Merge remote-tracking branch 'remotes/juanquintela/tags/migration/20151203' into...
[qemu/ar7.git] / hw / block / nand.c
blobf0e34139fec887f6ddd6f61365a09131524759bf
1 /*
2 * Flash NAND memory emulation. Based on "16M x 8 Bit NAND Flash
3 * Memory" datasheet for the KM29U128AT / K9F2808U0A chips from
4 * Samsung Electronic.
6 * Copyright (c) 2006 Openedhand Ltd.
7 * Written by Andrzej Zaborowski <balrog@zabor.org>
9 * Support for additional features based on "MT29F2G16ABCWP 2Gx16"
10 * datasheet from Micron Technology and "NAND02G-B2C" datasheet
11 * from ST Microelectronics.
13 * This code is licensed under the GNU GPL v2.
15 * Contributions after 2012-01-13 are licensed under the terms of the
16 * GNU GPL, version 2 or (at your option) any later version.
19 #ifndef NAND_IO
21 # include "hw/hw.h"
22 # include "hw/block/flash.h"
23 #include "sysemu/block-backend.h"
24 #include "hw/qdev.h"
25 #include "qemu/error-report.h"
27 # define NAND_CMD_READ0 0x00
28 # define NAND_CMD_READ1 0x01
29 # define NAND_CMD_READ2 0x50
30 # define NAND_CMD_LPREAD2 0x30
31 # define NAND_CMD_NOSERIALREAD2 0x35
32 # define NAND_CMD_RANDOMREAD1 0x05
33 # define NAND_CMD_RANDOMREAD2 0xe0
34 # define NAND_CMD_READID 0x90
35 # define NAND_CMD_RESET 0xff
36 # define NAND_CMD_PAGEPROGRAM1 0x80
37 # define NAND_CMD_PAGEPROGRAM2 0x10
38 # define NAND_CMD_CACHEPROGRAM2 0x15
39 # define NAND_CMD_BLOCKERASE1 0x60
40 # define NAND_CMD_BLOCKERASE2 0xd0
41 # define NAND_CMD_READSTATUS 0x70
42 # define NAND_CMD_COPYBACKPRG1 0x85
44 # define NAND_IOSTATUS_ERROR (1 << 0)
45 # define NAND_IOSTATUS_PLANE0 (1 << 1)
46 # define NAND_IOSTATUS_PLANE1 (1 << 2)
47 # define NAND_IOSTATUS_PLANE2 (1 << 3)
48 # define NAND_IOSTATUS_PLANE3 (1 << 4)
49 # define NAND_IOSTATUS_READY (1 << 6)
50 # define NAND_IOSTATUS_UNPROTCT (1 << 7)
52 # define MAX_PAGE 0x800
53 # define MAX_OOB 0x40
55 typedef struct NANDFlashState NANDFlashState;
56 struct NANDFlashState {
57 DeviceState parent_obj;
59 uint8_t manf_id, chip_id;
60 uint8_t buswidth; /* in BYTES */
61 int size, pages;
62 int page_shift, oob_shift, erase_shift, addr_shift;
63 uint8_t *storage;
64 BlockBackend *blk;
65 int mem_oob;
67 uint8_t cle, ale, ce, wp, gnd;
69 uint8_t io[MAX_PAGE + MAX_OOB + 0x400];
70 uint8_t *ioaddr;
71 int iolen;
73 uint32_t cmd;
74 uint64_t addr;
75 int addrlen;
76 int status;
77 int offset;
79 void (*blk_write)(NANDFlashState *s);
80 void (*blk_erase)(NANDFlashState *s);
81 void (*blk_load)(NANDFlashState *s, uint64_t addr, int offset);
83 uint32_t ioaddr_vmstate;
86 #define TYPE_NAND "nand"
88 #define NAND(obj) \
89 OBJECT_CHECK(NANDFlashState, (obj), TYPE_NAND)
91 static void mem_and(uint8_t *dest, const uint8_t *src, size_t n)
93 /* Like memcpy() but we logical-AND the data into the destination */
94 int i;
95 for (i = 0; i < n; i++) {
96 dest[i] &= src[i];
100 # define NAND_NO_AUTOINCR 0x00000001
101 # define NAND_BUSWIDTH_16 0x00000002
102 # define NAND_NO_PADDING 0x00000004
103 # define NAND_CACHEPRG 0x00000008
104 # define NAND_COPYBACK 0x00000010
105 # define NAND_IS_AND 0x00000020
106 # define NAND_4PAGE_ARRAY 0x00000040
107 # define NAND_NO_READRDY 0x00000100
108 # define NAND_SAMSUNG_LP (NAND_NO_PADDING | NAND_COPYBACK)
110 # define NAND_IO
112 # define PAGE(addr) ((addr) >> ADDR_SHIFT)
113 # define PAGE_START(page) (PAGE(page) * (PAGE_SIZE + OOB_SIZE))
114 # define PAGE_MASK ((1 << ADDR_SHIFT) - 1)
115 # define OOB_SHIFT (PAGE_SHIFT - 5)
116 # define OOB_SIZE (1 << OOB_SHIFT)
117 # define SECTOR(addr) ((addr) >> (9 + ADDR_SHIFT - PAGE_SHIFT))
118 # define SECTOR_OFFSET(addr) ((addr) & ((511 >> PAGE_SHIFT) << 8))
120 # define PAGE_SIZE 256
121 # define PAGE_SHIFT 8
122 # define PAGE_SECTORS 1
123 # define ADDR_SHIFT 8
124 # include "nand.c"
125 # define PAGE_SIZE 512
126 # define PAGE_SHIFT 9
127 # define PAGE_SECTORS 1
128 # define ADDR_SHIFT 8
129 # include "nand.c"
130 # define PAGE_SIZE 2048
131 # define PAGE_SHIFT 11
132 # define PAGE_SECTORS 4
133 # define ADDR_SHIFT 16
134 # include "nand.c"
136 /* Information based on Linux drivers/mtd/nand/nand_ids.c */
137 static const struct {
138 int size;
139 int width;
140 int page_shift;
141 int erase_shift;
142 uint32_t options;
143 } nand_flash_ids[0x100] = {
144 [0 ... 0xff] = { 0 },
146 [0x6e] = { 1, 8, 8, 4, 0 },
147 [0x64] = { 2, 8, 8, 4, 0 },
148 [0x6b] = { 4, 8, 9, 4, 0 },
149 [0xe8] = { 1, 8, 8, 4, 0 },
150 [0xec] = { 1, 8, 8, 4, 0 },
151 [0xea] = { 2, 8, 8, 4, 0 },
152 [0xd5] = { 4, 8, 9, 4, 0 },
153 [0xe3] = { 4, 8, 9, 4, 0 },
154 [0xe5] = { 4, 8, 9, 4, 0 },
155 [0xd6] = { 8, 8, 9, 4, 0 },
157 [0x39] = { 8, 8, 9, 4, 0 },
158 [0xe6] = { 8, 8, 9, 4, 0 },
159 [0x49] = { 8, 16, 9, 4, NAND_BUSWIDTH_16 },
160 [0x59] = { 8, 16, 9, 4, NAND_BUSWIDTH_16 },
162 [0x33] = { 16, 8, 9, 5, 0 },
163 [0x73] = { 16, 8, 9, 5, 0 },
164 [0x43] = { 16, 16, 9, 5, NAND_BUSWIDTH_16 },
165 [0x53] = { 16, 16, 9, 5, NAND_BUSWIDTH_16 },
167 [0x35] = { 32, 8, 9, 5, 0 },
168 [0x75] = { 32, 8, 9, 5, 0 },
169 [0x45] = { 32, 16, 9, 5, NAND_BUSWIDTH_16 },
170 [0x55] = { 32, 16, 9, 5, NAND_BUSWIDTH_16 },
172 [0x36] = { 64, 8, 9, 5, 0 },
173 [0x76] = { 64, 8, 9, 5, 0 },
174 [0x46] = { 64, 16, 9, 5, NAND_BUSWIDTH_16 },
175 [0x56] = { 64, 16, 9, 5, NAND_BUSWIDTH_16 },
177 [0x78] = { 128, 8, 9, 5, 0 },
178 [0x39] = { 128, 8, 9, 5, 0 },
179 [0x79] = { 128, 8, 9, 5, 0 },
180 [0x72] = { 128, 16, 9, 5, NAND_BUSWIDTH_16 },
181 [0x49] = { 128, 16, 9, 5, NAND_BUSWIDTH_16 },
182 [0x74] = { 128, 16, 9, 5, NAND_BUSWIDTH_16 },
183 [0x59] = { 128, 16, 9, 5, NAND_BUSWIDTH_16 },
185 [0x71] = { 256, 8, 9, 5, 0 },
188 * These are the new chips with large page size. The pagesize and the
189 * erasesize is determined from the extended id bytes
191 # define LP_OPTIONS (NAND_SAMSUNG_LP | NAND_NO_READRDY | NAND_NO_AUTOINCR)
192 # define LP_OPTIONS16 (LP_OPTIONS | NAND_BUSWIDTH_16)
194 /* 512 Megabit */
195 [0xa2] = { 64, 8, 0, 0, LP_OPTIONS },
196 [0xf2] = { 64, 8, 0, 0, LP_OPTIONS },
197 [0xb2] = { 64, 16, 0, 0, LP_OPTIONS16 },
198 [0xc2] = { 64, 16, 0, 0, LP_OPTIONS16 },
200 /* 1 Gigabit */
201 [0xa1] = { 128, 8, 0, 0, LP_OPTIONS },
202 [0xf1] = { 128, 8, 0, 0, LP_OPTIONS },
203 [0xb1] = { 128, 16, 0, 0, LP_OPTIONS16 },
204 [0xc1] = { 128, 16, 0, 0, LP_OPTIONS16 },
206 /* 2 Gigabit */
207 [0xaa] = { 256, 8, 0, 0, LP_OPTIONS },
208 [0xda] = { 256, 8, 0, 0, LP_OPTIONS },
209 [0xba] = { 256, 16, 0, 0, LP_OPTIONS16 },
210 [0xca] = { 256, 16, 0, 0, LP_OPTIONS16 },
212 /* 4 Gigabit */
213 [0xac] = { 512, 8, 0, 0, LP_OPTIONS },
214 [0xdc] = { 512, 8, 0, 0, LP_OPTIONS },
215 [0xbc] = { 512, 16, 0, 0, LP_OPTIONS16 },
216 [0xcc] = { 512, 16, 0, 0, LP_OPTIONS16 },
218 /* 8 Gigabit */
219 [0xa3] = { 1024, 8, 0, 0, LP_OPTIONS },
220 [0xd3] = { 1024, 8, 0, 0, LP_OPTIONS },
221 [0xb3] = { 1024, 16, 0, 0, LP_OPTIONS16 },
222 [0xc3] = { 1024, 16, 0, 0, LP_OPTIONS16 },
224 /* 16 Gigabit */
225 [0xa5] = { 2048, 8, 0, 0, LP_OPTIONS },
226 [0xd5] = { 2048, 8, 0, 0, LP_OPTIONS },
227 [0xb5] = { 2048, 16, 0, 0, LP_OPTIONS16 },
228 [0xc5] = { 2048, 16, 0, 0, LP_OPTIONS16 },
231 static void nand_reset(DeviceState *dev)
233 NANDFlashState *s = NAND(dev);
234 s->cmd = NAND_CMD_READ0;
235 s->addr = 0;
236 s->addrlen = 0;
237 s->iolen = 0;
238 s->offset = 0;
239 s->status &= NAND_IOSTATUS_UNPROTCT;
240 s->status |= NAND_IOSTATUS_READY;
243 static inline void nand_pushio_byte(NANDFlashState *s, uint8_t value)
245 s->ioaddr[s->iolen++] = value;
246 for (value = s->buswidth; --value;) {
247 s->ioaddr[s->iolen++] = 0;
251 static void nand_command(NANDFlashState *s)
253 unsigned int offset;
254 switch (s->cmd) {
255 case NAND_CMD_READ0:
256 s->iolen = 0;
257 break;
259 case NAND_CMD_READID:
260 s->ioaddr = s->io;
261 s->iolen = 0;
262 nand_pushio_byte(s, s->manf_id);
263 nand_pushio_byte(s, s->chip_id);
264 nand_pushio_byte(s, 'Q'); /* Don't-care byte (often 0xa5) */
265 if (nand_flash_ids[s->chip_id].options & NAND_SAMSUNG_LP) {
266 /* Page Size, Block Size, Spare Size; bit 6 indicates
267 * 8 vs 16 bit width NAND.
269 nand_pushio_byte(s, (s->buswidth == 2) ? 0x55 : 0x15);
270 } else {
271 nand_pushio_byte(s, 0xc0); /* Multi-plane */
273 break;
275 case NAND_CMD_RANDOMREAD2:
276 case NAND_CMD_NOSERIALREAD2:
277 if (!(nand_flash_ids[s->chip_id].options & NAND_SAMSUNG_LP))
278 break;
279 offset = s->addr & ((1 << s->addr_shift) - 1);
280 s->blk_load(s, s->addr, offset);
281 if (s->gnd)
282 s->iolen = (1 << s->page_shift) - offset;
283 else
284 s->iolen = (1 << s->page_shift) + (1 << s->oob_shift) - offset;
285 break;
287 case NAND_CMD_RESET:
288 nand_reset(DEVICE(s));
289 break;
291 case NAND_CMD_PAGEPROGRAM1:
292 s->ioaddr = s->io;
293 s->iolen = 0;
294 break;
296 case NAND_CMD_PAGEPROGRAM2:
297 if (s->wp) {
298 s->blk_write(s);
300 break;
302 case NAND_CMD_BLOCKERASE1:
303 break;
305 case NAND_CMD_BLOCKERASE2:
306 s->addr &= (1ull << s->addrlen * 8) - 1;
307 s->addr <<= nand_flash_ids[s->chip_id].options & NAND_SAMSUNG_LP ?
308 16 : 8;
310 if (s->wp) {
311 s->blk_erase(s);
313 break;
315 case NAND_CMD_READSTATUS:
316 s->ioaddr = s->io;
317 s->iolen = 0;
318 nand_pushio_byte(s, s->status);
319 break;
321 default:
322 printf("%s: Unknown NAND command 0x%02x\n", __FUNCTION__, s->cmd);
326 static void nand_pre_save(void *opaque)
328 NANDFlashState *s = NAND(opaque);
330 s->ioaddr_vmstate = s->ioaddr - s->io;
333 static int nand_post_load(void *opaque, int version_id)
335 NANDFlashState *s = NAND(opaque);
337 if (s->ioaddr_vmstate > sizeof(s->io)) {
338 return -EINVAL;
340 s->ioaddr = s->io + s->ioaddr_vmstate;
342 return 0;
345 static const VMStateDescription vmstate_nand = {
346 .name = "nand",
347 .version_id = 1,
348 .minimum_version_id = 1,
349 .pre_save = nand_pre_save,
350 .post_load = nand_post_load,
351 .fields = (VMStateField[]) {
352 VMSTATE_UINT8(cle, NANDFlashState),
353 VMSTATE_UINT8(ale, NANDFlashState),
354 VMSTATE_UINT8(ce, NANDFlashState),
355 VMSTATE_UINT8(wp, NANDFlashState),
356 VMSTATE_UINT8(gnd, NANDFlashState),
357 VMSTATE_BUFFER(io, NANDFlashState),
358 VMSTATE_UINT32(ioaddr_vmstate, NANDFlashState),
359 VMSTATE_INT32(iolen, NANDFlashState),
360 VMSTATE_UINT32(cmd, NANDFlashState),
361 VMSTATE_UINT64(addr, NANDFlashState),
362 VMSTATE_INT32(addrlen, NANDFlashState),
363 VMSTATE_INT32(status, NANDFlashState),
364 VMSTATE_INT32(offset, NANDFlashState),
365 /* XXX: do we want to save s->storage too? */
366 VMSTATE_END_OF_LIST()
370 static void nand_realize(DeviceState *dev, Error **errp)
372 int pagesize;
373 NANDFlashState *s = NAND(dev);
375 s->buswidth = nand_flash_ids[s->chip_id].width >> 3;
376 s->size = nand_flash_ids[s->chip_id].size << 20;
377 if (nand_flash_ids[s->chip_id].options & NAND_SAMSUNG_LP) {
378 s->page_shift = 11;
379 s->erase_shift = 6;
380 } else {
381 s->page_shift = nand_flash_ids[s->chip_id].page_shift;
382 s->erase_shift = nand_flash_ids[s->chip_id].erase_shift;
385 switch (1 << s->page_shift) {
386 case 256:
387 nand_init_256(s);
388 break;
389 case 512:
390 nand_init_512(s);
391 break;
392 case 2048:
393 nand_init_2048(s);
394 break;
395 default:
396 error_setg(errp, "Unsupported NAND block size %#x",
397 1 << s->page_shift);
398 return;
401 pagesize = 1 << s->oob_shift;
402 s->mem_oob = 1;
403 if (s->blk) {
404 if (blk_is_read_only(s->blk)) {
405 error_setg(errp, "Can't use a read-only drive");
406 return;
408 if (blk_getlength(s->blk) >=
409 (s->pages << s->page_shift) + (s->pages << s->oob_shift)) {
410 pagesize = 0;
411 s->mem_oob = 0;
413 } else {
414 pagesize += 1 << s->page_shift;
416 if (pagesize) {
417 s->storage = (uint8_t *) memset(g_malloc(s->pages * pagesize),
418 0xff, s->pages * pagesize);
420 /* Give s->ioaddr a sane value in case we save state before it is used. */
421 s->ioaddr = s->io;
424 static Property nand_properties[] = {
425 DEFINE_PROP_UINT8("manufacturer_id", NANDFlashState, manf_id, 0),
426 DEFINE_PROP_UINT8("chip_id", NANDFlashState, chip_id, 0),
427 DEFINE_PROP_DRIVE("drive", NANDFlashState, blk),
428 DEFINE_PROP_END_OF_LIST(),
431 static void nand_class_init(ObjectClass *klass, void *data)
433 DeviceClass *dc = DEVICE_CLASS(klass);
435 dc->realize = nand_realize;
436 dc->reset = nand_reset;
437 dc->vmsd = &vmstate_nand;
438 dc->props = nand_properties;
441 static const TypeInfo nand_info = {
442 .name = TYPE_NAND,
443 .parent = TYPE_DEVICE,
444 .instance_size = sizeof(NANDFlashState),
445 .class_init = nand_class_init,
448 static void nand_register_types(void)
450 type_register_static(&nand_info);
454 * Chip inputs are CLE, ALE, CE, WP, GND and eight I/O pins. Chip
455 * outputs are R/B and eight I/O pins.
457 * CE, WP and R/B are active low.
459 void nand_setpins(DeviceState *dev, uint8_t cle, uint8_t ale,
460 uint8_t ce, uint8_t wp, uint8_t gnd)
462 NANDFlashState *s = NAND(dev);
464 s->cle = cle;
465 s->ale = ale;
466 s->ce = ce;
467 s->wp = wp;
468 s->gnd = gnd;
469 if (wp) {
470 s->status |= NAND_IOSTATUS_UNPROTCT;
471 } else {
472 s->status &= ~NAND_IOSTATUS_UNPROTCT;
476 void nand_getpins(DeviceState *dev, int *rb)
478 *rb = 1;
481 void nand_setio(DeviceState *dev, uint32_t value)
483 int i;
484 NANDFlashState *s = NAND(dev);
486 if (!s->ce && s->cle) {
487 if (nand_flash_ids[s->chip_id].options & NAND_SAMSUNG_LP) {
488 if (s->cmd == NAND_CMD_READ0 && value == NAND_CMD_LPREAD2)
489 return;
490 if (value == NAND_CMD_RANDOMREAD1) {
491 s->addr &= ~((1 << s->addr_shift) - 1);
492 s->addrlen = 0;
493 return;
496 if (value == NAND_CMD_READ0) {
497 s->offset = 0;
498 } else if (value == NAND_CMD_READ1) {
499 s->offset = 0x100;
500 value = NAND_CMD_READ0;
501 } else if (value == NAND_CMD_READ2) {
502 s->offset = 1 << s->page_shift;
503 value = NAND_CMD_READ0;
506 s->cmd = value;
508 if (s->cmd == NAND_CMD_READSTATUS ||
509 s->cmd == NAND_CMD_PAGEPROGRAM2 ||
510 s->cmd == NAND_CMD_BLOCKERASE1 ||
511 s->cmd == NAND_CMD_BLOCKERASE2 ||
512 s->cmd == NAND_CMD_NOSERIALREAD2 ||
513 s->cmd == NAND_CMD_RANDOMREAD2 ||
514 s->cmd == NAND_CMD_RESET) {
515 nand_command(s);
518 if (s->cmd != NAND_CMD_RANDOMREAD2) {
519 s->addrlen = 0;
523 if (s->ale) {
524 unsigned int shift = s->addrlen * 8;
525 uint64_t mask = ~(0xffull << shift);
526 uint64_t v = (uint64_t)value << shift;
528 s->addr = (s->addr & mask) | v;
529 s->addrlen ++;
531 switch (s->addrlen) {
532 case 1:
533 if (s->cmd == NAND_CMD_READID) {
534 nand_command(s);
536 break;
537 case 2: /* fix cache address as a byte address */
538 s->addr <<= (s->buswidth - 1);
539 break;
540 case 3:
541 if (!(nand_flash_ids[s->chip_id].options & NAND_SAMSUNG_LP) &&
542 (s->cmd == NAND_CMD_READ0 ||
543 s->cmd == NAND_CMD_PAGEPROGRAM1)) {
544 nand_command(s);
546 break;
547 case 4:
548 if ((nand_flash_ids[s->chip_id].options & NAND_SAMSUNG_LP) &&
549 nand_flash_ids[s->chip_id].size < 256 && /* 1Gb or less */
550 (s->cmd == NAND_CMD_READ0 ||
551 s->cmd == NAND_CMD_PAGEPROGRAM1)) {
552 nand_command(s);
554 break;
555 case 5:
556 if ((nand_flash_ids[s->chip_id].options & NAND_SAMSUNG_LP) &&
557 nand_flash_ids[s->chip_id].size >= 256 && /* 2Gb or more */
558 (s->cmd == NAND_CMD_READ0 ||
559 s->cmd == NAND_CMD_PAGEPROGRAM1)) {
560 nand_command(s);
562 break;
563 default:
564 break;
568 if (!s->cle && !s->ale && s->cmd == NAND_CMD_PAGEPROGRAM1) {
569 if (s->iolen < (1 << s->page_shift) + (1 << s->oob_shift)) {
570 for (i = s->buswidth; i--; value >>= 8) {
571 s->io[s->iolen ++] = (uint8_t) (value & 0xff);
574 } else if (!s->cle && !s->ale && s->cmd == NAND_CMD_COPYBACKPRG1) {
575 if ((s->addr & ((1 << s->addr_shift) - 1)) <
576 (1 << s->page_shift) + (1 << s->oob_shift)) {
577 for (i = s->buswidth; i--; s->addr++, value >>= 8) {
578 s->io[s->iolen + (s->addr & ((1 << s->addr_shift) - 1))] =
579 (uint8_t) (value & 0xff);
585 uint32_t nand_getio(DeviceState *dev)
587 int offset;
588 uint32_t x = 0;
589 NANDFlashState *s = NAND(dev);
591 /* Allow sequential reading */
592 if (!s->iolen && s->cmd == NAND_CMD_READ0) {
593 offset = (int) (s->addr & ((1 << s->addr_shift) - 1)) + s->offset;
594 s->offset = 0;
596 s->blk_load(s, s->addr, offset);
597 if (s->gnd)
598 s->iolen = (1 << s->page_shift) - offset;
599 else
600 s->iolen = (1 << s->page_shift) + (1 << s->oob_shift) - offset;
603 if (s->ce || s->iolen <= 0) {
604 return 0;
607 for (offset = s->buswidth; offset--;) {
608 x |= s->ioaddr[offset] << (offset << 3);
610 /* after receiving READ STATUS command all subsequent reads will
611 * return the status register value until another command is issued
613 if (s->cmd != NAND_CMD_READSTATUS) {
614 s->addr += s->buswidth;
615 s->ioaddr += s->buswidth;
616 s->iolen -= s->buswidth;
618 return x;
621 uint32_t nand_getbuswidth(DeviceState *dev)
623 NANDFlashState *s = (NANDFlashState *) dev;
624 return s->buswidth << 3;
627 DeviceState *nand_init(BlockBackend *blk, int manf_id, int chip_id)
629 DeviceState *dev;
631 if (nand_flash_ids[chip_id].size == 0) {
632 hw_error("%s: Unsupported NAND chip ID.\n", __FUNCTION__);
634 dev = DEVICE(object_new(TYPE_NAND));
635 qdev_prop_set_uint8(dev, "manufacturer_id", manf_id);
636 qdev_prop_set_uint8(dev, "chip_id", chip_id);
637 if (blk) {
638 qdev_prop_set_drive_nofail(dev, "drive", blk);
641 qdev_init_nofail(dev);
642 return dev;
645 type_init(nand_register_types)
647 #else
649 /* Program a single page */
650 static void glue(nand_blk_write_, PAGE_SIZE)(NANDFlashState *s)
652 uint64_t off, page, sector, soff;
653 uint8_t iobuf[(PAGE_SECTORS + 2) * 0x200];
654 if (PAGE(s->addr) >= s->pages)
655 return;
657 if (!s->blk) {
658 mem_and(s->storage + PAGE_START(s->addr) + (s->addr & PAGE_MASK) +
659 s->offset, s->io, s->iolen);
660 } else if (s->mem_oob) {
661 sector = SECTOR(s->addr);
662 off = (s->addr & PAGE_MASK) + s->offset;
663 soff = SECTOR_OFFSET(s->addr);
664 if (blk_read(s->blk, sector, iobuf, PAGE_SECTORS) < 0) {
665 printf("%s: read error in sector %" PRIu64 "\n", __func__, sector);
666 return;
669 mem_and(iobuf + (soff | off), s->io, MIN(s->iolen, PAGE_SIZE - off));
670 if (off + s->iolen > PAGE_SIZE) {
671 page = PAGE(s->addr);
672 mem_and(s->storage + (page << OOB_SHIFT), s->io + PAGE_SIZE - off,
673 MIN(OOB_SIZE, off + s->iolen - PAGE_SIZE));
676 if (blk_write(s->blk, sector, iobuf, PAGE_SECTORS) < 0) {
677 printf("%s: write error in sector %" PRIu64 "\n", __func__, sector);
679 } else {
680 off = PAGE_START(s->addr) + (s->addr & PAGE_MASK) + s->offset;
681 sector = off >> 9;
682 soff = off & 0x1ff;
683 if (blk_read(s->blk, sector, iobuf, PAGE_SECTORS + 2) < 0) {
684 printf("%s: read error in sector %" PRIu64 "\n", __func__, sector);
685 return;
688 mem_and(iobuf + soff, s->io, s->iolen);
690 if (blk_write(s->blk, sector, iobuf, PAGE_SECTORS + 2) < 0) {
691 printf("%s: write error in sector %" PRIu64 "\n", __func__, sector);
694 s->offset = 0;
697 /* Erase a single block */
698 static void glue(nand_blk_erase_, PAGE_SIZE)(NANDFlashState *s)
700 uint64_t i, page, addr;
701 uint8_t iobuf[0x200] = { [0 ... 0x1ff] = 0xff, };
702 addr = s->addr & ~((1 << (ADDR_SHIFT + s->erase_shift)) - 1);
704 if (PAGE(addr) >= s->pages) {
705 return;
708 if (!s->blk) {
709 memset(s->storage + PAGE_START(addr),
710 0xff, (PAGE_SIZE + OOB_SIZE) << s->erase_shift);
711 } else if (s->mem_oob) {
712 memset(s->storage + (PAGE(addr) << OOB_SHIFT),
713 0xff, OOB_SIZE << s->erase_shift);
714 i = SECTOR(addr);
715 page = SECTOR(addr + (1 << (ADDR_SHIFT + s->erase_shift)));
716 for (; i < page; i ++)
717 if (blk_write(s->blk, i, iobuf, 1) < 0) {
718 printf("%s: write error in sector %" PRIu64 "\n", __func__, i);
720 } else {
721 addr = PAGE_START(addr);
722 page = addr >> 9;
723 if (blk_read(s->blk, page, iobuf, 1) < 0) {
724 printf("%s: read error in sector %" PRIu64 "\n", __func__, page);
726 memset(iobuf + (addr & 0x1ff), 0xff, (~addr & 0x1ff) + 1);
727 if (blk_write(s->blk, page, iobuf, 1) < 0) {
728 printf("%s: write error in sector %" PRIu64 "\n", __func__, page);
731 memset(iobuf, 0xff, 0x200);
732 i = (addr & ~0x1ff) + 0x200;
733 for (addr += ((PAGE_SIZE + OOB_SIZE) << s->erase_shift) - 0x200;
734 i < addr; i += 0x200) {
735 if (blk_write(s->blk, i >> 9, iobuf, 1) < 0) {
736 printf("%s: write error in sector %" PRIu64 "\n",
737 __func__, i >> 9);
741 page = i >> 9;
742 if (blk_read(s->blk, page, iobuf, 1) < 0) {
743 printf("%s: read error in sector %" PRIu64 "\n", __func__, page);
745 memset(iobuf, 0xff, ((addr - 1) & 0x1ff) + 1);
746 if (blk_write(s->blk, page, iobuf, 1) < 0) {
747 printf("%s: write error in sector %" PRIu64 "\n", __func__, page);
752 static void glue(nand_blk_load_, PAGE_SIZE)(NANDFlashState *s,
753 uint64_t addr, int offset)
755 if (PAGE(addr) >= s->pages) {
756 return;
759 if (s->blk) {
760 if (s->mem_oob) {
761 if (blk_read(s->blk, SECTOR(addr), s->io, PAGE_SECTORS) < 0) {
762 printf("%s: read error in sector %" PRIu64 "\n",
763 __func__, SECTOR(addr));
765 memcpy(s->io + SECTOR_OFFSET(s->addr) + PAGE_SIZE,
766 s->storage + (PAGE(s->addr) << OOB_SHIFT),
767 OOB_SIZE);
768 s->ioaddr = s->io + SECTOR_OFFSET(s->addr) + offset;
769 } else {
770 if (blk_read(s->blk, PAGE_START(addr) >> 9,
771 s->io, (PAGE_SECTORS + 2)) < 0) {
772 printf("%s: read error in sector %" PRIu64 "\n",
773 __func__, PAGE_START(addr) >> 9);
775 s->ioaddr = s->io + (PAGE_START(addr) & 0x1ff) + offset;
777 } else {
778 memcpy(s->io, s->storage + PAGE_START(s->addr) +
779 offset, PAGE_SIZE + OOB_SIZE - offset);
780 s->ioaddr = s->io;
784 static void glue(nand_init_, PAGE_SIZE)(NANDFlashState *s)
786 s->oob_shift = PAGE_SHIFT - 5;
787 s->pages = s->size >> PAGE_SHIFT;
788 s->addr_shift = ADDR_SHIFT;
790 s->blk_erase = glue(nand_blk_erase_, PAGE_SIZE);
791 s->blk_write = glue(nand_blk_write_, PAGE_SIZE);
792 s->blk_load = glue(nand_blk_load_, PAGE_SIZE);
795 # undef PAGE_SIZE
796 # undef PAGE_SHIFT
797 # undef PAGE_SECTORS
798 # undef ADDR_SHIFT
799 #endif /* NAND_IO */