xics/spapr: Rename xics_kvm_init()
[qemu/ar7.git] / hw / timer / cadence_ttc.c
blob115d935f84b6fce255451cb76ab32af3804ae510
1 /*
2 * Xilinx Zynq cadence TTC model
4 * Copyright (c) 2011 Xilinx Inc.
5 * Copyright (c) 2012 Peter A.G. Crosthwaite (peter.crosthwaite@petalogix.com)
6 * Copyright (c) 2012 PetaLogix Pty Ltd.
7 * Written By Haibing Ma
8 * M. Habib
10 * This program is free software; you can redistribute it and/or
11 * modify it under the terms of the GNU General Public License
12 * as published by the Free Software Foundation; either version
13 * 2 of the License, or (at your option) any later version.
15 * You should have received a copy of the GNU General Public License along
16 * with this program; if not, see <http://www.gnu.org/licenses/>.
19 #include "qemu/osdep.h"
20 #include "hw/sysbus.h"
21 #include "qemu/module.h"
22 #include "qemu/timer.h"
24 #ifdef CADENCE_TTC_ERR_DEBUG
25 #define DB_PRINT(...) do { \
26 fprintf(stderr, ": %s: ", __func__); \
27 fprintf(stderr, ## __VA_ARGS__); \
28 } while (0)
29 #else
30 #define DB_PRINT(...)
31 #endif
33 #define COUNTER_INTR_IV 0x00000001
34 #define COUNTER_INTR_M1 0x00000002
35 #define COUNTER_INTR_M2 0x00000004
36 #define COUNTER_INTR_M3 0x00000008
37 #define COUNTER_INTR_OV 0x00000010
38 #define COUNTER_INTR_EV 0x00000020
40 #define COUNTER_CTRL_DIS 0x00000001
41 #define COUNTER_CTRL_INT 0x00000002
42 #define COUNTER_CTRL_DEC 0x00000004
43 #define COUNTER_CTRL_MATCH 0x00000008
44 #define COUNTER_CTRL_RST 0x00000010
46 #define CLOCK_CTRL_PS_EN 0x00000001
47 #define CLOCK_CTRL_PS_V 0x0000001e
49 typedef struct {
50 QEMUTimer *timer;
51 int freq;
53 uint32_t reg_clock;
54 uint32_t reg_count;
55 uint32_t reg_value;
56 uint16_t reg_interval;
57 uint16_t reg_match[3];
58 uint32_t reg_intr;
59 uint32_t reg_intr_en;
60 uint32_t reg_event_ctrl;
61 uint32_t reg_event;
63 uint64_t cpu_time;
64 unsigned int cpu_time_valid;
66 qemu_irq irq;
67 } CadenceTimerState;
69 #define TYPE_CADENCE_TTC "cadence_ttc"
70 #define CADENCE_TTC(obj) \
71 OBJECT_CHECK(CadenceTTCState, (obj), TYPE_CADENCE_TTC)
73 typedef struct CadenceTTCState {
74 SysBusDevice parent_obj;
76 MemoryRegion iomem;
77 CadenceTimerState timer[3];
78 } CadenceTTCState;
80 static void cadence_timer_update(CadenceTimerState *s)
82 qemu_set_irq(s->irq, !!(s->reg_intr & s->reg_intr_en));
85 static CadenceTimerState *cadence_timer_from_addr(void *opaque,
86 hwaddr offset)
88 unsigned int index;
89 CadenceTTCState *s = (CadenceTTCState *)opaque;
91 index = (offset >> 2) % 3;
93 return &s->timer[index];
96 static uint64_t cadence_timer_get_ns(CadenceTimerState *s, uint64_t timer_steps)
98 /* timer_steps has max value of 0x100000000. double check it
99 * (or overflow can happen below) */
100 assert(timer_steps <= 1ULL << 32);
102 uint64_t r = timer_steps * 1000000000ULL;
103 if (s->reg_clock & CLOCK_CTRL_PS_EN) {
104 r >>= 16 - (((s->reg_clock & CLOCK_CTRL_PS_V) >> 1) + 1);
105 } else {
106 r >>= 16;
108 r /= (uint64_t)s->freq;
109 return r;
112 static uint64_t cadence_timer_get_steps(CadenceTimerState *s, uint64_t ns)
114 uint64_t to_divide = 1000000000ULL;
116 uint64_t r = ns;
117 /* for very large intervals (> 8s) do some division first to stop
118 * overflow (costs some prescision) */
119 while (r >= 8ULL << 30 && to_divide > 1) {
120 r /= 1000;
121 to_divide /= 1000;
123 r <<= 16;
124 /* keep early-dividing as needed */
125 while (r >= 8ULL << 30 && to_divide > 1) {
126 r /= 1000;
127 to_divide /= 1000;
129 r *= (uint64_t)s->freq;
130 if (s->reg_clock & CLOCK_CTRL_PS_EN) {
131 r /= 1 << (((s->reg_clock & CLOCK_CTRL_PS_V) >> 1) + 1);
134 r /= to_divide;
135 return r;
138 /* determine if x is in between a and b, exclusive of a, inclusive of b */
140 static inline int64_t is_between(int64_t x, int64_t a, int64_t b)
142 if (a < b) {
143 return x > a && x <= b;
145 return x < a && x >= b;
148 static void cadence_timer_run(CadenceTimerState *s)
150 int i;
151 int64_t event_interval, next_value;
153 assert(s->cpu_time_valid); /* cadence_timer_sync must be called first */
155 if (s->reg_count & COUNTER_CTRL_DIS) {
156 s->cpu_time_valid = 0;
157 return;
160 { /* figure out what's going to happen next (rollover or match) */
161 int64_t interval = (uint64_t)((s->reg_count & COUNTER_CTRL_INT) ?
162 (int64_t)s->reg_interval + 1 : 0x10000ULL) << 16;
163 next_value = (s->reg_count & COUNTER_CTRL_DEC) ? -1ULL : interval;
164 for (i = 0; i < 3; ++i) {
165 int64_t cand = (uint64_t)s->reg_match[i] << 16;
166 if (is_between(cand, (uint64_t)s->reg_value, next_value)) {
167 next_value = cand;
171 DB_PRINT("next timer event value: %09llx\n",
172 (unsigned long long)next_value);
174 event_interval = next_value - (int64_t)s->reg_value;
175 event_interval = (event_interval < 0) ? -event_interval : event_interval;
177 timer_mod(s->timer, s->cpu_time +
178 cadence_timer_get_ns(s, event_interval));
181 static void cadence_timer_sync(CadenceTimerState *s)
183 int i;
184 int64_t r, x;
185 int64_t interval = ((s->reg_count & COUNTER_CTRL_INT) ?
186 (int64_t)s->reg_interval + 1 : 0x10000ULL) << 16;
187 uint64_t old_time = s->cpu_time;
189 s->cpu_time = qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL);
190 DB_PRINT("cpu time: %lld ns\n", (long long)old_time);
192 if (!s->cpu_time_valid || old_time == s->cpu_time) {
193 s->cpu_time_valid = 1;
194 return;
197 r = (int64_t)cadence_timer_get_steps(s, s->cpu_time - old_time);
198 x = (int64_t)s->reg_value + ((s->reg_count & COUNTER_CTRL_DEC) ? -r : r);
200 for (i = 0; i < 3; ++i) {
201 int64_t m = (int64_t)s->reg_match[i] << 16;
202 if (m > interval) {
203 continue;
205 /* check to see if match event has occurred. check m +/- interval
206 * to account for match events in wrap around cases */
207 if (is_between(m, s->reg_value, x) ||
208 is_between(m + interval, s->reg_value, x) ||
209 is_between(m - interval, s->reg_value, x)) {
210 s->reg_intr |= (2 << i);
213 if ((x < 0) || (x >= interval)) {
214 s->reg_intr |= (s->reg_count & COUNTER_CTRL_INT) ?
215 COUNTER_INTR_IV : COUNTER_INTR_OV;
217 while (x < 0) {
218 x += interval;
220 s->reg_value = (uint32_t)(x % interval);
221 cadence_timer_update(s);
224 static void cadence_timer_tick(void *opaque)
226 CadenceTimerState *s = opaque;
228 DB_PRINT("\n");
229 cadence_timer_sync(s);
230 cadence_timer_run(s);
233 static uint32_t cadence_ttc_read_imp(void *opaque, hwaddr offset)
235 CadenceTimerState *s = cadence_timer_from_addr(opaque, offset);
236 uint32_t value;
238 cadence_timer_sync(s);
239 cadence_timer_run(s);
241 switch (offset) {
242 case 0x00: /* clock control */
243 case 0x04:
244 case 0x08:
245 return s->reg_clock;
247 case 0x0c: /* counter control */
248 case 0x10:
249 case 0x14:
250 return s->reg_count;
252 case 0x18: /* counter value */
253 case 0x1c:
254 case 0x20:
255 return (uint16_t)(s->reg_value >> 16);
257 case 0x24: /* reg_interval counter */
258 case 0x28:
259 case 0x2c:
260 return s->reg_interval;
262 case 0x30: /* match 1 counter */
263 case 0x34:
264 case 0x38:
265 return s->reg_match[0];
267 case 0x3c: /* match 2 counter */
268 case 0x40:
269 case 0x44:
270 return s->reg_match[1];
272 case 0x48: /* match 3 counter */
273 case 0x4c:
274 case 0x50:
275 return s->reg_match[2];
277 case 0x54: /* interrupt register */
278 case 0x58:
279 case 0x5c:
280 /* cleared after read */
281 value = s->reg_intr;
282 s->reg_intr = 0;
283 cadence_timer_update(s);
284 return value;
286 case 0x60: /* interrupt enable */
287 case 0x64:
288 case 0x68:
289 return s->reg_intr_en;
291 case 0x6c:
292 case 0x70:
293 case 0x74:
294 return s->reg_event_ctrl;
296 case 0x78:
297 case 0x7c:
298 case 0x80:
299 return s->reg_event;
301 default:
302 return 0;
306 static uint64_t cadence_ttc_read(void *opaque, hwaddr offset,
307 unsigned size)
309 uint32_t ret = cadence_ttc_read_imp(opaque, offset);
311 DB_PRINT("addr: %08x data: %08x\n", (unsigned)offset, (unsigned)ret);
312 return ret;
315 static void cadence_ttc_write(void *opaque, hwaddr offset,
316 uint64_t value, unsigned size)
318 CadenceTimerState *s = cadence_timer_from_addr(opaque, offset);
320 DB_PRINT("addr: %08x data %08x\n", (unsigned)offset, (unsigned)value);
322 cadence_timer_sync(s);
324 switch (offset) {
325 case 0x00: /* clock control */
326 case 0x04:
327 case 0x08:
328 s->reg_clock = value & 0x3F;
329 break;
331 case 0x0c: /* counter control */
332 case 0x10:
333 case 0x14:
334 if (value & COUNTER_CTRL_RST) {
335 s->reg_value = 0;
337 s->reg_count = value & 0x3f & ~COUNTER_CTRL_RST;
338 break;
340 case 0x24: /* interval register */
341 case 0x28:
342 case 0x2c:
343 s->reg_interval = value & 0xffff;
344 break;
346 case 0x30: /* match register */
347 case 0x34:
348 case 0x38:
349 s->reg_match[0] = value & 0xffff;
350 break;
352 case 0x3c: /* match register */
353 case 0x40:
354 case 0x44:
355 s->reg_match[1] = value & 0xffff;
356 break;
358 case 0x48: /* match register */
359 case 0x4c:
360 case 0x50:
361 s->reg_match[2] = value & 0xffff;
362 break;
364 case 0x54: /* interrupt register */
365 case 0x58:
366 case 0x5c:
367 break;
369 case 0x60: /* interrupt enable */
370 case 0x64:
371 case 0x68:
372 s->reg_intr_en = value & 0x3f;
373 break;
375 case 0x6c: /* event control */
376 case 0x70:
377 case 0x74:
378 s->reg_event_ctrl = value & 0x07;
379 break;
381 default:
382 return;
385 cadence_timer_run(s);
386 cadence_timer_update(s);
389 static const MemoryRegionOps cadence_ttc_ops = {
390 .read = cadence_ttc_read,
391 .write = cadence_ttc_write,
392 .endianness = DEVICE_NATIVE_ENDIAN,
395 static void cadence_timer_reset(CadenceTimerState *s)
397 s->reg_count = 0x21;
400 static void cadence_timer_init(uint32_t freq, CadenceTimerState *s)
402 memset(s, 0, sizeof(CadenceTimerState));
403 s->freq = freq;
405 cadence_timer_reset(s);
407 s->timer = timer_new_ns(QEMU_CLOCK_VIRTUAL, cadence_timer_tick, s);
410 static void cadence_ttc_init(Object *obj)
412 CadenceTTCState *s = CADENCE_TTC(obj);
413 int i;
415 for (i = 0; i < 3; ++i) {
416 cadence_timer_init(133000000, &s->timer[i]);
417 sysbus_init_irq(SYS_BUS_DEVICE(obj), &s->timer[i].irq);
420 memory_region_init_io(&s->iomem, obj, &cadence_ttc_ops, s,
421 "timer", 0x1000);
422 sysbus_init_mmio(SYS_BUS_DEVICE(obj), &s->iomem);
425 static int cadence_timer_pre_save(void *opaque)
427 cadence_timer_sync((CadenceTimerState *)opaque);
429 return 0;
432 static int cadence_timer_post_load(void *opaque, int version_id)
434 CadenceTimerState *s = opaque;
436 s->cpu_time_valid = 0;
437 cadence_timer_sync(s);
438 cadence_timer_run(s);
439 cadence_timer_update(s);
440 return 0;
443 static const VMStateDescription vmstate_cadence_timer = {
444 .name = "cadence_timer",
445 .version_id = 1,
446 .minimum_version_id = 1,
447 .pre_save = cadence_timer_pre_save,
448 .post_load = cadence_timer_post_load,
449 .fields = (VMStateField[]) {
450 VMSTATE_UINT32(reg_clock, CadenceTimerState),
451 VMSTATE_UINT32(reg_count, CadenceTimerState),
452 VMSTATE_UINT32(reg_value, CadenceTimerState),
453 VMSTATE_UINT16(reg_interval, CadenceTimerState),
454 VMSTATE_UINT16_ARRAY(reg_match, CadenceTimerState, 3),
455 VMSTATE_UINT32(reg_intr, CadenceTimerState),
456 VMSTATE_UINT32(reg_intr_en, CadenceTimerState),
457 VMSTATE_UINT32(reg_event_ctrl, CadenceTimerState),
458 VMSTATE_UINT32(reg_event, CadenceTimerState),
459 VMSTATE_END_OF_LIST()
463 static const VMStateDescription vmstate_cadence_ttc = {
464 .name = "cadence_TTC",
465 .version_id = 1,
466 .minimum_version_id = 1,
467 .fields = (VMStateField[]) {
468 VMSTATE_STRUCT_ARRAY(timer, CadenceTTCState, 3, 0,
469 vmstate_cadence_timer,
470 CadenceTimerState),
471 VMSTATE_END_OF_LIST()
475 static void cadence_ttc_class_init(ObjectClass *klass, void *data)
477 DeviceClass *dc = DEVICE_CLASS(klass);
479 dc->vmsd = &vmstate_cadence_ttc;
482 static const TypeInfo cadence_ttc_info = {
483 .name = TYPE_CADENCE_TTC,
484 .parent = TYPE_SYS_BUS_DEVICE,
485 .instance_size = sizeof(CadenceTTCState),
486 .instance_init = cadence_ttc_init,
487 .class_init = cadence_ttc_class_init,
490 static void cadence_ttc_register_types(void)
492 type_register_static(&cadence_ttc_info);
495 type_init(cadence_ttc_register_types)