test-qobject-input-visitor: Avoid format string ambiguity
[qemu/ar7.git] / migration / ram.c
blob24dea2730c5b97c19a2030ee9f1b69be895e59b8
1 /*
2 * QEMU System Emulator
4 * Copyright (c) 2003-2008 Fabrice Bellard
5 * Copyright (c) 2011-2015 Red Hat Inc
7 * Authors:
8 * Juan Quintela <quintela@redhat.com>
10 * Permission is hereby granted, free of charge, to any person obtaining a copy
11 * of this software and associated documentation files (the "Software"), to deal
12 * in the Software without restriction, including without limitation the rights
13 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
14 * copies of the Software, and to permit persons to whom the Software is
15 * furnished to do so, subject to the following conditions:
17 * The above copyright notice and this permission notice shall be included in
18 * all copies or substantial portions of the Software.
20 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
21 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
22 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
23 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
24 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
25 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
26 * THE SOFTWARE.
29 #include "qemu/osdep.h"
30 #include "cpu.h"
31 #include <zlib.h>
32 #include "qemu/cutils.h"
33 #include "qemu/bitops.h"
34 #include "qemu/bitmap.h"
35 #include "qemu/main-loop.h"
36 #include "xbzrle.h"
37 #include "ram.h"
38 #include "migration.h"
39 #include "socket.h"
40 #include "migration/register.h"
41 #include "migration/misc.h"
42 #include "qemu-file.h"
43 #include "postcopy-ram.h"
44 #include "page_cache.h"
45 #include "qemu/error-report.h"
46 #include "qapi/error.h"
47 #include "qapi/qapi-events-migration.h"
48 #include "qapi/qmp/qerror.h"
49 #include "trace.h"
50 #include "exec/ram_addr.h"
51 #include "exec/target_page.h"
52 #include "qemu/rcu_queue.h"
53 #include "migration/colo.h"
54 #include "block.h"
55 #include "sysemu/sysemu.h"
56 #include "qemu/uuid.h"
57 #include "savevm.h"
58 #include "qemu/iov.h"
60 /***********************************************************/
61 /* ram save/restore */
63 /* RAM_SAVE_FLAG_ZERO used to be named RAM_SAVE_FLAG_COMPRESS, it
64 * worked for pages that where filled with the same char. We switched
65 * it to only search for the zero value. And to avoid confusion with
66 * RAM_SSAVE_FLAG_COMPRESS_PAGE just rename it.
69 #define RAM_SAVE_FLAG_FULL 0x01 /* Obsolete, not used anymore */
70 #define RAM_SAVE_FLAG_ZERO 0x02
71 #define RAM_SAVE_FLAG_MEM_SIZE 0x04
72 #define RAM_SAVE_FLAG_PAGE 0x08
73 #define RAM_SAVE_FLAG_EOS 0x10
74 #define RAM_SAVE_FLAG_CONTINUE 0x20
75 #define RAM_SAVE_FLAG_XBZRLE 0x40
76 /* 0x80 is reserved in migration.h start with 0x100 next */
77 #define RAM_SAVE_FLAG_COMPRESS_PAGE 0x100
79 static inline bool is_zero_range(uint8_t *p, uint64_t size)
81 return buffer_is_zero(p, size);
84 XBZRLECacheStats xbzrle_counters;
86 /* struct contains XBZRLE cache and a static page
87 used by the compression */
88 static struct {
89 /* buffer used for XBZRLE encoding */
90 uint8_t *encoded_buf;
91 /* buffer for storing page content */
92 uint8_t *current_buf;
93 /* Cache for XBZRLE, Protected by lock. */
94 PageCache *cache;
95 QemuMutex lock;
96 /* it will store a page full of zeros */
97 uint8_t *zero_target_page;
98 /* buffer used for XBZRLE decoding */
99 uint8_t *decoded_buf;
100 } XBZRLE;
102 static void XBZRLE_cache_lock(void)
104 if (migrate_use_xbzrle())
105 qemu_mutex_lock(&XBZRLE.lock);
108 static void XBZRLE_cache_unlock(void)
110 if (migrate_use_xbzrle())
111 qemu_mutex_unlock(&XBZRLE.lock);
115 * xbzrle_cache_resize: resize the xbzrle cache
117 * This function is called from qmp_migrate_set_cache_size in main
118 * thread, possibly while a migration is in progress. A running
119 * migration may be using the cache and might finish during this call,
120 * hence changes to the cache are protected by XBZRLE.lock().
122 * Returns 0 for success or -1 for error
124 * @new_size: new cache size
125 * @errp: set *errp if the check failed, with reason
127 int xbzrle_cache_resize(int64_t new_size, Error **errp)
129 PageCache *new_cache;
130 int64_t ret = 0;
132 /* Check for truncation */
133 if (new_size != (size_t)new_size) {
134 error_setg(errp, QERR_INVALID_PARAMETER_VALUE, "cache size",
135 "exceeding address space");
136 return -1;
139 if (new_size == migrate_xbzrle_cache_size()) {
140 /* nothing to do */
141 return 0;
144 XBZRLE_cache_lock();
146 if (XBZRLE.cache != NULL) {
147 new_cache = cache_init(new_size, TARGET_PAGE_SIZE, errp);
148 if (!new_cache) {
149 ret = -1;
150 goto out;
153 cache_fini(XBZRLE.cache);
154 XBZRLE.cache = new_cache;
156 out:
157 XBZRLE_cache_unlock();
158 return ret;
161 /* Should be holding either ram_list.mutex, or the RCU lock. */
162 #define RAMBLOCK_FOREACH_MIGRATABLE(block) \
163 INTERNAL_RAMBLOCK_FOREACH(block) \
164 if (!qemu_ram_is_migratable(block)) {} else
166 #undef RAMBLOCK_FOREACH
168 static void ramblock_recv_map_init(void)
170 RAMBlock *rb;
172 RAMBLOCK_FOREACH_MIGRATABLE(rb) {
173 assert(!rb->receivedmap);
174 rb->receivedmap = bitmap_new(rb->max_length >> qemu_target_page_bits());
178 int ramblock_recv_bitmap_test(RAMBlock *rb, void *host_addr)
180 return test_bit(ramblock_recv_bitmap_offset(host_addr, rb),
181 rb->receivedmap);
184 bool ramblock_recv_bitmap_test_byte_offset(RAMBlock *rb, uint64_t byte_offset)
186 return test_bit(byte_offset >> TARGET_PAGE_BITS, rb->receivedmap);
189 void ramblock_recv_bitmap_set(RAMBlock *rb, void *host_addr)
191 set_bit_atomic(ramblock_recv_bitmap_offset(host_addr, rb), rb->receivedmap);
194 void ramblock_recv_bitmap_set_range(RAMBlock *rb, void *host_addr,
195 size_t nr)
197 bitmap_set_atomic(rb->receivedmap,
198 ramblock_recv_bitmap_offset(host_addr, rb),
199 nr);
202 #define RAMBLOCK_RECV_BITMAP_ENDING (0x0123456789abcdefULL)
205 * Format: bitmap_size (8 bytes) + whole_bitmap (N bytes).
207 * Returns >0 if success with sent bytes, or <0 if error.
209 int64_t ramblock_recv_bitmap_send(QEMUFile *file,
210 const char *block_name)
212 RAMBlock *block = qemu_ram_block_by_name(block_name);
213 unsigned long *le_bitmap, nbits;
214 uint64_t size;
216 if (!block) {
217 error_report("%s: invalid block name: %s", __func__, block_name);
218 return -1;
221 nbits = block->used_length >> TARGET_PAGE_BITS;
224 * Make sure the tmp bitmap buffer is big enough, e.g., on 32bit
225 * machines we may need 4 more bytes for padding (see below
226 * comment). So extend it a bit before hand.
228 le_bitmap = bitmap_new(nbits + BITS_PER_LONG);
231 * Always use little endian when sending the bitmap. This is
232 * required that when source and destination VMs are not using the
233 * same endianess. (Note: big endian won't work.)
235 bitmap_to_le(le_bitmap, block->receivedmap, nbits);
237 /* Size of the bitmap, in bytes */
238 size = DIV_ROUND_UP(nbits, 8);
241 * size is always aligned to 8 bytes for 64bit machines, but it
242 * may not be true for 32bit machines. We need this padding to
243 * make sure the migration can survive even between 32bit and
244 * 64bit machines.
246 size = ROUND_UP(size, 8);
248 qemu_put_be64(file, size);
249 qemu_put_buffer(file, (const uint8_t *)le_bitmap, size);
251 * Mark as an end, in case the middle part is screwed up due to
252 * some "misterious" reason.
254 qemu_put_be64(file, RAMBLOCK_RECV_BITMAP_ENDING);
255 qemu_fflush(file);
257 g_free(le_bitmap);
259 if (qemu_file_get_error(file)) {
260 return qemu_file_get_error(file);
263 return size + sizeof(size);
267 * An outstanding page request, on the source, having been received
268 * and queued
270 struct RAMSrcPageRequest {
271 RAMBlock *rb;
272 hwaddr offset;
273 hwaddr len;
275 QSIMPLEQ_ENTRY(RAMSrcPageRequest) next_req;
278 /* State of RAM for migration */
279 struct RAMState {
280 /* QEMUFile used for this migration */
281 QEMUFile *f;
282 /* Last block that we have visited searching for dirty pages */
283 RAMBlock *last_seen_block;
284 /* Last block from where we have sent data */
285 RAMBlock *last_sent_block;
286 /* Last dirty target page we have sent */
287 ram_addr_t last_page;
288 /* last ram version we have seen */
289 uint32_t last_version;
290 /* We are in the first round */
291 bool ram_bulk_stage;
292 /* How many times we have dirty too many pages */
293 int dirty_rate_high_cnt;
294 /* these variables are used for bitmap sync */
295 /* last time we did a full bitmap_sync */
296 int64_t time_last_bitmap_sync;
297 /* bytes transferred at start_time */
298 uint64_t bytes_xfer_prev;
299 /* number of dirty pages since start_time */
300 uint64_t num_dirty_pages_period;
301 /* xbzrle misses since the beginning of the period */
302 uint64_t xbzrle_cache_miss_prev;
303 /* number of iterations at the beginning of period */
304 uint64_t iterations_prev;
305 /* Iterations since start */
306 uint64_t iterations;
307 /* number of dirty bits in the bitmap */
308 uint64_t migration_dirty_pages;
309 /* protects modification of the bitmap */
310 QemuMutex bitmap_mutex;
311 /* The RAMBlock used in the last src_page_requests */
312 RAMBlock *last_req_rb;
313 /* Queue of outstanding page requests from the destination */
314 QemuMutex src_page_req_mutex;
315 QSIMPLEQ_HEAD(src_page_requests, RAMSrcPageRequest) src_page_requests;
317 typedef struct RAMState RAMState;
319 static RAMState *ram_state;
321 uint64_t ram_bytes_remaining(void)
323 return ram_state ? (ram_state->migration_dirty_pages * TARGET_PAGE_SIZE) :
327 MigrationStats ram_counters;
329 /* used by the search for pages to send */
330 struct PageSearchStatus {
331 /* Current block being searched */
332 RAMBlock *block;
333 /* Current page to search from */
334 unsigned long page;
335 /* Set once we wrap around */
336 bool complete_round;
338 typedef struct PageSearchStatus PageSearchStatus;
340 struct CompressParam {
341 bool done;
342 bool quit;
343 QEMUFile *file;
344 QemuMutex mutex;
345 QemuCond cond;
346 RAMBlock *block;
347 ram_addr_t offset;
349 /* internally used fields */
350 z_stream stream;
351 uint8_t *originbuf;
353 typedef struct CompressParam CompressParam;
355 struct DecompressParam {
356 bool done;
357 bool quit;
358 QemuMutex mutex;
359 QemuCond cond;
360 void *des;
361 uint8_t *compbuf;
362 int len;
363 z_stream stream;
365 typedef struct DecompressParam DecompressParam;
367 static CompressParam *comp_param;
368 static QemuThread *compress_threads;
369 /* comp_done_cond is used to wake up the migration thread when
370 * one of the compression threads has finished the compression.
371 * comp_done_lock is used to co-work with comp_done_cond.
373 static QemuMutex comp_done_lock;
374 static QemuCond comp_done_cond;
375 /* The empty QEMUFileOps will be used by file in CompressParam */
376 static const QEMUFileOps empty_ops = { };
378 static QEMUFile *decomp_file;
379 static DecompressParam *decomp_param;
380 static QemuThread *decompress_threads;
381 static QemuMutex decomp_done_lock;
382 static QemuCond decomp_done_cond;
384 static int do_compress_ram_page(QEMUFile *f, z_stream *stream, RAMBlock *block,
385 ram_addr_t offset, uint8_t *source_buf);
387 static void *do_data_compress(void *opaque)
389 CompressParam *param = opaque;
390 RAMBlock *block;
391 ram_addr_t offset;
393 qemu_mutex_lock(&param->mutex);
394 while (!param->quit) {
395 if (param->block) {
396 block = param->block;
397 offset = param->offset;
398 param->block = NULL;
399 qemu_mutex_unlock(&param->mutex);
401 do_compress_ram_page(param->file, &param->stream, block, offset,
402 param->originbuf);
404 qemu_mutex_lock(&comp_done_lock);
405 param->done = true;
406 qemu_cond_signal(&comp_done_cond);
407 qemu_mutex_unlock(&comp_done_lock);
409 qemu_mutex_lock(&param->mutex);
410 } else {
411 qemu_cond_wait(&param->cond, &param->mutex);
414 qemu_mutex_unlock(&param->mutex);
416 return NULL;
419 static inline void terminate_compression_threads(void)
421 int idx, thread_count;
423 thread_count = migrate_compress_threads();
425 for (idx = 0; idx < thread_count; idx++) {
426 qemu_mutex_lock(&comp_param[idx].mutex);
427 comp_param[idx].quit = true;
428 qemu_cond_signal(&comp_param[idx].cond);
429 qemu_mutex_unlock(&comp_param[idx].mutex);
433 static void compress_threads_save_cleanup(void)
435 int i, thread_count;
437 if (!migrate_use_compression()) {
438 return;
440 terminate_compression_threads();
441 thread_count = migrate_compress_threads();
442 for (i = 0; i < thread_count; i++) {
444 * we use it as a indicator which shows if the thread is
445 * properly init'd or not
447 if (!comp_param[i].file) {
448 break;
450 qemu_thread_join(compress_threads + i);
451 qemu_mutex_destroy(&comp_param[i].mutex);
452 qemu_cond_destroy(&comp_param[i].cond);
453 deflateEnd(&comp_param[i].stream);
454 g_free(comp_param[i].originbuf);
455 qemu_fclose(comp_param[i].file);
456 comp_param[i].file = NULL;
458 qemu_mutex_destroy(&comp_done_lock);
459 qemu_cond_destroy(&comp_done_cond);
460 g_free(compress_threads);
461 g_free(comp_param);
462 compress_threads = NULL;
463 comp_param = NULL;
466 static int compress_threads_save_setup(void)
468 int i, thread_count;
470 if (!migrate_use_compression()) {
471 return 0;
473 thread_count = migrate_compress_threads();
474 compress_threads = g_new0(QemuThread, thread_count);
475 comp_param = g_new0(CompressParam, thread_count);
476 qemu_cond_init(&comp_done_cond);
477 qemu_mutex_init(&comp_done_lock);
478 for (i = 0; i < thread_count; i++) {
479 comp_param[i].originbuf = g_try_malloc(TARGET_PAGE_SIZE);
480 if (!comp_param[i].originbuf) {
481 goto exit;
484 if (deflateInit(&comp_param[i].stream,
485 migrate_compress_level()) != Z_OK) {
486 g_free(comp_param[i].originbuf);
487 goto exit;
490 /* comp_param[i].file is just used as a dummy buffer to save data,
491 * set its ops to empty.
493 comp_param[i].file = qemu_fopen_ops(NULL, &empty_ops);
494 comp_param[i].done = true;
495 comp_param[i].quit = false;
496 qemu_mutex_init(&comp_param[i].mutex);
497 qemu_cond_init(&comp_param[i].cond);
498 qemu_thread_create(compress_threads + i, "compress",
499 do_data_compress, comp_param + i,
500 QEMU_THREAD_JOINABLE);
502 return 0;
504 exit:
505 compress_threads_save_cleanup();
506 return -1;
509 /* Multiple fd's */
511 #define MULTIFD_MAGIC 0x11223344U
512 #define MULTIFD_VERSION 1
514 #define MULTIFD_FLAG_SYNC (1 << 0)
516 typedef struct {
517 uint32_t magic;
518 uint32_t version;
519 unsigned char uuid[16]; /* QemuUUID */
520 uint8_t id;
521 } __attribute__((packed)) MultiFDInit_t;
523 typedef struct {
524 uint32_t magic;
525 uint32_t version;
526 uint32_t flags;
527 uint32_t size;
528 uint32_t used;
529 uint64_t packet_num;
530 char ramblock[256];
531 uint64_t offset[];
532 } __attribute__((packed)) MultiFDPacket_t;
534 typedef struct {
535 /* number of used pages */
536 uint32_t used;
537 /* number of allocated pages */
538 uint32_t allocated;
539 /* global number of generated multifd packets */
540 uint64_t packet_num;
541 /* offset of each page */
542 ram_addr_t *offset;
543 /* pointer to each page */
544 struct iovec *iov;
545 RAMBlock *block;
546 } MultiFDPages_t;
548 typedef struct {
549 /* this fields are not changed once the thread is created */
550 /* channel number */
551 uint8_t id;
552 /* channel thread name */
553 char *name;
554 /* channel thread id */
555 QemuThread thread;
556 /* communication channel */
557 QIOChannel *c;
558 /* sem where to wait for more work */
559 QemuSemaphore sem;
560 /* this mutex protects the following parameters */
561 QemuMutex mutex;
562 /* is this channel thread running */
563 bool running;
564 /* should this thread finish */
565 bool quit;
566 /* thread has work to do */
567 int pending_job;
568 /* array of pages to sent */
569 MultiFDPages_t *pages;
570 /* packet allocated len */
571 uint32_t packet_len;
572 /* pointer to the packet */
573 MultiFDPacket_t *packet;
574 /* multifd flags for each packet */
575 uint32_t flags;
576 /* global number of generated multifd packets */
577 uint64_t packet_num;
578 /* thread local variables */
579 /* packets sent through this channel */
580 uint64_t num_packets;
581 /* pages sent through this channel */
582 uint64_t num_pages;
583 /* syncs main thread and channels */
584 QemuSemaphore sem_sync;
585 } MultiFDSendParams;
587 typedef struct {
588 /* this fields are not changed once the thread is created */
589 /* channel number */
590 uint8_t id;
591 /* channel thread name */
592 char *name;
593 /* channel thread id */
594 QemuThread thread;
595 /* communication channel */
596 QIOChannel *c;
597 /* this mutex protects the following parameters */
598 QemuMutex mutex;
599 /* is this channel thread running */
600 bool running;
601 /* array of pages to receive */
602 MultiFDPages_t *pages;
603 /* packet allocated len */
604 uint32_t packet_len;
605 /* pointer to the packet */
606 MultiFDPacket_t *packet;
607 /* multifd flags for each packet */
608 uint32_t flags;
609 /* global number of generated multifd packets */
610 uint64_t packet_num;
611 /* thread local variables */
612 /* packets sent through this channel */
613 uint64_t num_packets;
614 /* pages sent through this channel */
615 uint64_t num_pages;
616 /* syncs main thread and channels */
617 QemuSemaphore sem_sync;
618 } MultiFDRecvParams;
620 static int multifd_send_initial_packet(MultiFDSendParams *p, Error **errp)
622 MultiFDInit_t msg;
623 int ret;
625 msg.magic = cpu_to_be32(MULTIFD_MAGIC);
626 msg.version = cpu_to_be32(MULTIFD_VERSION);
627 msg.id = p->id;
628 memcpy(msg.uuid, &qemu_uuid.data, sizeof(msg.uuid));
630 ret = qio_channel_write_all(p->c, (char *)&msg, sizeof(msg), errp);
631 if (ret != 0) {
632 return -1;
634 return 0;
637 static int multifd_recv_initial_packet(QIOChannel *c, Error **errp)
639 MultiFDInit_t msg;
640 int ret;
642 ret = qio_channel_read_all(c, (char *)&msg, sizeof(msg), errp);
643 if (ret != 0) {
644 return -1;
647 be32_to_cpus(&msg.magic);
648 be32_to_cpus(&msg.version);
650 if (msg.magic != MULTIFD_MAGIC) {
651 error_setg(errp, "multifd: received packet magic %x "
652 "expected %x", msg.magic, MULTIFD_MAGIC);
653 return -1;
656 if (msg.version != MULTIFD_VERSION) {
657 error_setg(errp, "multifd: received packet version %d "
658 "expected %d", msg.version, MULTIFD_VERSION);
659 return -1;
662 if (memcmp(msg.uuid, &qemu_uuid, sizeof(qemu_uuid))) {
663 char *uuid = qemu_uuid_unparse_strdup(&qemu_uuid);
664 char *msg_uuid = qemu_uuid_unparse_strdup((const QemuUUID *)msg.uuid);
666 error_setg(errp, "multifd: received uuid '%s' and expected "
667 "uuid '%s' for channel %hhd", msg_uuid, uuid, msg.id);
668 g_free(uuid);
669 g_free(msg_uuid);
670 return -1;
673 if (msg.id > migrate_multifd_channels()) {
674 error_setg(errp, "multifd: received channel version %d "
675 "expected %d", msg.version, MULTIFD_VERSION);
676 return -1;
679 return msg.id;
682 static MultiFDPages_t *multifd_pages_init(size_t size)
684 MultiFDPages_t *pages = g_new0(MultiFDPages_t, 1);
686 pages->allocated = size;
687 pages->iov = g_new0(struct iovec, size);
688 pages->offset = g_new0(ram_addr_t, size);
690 return pages;
693 static void multifd_pages_clear(MultiFDPages_t *pages)
695 pages->used = 0;
696 pages->allocated = 0;
697 pages->packet_num = 0;
698 pages->block = NULL;
699 g_free(pages->iov);
700 pages->iov = NULL;
701 g_free(pages->offset);
702 pages->offset = NULL;
703 g_free(pages);
706 static void multifd_send_fill_packet(MultiFDSendParams *p)
708 MultiFDPacket_t *packet = p->packet;
709 int i;
711 packet->magic = cpu_to_be32(MULTIFD_MAGIC);
712 packet->version = cpu_to_be32(MULTIFD_VERSION);
713 packet->flags = cpu_to_be32(p->flags);
714 packet->size = cpu_to_be32(migrate_multifd_page_count());
715 packet->used = cpu_to_be32(p->pages->used);
716 packet->packet_num = cpu_to_be64(p->packet_num);
718 if (p->pages->block) {
719 strncpy(packet->ramblock, p->pages->block->idstr, 256);
722 for (i = 0; i < p->pages->used; i++) {
723 packet->offset[i] = cpu_to_be64(p->pages->offset[i]);
727 static int multifd_recv_unfill_packet(MultiFDRecvParams *p, Error **errp)
729 MultiFDPacket_t *packet = p->packet;
730 RAMBlock *block;
731 int i;
733 be32_to_cpus(&packet->magic);
734 if (packet->magic != MULTIFD_MAGIC) {
735 error_setg(errp, "multifd: received packet "
736 "magic %x and expected magic %x",
737 packet->magic, MULTIFD_MAGIC);
738 return -1;
741 be32_to_cpus(&packet->version);
742 if (packet->version != MULTIFD_VERSION) {
743 error_setg(errp, "multifd: received packet "
744 "version %d and expected version %d",
745 packet->version, MULTIFD_VERSION);
746 return -1;
749 p->flags = be32_to_cpu(packet->flags);
751 be32_to_cpus(&packet->size);
752 if (packet->size > migrate_multifd_page_count()) {
753 error_setg(errp, "multifd: received packet "
754 "with size %d and expected maximum size %d",
755 packet->size, migrate_multifd_page_count()) ;
756 return -1;
759 p->pages->used = be32_to_cpu(packet->used);
760 if (p->pages->used > packet->size) {
761 error_setg(errp, "multifd: received packet "
762 "with size %d and expected maximum size %d",
763 p->pages->used, packet->size) ;
764 return -1;
767 p->packet_num = be64_to_cpu(packet->packet_num);
769 if (p->pages->used) {
770 /* make sure that ramblock is 0 terminated */
771 packet->ramblock[255] = 0;
772 block = qemu_ram_block_by_name(packet->ramblock);
773 if (!block) {
774 error_setg(errp, "multifd: unknown ram block %s",
775 packet->ramblock);
776 return -1;
780 for (i = 0; i < p->pages->used; i++) {
781 ram_addr_t offset = be64_to_cpu(packet->offset[i]);
783 if (offset > (block->used_length - TARGET_PAGE_SIZE)) {
784 error_setg(errp, "multifd: offset too long " RAM_ADDR_FMT
785 " (max " RAM_ADDR_FMT ")",
786 offset, block->max_length);
787 return -1;
789 p->pages->iov[i].iov_base = block->host + offset;
790 p->pages->iov[i].iov_len = TARGET_PAGE_SIZE;
793 return 0;
796 struct {
797 MultiFDSendParams *params;
798 /* number of created threads */
799 int count;
800 /* array of pages to sent */
801 MultiFDPages_t *pages;
802 /* syncs main thread and channels */
803 QemuSemaphore sem_sync;
804 /* global number of generated multifd packets */
805 uint64_t packet_num;
806 /* send channels ready */
807 QemuSemaphore channels_ready;
808 } *multifd_send_state;
811 * How we use multifd_send_state->pages and channel->pages?
813 * We create a pages for each channel, and a main one. Each time that
814 * we need to send a batch of pages we interchange the ones between
815 * multifd_send_state and the channel that is sending it. There are
816 * two reasons for that:
817 * - to not have to do so many mallocs during migration
818 * - to make easier to know what to free at the end of migration
820 * This way we always know who is the owner of each "pages" struct,
821 * and we don't need any loocking. It belongs to the migration thread
822 * or to the channel thread. Switching is safe because the migration
823 * thread is using the channel mutex when changing it, and the channel
824 * have to had finish with its own, otherwise pending_job can't be
825 * false.
828 static void multifd_send_pages(void)
830 int i;
831 static int next_channel;
832 MultiFDSendParams *p = NULL; /* make happy gcc */
833 MultiFDPages_t *pages = multifd_send_state->pages;
834 uint64_t transferred;
836 qemu_sem_wait(&multifd_send_state->channels_ready);
837 for (i = next_channel;; i = (i + 1) % migrate_multifd_channels()) {
838 p = &multifd_send_state->params[i];
840 qemu_mutex_lock(&p->mutex);
841 if (!p->pending_job) {
842 p->pending_job++;
843 next_channel = (i + 1) % migrate_multifd_channels();
844 break;
846 qemu_mutex_unlock(&p->mutex);
848 p->pages->used = 0;
850 p->packet_num = multifd_send_state->packet_num++;
851 p->pages->block = NULL;
852 multifd_send_state->pages = p->pages;
853 p->pages = pages;
854 transferred = ((uint64_t) pages->used) * TARGET_PAGE_SIZE + p->packet_len;
855 ram_counters.multifd_bytes += transferred;
856 ram_counters.transferred += transferred;;
857 qemu_mutex_unlock(&p->mutex);
858 qemu_sem_post(&p->sem);
861 static void multifd_queue_page(RAMBlock *block, ram_addr_t offset)
863 MultiFDPages_t *pages = multifd_send_state->pages;
865 if (!pages->block) {
866 pages->block = block;
869 if (pages->block == block) {
870 pages->offset[pages->used] = offset;
871 pages->iov[pages->used].iov_base = block->host + offset;
872 pages->iov[pages->used].iov_len = TARGET_PAGE_SIZE;
873 pages->used++;
875 if (pages->used < pages->allocated) {
876 return;
880 multifd_send_pages();
882 if (pages->block != block) {
883 multifd_queue_page(block, offset);
887 static void multifd_send_terminate_threads(Error *err)
889 int i;
891 if (err) {
892 MigrationState *s = migrate_get_current();
893 migrate_set_error(s, err);
894 if (s->state == MIGRATION_STATUS_SETUP ||
895 s->state == MIGRATION_STATUS_PRE_SWITCHOVER ||
896 s->state == MIGRATION_STATUS_DEVICE ||
897 s->state == MIGRATION_STATUS_ACTIVE) {
898 migrate_set_state(&s->state, s->state,
899 MIGRATION_STATUS_FAILED);
903 for (i = 0; i < migrate_multifd_channels(); i++) {
904 MultiFDSendParams *p = &multifd_send_state->params[i];
906 qemu_mutex_lock(&p->mutex);
907 p->quit = true;
908 qemu_sem_post(&p->sem);
909 qemu_mutex_unlock(&p->mutex);
913 int multifd_save_cleanup(Error **errp)
915 int i;
916 int ret = 0;
918 if (!migrate_use_multifd()) {
919 return 0;
921 multifd_send_terminate_threads(NULL);
922 for (i = 0; i < migrate_multifd_channels(); i++) {
923 MultiFDSendParams *p = &multifd_send_state->params[i];
925 if (p->running) {
926 qemu_thread_join(&p->thread);
928 socket_send_channel_destroy(p->c);
929 p->c = NULL;
930 qemu_mutex_destroy(&p->mutex);
931 qemu_sem_destroy(&p->sem);
932 qemu_sem_destroy(&p->sem_sync);
933 g_free(p->name);
934 p->name = NULL;
935 multifd_pages_clear(p->pages);
936 p->pages = NULL;
937 p->packet_len = 0;
938 g_free(p->packet);
939 p->packet = NULL;
941 qemu_sem_destroy(&multifd_send_state->channels_ready);
942 qemu_sem_destroy(&multifd_send_state->sem_sync);
943 g_free(multifd_send_state->params);
944 multifd_send_state->params = NULL;
945 multifd_pages_clear(multifd_send_state->pages);
946 multifd_send_state->pages = NULL;
947 g_free(multifd_send_state);
948 multifd_send_state = NULL;
949 return ret;
952 static void multifd_send_sync_main(void)
954 int i;
956 if (!migrate_use_multifd()) {
957 return;
959 if (multifd_send_state->pages->used) {
960 multifd_send_pages();
962 for (i = 0; i < migrate_multifd_channels(); i++) {
963 MultiFDSendParams *p = &multifd_send_state->params[i];
965 trace_multifd_send_sync_main_signal(p->id);
967 qemu_mutex_lock(&p->mutex);
969 p->packet_num = multifd_send_state->packet_num++;
970 p->flags |= MULTIFD_FLAG_SYNC;
971 p->pending_job++;
972 qemu_mutex_unlock(&p->mutex);
973 qemu_sem_post(&p->sem);
975 for (i = 0; i < migrate_multifd_channels(); i++) {
976 MultiFDSendParams *p = &multifd_send_state->params[i];
978 trace_multifd_send_sync_main_wait(p->id);
979 qemu_sem_wait(&multifd_send_state->sem_sync);
981 trace_multifd_send_sync_main(multifd_send_state->packet_num);
984 static void *multifd_send_thread(void *opaque)
986 MultiFDSendParams *p = opaque;
987 Error *local_err = NULL;
988 int ret;
990 trace_multifd_send_thread_start(p->id);
992 if (multifd_send_initial_packet(p, &local_err) < 0) {
993 goto out;
995 /* initial packet */
996 p->num_packets = 1;
998 while (true) {
999 qemu_sem_wait(&p->sem);
1000 qemu_mutex_lock(&p->mutex);
1002 if (p->pending_job) {
1003 uint32_t used = p->pages->used;
1004 uint64_t packet_num = p->packet_num;
1005 uint32_t flags = p->flags;
1007 multifd_send_fill_packet(p);
1008 p->flags = 0;
1009 p->num_packets++;
1010 p->num_pages += used;
1011 p->pages->used = 0;
1012 qemu_mutex_unlock(&p->mutex);
1014 trace_multifd_send(p->id, packet_num, used, flags);
1016 ret = qio_channel_write_all(p->c, (void *)p->packet,
1017 p->packet_len, &local_err);
1018 if (ret != 0) {
1019 break;
1022 ret = qio_channel_writev_all(p->c, p->pages->iov, used, &local_err);
1023 if (ret != 0) {
1024 break;
1027 qemu_mutex_lock(&p->mutex);
1028 p->pending_job--;
1029 qemu_mutex_unlock(&p->mutex);
1031 if (flags & MULTIFD_FLAG_SYNC) {
1032 qemu_sem_post(&multifd_send_state->sem_sync);
1034 qemu_sem_post(&multifd_send_state->channels_ready);
1035 } else if (p->quit) {
1036 qemu_mutex_unlock(&p->mutex);
1037 break;
1038 } else {
1039 qemu_mutex_unlock(&p->mutex);
1040 /* sometimes there are spurious wakeups */
1044 out:
1045 if (local_err) {
1046 multifd_send_terminate_threads(local_err);
1049 qemu_mutex_lock(&p->mutex);
1050 p->running = false;
1051 qemu_mutex_unlock(&p->mutex);
1053 trace_multifd_send_thread_end(p->id, p->num_packets, p->num_pages);
1055 return NULL;
1058 static void multifd_new_send_channel_async(QIOTask *task, gpointer opaque)
1060 MultiFDSendParams *p = opaque;
1061 QIOChannel *sioc = QIO_CHANNEL(qio_task_get_source(task));
1062 Error *local_err = NULL;
1064 if (qio_task_propagate_error(task, &local_err)) {
1065 if (multifd_save_cleanup(&local_err) != 0) {
1066 migrate_set_error(migrate_get_current(), local_err);
1068 } else {
1069 p->c = QIO_CHANNEL(sioc);
1070 qio_channel_set_delay(p->c, false);
1071 p->running = true;
1072 qemu_thread_create(&p->thread, p->name, multifd_send_thread, p,
1073 QEMU_THREAD_JOINABLE);
1075 atomic_inc(&multifd_send_state->count);
1079 int multifd_save_setup(void)
1081 int thread_count;
1082 uint32_t page_count = migrate_multifd_page_count();
1083 uint8_t i;
1085 if (!migrate_use_multifd()) {
1086 return 0;
1088 thread_count = migrate_multifd_channels();
1089 multifd_send_state = g_malloc0(sizeof(*multifd_send_state));
1090 multifd_send_state->params = g_new0(MultiFDSendParams, thread_count);
1091 atomic_set(&multifd_send_state->count, 0);
1092 multifd_send_state->pages = multifd_pages_init(page_count);
1093 qemu_sem_init(&multifd_send_state->sem_sync, 0);
1094 qemu_sem_init(&multifd_send_state->channels_ready, 0);
1096 for (i = 0; i < thread_count; i++) {
1097 MultiFDSendParams *p = &multifd_send_state->params[i];
1099 qemu_mutex_init(&p->mutex);
1100 qemu_sem_init(&p->sem, 0);
1101 qemu_sem_init(&p->sem_sync, 0);
1102 p->quit = false;
1103 p->pending_job = 0;
1104 p->id = i;
1105 p->pages = multifd_pages_init(page_count);
1106 p->packet_len = sizeof(MultiFDPacket_t)
1107 + sizeof(ram_addr_t) * page_count;
1108 p->packet = g_malloc0(p->packet_len);
1109 p->name = g_strdup_printf("multifdsend_%d", i);
1110 socket_send_channel_create(multifd_new_send_channel_async, p);
1112 return 0;
1115 struct {
1116 MultiFDRecvParams *params;
1117 /* number of created threads */
1118 int count;
1119 /* syncs main thread and channels */
1120 QemuSemaphore sem_sync;
1121 /* global number of generated multifd packets */
1122 uint64_t packet_num;
1123 } *multifd_recv_state;
1125 static void multifd_recv_terminate_threads(Error *err)
1127 int i;
1129 if (err) {
1130 MigrationState *s = migrate_get_current();
1131 migrate_set_error(s, err);
1132 if (s->state == MIGRATION_STATUS_SETUP ||
1133 s->state == MIGRATION_STATUS_ACTIVE) {
1134 migrate_set_state(&s->state, s->state,
1135 MIGRATION_STATUS_FAILED);
1139 for (i = 0; i < migrate_multifd_channels(); i++) {
1140 MultiFDRecvParams *p = &multifd_recv_state->params[i];
1142 qemu_mutex_lock(&p->mutex);
1143 /* We could arrive here for two reasons:
1144 - normal quit, i.e. everything went fine, just finished
1145 - error quit: We close the channels so the channel threads
1146 finish the qio_channel_read_all_eof() */
1147 qio_channel_shutdown(p->c, QIO_CHANNEL_SHUTDOWN_BOTH, NULL);
1148 qemu_mutex_unlock(&p->mutex);
1152 int multifd_load_cleanup(Error **errp)
1154 int i;
1155 int ret = 0;
1157 if (!migrate_use_multifd()) {
1158 return 0;
1160 multifd_recv_terminate_threads(NULL);
1161 for (i = 0; i < migrate_multifd_channels(); i++) {
1162 MultiFDRecvParams *p = &multifd_recv_state->params[i];
1164 if (p->running) {
1165 qemu_thread_join(&p->thread);
1167 object_unref(OBJECT(p->c));
1168 p->c = NULL;
1169 qemu_mutex_destroy(&p->mutex);
1170 qemu_sem_destroy(&p->sem_sync);
1171 g_free(p->name);
1172 p->name = NULL;
1173 multifd_pages_clear(p->pages);
1174 p->pages = NULL;
1175 p->packet_len = 0;
1176 g_free(p->packet);
1177 p->packet = NULL;
1179 qemu_sem_destroy(&multifd_recv_state->sem_sync);
1180 g_free(multifd_recv_state->params);
1181 multifd_recv_state->params = NULL;
1182 g_free(multifd_recv_state);
1183 multifd_recv_state = NULL;
1185 return ret;
1188 static void multifd_recv_sync_main(void)
1190 int i;
1192 if (!migrate_use_multifd()) {
1193 return;
1195 for (i = 0; i < migrate_multifd_channels(); i++) {
1196 MultiFDRecvParams *p = &multifd_recv_state->params[i];
1198 trace_multifd_recv_sync_main_wait(p->id);
1199 qemu_sem_wait(&multifd_recv_state->sem_sync);
1200 qemu_mutex_lock(&p->mutex);
1201 if (multifd_recv_state->packet_num < p->packet_num) {
1202 multifd_recv_state->packet_num = p->packet_num;
1204 qemu_mutex_unlock(&p->mutex);
1206 for (i = 0; i < migrate_multifd_channels(); i++) {
1207 MultiFDRecvParams *p = &multifd_recv_state->params[i];
1209 trace_multifd_recv_sync_main_signal(p->id);
1210 qemu_sem_post(&p->sem_sync);
1212 trace_multifd_recv_sync_main(multifd_recv_state->packet_num);
1215 static void *multifd_recv_thread(void *opaque)
1217 MultiFDRecvParams *p = opaque;
1218 Error *local_err = NULL;
1219 int ret;
1221 trace_multifd_recv_thread_start(p->id);
1223 while (true) {
1224 uint32_t used;
1225 uint32_t flags;
1227 ret = qio_channel_read_all_eof(p->c, (void *)p->packet,
1228 p->packet_len, &local_err);
1229 if (ret == 0) { /* EOF */
1230 break;
1232 if (ret == -1) { /* Error */
1233 break;
1236 qemu_mutex_lock(&p->mutex);
1237 ret = multifd_recv_unfill_packet(p, &local_err);
1238 if (ret) {
1239 qemu_mutex_unlock(&p->mutex);
1240 break;
1243 used = p->pages->used;
1244 flags = p->flags;
1245 trace_multifd_recv(p->id, p->packet_num, used, flags);
1246 p->num_packets++;
1247 p->num_pages += used;
1248 qemu_mutex_unlock(&p->mutex);
1250 ret = qio_channel_readv_all(p->c, p->pages->iov, used, &local_err);
1251 if (ret != 0) {
1252 break;
1255 if (flags & MULTIFD_FLAG_SYNC) {
1256 qemu_sem_post(&multifd_recv_state->sem_sync);
1257 qemu_sem_wait(&p->sem_sync);
1261 if (local_err) {
1262 multifd_recv_terminate_threads(local_err);
1264 qemu_mutex_lock(&p->mutex);
1265 p->running = false;
1266 qemu_mutex_unlock(&p->mutex);
1268 trace_multifd_recv_thread_end(p->id, p->num_packets, p->num_pages);
1270 return NULL;
1273 int multifd_load_setup(void)
1275 int thread_count;
1276 uint32_t page_count = migrate_multifd_page_count();
1277 uint8_t i;
1279 if (!migrate_use_multifd()) {
1280 return 0;
1282 thread_count = migrate_multifd_channels();
1283 multifd_recv_state = g_malloc0(sizeof(*multifd_recv_state));
1284 multifd_recv_state->params = g_new0(MultiFDRecvParams, thread_count);
1285 atomic_set(&multifd_recv_state->count, 0);
1286 qemu_sem_init(&multifd_recv_state->sem_sync, 0);
1288 for (i = 0; i < thread_count; i++) {
1289 MultiFDRecvParams *p = &multifd_recv_state->params[i];
1291 qemu_mutex_init(&p->mutex);
1292 qemu_sem_init(&p->sem_sync, 0);
1293 p->id = i;
1294 p->pages = multifd_pages_init(page_count);
1295 p->packet_len = sizeof(MultiFDPacket_t)
1296 + sizeof(ram_addr_t) * page_count;
1297 p->packet = g_malloc0(p->packet_len);
1298 p->name = g_strdup_printf("multifdrecv_%d", i);
1300 return 0;
1303 bool multifd_recv_all_channels_created(void)
1305 int thread_count = migrate_multifd_channels();
1307 if (!migrate_use_multifd()) {
1308 return true;
1311 return thread_count == atomic_read(&multifd_recv_state->count);
1314 /* Return true if multifd is ready for the migration, otherwise false */
1315 bool multifd_recv_new_channel(QIOChannel *ioc)
1317 MultiFDRecvParams *p;
1318 Error *local_err = NULL;
1319 int id;
1321 id = multifd_recv_initial_packet(ioc, &local_err);
1322 if (id < 0) {
1323 multifd_recv_terminate_threads(local_err);
1324 return false;
1327 p = &multifd_recv_state->params[id];
1328 if (p->c != NULL) {
1329 error_setg(&local_err, "multifd: received id '%d' already setup'",
1330 id);
1331 multifd_recv_terminate_threads(local_err);
1332 return false;
1334 p->c = ioc;
1335 object_ref(OBJECT(ioc));
1336 /* initial packet */
1337 p->num_packets = 1;
1339 p->running = true;
1340 qemu_thread_create(&p->thread, p->name, multifd_recv_thread, p,
1341 QEMU_THREAD_JOINABLE);
1342 atomic_inc(&multifd_recv_state->count);
1343 return multifd_recv_state->count == migrate_multifd_channels();
1347 * save_page_header: write page header to wire
1349 * If this is the 1st block, it also writes the block identification
1351 * Returns the number of bytes written
1353 * @f: QEMUFile where to send the data
1354 * @block: block that contains the page we want to send
1355 * @offset: offset inside the block for the page
1356 * in the lower bits, it contains flags
1358 static size_t save_page_header(RAMState *rs, QEMUFile *f, RAMBlock *block,
1359 ram_addr_t offset)
1361 size_t size, len;
1363 if (block == rs->last_sent_block) {
1364 offset |= RAM_SAVE_FLAG_CONTINUE;
1366 qemu_put_be64(f, offset);
1367 size = 8;
1369 if (!(offset & RAM_SAVE_FLAG_CONTINUE)) {
1370 len = strlen(block->idstr);
1371 qemu_put_byte(f, len);
1372 qemu_put_buffer(f, (uint8_t *)block->idstr, len);
1373 size += 1 + len;
1374 rs->last_sent_block = block;
1376 return size;
1380 * mig_throttle_guest_down: throotle down the guest
1382 * Reduce amount of guest cpu execution to hopefully slow down memory
1383 * writes. If guest dirty memory rate is reduced below the rate at
1384 * which we can transfer pages to the destination then we should be
1385 * able to complete migration. Some workloads dirty memory way too
1386 * fast and will not effectively converge, even with auto-converge.
1388 static void mig_throttle_guest_down(void)
1390 MigrationState *s = migrate_get_current();
1391 uint64_t pct_initial = s->parameters.cpu_throttle_initial;
1392 uint64_t pct_icrement = s->parameters.cpu_throttle_increment;
1394 /* We have not started throttling yet. Let's start it. */
1395 if (!cpu_throttle_active()) {
1396 cpu_throttle_set(pct_initial);
1397 } else {
1398 /* Throttling already on, just increase the rate */
1399 cpu_throttle_set(cpu_throttle_get_percentage() + pct_icrement);
1404 * xbzrle_cache_zero_page: insert a zero page in the XBZRLE cache
1406 * @rs: current RAM state
1407 * @current_addr: address for the zero page
1409 * Update the xbzrle cache to reflect a page that's been sent as all 0.
1410 * The important thing is that a stale (not-yet-0'd) page be replaced
1411 * by the new data.
1412 * As a bonus, if the page wasn't in the cache it gets added so that
1413 * when a small write is made into the 0'd page it gets XBZRLE sent.
1415 static void xbzrle_cache_zero_page(RAMState *rs, ram_addr_t current_addr)
1417 if (rs->ram_bulk_stage || !migrate_use_xbzrle()) {
1418 return;
1421 /* We don't care if this fails to allocate a new cache page
1422 * as long as it updated an old one */
1423 cache_insert(XBZRLE.cache, current_addr, XBZRLE.zero_target_page,
1424 ram_counters.dirty_sync_count);
1427 #define ENCODING_FLAG_XBZRLE 0x1
1430 * save_xbzrle_page: compress and send current page
1432 * Returns: 1 means that we wrote the page
1433 * 0 means that page is identical to the one already sent
1434 * -1 means that xbzrle would be longer than normal
1436 * @rs: current RAM state
1437 * @current_data: pointer to the address of the page contents
1438 * @current_addr: addr of the page
1439 * @block: block that contains the page we want to send
1440 * @offset: offset inside the block for the page
1441 * @last_stage: if we are at the completion stage
1443 static int save_xbzrle_page(RAMState *rs, uint8_t **current_data,
1444 ram_addr_t current_addr, RAMBlock *block,
1445 ram_addr_t offset, bool last_stage)
1447 int encoded_len = 0, bytes_xbzrle;
1448 uint8_t *prev_cached_page;
1450 if (!cache_is_cached(XBZRLE.cache, current_addr,
1451 ram_counters.dirty_sync_count)) {
1452 xbzrle_counters.cache_miss++;
1453 if (!last_stage) {
1454 if (cache_insert(XBZRLE.cache, current_addr, *current_data,
1455 ram_counters.dirty_sync_count) == -1) {
1456 return -1;
1457 } else {
1458 /* update *current_data when the page has been
1459 inserted into cache */
1460 *current_data = get_cached_data(XBZRLE.cache, current_addr);
1463 return -1;
1466 prev_cached_page = get_cached_data(XBZRLE.cache, current_addr);
1468 /* save current buffer into memory */
1469 memcpy(XBZRLE.current_buf, *current_data, TARGET_PAGE_SIZE);
1471 /* XBZRLE encoding (if there is no overflow) */
1472 encoded_len = xbzrle_encode_buffer(prev_cached_page, XBZRLE.current_buf,
1473 TARGET_PAGE_SIZE, XBZRLE.encoded_buf,
1474 TARGET_PAGE_SIZE);
1475 if (encoded_len == 0) {
1476 trace_save_xbzrle_page_skipping();
1477 return 0;
1478 } else if (encoded_len == -1) {
1479 trace_save_xbzrle_page_overflow();
1480 xbzrle_counters.overflow++;
1481 /* update data in the cache */
1482 if (!last_stage) {
1483 memcpy(prev_cached_page, *current_data, TARGET_PAGE_SIZE);
1484 *current_data = prev_cached_page;
1486 return -1;
1489 /* we need to update the data in the cache, in order to get the same data */
1490 if (!last_stage) {
1491 memcpy(prev_cached_page, XBZRLE.current_buf, TARGET_PAGE_SIZE);
1494 /* Send XBZRLE based compressed page */
1495 bytes_xbzrle = save_page_header(rs, rs->f, block,
1496 offset | RAM_SAVE_FLAG_XBZRLE);
1497 qemu_put_byte(rs->f, ENCODING_FLAG_XBZRLE);
1498 qemu_put_be16(rs->f, encoded_len);
1499 qemu_put_buffer(rs->f, XBZRLE.encoded_buf, encoded_len);
1500 bytes_xbzrle += encoded_len + 1 + 2;
1501 xbzrle_counters.pages++;
1502 xbzrle_counters.bytes += bytes_xbzrle;
1503 ram_counters.transferred += bytes_xbzrle;
1505 return 1;
1509 * migration_bitmap_find_dirty: find the next dirty page from start
1511 * Called with rcu_read_lock() to protect migration_bitmap
1513 * Returns the byte offset within memory region of the start of a dirty page
1515 * @rs: current RAM state
1516 * @rb: RAMBlock where to search for dirty pages
1517 * @start: page where we start the search
1519 static inline
1520 unsigned long migration_bitmap_find_dirty(RAMState *rs, RAMBlock *rb,
1521 unsigned long start)
1523 unsigned long size = rb->used_length >> TARGET_PAGE_BITS;
1524 unsigned long *bitmap = rb->bmap;
1525 unsigned long next;
1527 if (!qemu_ram_is_migratable(rb)) {
1528 return size;
1531 if (rs->ram_bulk_stage && start > 0) {
1532 next = start + 1;
1533 } else {
1534 next = find_next_bit(bitmap, size, start);
1537 return next;
1540 static inline bool migration_bitmap_clear_dirty(RAMState *rs,
1541 RAMBlock *rb,
1542 unsigned long page)
1544 bool ret;
1546 ret = test_and_clear_bit(page, rb->bmap);
1548 if (ret) {
1549 rs->migration_dirty_pages--;
1551 return ret;
1554 static void migration_bitmap_sync_range(RAMState *rs, RAMBlock *rb,
1555 ram_addr_t start, ram_addr_t length)
1557 rs->migration_dirty_pages +=
1558 cpu_physical_memory_sync_dirty_bitmap(rb, start, length,
1559 &rs->num_dirty_pages_period);
1563 * ram_pagesize_summary: calculate all the pagesizes of a VM
1565 * Returns a summary bitmap of the page sizes of all RAMBlocks
1567 * For VMs with just normal pages this is equivalent to the host page
1568 * size. If it's got some huge pages then it's the OR of all the
1569 * different page sizes.
1571 uint64_t ram_pagesize_summary(void)
1573 RAMBlock *block;
1574 uint64_t summary = 0;
1576 RAMBLOCK_FOREACH_MIGRATABLE(block) {
1577 summary |= block->page_size;
1580 return summary;
1583 static void migration_update_rates(RAMState *rs, int64_t end_time)
1585 uint64_t iter_count = rs->iterations - rs->iterations_prev;
1587 /* calculate period counters */
1588 ram_counters.dirty_pages_rate = rs->num_dirty_pages_period * 1000
1589 / (end_time - rs->time_last_bitmap_sync);
1591 if (!iter_count) {
1592 return;
1595 if (migrate_use_xbzrle()) {
1596 xbzrle_counters.cache_miss_rate = (double)(xbzrle_counters.cache_miss -
1597 rs->xbzrle_cache_miss_prev) / iter_count;
1598 rs->xbzrle_cache_miss_prev = xbzrle_counters.cache_miss;
1602 static void migration_bitmap_sync(RAMState *rs)
1604 RAMBlock *block;
1605 int64_t end_time;
1606 uint64_t bytes_xfer_now;
1608 ram_counters.dirty_sync_count++;
1610 if (!rs->time_last_bitmap_sync) {
1611 rs->time_last_bitmap_sync = qemu_clock_get_ms(QEMU_CLOCK_REALTIME);
1614 trace_migration_bitmap_sync_start();
1615 memory_global_dirty_log_sync();
1617 qemu_mutex_lock(&rs->bitmap_mutex);
1618 rcu_read_lock();
1619 RAMBLOCK_FOREACH_MIGRATABLE(block) {
1620 migration_bitmap_sync_range(rs, block, 0, block->used_length);
1622 ram_counters.remaining = ram_bytes_remaining();
1623 rcu_read_unlock();
1624 qemu_mutex_unlock(&rs->bitmap_mutex);
1626 trace_migration_bitmap_sync_end(rs->num_dirty_pages_period);
1628 end_time = qemu_clock_get_ms(QEMU_CLOCK_REALTIME);
1630 /* more than 1 second = 1000 millisecons */
1631 if (end_time > rs->time_last_bitmap_sync + 1000) {
1632 bytes_xfer_now = ram_counters.transferred;
1634 /* During block migration the auto-converge logic incorrectly detects
1635 * that ram migration makes no progress. Avoid this by disabling the
1636 * throttling logic during the bulk phase of block migration. */
1637 if (migrate_auto_converge() && !blk_mig_bulk_active()) {
1638 /* The following detection logic can be refined later. For now:
1639 Check to see if the dirtied bytes is 50% more than the approx.
1640 amount of bytes that just got transferred since the last time we
1641 were in this routine. If that happens twice, start or increase
1642 throttling */
1644 if ((rs->num_dirty_pages_period * TARGET_PAGE_SIZE >
1645 (bytes_xfer_now - rs->bytes_xfer_prev) / 2) &&
1646 (++rs->dirty_rate_high_cnt >= 2)) {
1647 trace_migration_throttle();
1648 rs->dirty_rate_high_cnt = 0;
1649 mig_throttle_guest_down();
1653 migration_update_rates(rs, end_time);
1655 rs->iterations_prev = rs->iterations;
1657 /* reset period counters */
1658 rs->time_last_bitmap_sync = end_time;
1659 rs->num_dirty_pages_period = 0;
1660 rs->bytes_xfer_prev = bytes_xfer_now;
1662 if (migrate_use_events()) {
1663 qapi_event_send_migration_pass(ram_counters.dirty_sync_count, NULL);
1668 * save_zero_page: send the zero page to the stream
1670 * Returns the number of pages written.
1672 * @rs: current RAM state
1673 * @block: block that contains the page we want to send
1674 * @offset: offset inside the block for the page
1676 static int save_zero_page(RAMState *rs, RAMBlock *block, ram_addr_t offset)
1678 uint8_t *p = block->host + offset;
1679 int pages = -1;
1681 if (is_zero_range(p, TARGET_PAGE_SIZE)) {
1682 ram_counters.duplicate++;
1683 ram_counters.transferred +=
1684 save_page_header(rs, rs->f, block, offset | RAM_SAVE_FLAG_ZERO);
1685 qemu_put_byte(rs->f, 0);
1686 ram_counters.transferred += 1;
1687 pages = 1;
1690 return pages;
1693 static void ram_release_pages(const char *rbname, uint64_t offset, int pages)
1695 if (!migrate_release_ram() || !migration_in_postcopy()) {
1696 return;
1699 ram_discard_range(rbname, offset, pages << TARGET_PAGE_BITS);
1703 * @pages: the number of pages written by the control path,
1704 * < 0 - error
1705 * > 0 - number of pages written
1707 * Return true if the pages has been saved, otherwise false is returned.
1709 static bool control_save_page(RAMState *rs, RAMBlock *block, ram_addr_t offset,
1710 int *pages)
1712 uint64_t bytes_xmit = 0;
1713 int ret;
1715 *pages = -1;
1716 ret = ram_control_save_page(rs->f, block->offset, offset, TARGET_PAGE_SIZE,
1717 &bytes_xmit);
1718 if (ret == RAM_SAVE_CONTROL_NOT_SUPP) {
1719 return false;
1722 if (bytes_xmit) {
1723 ram_counters.transferred += bytes_xmit;
1724 *pages = 1;
1727 if (ret == RAM_SAVE_CONTROL_DELAYED) {
1728 return true;
1731 if (bytes_xmit > 0) {
1732 ram_counters.normal++;
1733 } else if (bytes_xmit == 0) {
1734 ram_counters.duplicate++;
1737 return true;
1741 * directly send the page to the stream
1743 * Returns the number of pages written.
1745 * @rs: current RAM state
1746 * @block: block that contains the page we want to send
1747 * @offset: offset inside the block for the page
1748 * @buf: the page to be sent
1749 * @async: send to page asyncly
1751 static int save_normal_page(RAMState *rs, RAMBlock *block, ram_addr_t offset,
1752 uint8_t *buf, bool async)
1754 ram_counters.transferred += save_page_header(rs, rs->f, block,
1755 offset | RAM_SAVE_FLAG_PAGE);
1756 if (async) {
1757 qemu_put_buffer_async(rs->f, buf, TARGET_PAGE_SIZE,
1758 migrate_release_ram() &
1759 migration_in_postcopy());
1760 } else {
1761 qemu_put_buffer(rs->f, buf, TARGET_PAGE_SIZE);
1763 ram_counters.transferred += TARGET_PAGE_SIZE;
1764 ram_counters.normal++;
1765 return 1;
1769 * ram_save_page: send the given page to the stream
1771 * Returns the number of pages written.
1772 * < 0 - error
1773 * >=0 - Number of pages written - this might legally be 0
1774 * if xbzrle noticed the page was the same.
1776 * @rs: current RAM state
1777 * @block: block that contains the page we want to send
1778 * @offset: offset inside the block for the page
1779 * @last_stage: if we are at the completion stage
1781 static int ram_save_page(RAMState *rs, PageSearchStatus *pss, bool last_stage)
1783 int pages = -1;
1784 uint8_t *p;
1785 bool send_async = true;
1786 RAMBlock *block = pss->block;
1787 ram_addr_t offset = pss->page << TARGET_PAGE_BITS;
1788 ram_addr_t current_addr = block->offset + offset;
1790 p = block->host + offset;
1791 trace_ram_save_page(block->idstr, (uint64_t)offset, p);
1793 XBZRLE_cache_lock();
1794 if (!rs->ram_bulk_stage && !migration_in_postcopy() &&
1795 migrate_use_xbzrle()) {
1796 pages = save_xbzrle_page(rs, &p, current_addr, block,
1797 offset, last_stage);
1798 if (!last_stage) {
1799 /* Can't send this cached data async, since the cache page
1800 * might get updated before it gets to the wire
1802 send_async = false;
1806 /* XBZRLE overflow or normal page */
1807 if (pages == -1) {
1808 pages = save_normal_page(rs, block, offset, p, send_async);
1811 XBZRLE_cache_unlock();
1813 return pages;
1816 static int ram_save_multifd_page(RAMState *rs, RAMBlock *block,
1817 ram_addr_t offset)
1819 multifd_queue_page(block, offset);
1820 ram_counters.normal++;
1822 return 1;
1825 static int do_compress_ram_page(QEMUFile *f, z_stream *stream, RAMBlock *block,
1826 ram_addr_t offset, uint8_t *source_buf)
1828 RAMState *rs = ram_state;
1829 int bytes_sent, blen;
1830 uint8_t *p = block->host + (offset & TARGET_PAGE_MASK);
1832 bytes_sent = save_page_header(rs, f, block, offset |
1833 RAM_SAVE_FLAG_COMPRESS_PAGE);
1836 * copy it to a internal buffer to avoid it being modified by VM
1837 * so that we can catch up the error during compression and
1838 * decompression
1840 memcpy(source_buf, p, TARGET_PAGE_SIZE);
1841 blen = qemu_put_compression_data(f, stream, source_buf, TARGET_PAGE_SIZE);
1842 if (blen < 0) {
1843 bytes_sent = 0;
1844 qemu_file_set_error(migrate_get_current()->to_dst_file, blen);
1845 error_report("compressed data failed!");
1846 } else {
1847 bytes_sent += blen;
1848 ram_release_pages(block->idstr, offset & TARGET_PAGE_MASK, 1);
1851 return bytes_sent;
1854 static void flush_compressed_data(RAMState *rs)
1856 int idx, len, thread_count;
1858 if (!migrate_use_compression()) {
1859 return;
1861 thread_count = migrate_compress_threads();
1863 qemu_mutex_lock(&comp_done_lock);
1864 for (idx = 0; idx < thread_count; idx++) {
1865 while (!comp_param[idx].done) {
1866 qemu_cond_wait(&comp_done_cond, &comp_done_lock);
1869 qemu_mutex_unlock(&comp_done_lock);
1871 for (idx = 0; idx < thread_count; idx++) {
1872 qemu_mutex_lock(&comp_param[idx].mutex);
1873 if (!comp_param[idx].quit) {
1874 len = qemu_put_qemu_file(rs->f, comp_param[idx].file);
1875 ram_counters.transferred += len;
1877 qemu_mutex_unlock(&comp_param[idx].mutex);
1881 static inline void set_compress_params(CompressParam *param, RAMBlock *block,
1882 ram_addr_t offset)
1884 param->block = block;
1885 param->offset = offset;
1888 static int compress_page_with_multi_thread(RAMState *rs, RAMBlock *block,
1889 ram_addr_t offset)
1891 int idx, thread_count, bytes_xmit = -1, pages = -1;
1893 thread_count = migrate_compress_threads();
1894 qemu_mutex_lock(&comp_done_lock);
1895 while (true) {
1896 for (idx = 0; idx < thread_count; idx++) {
1897 if (comp_param[idx].done) {
1898 comp_param[idx].done = false;
1899 bytes_xmit = qemu_put_qemu_file(rs->f, comp_param[idx].file);
1900 qemu_mutex_lock(&comp_param[idx].mutex);
1901 set_compress_params(&comp_param[idx], block, offset);
1902 qemu_cond_signal(&comp_param[idx].cond);
1903 qemu_mutex_unlock(&comp_param[idx].mutex);
1904 pages = 1;
1905 ram_counters.normal++;
1906 ram_counters.transferred += bytes_xmit;
1907 break;
1910 if (pages > 0) {
1911 break;
1912 } else {
1913 qemu_cond_wait(&comp_done_cond, &comp_done_lock);
1916 qemu_mutex_unlock(&comp_done_lock);
1918 return pages;
1922 * find_dirty_block: find the next dirty page and update any state
1923 * associated with the search process.
1925 * Returns if a page is found
1927 * @rs: current RAM state
1928 * @pss: data about the state of the current dirty page scan
1929 * @again: set to false if the search has scanned the whole of RAM
1931 static bool find_dirty_block(RAMState *rs, PageSearchStatus *pss, bool *again)
1933 pss->page = migration_bitmap_find_dirty(rs, pss->block, pss->page);
1934 if (pss->complete_round && pss->block == rs->last_seen_block &&
1935 pss->page >= rs->last_page) {
1937 * We've been once around the RAM and haven't found anything.
1938 * Give up.
1940 *again = false;
1941 return false;
1943 if ((pss->page << TARGET_PAGE_BITS) >= pss->block->used_length) {
1944 /* Didn't find anything in this RAM Block */
1945 pss->page = 0;
1946 pss->block = QLIST_NEXT_RCU(pss->block, next);
1947 if (!pss->block) {
1948 /* Hit the end of the list */
1949 pss->block = QLIST_FIRST_RCU(&ram_list.blocks);
1950 /* Flag that we've looped */
1951 pss->complete_round = true;
1952 rs->ram_bulk_stage = false;
1953 if (migrate_use_xbzrle()) {
1954 /* If xbzrle is on, stop using the data compression at this
1955 * point. In theory, xbzrle can do better than compression.
1957 flush_compressed_data(rs);
1960 /* Didn't find anything this time, but try again on the new block */
1961 *again = true;
1962 return false;
1963 } else {
1964 /* Can go around again, but... */
1965 *again = true;
1966 /* We've found something so probably don't need to */
1967 return true;
1972 * unqueue_page: gets a page of the queue
1974 * Helper for 'get_queued_page' - gets a page off the queue
1976 * Returns the block of the page (or NULL if none available)
1978 * @rs: current RAM state
1979 * @offset: used to return the offset within the RAMBlock
1981 static RAMBlock *unqueue_page(RAMState *rs, ram_addr_t *offset)
1983 RAMBlock *block = NULL;
1985 qemu_mutex_lock(&rs->src_page_req_mutex);
1986 if (!QSIMPLEQ_EMPTY(&rs->src_page_requests)) {
1987 struct RAMSrcPageRequest *entry =
1988 QSIMPLEQ_FIRST(&rs->src_page_requests);
1989 block = entry->rb;
1990 *offset = entry->offset;
1992 if (entry->len > TARGET_PAGE_SIZE) {
1993 entry->len -= TARGET_PAGE_SIZE;
1994 entry->offset += TARGET_PAGE_SIZE;
1995 } else {
1996 memory_region_unref(block->mr);
1997 QSIMPLEQ_REMOVE_HEAD(&rs->src_page_requests, next_req);
1998 g_free(entry);
1999 migration_consume_urgent_request();
2002 qemu_mutex_unlock(&rs->src_page_req_mutex);
2004 return block;
2008 * get_queued_page: unqueue a page from the postocpy requests
2010 * Skips pages that are already sent (!dirty)
2012 * Returns if a queued page is found
2014 * @rs: current RAM state
2015 * @pss: data about the state of the current dirty page scan
2017 static bool get_queued_page(RAMState *rs, PageSearchStatus *pss)
2019 RAMBlock *block;
2020 ram_addr_t offset;
2021 bool dirty;
2023 do {
2024 block = unqueue_page(rs, &offset);
2026 * We're sending this page, and since it's postcopy nothing else
2027 * will dirty it, and we must make sure it doesn't get sent again
2028 * even if this queue request was received after the background
2029 * search already sent it.
2031 if (block) {
2032 unsigned long page;
2034 page = offset >> TARGET_PAGE_BITS;
2035 dirty = test_bit(page, block->bmap);
2036 if (!dirty) {
2037 trace_get_queued_page_not_dirty(block->idstr, (uint64_t)offset,
2038 page, test_bit(page, block->unsentmap));
2039 } else {
2040 trace_get_queued_page(block->idstr, (uint64_t)offset, page);
2044 } while (block && !dirty);
2046 if (block) {
2048 * As soon as we start servicing pages out of order, then we have
2049 * to kill the bulk stage, since the bulk stage assumes
2050 * in (migration_bitmap_find_and_reset_dirty) that every page is
2051 * dirty, that's no longer true.
2053 rs->ram_bulk_stage = false;
2056 * We want the background search to continue from the queued page
2057 * since the guest is likely to want other pages near to the page
2058 * it just requested.
2060 pss->block = block;
2061 pss->page = offset >> TARGET_PAGE_BITS;
2064 return !!block;
2068 * migration_page_queue_free: drop any remaining pages in the ram
2069 * request queue
2071 * It should be empty at the end anyway, but in error cases there may
2072 * be some left. in case that there is any page left, we drop it.
2075 static void migration_page_queue_free(RAMState *rs)
2077 struct RAMSrcPageRequest *mspr, *next_mspr;
2078 /* This queue generally should be empty - but in the case of a failed
2079 * migration might have some droppings in.
2081 rcu_read_lock();
2082 QSIMPLEQ_FOREACH_SAFE(mspr, &rs->src_page_requests, next_req, next_mspr) {
2083 memory_region_unref(mspr->rb->mr);
2084 QSIMPLEQ_REMOVE_HEAD(&rs->src_page_requests, next_req);
2085 g_free(mspr);
2087 rcu_read_unlock();
2091 * ram_save_queue_pages: queue the page for transmission
2093 * A request from postcopy destination for example.
2095 * Returns zero on success or negative on error
2097 * @rbname: Name of the RAMBLock of the request. NULL means the
2098 * same that last one.
2099 * @start: starting address from the start of the RAMBlock
2100 * @len: length (in bytes) to send
2102 int ram_save_queue_pages(const char *rbname, ram_addr_t start, ram_addr_t len)
2104 RAMBlock *ramblock;
2105 RAMState *rs = ram_state;
2107 ram_counters.postcopy_requests++;
2108 rcu_read_lock();
2109 if (!rbname) {
2110 /* Reuse last RAMBlock */
2111 ramblock = rs->last_req_rb;
2113 if (!ramblock) {
2115 * Shouldn't happen, we can't reuse the last RAMBlock if
2116 * it's the 1st request.
2118 error_report("ram_save_queue_pages no previous block");
2119 goto err;
2121 } else {
2122 ramblock = qemu_ram_block_by_name(rbname);
2124 if (!ramblock) {
2125 /* We shouldn't be asked for a non-existent RAMBlock */
2126 error_report("ram_save_queue_pages no block '%s'", rbname);
2127 goto err;
2129 rs->last_req_rb = ramblock;
2131 trace_ram_save_queue_pages(ramblock->idstr, start, len);
2132 if (start+len > ramblock->used_length) {
2133 error_report("%s request overrun start=" RAM_ADDR_FMT " len="
2134 RAM_ADDR_FMT " blocklen=" RAM_ADDR_FMT,
2135 __func__, start, len, ramblock->used_length);
2136 goto err;
2139 struct RAMSrcPageRequest *new_entry =
2140 g_malloc0(sizeof(struct RAMSrcPageRequest));
2141 new_entry->rb = ramblock;
2142 new_entry->offset = start;
2143 new_entry->len = len;
2145 memory_region_ref(ramblock->mr);
2146 qemu_mutex_lock(&rs->src_page_req_mutex);
2147 QSIMPLEQ_INSERT_TAIL(&rs->src_page_requests, new_entry, next_req);
2148 migration_make_urgent_request();
2149 qemu_mutex_unlock(&rs->src_page_req_mutex);
2150 rcu_read_unlock();
2152 return 0;
2154 err:
2155 rcu_read_unlock();
2156 return -1;
2159 static bool save_page_use_compression(RAMState *rs)
2161 if (!migrate_use_compression()) {
2162 return false;
2166 * If xbzrle is on, stop using the data compression after first
2167 * round of migration even if compression is enabled. In theory,
2168 * xbzrle can do better than compression.
2170 if (rs->ram_bulk_stage || !migrate_use_xbzrle()) {
2171 return true;
2174 return false;
2178 * ram_save_target_page: save one target page
2180 * Returns the number of pages written
2182 * @rs: current RAM state
2183 * @pss: data about the page we want to send
2184 * @last_stage: if we are at the completion stage
2186 static int ram_save_target_page(RAMState *rs, PageSearchStatus *pss,
2187 bool last_stage)
2189 RAMBlock *block = pss->block;
2190 ram_addr_t offset = pss->page << TARGET_PAGE_BITS;
2191 int res;
2193 if (control_save_page(rs, block, offset, &res)) {
2194 return res;
2198 * When starting the process of a new block, the first page of
2199 * the block should be sent out before other pages in the same
2200 * block, and all the pages in last block should have been sent
2201 * out, keeping this order is important, because the 'cont' flag
2202 * is used to avoid resending the block name.
2204 if (block != rs->last_sent_block && save_page_use_compression(rs)) {
2205 flush_compressed_data(rs);
2208 res = save_zero_page(rs, block, offset);
2209 if (res > 0) {
2210 /* Must let xbzrle know, otherwise a previous (now 0'd) cached
2211 * page would be stale
2213 if (!save_page_use_compression(rs)) {
2214 XBZRLE_cache_lock();
2215 xbzrle_cache_zero_page(rs, block->offset + offset);
2216 XBZRLE_cache_unlock();
2218 ram_release_pages(block->idstr, offset, res);
2219 return res;
2223 * Make sure the first page is sent out before other pages.
2225 * we post it as normal page as compression will take much
2226 * CPU resource.
2228 if (block == rs->last_sent_block && save_page_use_compression(rs)) {
2229 return compress_page_with_multi_thread(rs, block, offset);
2230 } else if (migrate_use_multifd()) {
2231 return ram_save_multifd_page(rs, block, offset);
2234 return ram_save_page(rs, pss, last_stage);
2238 * ram_save_host_page: save a whole host page
2240 * Starting at *offset send pages up to the end of the current host
2241 * page. It's valid for the initial offset to point into the middle of
2242 * a host page in which case the remainder of the hostpage is sent.
2243 * Only dirty target pages are sent. Note that the host page size may
2244 * be a huge page for this block.
2245 * The saving stops at the boundary of the used_length of the block
2246 * if the RAMBlock isn't a multiple of the host page size.
2248 * Returns the number of pages written or negative on error
2250 * @rs: current RAM state
2251 * @ms: current migration state
2252 * @pss: data about the page we want to send
2253 * @last_stage: if we are at the completion stage
2255 static int ram_save_host_page(RAMState *rs, PageSearchStatus *pss,
2256 bool last_stage)
2258 int tmppages, pages = 0;
2259 size_t pagesize_bits =
2260 qemu_ram_pagesize(pss->block) >> TARGET_PAGE_BITS;
2262 if (!qemu_ram_is_migratable(pss->block)) {
2263 error_report("block %s should not be migrated !", pss->block->idstr);
2264 return 0;
2267 do {
2268 /* Check the pages is dirty and if it is send it */
2269 if (!migration_bitmap_clear_dirty(rs, pss->block, pss->page)) {
2270 pss->page++;
2271 continue;
2274 tmppages = ram_save_target_page(rs, pss, last_stage);
2275 if (tmppages < 0) {
2276 return tmppages;
2279 pages += tmppages;
2280 if (pss->block->unsentmap) {
2281 clear_bit(pss->page, pss->block->unsentmap);
2284 pss->page++;
2285 } while ((pss->page & (pagesize_bits - 1)) &&
2286 offset_in_ramblock(pss->block, pss->page << TARGET_PAGE_BITS));
2288 /* The offset we leave with is the last one we looked at */
2289 pss->page--;
2290 return pages;
2294 * ram_find_and_save_block: finds a dirty page and sends it to f
2296 * Called within an RCU critical section.
2298 * Returns the number of pages written where zero means no dirty pages
2300 * @rs: current RAM state
2301 * @last_stage: if we are at the completion stage
2303 * On systems where host-page-size > target-page-size it will send all the
2304 * pages in a host page that are dirty.
2307 static int ram_find_and_save_block(RAMState *rs, bool last_stage)
2309 PageSearchStatus pss;
2310 int pages = 0;
2311 bool again, found;
2313 /* No dirty page as there is zero RAM */
2314 if (!ram_bytes_total()) {
2315 return pages;
2318 pss.block = rs->last_seen_block;
2319 pss.page = rs->last_page;
2320 pss.complete_round = false;
2322 if (!pss.block) {
2323 pss.block = QLIST_FIRST_RCU(&ram_list.blocks);
2326 do {
2327 again = true;
2328 found = get_queued_page(rs, &pss);
2330 if (!found) {
2331 /* priority queue empty, so just search for something dirty */
2332 found = find_dirty_block(rs, &pss, &again);
2335 if (found) {
2336 pages = ram_save_host_page(rs, &pss, last_stage);
2338 } while (!pages && again);
2340 rs->last_seen_block = pss.block;
2341 rs->last_page = pss.page;
2343 return pages;
2346 void acct_update_position(QEMUFile *f, size_t size, bool zero)
2348 uint64_t pages = size / TARGET_PAGE_SIZE;
2350 if (zero) {
2351 ram_counters.duplicate += pages;
2352 } else {
2353 ram_counters.normal += pages;
2354 ram_counters.transferred += size;
2355 qemu_update_position(f, size);
2359 uint64_t ram_bytes_total(void)
2361 RAMBlock *block;
2362 uint64_t total = 0;
2364 rcu_read_lock();
2365 RAMBLOCK_FOREACH_MIGRATABLE(block) {
2366 total += block->used_length;
2368 rcu_read_unlock();
2369 return total;
2372 static void xbzrle_load_setup(void)
2374 XBZRLE.decoded_buf = g_malloc(TARGET_PAGE_SIZE);
2377 static void xbzrle_load_cleanup(void)
2379 g_free(XBZRLE.decoded_buf);
2380 XBZRLE.decoded_buf = NULL;
2383 static void ram_state_cleanup(RAMState **rsp)
2385 if (*rsp) {
2386 migration_page_queue_free(*rsp);
2387 qemu_mutex_destroy(&(*rsp)->bitmap_mutex);
2388 qemu_mutex_destroy(&(*rsp)->src_page_req_mutex);
2389 g_free(*rsp);
2390 *rsp = NULL;
2394 static void xbzrle_cleanup(void)
2396 XBZRLE_cache_lock();
2397 if (XBZRLE.cache) {
2398 cache_fini(XBZRLE.cache);
2399 g_free(XBZRLE.encoded_buf);
2400 g_free(XBZRLE.current_buf);
2401 g_free(XBZRLE.zero_target_page);
2402 XBZRLE.cache = NULL;
2403 XBZRLE.encoded_buf = NULL;
2404 XBZRLE.current_buf = NULL;
2405 XBZRLE.zero_target_page = NULL;
2407 XBZRLE_cache_unlock();
2410 static void ram_save_cleanup(void *opaque)
2412 RAMState **rsp = opaque;
2413 RAMBlock *block;
2415 /* caller have hold iothread lock or is in a bh, so there is
2416 * no writing race against this migration_bitmap
2418 memory_global_dirty_log_stop();
2420 RAMBLOCK_FOREACH_MIGRATABLE(block) {
2421 g_free(block->bmap);
2422 block->bmap = NULL;
2423 g_free(block->unsentmap);
2424 block->unsentmap = NULL;
2427 xbzrle_cleanup();
2428 compress_threads_save_cleanup();
2429 ram_state_cleanup(rsp);
2432 static void ram_state_reset(RAMState *rs)
2434 rs->last_seen_block = NULL;
2435 rs->last_sent_block = NULL;
2436 rs->last_page = 0;
2437 rs->last_version = ram_list.version;
2438 rs->ram_bulk_stage = true;
2441 #define MAX_WAIT 50 /* ms, half buffered_file limit */
2444 * 'expected' is the value you expect the bitmap mostly to be full
2445 * of; it won't bother printing lines that are all this value.
2446 * If 'todump' is null the migration bitmap is dumped.
2448 void ram_debug_dump_bitmap(unsigned long *todump, bool expected,
2449 unsigned long pages)
2451 int64_t cur;
2452 int64_t linelen = 128;
2453 char linebuf[129];
2455 for (cur = 0; cur < pages; cur += linelen) {
2456 int64_t curb;
2457 bool found = false;
2459 * Last line; catch the case where the line length
2460 * is longer than remaining ram
2462 if (cur + linelen > pages) {
2463 linelen = pages - cur;
2465 for (curb = 0; curb < linelen; curb++) {
2466 bool thisbit = test_bit(cur + curb, todump);
2467 linebuf[curb] = thisbit ? '1' : '.';
2468 found = found || (thisbit != expected);
2470 if (found) {
2471 linebuf[curb] = '\0';
2472 fprintf(stderr, "0x%08" PRIx64 " : %s\n", cur, linebuf);
2477 /* **** functions for postcopy ***** */
2479 void ram_postcopy_migrated_memory_release(MigrationState *ms)
2481 struct RAMBlock *block;
2483 RAMBLOCK_FOREACH_MIGRATABLE(block) {
2484 unsigned long *bitmap = block->bmap;
2485 unsigned long range = block->used_length >> TARGET_PAGE_BITS;
2486 unsigned long run_start = find_next_zero_bit(bitmap, range, 0);
2488 while (run_start < range) {
2489 unsigned long run_end = find_next_bit(bitmap, range, run_start + 1);
2490 ram_discard_range(block->idstr, run_start << TARGET_PAGE_BITS,
2491 (run_end - run_start) << TARGET_PAGE_BITS);
2492 run_start = find_next_zero_bit(bitmap, range, run_end + 1);
2498 * postcopy_send_discard_bm_ram: discard a RAMBlock
2500 * Returns zero on success
2502 * Callback from postcopy_each_ram_send_discard for each RAMBlock
2503 * Note: At this point the 'unsentmap' is the processed bitmap combined
2504 * with the dirtymap; so a '1' means it's either dirty or unsent.
2506 * @ms: current migration state
2507 * @pds: state for postcopy
2508 * @start: RAMBlock starting page
2509 * @length: RAMBlock size
2511 static int postcopy_send_discard_bm_ram(MigrationState *ms,
2512 PostcopyDiscardState *pds,
2513 RAMBlock *block)
2515 unsigned long end = block->used_length >> TARGET_PAGE_BITS;
2516 unsigned long current;
2517 unsigned long *unsentmap = block->unsentmap;
2519 for (current = 0; current < end; ) {
2520 unsigned long one = find_next_bit(unsentmap, end, current);
2522 if (one <= end) {
2523 unsigned long zero = find_next_zero_bit(unsentmap, end, one + 1);
2524 unsigned long discard_length;
2526 if (zero >= end) {
2527 discard_length = end - one;
2528 } else {
2529 discard_length = zero - one;
2531 if (discard_length) {
2532 postcopy_discard_send_range(ms, pds, one, discard_length);
2534 current = one + discard_length;
2535 } else {
2536 current = one;
2540 return 0;
2544 * postcopy_each_ram_send_discard: discard all RAMBlocks
2546 * Returns 0 for success or negative for error
2548 * Utility for the outgoing postcopy code.
2549 * Calls postcopy_send_discard_bm_ram for each RAMBlock
2550 * passing it bitmap indexes and name.
2551 * (qemu_ram_foreach_block ends up passing unscaled lengths
2552 * which would mean postcopy code would have to deal with target page)
2554 * @ms: current migration state
2556 static int postcopy_each_ram_send_discard(MigrationState *ms)
2558 struct RAMBlock *block;
2559 int ret;
2561 RAMBLOCK_FOREACH_MIGRATABLE(block) {
2562 PostcopyDiscardState *pds =
2563 postcopy_discard_send_init(ms, block->idstr);
2566 * Postcopy sends chunks of bitmap over the wire, but it
2567 * just needs indexes at this point, avoids it having
2568 * target page specific code.
2570 ret = postcopy_send_discard_bm_ram(ms, pds, block);
2571 postcopy_discard_send_finish(ms, pds);
2572 if (ret) {
2573 return ret;
2577 return 0;
2581 * postcopy_chunk_hostpages_pass: canocalize bitmap in hostpages
2583 * Helper for postcopy_chunk_hostpages; it's called twice to
2584 * canonicalize the two bitmaps, that are similar, but one is
2585 * inverted.
2587 * Postcopy requires that all target pages in a hostpage are dirty or
2588 * clean, not a mix. This function canonicalizes the bitmaps.
2590 * @ms: current migration state
2591 * @unsent_pass: if true we need to canonicalize partially unsent host pages
2592 * otherwise we need to canonicalize partially dirty host pages
2593 * @block: block that contains the page we want to canonicalize
2594 * @pds: state for postcopy
2596 static void postcopy_chunk_hostpages_pass(MigrationState *ms, bool unsent_pass,
2597 RAMBlock *block,
2598 PostcopyDiscardState *pds)
2600 RAMState *rs = ram_state;
2601 unsigned long *bitmap = block->bmap;
2602 unsigned long *unsentmap = block->unsentmap;
2603 unsigned int host_ratio = block->page_size / TARGET_PAGE_SIZE;
2604 unsigned long pages = block->used_length >> TARGET_PAGE_BITS;
2605 unsigned long run_start;
2607 if (block->page_size == TARGET_PAGE_SIZE) {
2608 /* Easy case - TPS==HPS for a non-huge page RAMBlock */
2609 return;
2612 if (unsent_pass) {
2613 /* Find a sent page */
2614 run_start = find_next_zero_bit(unsentmap, pages, 0);
2615 } else {
2616 /* Find a dirty page */
2617 run_start = find_next_bit(bitmap, pages, 0);
2620 while (run_start < pages) {
2621 bool do_fixup = false;
2622 unsigned long fixup_start_addr;
2623 unsigned long host_offset;
2626 * If the start of this run of pages is in the middle of a host
2627 * page, then we need to fixup this host page.
2629 host_offset = run_start % host_ratio;
2630 if (host_offset) {
2631 do_fixup = true;
2632 run_start -= host_offset;
2633 fixup_start_addr = run_start;
2634 /* For the next pass */
2635 run_start = run_start + host_ratio;
2636 } else {
2637 /* Find the end of this run */
2638 unsigned long run_end;
2639 if (unsent_pass) {
2640 run_end = find_next_bit(unsentmap, pages, run_start + 1);
2641 } else {
2642 run_end = find_next_zero_bit(bitmap, pages, run_start + 1);
2645 * If the end isn't at the start of a host page, then the
2646 * run doesn't finish at the end of a host page
2647 * and we need to discard.
2649 host_offset = run_end % host_ratio;
2650 if (host_offset) {
2651 do_fixup = true;
2652 fixup_start_addr = run_end - host_offset;
2654 * This host page has gone, the next loop iteration starts
2655 * from after the fixup
2657 run_start = fixup_start_addr + host_ratio;
2658 } else {
2660 * No discards on this iteration, next loop starts from
2661 * next sent/dirty page
2663 run_start = run_end + 1;
2667 if (do_fixup) {
2668 unsigned long page;
2670 /* Tell the destination to discard this page */
2671 if (unsent_pass || !test_bit(fixup_start_addr, unsentmap)) {
2672 /* For the unsent_pass we:
2673 * discard partially sent pages
2674 * For the !unsent_pass (dirty) we:
2675 * discard partially dirty pages that were sent
2676 * (any partially sent pages were already discarded
2677 * by the previous unsent_pass)
2679 postcopy_discard_send_range(ms, pds, fixup_start_addr,
2680 host_ratio);
2683 /* Clean up the bitmap */
2684 for (page = fixup_start_addr;
2685 page < fixup_start_addr + host_ratio; page++) {
2686 /* All pages in this host page are now not sent */
2687 set_bit(page, unsentmap);
2690 * Remark them as dirty, updating the count for any pages
2691 * that weren't previously dirty.
2693 rs->migration_dirty_pages += !test_and_set_bit(page, bitmap);
2697 if (unsent_pass) {
2698 /* Find the next sent page for the next iteration */
2699 run_start = find_next_zero_bit(unsentmap, pages, run_start);
2700 } else {
2701 /* Find the next dirty page for the next iteration */
2702 run_start = find_next_bit(bitmap, pages, run_start);
2708 * postcopy_chuck_hostpages: discrad any partially sent host page
2710 * Utility for the outgoing postcopy code.
2712 * Discard any partially sent host-page size chunks, mark any partially
2713 * dirty host-page size chunks as all dirty. In this case the host-page
2714 * is the host-page for the particular RAMBlock, i.e. it might be a huge page
2716 * Returns zero on success
2718 * @ms: current migration state
2719 * @block: block we want to work with
2721 static int postcopy_chunk_hostpages(MigrationState *ms, RAMBlock *block)
2723 PostcopyDiscardState *pds =
2724 postcopy_discard_send_init(ms, block->idstr);
2726 /* First pass: Discard all partially sent host pages */
2727 postcopy_chunk_hostpages_pass(ms, true, block, pds);
2729 * Second pass: Ensure that all partially dirty host pages are made
2730 * fully dirty.
2732 postcopy_chunk_hostpages_pass(ms, false, block, pds);
2734 postcopy_discard_send_finish(ms, pds);
2735 return 0;
2739 * ram_postcopy_send_discard_bitmap: transmit the discard bitmap
2741 * Returns zero on success
2743 * Transmit the set of pages to be discarded after precopy to the target
2744 * these are pages that:
2745 * a) Have been previously transmitted but are now dirty again
2746 * b) Pages that have never been transmitted, this ensures that
2747 * any pages on the destination that have been mapped by background
2748 * tasks get discarded (transparent huge pages is the specific concern)
2749 * Hopefully this is pretty sparse
2751 * @ms: current migration state
2753 int ram_postcopy_send_discard_bitmap(MigrationState *ms)
2755 RAMState *rs = ram_state;
2756 RAMBlock *block;
2757 int ret;
2759 rcu_read_lock();
2761 /* This should be our last sync, the src is now paused */
2762 migration_bitmap_sync(rs);
2764 /* Easiest way to make sure we don't resume in the middle of a host-page */
2765 rs->last_seen_block = NULL;
2766 rs->last_sent_block = NULL;
2767 rs->last_page = 0;
2769 RAMBLOCK_FOREACH_MIGRATABLE(block) {
2770 unsigned long pages = block->used_length >> TARGET_PAGE_BITS;
2771 unsigned long *bitmap = block->bmap;
2772 unsigned long *unsentmap = block->unsentmap;
2774 if (!unsentmap) {
2775 /* We don't have a safe way to resize the sentmap, so
2776 * if the bitmap was resized it will be NULL at this
2777 * point.
2779 error_report("migration ram resized during precopy phase");
2780 rcu_read_unlock();
2781 return -EINVAL;
2783 /* Deal with TPS != HPS and huge pages */
2784 ret = postcopy_chunk_hostpages(ms, block);
2785 if (ret) {
2786 rcu_read_unlock();
2787 return ret;
2791 * Update the unsentmap to be unsentmap = unsentmap | dirty
2793 bitmap_or(unsentmap, unsentmap, bitmap, pages);
2794 #ifdef DEBUG_POSTCOPY
2795 ram_debug_dump_bitmap(unsentmap, true, pages);
2796 #endif
2798 trace_ram_postcopy_send_discard_bitmap();
2800 ret = postcopy_each_ram_send_discard(ms);
2801 rcu_read_unlock();
2803 return ret;
2807 * ram_discard_range: discard dirtied pages at the beginning of postcopy
2809 * Returns zero on success
2811 * @rbname: name of the RAMBlock of the request. NULL means the
2812 * same that last one.
2813 * @start: RAMBlock starting page
2814 * @length: RAMBlock size
2816 int ram_discard_range(const char *rbname, uint64_t start, size_t length)
2818 int ret = -1;
2820 trace_ram_discard_range(rbname, start, length);
2822 rcu_read_lock();
2823 RAMBlock *rb = qemu_ram_block_by_name(rbname);
2825 if (!rb) {
2826 error_report("ram_discard_range: Failed to find block '%s'", rbname);
2827 goto err;
2831 * On source VM, we don't need to update the received bitmap since
2832 * we don't even have one.
2834 if (rb->receivedmap) {
2835 bitmap_clear(rb->receivedmap, start >> qemu_target_page_bits(),
2836 length >> qemu_target_page_bits());
2839 ret = ram_block_discard_range(rb, start, length);
2841 err:
2842 rcu_read_unlock();
2844 return ret;
2848 * For every allocation, we will try not to crash the VM if the
2849 * allocation failed.
2851 static int xbzrle_init(void)
2853 Error *local_err = NULL;
2855 if (!migrate_use_xbzrle()) {
2856 return 0;
2859 XBZRLE_cache_lock();
2861 XBZRLE.zero_target_page = g_try_malloc0(TARGET_PAGE_SIZE);
2862 if (!XBZRLE.zero_target_page) {
2863 error_report("%s: Error allocating zero page", __func__);
2864 goto err_out;
2867 XBZRLE.cache = cache_init(migrate_xbzrle_cache_size(),
2868 TARGET_PAGE_SIZE, &local_err);
2869 if (!XBZRLE.cache) {
2870 error_report_err(local_err);
2871 goto free_zero_page;
2874 XBZRLE.encoded_buf = g_try_malloc0(TARGET_PAGE_SIZE);
2875 if (!XBZRLE.encoded_buf) {
2876 error_report("%s: Error allocating encoded_buf", __func__);
2877 goto free_cache;
2880 XBZRLE.current_buf = g_try_malloc(TARGET_PAGE_SIZE);
2881 if (!XBZRLE.current_buf) {
2882 error_report("%s: Error allocating current_buf", __func__);
2883 goto free_encoded_buf;
2886 /* We are all good */
2887 XBZRLE_cache_unlock();
2888 return 0;
2890 free_encoded_buf:
2891 g_free(XBZRLE.encoded_buf);
2892 XBZRLE.encoded_buf = NULL;
2893 free_cache:
2894 cache_fini(XBZRLE.cache);
2895 XBZRLE.cache = NULL;
2896 free_zero_page:
2897 g_free(XBZRLE.zero_target_page);
2898 XBZRLE.zero_target_page = NULL;
2899 err_out:
2900 XBZRLE_cache_unlock();
2901 return -ENOMEM;
2904 static int ram_state_init(RAMState **rsp)
2906 *rsp = g_try_new0(RAMState, 1);
2908 if (!*rsp) {
2909 error_report("%s: Init ramstate fail", __func__);
2910 return -1;
2913 qemu_mutex_init(&(*rsp)->bitmap_mutex);
2914 qemu_mutex_init(&(*rsp)->src_page_req_mutex);
2915 QSIMPLEQ_INIT(&(*rsp)->src_page_requests);
2918 * Count the total number of pages used by ram blocks not including any
2919 * gaps due to alignment or unplugs.
2921 (*rsp)->migration_dirty_pages = ram_bytes_total() >> TARGET_PAGE_BITS;
2923 ram_state_reset(*rsp);
2925 return 0;
2928 static void ram_list_init_bitmaps(void)
2930 RAMBlock *block;
2931 unsigned long pages;
2933 /* Skip setting bitmap if there is no RAM */
2934 if (ram_bytes_total()) {
2935 RAMBLOCK_FOREACH_MIGRATABLE(block) {
2936 pages = block->max_length >> TARGET_PAGE_BITS;
2937 block->bmap = bitmap_new(pages);
2938 bitmap_set(block->bmap, 0, pages);
2939 if (migrate_postcopy_ram()) {
2940 block->unsentmap = bitmap_new(pages);
2941 bitmap_set(block->unsentmap, 0, pages);
2947 static void ram_init_bitmaps(RAMState *rs)
2949 /* For memory_global_dirty_log_start below. */
2950 qemu_mutex_lock_iothread();
2951 qemu_mutex_lock_ramlist();
2952 rcu_read_lock();
2954 ram_list_init_bitmaps();
2955 memory_global_dirty_log_start();
2956 migration_bitmap_sync(rs);
2958 rcu_read_unlock();
2959 qemu_mutex_unlock_ramlist();
2960 qemu_mutex_unlock_iothread();
2963 static int ram_init_all(RAMState **rsp)
2965 if (ram_state_init(rsp)) {
2966 return -1;
2969 if (xbzrle_init()) {
2970 ram_state_cleanup(rsp);
2971 return -1;
2974 ram_init_bitmaps(*rsp);
2976 return 0;
2979 static void ram_state_resume_prepare(RAMState *rs, QEMUFile *out)
2981 RAMBlock *block;
2982 uint64_t pages = 0;
2985 * Postcopy is not using xbzrle/compression, so no need for that.
2986 * Also, since source are already halted, we don't need to care
2987 * about dirty page logging as well.
2990 RAMBLOCK_FOREACH_MIGRATABLE(block) {
2991 pages += bitmap_count_one(block->bmap,
2992 block->used_length >> TARGET_PAGE_BITS);
2995 /* This may not be aligned with current bitmaps. Recalculate. */
2996 rs->migration_dirty_pages = pages;
2998 rs->last_seen_block = NULL;
2999 rs->last_sent_block = NULL;
3000 rs->last_page = 0;
3001 rs->last_version = ram_list.version;
3003 * Disable the bulk stage, otherwise we'll resend the whole RAM no
3004 * matter what we have sent.
3006 rs->ram_bulk_stage = false;
3008 /* Update RAMState cache of output QEMUFile */
3009 rs->f = out;
3011 trace_ram_state_resume_prepare(pages);
3015 * Each of ram_save_setup, ram_save_iterate and ram_save_complete has
3016 * long-running RCU critical section. When rcu-reclaims in the code
3017 * start to become numerous it will be necessary to reduce the
3018 * granularity of these critical sections.
3022 * ram_save_setup: Setup RAM for migration
3024 * Returns zero to indicate success and negative for error
3026 * @f: QEMUFile where to send the data
3027 * @opaque: RAMState pointer
3029 static int ram_save_setup(QEMUFile *f, void *opaque)
3031 RAMState **rsp = opaque;
3032 RAMBlock *block;
3034 if (compress_threads_save_setup()) {
3035 return -1;
3038 /* migration has already setup the bitmap, reuse it. */
3039 if (!migration_in_colo_state()) {
3040 if (ram_init_all(rsp) != 0) {
3041 compress_threads_save_cleanup();
3042 return -1;
3045 (*rsp)->f = f;
3047 rcu_read_lock();
3049 qemu_put_be64(f, ram_bytes_total() | RAM_SAVE_FLAG_MEM_SIZE);
3051 RAMBLOCK_FOREACH_MIGRATABLE(block) {
3052 qemu_put_byte(f, strlen(block->idstr));
3053 qemu_put_buffer(f, (uint8_t *)block->idstr, strlen(block->idstr));
3054 qemu_put_be64(f, block->used_length);
3055 if (migrate_postcopy_ram() && block->page_size != qemu_host_page_size) {
3056 qemu_put_be64(f, block->page_size);
3060 rcu_read_unlock();
3062 ram_control_before_iterate(f, RAM_CONTROL_SETUP);
3063 ram_control_after_iterate(f, RAM_CONTROL_SETUP);
3065 multifd_send_sync_main();
3066 qemu_put_be64(f, RAM_SAVE_FLAG_EOS);
3067 qemu_fflush(f);
3069 return 0;
3073 * ram_save_iterate: iterative stage for migration
3075 * Returns zero to indicate success and negative for error
3077 * @f: QEMUFile where to send the data
3078 * @opaque: RAMState pointer
3080 static int ram_save_iterate(QEMUFile *f, void *opaque)
3082 RAMState **temp = opaque;
3083 RAMState *rs = *temp;
3084 int ret;
3085 int i;
3086 int64_t t0;
3087 int done = 0;
3089 if (blk_mig_bulk_active()) {
3090 /* Avoid transferring ram during bulk phase of block migration as
3091 * the bulk phase will usually take a long time and transferring
3092 * ram updates during that time is pointless. */
3093 goto out;
3096 rcu_read_lock();
3097 if (ram_list.version != rs->last_version) {
3098 ram_state_reset(rs);
3101 /* Read version before ram_list.blocks */
3102 smp_rmb();
3104 ram_control_before_iterate(f, RAM_CONTROL_ROUND);
3106 t0 = qemu_clock_get_ns(QEMU_CLOCK_REALTIME);
3107 i = 0;
3108 while ((ret = qemu_file_rate_limit(f)) == 0 ||
3109 !QSIMPLEQ_EMPTY(&rs->src_page_requests)) {
3110 int pages;
3112 if (qemu_file_get_error(f)) {
3113 break;
3116 pages = ram_find_and_save_block(rs, false);
3117 /* no more pages to sent */
3118 if (pages == 0) {
3119 done = 1;
3120 break;
3122 rs->iterations++;
3124 /* we want to check in the 1st loop, just in case it was the 1st time
3125 and we had to sync the dirty bitmap.
3126 qemu_get_clock_ns() is a bit expensive, so we only check each some
3127 iterations
3129 if ((i & 63) == 0) {
3130 uint64_t t1 = (qemu_clock_get_ns(QEMU_CLOCK_REALTIME) - t0) / 1000000;
3131 if (t1 > MAX_WAIT) {
3132 trace_ram_save_iterate_big_wait(t1, i);
3133 break;
3136 i++;
3138 flush_compressed_data(rs);
3139 rcu_read_unlock();
3142 * Must occur before EOS (or any QEMUFile operation)
3143 * because of RDMA protocol.
3145 ram_control_after_iterate(f, RAM_CONTROL_ROUND);
3147 multifd_send_sync_main();
3148 out:
3149 qemu_put_be64(f, RAM_SAVE_FLAG_EOS);
3150 qemu_fflush(f);
3151 ram_counters.transferred += 8;
3153 ret = qemu_file_get_error(f);
3154 if (ret < 0) {
3155 return ret;
3158 return done;
3162 * ram_save_complete: function called to send the remaining amount of ram
3164 * Returns zero to indicate success
3166 * Called with iothread lock
3168 * @f: QEMUFile where to send the data
3169 * @opaque: RAMState pointer
3171 static int ram_save_complete(QEMUFile *f, void *opaque)
3173 RAMState **temp = opaque;
3174 RAMState *rs = *temp;
3176 rcu_read_lock();
3178 if (!migration_in_postcopy()) {
3179 migration_bitmap_sync(rs);
3182 ram_control_before_iterate(f, RAM_CONTROL_FINISH);
3184 /* try transferring iterative blocks of memory */
3186 /* flush all remaining blocks regardless of rate limiting */
3187 while (true) {
3188 int pages;
3190 pages = ram_find_and_save_block(rs, !migration_in_colo_state());
3191 /* no more blocks to sent */
3192 if (pages == 0) {
3193 break;
3197 flush_compressed_data(rs);
3198 ram_control_after_iterate(f, RAM_CONTROL_FINISH);
3200 rcu_read_unlock();
3202 multifd_send_sync_main();
3203 qemu_put_be64(f, RAM_SAVE_FLAG_EOS);
3204 qemu_fflush(f);
3206 return 0;
3209 static void ram_save_pending(QEMUFile *f, void *opaque, uint64_t max_size,
3210 uint64_t *res_precopy_only,
3211 uint64_t *res_compatible,
3212 uint64_t *res_postcopy_only)
3214 RAMState **temp = opaque;
3215 RAMState *rs = *temp;
3216 uint64_t remaining_size;
3218 remaining_size = rs->migration_dirty_pages * TARGET_PAGE_SIZE;
3220 if (!migration_in_postcopy() &&
3221 remaining_size < max_size) {
3222 qemu_mutex_lock_iothread();
3223 rcu_read_lock();
3224 migration_bitmap_sync(rs);
3225 rcu_read_unlock();
3226 qemu_mutex_unlock_iothread();
3227 remaining_size = rs->migration_dirty_pages * TARGET_PAGE_SIZE;
3230 if (migrate_postcopy_ram()) {
3231 /* We can do postcopy, and all the data is postcopiable */
3232 *res_compatible += remaining_size;
3233 } else {
3234 *res_precopy_only += remaining_size;
3238 static int load_xbzrle(QEMUFile *f, ram_addr_t addr, void *host)
3240 unsigned int xh_len;
3241 int xh_flags;
3242 uint8_t *loaded_data;
3244 /* extract RLE header */
3245 xh_flags = qemu_get_byte(f);
3246 xh_len = qemu_get_be16(f);
3248 if (xh_flags != ENCODING_FLAG_XBZRLE) {
3249 error_report("Failed to load XBZRLE page - wrong compression!");
3250 return -1;
3253 if (xh_len > TARGET_PAGE_SIZE) {
3254 error_report("Failed to load XBZRLE page - len overflow!");
3255 return -1;
3257 loaded_data = XBZRLE.decoded_buf;
3258 /* load data and decode */
3259 /* it can change loaded_data to point to an internal buffer */
3260 qemu_get_buffer_in_place(f, &loaded_data, xh_len);
3262 /* decode RLE */
3263 if (xbzrle_decode_buffer(loaded_data, xh_len, host,
3264 TARGET_PAGE_SIZE) == -1) {
3265 error_report("Failed to load XBZRLE page - decode error!");
3266 return -1;
3269 return 0;
3273 * ram_block_from_stream: read a RAMBlock id from the migration stream
3275 * Must be called from within a rcu critical section.
3277 * Returns a pointer from within the RCU-protected ram_list.
3279 * @f: QEMUFile where to read the data from
3280 * @flags: Page flags (mostly to see if it's a continuation of previous block)
3282 static inline RAMBlock *ram_block_from_stream(QEMUFile *f, int flags)
3284 static RAMBlock *block = NULL;
3285 char id[256];
3286 uint8_t len;
3288 if (flags & RAM_SAVE_FLAG_CONTINUE) {
3289 if (!block) {
3290 error_report("Ack, bad migration stream!");
3291 return NULL;
3293 return block;
3296 len = qemu_get_byte(f);
3297 qemu_get_buffer(f, (uint8_t *)id, len);
3298 id[len] = 0;
3300 block = qemu_ram_block_by_name(id);
3301 if (!block) {
3302 error_report("Can't find block %s", id);
3303 return NULL;
3306 if (!qemu_ram_is_migratable(block)) {
3307 error_report("block %s should not be migrated !", id);
3308 return NULL;
3311 return block;
3314 static inline void *host_from_ram_block_offset(RAMBlock *block,
3315 ram_addr_t offset)
3317 if (!offset_in_ramblock(block, offset)) {
3318 return NULL;
3321 return block->host + offset;
3325 * ram_handle_compressed: handle the zero page case
3327 * If a page (or a whole RDMA chunk) has been
3328 * determined to be zero, then zap it.
3330 * @host: host address for the zero page
3331 * @ch: what the page is filled from. We only support zero
3332 * @size: size of the zero page
3334 void ram_handle_compressed(void *host, uint8_t ch, uint64_t size)
3336 if (ch != 0 || !is_zero_range(host, size)) {
3337 memset(host, ch, size);
3341 /* return the size after decompression, or negative value on error */
3342 static int
3343 qemu_uncompress_data(z_stream *stream, uint8_t *dest, size_t dest_len,
3344 const uint8_t *source, size_t source_len)
3346 int err;
3348 err = inflateReset(stream);
3349 if (err != Z_OK) {
3350 return -1;
3353 stream->avail_in = source_len;
3354 stream->next_in = (uint8_t *)source;
3355 stream->avail_out = dest_len;
3356 stream->next_out = dest;
3358 err = inflate(stream, Z_NO_FLUSH);
3359 if (err != Z_STREAM_END) {
3360 return -1;
3363 return stream->total_out;
3366 static void *do_data_decompress(void *opaque)
3368 DecompressParam *param = opaque;
3369 unsigned long pagesize;
3370 uint8_t *des;
3371 int len, ret;
3373 qemu_mutex_lock(&param->mutex);
3374 while (!param->quit) {
3375 if (param->des) {
3376 des = param->des;
3377 len = param->len;
3378 param->des = 0;
3379 qemu_mutex_unlock(&param->mutex);
3381 pagesize = TARGET_PAGE_SIZE;
3383 ret = qemu_uncompress_data(&param->stream, des, pagesize,
3384 param->compbuf, len);
3385 if (ret < 0 && migrate_get_current()->decompress_error_check) {
3386 error_report("decompress data failed");
3387 qemu_file_set_error(decomp_file, ret);
3390 qemu_mutex_lock(&decomp_done_lock);
3391 param->done = true;
3392 qemu_cond_signal(&decomp_done_cond);
3393 qemu_mutex_unlock(&decomp_done_lock);
3395 qemu_mutex_lock(&param->mutex);
3396 } else {
3397 qemu_cond_wait(&param->cond, &param->mutex);
3400 qemu_mutex_unlock(&param->mutex);
3402 return NULL;
3405 static int wait_for_decompress_done(void)
3407 int idx, thread_count;
3409 if (!migrate_use_compression()) {
3410 return 0;
3413 thread_count = migrate_decompress_threads();
3414 qemu_mutex_lock(&decomp_done_lock);
3415 for (idx = 0; idx < thread_count; idx++) {
3416 while (!decomp_param[idx].done) {
3417 qemu_cond_wait(&decomp_done_cond, &decomp_done_lock);
3420 qemu_mutex_unlock(&decomp_done_lock);
3421 return qemu_file_get_error(decomp_file);
3424 static void compress_threads_load_cleanup(void)
3426 int i, thread_count;
3428 if (!migrate_use_compression()) {
3429 return;
3431 thread_count = migrate_decompress_threads();
3432 for (i = 0; i < thread_count; i++) {
3434 * we use it as a indicator which shows if the thread is
3435 * properly init'd or not
3437 if (!decomp_param[i].compbuf) {
3438 break;
3441 qemu_mutex_lock(&decomp_param[i].mutex);
3442 decomp_param[i].quit = true;
3443 qemu_cond_signal(&decomp_param[i].cond);
3444 qemu_mutex_unlock(&decomp_param[i].mutex);
3446 for (i = 0; i < thread_count; i++) {
3447 if (!decomp_param[i].compbuf) {
3448 break;
3451 qemu_thread_join(decompress_threads + i);
3452 qemu_mutex_destroy(&decomp_param[i].mutex);
3453 qemu_cond_destroy(&decomp_param[i].cond);
3454 inflateEnd(&decomp_param[i].stream);
3455 g_free(decomp_param[i].compbuf);
3456 decomp_param[i].compbuf = NULL;
3458 g_free(decompress_threads);
3459 g_free(decomp_param);
3460 decompress_threads = NULL;
3461 decomp_param = NULL;
3462 decomp_file = NULL;
3465 static int compress_threads_load_setup(QEMUFile *f)
3467 int i, thread_count;
3469 if (!migrate_use_compression()) {
3470 return 0;
3473 thread_count = migrate_decompress_threads();
3474 decompress_threads = g_new0(QemuThread, thread_count);
3475 decomp_param = g_new0(DecompressParam, thread_count);
3476 qemu_mutex_init(&decomp_done_lock);
3477 qemu_cond_init(&decomp_done_cond);
3478 decomp_file = f;
3479 for (i = 0; i < thread_count; i++) {
3480 if (inflateInit(&decomp_param[i].stream) != Z_OK) {
3481 goto exit;
3484 decomp_param[i].compbuf = g_malloc0(compressBound(TARGET_PAGE_SIZE));
3485 qemu_mutex_init(&decomp_param[i].mutex);
3486 qemu_cond_init(&decomp_param[i].cond);
3487 decomp_param[i].done = true;
3488 decomp_param[i].quit = false;
3489 qemu_thread_create(decompress_threads + i, "decompress",
3490 do_data_decompress, decomp_param + i,
3491 QEMU_THREAD_JOINABLE);
3493 return 0;
3494 exit:
3495 compress_threads_load_cleanup();
3496 return -1;
3499 static void decompress_data_with_multi_threads(QEMUFile *f,
3500 void *host, int len)
3502 int idx, thread_count;
3504 thread_count = migrate_decompress_threads();
3505 qemu_mutex_lock(&decomp_done_lock);
3506 while (true) {
3507 for (idx = 0; idx < thread_count; idx++) {
3508 if (decomp_param[idx].done) {
3509 decomp_param[idx].done = false;
3510 qemu_mutex_lock(&decomp_param[idx].mutex);
3511 qemu_get_buffer(f, decomp_param[idx].compbuf, len);
3512 decomp_param[idx].des = host;
3513 decomp_param[idx].len = len;
3514 qemu_cond_signal(&decomp_param[idx].cond);
3515 qemu_mutex_unlock(&decomp_param[idx].mutex);
3516 break;
3519 if (idx < thread_count) {
3520 break;
3521 } else {
3522 qemu_cond_wait(&decomp_done_cond, &decomp_done_lock);
3525 qemu_mutex_unlock(&decomp_done_lock);
3529 * ram_load_setup: Setup RAM for migration incoming side
3531 * Returns zero to indicate success and negative for error
3533 * @f: QEMUFile where to receive the data
3534 * @opaque: RAMState pointer
3536 static int ram_load_setup(QEMUFile *f, void *opaque)
3538 if (compress_threads_load_setup(f)) {
3539 return -1;
3542 xbzrle_load_setup();
3543 ramblock_recv_map_init();
3544 return 0;
3547 static int ram_load_cleanup(void *opaque)
3549 RAMBlock *rb;
3550 xbzrle_load_cleanup();
3551 compress_threads_load_cleanup();
3553 RAMBLOCK_FOREACH_MIGRATABLE(rb) {
3554 g_free(rb->receivedmap);
3555 rb->receivedmap = NULL;
3557 return 0;
3561 * ram_postcopy_incoming_init: allocate postcopy data structures
3563 * Returns 0 for success and negative if there was one error
3565 * @mis: current migration incoming state
3567 * Allocate data structures etc needed by incoming migration with
3568 * postcopy-ram. postcopy-ram's similarly names
3569 * postcopy_ram_incoming_init does the work.
3571 int ram_postcopy_incoming_init(MigrationIncomingState *mis)
3573 return postcopy_ram_incoming_init(mis);
3577 * ram_load_postcopy: load a page in postcopy case
3579 * Returns 0 for success or -errno in case of error
3581 * Called in postcopy mode by ram_load().
3582 * rcu_read_lock is taken prior to this being called.
3584 * @f: QEMUFile where to send the data
3586 static int ram_load_postcopy(QEMUFile *f)
3588 int flags = 0, ret = 0;
3589 bool place_needed = false;
3590 bool matches_target_page_size = false;
3591 MigrationIncomingState *mis = migration_incoming_get_current();
3592 /* Temporary page that is later 'placed' */
3593 void *postcopy_host_page = postcopy_get_tmp_page(mis);
3594 void *last_host = NULL;
3595 bool all_zero = false;
3597 while (!ret && !(flags & RAM_SAVE_FLAG_EOS)) {
3598 ram_addr_t addr;
3599 void *host = NULL;
3600 void *page_buffer = NULL;
3601 void *place_source = NULL;
3602 RAMBlock *block = NULL;
3603 uint8_t ch;
3605 addr = qemu_get_be64(f);
3608 * If qemu file error, we should stop here, and then "addr"
3609 * may be invalid
3611 ret = qemu_file_get_error(f);
3612 if (ret) {
3613 break;
3616 flags = addr & ~TARGET_PAGE_MASK;
3617 addr &= TARGET_PAGE_MASK;
3619 trace_ram_load_postcopy_loop((uint64_t)addr, flags);
3620 place_needed = false;
3621 if (flags & (RAM_SAVE_FLAG_ZERO | RAM_SAVE_FLAG_PAGE)) {
3622 block = ram_block_from_stream(f, flags);
3624 host = host_from_ram_block_offset(block, addr);
3625 if (!host) {
3626 error_report("Illegal RAM offset " RAM_ADDR_FMT, addr);
3627 ret = -EINVAL;
3628 break;
3630 matches_target_page_size = block->page_size == TARGET_PAGE_SIZE;
3632 * Postcopy requires that we place whole host pages atomically;
3633 * these may be huge pages for RAMBlocks that are backed by
3634 * hugetlbfs.
3635 * To make it atomic, the data is read into a temporary page
3636 * that's moved into place later.
3637 * The migration protocol uses, possibly smaller, target-pages
3638 * however the source ensures it always sends all the components
3639 * of a host page in order.
3641 page_buffer = postcopy_host_page +
3642 ((uintptr_t)host & (block->page_size - 1));
3643 /* If all TP are zero then we can optimise the place */
3644 if (!((uintptr_t)host & (block->page_size - 1))) {
3645 all_zero = true;
3646 } else {
3647 /* not the 1st TP within the HP */
3648 if (host != (last_host + TARGET_PAGE_SIZE)) {
3649 error_report("Non-sequential target page %p/%p",
3650 host, last_host);
3651 ret = -EINVAL;
3652 break;
3658 * If it's the last part of a host page then we place the host
3659 * page
3661 place_needed = (((uintptr_t)host + TARGET_PAGE_SIZE) &
3662 (block->page_size - 1)) == 0;
3663 place_source = postcopy_host_page;
3665 last_host = host;
3667 switch (flags & ~RAM_SAVE_FLAG_CONTINUE) {
3668 case RAM_SAVE_FLAG_ZERO:
3669 ch = qemu_get_byte(f);
3670 memset(page_buffer, ch, TARGET_PAGE_SIZE);
3671 if (ch) {
3672 all_zero = false;
3674 break;
3676 case RAM_SAVE_FLAG_PAGE:
3677 all_zero = false;
3678 if (!matches_target_page_size) {
3679 /* For huge pages, we always use temporary buffer */
3680 qemu_get_buffer(f, page_buffer, TARGET_PAGE_SIZE);
3681 } else {
3683 * For small pages that matches target page size, we
3684 * avoid the qemu_file copy. Instead we directly use
3685 * the buffer of QEMUFile to place the page. Note: we
3686 * cannot do any QEMUFile operation before using that
3687 * buffer to make sure the buffer is valid when
3688 * placing the page.
3690 qemu_get_buffer_in_place(f, (uint8_t **)&place_source,
3691 TARGET_PAGE_SIZE);
3693 break;
3694 case RAM_SAVE_FLAG_EOS:
3695 /* normal exit */
3696 multifd_recv_sync_main();
3697 break;
3698 default:
3699 error_report("Unknown combination of migration flags: %#x"
3700 " (postcopy mode)", flags);
3701 ret = -EINVAL;
3702 break;
3705 /* Detect for any possible file errors */
3706 if (!ret && qemu_file_get_error(f)) {
3707 ret = qemu_file_get_error(f);
3710 if (!ret && place_needed) {
3711 /* This gets called at the last target page in the host page */
3712 void *place_dest = host + TARGET_PAGE_SIZE - block->page_size;
3714 if (all_zero) {
3715 ret = postcopy_place_page_zero(mis, place_dest,
3716 block);
3717 } else {
3718 ret = postcopy_place_page(mis, place_dest,
3719 place_source, block);
3724 return ret;
3727 static bool postcopy_is_advised(void)
3729 PostcopyState ps = postcopy_state_get();
3730 return ps >= POSTCOPY_INCOMING_ADVISE && ps < POSTCOPY_INCOMING_END;
3733 static bool postcopy_is_running(void)
3735 PostcopyState ps = postcopy_state_get();
3736 return ps >= POSTCOPY_INCOMING_LISTENING && ps < POSTCOPY_INCOMING_END;
3739 static int ram_load(QEMUFile *f, void *opaque, int version_id)
3741 int flags = 0, ret = 0, invalid_flags = 0;
3742 static uint64_t seq_iter;
3743 int len = 0;
3745 * If system is running in postcopy mode, page inserts to host memory must
3746 * be atomic
3748 bool postcopy_running = postcopy_is_running();
3749 /* ADVISE is earlier, it shows the source has the postcopy capability on */
3750 bool postcopy_advised = postcopy_is_advised();
3752 seq_iter++;
3754 if (version_id != 4) {
3755 ret = -EINVAL;
3758 if (!migrate_use_compression()) {
3759 invalid_flags |= RAM_SAVE_FLAG_COMPRESS_PAGE;
3761 /* This RCU critical section can be very long running.
3762 * When RCU reclaims in the code start to become numerous,
3763 * it will be necessary to reduce the granularity of this
3764 * critical section.
3766 rcu_read_lock();
3768 if (postcopy_running) {
3769 ret = ram_load_postcopy(f);
3772 while (!postcopy_running && !ret && !(flags & RAM_SAVE_FLAG_EOS)) {
3773 ram_addr_t addr, total_ram_bytes;
3774 void *host = NULL;
3775 uint8_t ch;
3777 addr = qemu_get_be64(f);
3778 flags = addr & ~TARGET_PAGE_MASK;
3779 addr &= TARGET_PAGE_MASK;
3781 if (flags & invalid_flags) {
3782 if (flags & invalid_flags & RAM_SAVE_FLAG_COMPRESS_PAGE) {
3783 error_report("Received an unexpected compressed page");
3786 ret = -EINVAL;
3787 break;
3790 if (flags & (RAM_SAVE_FLAG_ZERO | RAM_SAVE_FLAG_PAGE |
3791 RAM_SAVE_FLAG_COMPRESS_PAGE | RAM_SAVE_FLAG_XBZRLE)) {
3792 RAMBlock *block = ram_block_from_stream(f, flags);
3794 host = host_from_ram_block_offset(block, addr);
3795 if (!host) {
3796 error_report("Illegal RAM offset " RAM_ADDR_FMT, addr);
3797 ret = -EINVAL;
3798 break;
3800 ramblock_recv_bitmap_set(block, host);
3801 trace_ram_load_loop(block->idstr, (uint64_t)addr, flags, host);
3804 switch (flags & ~RAM_SAVE_FLAG_CONTINUE) {
3805 case RAM_SAVE_FLAG_MEM_SIZE:
3806 /* Synchronize RAM block list */
3807 total_ram_bytes = addr;
3808 while (!ret && total_ram_bytes) {
3809 RAMBlock *block;
3810 char id[256];
3811 ram_addr_t length;
3813 len = qemu_get_byte(f);
3814 qemu_get_buffer(f, (uint8_t *)id, len);
3815 id[len] = 0;
3816 length = qemu_get_be64(f);
3818 block = qemu_ram_block_by_name(id);
3819 if (block && !qemu_ram_is_migratable(block)) {
3820 error_report("block %s should not be migrated !", id);
3821 ret = -EINVAL;
3822 } else if (block) {
3823 if (length != block->used_length) {
3824 Error *local_err = NULL;
3826 ret = qemu_ram_resize(block, length,
3827 &local_err);
3828 if (local_err) {
3829 error_report_err(local_err);
3832 /* For postcopy we need to check hugepage sizes match */
3833 if (postcopy_advised &&
3834 block->page_size != qemu_host_page_size) {
3835 uint64_t remote_page_size = qemu_get_be64(f);
3836 if (remote_page_size != block->page_size) {
3837 error_report("Mismatched RAM page size %s "
3838 "(local) %zd != %" PRId64,
3839 id, block->page_size,
3840 remote_page_size);
3841 ret = -EINVAL;
3844 ram_control_load_hook(f, RAM_CONTROL_BLOCK_REG,
3845 block->idstr);
3846 } else {
3847 error_report("Unknown ramblock \"%s\", cannot "
3848 "accept migration", id);
3849 ret = -EINVAL;
3852 total_ram_bytes -= length;
3854 break;
3856 case RAM_SAVE_FLAG_ZERO:
3857 ch = qemu_get_byte(f);
3858 ram_handle_compressed(host, ch, TARGET_PAGE_SIZE);
3859 break;
3861 case RAM_SAVE_FLAG_PAGE:
3862 qemu_get_buffer(f, host, TARGET_PAGE_SIZE);
3863 break;
3865 case RAM_SAVE_FLAG_COMPRESS_PAGE:
3866 len = qemu_get_be32(f);
3867 if (len < 0 || len > compressBound(TARGET_PAGE_SIZE)) {
3868 error_report("Invalid compressed data length: %d", len);
3869 ret = -EINVAL;
3870 break;
3872 decompress_data_with_multi_threads(f, host, len);
3873 break;
3875 case RAM_SAVE_FLAG_XBZRLE:
3876 if (load_xbzrle(f, addr, host) < 0) {
3877 error_report("Failed to decompress XBZRLE page at "
3878 RAM_ADDR_FMT, addr);
3879 ret = -EINVAL;
3880 break;
3882 break;
3883 case RAM_SAVE_FLAG_EOS:
3884 /* normal exit */
3885 multifd_recv_sync_main();
3886 break;
3887 default:
3888 if (flags & RAM_SAVE_FLAG_HOOK) {
3889 ram_control_load_hook(f, RAM_CONTROL_HOOK, NULL);
3890 } else {
3891 error_report("Unknown combination of migration flags: %#x",
3892 flags);
3893 ret = -EINVAL;
3896 if (!ret) {
3897 ret = qemu_file_get_error(f);
3901 ret |= wait_for_decompress_done();
3902 rcu_read_unlock();
3903 trace_ram_load_complete(ret, seq_iter);
3904 return ret;
3907 static bool ram_has_postcopy(void *opaque)
3909 return migrate_postcopy_ram();
3912 /* Sync all the dirty bitmap with destination VM. */
3913 static int ram_dirty_bitmap_sync_all(MigrationState *s, RAMState *rs)
3915 RAMBlock *block;
3916 QEMUFile *file = s->to_dst_file;
3917 int ramblock_count = 0;
3919 trace_ram_dirty_bitmap_sync_start();
3921 RAMBLOCK_FOREACH_MIGRATABLE(block) {
3922 qemu_savevm_send_recv_bitmap(file, block->idstr);
3923 trace_ram_dirty_bitmap_request(block->idstr);
3924 ramblock_count++;
3927 trace_ram_dirty_bitmap_sync_wait();
3929 /* Wait until all the ramblocks' dirty bitmap synced */
3930 while (ramblock_count--) {
3931 qemu_sem_wait(&s->rp_state.rp_sem);
3934 trace_ram_dirty_bitmap_sync_complete();
3936 return 0;
3939 static void ram_dirty_bitmap_reload_notify(MigrationState *s)
3941 qemu_sem_post(&s->rp_state.rp_sem);
3945 * Read the received bitmap, revert it as the initial dirty bitmap.
3946 * This is only used when the postcopy migration is paused but wants
3947 * to resume from a middle point.
3949 int ram_dirty_bitmap_reload(MigrationState *s, RAMBlock *block)
3951 int ret = -EINVAL;
3952 QEMUFile *file = s->rp_state.from_dst_file;
3953 unsigned long *le_bitmap, nbits = block->used_length >> TARGET_PAGE_BITS;
3954 uint64_t local_size = DIV_ROUND_UP(nbits, 8);
3955 uint64_t size, end_mark;
3957 trace_ram_dirty_bitmap_reload_begin(block->idstr);
3959 if (s->state != MIGRATION_STATUS_POSTCOPY_RECOVER) {
3960 error_report("%s: incorrect state %s", __func__,
3961 MigrationStatus_str(s->state));
3962 return -EINVAL;
3966 * Note: see comments in ramblock_recv_bitmap_send() on why we
3967 * need the endianess convertion, and the paddings.
3969 local_size = ROUND_UP(local_size, 8);
3971 /* Add paddings */
3972 le_bitmap = bitmap_new(nbits + BITS_PER_LONG);
3974 size = qemu_get_be64(file);
3976 /* The size of the bitmap should match with our ramblock */
3977 if (size != local_size) {
3978 error_report("%s: ramblock '%s' bitmap size mismatch "
3979 "(0x%"PRIx64" != 0x%"PRIx64")", __func__,
3980 block->idstr, size, local_size);
3981 ret = -EINVAL;
3982 goto out;
3985 size = qemu_get_buffer(file, (uint8_t *)le_bitmap, local_size);
3986 end_mark = qemu_get_be64(file);
3988 ret = qemu_file_get_error(file);
3989 if (ret || size != local_size) {
3990 error_report("%s: read bitmap failed for ramblock '%s': %d"
3991 " (size 0x%"PRIx64", got: 0x%"PRIx64")",
3992 __func__, block->idstr, ret, local_size, size);
3993 ret = -EIO;
3994 goto out;
3997 if (end_mark != RAMBLOCK_RECV_BITMAP_ENDING) {
3998 error_report("%s: ramblock '%s' end mark incorrect: 0x%"PRIu64,
3999 __func__, block->idstr, end_mark);
4000 ret = -EINVAL;
4001 goto out;
4005 * Endianess convertion. We are during postcopy (though paused).
4006 * The dirty bitmap won't change. We can directly modify it.
4008 bitmap_from_le(block->bmap, le_bitmap, nbits);
4011 * What we received is "received bitmap". Revert it as the initial
4012 * dirty bitmap for this ramblock.
4014 bitmap_complement(block->bmap, block->bmap, nbits);
4016 trace_ram_dirty_bitmap_reload_complete(block->idstr);
4019 * We succeeded to sync bitmap for current ramblock. If this is
4020 * the last one to sync, we need to notify the main send thread.
4022 ram_dirty_bitmap_reload_notify(s);
4024 ret = 0;
4025 out:
4026 g_free(le_bitmap);
4027 return ret;
4030 static int ram_resume_prepare(MigrationState *s, void *opaque)
4032 RAMState *rs = *(RAMState **)opaque;
4033 int ret;
4035 ret = ram_dirty_bitmap_sync_all(s, rs);
4036 if (ret) {
4037 return ret;
4040 ram_state_resume_prepare(rs, s->to_dst_file);
4042 return 0;
4045 static SaveVMHandlers savevm_ram_handlers = {
4046 .save_setup = ram_save_setup,
4047 .save_live_iterate = ram_save_iterate,
4048 .save_live_complete_postcopy = ram_save_complete,
4049 .save_live_complete_precopy = ram_save_complete,
4050 .has_postcopy = ram_has_postcopy,
4051 .save_live_pending = ram_save_pending,
4052 .load_state = ram_load,
4053 .save_cleanup = ram_save_cleanup,
4054 .load_setup = ram_load_setup,
4055 .load_cleanup = ram_load_cleanup,
4056 .resume_prepare = ram_resume_prepare,
4059 void ram_mig_init(void)
4061 qemu_mutex_init(&XBZRLE.lock);
4062 register_savevm_live(NULL, "ram", 0, 4, &savevm_ram_handlers, &ram_state);