xics/spapr: Rename xics_kvm_init()
[qemu/ar7.git] / hw / arm / armsse.c
blobb5c614cc3a11119f5eb479b2f03271f0c5a66252
1 /*
2 * Arm SSE (Subsystems for Embedded): IoTKit
4 * Copyright (c) 2018 Linaro Limited
5 * Written by Peter Maydell
7 * This program is free software; you can redistribute it and/or modify
8 * it under the terms of the GNU General Public License version 2 or
9 * (at your option) any later version.
12 #include "qemu/osdep.h"
13 #include "qemu/log.h"
14 #include "qemu/module.h"
15 #include "qemu/bitops.h"
16 #include "qapi/error.h"
17 #include "trace.h"
18 #include "hw/sysbus.h"
19 #include "hw/registerfields.h"
20 #include "hw/arm/armsse.h"
21 #include "hw/arm/boot.h"
23 /* Format of the System Information block SYS_CONFIG register */
24 typedef enum SysConfigFormat {
25 IoTKitFormat,
26 SSE200Format,
27 } SysConfigFormat;
29 struct ARMSSEInfo {
30 const char *name;
31 int sram_banks;
32 int num_cpus;
33 uint32_t sys_version;
34 uint32_t cpuwait_rst;
35 SysConfigFormat sys_config_format;
36 bool has_mhus;
37 bool has_ppus;
38 bool has_cachectrl;
39 bool has_cpusecctrl;
40 bool has_cpuid;
41 Property *props;
44 static Property iotkit_properties[] = {
45 DEFINE_PROP_LINK("memory", ARMSSE, board_memory, TYPE_MEMORY_REGION,
46 MemoryRegion *),
47 DEFINE_PROP_UINT32("EXP_NUMIRQ", ARMSSE, exp_numirq, 64),
48 DEFINE_PROP_UINT32("MAINCLK", ARMSSE, mainclk_frq, 0),
49 DEFINE_PROP_UINT32("SRAM_ADDR_WIDTH", ARMSSE, sram_addr_width, 15),
50 DEFINE_PROP_UINT32("init-svtor", ARMSSE, init_svtor, 0x10000000),
51 DEFINE_PROP_BOOL("CPU0_FPU", ARMSSE, cpu_fpu[0], true),
52 DEFINE_PROP_BOOL("CPU0_DSP", ARMSSE, cpu_dsp[0], true),
53 DEFINE_PROP_END_OF_LIST()
56 static Property armsse_properties[] = {
57 DEFINE_PROP_LINK("memory", ARMSSE, board_memory, TYPE_MEMORY_REGION,
58 MemoryRegion *),
59 DEFINE_PROP_UINT32("EXP_NUMIRQ", ARMSSE, exp_numirq, 64),
60 DEFINE_PROP_UINT32("MAINCLK", ARMSSE, mainclk_frq, 0),
61 DEFINE_PROP_UINT32("SRAM_ADDR_WIDTH", ARMSSE, sram_addr_width, 15),
62 DEFINE_PROP_UINT32("init-svtor", ARMSSE, init_svtor, 0x10000000),
63 DEFINE_PROP_BOOL("CPU0_FPU", ARMSSE, cpu_fpu[0], false),
64 DEFINE_PROP_BOOL("CPU0_DSP", ARMSSE, cpu_dsp[0], false),
65 DEFINE_PROP_BOOL("CPU1_FPU", ARMSSE, cpu_fpu[1], true),
66 DEFINE_PROP_BOOL("CPU1_DSP", ARMSSE, cpu_dsp[1], true),
67 DEFINE_PROP_END_OF_LIST()
70 static const ARMSSEInfo armsse_variants[] = {
72 .name = TYPE_IOTKIT,
73 .sram_banks = 1,
74 .num_cpus = 1,
75 .sys_version = 0x41743,
76 .cpuwait_rst = 0,
77 .sys_config_format = IoTKitFormat,
78 .has_mhus = false,
79 .has_ppus = false,
80 .has_cachectrl = false,
81 .has_cpusecctrl = false,
82 .has_cpuid = false,
83 .props = iotkit_properties,
86 .name = TYPE_SSE200,
87 .sram_banks = 4,
88 .num_cpus = 2,
89 .sys_version = 0x22041743,
90 .cpuwait_rst = 2,
91 .sys_config_format = SSE200Format,
92 .has_mhus = true,
93 .has_ppus = true,
94 .has_cachectrl = true,
95 .has_cpusecctrl = true,
96 .has_cpuid = true,
97 .props = armsse_properties,
101 static uint32_t armsse_sys_config_value(ARMSSE *s, const ARMSSEInfo *info)
103 /* Return the SYS_CONFIG value for this SSE */
104 uint32_t sys_config;
106 switch (info->sys_config_format) {
107 case IoTKitFormat:
108 sys_config = 0;
109 sys_config = deposit32(sys_config, 0, 4, info->sram_banks);
110 sys_config = deposit32(sys_config, 4, 4, s->sram_addr_width - 12);
111 break;
112 case SSE200Format:
113 sys_config = 0;
114 sys_config = deposit32(sys_config, 0, 4, info->sram_banks);
115 sys_config = deposit32(sys_config, 4, 5, s->sram_addr_width);
116 sys_config = deposit32(sys_config, 24, 4, 2);
117 if (info->num_cpus > 1) {
118 sys_config = deposit32(sys_config, 10, 1, 1);
119 sys_config = deposit32(sys_config, 20, 4, info->sram_banks - 1);
120 sys_config = deposit32(sys_config, 28, 4, 2);
122 break;
123 default:
124 g_assert_not_reached();
126 return sys_config;
129 /* Clock frequency in HZ of the 32KHz "slow clock" */
130 #define S32KCLK (32 * 1000)
132 /* Is internal IRQ n shared between CPUs in a multi-core SSE ? */
133 static bool irq_is_common[32] = {
134 [0 ... 5] = true,
135 /* 6, 7: per-CPU MHU interrupts */
136 [8 ... 12] = true,
137 /* 13: per-CPU icache interrupt */
138 /* 14: reserved */
139 [15 ... 20] = true,
140 /* 21: reserved */
141 [22 ... 26] = true,
142 /* 27: reserved */
143 /* 28, 29: per-CPU CTI interrupts */
144 /* 30, 31: reserved */
148 * Create an alias region in @container of @size bytes starting at @base
149 * which mirrors the memory starting at @orig.
151 static void make_alias(ARMSSE *s, MemoryRegion *mr, MemoryRegion *container,
152 const char *name, hwaddr base, hwaddr size, hwaddr orig)
154 memory_region_init_alias(mr, NULL, name, container, orig, size);
155 /* The alias is even lower priority than unimplemented_device regions */
156 memory_region_add_subregion_overlap(container, base, mr, -1500);
159 static void irq_status_forwarder(void *opaque, int n, int level)
161 qemu_irq destirq = opaque;
163 qemu_set_irq(destirq, level);
166 static void nsccfg_handler(void *opaque, int n, int level)
168 ARMSSE *s = ARMSSE(opaque);
170 s->nsccfg = level;
173 static void armsse_forward_ppc(ARMSSE *s, const char *ppcname, int ppcnum)
175 /* Each of the 4 AHB and 4 APB PPCs that might be present in a
176 * system using the ARMSSE has a collection of control lines which
177 * are provided by the security controller and which we want to
178 * expose as control lines on the ARMSSE device itself, so the
179 * code using the ARMSSE can wire them up to the PPCs.
181 SplitIRQ *splitter = &s->ppc_irq_splitter[ppcnum];
182 DeviceState *armssedev = DEVICE(s);
183 DeviceState *dev_secctl = DEVICE(&s->secctl);
184 DeviceState *dev_splitter = DEVICE(splitter);
185 char *name;
187 name = g_strdup_printf("%s_nonsec", ppcname);
188 qdev_pass_gpios(dev_secctl, armssedev, name);
189 g_free(name);
190 name = g_strdup_printf("%s_ap", ppcname);
191 qdev_pass_gpios(dev_secctl, armssedev, name);
192 g_free(name);
193 name = g_strdup_printf("%s_irq_enable", ppcname);
194 qdev_pass_gpios(dev_secctl, armssedev, name);
195 g_free(name);
196 name = g_strdup_printf("%s_irq_clear", ppcname);
197 qdev_pass_gpios(dev_secctl, armssedev, name);
198 g_free(name);
200 /* irq_status is a little more tricky, because we need to
201 * split it so we can send it both to the security controller
202 * and to our OR gate for the NVIC interrupt line.
203 * Connect up the splitter's outputs, and create a GPIO input
204 * which will pass the line state to the input splitter.
206 name = g_strdup_printf("%s_irq_status", ppcname);
207 qdev_connect_gpio_out(dev_splitter, 0,
208 qdev_get_gpio_in_named(dev_secctl,
209 name, 0));
210 qdev_connect_gpio_out(dev_splitter, 1,
211 qdev_get_gpio_in(DEVICE(&s->ppc_irq_orgate), ppcnum));
212 s->irq_status_in[ppcnum] = qdev_get_gpio_in(dev_splitter, 0);
213 qdev_init_gpio_in_named_with_opaque(armssedev, irq_status_forwarder,
214 s->irq_status_in[ppcnum], name, 1);
215 g_free(name);
218 static void armsse_forward_sec_resp_cfg(ARMSSE *s)
220 /* Forward the 3rd output from the splitter device as a
221 * named GPIO output of the armsse object.
223 DeviceState *dev = DEVICE(s);
224 DeviceState *dev_splitter = DEVICE(&s->sec_resp_splitter);
226 qdev_init_gpio_out_named(dev, &s->sec_resp_cfg, "sec_resp_cfg", 1);
227 s->sec_resp_cfg_in = qemu_allocate_irq(irq_status_forwarder,
228 s->sec_resp_cfg, 1);
229 qdev_connect_gpio_out(dev_splitter, 2, s->sec_resp_cfg_in);
232 static void armsse_init(Object *obj)
234 ARMSSE *s = ARMSSE(obj);
235 ARMSSEClass *asc = ARMSSE_GET_CLASS(obj);
236 const ARMSSEInfo *info = asc->info;
237 int i;
239 assert(info->sram_banks <= MAX_SRAM_BANKS);
240 assert(info->num_cpus <= SSE_MAX_CPUS);
242 memory_region_init(&s->container, obj, "armsse-container", UINT64_MAX);
244 for (i = 0; i < info->num_cpus; i++) {
246 * We put each CPU in its own cluster as they are logically
247 * distinct and may be configured differently.
249 char *name;
251 name = g_strdup_printf("cluster%d", i);
252 object_initialize_child(obj, name, &s->cluster[i],
253 sizeof(s->cluster[i]), TYPE_CPU_CLUSTER,
254 &error_abort, NULL);
255 qdev_prop_set_uint32(DEVICE(&s->cluster[i]), "cluster-id", i);
256 g_free(name);
258 name = g_strdup_printf("armv7m%d", i);
259 sysbus_init_child_obj(OBJECT(&s->cluster[i]), name,
260 &s->armv7m[i], sizeof(s->armv7m), TYPE_ARMV7M);
261 qdev_prop_set_string(DEVICE(&s->armv7m[i]), "cpu-type",
262 ARM_CPU_TYPE_NAME("cortex-m33"));
263 g_free(name);
264 name = g_strdup_printf("arm-sse-cpu-container%d", i);
265 memory_region_init(&s->cpu_container[i], obj, name, UINT64_MAX);
266 g_free(name);
267 if (i > 0) {
268 name = g_strdup_printf("arm-sse-container-alias%d", i);
269 memory_region_init_alias(&s->container_alias[i - 1], obj,
270 name, &s->container, 0, UINT64_MAX);
271 g_free(name);
275 sysbus_init_child_obj(obj, "secctl", &s->secctl, sizeof(s->secctl),
276 TYPE_IOTKIT_SECCTL);
277 sysbus_init_child_obj(obj, "apb-ppc0", &s->apb_ppc0, sizeof(s->apb_ppc0),
278 TYPE_TZ_PPC);
279 sysbus_init_child_obj(obj, "apb-ppc1", &s->apb_ppc1, sizeof(s->apb_ppc1),
280 TYPE_TZ_PPC);
281 for (i = 0; i < info->sram_banks; i++) {
282 char *name = g_strdup_printf("mpc%d", i);
283 sysbus_init_child_obj(obj, name, &s->mpc[i],
284 sizeof(s->mpc[i]), TYPE_TZ_MPC);
285 g_free(name);
287 object_initialize_child(obj, "mpc-irq-orgate", &s->mpc_irq_orgate,
288 sizeof(s->mpc_irq_orgate), TYPE_OR_IRQ,
289 &error_abort, NULL);
291 for (i = 0; i < IOTS_NUM_EXP_MPC + info->sram_banks; i++) {
292 char *name = g_strdup_printf("mpc-irq-splitter-%d", i);
293 SplitIRQ *splitter = &s->mpc_irq_splitter[i];
295 object_initialize_child(obj, name, splitter, sizeof(*splitter),
296 TYPE_SPLIT_IRQ, &error_abort, NULL);
297 g_free(name);
299 sysbus_init_child_obj(obj, "timer0", &s->timer0, sizeof(s->timer0),
300 TYPE_CMSDK_APB_TIMER);
301 sysbus_init_child_obj(obj, "timer1", &s->timer1, sizeof(s->timer1),
302 TYPE_CMSDK_APB_TIMER);
303 sysbus_init_child_obj(obj, "s32ktimer", &s->s32ktimer, sizeof(s->s32ktimer),
304 TYPE_CMSDK_APB_TIMER);
305 sysbus_init_child_obj(obj, "dualtimer", &s->dualtimer, sizeof(s->dualtimer),
306 TYPE_CMSDK_APB_DUALTIMER);
307 sysbus_init_child_obj(obj, "s32kwatchdog", &s->s32kwatchdog,
308 sizeof(s->s32kwatchdog), TYPE_CMSDK_APB_WATCHDOG);
309 sysbus_init_child_obj(obj, "nswatchdog", &s->nswatchdog,
310 sizeof(s->nswatchdog), TYPE_CMSDK_APB_WATCHDOG);
311 sysbus_init_child_obj(obj, "swatchdog", &s->swatchdog,
312 sizeof(s->swatchdog), TYPE_CMSDK_APB_WATCHDOG);
313 sysbus_init_child_obj(obj, "armsse-sysctl", &s->sysctl,
314 sizeof(s->sysctl), TYPE_IOTKIT_SYSCTL);
315 sysbus_init_child_obj(obj, "armsse-sysinfo", &s->sysinfo,
316 sizeof(s->sysinfo), TYPE_IOTKIT_SYSINFO);
317 if (info->has_mhus) {
318 sysbus_init_child_obj(obj, "mhu0", &s->mhu[0], sizeof(s->mhu[0]),
319 TYPE_ARMSSE_MHU);
320 sysbus_init_child_obj(obj, "mhu1", &s->mhu[1], sizeof(s->mhu[1]),
321 TYPE_ARMSSE_MHU);
323 if (info->has_ppus) {
324 for (i = 0; i < info->num_cpus; i++) {
325 char *name = g_strdup_printf("CPU%dCORE_PPU", i);
326 int ppuidx = CPU0CORE_PPU + i;
328 sysbus_init_child_obj(obj, name, &s->ppu[ppuidx],
329 sizeof(s->ppu[ppuidx]),
330 TYPE_UNIMPLEMENTED_DEVICE);
331 g_free(name);
333 sysbus_init_child_obj(obj, "DBG_PPU", &s->ppu[DBG_PPU],
334 sizeof(s->ppu[DBG_PPU]),
335 TYPE_UNIMPLEMENTED_DEVICE);
336 for (i = 0; i < info->sram_banks; i++) {
337 char *name = g_strdup_printf("RAM%d_PPU", i);
338 int ppuidx = RAM0_PPU + i;
340 sysbus_init_child_obj(obj, name, &s->ppu[ppuidx],
341 sizeof(s->ppu[ppuidx]),
342 TYPE_UNIMPLEMENTED_DEVICE);
343 g_free(name);
346 if (info->has_cachectrl) {
347 for (i = 0; i < info->num_cpus; i++) {
348 char *name = g_strdup_printf("cachectrl%d", i);
350 sysbus_init_child_obj(obj, name, &s->cachectrl[i],
351 sizeof(s->cachectrl[i]),
352 TYPE_UNIMPLEMENTED_DEVICE);
353 g_free(name);
356 if (info->has_cpusecctrl) {
357 for (i = 0; i < info->num_cpus; i++) {
358 char *name = g_strdup_printf("cpusecctrl%d", i);
360 sysbus_init_child_obj(obj, name, &s->cpusecctrl[i],
361 sizeof(s->cpusecctrl[i]),
362 TYPE_UNIMPLEMENTED_DEVICE);
363 g_free(name);
366 if (info->has_cpuid) {
367 for (i = 0; i < info->num_cpus; i++) {
368 char *name = g_strdup_printf("cpuid%d", i);
370 sysbus_init_child_obj(obj, name, &s->cpuid[i],
371 sizeof(s->cpuid[i]),
372 TYPE_ARMSSE_CPUID);
373 g_free(name);
376 object_initialize_child(obj, "nmi-orgate", &s->nmi_orgate,
377 sizeof(s->nmi_orgate), TYPE_OR_IRQ,
378 &error_abort, NULL);
379 object_initialize_child(obj, "ppc-irq-orgate", &s->ppc_irq_orgate,
380 sizeof(s->ppc_irq_orgate), TYPE_OR_IRQ,
381 &error_abort, NULL);
382 object_initialize_child(obj, "sec-resp-splitter", &s->sec_resp_splitter,
383 sizeof(s->sec_resp_splitter), TYPE_SPLIT_IRQ,
384 &error_abort, NULL);
385 for (i = 0; i < ARRAY_SIZE(s->ppc_irq_splitter); i++) {
386 char *name = g_strdup_printf("ppc-irq-splitter-%d", i);
387 SplitIRQ *splitter = &s->ppc_irq_splitter[i];
389 object_initialize_child(obj, name, splitter, sizeof(*splitter),
390 TYPE_SPLIT_IRQ, &error_abort, NULL);
391 g_free(name);
393 if (info->num_cpus > 1) {
394 for (i = 0; i < ARRAY_SIZE(s->cpu_irq_splitter); i++) {
395 if (irq_is_common[i]) {
396 char *name = g_strdup_printf("cpu-irq-splitter%d", i);
397 SplitIRQ *splitter = &s->cpu_irq_splitter[i];
399 object_initialize_child(obj, name, splitter, sizeof(*splitter),
400 TYPE_SPLIT_IRQ, &error_abort, NULL);
401 g_free(name);
407 static void armsse_exp_irq(void *opaque, int n, int level)
409 qemu_irq *irqarray = opaque;
411 qemu_set_irq(irqarray[n], level);
414 static void armsse_mpcexp_status(void *opaque, int n, int level)
416 ARMSSE *s = ARMSSE(opaque);
417 qemu_set_irq(s->mpcexp_status_in[n], level);
420 static qemu_irq armsse_get_common_irq_in(ARMSSE *s, int irqno)
423 * Return a qemu_irq which can be used to signal IRQ n to
424 * all CPUs in the SSE.
426 ARMSSEClass *asc = ARMSSE_GET_CLASS(s);
427 const ARMSSEInfo *info = asc->info;
429 assert(irq_is_common[irqno]);
431 if (info->num_cpus == 1) {
432 /* Only one CPU -- just connect directly to it */
433 return qdev_get_gpio_in(DEVICE(&s->armv7m[0]), irqno);
434 } else {
435 /* Connect to the splitter which feeds all CPUs */
436 return qdev_get_gpio_in(DEVICE(&s->cpu_irq_splitter[irqno]), 0);
440 static void map_ppu(ARMSSE *s, int ppuidx, const char *name, hwaddr addr)
442 /* Map a PPU unimplemented device stub */
443 DeviceState *dev = DEVICE(&s->ppu[ppuidx]);
445 qdev_prop_set_string(dev, "name", name);
446 qdev_prop_set_uint64(dev, "size", 0x1000);
447 qdev_init_nofail(dev);
448 sysbus_mmio_map(SYS_BUS_DEVICE(&s->ppu[ppuidx]), 0, addr);
451 static void armsse_realize(DeviceState *dev, Error **errp)
453 ARMSSE *s = ARMSSE(dev);
454 ARMSSEClass *asc = ARMSSE_GET_CLASS(dev);
455 const ARMSSEInfo *info = asc->info;
456 int i;
457 MemoryRegion *mr;
458 Error *err = NULL;
459 SysBusDevice *sbd_apb_ppc0;
460 SysBusDevice *sbd_secctl;
461 DeviceState *dev_apb_ppc0;
462 DeviceState *dev_apb_ppc1;
463 DeviceState *dev_secctl;
464 DeviceState *dev_splitter;
465 uint32_t addr_width_max;
467 if (!s->board_memory) {
468 error_setg(errp, "memory property was not set");
469 return;
472 if (!s->mainclk_frq) {
473 error_setg(errp, "MAINCLK property was not set");
474 return;
477 /* max SRAM_ADDR_WIDTH: 24 - log2(SRAM_NUM_BANK) */
478 assert(is_power_of_2(info->sram_banks));
479 addr_width_max = 24 - ctz32(info->sram_banks);
480 if (s->sram_addr_width < 1 || s->sram_addr_width > addr_width_max) {
481 error_setg(errp, "SRAM_ADDR_WIDTH must be between 1 and %d",
482 addr_width_max);
483 return;
486 /* Handling of which devices should be available only to secure
487 * code is usually done differently for M profile than for A profile.
488 * Instead of putting some devices only into the secure address space,
489 * devices exist in both address spaces but with hard-wired security
490 * permissions that will cause the CPU to fault for non-secure accesses.
492 * The ARMSSE has an IDAU (Implementation Defined Access Unit),
493 * which specifies hard-wired security permissions for different
494 * areas of the physical address space. For the ARMSSE IDAU, the
495 * top 4 bits of the physical address are the IDAU region ID, and
496 * if bit 28 (ie the lowest bit of the ID) is 0 then this is an NS
497 * region, otherwise it is an S region.
499 * The various devices and RAMs are generally all mapped twice,
500 * once into a region that the IDAU defines as secure and once
501 * into a non-secure region. They sit behind either a Memory
502 * Protection Controller (for RAM) or a Peripheral Protection
503 * Controller (for devices), which allow a more fine grained
504 * configuration of whether non-secure accesses are permitted.
506 * (The other place that guest software can configure security
507 * permissions is in the architected SAU (Security Attribution
508 * Unit), which is entirely inside the CPU. The IDAU can upgrade
509 * the security attributes for a region to more restrictive than
510 * the SAU specifies, but cannot downgrade them.)
512 * 0x10000000..0x1fffffff alias of 0x00000000..0x0fffffff
513 * 0x20000000..0x2007ffff 32KB FPGA block RAM
514 * 0x30000000..0x3fffffff alias of 0x20000000..0x2fffffff
515 * 0x40000000..0x4000ffff base peripheral region 1
516 * 0x40010000..0x4001ffff CPU peripherals (none for ARMSSE)
517 * 0x40020000..0x4002ffff system control element peripherals
518 * 0x40080000..0x400fffff base peripheral region 2
519 * 0x50000000..0x5fffffff alias of 0x40000000..0x4fffffff
522 memory_region_add_subregion_overlap(&s->container, 0, s->board_memory, -2);
524 for (i = 0; i < info->num_cpus; i++) {
525 DeviceState *cpudev = DEVICE(&s->armv7m[i]);
526 Object *cpuobj = OBJECT(&s->armv7m[i]);
527 int j;
528 char *gpioname;
530 qdev_prop_set_uint32(cpudev, "num-irq", s->exp_numirq + 32);
532 * In real hardware the initial Secure VTOR is set from the INITSVTOR*
533 * registers in the IoT Kit System Control Register block. In QEMU
534 * we set the initial value here, and also the reset value of the
535 * sysctl register, from this object's QOM init-svtor property.
536 * If the guest changes the INITSVTOR* registers at runtime then the
537 * code in iotkit-sysctl.c will update the CPU init-svtor property
538 * (which will then take effect on the next CPU warm-reset).
540 * Note that typically a board using the SSE-200 will have a system
541 * control processor whose boot firmware initializes the INITSVTOR*
542 * registers before powering up the CPUs. QEMU doesn't emulate
543 * the control processor, so instead we behave in the way that the
544 * firmware does: the initial value should be set by the board code
545 * (using the init-svtor property on the ARMSSE object) to match
546 * whatever its firmware does.
548 qdev_prop_set_uint32(cpudev, "init-svtor", s->init_svtor);
550 * CPUs start powered down if the corresponding bit in the CPUWAIT
551 * register is 1. In real hardware the CPUWAIT register reset value is
552 * a configurable property of the SSE-200 (via the CPUWAIT0_RST and
553 * CPUWAIT1_RST parameters), but since all the boards we care about
554 * start CPU0 and leave CPU1 powered off, we hard-code that in
555 * info->cpuwait_rst for now. We can add QOM properties for this
556 * later if necessary.
558 if (extract32(info->cpuwait_rst, i, 1)) {
559 object_property_set_bool(cpuobj, true, "start-powered-off", &err);
560 if (err) {
561 error_propagate(errp, err);
562 return;
565 if (!s->cpu_fpu[i]) {
566 object_property_set_bool(cpuobj, false, "vfp", &err);
567 if (err) {
568 error_propagate(errp, err);
569 return;
572 if (!s->cpu_dsp[i]) {
573 object_property_set_bool(cpuobj, false, "dsp", &err);
574 if (err) {
575 error_propagate(errp, err);
576 return;
580 if (i > 0) {
581 memory_region_add_subregion_overlap(&s->cpu_container[i], 0,
582 &s->container_alias[i - 1], -1);
583 } else {
584 memory_region_add_subregion_overlap(&s->cpu_container[i], 0,
585 &s->container, -1);
587 object_property_set_link(cpuobj, OBJECT(&s->cpu_container[i]),
588 "memory", &err);
589 if (err) {
590 error_propagate(errp, err);
591 return;
593 object_property_set_link(cpuobj, OBJECT(s), "idau", &err);
594 if (err) {
595 error_propagate(errp, err);
596 return;
598 object_property_set_bool(cpuobj, true, "realized", &err);
599 if (err) {
600 error_propagate(errp, err);
601 return;
604 * The cluster must be realized after the armv7m container, as
605 * the container's CPU object is only created on realize, and the
606 * CPU must exist and have been parented into the cluster before
607 * the cluster is realized.
609 object_property_set_bool(OBJECT(&s->cluster[i]),
610 true, "realized", &err);
611 if (err) {
612 error_propagate(errp, err);
613 return;
616 /* Connect EXP_IRQ/EXP_CPUn_IRQ GPIOs to the NVIC's lines 32 and up */
617 s->exp_irqs[i] = g_new(qemu_irq, s->exp_numirq);
618 for (j = 0; j < s->exp_numirq; j++) {
619 s->exp_irqs[i][j] = qdev_get_gpio_in(cpudev, j + 32);
621 if (i == 0) {
622 gpioname = g_strdup("EXP_IRQ");
623 } else {
624 gpioname = g_strdup_printf("EXP_CPU%d_IRQ", i);
626 qdev_init_gpio_in_named_with_opaque(dev, armsse_exp_irq,
627 s->exp_irqs[i],
628 gpioname, s->exp_numirq);
629 g_free(gpioname);
632 /* Wire up the splitters that connect common IRQs to all CPUs */
633 if (info->num_cpus > 1) {
634 for (i = 0; i < ARRAY_SIZE(s->cpu_irq_splitter); i++) {
635 if (irq_is_common[i]) {
636 Object *splitter = OBJECT(&s->cpu_irq_splitter[i]);
637 DeviceState *devs = DEVICE(splitter);
638 int cpunum;
640 object_property_set_int(splitter, info->num_cpus,
641 "num-lines", &err);
642 if (err) {
643 error_propagate(errp, err);
644 return;
646 object_property_set_bool(splitter, true, "realized", &err);
647 if (err) {
648 error_propagate(errp, err);
649 return;
651 for (cpunum = 0; cpunum < info->num_cpus; cpunum++) {
652 DeviceState *cpudev = DEVICE(&s->armv7m[cpunum]);
654 qdev_connect_gpio_out(devs, cpunum,
655 qdev_get_gpio_in(cpudev, i));
661 /* Set up the big aliases first */
662 make_alias(s, &s->alias1, &s->container, "alias 1",
663 0x10000000, 0x10000000, 0x00000000);
664 make_alias(s, &s->alias2, &s->container,
665 "alias 2", 0x30000000, 0x10000000, 0x20000000);
666 /* The 0x50000000..0x5fffffff region is not a pure alias: it has
667 * a few extra devices that only appear there (generally the
668 * control interfaces for the protection controllers).
669 * We implement this by mapping those devices over the top of this
670 * alias MR at a higher priority. Some of the devices in this range
671 * are per-CPU, so we must put this alias in the per-cpu containers.
673 for (i = 0; i < info->num_cpus; i++) {
674 make_alias(s, &s->alias3[i], &s->cpu_container[i],
675 "alias 3", 0x50000000, 0x10000000, 0x40000000);
678 /* Security controller */
679 object_property_set_bool(OBJECT(&s->secctl), true, "realized", &err);
680 if (err) {
681 error_propagate(errp, err);
682 return;
684 sbd_secctl = SYS_BUS_DEVICE(&s->secctl);
685 dev_secctl = DEVICE(&s->secctl);
686 sysbus_mmio_map(sbd_secctl, 0, 0x50080000);
687 sysbus_mmio_map(sbd_secctl, 1, 0x40080000);
689 s->nsc_cfg_in = qemu_allocate_irq(nsccfg_handler, s, 1);
690 qdev_connect_gpio_out_named(dev_secctl, "nsc_cfg", 0, s->nsc_cfg_in);
692 /* The sec_resp_cfg output from the security controller must be split into
693 * multiple lines, one for each of the PPCs within the ARMSSE and one
694 * that will be an output from the ARMSSE to the system.
696 object_property_set_int(OBJECT(&s->sec_resp_splitter), 3,
697 "num-lines", &err);
698 if (err) {
699 error_propagate(errp, err);
700 return;
702 object_property_set_bool(OBJECT(&s->sec_resp_splitter), true,
703 "realized", &err);
704 if (err) {
705 error_propagate(errp, err);
706 return;
708 dev_splitter = DEVICE(&s->sec_resp_splitter);
709 qdev_connect_gpio_out_named(dev_secctl, "sec_resp_cfg", 0,
710 qdev_get_gpio_in(dev_splitter, 0));
712 /* Each SRAM bank lives behind its own Memory Protection Controller */
713 for (i = 0; i < info->sram_banks; i++) {
714 char *ramname = g_strdup_printf("armsse.sram%d", i);
715 SysBusDevice *sbd_mpc;
716 uint32_t sram_bank_size = 1 << s->sram_addr_width;
718 memory_region_init_ram(&s->sram[i], NULL, ramname,
719 sram_bank_size, &err);
720 g_free(ramname);
721 if (err) {
722 error_propagate(errp, err);
723 return;
725 object_property_set_link(OBJECT(&s->mpc[i]), OBJECT(&s->sram[i]),
726 "downstream", &err);
727 if (err) {
728 error_propagate(errp, err);
729 return;
731 object_property_set_bool(OBJECT(&s->mpc[i]), true, "realized", &err);
732 if (err) {
733 error_propagate(errp, err);
734 return;
736 /* Map the upstream end of the MPC into the right place... */
737 sbd_mpc = SYS_BUS_DEVICE(&s->mpc[i]);
738 memory_region_add_subregion(&s->container,
739 0x20000000 + i * sram_bank_size,
740 sysbus_mmio_get_region(sbd_mpc, 1));
741 /* ...and its register interface */
742 memory_region_add_subregion(&s->container, 0x50083000 + i * 0x1000,
743 sysbus_mmio_get_region(sbd_mpc, 0));
746 /* We must OR together lines from the MPC splitters to go to the NVIC */
747 object_property_set_int(OBJECT(&s->mpc_irq_orgate),
748 IOTS_NUM_EXP_MPC + info->sram_banks,
749 "num-lines", &err);
750 if (err) {
751 error_propagate(errp, err);
752 return;
754 object_property_set_bool(OBJECT(&s->mpc_irq_orgate), true,
755 "realized", &err);
756 if (err) {
757 error_propagate(errp, err);
758 return;
760 qdev_connect_gpio_out(DEVICE(&s->mpc_irq_orgate), 0,
761 armsse_get_common_irq_in(s, 9));
763 /* Devices behind APB PPC0:
764 * 0x40000000: timer0
765 * 0x40001000: timer1
766 * 0x40002000: dual timer
767 * 0x40003000: MHU0 (SSE-200 only)
768 * 0x40004000: MHU1 (SSE-200 only)
769 * We must configure and realize each downstream device and connect
770 * it to the appropriate PPC port; then we can realize the PPC and
771 * map its upstream ends to the right place in the container.
773 qdev_prop_set_uint32(DEVICE(&s->timer0), "pclk-frq", s->mainclk_frq);
774 object_property_set_bool(OBJECT(&s->timer0), true, "realized", &err);
775 if (err) {
776 error_propagate(errp, err);
777 return;
779 sysbus_connect_irq(SYS_BUS_DEVICE(&s->timer0), 0,
780 armsse_get_common_irq_in(s, 3));
781 mr = sysbus_mmio_get_region(SYS_BUS_DEVICE(&s->timer0), 0);
782 object_property_set_link(OBJECT(&s->apb_ppc0), OBJECT(mr), "port[0]", &err);
783 if (err) {
784 error_propagate(errp, err);
785 return;
788 qdev_prop_set_uint32(DEVICE(&s->timer1), "pclk-frq", s->mainclk_frq);
789 object_property_set_bool(OBJECT(&s->timer1), true, "realized", &err);
790 if (err) {
791 error_propagate(errp, err);
792 return;
794 sysbus_connect_irq(SYS_BUS_DEVICE(&s->timer1), 0,
795 armsse_get_common_irq_in(s, 4));
796 mr = sysbus_mmio_get_region(SYS_BUS_DEVICE(&s->timer1), 0);
797 object_property_set_link(OBJECT(&s->apb_ppc0), OBJECT(mr), "port[1]", &err);
798 if (err) {
799 error_propagate(errp, err);
800 return;
804 qdev_prop_set_uint32(DEVICE(&s->dualtimer), "pclk-frq", s->mainclk_frq);
805 object_property_set_bool(OBJECT(&s->dualtimer), true, "realized", &err);
806 if (err) {
807 error_propagate(errp, err);
808 return;
810 sysbus_connect_irq(SYS_BUS_DEVICE(&s->dualtimer), 0,
811 armsse_get_common_irq_in(s, 5));
812 mr = sysbus_mmio_get_region(SYS_BUS_DEVICE(&s->dualtimer), 0);
813 object_property_set_link(OBJECT(&s->apb_ppc0), OBJECT(mr), "port[2]", &err);
814 if (err) {
815 error_propagate(errp, err);
816 return;
819 if (info->has_mhus) {
821 * An SSE-200 with only one CPU should have only one MHU created,
822 * with the region where the second MHU usually is being RAZ/WI.
823 * We don't implement that SSE-200 config; if we want to support
824 * it then this code needs to be enhanced to handle creating the
825 * RAZ/WI region instead of the second MHU.
827 assert(info->num_cpus == ARRAY_SIZE(s->mhu));
829 for (i = 0; i < ARRAY_SIZE(s->mhu); i++) {
830 char *port;
831 int cpunum;
832 SysBusDevice *mhu_sbd = SYS_BUS_DEVICE(&s->mhu[i]);
834 object_property_set_bool(OBJECT(&s->mhu[i]), true,
835 "realized", &err);
836 if (err) {
837 error_propagate(errp, err);
838 return;
840 port = g_strdup_printf("port[%d]", i + 3);
841 mr = sysbus_mmio_get_region(mhu_sbd, 0);
842 object_property_set_link(OBJECT(&s->apb_ppc0), OBJECT(mr),
843 port, &err);
844 g_free(port);
845 if (err) {
846 error_propagate(errp, err);
847 return;
851 * Each MHU has an irq line for each CPU:
852 * MHU 0 irq line 0 -> CPU 0 IRQ 6
853 * MHU 0 irq line 1 -> CPU 1 IRQ 6
854 * MHU 1 irq line 0 -> CPU 0 IRQ 7
855 * MHU 1 irq line 1 -> CPU 1 IRQ 7
857 for (cpunum = 0; cpunum < info->num_cpus; cpunum++) {
858 DeviceState *cpudev = DEVICE(&s->armv7m[cpunum]);
860 sysbus_connect_irq(mhu_sbd, cpunum,
861 qdev_get_gpio_in(cpudev, 6 + i));
866 object_property_set_bool(OBJECT(&s->apb_ppc0), true, "realized", &err);
867 if (err) {
868 error_propagate(errp, err);
869 return;
872 sbd_apb_ppc0 = SYS_BUS_DEVICE(&s->apb_ppc0);
873 dev_apb_ppc0 = DEVICE(&s->apb_ppc0);
875 mr = sysbus_mmio_get_region(sbd_apb_ppc0, 0);
876 memory_region_add_subregion(&s->container, 0x40000000, mr);
877 mr = sysbus_mmio_get_region(sbd_apb_ppc0, 1);
878 memory_region_add_subregion(&s->container, 0x40001000, mr);
879 mr = sysbus_mmio_get_region(sbd_apb_ppc0, 2);
880 memory_region_add_subregion(&s->container, 0x40002000, mr);
881 if (info->has_mhus) {
882 mr = sysbus_mmio_get_region(sbd_apb_ppc0, 3);
883 memory_region_add_subregion(&s->container, 0x40003000, mr);
884 mr = sysbus_mmio_get_region(sbd_apb_ppc0, 4);
885 memory_region_add_subregion(&s->container, 0x40004000, mr);
887 for (i = 0; i < IOTS_APB_PPC0_NUM_PORTS; i++) {
888 qdev_connect_gpio_out_named(dev_secctl, "apb_ppc0_nonsec", i,
889 qdev_get_gpio_in_named(dev_apb_ppc0,
890 "cfg_nonsec", i));
891 qdev_connect_gpio_out_named(dev_secctl, "apb_ppc0_ap", i,
892 qdev_get_gpio_in_named(dev_apb_ppc0,
893 "cfg_ap", i));
895 qdev_connect_gpio_out_named(dev_secctl, "apb_ppc0_irq_enable", 0,
896 qdev_get_gpio_in_named(dev_apb_ppc0,
897 "irq_enable", 0));
898 qdev_connect_gpio_out_named(dev_secctl, "apb_ppc0_irq_clear", 0,
899 qdev_get_gpio_in_named(dev_apb_ppc0,
900 "irq_clear", 0));
901 qdev_connect_gpio_out(dev_splitter, 0,
902 qdev_get_gpio_in_named(dev_apb_ppc0,
903 "cfg_sec_resp", 0));
905 /* All the PPC irq lines (from the 2 internal PPCs and the 8 external
906 * ones) are sent individually to the security controller, and also
907 * ORed together to give a single combined PPC interrupt to the NVIC.
909 object_property_set_int(OBJECT(&s->ppc_irq_orgate),
910 NUM_PPCS, "num-lines", &err);
911 if (err) {
912 error_propagate(errp, err);
913 return;
915 object_property_set_bool(OBJECT(&s->ppc_irq_orgate), true,
916 "realized", &err);
917 if (err) {
918 error_propagate(errp, err);
919 return;
921 qdev_connect_gpio_out(DEVICE(&s->ppc_irq_orgate), 0,
922 armsse_get_common_irq_in(s, 10));
925 * 0x40010000 .. 0x4001ffff (and the 0x5001000... secure-only alias):
926 * private per-CPU region (all these devices are SSE-200 only):
927 * 0x50010000: L1 icache control registers
928 * 0x50011000: CPUSECCTRL (CPU local security control registers)
929 * 0x4001f000 and 0x5001f000: CPU_IDENTITY register block
931 if (info->has_cachectrl) {
932 for (i = 0; i < info->num_cpus; i++) {
933 char *name = g_strdup_printf("cachectrl%d", i);
934 MemoryRegion *mr;
936 qdev_prop_set_string(DEVICE(&s->cachectrl[i]), "name", name);
937 g_free(name);
938 qdev_prop_set_uint64(DEVICE(&s->cachectrl[i]), "size", 0x1000);
939 object_property_set_bool(OBJECT(&s->cachectrl[i]), true,
940 "realized", &err);
941 if (err) {
942 error_propagate(errp, err);
943 return;
946 mr = sysbus_mmio_get_region(SYS_BUS_DEVICE(&s->cachectrl[i]), 0);
947 memory_region_add_subregion(&s->cpu_container[i], 0x50010000, mr);
950 if (info->has_cpusecctrl) {
951 for (i = 0; i < info->num_cpus; i++) {
952 char *name = g_strdup_printf("CPUSECCTRL%d", i);
953 MemoryRegion *mr;
955 qdev_prop_set_string(DEVICE(&s->cpusecctrl[i]), "name", name);
956 g_free(name);
957 qdev_prop_set_uint64(DEVICE(&s->cpusecctrl[i]), "size", 0x1000);
958 object_property_set_bool(OBJECT(&s->cpusecctrl[i]), true,
959 "realized", &err);
960 if (err) {
961 error_propagate(errp, err);
962 return;
965 mr = sysbus_mmio_get_region(SYS_BUS_DEVICE(&s->cpusecctrl[i]), 0);
966 memory_region_add_subregion(&s->cpu_container[i], 0x50011000, mr);
969 if (info->has_cpuid) {
970 for (i = 0; i < info->num_cpus; i++) {
971 MemoryRegion *mr;
973 qdev_prop_set_uint32(DEVICE(&s->cpuid[i]), "CPUID", i);
974 object_property_set_bool(OBJECT(&s->cpuid[i]), true,
975 "realized", &err);
976 if (err) {
977 error_propagate(errp, err);
978 return;
981 mr = sysbus_mmio_get_region(SYS_BUS_DEVICE(&s->cpuid[i]), 0);
982 memory_region_add_subregion(&s->cpu_container[i], 0x4001F000, mr);
986 /* 0x40020000 .. 0x4002ffff : ARMSSE system control peripheral region */
987 /* Devices behind APB PPC1:
988 * 0x4002f000: S32K timer
990 qdev_prop_set_uint32(DEVICE(&s->s32ktimer), "pclk-frq", S32KCLK);
991 object_property_set_bool(OBJECT(&s->s32ktimer), true, "realized", &err);
992 if (err) {
993 error_propagate(errp, err);
994 return;
996 sysbus_connect_irq(SYS_BUS_DEVICE(&s->s32ktimer), 0,
997 armsse_get_common_irq_in(s, 2));
998 mr = sysbus_mmio_get_region(SYS_BUS_DEVICE(&s->s32ktimer), 0);
999 object_property_set_link(OBJECT(&s->apb_ppc1), OBJECT(mr), "port[0]", &err);
1000 if (err) {
1001 error_propagate(errp, err);
1002 return;
1005 object_property_set_bool(OBJECT(&s->apb_ppc1), true, "realized", &err);
1006 if (err) {
1007 error_propagate(errp, err);
1008 return;
1010 mr = sysbus_mmio_get_region(SYS_BUS_DEVICE(&s->apb_ppc1), 0);
1011 memory_region_add_subregion(&s->container, 0x4002f000, mr);
1013 dev_apb_ppc1 = DEVICE(&s->apb_ppc1);
1014 qdev_connect_gpio_out_named(dev_secctl, "apb_ppc1_nonsec", 0,
1015 qdev_get_gpio_in_named(dev_apb_ppc1,
1016 "cfg_nonsec", 0));
1017 qdev_connect_gpio_out_named(dev_secctl, "apb_ppc1_ap", 0,
1018 qdev_get_gpio_in_named(dev_apb_ppc1,
1019 "cfg_ap", 0));
1020 qdev_connect_gpio_out_named(dev_secctl, "apb_ppc1_irq_enable", 0,
1021 qdev_get_gpio_in_named(dev_apb_ppc1,
1022 "irq_enable", 0));
1023 qdev_connect_gpio_out_named(dev_secctl, "apb_ppc1_irq_clear", 0,
1024 qdev_get_gpio_in_named(dev_apb_ppc1,
1025 "irq_clear", 0));
1026 qdev_connect_gpio_out(dev_splitter, 1,
1027 qdev_get_gpio_in_named(dev_apb_ppc1,
1028 "cfg_sec_resp", 0));
1030 object_property_set_int(OBJECT(&s->sysinfo), info->sys_version,
1031 "SYS_VERSION", &err);
1032 if (err) {
1033 error_propagate(errp, err);
1034 return;
1036 object_property_set_int(OBJECT(&s->sysinfo),
1037 armsse_sys_config_value(s, info),
1038 "SYS_CONFIG", &err);
1039 if (err) {
1040 error_propagate(errp, err);
1041 return;
1043 object_property_set_bool(OBJECT(&s->sysinfo), true, "realized", &err);
1044 if (err) {
1045 error_propagate(errp, err);
1046 return;
1048 /* System information registers */
1049 sysbus_mmio_map(SYS_BUS_DEVICE(&s->sysinfo), 0, 0x40020000);
1050 /* System control registers */
1051 object_property_set_int(OBJECT(&s->sysctl), info->sys_version,
1052 "SYS_VERSION", &err);
1053 object_property_set_int(OBJECT(&s->sysctl), info->cpuwait_rst,
1054 "CPUWAIT_RST", &err);
1055 object_property_set_int(OBJECT(&s->sysctl), s->init_svtor,
1056 "INITSVTOR0_RST", &err);
1057 object_property_set_int(OBJECT(&s->sysctl), s->init_svtor,
1058 "INITSVTOR1_RST", &err);
1059 object_property_set_bool(OBJECT(&s->sysctl), true, "realized", &err);
1060 if (err) {
1061 error_propagate(errp, err);
1062 return;
1064 sysbus_mmio_map(SYS_BUS_DEVICE(&s->sysctl), 0, 0x50021000);
1066 if (info->has_ppus) {
1067 /* CPUnCORE_PPU for each CPU */
1068 for (i = 0; i < info->num_cpus; i++) {
1069 char *name = g_strdup_printf("CPU%dCORE_PPU", i);
1071 map_ppu(s, CPU0CORE_PPU + i, name, 0x50023000 + i * 0x2000);
1073 * We don't support CPU debug so don't create the
1074 * CPU0DEBUG_PPU at 0x50024000 and 0x50026000.
1076 g_free(name);
1078 map_ppu(s, DBG_PPU, "DBG_PPU", 0x50029000);
1080 for (i = 0; i < info->sram_banks; i++) {
1081 char *name = g_strdup_printf("RAM%d_PPU", i);
1083 map_ppu(s, RAM0_PPU + i, name, 0x5002a000 + i * 0x1000);
1084 g_free(name);
1088 /* This OR gate wires together outputs from the secure watchdogs to NMI */
1089 object_property_set_int(OBJECT(&s->nmi_orgate), 2, "num-lines", &err);
1090 if (err) {
1091 error_propagate(errp, err);
1092 return;
1094 object_property_set_bool(OBJECT(&s->nmi_orgate), true, "realized", &err);
1095 if (err) {
1096 error_propagate(errp, err);
1097 return;
1099 qdev_connect_gpio_out(DEVICE(&s->nmi_orgate), 0,
1100 qdev_get_gpio_in_named(DEVICE(&s->armv7m), "NMI", 0));
1102 qdev_prop_set_uint32(DEVICE(&s->s32kwatchdog), "wdogclk-frq", S32KCLK);
1103 object_property_set_bool(OBJECT(&s->s32kwatchdog), true, "realized", &err);
1104 if (err) {
1105 error_propagate(errp, err);
1106 return;
1108 sysbus_connect_irq(SYS_BUS_DEVICE(&s->s32kwatchdog), 0,
1109 qdev_get_gpio_in(DEVICE(&s->nmi_orgate), 0));
1110 sysbus_mmio_map(SYS_BUS_DEVICE(&s->s32kwatchdog), 0, 0x5002e000);
1112 /* 0x40080000 .. 0x4008ffff : ARMSSE second Base peripheral region */
1114 qdev_prop_set_uint32(DEVICE(&s->nswatchdog), "wdogclk-frq", s->mainclk_frq);
1115 object_property_set_bool(OBJECT(&s->nswatchdog), true, "realized", &err);
1116 if (err) {
1117 error_propagate(errp, err);
1118 return;
1120 sysbus_connect_irq(SYS_BUS_DEVICE(&s->nswatchdog), 0,
1121 armsse_get_common_irq_in(s, 1));
1122 sysbus_mmio_map(SYS_BUS_DEVICE(&s->nswatchdog), 0, 0x40081000);
1124 qdev_prop_set_uint32(DEVICE(&s->swatchdog), "wdogclk-frq", s->mainclk_frq);
1125 object_property_set_bool(OBJECT(&s->swatchdog), true, "realized", &err);
1126 if (err) {
1127 error_propagate(errp, err);
1128 return;
1130 sysbus_connect_irq(SYS_BUS_DEVICE(&s->swatchdog), 0,
1131 qdev_get_gpio_in(DEVICE(&s->nmi_orgate), 1));
1132 sysbus_mmio_map(SYS_BUS_DEVICE(&s->swatchdog), 0, 0x50081000);
1134 for (i = 0; i < ARRAY_SIZE(s->ppc_irq_splitter); i++) {
1135 Object *splitter = OBJECT(&s->ppc_irq_splitter[i]);
1137 object_property_set_int(splitter, 2, "num-lines", &err);
1138 if (err) {
1139 error_propagate(errp, err);
1140 return;
1142 object_property_set_bool(splitter, true, "realized", &err);
1143 if (err) {
1144 error_propagate(errp, err);
1145 return;
1149 for (i = 0; i < IOTS_NUM_AHB_EXP_PPC; i++) {
1150 char *ppcname = g_strdup_printf("ahb_ppcexp%d", i);
1152 armsse_forward_ppc(s, ppcname, i);
1153 g_free(ppcname);
1156 for (i = 0; i < IOTS_NUM_APB_EXP_PPC; i++) {
1157 char *ppcname = g_strdup_printf("apb_ppcexp%d", i);
1159 armsse_forward_ppc(s, ppcname, i + IOTS_NUM_AHB_EXP_PPC);
1160 g_free(ppcname);
1163 for (i = NUM_EXTERNAL_PPCS; i < NUM_PPCS; i++) {
1164 /* Wire up IRQ splitter for internal PPCs */
1165 DeviceState *devs = DEVICE(&s->ppc_irq_splitter[i]);
1166 char *gpioname = g_strdup_printf("apb_ppc%d_irq_status",
1167 i - NUM_EXTERNAL_PPCS);
1168 TZPPC *ppc = (i == NUM_EXTERNAL_PPCS) ? &s->apb_ppc0 : &s->apb_ppc1;
1170 qdev_connect_gpio_out(devs, 0,
1171 qdev_get_gpio_in_named(dev_secctl, gpioname, 0));
1172 qdev_connect_gpio_out(devs, 1,
1173 qdev_get_gpio_in(DEVICE(&s->ppc_irq_orgate), i));
1174 qdev_connect_gpio_out_named(DEVICE(ppc), "irq", 0,
1175 qdev_get_gpio_in(devs, 0));
1176 g_free(gpioname);
1179 /* Wire up the splitters for the MPC IRQs */
1180 for (i = 0; i < IOTS_NUM_EXP_MPC + info->sram_banks; i++) {
1181 SplitIRQ *splitter = &s->mpc_irq_splitter[i];
1182 DeviceState *dev_splitter = DEVICE(splitter);
1184 object_property_set_int(OBJECT(splitter), 2, "num-lines", &err);
1185 if (err) {
1186 error_propagate(errp, err);
1187 return;
1189 object_property_set_bool(OBJECT(splitter), true, "realized", &err);
1190 if (err) {
1191 error_propagate(errp, err);
1192 return;
1195 if (i < IOTS_NUM_EXP_MPC) {
1196 /* Splitter input is from GPIO input line */
1197 s->mpcexp_status_in[i] = qdev_get_gpio_in(dev_splitter, 0);
1198 qdev_connect_gpio_out(dev_splitter, 0,
1199 qdev_get_gpio_in_named(dev_secctl,
1200 "mpcexp_status", i));
1201 } else {
1202 /* Splitter input is from our own MPC */
1203 qdev_connect_gpio_out_named(DEVICE(&s->mpc[i - IOTS_NUM_EXP_MPC]),
1204 "irq", 0,
1205 qdev_get_gpio_in(dev_splitter, 0));
1206 qdev_connect_gpio_out(dev_splitter, 0,
1207 qdev_get_gpio_in_named(dev_secctl,
1208 "mpc_status", 0));
1211 qdev_connect_gpio_out(dev_splitter, 1,
1212 qdev_get_gpio_in(DEVICE(&s->mpc_irq_orgate), i));
1214 /* Create GPIO inputs which will pass the line state for our
1215 * mpcexp_irq inputs to the correct splitter devices.
1217 qdev_init_gpio_in_named(dev, armsse_mpcexp_status, "mpcexp_status",
1218 IOTS_NUM_EXP_MPC);
1220 armsse_forward_sec_resp_cfg(s);
1222 /* Forward the MSC related signals */
1223 qdev_pass_gpios(dev_secctl, dev, "mscexp_status");
1224 qdev_pass_gpios(dev_secctl, dev, "mscexp_clear");
1225 qdev_pass_gpios(dev_secctl, dev, "mscexp_ns");
1226 qdev_connect_gpio_out_named(dev_secctl, "msc_irq", 0,
1227 armsse_get_common_irq_in(s, 11));
1230 * Expose our container region to the board model; this corresponds
1231 * to the AHB Slave Expansion ports which allow bus master devices
1232 * (eg DMA controllers) in the board model to make transactions into
1233 * devices in the ARMSSE.
1235 sysbus_init_mmio(SYS_BUS_DEVICE(s), &s->container);
1237 system_clock_scale = NANOSECONDS_PER_SECOND / s->mainclk_frq;
1240 static void armsse_idau_check(IDAUInterface *ii, uint32_t address,
1241 int *iregion, bool *exempt, bool *ns, bool *nsc)
1244 * For ARMSSE systems the IDAU responses are simple logical functions
1245 * of the address bits. The NSC attribute is guest-adjustable via the
1246 * NSCCFG register in the security controller.
1248 ARMSSE *s = ARMSSE(ii);
1249 int region = extract32(address, 28, 4);
1251 *ns = !(region & 1);
1252 *nsc = (region == 1 && (s->nsccfg & 1)) || (region == 3 && (s->nsccfg & 2));
1253 /* 0xe0000000..0xe00fffff and 0xf0000000..0xf00fffff are exempt */
1254 *exempt = (address & 0xeff00000) == 0xe0000000;
1255 *iregion = region;
1258 static const VMStateDescription armsse_vmstate = {
1259 .name = "iotkit",
1260 .version_id = 1,
1261 .minimum_version_id = 1,
1262 .fields = (VMStateField[]) {
1263 VMSTATE_UINT32(nsccfg, ARMSSE),
1264 VMSTATE_END_OF_LIST()
1268 static void armsse_reset(DeviceState *dev)
1270 ARMSSE *s = ARMSSE(dev);
1272 s->nsccfg = 0;
1275 static void armsse_class_init(ObjectClass *klass, void *data)
1277 DeviceClass *dc = DEVICE_CLASS(klass);
1278 IDAUInterfaceClass *iic = IDAU_INTERFACE_CLASS(klass);
1279 ARMSSEClass *asc = ARMSSE_CLASS(klass);
1280 const ARMSSEInfo *info = data;
1282 dc->realize = armsse_realize;
1283 dc->vmsd = &armsse_vmstate;
1284 dc->props = info->props;
1285 dc->reset = armsse_reset;
1286 iic->check = armsse_idau_check;
1287 asc->info = info;
1290 static const TypeInfo armsse_info = {
1291 .name = TYPE_ARMSSE,
1292 .parent = TYPE_SYS_BUS_DEVICE,
1293 .instance_size = sizeof(ARMSSE),
1294 .instance_init = armsse_init,
1295 .abstract = true,
1296 .interfaces = (InterfaceInfo[]) {
1297 { TYPE_IDAU_INTERFACE },
1302 static void armsse_register_types(void)
1304 int i;
1306 type_register_static(&armsse_info);
1308 for (i = 0; i < ARRAY_SIZE(armsse_variants); i++) {
1309 TypeInfo ti = {
1310 .name = armsse_variants[i].name,
1311 .parent = TYPE_ARMSSE,
1312 .class_init = armsse_class_init,
1313 .class_data = (void *)&armsse_variants[i],
1315 type_register(&ti);
1319 type_init(armsse_register_types);