_NET_HDR_F_NEEDS_CSUM) {
604 net_tx_pkt_do_sw_csum(pkt);
608 * Since underlying infrastructure does not support IP datagrams longer
609 * than 64K we should drop such packets and don't even try to send
611 if (VIRTIO_NET_HDR_GSO_NONE != pkt->virt_hdr.gso_type) {
612 if (pkt->payload_len >
613 ETH_MAX_IP_DGRAM_LEN -
614 pkt->vec[NET_TX_PKT_L3HDR_FRAG].iov_len) {
615 return false;
619 if (pkt->has_virt_hdr ||
620 pkt->virt_hdr.gso_type == VIRTIO_NET_HDR_GSO_NONE) {
621 net_tx_pkt_sendv(pkt, nc, pkt->vec,
622 pkt->payload_frags + NET_TX_PKT_PL_START_FRAG);
623 return true;
626 return net_tx_pkt_do_sw_fragmentation(pkt, nc);
629 bool net_tx_pkt_send_loopback(struct NetTxPkt *pkt, NetClientState *nc)
631 bool res;
633 pkt->is_loopback = true;
634 res = net_tx_pkt_send(pkt, nc);
635 pkt->is_loopback = false;
637 return res;