xics/spapr: Rename xics_kvm_init()
[qemu/ar7.git] / hw / char / cadence_uart.c
blobfa25fe24da18908a19e14549ab0864c39b73ada8
1 /*
2 * Device model for Cadence UART
4 * Reference: Xilinx Zynq 7000 reference manual
5 * - http://www.xilinx.com/support/documentation/user_guides/ug585-Zynq-7000-TRM.pdf
6 * - Chapter 19 UART Controller
7 * - Appendix B for Register details
9 * Copyright (c) 2010 Xilinx Inc.
10 * Copyright (c) 2012 Peter A.G. Crosthwaite (peter.crosthwaite@petalogix.com)
11 * Copyright (c) 2012 PetaLogix Pty Ltd.
12 * Written by Haibing Ma
13 * M.Habib
15 * This program is free software; you can redistribute it and/or
16 * modify it under the terms of the GNU General Public License
17 * as published by the Free Software Foundation; either version
18 * 2 of the License, or (at your option) any later version.
20 * You should have received a copy of the GNU General Public License along
21 * with this program; if not, see <http://www.gnu.org/licenses/>.
24 #include "qemu/osdep.h"
25 #include "hw/sysbus.h"
26 #include "chardev/char-fe.h"
27 #include "chardev/char-serial.h"
28 #include "qemu/timer.h"
29 #include "qemu/log.h"
30 #include "qemu/module.h"
31 #include "hw/char/cadence_uart.h"
33 #ifdef CADENCE_UART_ERR_DEBUG
34 #define DB_PRINT(...) do { \
35 fprintf(stderr, ": %s: ", __func__); \
36 fprintf(stderr, ## __VA_ARGS__); \
37 } while (0)
38 #else
39 #define DB_PRINT(...)
40 #endif
42 #define UART_SR_INTR_RTRIG 0x00000001
43 #define UART_SR_INTR_REMPTY 0x00000002
44 #define UART_SR_INTR_RFUL 0x00000004
45 #define UART_SR_INTR_TEMPTY 0x00000008
46 #define UART_SR_INTR_TFUL 0x00000010
47 /* somewhat awkwardly, TTRIG is misaligned between SR and ISR */
48 #define UART_SR_TTRIG 0x00002000
49 #define UART_INTR_TTRIG 0x00000400
50 /* bits fields in CSR that correlate to CISR. If any of these bits are set in
51 * SR, then the same bit in CISR is set high too */
52 #define UART_SR_TO_CISR_MASK 0x0000001F
54 #define UART_INTR_ROVR 0x00000020
55 #define UART_INTR_FRAME 0x00000040
56 #define UART_INTR_PARE 0x00000080
57 #define UART_INTR_TIMEOUT 0x00000100
58 #define UART_INTR_DMSI 0x00000200
59 #define UART_INTR_TOVR 0x00001000
61 #define UART_SR_RACTIVE 0x00000400
62 #define UART_SR_TACTIVE 0x00000800
63 #define UART_SR_FDELT 0x00001000
65 #define UART_CR_RXRST 0x00000001
66 #define UART_CR_TXRST 0x00000002
67 #define UART_CR_RX_EN 0x00000004
68 #define UART_CR_RX_DIS 0x00000008
69 #define UART_CR_TX_EN 0x00000010
70 #define UART_CR_TX_DIS 0x00000020
71 #define UART_CR_RST_TO 0x00000040
72 #define UART_CR_STARTBRK 0x00000080
73 #define UART_CR_STOPBRK 0x00000100
75 #define UART_MR_CLKS 0x00000001
76 #define UART_MR_CHRL 0x00000006
77 #define UART_MR_CHRL_SH 1
78 #define UART_MR_PAR 0x00000038
79 #define UART_MR_PAR_SH 3
80 #define UART_MR_NBSTOP 0x000000C0
81 #define UART_MR_NBSTOP_SH 6
82 #define UART_MR_CHMODE 0x00000300
83 #define UART_MR_CHMODE_SH 8
84 #define UART_MR_UCLKEN 0x00000400
85 #define UART_MR_IRMODE 0x00000800
87 #define UART_DATA_BITS_6 (0x3 << UART_MR_CHRL_SH)
88 #define UART_DATA_BITS_7 (0x2 << UART_MR_CHRL_SH)
89 #define UART_PARITY_ODD (0x1 << UART_MR_PAR_SH)
90 #define UART_PARITY_EVEN (0x0 << UART_MR_PAR_SH)
91 #define UART_STOP_BITS_1 (0x3 << UART_MR_NBSTOP_SH)
92 #define UART_STOP_BITS_2 (0x2 << UART_MR_NBSTOP_SH)
93 #define NORMAL_MODE (0x0 << UART_MR_CHMODE_SH)
94 #define ECHO_MODE (0x1 << UART_MR_CHMODE_SH)
95 #define LOCAL_LOOPBACK (0x2 << UART_MR_CHMODE_SH)
96 #define REMOTE_LOOPBACK (0x3 << UART_MR_CHMODE_SH)
98 #define UART_INPUT_CLK 50000000
100 #define R_CR (0x00/4)
101 #define R_MR (0x04/4)
102 #define R_IER (0x08/4)
103 #define R_IDR (0x0C/4)
104 #define R_IMR (0x10/4)
105 #define R_CISR (0x14/4)
106 #define R_BRGR (0x18/4)
107 #define R_RTOR (0x1C/4)
108 #define R_RTRIG (0x20/4)
109 #define R_MCR (0x24/4)
110 #define R_MSR (0x28/4)
111 #define R_SR (0x2C/4)
112 #define R_TX_RX (0x30/4)
113 #define R_BDIV (0x34/4)
114 #define R_FDEL (0x38/4)
115 #define R_PMIN (0x3C/4)
116 #define R_PWID (0x40/4)
117 #define R_TTRIG (0x44/4)
120 static void uart_update_status(CadenceUARTState *s)
122 s->r[R_SR] = 0;
124 s->r[R_SR] |= s->rx_count == CADENCE_UART_RX_FIFO_SIZE ? UART_SR_INTR_RFUL
125 : 0;
126 s->r[R_SR] |= !s->rx_count ? UART_SR_INTR_REMPTY : 0;
127 s->r[R_SR] |= s->rx_count >= s->r[R_RTRIG] ? UART_SR_INTR_RTRIG : 0;
129 s->r[R_SR] |= s->tx_count == CADENCE_UART_TX_FIFO_SIZE ? UART_SR_INTR_TFUL
130 : 0;
131 s->r[R_SR] |= !s->tx_count ? UART_SR_INTR_TEMPTY : 0;
132 s->r[R_SR] |= s->tx_count >= s->r[R_TTRIG] ? UART_SR_TTRIG : 0;
134 s->r[R_CISR] |= s->r[R_SR] & UART_SR_TO_CISR_MASK;
135 s->r[R_CISR] |= s->r[R_SR] & UART_SR_TTRIG ? UART_INTR_TTRIG : 0;
136 qemu_set_irq(s->irq, !!(s->r[R_IMR] & s->r[R_CISR]));
139 static void fifo_trigger_update(void *opaque)
141 CadenceUARTState *s = opaque;
143 if (s->r[R_RTOR]) {
144 s->r[R_CISR] |= UART_INTR_TIMEOUT;
145 uart_update_status(s);
149 static void uart_rx_reset(CadenceUARTState *s)
151 s->rx_wpos = 0;
152 s->rx_count = 0;
153 qemu_chr_fe_accept_input(&s->chr);
156 static void uart_tx_reset(CadenceUARTState *s)
158 s->tx_count = 0;
161 static void uart_send_breaks(CadenceUARTState *s)
163 int break_enabled = 1;
165 qemu_chr_fe_ioctl(&s->chr, CHR_IOCTL_SERIAL_SET_BREAK,
166 &break_enabled);
169 static void uart_parameters_setup(CadenceUARTState *s)
171 QEMUSerialSetParams ssp;
172 unsigned int baud_rate, packet_size;
174 baud_rate = (s->r[R_MR] & UART_MR_CLKS) ?
175 UART_INPUT_CLK / 8 : UART_INPUT_CLK;
177 ssp.speed = baud_rate / (s->r[R_BRGR] * (s->r[R_BDIV] + 1));
178 packet_size = 1;
180 switch (s->r[R_MR] & UART_MR_PAR) {
181 case UART_PARITY_EVEN:
182 ssp.parity = 'E';
183 packet_size++;
184 break;
185 case UART_PARITY_ODD:
186 ssp.parity = 'O';
187 packet_size++;
188 break;
189 default:
190 ssp.parity = 'N';
191 break;
194 switch (s->r[R_MR] & UART_MR_CHRL) {
195 case UART_DATA_BITS_6:
196 ssp.data_bits = 6;
197 break;
198 case UART_DATA_BITS_7:
199 ssp.data_bits = 7;
200 break;
201 default:
202 ssp.data_bits = 8;
203 break;
206 switch (s->r[R_MR] & UART_MR_NBSTOP) {
207 case UART_STOP_BITS_1:
208 ssp.stop_bits = 1;
209 break;
210 default:
211 ssp.stop_bits = 2;
212 break;
215 packet_size += ssp.data_bits + ssp.stop_bits;
216 s->char_tx_time = (NANOSECONDS_PER_SECOND / ssp.speed) * packet_size;
217 qemu_chr_fe_ioctl(&s->chr, CHR_IOCTL_SERIAL_SET_PARAMS, &ssp);
220 static int uart_can_receive(void *opaque)
222 CadenceUARTState *s = opaque;
223 int ret = MAX(CADENCE_UART_RX_FIFO_SIZE, CADENCE_UART_TX_FIFO_SIZE);
224 uint32_t ch_mode = s->r[R_MR] & UART_MR_CHMODE;
226 if (ch_mode == NORMAL_MODE || ch_mode == ECHO_MODE) {
227 ret = MIN(ret, CADENCE_UART_RX_FIFO_SIZE - s->rx_count);
229 if (ch_mode == REMOTE_LOOPBACK || ch_mode == ECHO_MODE) {
230 ret = MIN(ret, CADENCE_UART_TX_FIFO_SIZE - s->tx_count);
232 return ret;
235 static void uart_ctrl_update(CadenceUARTState *s)
237 if (s->r[R_CR] & UART_CR_TXRST) {
238 uart_tx_reset(s);
241 if (s->r[R_CR] & UART_CR_RXRST) {
242 uart_rx_reset(s);
245 s->r[R_CR] &= ~(UART_CR_TXRST | UART_CR_RXRST);
247 if (s->r[R_CR] & UART_CR_STARTBRK && !(s->r[R_CR] & UART_CR_STOPBRK)) {
248 uart_send_breaks(s);
252 static void uart_write_rx_fifo(void *opaque, const uint8_t *buf, int size)
254 CadenceUARTState *s = opaque;
255 uint64_t new_rx_time = qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL);
256 int i;
258 if ((s->r[R_CR] & UART_CR_RX_DIS) || !(s->r[R_CR] & UART_CR_RX_EN)) {
259 return;
262 if (s->rx_count == CADENCE_UART_RX_FIFO_SIZE) {
263 s->r[R_CISR] |= UART_INTR_ROVR;
264 } else {
265 for (i = 0; i < size; i++) {
266 s->rx_fifo[s->rx_wpos] = buf[i];
267 s->rx_wpos = (s->rx_wpos + 1) % CADENCE_UART_RX_FIFO_SIZE;
268 s->rx_count++;
270 timer_mod(s->fifo_trigger_handle, new_rx_time +
271 (s->char_tx_time * 4));
273 uart_update_status(s);
276 static gboolean cadence_uart_xmit(GIOChannel *chan, GIOCondition cond,
277 void *opaque)
279 CadenceUARTState *s = opaque;
280 int ret;
282 /* instant drain the fifo when there's no back-end */
283 if (!qemu_chr_fe_backend_connected(&s->chr)) {
284 s->tx_count = 0;
285 return FALSE;
288 if (!s->tx_count) {
289 return FALSE;
292 ret = qemu_chr_fe_write(&s->chr, s->tx_fifo, s->tx_count);
294 if (ret >= 0) {
295 s->tx_count -= ret;
296 memmove(s->tx_fifo, s->tx_fifo + ret, s->tx_count);
299 if (s->tx_count) {
300 guint r = qemu_chr_fe_add_watch(&s->chr, G_IO_OUT | G_IO_HUP,
301 cadence_uart_xmit, s);
302 if (!r) {
303 s->tx_count = 0;
304 return FALSE;
308 uart_update_status(s);
309 return FALSE;
312 static void uart_write_tx_fifo(CadenceUARTState *s, const uint8_t *buf,
313 int size)
315 if ((s->r[R_CR] & UART_CR_TX_DIS) || !(s->r[R_CR] & UART_CR_TX_EN)) {
316 return;
319 if (size > CADENCE_UART_TX_FIFO_SIZE - s->tx_count) {
320 size = CADENCE_UART_TX_FIFO_SIZE - s->tx_count;
322 * This can only be a guest error via a bad tx fifo register push,
323 * as can_receive() should stop remote loop and echo modes ever getting
324 * us to here.
326 qemu_log_mask(LOG_GUEST_ERROR, "cadence_uart: TxFIFO overflow");
327 s->r[R_CISR] |= UART_INTR_ROVR;
330 memcpy(s->tx_fifo + s->tx_count, buf, size);
331 s->tx_count += size;
333 cadence_uart_xmit(NULL, G_IO_OUT, s);
336 static void uart_receive(void *opaque, const uint8_t *buf, int size)
338 CadenceUARTState *s = opaque;
339 uint32_t ch_mode = s->r[R_MR] & UART_MR_CHMODE;
341 if (ch_mode == NORMAL_MODE || ch_mode == ECHO_MODE) {
342 uart_write_rx_fifo(opaque, buf, size);
344 if (ch_mode == REMOTE_LOOPBACK || ch_mode == ECHO_MODE) {
345 uart_write_tx_fifo(s, buf, size);
349 static void uart_event(void *opaque, int event)
351 CadenceUARTState *s = opaque;
352 uint8_t buf = '\0';
354 if (event == CHR_EVENT_BREAK) {
355 uart_write_rx_fifo(opaque, &buf, 1);
358 uart_update_status(s);
361 static void uart_read_rx_fifo(CadenceUARTState *s, uint32_t *c)
363 if ((s->r[R_CR] & UART_CR_RX_DIS) || !(s->r[R_CR] & UART_CR_RX_EN)) {
364 return;
367 if (s->rx_count) {
368 uint32_t rx_rpos = (CADENCE_UART_RX_FIFO_SIZE + s->rx_wpos -
369 s->rx_count) % CADENCE_UART_RX_FIFO_SIZE;
370 *c = s->rx_fifo[rx_rpos];
371 s->rx_count--;
373 qemu_chr_fe_accept_input(&s->chr);
374 } else {
375 *c = 0;
378 uart_update_status(s);
381 static void uart_write(void *opaque, hwaddr offset,
382 uint64_t value, unsigned size)
384 CadenceUARTState *s = opaque;
386 DB_PRINT(" offset:%x data:%08x\n", (unsigned)offset, (unsigned)value);
387 offset >>= 2;
388 if (offset >= CADENCE_UART_R_MAX) {
389 return;
391 switch (offset) {
392 case R_IER: /* ier (wts imr) */
393 s->r[R_IMR] |= value;
394 break;
395 case R_IDR: /* idr (wtc imr) */
396 s->r[R_IMR] &= ~value;
397 break;
398 case R_IMR: /* imr (read only) */
399 break;
400 case R_CISR: /* cisr (wtc) */
401 s->r[R_CISR] &= ~value;
402 break;
403 case R_TX_RX: /* UARTDR */
404 switch (s->r[R_MR] & UART_MR_CHMODE) {
405 case NORMAL_MODE:
406 uart_write_tx_fifo(s, (uint8_t *) &value, 1);
407 break;
408 case LOCAL_LOOPBACK:
409 uart_write_rx_fifo(opaque, (uint8_t *) &value, 1);
410 break;
412 break;
413 case R_BRGR: /* Baud rate generator */
414 if (value >= 0x01) {
415 s->r[offset] = value & 0xFFFF;
417 break;
418 case R_BDIV: /* Baud rate divider */
419 if (value >= 0x04) {
420 s->r[offset] = value & 0xFF;
422 break;
423 default:
424 s->r[offset] = value;
427 switch (offset) {
428 case R_CR:
429 uart_ctrl_update(s);
430 break;
431 case R_MR:
432 uart_parameters_setup(s);
433 break;
435 uart_update_status(s);
438 static uint64_t uart_read(void *opaque, hwaddr offset,
439 unsigned size)
441 CadenceUARTState *s = opaque;
442 uint32_t c = 0;
444 offset >>= 2;
445 if (offset >= CADENCE_UART_R_MAX) {
446 c = 0;
447 } else if (offset == R_TX_RX) {
448 uart_read_rx_fifo(s, &c);
449 } else {
450 c = s->r[offset];
453 DB_PRINT(" offset:%x data:%08x\n", (unsigned)(offset << 2), (unsigned)c);
454 return c;
457 static const MemoryRegionOps uart_ops = {
458 .read = uart_read,
459 .write = uart_write,
460 .endianness = DEVICE_NATIVE_ENDIAN,
463 static void cadence_uart_reset(DeviceState *dev)
465 CadenceUARTState *s = CADENCE_UART(dev);
467 s->r[R_CR] = 0x00000128;
468 s->r[R_IMR] = 0;
469 s->r[R_CISR] = 0;
470 s->r[R_RTRIG] = 0x00000020;
471 s->r[R_BRGR] = 0x0000028B;
472 s->r[R_BDIV] = 0x0000000F;
473 s->r[R_TTRIG] = 0x00000020;
475 uart_rx_reset(s);
476 uart_tx_reset(s);
478 uart_update_status(s);
481 static void cadence_uart_realize(DeviceState *dev, Error **errp)
483 CadenceUARTState *s = CADENCE_UART(dev);
485 s->fifo_trigger_handle = timer_new_ns(QEMU_CLOCK_VIRTUAL,
486 fifo_trigger_update, s);
488 qemu_chr_fe_set_handlers(&s->chr, uart_can_receive, uart_receive,
489 uart_event, NULL, s, NULL, true);
492 static void cadence_uart_init(Object *obj)
494 SysBusDevice *sbd = SYS_BUS_DEVICE(obj);
495 CadenceUARTState *s = CADENCE_UART(obj);
497 memory_region_init_io(&s->iomem, obj, &uart_ops, s, "uart", 0x1000);
498 sysbus_init_mmio(sbd, &s->iomem);
499 sysbus_init_irq(sbd, &s->irq);
501 s->char_tx_time = (NANOSECONDS_PER_SECOND / 9600) * 10;
504 static int cadence_uart_post_load(void *opaque, int version_id)
506 CadenceUARTState *s = opaque;
508 /* Ensure these two aren't invalid numbers */
509 if (s->r[R_BRGR] < 1 || s->r[R_BRGR] & ~0xFFFF ||
510 s->r[R_BDIV] <= 3 || s->r[R_BDIV] & ~0xFF) {
511 /* Value is invalid, abort */
512 return 1;
515 uart_parameters_setup(s);
516 uart_update_status(s);
517 return 0;
520 static const VMStateDescription vmstate_cadence_uart = {
521 .name = "cadence_uart",
522 .version_id = 2,
523 .minimum_version_id = 2,
524 .post_load = cadence_uart_post_load,
525 .fields = (VMStateField[]) {
526 VMSTATE_UINT32_ARRAY(r, CadenceUARTState, CADENCE_UART_R_MAX),
527 VMSTATE_UINT8_ARRAY(rx_fifo, CadenceUARTState,
528 CADENCE_UART_RX_FIFO_SIZE),
529 VMSTATE_UINT8_ARRAY(tx_fifo, CadenceUARTState,
530 CADENCE_UART_TX_FIFO_SIZE),
531 VMSTATE_UINT32(rx_count, CadenceUARTState),
532 VMSTATE_UINT32(tx_count, CadenceUARTState),
533 VMSTATE_UINT32(rx_wpos, CadenceUARTState),
534 VMSTATE_TIMER_PTR(fifo_trigger_handle, CadenceUARTState),
535 VMSTATE_END_OF_LIST()
539 static Property cadence_uart_properties[] = {
540 DEFINE_PROP_CHR("chardev", CadenceUARTState, chr),
541 DEFINE_PROP_END_OF_LIST(),
544 static void cadence_uart_class_init(ObjectClass *klass, void *data)
546 DeviceClass *dc = DEVICE_CLASS(klass);
548 dc->realize = cadence_uart_realize;
549 dc->vmsd = &vmstate_cadence_uart;
550 dc->reset = cadence_uart_reset;
551 dc->props = cadence_uart_properties;
554 static const TypeInfo cadence_uart_info = {
555 .name = TYPE_CADENCE_UART,
556 .parent = TYPE_SYS_BUS_DEVICE,
557 .instance_size = sizeof(CadenceUARTState),
558 .instance_init = cadence_uart_init,
559 .class_init = cadence_uart_class_init,
562 static void cadence_uart_register_types(void)
564 type_register_static(&cadence_uart_info);
567 type_init(cadence_uart_register_types)