xics/spapr: Rename xics_kvm_init()
[qemu/ar7.git] / hw / misc / imx6ul_ccm.c
blob37b472d12598d0859ba93a7aed612241730e5a10
1 /*
2 * IMX6UL Clock Control Module
4 * Copyright (c) 2018 Jean-Christophe Dubois <jcd@tribudubois.net>
6 * This work is licensed under the terms of the GNU GPL, version 2 or later.
7 * See the COPYING file in the top-level directory.
9 * To get the timer frequencies right, we need to emulate at least part of
10 * the CCM.
13 #include "qemu/osdep.h"
14 #include "hw/registerfields.h"
15 #include "hw/misc/imx6ul_ccm.h"
16 #include "qemu/log.h"
17 #include "qemu/module.h"
19 #include "trace.h"
21 static const char *imx6ul_ccm_reg_name(uint32_t reg)
23 static char unknown[20];
25 switch (reg) {
26 case CCM_CCR:
27 return "CCR";
28 case CCM_CCDR:
29 return "CCDR";
30 case CCM_CSR:
31 return "CSR";
32 case CCM_CCSR:
33 return "CCSR";
34 case CCM_CACRR:
35 return "CACRR";
36 case CCM_CBCDR:
37 return "CBCDR";
38 case CCM_CBCMR:
39 return "CBCMR";
40 case CCM_CSCMR1:
41 return "CSCMR1";
42 case CCM_CSCMR2:
43 return "CSCMR2";
44 case CCM_CSCDR1:
45 return "CSCDR1";
46 case CCM_CS1CDR:
47 return "CS1CDR";
48 case CCM_CS2CDR:
49 return "CS2CDR";
50 case CCM_CDCDR:
51 return "CDCDR";
52 case CCM_CHSCCDR:
53 return "CHSCCDR";
54 case CCM_CSCDR2:
55 return "CSCDR2";
56 case CCM_CSCDR3:
57 return "CSCDR3";
58 case CCM_CDHIPR:
59 return "CDHIPR";
60 case CCM_CTOR:
61 return "CTOR";
62 case CCM_CLPCR:
63 return "CLPCR";
64 case CCM_CISR:
65 return "CISR";
66 case CCM_CIMR:
67 return "CIMR";
68 case CCM_CCOSR:
69 return "CCOSR";
70 case CCM_CGPR:
71 return "CGPR";
72 case CCM_CCGR0:
73 return "CCGR0";
74 case CCM_CCGR1:
75 return "CCGR1";
76 case CCM_CCGR2:
77 return "CCGR2";
78 case CCM_CCGR3:
79 return "CCGR3";
80 case CCM_CCGR4:
81 return "CCGR4";
82 case CCM_CCGR5:
83 return "CCGR5";
84 case CCM_CCGR6:
85 return "CCGR6";
86 case CCM_CMEOR:
87 return "CMEOR";
88 default:
89 sprintf(unknown, "%d ?", reg);
90 return unknown;
94 static const char *imx6ul_analog_reg_name(uint32_t reg)
96 static char unknown[20];
98 switch (reg) {
99 case CCM_ANALOG_PLL_ARM:
100 return "PLL_ARM";
101 case CCM_ANALOG_PLL_ARM_SET:
102 return "PLL_ARM_SET";
103 case CCM_ANALOG_PLL_ARM_CLR:
104 return "PLL_ARM_CLR";
105 case CCM_ANALOG_PLL_ARM_TOG:
106 return "PLL_ARM_TOG";
107 case CCM_ANALOG_PLL_USB1:
108 return "PLL_USB1";
109 case CCM_ANALOG_PLL_USB1_SET:
110 return "PLL_USB1_SET";
111 case CCM_ANALOG_PLL_USB1_CLR:
112 return "PLL_USB1_CLR";
113 case CCM_ANALOG_PLL_USB1_TOG:
114 return "PLL_USB1_TOG";
115 case CCM_ANALOG_PLL_USB2:
116 return "PLL_USB2";
117 case CCM_ANALOG_PLL_USB2_SET:
118 return "PLL_USB2_SET";
119 case CCM_ANALOG_PLL_USB2_CLR:
120 return "PLL_USB2_CLR";
121 case CCM_ANALOG_PLL_USB2_TOG:
122 return "PLL_USB2_TOG";
123 case CCM_ANALOG_PLL_SYS:
124 return "PLL_SYS";
125 case CCM_ANALOG_PLL_SYS_SET:
126 return "PLL_SYS_SET";
127 case CCM_ANALOG_PLL_SYS_CLR:
128 return "PLL_SYS_CLR";
129 case CCM_ANALOG_PLL_SYS_TOG:
130 return "PLL_SYS_TOG";
131 case CCM_ANALOG_PLL_SYS_SS:
132 return "PLL_SYS_SS";
133 case CCM_ANALOG_PLL_SYS_NUM:
134 return "PLL_SYS_NUM";
135 case CCM_ANALOG_PLL_SYS_DENOM:
136 return "PLL_SYS_DENOM";
137 case CCM_ANALOG_PLL_AUDIO:
138 return "PLL_AUDIO";
139 case CCM_ANALOG_PLL_AUDIO_SET:
140 return "PLL_AUDIO_SET";
141 case CCM_ANALOG_PLL_AUDIO_CLR:
142 return "PLL_AUDIO_CLR";
143 case CCM_ANALOG_PLL_AUDIO_TOG:
144 return "PLL_AUDIO_TOG";
145 case CCM_ANALOG_PLL_AUDIO_NUM:
146 return "PLL_AUDIO_NUM";
147 case CCM_ANALOG_PLL_AUDIO_DENOM:
148 return "PLL_AUDIO_DENOM";
149 case CCM_ANALOG_PLL_VIDEO:
150 return "PLL_VIDEO";
151 case CCM_ANALOG_PLL_VIDEO_SET:
152 return "PLL_VIDEO_SET";
153 case CCM_ANALOG_PLL_VIDEO_CLR:
154 return "PLL_VIDEO_CLR";
155 case CCM_ANALOG_PLL_VIDEO_TOG:
156 return "PLL_VIDEO_TOG";
157 case CCM_ANALOG_PLL_VIDEO_NUM:
158 return "PLL_VIDEO_NUM";
159 case CCM_ANALOG_PLL_VIDEO_DENOM:
160 return "PLL_VIDEO_DENOM";
161 case CCM_ANALOG_PLL_ENET:
162 return "PLL_ENET";
163 case CCM_ANALOG_PLL_ENET_SET:
164 return "PLL_ENET_SET";
165 case CCM_ANALOG_PLL_ENET_CLR:
166 return "PLL_ENET_CLR";
167 case CCM_ANALOG_PLL_ENET_TOG:
168 return "PLL_ENET_TOG";
169 case CCM_ANALOG_PFD_480:
170 return "PFD_480";
171 case CCM_ANALOG_PFD_480_SET:
172 return "PFD_480_SET";
173 case CCM_ANALOG_PFD_480_CLR:
174 return "PFD_480_CLR";
175 case CCM_ANALOG_PFD_480_TOG:
176 return "PFD_480_TOG";
177 case CCM_ANALOG_PFD_528:
178 return "PFD_528";
179 case CCM_ANALOG_PFD_528_SET:
180 return "PFD_528_SET";
181 case CCM_ANALOG_PFD_528_CLR:
182 return "PFD_528_CLR";
183 case CCM_ANALOG_PFD_528_TOG:
184 return "PFD_528_TOG";
185 case CCM_ANALOG_MISC0:
186 return "MISC0";
187 case CCM_ANALOG_MISC0_SET:
188 return "MISC0_SET";
189 case CCM_ANALOG_MISC0_CLR:
190 return "MISC0_CLR";
191 case CCM_ANALOG_MISC0_TOG:
192 return "MISC0_TOG";
193 case CCM_ANALOG_MISC2:
194 return "MISC2";
195 case CCM_ANALOG_MISC2_SET:
196 return "MISC2_SET";
197 case CCM_ANALOG_MISC2_CLR:
198 return "MISC2_CLR";
199 case CCM_ANALOG_MISC2_TOG:
200 return "MISC2_TOG";
201 case PMU_REG_1P1:
202 return "PMU_REG_1P1";
203 case PMU_REG_3P0:
204 return "PMU_REG_3P0";
205 case PMU_REG_2P5:
206 return "PMU_REG_2P5";
207 case PMU_REG_CORE:
208 return "PMU_REG_CORE";
209 case PMU_MISC1:
210 return "PMU_MISC1";
211 case PMU_MISC1_SET:
212 return "PMU_MISC1_SET";
213 case PMU_MISC1_CLR:
214 return "PMU_MISC1_CLR";
215 case PMU_MISC1_TOG:
216 return "PMU_MISC1_TOG";
217 case USB_ANALOG_DIGPROG:
218 return "USB_ANALOG_DIGPROG";
219 default:
220 sprintf(unknown, "%d ?", reg);
221 return unknown;
225 #define CKIH_FREQ 24000000 /* 24MHz crystal input */
227 static const VMStateDescription vmstate_imx6ul_ccm = {
228 .name = TYPE_IMX6UL_CCM,
229 .version_id = 1,
230 .minimum_version_id = 1,
231 .fields = (VMStateField[]) {
232 VMSTATE_UINT32_ARRAY(ccm, IMX6ULCCMState, CCM_MAX),
233 VMSTATE_UINT32_ARRAY(analog, IMX6ULCCMState, CCM_ANALOG_MAX),
234 VMSTATE_END_OF_LIST()
238 static uint64_t imx6ul_analog_get_osc_clk(IMX6ULCCMState *dev)
240 uint64_t freq = CKIH_FREQ;
242 trace_ccm_freq((uint32_t)freq);
244 return freq;
247 static uint64_t imx6ul_analog_get_pll2_clk(IMX6ULCCMState *dev)
249 uint64_t freq = imx6ul_analog_get_osc_clk(dev);
251 if (FIELD_EX32(dev->analog[CCM_ANALOG_PLL_SYS],
252 ANALOG_PLL_SYS, DIV_SELECT)) {
253 freq *= 22;
254 } else {
255 freq *= 20;
258 trace_ccm_freq((uint32_t)freq);
260 return freq;
263 static uint64_t imx6ul_analog_get_pll3_clk(IMX6ULCCMState *dev)
265 uint64_t freq = imx6ul_analog_get_osc_clk(dev) * 20;
267 trace_ccm_freq((uint32_t)freq);
269 return freq;
272 static uint64_t imx6ul_analog_get_pll2_pfd0_clk(IMX6ULCCMState *dev)
274 uint64_t freq = 0;
276 freq = imx6ul_analog_get_pll2_clk(dev) * 18
277 / FIELD_EX32(dev->analog[CCM_ANALOG_PFD_528],
278 ANALOG_PFD_528, PFD0_FRAC);
280 trace_ccm_freq((uint32_t)freq);
282 return freq;
285 static uint64_t imx6ul_analog_get_pll2_pfd2_clk(IMX6ULCCMState *dev)
287 uint64_t freq = 0;
289 freq = imx6ul_analog_get_pll2_clk(dev) * 18
290 / FIELD_EX32(dev->analog[CCM_ANALOG_PFD_528],
291 ANALOG_PFD_528, PFD2_FRAC);
293 trace_ccm_freq((uint32_t)freq);
295 return freq;
298 static uint64_t imx6ul_analog_pll2_bypass_clk(IMX6ULCCMState *dev)
300 uint64_t freq = 0;
302 trace_ccm_freq((uint32_t)freq);
304 return freq;
307 static uint64_t imx6ul_ccm_get_periph_clk2_sel_clk(IMX6ULCCMState *dev)
309 uint64_t freq = 0;
311 switch (FIELD_EX32(dev->ccm[CCM_CBCMR], CBCMR, PERIPH_CLK2_SEL)) {
312 case 0:
313 freq = imx6ul_analog_get_pll3_clk(dev);
314 break;
315 case 1:
316 freq = imx6ul_analog_get_osc_clk(dev);
317 break;
318 case 2:
319 freq = imx6ul_analog_pll2_bypass_clk(dev);
320 break;
321 case 3:
322 /* We should never get there as 3 is a reserved value */
323 qemu_log_mask(LOG_GUEST_ERROR,
324 "[%s]%s: unsupported PERIPH_CLK2_SEL value 3\n",
325 TYPE_IMX6UL_CCM, __func__);
326 /* freq is set to 0 as we don't know what it should be */
327 break;
328 default:
329 g_assert_not_reached();
332 trace_ccm_freq((uint32_t)freq);
334 return freq;
337 static uint64_t imx6ul_ccm_get_periph_clk_sel_clk(IMX6ULCCMState *dev)
339 uint64_t freq = 0;
341 switch (FIELD_EX32(dev->ccm[CCM_CBCMR], CBCMR, PRE_PERIPH_CLK_SEL)) {
342 case 0:
343 freq = imx6ul_analog_get_pll2_clk(dev);
344 break;
345 case 1:
346 freq = imx6ul_analog_get_pll2_pfd2_clk(dev);
347 break;
348 case 2:
349 freq = imx6ul_analog_get_pll2_pfd0_clk(dev);
350 break;
351 case 3:
352 freq = imx6ul_analog_get_pll2_pfd2_clk(dev) / 2;
353 break;
354 default:
355 g_assert_not_reached();
358 trace_ccm_freq((uint32_t)freq);
360 return freq;
363 static uint64_t imx6ul_ccm_get_periph_clk2_clk(IMX6ULCCMState *dev)
365 uint64_t freq = 0;
367 freq = imx6ul_ccm_get_periph_clk2_sel_clk(dev)
368 / (1 + FIELD_EX32(dev->ccm[CCM_CBCDR], CBCDR, PERIPH_CLK2_PODF));
370 trace_ccm_freq((uint32_t)freq);
372 return freq;
375 static uint64_t imx6ul_ccm_get_periph_sel_clk(IMX6ULCCMState *dev)
377 uint64_t freq = 0;
379 switch (FIELD_EX32(dev->ccm[CCM_CBCDR], CBCDR, PERIPH_CLK_SEL)) {
380 case 0:
381 freq = imx6ul_ccm_get_periph_clk_sel_clk(dev);
382 break;
383 case 1:
384 freq = imx6ul_ccm_get_periph_clk2_clk(dev);
385 break;
386 default:
387 g_assert_not_reached();
390 trace_ccm_freq((uint32_t)freq);
392 return freq;
395 static uint64_t imx6ul_ccm_get_ahb_clk(IMX6ULCCMState *dev)
397 uint64_t freq = 0;
399 freq = imx6ul_ccm_get_periph_sel_clk(dev)
400 / (1 + FIELD_EX32(dev->ccm[CCM_CBCDR], CBCDR, AHB_PODF));
402 trace_ccm_freq((uint32_t)freq);
404 return freq;
407 static uint64_t imx6ul_ccm_get_ipg_clk(IMX6ULCCMState *dev)
409 uint64_t freq = 0;
411 freq = imx6ul_ccm_get_ahb_clk(dev)
412 / (1 + FIELD_EX32(dev->ccm[CCM_CBCDR], CBCDR, IPG_PODF));
414 trace_ccm_freq((uint32_t)freq);
416 return freq;
419 static uint64_t imx6ul_ccm_get_per_sel_clk(IMX6ULCCMState *dev)
421 uint64_t freq = 0;
423 switch (FIELD_EX32(dev->ccm[CCM_CSCMR1], CSCMR1, PERCLK_CLK_SEL)) {
424 case 0:
425 freq = imx6ul_ccm_get_ipg_clk(dev);
426 break;
427 case 1:
428 freq = imx6ul_analog_get_osc_clk(dev);
429 break;
430 default:
431 g_assert_not_reached();
434 trace_ccm_freq((uint32_t)freq);
436 return freq;
439 static uint64_t imx6ul_ccm_get_per_clk(IMX6ULCCMState *dev)
441 uint64_t freq = 0;
443 freq = imx6ul_ccm_get_per_sel_clk(dev)
444 / (1 + FIELD_EX32(dev->ccm[CCM_CSCMR1], CSCMR1, PERCLK_PODF));
446 trace_ccm_freq((uint32_t)freq);
448 return freq;
451 static uint32_t imx6ul_ccm_get_clock_frequency(IMXCCMState *dev, IMXClk clock)
453 uint32_t freq = 0;
454 IMX6ULCCMState *s = IMX6UL_CCM(dev);
456 switch (clock) {
457 case CLK_NONE:
458 break;
459 case CLK_IPG:
460 freq = imx6ul_ccm_get_ipg_clk(s);
461 break;
462 case CLK_IPG_HIGH:
463 freq = imx6ul_ccm_get_per_clk(s);
464 break;
465 case CLK_32k:
466 freq = CKIL_FREQ;
467 break;
468 case CLK_HIGH:
469 freq = CKIH_FREQ;
470 break;
471 case CLK_HIGH_DIV:
472 freq = CKIH_FREQ / 8;
473 break;
474 default:
475 qemu_log_mask(LOG_GUEST_ERROR, "[%s]%s: unsupported clock %d\n",
476 TYPE_IMX6UL_CCM, __func__, clock);
477 break;
480 trace_ccm_clock_freq(clock, freq);
482 return freq;
485 static void imx6ul_ccm_reset(DeviceState *dev)
487 IMX6ULCCMState *s = IMX6UL_CCM(dev);
489 trace_ccm_entry();
491 s->ccm[CCM_CCR] = 0x0401167F;
492 s->ccm[CCM_CCDR] = 0x00000000;
493 s->ccm[CCM_CSR] = 0x00000010;
494 s->ccm[CCM_CCSR] = 0x00000100;
495 s->ccm[CCM_CACRR] = 0x00000000;
496 s->ccm[CCM_CBCDR] = 0x00018D00;
497 s->ccm[CCM_CBCMR] = 0x24860324;
498 s->ccm[CCM_CSCMR1] = 0x04900080;
499 s->ccm[CCM_CSCMR2] = 0x03192F06;
500 s->ccm[CCM_CSCDR1] = 0x00490B00;
501 s->ccm[CCM_CS1CDR] = 0x0EC102C1;
502 s->ccm[CCM_CS2CDR] = 0x000336C1;
503 s->ccm[CCM_CDCDR] = 0x33F71F92;
504 s->ccm[CCM_CHSCCDR] = 0x000248A4;
505 s->ccm[CCM_CSCDR2] = 0x00029B48;
506 s->ccm[CCM_CSCDR3] = 0x00014841;
507 s->ccm[CCM_CDHIPR] = 0x00000000;
508 s->ccm[CCM_CTOR] = 0x00000000;
509 s->ccm[CCM_CLPCR] = 0x00000079;
510 s->ccm[CCM_CISR] = 0x00000000;
511 s->ccm[CCM_CIMR] = 0xFFFFFFFF;
512 s->ccm[CCM_CCOSR] = 0x000A0001;
513 s->ccm[CCM_CGPR] = 0x0000FE62;
514 s->ccm[CCM_CCGR0] = 0xFFFFFFFF;
515 s->ccm[CCM_CCGR1] = 0xFFFFFFFF;
516 s->ccm[CCM_CCGR2] = 0xFC3FFFFF;
517 s->ccm[CCM_CCGR3] = 0xFFFFFFFF;
518 s->ccm[CCM_CCGR4] = 0xFFFFFFFF;
519 s->ccm[CCM_CCGR5] = 0xFFFFFFFF;
520 s->ccm[CCM_CCGR6] = 0xFFFFFFFF;
521 s->ccm[CCM_CMEOR] = 0xFFFFFFFF;
523 s->analog[CCM_ANALOG_PLL_ARM] = 0x00013063;
524 s->analog[CCM_ANALOG_PLL_USB1] = 0x00012000;
525 s->analog[CCM_ANALOG_PLL_USB2] = 0x00012000;
526 s->analog[CCM_ANALOG_PLL_SYS] = 0x00013001;
527 s->analog[CCM_ANALOG_PLL_SYS_SS] = 0x00000000;
528 s->analog[CCM_ANALOG_PLL_SYS_NUM] = 0x00000000;
529 s->analog[CCM_ANALOG_PLL_SYS_DENOM] = 0x00000012;
530 s->analog[CCM_ANALOG_PLL_AUDIO] = 0x00011006;
531 s->analog[CCM_ANALOG_PLL_AUDIO_NUM] = 0x05F5E100;
532 s->analog[CCM_ANALOG_PLL_AUDIO_DENOM] = 0x2964619C;
533 s->analog[CCM_ANALOG_PLL_VIDEO] = 0x0001100C;
534 s->analog[CCM_ANALOG_PLL_VIDEO_NUM] = 0x05F5E100;
535 s->analog[CCM_ANALOG_PLL_VIDEO_DENOM] = 0x10A24447;
536 s->analog[CCM_ANALOG_PLL_ENET] = 0x00011001;
537 s->analog[CCM_ANALOG_PFD_480] = 0x1311100C;
538 s->analog[CCM_ANALOG_PFD_528] = 0x1018101B;
540 s->analog[PMU_REG_1P1] = 0x00001073;
541 s->analog[PMU_REG_3P0] = 0x00000F74;
542 s->analog[PMU_REG_2P5] = 0x00001073;
543 s->analog[PMU_REG_CORE] = 0x00482012;
544 s->analog[PMU_MISC0] = 0x04000000;
545 s->analog[PMU_MISC1] = 0x00000000;
546 s->analog[PMU_MISC2] = 0x00272727;
547 s->analog[PMU_LOWPWR_CTRL] = 0x00004009;
549 s->analog[USB_ANALOG_USB1_VBUS_DETECT] = 0x01000004;
550 s->analog[USB_ANALOG_USB1_CHRG_DETECT] = 0x00000000;
551 s->analog[USB_ANALOG_USB1_VBUS_DETECT_STAT] = 0x00000000;
552 s->analog[USB_ANALOG_USB1_CHRG_DETECT_STAT] = 0x00000000;
553 s->analog[USB_ANALOG_USB1_MISC] = 0x00000002;
554 s->analog[USB_ANALOG_USB2_VBUS_DETECT] = 0x01000004;
555 s->analog[USB_ANALOG_USB2_CHRG_DETECT] = 0x00000000;
556 s->analog[USB_ANALOG_USB2_MISC] = 0x00000002;
557 s->analog[USB_ANALOG_DIGPROG] = 0x00640000;
559 /* all PLLs need to be locked */
560 s->analog[CCM_ANALOG_PLL_ARM] |= CCM_ANALOG_PLL_LOCK;
561 s->analog[CCM_ANALOG_PLL_USB1] |= CCM_ANALOG_PLL_LOCK;
562 s->analog[CCM_ANALOG_PLL_USB2] |= CCM_ANALOG_PLL_LOCK;
563 s->analog[CCM_ANALOG_PLL_SYS] |= CCM_ANALOG_PLL_LOCK;
564 s->analog[CCM_ANALOG_PLL_AUDIO] |= CCM_ANALOG_PLL_LOCK;
565 s->analog[CCM_ANALOG_PLL_VIDEO] |= CCM_ANALOG_PLL_LOCK;
566 s->analog[CCM_ANALOG_PLL_ENET] |= CCM_ANALOG_PLL_LOCK;
568 s->analog[TEMPMON_TEMPSENSE0] = 0x00000001;
569 s->analog[TEMPMON_TEMPSENSE1] = 0x00000001;
570 s->analog[TEMPMON_TEMPSENSE2] = 0x00000000;
573 static uint64_t imx6ul_ccm_read(void *opaque, hwaddr offset, unsigned size)
575 uint32_t value = 0;
576 uint32_t index = offset >> 2;
577 IMX6ULCCMState *s = (IMX6ULCCMState *)opaque;
579 assert(index < CCM_MAX);
581 value = s->ccm[index];
583 trace_ccm_read_reg(imx6ul_ccm_reg_name(index), (uint32_t)value);
585 return (uint64_t)value;
588 static void imx6ul_ccm_write(void *opaque, hwaddr offset, uint64_t value,
589 unsigned size)
591 uint32_t index = offset >> 2;
592 IMX6ULCCMState *s = (IMX6ULCCMState *)opaque;
594 assert(index < CCM_MAX);
596 trace_ccm_write_reg(imx6ul_ccm_reg_name(index), (uint32_t)value);
599 * We will do a better implementation later. In particular some bits
600 * cannot be written to.
602 s->ccm[index] = (uint32_t)value;
605 static uint64_t imx6ul_analog_read(void *opaque, hwaddr offset, unsigned size)
607 uint32_t value;
608 uint32_t index = offset >> 2;
609 IMX6ULCCMState *s = (IMX6ULCCMState *)opaque;
611 assert(index < CCM_ANALOG_MAX);
613 switch (index) {
614 case CCM_ANALOG_PLL_ARM_SET:
615 case CCM_ANALOG_PLL_USB1_SET:
616 case CCM_ANALOG_PLL_USB2_SET:
617 case CCM_ANALOG_PLL_SYS_SET:
618 case CCM_ANALOG_PLL_AUDIO_SET:
619 case CCM_ANALOG_PLL_VIDEO_SET:
620 case CCM_ANALOG_PLL_ENET_SET:
621 case CCM_ANALOG_PFD_480_SET:
622 case CCM_ANALOG_PFD_528_SET:
623 case CCM_ANALOG_MISC0_SET:
624 case PMU_MISC1_SET:
625 case CCM_ANALOG_MISC2_SET:
626 case USB_ANALOG_USB1_VBUS_DETECT_SET:
627 case USB_ANALOG_USB1_CHRG_DETECT_SET:
628 case USB_ANALOG_USB1_MISC_SET:
629 case USB_ANALOG_USB2_VBUS_DETECT_SET:
630 case USB_ANALOG_USB2_CHRG_DETECT_SET:
631 case USB_ANALOG_USB2_MISC_SET:
632 case TEMPMON_TEMPSENSE0_SET:
633 case TEMPMON_TEMPSENSE1_SET:
634 case TEMPMON_TEMPSENSE2_SET:
636 * All REG_NAME_SET register access are in fact targeting
637 * the REG_NAME register.
639 value = s->analog[index - 1];
640 break;
641 case CCM_ANALOG_PLL_ARM_CLR:
642 case CCM_ANALOG_PLL_USB1_CLR:
643 case CCM_ANALOG_PLL_USB2_CLR:
644 case CCM_ANALOG_PLL_SYS_CLR:
645 case CCM_ANALOG_PLL_AUDIO_CLR:
646 case CCM_ANALOG_PLL_VIDEO_CLR:
647 case CCM_ANALOG_PLL_ENET_CLR:
648 case CCM_ANALOG_PFD_480_CLR:
649 case CCM_ANALOG_PFD_528_CLR:
650 case CCM_ANALOG_MISC0_CLR:
651 case PMU_MISC1_CLR:
652 case CCM_ANALOG_MISC2_CLR:
653 case USB_ANALOG_USB1_VBUS_DETECT_CLR:
654 case USB_ANALOG_USB1_CHRG_DETECT_CLR:
655 case USB_ANALOG_USB1_MISC_CLR:
656 case USB_ANALOG_USB2_VBUS_DETECT_CLR:
657 case USB_ANALOG_USB2_CHRG_DETECT_CLR:
658 case USB_ANALOG_USB2_MISC_CLR:
659 case TEMPMON_TEMPSENSE0_CLR:
660 case TEMPMON_TEMPSENSE1_CLR:
661 case TEMPMON_TEMPSENSE2_CLR:
663 * All REG_NAME_CLR register access are in fact targeting
664 * the REG_NAME register.
666 value = s->analog[index - 2];
667 break;
668 case CCM_ANALOG_PLL_ARM_TOG:
669 case CCM_ANALOG_PLL_USB1_TOG:
670 case CCM_ANALOG_PLL_USB2_TOG:
671 case CCM_ANALOG_PLL_SYS_TOG:
672 case CCM_ANALOG_PLL_AUDIO_TOG:
673 case CCM_ANALOG_PLL_VIDEO_TOG:
674 case CCM_ANALOG_PLL_ENET_TOG:
675 case CCM_ANALOG_PFD_480_TOG:
676 case CCM_ANALOG_PFD_528_TOG:
677 case CCM_ANALOG_MISC0_TOG:
678 case PMU_MISC1_TOG:
679 case CCM_ANALOG_MISC2_TOG:
680 case USB_ANALOG_USB1_VBUS_DETECT_TOG:
681 case USB_ANALOG_USB1_CHRG_DETECT_TOG:
682 case USB_ANALOG_USB1_MISC_TOG:
683 case USB_ANALOG_USB2_VBUS_DETECT_TOG:
684 case USB_ANALOG_USB2_CHRG_DETECT_TOG:
685 case USB_ANALOG_USB2_MISC_TOG:
686 case TEMPMON_TEMPSENSE0_TOG:
687 case TEMPMON_TEMPSENSE1_TOG:
688 case TEMPMON_TEMPSENSE2_TOG:
690 * All REG_NAME_TOG register access are in fact targeting
691 * the REG_NAME register.
693 value = s->analog[index - 3];
694 break;
695 default:
696 value = s->analog[index];
697 break;
700 trace_ccm_read_reg(imx6ul_analog_reg_name(index), (uint32_t)value);
702 return (uint64_t)value;
705 static void imx6ul_analog_write(void *opaque, hwaddr offset, uint64_t value,
706 unsigned size)
708 uint32_t index = offset >> 2;
709 IMX6ULCCMState *s = (IMX6ULCCMState *)opaque;
711 assert(index < CCM_ANALOG_MAX);
713 trace_ccm_write_reg(imx6ul_analog_reg_name(index), (uint32_t)value);
715 switch (index) {
716 case CCM_ANALOG_PLL_ARM_SET:
717 case CCM_ANALOG_PLL_USB1_SET:
718 case CCM_ANALOG_PLL_USB2_SET:
719 case CCM_ANALOG_PLL_SYS_SET:
720 case CCM_ANALOG_PLL_AUDIO_SET:
721 case CCM_ANALOG_PLL_VIDEO_SET:
722 case CCM_ANALOG_PLL_ENET_SET:
723 case CCM_ANALOG_PFD_480_SET:
724 case CCM_ANALOG_PFD_528_SET:
725 case CCM_ANALOG_MISC0_SET:
726 case PMU_MISC1_SET:
727 case CCM_ANALOG_MISC2_SET:
728 case USB_ANALOG_USB1_VBUS_DETECT_SET:
729 case USB_ANALOG_USB1_CHRG_DETECT_SET:
730 case USB_ANALOG_USB1_MISC_SET:
731 case USB_ANALOG_USB2_VBUS_DETECT_SET:
732 case USB_ANALOG_USB2_CHRG_DETECT_SET:
733 case USB_ANALOG_USB2_MISC_SET:
735 * All REG_NAME_SET register access are in fact targeting
736 * the REG_NAME register. So we change the value of the
737 * REG_NAME register, setting bits passed in the value.
739 s->analog[index - 1] |= value;
740 break;
741 case CCM_ANALOG_PLL_ARM_CLR:
742 case CCM_ANALOG_PLL_USB1_CLR:
743 case CCM_ANALOG_PLL_USB2_CLR:
744 case CCM_ANALOG_PLL_SYS_CLR:
745 case CCM_ANALOG_PLL_AUDIO_CLR:
746 case CCM_ANALOG_PLL_VIDEO_CLR:
747 case CCM_ANALOG_PLL_ENET_CLR:
748 case CCM_ANALOG_PFD_480_CLR:
749 case CCM_ANALOG_PFD_528_CLR:
750 case CCM_ANALOG_MISC0_CLR:
751 case PMU_MISC1_CLR:
752 case CCM_ANALOG_MISC2_CLR:
753 case USB_ANALOG_USB1_VBUS_DETECT_CLR:
754 case USB_ANALOG_USB1_CHRG_DETECT_CLR:
755 case USB_ANALOG_USB1_MISC_CLR:
756 case USB_ANALOG_USB2_VBUS_DETECT_CLR:
757 case USB_ANALOG_USB2_CHRG_DETECT_CLR:
758 case USB_ANALOG_USB2_MISC_CLR:
760 * All REG_NAME_CLR register access are in fact targeting
761 * the REG_NAME register. So we change the value of the
762 * REG_NAME register, unsetting bits passed in the value.
764 s->analog[index - 2] &= ~value;
765 break;
766 case CCM_ANALOG_PLL_ARM_TOG:
767 case CCM_ANALOG_PLL_USB1_TOG:
768 case CCM_ANALOG_PLL_USB2_TOG:
769 case CCM_ANALOG_PLL_SYS_TOG:
770 case CCM_ANALOG_PLL_AUDIO_TOG:
771 case CCM_ANALOG_PLL_VIDEO_TOG:
772 case CCM_ANALOG_PLL_ENET_TOG:
773 case CCM_ANALOG_PFD_480_TOG:
774 case CCM_ANALOG_PFD_528_TOG:
775 case CCM_ANALOG_MISC0_TOG:
776 case PMU_MISC1_TOG:
777 case CCM_ANALOG_MISC2_TOG:
778 case USB_ANALOG_USB1_VBUS_DETECT_TOG:
779 case USB_ANALOG_USB1_CHRG_DETECT_TOG:
780 case USB_ANALOG_USB1_MISC_TOG:
781 case USB_ANALOG_USB2_VBUS_DETECT_TOG:
782 case USB_ANALOG_USB2_CHRG_DETECT_TOG:
783 case USB_ANALOG_USB2_MISC_TOG:
785 * All REG_NAME_TOG register access are in fact targeting
786 * the REG_NAME register. So we change the value of the
787 * REG_NAME register, toggling bits passed in the value.
789 s->analog[index - 3] ^= value;
790 break;
791 default:
793 * We will do a better implementation later. In particular some bits
794 * cannot be written to.
796 s->analog[index] = value;
797 break;
801 static const struct MemoryRegionOps imx6ul_ccm_ops = {
802 .read = imx6ul_ccm_read,
803 .write = imx6ul_ccm_write,
804 .endianness = DEVICE_NATIVE_ENDIAN,
805 .valid = {
807 * Our device would not work correctly if the guest was doing
808 * unaligned access. This might not be a limitation on the real
809 * device but in practice there is no reason for a guest to access
810 * this device unaligned.
812 .min_access_size = 4,
813 .max_access_size = 4,
814 .unaligned = false,
818 static const struct MemoryRegionOps imx6ul_analog_ops = {
819 .read = imx6ul_analog_read,
820 .write = imx6ul_analog_write,
821 .endianness = DEVICE_NATIVE_ENDIAN,
822 .valid = {
824 * Our device would not work correctly if the guest was doing
825 * unaligned access. This might not be a limitation on the real
826 * device but in practice there is no reason for a guest to access
827 * this device unaligned.
829 .min_access_size = 4,
830 .max_access_size = 4,
831 .unaligned = false,
835 static void imx6ul_ccm_init(Object *obj)
837 DeviceState *dev = DEVICE(obj);
838 SysBusDevice *sd = SYS_BUS_DEVICE(obj);
839 IMX6ULCCMState *s = IMX6UL_CCM(obj);
841 /* initialize a container for the all memory range */
842 memory_region_init(&s->container, OBJECT(dev), TYPE_IMX6UL_CCM, 0x8000);
844 /* We initialize an IO memory region for the CCM part */
845 memory_region_init_io(&s->ioccm, OBJECT(dev), &imx6ul_ccm_ops, s,
846 TYPE_IMX6UL_CCM ".ccm", CCM_MAX * sizeof(uint32_t));
848 /* Add the CCM as a subregion at offset 0 */
849 memory_region_add_subregion(&s->container, 0, &s->ioccm);
851 /* We initialize an IO memory region for the ANALOG part */
852 memory_region_init_io(&s->ioanalog, OBJECT(dev), &imx6ul_analog_ops, s,
853 TYPE_IMX6UL_CCM ".analog",
854 CCM_ANALOG_MAX * sizeof(uint32_t));
856 /* Add the ANALOG as a subregion at offset 0x4000 */
857 memory_region_add_subregion(&s->container, 0x4000, &s->ioanalog);
859 sysbus_init_mmio(sd, &s->container);
862 static void imx6ul_ccm_class_init(ObjectClass *klass, void *data)
864 DeviceClass *dc = DEVICE_CLASS(klass);
865 IMXCCMClass *ccm = IMX_CCM_CLASS(klass);
867 dc->reset = imx6ul_ccm_reset;
868 dc->vmsd = &vmstate_imx6ul_ccm;
869 dc->desc = "i.MX6UL Clock Control Module";
871 ccm->get_clock_frequency = imx6ul_ccm_get_clock_frequency;
874 static const TypeInfo imx6ul_ccm_info = {
875 .name = TYPE_IMX6UL_CCM,
876 .parent = TYPE_IMX_CCM,
877 .instance_size = sizeof(IMX6ULCCMState),
878 .instance_init = imx6ul_ccm_init,
879 .class_init = imx6ul_ccm_class_init,
882 static void imx6ul_ccm_register_types(void)
884 type_register_static(&imx6ul_ccm_info);
887 type_init(imx6ul_ccm_register_types)