xics/spapr: Rename xics_kvm_init()
[qemu/ar7.git] / target / riscv / fpu_helper.c
blobb4f818a646572f2b14239ed07696392f0ef1009d
1 /*
2 * RISC-V FPU Emulation Helpers for QEMU.
4 * Copyright (c) 2016-2017 Sagar Karandikar, sagark@eecs.berkeley.edu
6 * This program is free software; you can redistribute it and/or modify it
7 * under the terms and conditions of the GNU General Public License,
8 * version 2 or later, as published by the Free Software Foundation.
10 * This program is distributed in the hope it will be useful, but WITHOUT
11 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
12 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
13 * more details.
15 * You should have received a copy of the GNU General Public License along with
16 * this program. If not, see <http://www.gnu.org/licenses/>.
19 #include "qemu/osdep.h"
20 #include "cpu.h"
21 #include "qemu/host-utils.h"
22 #include "exec/exec-all.h"
23 #include "exec/helper-proto.h"
25 target_ulong riscv_cpu_get_fflags(CPURISCVState *env)
27 int soft = get_float_exception_flags(&env->fp_status);
28 target_ulong hard = 0;
30 hard |= (soft & float_flag_inexact) ? FPEXC_NX : 0;
31 hard |= (soft & float_flag_underflow) ? FPEXC_UF : 0;
32 hard |= (soft & float_flag_overflow) ? FPEXC_OF : 0;
33 hard |= (soft & float_flag_divbyzero) ? FPEXC_DZ : 0;
34 hard |= (soft & float_flag_invalid) ? FPEXC_NV : 0;
36 return hard;
39 void riscv_cpu_set_fflags(CPURISCVState *env, target_ulong hard)
41 int soft = 0;
43 soft |= (hard & FPEXC_NX) ? float_flag_inexact : 0;
44 soft |= (hard & FPEXC_UF) ? float_flag_underflow : 0;
45 soft |= (hard & FPEXC_OF) ? float_flag_overflow : 0;
46 soft |= (hard & FPEXC_DZ) ? float_flag_divbyzero : 0;
47 soft |= (hard & FPEXC_NV) ? float_flag_invalid : 0;
49 set_float_exception_flags(soft, &env->fp_status);
52 void helper_set_rounding_mode(CPURISCVState *env, uint32_t rm)
54 int softrm;
56 if (rm == 7) {
57 rm = env->frm;
59 switch (rm) {
60 case 0:
61 softrm = float_round_nearest_even;
62 break;
63 case 1:
64 softrm = float_round_to_zero;
65 break;
66 case 2:
67 softrm = float_round_down;
68 break;
69 case 3:
70 softrm = float_round_up;
71 break;
72 case 4:
73 softrm = float_round_ties_away;
74 break;
75 default:
76 riscv_raise_exception(env, RISCV_EXCP_ILLEGAL_INST, GETPC());
79 set_float_rounding_mode(softrm, &env->fp_status);
82 uint64_t helper_fmadd_s(CPURISCVState *env, uint64_t frs1, uint64_t frs2,
83 uint64_t frs3)
85 return float32_muladd(frs1, frs2, frs3, 0, &env->fp_status);
88 uint64_t helper_fmadd_d(CPURISCVState *env, uint64_t frs1, uint64_t frs2,
89 uint64_t frs3)
91 return float64_muladd(frs1, frs2, frs3, 0, &env->fp_status);
94 uint64_t helper_fmsub_s(CPURISCVState *env, uint64_t frs1, uint64_t frs2,
95 uint64_t frs3)
97 return float32_muladd(frs1, frs2, frs3, float_muladd_negate_c,
98 &env->fp_status);
101 uint64_t helper_fmsub_d(CPURISCVState *env, uint64_t frs1, uint64_t frs2,
102 uint64_t frs3)
104 return float64_muladd(frs1, frs2, frs3, float_muladd_negate_c,
105 &env->fp_status);
108 uint64_t helper_fnmsub_s(CPURISCVState *env, uint64_t frs1, uint64_t frs2,
109 uint64_t frs3)
111 return float32_muladd(frs1, frs2, frs3, float_muladd_negate_product,
112 &env->fp_status);
115 uint64_t helper_fnmsub_d(CPURISCVState *env, uint64_t frs1, uint64_t frs2,
116 uint64_t frs3)
118 return float64_muladd(frs1, frs2, frs3, float_muladd_negate_product,
119 &env->fp_status);
122 uint64_t helper_fnmadd_s(CPURISCVState *env, uint64_t frs1, uint64_t frs2,
123 uint64_t frs3)
125 return float32_muladd(frs1, frs2, frs3, float_muladd_negate_c |
126 float_muladd_negate_product, &env->fp_status);
129 uint64_t helper_fnmadd_d(CPURISCVState *env, uint64_t frs1, uint64_t frs2,
130 uint64_t frs3)
132 return float64_muladd(frs1, frs2, frs3, float_muladd_negate_c |
133 float_muladd_negate_product, &env->fp_status);
136 uint64_t helper_fadd_s(CPURISCVState *env, uint64_t frs1, uint64_t frs2)
138 return float32_add(frs1, frs2, &env->fp_status);
141 uint64_t helper_fsub_s(CPURISCVState *env, uint64_t frs1, uint64_t frs2)
143 return float32_sub(frs1, frs2, &env->fp_status);
146 uint64_t helper_fmul_s(CPURISCVState *env, uint64_t frs1, uint64_t frs2)
148 return float32_mul(frs1, frs2, &env->fp_status);
151 uint64_t helper_fdiv_s(CPURISCVState *env, uint64_t frs1, uint64_t frs2)
153 return float32_div(frs1, frs2, &env->fp_status);
156 uint64_t helper_fmin_s(CPURISCVState *env, uint64_t frs1, uint64_t frs2)
158 return float32_minnum(frs1, frs2, &env->fp_status);
161 uint64_t helper_fmax_s(CPURISCVState *env, uint64_t frs1, uint64_t frs2)
163 return float32_maxnum(frs1, frs2, &env->fp_status);
166 uint64_t helper_fsqrt_s(CPURISCVState *env, uint64_t frs1)
168 return float32_sqrt(frs1, &env->fp_status);
171 target_ulong helper_fle_s(CPURISCVState *env, uint64_t frs1, uint64_t frs2)
173 return float32_le(frs1, frs2, &env->fp_status);
176 target_ulong helper_flt_s(CPURISCVState *env, uint64_t frs1, uint64_t frs2)
178 return float32_lt(frs1, frs2, &env->fp_status);
181 target_ulong helper_feq_s(CPURISCVState *env, uint64_t frs1, uint64_t frs2)
183 return float32_eq_quiet(frs1, frs2, &env->fp_status);
186 target_ulong helper_fcvt_w_s(CPURISCVState *env, uint64_t frs1)
188 return float32_to_int32(frs1, &env->fp_status);
191 target_ulong helper_fcvt_wu_s(CPURISCVState *env, uint64_t frs1)
193 return (int32_t)float32_to_uint32(frs1, &env->fp_status);
196 #if defined(TARGET_RISCV64)
197 uint64_t helper_fcvt_l_s(CPURISCVState *env, uint64_t frs1)
199 return float32_to_int64(frs1, &env->fp_status);
202 uint64_t helper_fcvt_lu_s(CPURISCVState *env, uint64_t frs1)
204 return float32_to_uint64(frs1, &env->fp_status);
206 #endif
208 uint64_t helper_fcvt_s_w(CPURISCVState *env, target_ulong rs1)
210 return int32_to_float32((int32_t)rs1, &env->fp_status);
213 uint64_t helper_fcvt_s_wu(CPURISCVState *env, target_ulong rs1)
215 return uint32_to_float32((uint32_t)rs1, &env->fp_status);
218 #if defined(TARGET_RISCV64)
219 uint64_t helper_fcvt_s_l(CPURISCVState *env, uint64_t rs1)
221 return int64_to_float32(rs1, &env->fp_status);
224 uint64_t helper_fcvt_s_lu(CPURISCVState *env, uint64_t rs1)
226 return uint64_to_float32(rs1, &env->fp_status);
228 #endif
230 target_ulong helper_fclass_s(uint64_t frs1)
232 float32 f = frs1;
233 bool sign = float32_is_neg(f);
235 if (float32_is_infinity(f)) {
236 return sign ? 1 << 0 : 1 << 7;
237 } else if (float32_is_zero(f)) {
238 return sign ? 1 << 3 : 1 << 4;
239 } else if (float32_is_zero_or_denormal(f)) {
240 return sign ? 1 << 2 : 1 << 5;
241 } else if (float32_is_any_nan(f)) {
242 float_status s = { }; /* for snan_bit_is_one */
243 return float32_is_quiet_nan(f, &s) ? 1 << 9 : 1 << 8;
244 } else {
245 return sign ? 1 << 1 : 1 << 6;
249 uint64_t helper_fadd_d(CPURISCVState *env, uint64_t frs1, uint64_t frs2)
251 return float64_add(frs1, frs2, &env->fp_status);
254 uint64_t helper_fsub_d(CPURISCVState *env, uint64_t frs1, uint64_t frs2)
256 return float64_sub(frs1, frs2, &env->fp_status);
259 uint64_t helper_fmul_d(CPURISCVState *env, uint64_t frs1, uint64_t frs2)
261 return float64_mul(frs1, frs2, &env->fp_status);
264 uint64_t helper_fdiv_d(CPURISCVState *env, uint64_t frs1, uint64_t frs2)
266 return float64_div(frs1, frs2, &env->fp_status);
269 uint64_t helper_fmin_d(CPURISCVState *env, uint64_t frs1, uint64_t frs2)
271 return float64_minnum(frs1, frs2, &env->fp_status);
274 uint64_t helper_fmax_d(CPURISCVState *env, uint64_t frs1, uint64_t frs2)
276 return float64_maxnum(frs1, frs2, &env->fp_status);
279 uint64_t helper_fcvt_s_d(CPURISCVState *env, uint64_t rs1)
281 return float64_to_float32(rs1, &env->fp_status);
284 uint64_t helper_fcvt_d_s(CPURISCVState *env, uint64_t rs1)
286 return float32_to_float64(rs1, &env->fp_status);
289 uint64_t helper_fsqrt_d(CPURISCVState *env, uint64_t frs1)
291 return float64_sqrt(frs1, &env->fp_status);
294 target_ulong helper_fle_d(CPURISCVState *env, uint64_t frs1, uint64_t frs2)
296 return float64_le(frs1, frs2, &env->fp_status);
299 target_ulong helper_flt_d(CPURISCVState *env, uint64_t frs1, uint64_t frs2)
301 return float64_lt(frs1, frs2, &env->fp_status);
304 target_ulong helper_feq_d(CPURISCVState *env, uint64_t frs1, uint64_t frs2)
306 return float64_eq_quiet(frs1, frs2, &env->fp_status);
309 target_ulong helper_fcvt_w_d(CPURISCVState *env, uint64_t frs1)
311 return float64_to_int32(frs1, &env->fp_status);
314 target_ulong helper_fcvt_wu_d(CPURISCVState *env, uint64_t frs1)
316 return (int32_t)float64_to_uint32(frs1, &env->fp_status);
319 #if defined(TARGET_RISCV64)
320 uint64_t helper_fcvt_l_d(CPURISCVState *env, uint64_t frs1)
322 return float64_to_int64(frs1, &env->fp_status);
325 uint64_t helper_fcvt_lu_d(CPURISCVState *env, uint64_t frs1)
327 return float64_to_uint64(frs1, &env->fp_status);
329 #endif
331 uint64_t helper_fcvt_d_w(CPURISCVState *env, target_ulong rs1)
333 return int32_to_float64((int32_t)rs1, &env->fp_status);
336 uint64_t helper_fcvt_d_wu(CPURISCVState *env, target_ulong rs1)
338 return uint32_to_float64((uint32_t)rs1, &env->fp_status);
341 #if defined(TARGET_RISCV64)
342 uint64_t helper_fcvt_d_l(CPURISCVState *env, uint64_t rs1)
344 return int64_to_float64(rs1, &env->fp_status);
347 uint64_t helper_fcvt_d_lu(CPURISCVState *env, uint64_t rs1)
349 return uint64_to_float64(rs1, &env->fp_status);
351 #endif
353 target_ulong helper_fclass_d(uint64_t frs1)
355 float64 f = frs1;
356 bool sign = float64_is_neg(f);
358 if (float64_is_infinity(f)) {
359 return sign ? 1 << 0 : 1 << 7;
360 } else if (float64_is_zero(f)) {
361 return sign ? 1 << 3 : 1 << 4;
362 } else if (float64_is_zero_or_denormal(f)) {
363 return sign ? 1 << 2 : 1 << 5;
364 } else if (float64_is_any_nan(f)) {
365 float_status s = { }; /* for snan_bit_is_one */
366 return float64_is_quiet_nan(f, &s) ? 1 << 9 : 1 << 8;
367 } else {
368 return sign ? 1 << 1 : 1 << 6;