target/arm: Allow M-profile CPUs to disable the DSP extension via CPU property
[qemu/ar7.git] / target / arm / cpu.c
blob376db154f0083a8cfa727cb906343ac3c26d1489
1 /*
2 * QEMU ARM CPU
4 * Copyright (c) 2012 SUSE LINUX Products GmbH
6 * This program is free software; you can redistribute it and/or
7 * modify it under the terms of the GNU General Public License
8 * as published by the Free Software Foundation; either version 2
9 * of the License, or (at your option) any later version.
11 * This program is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 * GNU General Public License for more details.
16 * You should have received a copy of the GNU General Public License
17 * along with this program; if not, see
18 * <http://www.gnu.org/licenses/gpl-2.0.html>
21 #include "qemu/osdep.h"
22 #include "qemu-common.h"
23 #include "target/arm/idau.h"
24 #include "qemu/module.h"
25 #include "qapi/error.h"
26 #include "qapi/visitor.h"
27 #include "cpu.h"
28 #include "internals.h"
29 #include "exec/exec-all.h"
30 #include "hw/qdev-properties.h"
31 #if !defined(CONFIG_USER_ONLY)
32 #include "hw/loader.h"
33 #endif
34 #include "sysemu/sysemu.h"
35 #include "sysemu/tcg.h"
36 #include "sysemu/hw_accel.h"
37 #include "kvm_arm.h"
38 #include "disas/capstone.h"
39 #include "fpu/softfloat.h"
41 static void arm_cpu_set_pc(CPUState *cs, vaddr value)
43 ARMCPU *cpu = ARM_CPU(cs);
44 CPUARMState *env = &cpu->env;
46 if (is_a64(env)) {
47 env->pc = value;
48 env->thumb = 0;
49 } else {
50 env->regs[15] = value & ~1;
51 env->thumb = value & 1;
55 static void arm_cpu_synchronize_from_tb(CPUState *cs, TranslationBlock *tb)
57 ARMCPU *cpu = ARM_CPU(cs);
58 CPUARMState *env = &cpu->env;
61 * It's OK to look at env for the current mode here, because it's
62 * never possible for an AArch64 TB to chain to an AArch32 TB.
64 if (is_a64(env)) {
65 env->pc = tb->pc;
66 } else {
67 env->regs[15] = tb->pc;
71 static bool arm_cpu_has_work(CPUState *cs)
73 ARMCPU *cpu = ARM_CPU(cs);
75 return (cpu->power_state != PSCI_OFF)
76 && cs->interrupt_request &
77 (CPU_INTERRUPT_FIQ | CPU_INTERRUPT_HARD
78 | CPU_INTERRUPT_VFIQ | CPU_INTERRUPT_VIRQ
79 | CPU_INTERRUPT_EXITTB);
82 void arm_register_pre_el_change_hook(ARMCPU *cpu, ARMELChangeHookFn *hook,
83 void *opaque)
85 ARMELChangeHook *entry = g_new0(ARMELChangeHook, 1);
87 entry->hook = hook;
88 entry->opaque = opaque;
90 QLIST_INSERT_HEAD(&cpu->pre_el_change_hooks, entry, node);
93 void arm_register_el_change_hook(ARMCPU *cpu, ARMELChangeHookFn *hook,
94 void *opaque)
96 ARMELChangeHook *entry = g_new0(ARMELChangeHook, 1);
98 entry->hook = hook;
99 entry->opaque = opaque;
101 QLIST_INSERT_HEAD(&cpu->el_change_hooks, entry, node);
104 static void cp_reg_reset(gpointer key, gpointer value, gpointer opaque)
106 /* Reset a single ARMCPRegInfo register */
107 ARMCPRegInfo *ri = value;
108 ARMCPU *cpu = opaque;
110 if (ri->type & (ARM_CP_SPECIAL | ARM_CP_ALIAS)) {
111 return;
114 if (ri->resetfn) {
115 ri->resetfn(&cpu->env, ri);
116 return;
119 /* A zero offset is never possible as it would be regs[0]
120 * so we use it to indicate that reset is being handled elsewhere.
121 * This is basically only used for fields in non-core coprocessors
122 * (like the pxa2xx ones).
124 if (!ri->fieldoffset) {
125 return;
128 if (cpreg_field_is_64bit(ri)) {
129 CPREG_FIELD64(&cpu->env, ri) = ri->resetvalue;
130 } else {
131 CPREG_FIELD32(&cpu->env, ri) = ri->resetvalue;
135 static void cp_reg_check_reset(gpointer key, gpointer value, gpointer opaque)
137 /* Purely an assertion check: we've already done reset once,
138 * so now check that running the reset for the cpreg doesn't
139 * change its value. This traps bugs where two different cpregs
140 * both try to reset the same state field but to different values.
142 ARMCPRegInfo *ri = value;
143 ARMCPU *cpu = opaque;
144 uint64_t oldvalue, newvalue;
146 if (ri->type & (ARM_CP_SPECIAL | ARM_CP_ALIAS | ARM_CP_NO_RAW)) {
147 return;
150 oldvalue = read_raw_cp_reg(&cpu->env, ri);
151 cp_reg_reset(key, value, opaque);
152 newvalue = read_raw_cp_reg(&cpu->env, ri);
153 assert(oldvalue == newvalue);
156 /* CPUClass::reset() */
157 static void arm_cpu_reset(CPUState *s)
159 ARMCPU *cpu = ARM_CPU(s);
160 ARMCPUClass *acc = ARM_CPU_GET_CLASS(cpu);
161 CPUARMState *env = &cpu->env;
163 acc->parent_reset(s);
165 memset(env, 0, offsetof(CPUARMState, end_reset_fields));
167 g_hash_table_foreach(cpu->cp_regs, cp_reg_reset, cpu);
168 g_hash_table_foreach(cpu->cp_regs, cp_reg_check_reset, cpu);
170 env->vfp.xregs[ARM_VFP_FPSID] = cpu->reset_fpsid;
171 env->vfp.xregs[ARM_VFP_MVFR0] = cpu->isar.mvfr0;
172 env->vfp.xregs[ARM_VFP_MVFR1] = cpu->isar.mvfr1;
173 env->vfp.xregs[ARM_VFP_MVFR2] = cpu->isar.mvfr2;
175 cpu->power_state = cpu->start_powered_off ? PSCI_OFF : PSCI_ON;
176 s->halted = cpu->start_powered_off;
178 if (arm_feature(env, ARM_FEATURE_IWMMXT)) {
179 env->iwmmxt.cregs[ARM_IWMMXT_wCID] = 0x69051000 | 'Q';
182 if (arm_feature(env, ARM_FEATURE_AARCH64)) {
183 /* 64 bit CPUs always start in 64 bit mode */
184 env->aarch64 = 1;
185 #if defined(CONFIG_USER_ONLY)
186 env->pstate = PSTATE_MODE_EL0t;
187 /* Userspace expects access to DC ZVA, CTL_EL0 and the cache ops */
188 env->cp15.sctlr_el[1] |= SCTLR_UCT | SCTLR_UCI | SCTLR_DZE;
189 /* Enable all PAC keys. */
190 env->cp15.sctlr_el[1] |= (SCTLR_EnIA | SCTLR_EnIB |
191 SCTLR_EnDA | SCTLR_EnDB);
192 /* Enable all PAC instructions */
193 env->cp15.hcr_el2 |= HCR_API;
194 env->cp15.scr_el3 |= SCR_API;
195 /* and to the FP/Neon instructions */
196 env->cp15.cpacr_el1 = deposit64(env->cp15.cpacr_el1, 20, 2, 3);
197 /* and to the SVE instructions */
198 env->cp15.cpacr_el1 = deposit64(env->cp15.cpacr_el1, 16, 2, 3);
199 env->cp15.cptr_el[3] |= CPTR_EZ;
200 /* with maximum vector length */
201 env->vfp.zcr_el[1] = cpu->sve_max_vq - 1;
202 env->vfp.zcr_el[2] = env->vfp.zcr_el[1];
203 env->vfp.zcr_el[3] = env->vfp.zcr_el[1];
205 * Enable TBI0 and TBI1. While the real kernel only enables TBI0,
206 * turning on both here will produce smaller code and otherwise
207 * make no difference to the user-level emulation.
209 env->cp15.tcr_el[1].raw_tcr = (3ULL << 37);
210 #else
211 /* Reset into the highest available EL */
212 if (arm_feature(env, ARM_FEATURE_EL3)) {
213 env->pstate = PSTATE_MODE_EL3h;
214 } else if (arm_feature(env, ARM_FEATURE_EL2)) {
215 env->pstate = PSTATE_MODE_EL2h;
216 } else {
217 env->pstate = PSTATE_MODE_EL1h;
219 env->pc = cpu->rvbar;
220 #endif
221 } else {
222 #if defined(CONFIG_USER_ONLY)
223 /* Userspace expects access to cp10 and cp11 for FP/Neon */
224 env->cp15.cpacr_el1 = deposit64(env->cp15.cpacr_el1, 20, 4, 0xf);
225 #endif
228 #if defined(CONFIG_USER_ONLY)
229 env->uncached_cpsr = ARM_CPU_MODE_USR;
230 /* For user mode we must enable access to coprocessors */
231 env->vfp.xregs[ARM_VFP_FPEXC] = 1 << 30;
232 if (arm_feature(env, ARM_FEATURE_IWMMXT)) {
233 env->cp15.c15_cpar = 3;
234 } else if (arm_feature(env, ARM_FEATURE_XSCALE)) {
235 env->cp15.c15_cpar = 1;
237 #else
240 * If the highest available EL is EL2, AArch32 will start in Hyp
241 * mode; otherwise it starts in SVC. Note that if we start in
242 * AArch64 then these values in the uncached_cpsr will be ignored.
244 if (arm_feature(env, ARM_FEATURE_EL2) &&
245 !arm_feature(env, ARM_FEATURE_EL3)) {
246 env->uncached_cpsr = ARM_CPU_MODE_HYP;
247 } else {
248 env->uncached_cpsr = ARM_CPU_MODE_SVC;
250 env->daif = PSTATE_D | PSTATE_A | PSTATE_I | PSTATE_F;
252 if (arm_feature(env, ARM_FEATURE_M)) {
253 uint32_t initial_msp; /* Loaded from 0x0 */
254 uint32_t initial_pc; /* Loaded from 0x4 */
255 uint8_t *rom;
256 uint32_t vecbase;
258 if (arm_feature(env, ARM_FEATURE_M_SECURITY)) {
259 env->v7m.secure = true;
260 } else {
261 /* This bit resets to 0 if security is supported, but 1 if
262 * it is not. The bit is not present in v7M, but we set it
263 * here so we can avoid having to make checks on it conditional
264 * on ARM_FEATURE_V8 (we don't let the guest see the bit).
266 env->v7m.aircr = R_V7M_AIRCR_BFHFNMINS_MASK;
269 /* In v7M the reset value of this bit is IMPDEF, but ARM recommends
270 * that it resets to 1, so QEMU always does that rather than making
271 * it dependent on CPU model. In v8M it is RES1.
273 env->v7m.ccr[M_REG_NS] = R_V7M_CCR_STKALIGN_MASK;
274 env->v7m.ccr[M_REG_S] = R_V7M_CCR_STKALIGN_MASK;
275 if (arm_feature(env, ARM_FEATURE_V8)) {
276 /* in v8M the NONBASETHRDENA bit [0] is RES1 */
277 env->v7m.ccr[M_REG_NS] |= R_V7M_CCR_NONBASETHRDENA_MASK;
278 env->v7m.ccr[M_REG_S] |= R_V7M_CCR_NONBASETHRDENA_MASK;
280 if (!arm_feature(env, ARM_FEATURE_M_MAIN)) {
281 env->v7m.ccr[M_REG_NS] |= R_V7M_CCR_UNALIGN_TRP_MASK;
282 env->v7m.ccr[M_REG_S] |= R_V7M_CCR_UNALIGN_TRP_MASK;
285 if (arm_feature(env, ARM_FEATURE_VFP)) {
286 env->v7m.fpccr[M_REG_NS] = R_V7M_FPCCR_ASPEN_MASK;
287 env->v7m.fpccr[M_REG_S] = R_V7M_FPCCR_ASPEN_MASK |
288 R_V7M_FPCCR_LSPEN_MASK | R_V7M_FPCCR_S_MASK;
290 /* Unlike A/R profile, M profile defines the reset LR value */
291 env->regs[14] = 0xffffffff;
293 env->v7m.vecbase[M_REG_S] = cpu->init_svtor & 0xffffff80;
295 /* Load the initial SP and PC from offset 0 and 4 in the vector table */
296 vecbase = env->v7m.vecbase[env->v7m.secure];
297 rom = rom_ptr(vecbase, 8);
298 if (rom) {
299 /* Address zero is covered by ROM which hasn't yet been
300 * copied into physical memory.
302 initial_msp = ldl_p(rom);
303 initial_pc = ldl_p(rom + 4);
304 } else {
305 /* Address zero not covered by a ROM blob, or the ROM blob
306 * is in non-modifiable memory and this is a second reset after
307 * it got copied into memory. In the latter case, rom_ptr
308 * will return a NULL pointer and we should use ldl_phys instead.
310 initial_msp = ldl_phys(s->as, vecbase);
311 initial_pc = ldl_phys(s->as, vecbase + 4);
314 env->regs[13] = initial_msp & 0xFFFFFFFC;
315 env->regs[15] = initial_pc & ~1;
316 env->thumb = initial_pc & 1;
319 /* AArch32 has a hard highvec setting of 0xFFFF0000. If we are currently
320 * executing as AArch32 then check if highvecs are enabled and
321 * adjust the PC accordingly.
323 if (A32_BANKED_CURRENT_REG_GET(env, sctlr) & SCTLR_V) {
324 env->regs[15] = 0xFFFF0000;
327 /* M profile requires that reset clears the exclusive monitor;
328 * A profile does not, but clearing it makes more sense than having it
329 * set with an exclusive access on address zero.
331 arm_clear_exclusive(env);
333 env->vfp.xregs[ARM_VFP_FPEXC] = 0;
334 #endif
336 if (arm_feature(env, ARM_FEATURE_PMSA)) {
337 if (cpu->pmsav7_dregion > 0) {
338 if (arm_feature(env, ARM_FEATURE_V8)) {
339 memset(env->pmsav8.rbar[M_REG_NS], 0,
340 sizeof(*env->pmsav8.rbar[M_REG_NS])
341 * cpu->pmsav7_dregion);
342 memset(env->pmsav8.rlar[M_REG_NS], 0,
343 sizeof(*env->pmsav8.rlar[M_REG_NS])
344 * cpu->pmsav7_dregion);
345 if (arm_feature(env, ARM_FEATURE_M_SECURITY)) {
346 memset(env->pmsav8.rbar[M_REG_S], 0,
347 sizeof(*env->pmsav8.rbar[M_REG_S])
348 * cpu->pmsav7_dregion);
349 memset(env->pmsav8.rlar[M_REG_S], 0,
350 sizeof(*env->pmsav8.rlar[M_REG_S])
351 * cpu->pmsav7_dregion);
353 } else if (arm_feature(env, ARM_FEATURE_V7)) {
354 memset(env->pmsav7.drbar, 0,
355 sizeof(*env->pmsav7.drbar) * cpu->pmsav7_dregion);
356 memset(env->pmsav7.drsr, 0,
357 sizeof(*env->pmsav7.drsr) * cpu->pmsav7_dregion);
358 memset(env->pmsav7.dracr, 0,
359 sizeof(*env->pmsav7.dracr) * cpu->pmsav7_dregion);
362 env->pmsav7.rnr[M_REG_NS] = 0;
363 env->pmsav7.rnr[M_REG_S] = 0;
364 env->pmsav8.mair0[M_REG_NS] = 0;
365 env->pmsav8.mair0[M_REG_S] = 0;
366 env->pmsav8.mair1[M_REG_NS] = 0;
367 env->pmsav8.mair1[M_REG_S] = 0;
370 if (arm_feature(env, ARM_FEATURE_M_SECURITY)) {
371 if (cpu->sau_sregion > 0) {
372 memset(env->sau.rbar, 0, sizeof(*env->sau.rbar) * cpu->sau_sregion);
373 memset(env->sau.rlar, 0, sizeof(*env->sau.rlar) * cpu->sau_sregion);
375 env->sau.rnr = 0;
376 /* SAU_CTRL reset value is IMPDEF; we choose 0, which is what
377 * the Cortex-M33 does.
379 env->sau.ctrl = 0;
382 set_flush_to_zero(1, &env->vfp.standard_fp_status);
383 set_flush_inputs_to_zero(1, &env->vfp.standard_fp_status);
384 set_default_nan_mode(1, &env->vfp.standard_fp_status);
385 set_float_detect_tininess(float_tininess_before_rounding,
386 &env->vfp.fp_status);
387 set_float_detect_tininess(float_tininess_before_rounding,
388 &env->vfp.standard_fp_status);
389 set_float_detect_tininess(float_tininess_before_rounding,
390 &env->vfp.fp_status_f16);
391 #ifndef CONFIG_USER_ONLY
392 if (kvm_enabled()) {
393 kvm_arm_reset_vcpu(cpu);
395 #endif
397 hw_breakpoint_update_all(cpu);
398 hw_watchpoint_update_all(cpu);
401 bool arm_cpu_exec_interrupt(CPUState *cs, int interrupt_request)
403 CPUClass *cc = CPU_GET_CLASS(cs);
404 CPUARMState *env = cs->env_ptr;
405 uint32_t cur_el = arm_current_el(env);
406 bool secure = arm_is_secure(env);
407 uint32_t target_el;
408 uint32_t excp_idx;
409 bool ret = false;
411 if (interrupt_request & CPU_INTERRUPT_FIQ) {
412 excp_idx = EXCP_FIQ;
413 target_el = arm_phys_excp_target_el(cs, excp_idx, cur_el, secure);
414 if (arm_excp_unmasked(cs, excp_idx, target_el)) {
415 cs->exception_index = excp_idx;
416 env->exception.target_el = target_el;
417 cc->do_interrupt(cs);
418 ret = true;
421 if (interrupt_request & CPU_INTERRUPT_HARD) {
422 excp_idx = EXCP_IRQ;
423 target_el = arm_phys_excp_target_el(cs, excp_idx, cur_el, secure);
424 if (arm_excp_unmasked(cs, excp_idx, target_el)) {
425 cs->exception_index = excp_idx;
426 env->exception.target_el = target_el;
427 cc->do_interrupt(cs);
428 ret = true;
431 if (interrupt_request & CPU_INTERRUPT_VIRQ) {
432 excp_idx = EXCP_VIRQ;
433 target_el = 1;
434 if (arm_excp_unmasked(cs, excp_idx, target_el)) {
435 cs->exception_index = excp_idx;
436 env->exception.target_el = target_el;
437 cc->do_interrupt(cs);
438 ret = true;
441 if (interrupt_request & CPU_INTERRUPT_VFIQ) {
442 excp_idx = EXCP_VFIQ;
443 target_el = 1;
444 if (arm_excp_unmasked(cs, excp_idx, target_el)) {
445 cs->exception_index = excp_idx;
446 env->exception.target_el = target_el;
447 cc->do_interrupt(cs);
448 ret = true;
452 return ret;
455 #if !defined(CONFIG_USER_ONLY) || !defined(TARGET_AARCH64)
456 static bool arm_v7m_cpu_exec_interrupt(CPUState *cs, int interrupt_request)
458 CPUClass *cc = CPU_GET_CLASS(cs);
459 ARMCPU *cpu = ARM_CPU(cs);
460 CPUARMState *env = &cpu->env;
461 bool ret = false;
463 /* ARMv7-M interrupt masking works differently than -A or -R.
464 * There is no FIQ/IRQ distinction. Instead of I and F bits
465 * masking FIQ and IRQ interrupts, an exception is taken only
466 * if it is higher priority than the current execution priority
467 * (which depends on state like BASEPRI, FAULTMASK and the
468 * currently active exception).
470 if (interrupt_request & CPU_INTERRUPT_HARD
471 && (armv7m_nvic_can_take_pending_exception(env->nvic))) {
472 cs->exception_index = EXCP_IRQ;
473 cc->do_interrupt(cs);
474 ret = true;
476 return ret;
478 #endif
480 void arm_cpu_update_virq(ARMCPU *cpu)
483 * Update the interrupt level for VIRQ, which is the logical OR of
484 * the HCR_EL2.VI bit and the input line level from the GIC.
486 CPUARMState *env = &cpu->env;
487 CPUState *cs = CPU(cpu);
489 bool new_state = (env->cp15.hcr_el2 & HCR_VI) ||
490 (env->irq_line_state & CPU_INTERRUPT_VIRQ);
492 if (new_state != ((cs->interrupt_request & CPU_INTERRUPT_VIRQ) != 0)) {
493 if (new_state) {
494 cpu_interrupt(cs, CPU_INTERRUPT_VIRQ);
495 } else {
496 cpu_reset_interrupt(cs, CPU_INTERRUPT_VIRQ);
501 void arm_cpu_update_vfiq(ARMCPU *cpu)
504 * Update the interrupt level for VFIQ, which is the logical OR of
505 * the HCR_EL2.VF bit and the input line level from the GIC.
507 CPUARMState *env = &cpu->env;
508 CPUState *cs = CPU(cpu);
510 bool new_state = (env->cp15.hcr_el2 & HCR_VF) ||
511 (env->irq_line_state & CPU_INTERRUPT_VFIQ);
513 if (new_state != ((cs->interrupt_request & CPU_INTERRUPT_VFIQ) != 0)) {
514 if (new_state) {
515 cpu_interrupt(cs, CPU_INTERRUPT_VFIQ);
516 } else {
517 cpu_reset_interrupt(cs, CPU_INTERRUPT_VFIQ);
522 #ifndef CONFIG_USER_ONLY
523 static void arm_cpu_set_irq(void *opaque, int irq, int level)
525 ARMCPU *cpu = opaque;
526 CPUARMState *env = &cpu->env;
527 CPUState *cs = CPU(cpu);
528 static const int mask[] = {
529 [ARM_CPU_IRQ] = CPU_INTERRUPT_HARD,
530 [ARM_CPU_FIQ] = CPU_INTERRUPT_FIQ,
531 [ARM_CPU_VIRQ] = CPU_INTERRUPT_VIRQ,
532 [ARM_CPU_VFIQ] = CPU_INTERRUPT_VFIQ
535 if (level) {
536 env->irq_line_state |= mask[irq];
537 } else {
538 env->irq_line_state &= ~mask[irq];
541 switch (irq) {
542 case ARM_CPU_VIRQ:
543 assert(arm_feature(env, ARM_FEATURE_EL2));
544 arm_cpu_update_virq(cpu);
545 break;
546 case ARM_CPU_VFIQ:
547 assert(arm_feature(env, ARM_FEATURE_EL2));
548 arm_cpu_update_vfiq(cpu);
549 break;
550 case ARM_CPU_IRQ:
551 case ARM_CPU_FIQ:
552 if (level) {
553 cpu_interrupt(cs, mask[irq]);
554 } else {
555 cpu_reset_interrupt(cs, mask[irq]);
557 break;
558 default:
559 g_assert_not_reached();
563 static void arm_cpu_kvm_set_irq(void *opaque, int irq, int level)
565 #ifdef CONFIG_KVM
566 ARMCPU *cpu = opaque;
567 CPUARMState *env = &cpu->env;
568 CPUState *cs = CPU(cpu);
569 int kvm_irq = KVM_ARM_IRQ_TYPE_CPU << KVM_ARM_IRQ_TYPE_SHIFT;
570 uint32_t linestate_bit;
572 switch (irq) {
573 case ARM_CPU_IRQ:
574 kvm_irq |= KVM_ARM_IRQ_CPU_IRQ;
575 linestate_bit = CPU_INTERRUPT_HARD;
576 break;
577 case ARM_CPU_FIQ:
578 kvm_irq |= KVM_ARM_IRQ_CPU_FIQ;
579 linestate_bit = CPU_INTERRUPT_FIQ;
580 break;
581 default:
582 g_assert_not_reached();
585 if (level) {
586 env->irq_line_state |= linestate_bit;
587 } else {
588 env->irq_line_state &= ~linestate_bit;
591 kvm_irq |= cs->cpu_index << KVM_ARM_IRQ_VCPU_SHIFT;
592 kvm_set_irq(kvm_state, kvm_irq, level ? 1 : 0);
593 #endif
596 static bool arm_cpu_virtio_is_big_endian(CPUState *cs)
598 ARMCPU *cpu = ARM_CPU(cs);
599 CPUARMState *env = &cpu->env;
601 cpu_synchronize_state(cs);
602 return arm_cpu_data_is_big_endian(env);
605 #endif
607 static inline void set_feature(CPUARMState *env, int feature)
609 env->features |= 1ULL << feature;
612 static inline void unset_feature(CPUARMState *env, int feature)
614 env->features &= ~(1ULL << feature);
617 static int
618 print_insn_thumb1(bfd_vma pc, disassemble_info *info)
620 return print_insn_arm(pc | 1, info);
623 static void arm_disas_set_info(CPUState *cpu, disassemble_info *info)
625 ARMCPU *ac = ARM_CPU(cpu);
626 CPUARMState *env = &ac->env;
627 bool sctlr_b;
629 if (is_a64(env)) {
630 /* We might not be compiled with the A64 disassembler
631 * because it needs a C++ compiler. Leave print_insn
632 * unset in this case to use the caller default behaviour.
634 #if defined(CONFIG_ARM_A64_DIS)
635 info->print_insn = print_insn_arm_a64;
636 #endif
637 info->cap_arch = CS_ARCH_ARM64;
638 info->cap_insn_unit = 4;
639 info->cap_insn_split = 4;
640 } else {
641 int cap_mode;
642 if (env->thumb) {
643 info->print_insn = print_insn_thumb1;
644 info->cap_insn_unit = 2;
645 info->cap_insn_split = 4;
646 cap_mode = CS_MODE_THUMB;
647 } else {
648 info->print_insn = print_insn_arm;
649 info->cap_insn_unit = 4;
650 info->cap_insn_split = 4;
651 cap_mode = CS_MODE_ARM;
653 if (arm_feature(env, ARM_FEATURE_V8)) {
654 cap_mode |= CS_MODE_V8;
656 if (arm_feature(env, ARM_FEATURE_M)) {
657 cap_mode |= CS_MODE_MCLASS;
659 info->cap_arch = CS_ARCH_ARM;
660 info->cap_mode = cap_mode;
663 sctlr_b = arm_sctlr_b(env);
664 if (bswap_code(sctlr_b)) {
665 #ifdef TARGET_WORDS_BIGENDIAN
666 info->endian = BFD_ENDIAN_LITTLE;
667 #else
668 info->endian = BFD_ENDIAN_BIG;
669 #endif
671 info->flags &= ~INSN_ARM_BE32;
672 #ifndef CONFIG_USER_ONLY
673 if (sctlr_b) {
674 info->flags |= INSN_ARM_BE32;
676 #endif
679 uint64_t arm_cpu_mp_affinity(int idx, uint8_t clustersz)
681 uint32_t Aff1 = idx / clustersz;
682 uint32_t Aff0 = idx % clustersz;
683 return (Aff1 << ARM_AFF1_SHIFT) | Aff0;
686 static void cpreg_hashtable_data_destroy(gpointer data)
689 * Destroy function for cpu->cp_regs hashtable data entries.
690 * We must free the name string because it was g_strdup()ed in
691 * add_cpreg_to_hashtable(). It's OK to cast away the 'const'
692 * from r->name because we know we definitely allocated it.
694 ARMCPRegInfo *r = data;
696 g_free((void *)r->name);
697 g_free(r);
700 static void arm_cpu_initfn(Object *obj)
702 ARMCPU *cpu = ARM_CPU(obj);
704 cpu_set_cpustate_pointers(cpu);
705 cpu->cp_regs = g_hash_table_new_full(g_int_hash, g_int_equal,
706 g_free, cpreg_hashtable_data_destroy);
708 QLIST_INIT(&cpu->pre_el_change_hooks);
709 QLIST_INIT(&cpu->el_change_hooks);
711 #ifndef CONFIG_USER_ONLY
712 /* Our inbound IRQ and FIQ lines */
713 if (kvm_enabled()) {
714 /* VIRQ and VFIQ are unused with KVM but we add them to maintain
715 * the same interface as non-KVM CPUs.
717 qdev_init_gpio_in(DEVICE(cpu), arm_cpu_kvm_set_irq, 4);
718 } else {
719 qdev_init_gpio_in(DEVICE(cpu), arm_cpu_set_irq, 4);
722 qdev_init_gpio_out(DEVICE(cpu), cpu->gt_timer_outputs,
723 ARRAY_SIZE(cpu->gt_timer_outputs));
725 qdev_init_gpio_out_named(DEVICE(cpu), &cpu->gicv3_maintenance_interrupt,
726 "gicv3-maintenance-interrupt", 1);
727 qdev_init_gpio_out_named(DEVICE(cpu), &cpu->pmu_interrupt,
728 "pmu-interrupt", 1);
729 #endif
731 /* DTB consumers generally don't in fact care what the 'compatible'
732 * string is, so always provide some string and trust that a hypothetical
733 * picky DTB consumer will also provide a helpful error message.
735 cpu->dtb_compatible = "qemu,unknown";
736 cpu->psci_version = 1; /* By default assume PSCI v0.1 */
737 cpu->kvm_target = QEMU_KVM_ARM_TARGET_NONE;
739 if (tcg_enabled()) {
740 cpu->psci_version = 2; /* TCG implements PSCI 0.2 */
744 static Property arm_cpu_reset_cbar_property =
745 DEFINE_PROP_UINT64("reset-cbar", ARMCPU, reset_cbar, 0);
747 static Property arm_cpu_reset_hivecs_property =
748 DEFINE_PROP_BOOL("reset-hivecs", ARMCPU, reset_hivecs, false);
750 static Property arm_cpu_rvbar_property =
751 DEFINE_PROP_UINT64("rvbar", ARMCPU, rvbar, 0);
753 static Property arm_cpu_has_el2_property =
754 DEFINE_PROP_BOOL("has_el2", ARMCPU, has_el2, true);
756 static Property arm_cpu_has_el3_property =
757 DEFINE_PROP_BOOL("has_el3", ARMCPU, has_el3, true);
759 static Property arm_cpu_cfgend_property =
760 DEFINE_PROP_BOOL("cfgend", ARMCPU, cfgend, false);
762 /* use property name "pmu" to match other archs and virt tools */
763 static Property arm_cpu_has_pmu_property =
764 DEFINE_PROP_BOOL("pmu", ARMCPU, has_pmu, true);
766 static Property arm_cpu_has_vfp_property =
767 DEFINE_PROP_BOOL("vfp", ARMCPU, has_vfp, true);
769 static Property arm_cpu_has_neon_property =
770 DEFINE_PROP_BOOL("neon", ARMCPU, has_neon, true);
772 static Property arm_cpu_has_dsp_property =
773 DEFINE_PROP_BOOL("dsp", ARMCPU, has_dsp, true);
775 static Property arm_cpu_has_mpu_property =
776 DEFINE_PROP_BOOL("has-mpu", ARMCPU, has_mpu, true);
778 /* This is like DEFINE_PROP_UINT32 but it doesn't set the default value,
779 * because the CPU initfn will have already set cpu->pmsav7_dregion to
780 * the right value for that particular CPU type, and we don't want
781 * to override that with an incorrect constant value.
783 static Property arm_cpu_pmsav7_dregion_property =
784 DEFINE_PROP_UNSIGNED_NODEFAULT("pmsav7-dregion", ARMCPU,
785 pmsav7_dregion,
786 qdev_prop_uint32, uint32_t);
788 static void arm_get_init_svtor(Object *obj, Visitor *v, const char *name,
789 void *opaque, Error **errp)
791 ARMCPU *cpu = ARM_CPU(obj);
793 visit_type_uint32(v, name, &cpu->init_svtor, errp);
796 static void arm_set_init_svtor(Object *obj, Visitor *v, const char *name,
797 void *opaque, Error **errp)
799 ARMCPU *cpu = ARM_CPU(obj);
801 visit_type_uint32(v, name, &cpu->init_svtor, errp);
804 void arm_cpu_post_init(Object *obj)
806 ARMCPU *cpu = ARM_CPU(obj);
808 /* M profile implies PMSA. We have to do this here rather than
809 * in realize with the other feature-implication checks because
810 * we look at the PMSA bit to see if we should add some properties.
812 if (arm_feature(&cpu->env, ARM_FEATURE_M)) {
813 set_feature(&cpu->env, ARM_FEATURE_PMSA);
815 /* Similarly for the VFP feature bits */
816 if (arm_feature(&cpu->env, ARM_FEATURE_VFP4)) {
817 set_feature(&cpu->env, ARM_FEATURE_VFP3);
819 if (arm_feature(&cpu->env, ARM_FEATURE_VFP3)) {
820 set_feature(&cpu->env, ARM_FEATURE_VFP);
823 if (arm_feature(&cpu->env, ARM_FEATURE_CBAR) ||
824 arm_feature(&cpu->env, ARM_FEATURE_CBAR_RO)) {
825 qdev_property_add_static(DEVICE(obj), &arm_cpu_reset_cbar_property,
826 &error_abort);
829 if (!arm_feature(&cpu->env, ARM_FEATURE_M)) {
830 qdev_property_add_static(DEVICE(obj), &arm_cpu_reset_hivecs_property,
831 &error_abort);
834 if (arm_feature(&cpu->env, ARM_FEATURE_AARCH64)) {
835 qdev_property_add_static(DEVICE(obj), &arm_cpu_rvbar_property,
836 &error_abort);
839 if (arm_feature(&cpu->env, ARM_FEATURE_EL3)) {
840 /* Add the has_el3 state CPU property only if EL3 is allowed. This will
841 * prevent "has_el3" from existing on CPUs which cannot support EL3.
843 qdev_property_add_static(DEVICE(obj), &arm_cpu_has_el3_property,
844 &error_abort);
846 #ifndef CONFIG_USER_ONLY
847 object_property_add_link(obj, "secure-memory",
848 TYPE_MEMORY_REGION,
849 (Object **)&cpu->secure_memory,
850 qdev_prop_allow_set_link_before_realize,
851 OBJ_PROP_LINK_STRONG,
852 &error_abort);
853 #endif
856 if (arm_feature(&cpu->env, ARM_FEATURE_EL2)) {
857 qdev_property_add_static(DEVICE(obj), &arm_cpu_has_el2_property,
858 &error_abort);
861 if (arm_feature(&cpu->env, ARM_FEATURE_PMU)) {
862 qdev_property_add_static(DEVICE(obj), &arm_cpu_has_pmu_property,
863 &error_abort);
867 * Allow user to turn off VFP and Neon support, but only for TCG --
868 * KVM does not currently allow us to lie to the guest about its
869 * ID/feature registers, so the guest always sees what the host has.
871 if (arm_feature(&cpu->env, ARM_FEATURE_VFP)) {
872 cpu->has_vfp = true;
873 if (!kvm_enabled()) {
874 qdev_property_add_static(DEVICE(obj), &arm_cpu_has_vfp_property,
875 &error_abort);
879 if (arm_feature(&cpu->env, ARM_FEATURE_NEON)) {
880 cpu->has_neon = true;
881 if (!kvm_enabled()) {
882 qdev_property_add_static(DEVICE(obj), &arm_cpu_has_neon_property,
883 &error_abort);
887 if (arm_feature(&cpu->env, ARM_FEATURE_M) &&
888 arm_feature(&cpu->env, ARM_FEATURE_THUMB_DSP)) {
889 qdev_property_add_static(DEVICE(obj), &arm_cpu_has_dsp_property,
890 &error_abort);
893 if (arm_feature(&cpu->env, ARM_FEATURE_PMSA)) {
894 qdev_property_add_static(DEVICE(obj), &arm_cpu_has_mpu_property,
895 &error_abort);
896 if (arm_feature(&cpu->env, ARM_FEATURE_V7)) {
897 qdev_property_add_static(DEVICE(obj),
898 &arm_cpu_pmsav7_dregion_property,
899 &error_abort);
903 if (arm_feature(&cpu->env, ARM_FEATURE_M_SECURITY)) {
904 object_property_add_link(obj, "idau", TYPE_IDAU_INTERFACE, &cpu->idau,
905 qdev_prop_allow_set_link_before_realize,
906 OBJ_PROP_LINK_STRONG,
907 &error_abort);
909 * M profile: initial value of the Secure VTOR. We can't just use
910 * a simple DEFINE_PROP_UINT32 for this because we want to permit
911 * the property to be set after realize.
913 object_property_add(obj, "init-svtor", "uint32",
914 arm_get_init_svtor, arm_set_init_svtor,
915 NULL, NULL, &error_abort);
918 qdev_property_add_static(DEVICE(obj), &arm_cpu_cfgend_property,
919 &error_abort);
922 static void arm_cpu_finalizefn(Object *obj)
924 ARMCPU *cpu = ARM_CPU(obj);
925 ARMELChangeHook *hook, *next;
927 g_hash_table_destroy(cpu->cp_regs);
929 QLIST_FOREACH_SAFE(hook, &cpu->pre_el_change_hooks, node, next) {
930 QLIST_REMOVE(hook, node);
931 g_free(hook);
933 QLIST_FOREACH_SAFE(hook, &cpu->el_change_hooks, node, next) {
934 QLIST_REMOVE(hook, node);
935 g_free(hook);
937 #ifndef CONFIG_USER_ONLY
938 if (cpu->pmu_timer) {
939 timer_del(cpu->pmu_timer);
940 timer_deinit(cpu->pmu_timer);
941 timer_free(cpu->pmu_timer);
943 #endif
946 static void arm_cpu_realizefn(DeviceState *dev, Error **errp)
948 CPUState *cs = CPU(dev);
949 ARMCPU *cpu = ARM_CPU(dev);
950 ARMCPUClass *acc = ARM_CPU_GET_CLASS(dev);
951 CPUARMState *env = &cpu->env;
952 int pagebits;
953 Error *local_err = NULL;
954 bool no_aa32 = false;
956 /* If we needed to query the host kernel for the CPU features
957 * then it's possible that might have failed in the initfn, but
958 * this is the first point where we can report it.
960 if (cpu->host_cpu_probe_failed) {
961 if (!kvm_enabled()) {
962 error_setg(errp, "The 'host' CPU type can only be used with KVM");
963 } else {
964 error_setg(errp, "Failed to retrieve host CPU features");
966 return;
969 #ifndef CONFIG_USER_ONLY
970 /* The NVIC and M-profile CPU are two halves of a single piece of
971 * hardware; trying to use one without the other is a command line
972 * error and will result in segfaults if not caught here.
974 if (arm_feature(env, ARM_FEATURE_M)) {
975 if (!env->nvic) {
976 error_setg(errp, "This board cannot be used with Cortex-M CPUs");
977 return;
979 } else {
980 if (env->nvic) {
981 error_setg(errp, "This board can only be used with Cortex-M CPUs");
982 return;
986 cpu->gt_timer[GTIMER_PHYS] = timer_new(QEMU_CLOCK_VIRTUAL, GTIMER_SCALE,
987 arm_gt_ptimer_cb, cpu);
988 cpu->gt_timer[GTIMER_VIRT] = timer_new(QEMU_CLOCK_VIRTUAL, GTIMER_SCALE,
989 arm_gt_vtimer_cb, cpu);
990 cpu->gt_timer[GTIMER_HYP] = timer_new(QEMU_CLOCK_VIRTUAL, GTIMER_SCALE,
991 arm_gt_htimer_cb, cpu);
992 cpu->gt_timer[GTIMER_SEC] = timer_new(QEMU_CLOCK_VIRTUAL, GTIMER_SCALE,
993 arm_gt_stimer_cb, cpu);
994 #endif
996 cpu_exec_realizefn(cs, &local_err);
997 if (local_err != NULL) {
998 error_propagate(errp, local_err);
999 return;
1002 if (arm_feature(env, ARM_FEATURE_AARCH64) &&
1003 cpu->has_vfp != cpu->has_neon) {
1005 * This is an architectural requirement for AArch64; AArch32 is
1006 * more flexible and permits VFP-no-Neon and Neon-no-VFP.
1008 error_setg(errp,
1009 "AArch64 CPUs must have both VFP and Neon or neither");
1010 return;
1013 if (!cpu->has_vfp) {
1014 uint64_t t;
1015 uint32_t u;
1017 unset_feature(env, ARM_FEATURE_VFP);
1018 unset_feature(env, ARM_FEATURE_VFP3);
1019 unset_feature(env, ARM_FEATURE_VFP4);
1021 t = cpu->isar.id_aa64isar1;
1022 t = FIELD_DP64(t, ID_AA64ISAR1, JSCVT, 0);
1023 cpu->isar.id_aa64isar1 = t;
1025 t = cpu->isar.id_aa64pfr0;
1026 t = FIELD_DP64(t, ID_AA64PFR0, FP, 0xf);
1027 cpu->isar.id_aa64pfr0 = t;
1029 u = cpu->isar.id_isar6;
1030 u = FIELD_DP32(u, ID_ISAR6, JSCVT, 0);
1031 cpu->isar.id_isar6 = u;
1033 u = cpu->isar.mvfr0;
1034 u = FIELD_DP32(u, MVFR0, FPSP, 0);
1035 u = FIELD_DP32(u, MVFR0, FPDP, 0);
1036 u = FIELD_DP32(u, MVFR0, FPTRAP, 0);
1037 u = FIELD_DP32(u, MVFR0, FPDIVIDE, 0);
1038 u = FIELD_DP32(u, MVFR0, FPSQRT, 0);
1039 u = FIELD_DP32(u, MVFR0, FPSHVEC, 0);
1040 u = FIELD_DP32(u, MVFR0, FPROUND, 0);
1041 cpu->isar.mvfr0 = u;
1043 u = cpu->isar.mvfr1;
1044 u = FIELD_DP32(u, MVFR1, FPFTZ, 0);
1045 u = FIELD_DP32(u, MVFR1, FPDNAN, 0);
1046 u = FIELD_DP32(u, MVFR1, FPHP, 0);
1047 cpu->isar.mvfr1 = u;
1049 u = cpu->isar.mvfr2;
1050 u = FIELD_DP32(u, MVFR2, FPMISC, 0);
1051 cpu->isar.mvfr2 = u;
1054 if (!cpu->has_neon) {
1055 uint64_t t;
1056 uint32_t u;
1058 unset_feature(env, ARM_FEATURE_NEON);
1060 t = cpu->isar.id_aa64isar0;
1061 t = FIELD_DP64(t, ID_AA64ISAR0, DP, 0);
1062 cpu->isar.id_aa64isar0 = t;
1064 t = cpu->isar.id_aa64isar1;
1065 t = FIELD_DP64(t, ID_AA64ISAR1, FCMA, 0);
1066 cpu->isar.id_aa64isar1 = t;
1068 t = cpu->isar.id_aa64pfr0;
1069 t = FIELD_DP64(t, ID_AA64PFR0, ADVSIMD, 0xf);
1070 cpu->isar.id_aa64pfr0 = t;
1072 u = cpu->isar.id_isar5;
1073 u = FIELD_DP32(u, ID_ISAR5, RDM, 0);
1074 u = FIELD_DP32(u, ID_ISAR5, VCMA, 0);
1075 cpu->isar.id_isar5 = u;
1077 u = cpu->isar.id_isar6;
1078 u = FIELD_DP32(u, ID_ISAR6, DP, 0);
1079 u = FIELD_DP32(u, ID_ISAR6, FHM, 0);
1080 cpu->isar.id_isar6 = u;
1082 u = cpu->isar.mvfr1;
1083 u = FIELD_DP32(u, MVFR1, SIMDLS, 0);
1084 u = FIELD_DP32(u, MVFR1, SIMDINT, 0);
1085 u = FIELD_DP32(u, MVFR1, SIMDSP, 0);
1086 u = FIELD_DP32(u, MVFR1, SIMDHP, 0);
1087 u = FIELD_DP32(u, MVFR1, SIMDFMAC, 0);
1088 cpu->isar.mvfr1 = u;
1090 u = cpu->isar.mvfr2;
1091 u = FIELD_DP32(u, MVFR2, SIMDMISC, 0);
1092 cpu->isar.mvfr2 = u;
1095 if (!cpu->has_neon && !cpu->has_vfp) {
1096 uint64_t t;
1097 uint32_t u;
1099 t = cpu->isar.id_aa64isar0;
1100 t = FIELD_DP64(t, ID_AA64ISAR0, FHM, 0);
1101 cpu->isar.id_aa64isar0 = t;
1103 t = cpu->isar.id_aa64isar1;
1104 t = FIELD_DP64(t, ID_AA64ISAR1, FRINTTS, 0);
1105 cpu->isar.id_aa64isar1 = t;
1107 u = cpu->isar.mvfr0;
1108 u = FIELD_DP32(u, MVFR0, SIMDREG, 0);
1109 cpu->isar.mvfr0 = u;
1112 if (arm_feature(env, ARM_FEATURE_M) && !cpu->has_dsp) {
1113 uint32_t u;
1115 unset_feature(env, ARM_FEATURE_THUMB_DSP);
1117 u = cpu->isar.id_isar1;
1118 u = FIELD_DP32(u, ID_ISAR1, EXTEND, 1);
1119 cpu->isar.id_isar1 = u;
1121 u = cpu->isar.id_isar2;
1122 u = FIELD_DP32(u, ID_ISAR2, MULTU, 1);
1123 u = FIELD_DP32(u, ID_ISAR2, MULTS, 1);
1124 cpu->isar.id_isar2 = u;
1126 u = cpu->isar.id_isar3;
1127 u = FIELD_DP32(u, ID_ISAR3, SIMD, 1);
1128 u = FIELD_DP32(u, ID_ISAR3, SATURATE, 0);
1129 cpu->isar.id_isar3 = u;
1132 /* Some features automatically imply others: */
1133 if (arm_feature(env, ARM_FEATURE_V8)) {
1134 if (arm_feature(env, ARM_FEATURE_M)) {
1135 set_feature(env, ARM_FEATURE_V7);
1136 } else {
1137 set_feature(env, ARM_FEATURE_V7VE);
1142 * There exist AArch64 cpus without AArch32 support. When KVM
1143 * queries ID_ISAR0_EL1 on such a host, the value is UNKNOWN.
1144 * Similarly, we cannot check ID_AA64PFR0 without AArch64 support.
1146 if (arm_feature(&cpu->env, ARM_FEATURE_AARCH64)) {
1147 no_aa32 = !cpu_isar_feature(aa64_aa32, cpu);
1150 if (arm_feature(env, ARM_FEATURE_V7VE)) {
1151 /* v7 Virtualization Extensions. In real hardware this implies
1152 * EL2 and also the presence of the Security Extensions.
1153 * For QEMU, for backwards-compatibility we implement some
1154 * CPUs or CPU configs which have no actual EL2 or EL3 but do
1155 * include the various other features that V7VE implies.
1156 * Presence of EL2 itself is ARM_FEATURE_EL2, and of the
1157 * Security Extensions is ARM_FEATURE_EL3.
1159 assert(no_aa32 || cpu_isar_feature(arm_div, cpu));
1160 set_feature(env, ARM_FEATURE_LPAE);
1161 set_feature(env, ARM_FEATURE_V7);
1163 if (arm_feature(env, ARM_FEATURE_V7)) {
1164 set_feature(env, ARM_FEATURE_VAPA);
1165 set_feature(env, ARM_FEATURE_THUMB2);
1166 set_feature(env, ARM_FEATURE_MPIDR);
1167 if (!arm_feature(env, ARM_FEATURE_M)) {
1168 set_feature(env, ARM_FEATURE_V6K);
1169 } else {
1170 set_feature(env, ARM_FEATURE_V6);
1173 /* Always define VBAR for V7 CPUs even if it doesn't exist in
1174 * non-EL3 configs. This is needed by some legacy boards.
1176 set_feature(env, ARM_FEATURE_VBAR);
1178 if (arm_feature(env, ARM_FEATURE_V6K)) {
1179 set_feature(env, ARM_FEATURE_V6);
1180 set_feature(env, ARM_FEATURE_MVFR);
1182 if (arm_feature(env, ARM_FEATURE_V6)) {
1183 set_feature(env, ARM_FEATURE_V5);
1184 if (!arm_feature(env, ARM_FEATURE_M)) {
1185 assert(no_aa32 || cpu_isar_feature(jazelle, cpu));
1186 set_feature(env, ARM_FEATURE_AUXCR);
1189 if (arm_feature(env, ARM_FEATURE_V5)) {
1190 set_feature(env, ARM_FEATURE_V4T);
1192 if (arm_feature(env, ARM_FEATURE_LPAE)) {
1193 set_feature(env, ARM_FEATURE_V7MP);
1194 set_feature(env, ARM_FEATURE_PXN);
1196 if (arm_feature(env, ARM_FEATURE_CBAR_RO)) {
1197 set_feature(env, ARM_FEATURE_CBAR);
1199 if (arm_feature(env, ARM_FEATURE_THUMB2) &&
1200 !arm_feature(env, ARM_FEATURE_M)) {
1201 set_feature(env, ARM_FEATURE_THUMB_DSP);
1205 * We rely on no XScale CPU having VFP so we can use the same bits in the
1206 * TB flags field for VECSTRIDE and XSCALE_CPAR.
1208 assert(!(arm_feature(env, ARM_FEATURE_VFP) &&
1209 arm_feature(env, ARM_FEATURE_XSCALE)));
1211 if (arm_feature(env, ARM_FEATURE_V7) &&
1212 !arm_feature(env, ARM_FEATURE_M) &&
1213 !arm_feature(env, ARM_FEATURE_PMSA)) {
1214 /* v7VMSA drops support for the old ARMv5 tiny pages, so we
1215 * can use 4K pages.
1217 pagebits = 12;
1218 } else {
1219 /* For CPUs which might have tiny 1K pages, or which have an
1220 * MPU and might have small region sizes, stick with 1K pages.
1222 pagebits = 10;
1224 if (!set_preferred_target_page_bits(pagebits)) {
1225 /* This can only ever happen for hotplugging a CPU, or if
1226 * the board code incorrectly creates a CPU which it has
1227 * promised via minimum_page_size that it will not.
1229 error_setg(errp, "This CPU requires a smaller page size than the "
1230 "system is using");
1231 return;
1234 /* This cpu-id-to-MPIDR affinity is used only for TCG; KVM will override it.
1235 * We don't support setting cluster ID ([16..23]) (known as Aff2
1236 * in later ARM ARM versions), or any of the higher affinity level fields,
1237 * so these bits always RAZ.
1239 if (cpu->mp_affinity == ARM64_AFFINITY_INVALID) {
1240 cpu->mp_affinity = arm_cpu_mp_affinity(cs->cpu_index,
1241 ARM_DEFAULT_CPUS_PER_CLUSTER);
1244 if (cpu->reset_hivecs) {
1245 cpu->reset_sctlr |= (1 << 13);
1248 if (cpu->cfgend) {
1249 if (arm_feature(&cpu->env, ARM_FEATURE_V7)) {
1250 cpu->reset_sctlr |= SCTLR_EE;
1251 } else {
1252 cpu->reset_sctlr |= SCTLR_B;
1256 if (!cpu->has_el3) {
1257 /* If the has_el3 CPU property is disabled then we need to disable the
1258 * feature.
1260 unset_feature(env, ARM_FEATURE_EL3);
1262 /* Disable the security extension feature bits in the processor feature
1263 * registers as well. These are id_pfr1[7:4] and id_aa64pfr0[15:12].
1265 cpu->id_pfr1 &= ~0xf0;
1266 cpu->isar.id_aa64pfr0 &= ~0xf000;
1269 if (!cpu->has_el2) {
1270 unset_feature(env, ARM_FEATURE_EL2);
1273 if (!cpu->has_pmu) {
1274 unset_feature(env, ARM_FEATURE_PMU);
1276 if (arm_feature(env, ARM_FEATURE_PMU)) {
1277 pmu_init(cpu);
1279 if (!kvm_enabled()) {
1280 arm_register_pre_el_change_hook(cpu, &pmu_pre_el_change, 0);
1281 arm_register_el_change_hook(cpu, &pmu_post_el_change, 0);
1284 #ifndef CONFIG_USER_ONLY
1285 cpu->pmu_timer = timer_new_ns(QEMU_CLOCK_VIRTUAL, arm_pmu_timer_cb,
1286 cpu);
1287 #endif
1288 } else {
1289 cpu->id_aa64dfr0 &= ~0xf00;
1290 cpu->id_dfr0 &= ~(0xf << 24);
1291 cpu->pmceid0 = 0;
1292 cpu->pmceid1 = 0;
1295 if (!arm_feature(env, ARM_FEATURE_EL2)) {
1296 /* Disable the hypervisor feature bits in the processor feature
1297 * registers if we don't have EL2. These are id_pfr1[15:12] and
1298 * id_aa64pfr0_el1[11:8].
1300 cpu->isar.id_aa64pfr0 &= ~0xf00;
1301 cpu->id_pfr1 &= ~0xf000;
1304 /* MPU can be configured out of a PMSA CPU either by setting has-mpu
1305 * to false or by setting pmsav7-dregion to 0.
1307 if (!cpu->has_mpu) {
1308 cpu->pmsav7_dregion = 0;
1310 if (cpu->pmsav7_dregion == 0) {
1311 cpu->has_mpu = false;
1314 if (arm_feature(env, ARM_FEATURE_PMSA) &&
1315 arm_feature(env, ARM_FEATURE_V7)) {
1316 uint32_t nr = cpu->pmsav7_dregion;
1318 if (nr > 0xff) {
1319 error_setg(errp, "PMSAv7 MPU #regions invalid %" PRIu32, nr);
1320 return;
1323 if (nr) {
1324 if (arm_feature(env, ARM_FEATURE_V8)) {
1325 /* PMSAv8 */
1326 env->pmsav8.rbar[M_REG_NS] = g_new0(uint32_t, nr);
1327 env->pmsav8.rlar[M_REG_NS] = g_new0(uint32_t, nr);
1328 if (arm_feature(env, ARM_FEATURE_M_SECURITY)) {
1329 env->pmsav8.rbar[M_REG_S] = g_new0(uint32_t, nr);
1330 env->pmsav8.rlar[M_REG_S] = g_new0(uint32_t, nr);
1332 } else {
1333 env->pmsav7.drbar = g_new0(uint32_t, nr);
1334 env->pmsav7.drsr = g_new0(uint32_t, nr);
1335 env->pmsav7.dracr = g_new0(uint32_t, nr);
1340 if (arm_feature(env, ARM_FEATURE_M_SECURITY)) {
1341 uint32_t nr = cpu->sau_sregion;
1343 if (nr > 0xff) {
1344 error_setg(errp, "v8M SAU #regions invalid %" PRIu32, nr);
1345 return;
1348 if (nr) {
1349 env->sau.rbar = g_new0(uint32_t, nr);
1350 env->sau.rlar = g_new0(uint32_t, nr);
1354 if (arm_feature(env, ARM_FEATURE_EL3)) {
1355 set_feature(env, ARM_FEATURE_VBAR);
1358 register_cp_regs_for_features(cpu);
1359 arm_cpu_register_gdb_regs_for_features(cpu);
1361 init_cpreg_list(cpu);
1363 #ifndef CONFIG_USER_ONLY
1364 if (cpu->has_el3 || arm_feature(env, ARM_FEATURE_M_SECURITY)) {
1365 cs->num_ases = 2;
1367 if (!cpu->secure_memory) {
1368 cpu->secure_memory = cs->memory;
1370 cpu_address_space_init(cs, ARMASIdx_S, "cpu-secure-memory",
1371 cpu->secure_memory);
1372 } else {
1373 cs->num_ases = 1;
1375 cpu_address_space_init(cs, ARMASIdx_NS, "cpu-memory", cs->memory);
1377 /* No core_count specified, default to smp_cpus. */
1378 if (cpu->core_count == -1) {
1379 cpu->core_count = smp_cpus;
1381 #endif
1383 qemu_init_vcpu(cs);
1384 cpu_reset(cs);
1386 acc->parent_realize(dev, errp);
1389 static ObjectClass *arm_cpu_class_by_name(const char *cpu_model)
1391 ObjectClass *oc;
1392 char *typename;
1393 char **cpuname;
1394 const char *cpunamestr;
1396 cpuname = g_strsplit(cpu_model, ",", 1);
1397 cpunamestr = cpuname[0];
1398 #ifdef CONFIG_USER_ONLY
1399 /* For backwards compatibility usermode emulation allows "-cpu any",
1400 * which has the same semantics as "-cpu max".
1402 if (!strcmp(cpunamestr, "any")) {
1403 cpunamestr = "max";
1405 #endif
1406 typename = g_strdup_printf(ARM_CPU_TYPE_NAME("%s"), cpunamestr);
1407 oc = object_class_by_name(typename);
1408 g_strfreev(cpuname);
1409 g_free(typename);
1410 if (!oc || !object_class_dynamic_cast(oc, TYPE_ARM_CPU) ||
1411 object_class_is_abstract(oc)) {
1412 return NULL;
1414 return oc;
1417 /* CPU models. These are not needed for the AArch64 linux-user build. */
1418 #if !defined(CONFIG_USER_ONLY) || !defined(TARGET_AARCH64)
1420 static void arm926_initfn(Object *obj)
1422 ARMCPU *cpu = ARM_CPU(obj);
1424 cpu->dtb_compatible = "arm,arm926";
1425 set_feature(&cpu->env, ARM_FEATURE_V5);
1426 set_feature(&cpu->env, ARM_FEATURE_VFP);
1427 set_feature(&cpu->env, ARM_FEATURE_DUMMY_C15_REGS);
1428 set_feature(&cpu->env, ARM_FEATURE_CACHE_TEST_CLEAN);
1429 cpu->midr = 0x41069265;
1430 cpu->reset_fpsid = 0x41011090;
1431 cpu->ctr = 0x1dd20d2;
1432 cpu->reset_sctlr = 0x00090078;
1435 * ARMv5 does not have the ID_ISAR registers, but we can still
1436 * set the field to indicate Jazelle support within QEMU.
1438 cpu->isar.id_isar1 = FIELD_DP32(cpu->isar.id_isar1, ID_ISAR1, JAZELLE, 1);
1441 static void arm946_initfn(Object *obj)
1443 ARMCPU *cpu = ARM_CPU(obj);
1445 cpu->dtb_compatible = "arm,arm946";
1446 set_feature(&cpu->env, ARM_FEATURE_V5);
1447 set_feature(&cpu->env, ARM_FEATURE_PMSA);
1448 set_feature(&cpu->env, ARM_FEATURE_DUMMY_C15_REGS);
1449 cpu->midr = 0x41059461;
1450 cpu->ctr = 0x0f004006;
1451 cpu->reset_sctlr = 0x00000078;
1454 static void arm1026_initfn(Object *obj)
1456 ARMCPU *cpu = ARM_CPU(obj);
1458 cpu->dtb_compatible = "arm,arm1026";
1459 set_feature(&cpu->env, ARM_FEATURE_V5);
1460 set_feature(&cpu->env, ARM_FEATURE_VFP);
1461 set_feature(&cpu->env, ARM_FEATURE_AUXCR);
1462 set_feature(&cpu->env, ARM_FEATURE_DUMMY_C15_REGS);
1463 set_feature(&cpu->env, ARM_FEATURE_CACHE_TEST_CLEAN);
1464 cpu->midr = 0x4106a262;
1465 cpu->reset_fpsid = 0x410110a0;
1466 cpu->ctr = 0x1dd20d2;
1467 cpu->reset_sctlr = 0x00090078;
1468 cpu->reset_auxcr = 1;
1471 * ARMv5 does not have the ID_ISAR registers, but we can still
1472 * set the field to indicate Jazelle support within QEMU.
1474 cpu->isar.id_isar1 = FIELD_DP32(cpu->isar.id_isar1, ID_ISAR1, JAZELLE, 1);
1477 /* The 1026 had an IFAR at c6,c0,0,1 rather than the ARMv6 c6,c0,0,2 */
1478 ARMCPRegInfo ifar = {
1479 .name = "IFAR", .cp = 15, .crn = 6, .crm = 0, .opc1 = 0, .opc2 = 1,
1480 .access = PL1_RW,
1481 .fieldoffset = offsetof(CPUARMState, cp15.ifar_ns),
1482 .resetvalue = 0
1484 define_one_arm_cp_reg(cpu, &ifar);
1488 static void arm1136_r2_initfn(Object *obj)
1490 ARMCPU *cpu = ARM_CPU(obj);
1491 /* What qemu calls "arm1136_r2" is actually the 1136 r0p2, ie an
1492 * older core than plain "arm1136". In particular this does not
1493 * have the v6K features.
1494 * These ID register values are correct for 1136 but may be wrong
1495 * for 1136_r2 (in particular r0p2 does not actually implement most
1496 * of the ID registers).
1499 cpu->dtb_compatible = "arm,arm1136";
1500 set_feature(&cpu->env, ARM_FEATURE_V6);
1501 set_feature(&cpu->env, ARM_FEATURE_VFP);
1502 set_feature(&cpu->env, ARM_FEATURE_DUMMY_C15_REGS);
1503 set_feature(&cpu->env, ARM_FEATURE_CACHE_DIRTY_REG);
1504 set_feature(&cpu->env, ARM_FEATURE_CACHE_BLOCK_OPS);
1505 cpu->midr = 0x4107b362;
1506 cpu->reset_fpsid = 0x410120b4;
1507 cpu->isar.mvfr0 = 0x11111111;
1508 cpu->isar.mvfr1 = 0x00000000;
1509 cpu->ctr = 0x1dd20d2;
1510 cpu->reset_sctlr = 0x00050078;
1511 cpu->id_pfr0 = 0x111;
1512 cpu->id_pfr1 = 0x1;
1513 cpu->id_dfr0 = 0x2;
1514 cpu->id_afr0 = 0x3;
1515 cpu->id_mmfr0 = 0x01130003;
1516 cpu->id_mmfr1 = 0x10030302;
1517 cpu->id_mmfr2 = 0x01222110;
1518 cpu->isar.id_isar0 = 0x00140011;
1519 cpu->isar.id_isar1 = 0x12002111;
1520 cpu->isar.id_isar2 = 0x11231111;
1521 cpu->isar.id_isar3 = 0x01102131;
1522 cpu->isar.id_isar4 = 0x141;
1523 cpu->reset_auxcr = 7;
1526 static void arm1136_initfn(Object *obj)
1528 ARMCPU *cpu = ARM_CPU(obj);
1530 cpu->dtb_compatible = "arm,arm1136";
1531 set_feature(&cpu->env, ARM_FEATURE_V6K);
1532 set_feature(&cpu->env, ARM_FEATURE_V6);
1533 set_feature(&cpu->env, ARM_FEATURE_VFP);
1534 set_feature(&cpu->env, ARM_FEATURE_DUMMY_C15_REGS);
1535 set_feature(&cpu->env, ARM_FEATURE_CACHE_DIRTY_REG);
1536 set_feature(&cpu->env, ARM_FEATURE_CACHE_BLOCK_OPS);
1537 cpu->midr = 0x4117b363;
1538 cpu->reset_fpsid = 0x410120b4;
1539 cpu->isar.mvfr0 = 0x11111111;
1540 cpu->isar.mvfr1 = 0x00000000;
1541 cpu->ctr = 0x1dd20d2;
1542 cpu->reset_sctlr = 0x00050078;
1543 cpu->id_pfr0 = 0x111;
1544 cpu->id_pfr1 = 0x1;
1545 cpu->id_dfr0 = 0x2;
1546 cpu->id_afr0 = 0x3;
1547 cpu->id_mmfr0 = 0x01130003;
1548 cpu->id_mmfr1 = 0x10030302;
1549 cpu->id_mmfr2 = 0x01222110;
1550 cpu->isar.id_isar0 = 0x00140011;
1551 cpu->isar.id_isar1 = 0x12002111;
1552 cpu->isar.id_isar2 = 0x11231111;
1553 cpu->isar.id_isar3 = 0x01102131;
1554 cpu->isar.id_isar4 = 0x141;
1555 cpu->reset_auxcr = 7;
1558 static void arm1176_initfn(Object *obj)
1560 ARMCPU *cpu = ARM_CPU(obj);
1562 cpu->dtb_compatible = "arm,arm1176";
1563 set_feature(&cpu->env, ARM_FEATURE_V6K);
1564 set_feature(&cpu->env, ARM_FEATURE_VFP);
1565 set_feature(&cpu->env, ARM_FEATURE_VAPA);
1566 set_feature(&cpu->env, ARM_FEATURE_DUMMY_C15_REGS);
1567 set_feature(&cpu->env, ARM_FEATURE_CACHE_DIRTY_REG);
1568 set_feature(&cpu->env, ARM_FEATURE_CACHE_BLOCK_OPS);
1569 set_feature(&cpu->env, ARM_FEATURE_EL3);
1570 cpu->midr = 0x410fb767;
1571 cpu->reset_fpsid = 0x410120b5;
1572 cpu->isar.mvfr0 = 0x11111111;
1573 cpu->isar.mvfr1 = 0x00000000;
1574 cpu->ctr = 0x1dd20d2;
1575 cpu->reset_sctlr = 0x00050078;
1576 cpu->id_pfr0 = 0x111;
1577 cpu->id_pfr1 = 0x11;
1578 cpu->id_dfr0 = 0x33;
1579 cpu->id_afr0 = 0;
1580 cpu->id_mmfr0 = 0x01130003;
1581 cpu->id_mmfr1 = 0x10030302;
1582 cpu->id_mmfr2 = 0x01222100;
1583 cpu->isar.id_isar0 = 0x0140011;
1584 cpu->isar.id_isar1 = 0x12002111;
1585 cpu->isar.id_isar2 = 0x11231121;
1586 cpu->isar.id_isar3 = 0x01102131;
1587 cpu->isar.id_isar4 = 0x01141;
1588 cpu->reset_auxcr = 7;
1591 static void arm11mpcore_initfn(Object *obj)
1593 ARMCPU *cpu = ARM_CPU(obj);
1595 cpu->dtb_compatible = "arm,arm11mpcore";
1596 set_feature(&cpu->env, ARM_FEATURE_V6K);
1597 set_feature(&cpu->env, ARM_FEATURE_VFP);
1598 set_feature(&cpu->env, ARM_FEATURE_VAPA);
1599 set_feature(&cpu->env, ARM_FEATURE_MPIDR);
1600 set_feature(&cpu->env, ARM_FEATURE_DUMMY_C15_REGS);
1601 cpu->midr = 0x410fb022;
1602 cpu->reset_fpsid = 0x410120b4;
1603 cpu->isar.mvfr0 = 0x11111111;
1604 cpu->isar.mvfr1 = 0x00000000;
1605 cpu->ctr = 0x1d192992; /* 32K icache 32K dcache */
1606 cpu->id_pfr0 = 0x111;
1607 cpu->id_pfr1 = 0x1;
1608 cpu->id_dfr0 = 0;
1609 cpu->id_afr0 = 0x2;
1610 cpu->id_mmfr0 = 0x01100103;
1611 cpu->id_mmfr1 = 0x10020302;
1612 cpu->id_mmfr2 = 0x01222000;
1613 cpu->isar.id_isar0 = 0x00100011;
1614 cpu->isar.id_isar1 = 0x12002111;
1615 cpu->isar.id_isar2 = 0x11221011;
1616 cpu->isar.id_isar3 = 0x01102131;
1617 cpu->isar.id_isar4 = 0x141;
1618 cpu->reset_auxcr = 1;
1621 static void cortex_m0_initfn(Object *obj)
1623 ARMCPU *cpu = ARM_CPU(obj);
1624 set_feature(&cpu->env, ARM_FEATURE_V6);
1625 set_feature(&cpu->env, ARM_FEATURE_M);
1627 cpu->midr = 0x410cc200;
1630 static void cortex_m3_initfn(Object *obj)
1632 ARMCPU *cpu = ARM_CPU(obj);
1633 set_feature(&cpu->env, ARM_FEATURE_V7);
1634 set_feature(&cpu->env, ARM_FEATURE_M);
1635 set_feature(&cpu->env, ARM_FEATURE_M_MAIN);
1636 cpu->midr = 0x410fc231;
1637 cpu->pmsav7_dregion = 8;
1638 cpu->id_pfr0 = 0x00000030;
1639 cpu->id_pfr1 = 0x00000200;
1640 cpu->id_dfr0 = 0x00100000;
1641 cpu->id_afr0 = 0x00000000;
1642 cpu->id_mmfr0 = 0x00000030;
1643 cpu->id_mmfr1 = 0x00000000;
1644 cpu->id_mmfr2 = 0x00000000;
1645 cpu->id_mmfr3 = 0x00000000;
1646 cpu->isar.id_isar0 = 0x01141110;
1647 cpu->isar.id_isar1 = 0x02111000;
1648 cpu->isar.id_isar2 = 0x21112231;
1649 cpu->isar.id_isar3 = 0x01111110;
1650 cpu->isar.id_isar4 = 0x01310102;
1651 cpu->isar.id_isar5 = 0x00000000;
1652 cpu->isar.id_isar6 = 0x00000000;
1655 static void cortex_m4_initfn(Object *obj)
1657 ARMCPU *cpu = ARM_CPU(obj);
1659 set_feature(&cpu->env, ARM_FEATURE_V7);
1660 set_feature(&cpu->env, ARM_FEATURE_M);
1661 set_feature(&cpu->env, ARM_FEATURE_M_MAIN);
1662 set_feature(&cpu->env, ARM_FEATURE_THUMB_DSP);
1663 set_feature(&cpu->env, ARM_FEATURE_VFP4);
1664 cpu->midr = 0x410fc240; /* r0p0 */
1665 cpu->pmsav7_dregion = 8;
1666 cpu->isar.mvfr0 = 0x10110021;
1667 cpu->isar.mvfr1 = 0x11000011;
1668 cpu->isar.mvfr2 = 0x00000000;
1669 cpu->id_pfr0 = 0x00000030;
1670 cpu->id_pfr1 = 0x00000200;
1671 cpu->id_dfr0 = 0x00100000;
1672 cpu->id_afr0 = 0x00000000;
1673 cpu->id_mmfr0 = 0x00000030;
1674 cpu->id_mmfr1 = 0x00000000;
1675 cpu->id_mmfr2 = 0x00000000;
1676 cpu->id_mmfr3 = 0x00000000;
1677 cpu->isar.id_isar0 = 0x01141110;
1678 cpu->isar.id_isar1 = 0x02111000;
1679 cpu->isar.id_isar2 = 0x21112231;
1680 cpu->isar.id_isar3 = 0x01111110;
1681 cpu->isar.id_isar4 = 0x01310102;
1682 cpu->isar.id_isar5 = 0x00000000;
1683 cpu->isar.id_isar6 = 0x00000000;
1686 static void cortex_m33_initfn(Object *obj)
1688 ARMCPU *cpu = ARM_CPU(obj);
1690 set_feature(&cpu->env, ARM_FEATURE_V8);
1691 set_feature(&cpu->env, ARM_FEATURE_M);
1692 set_feature(&cpu->env, ARM_FEATURE_M_MAIN);
1693 set_feature(&cpu->env, ARM_FEATURE_M_SECURITY);
1694 set_feature(&cpu->env, ARM_FEATURE_THUMB_DSP);
1695 set_feature(&cpu->env, ARM_FEATURE_VFP4);
1696 cpu->midr = 0x410fd213; /* r0p3 */
1697 cpu->pmsav7_dregion = 16;
1698 cpu->sau_sregion = 8;
1699 cpu->isar.mvfr0 = 0x10110021;
1700 cpu->isar.mvfr1 = 0x11000011;
1701 cpu->isar.mvfr2 = 0x00000040;
1702 cpu->id_pfr0 = 0x00000030;
1703 cpu->id_pfr1 = 0x00000210;
1704 cpu->id_dfr0 = 0x00200000;
1705 cpu->id_afr0 = 0x00000000;
1706 cpu->id_mmfr0 = 0x00101F40;
1707 cpu->id_mmfr1 = 0x00000000;
1708 cpu->id_mmfr2 = 0x01000000;
1709 cpu->id_mmfr3 = 0x00000000;
1710 cpu->isar.id_isar0 = 0x01101110;
1711 cpu->isar.id_isar1 = 0x02212000;
1712 cpu->isar.id_isar2 = 0x20232232;
1713 cpu->isar.id_isar3 = 0x01111131;
1714 cpu->isar.id_isar4 = 0x01310132;
1715 cpu->isar.id_isar5 = 0x00000000;
1716 cpu->isar.id_isar6 = 0x00000000;
1717 cpu->clidr = 0x00000000;
1718 cpu->ctr = 0x8000c000;
1721 static void arm_v7m_class_init(ObjectClass *oc, void *data)
1723 ARMCPUClass *acc = ARM_CPU_CLASS(oc);
1724 CPUClass *cc = CPU_CLASS(oc);
1726 acc->info = data;
1727 #ifndef CONFIG_USER_ONLY
1728 cc->do_interrupt = arm_v7m_cpu_do_interrupt;
1729 #endif
1731 cc->cpu_exec_interrupt = arm_v7m_cpu_exec_interrupt;
1734 static const ARMCPRegInfo cortexr5_cp_reginfo[] = {
1735 /* Dummy the TCM region regs for the moment */
1736 { .name = "ATCM", .cp = 15, .opc1 = 0, .crn = 9, .crm = 1, .opc2 = 0,
1737 .access = PL1_RW, .type = ARM_CP_CONST },
1738 { .name = "BTCM", .cp = 15, .opc1 = 0, .crn = 9, .crm = 1, .opc2 = 1,
1739 .access = PL1_RW, .type = ARM_CP_CONST },
1740 { .name = "DCACHE_INVAL", .cp = 15, .opc1 = 0, .crn = 15, .crm = 5,
1741 .opc2 = 0, .access = PL1_W, .type = ARM_CP_NOP },
1742 REGINFO_SENTINEL
1745 static void cortex_r5_initfn(Object *obj)
1747 ARMCPU *cpu = ARM_CPU(obj);
1749 set_feature(&cpu->env, ARM_FEATURE_V7);
1750 set_feature(&cpu->env, ARM_FEATURE_V7MP);
1751 set_feature(&cpu->env, ARM_FEATURE_PMSA);
1752 cpu->midr = 0x411fc153; /* r1p3 */
1753 cpu->id_pfr0 = 0x0131;
1754 cpu->id_pfr1 = 0x001;
1755 cpu->id_dfr0 = 0x010400;
1756 cpu->id_afr0 = 0x0;
1757 cpu->id_mmfr0 = 0x0210030;
1758 cpu->id_mmfr1 = 0x00000000;
1759 cpu->id_mmfr2 = 0x01200000;
1760 cpu->id_mmfr3 = 0x0211;
1761 cpu->isar.id_isar0 = 0x02101111;
1762 cpu->isar.id_isar1 = 0x13112111;
1763 cpu->isar.id_isar2 = 0x21232141;
1764 cpu->isar.id_isar3 = 0x01112131;
1765 cpu->isar.id_isar4 = 0x0010142;
1766 cpu->isar.id_isar5 = 0x0;
1767 cpu->isar.id_isar6 = 0x0;
1768 cpu->mp_is_up = true;
1769 cpu->pmsav7_dregion = 16;
1770 define_arm_cp_regs(cpu, cortexr5_cp_reginfo);
1773 static void cortex_r5f_initfn(Object *obj)
1775 ARMCPU *cpu = ARM_CPU(obj);
1777 cortex_r5_initfn(obj);
1778 set_feature(&cpu->env, ARM_FEATURE_VFP3);
1779 cpu->isar.mvfr0 = 0x10110221;
1780 cpu->isar.mvfr1 = 0x00000011;
1783 static const ARMCPRegInfo cortexa8_cp_reginfo[] = {
1784 { .name = "L2LOCKDOWN", .cp = 15, .crn = 9, .crm = 0, .opc1 = 1, .opc2 = 0,
1785 .access = PL1_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
1786 { .name = "L2AUXCR", .cp = 15, .crn = 9, .crm = 0, .opc1 = 1, .opc2 = 2,
1787 .access = PL1_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
1788 REGINFO_SENTINEL
1791 static void cortex_a8_initfn(Object *obj)
1793 ARMCPU *cpu = ARM_CPU(obj);
1795 cpu->dtb_compatible = "arm,cortex-a8";
1796 set_feature(&cpu->env, ARM_FEATURE_V7);
1797 set_feature(&cpu->env, ARM_FEATURE_VFP3);
1798 set_feature(&cpu->env, ARM_FEATURE_NEON);
1799 set_feature(&cpu->env, ARM_FEATURE_THUMB2EE);
1800 set_feature(&cpu->env, ARM_FEATURE_DUMMY_C15_REGS);
1801 set_feature(&cpu->env, ARM_FEATURE_EL3);
1802 cpu->midr = 0x410fc080;
1803 cpu->reset_fpsid = 0x410330c0;
1804 cpu->isar.mvfr0 = 0x11110222;
1805 cpu->isar.mvfr1 = 0x00011111;
1806 cpu->ctr = 0x82048004;
1807 cpu->reset_sctlr = 0x00c50078;
1808 cpu->id_pfr0 = 0x1031;
1809 cpu->id_pfr1 = 0x11;
1810 cpu->id_dfr0 = 0x400;
1811 cpu->id_afr0 = 0;
1812 cpu->id_mmfr0 = 0x31100003;
1813 cpu->id_mmfr1 = 0x20000000;
1814 cpu->id_mmfr2 = 0x01202000;
1815 cpu->id_mmfr3 = 0x11;
1816 cpu->isar.id_isar0 = 0x00101111;
1817 cpu->isar.id_isar1 = 0x12112111;
1818 cpu->isar.id_isar2 = 0x21232031;
1819 cpu->isar.id_isar3 = 0x11112131;
1820 cpu->isar.id_isar4 = 0x00111142;
1821 cpu->dbgdidr = 0x15141000;
1822 cpu->clidr = (1 << 27) | (2 << 24) | 3;
1823 cpu->ccsidr[0] = 0xe007e01a; /* 16k L1 dcache. */
1824 cpu->ccsidr[1] = 0x2007e01a; /* 16k L1 icache. */
1825 cpu->ccsidr[2] = 0xf0000000; /* No L2 icache. */
1826 cpu->reset_auxcr = 2;
1827 define_arm_cp_regs(cpu, cortexa8_cp_reginfo);
1830 static const ARMCPRegInfo cortexa9_cp_reginfo[] = {
1831 /* power_control should be set to maximum latency. Again,
1832 * default to 0 and set by private hook
1834 { .name = "A9_PWRCTL", .cp = 15, .crn = 15, .crm = 0, .opc1 = 0, .opc2 = 0,
1835 .access = PL1_RW, .resetvalue = 0,
1836 .fieldoffset = offsetof(CPUARMState, cp15.c15_power_control) },
1837 { .name = "A9_DIAG", .cp = 15, .crn = 15, .crm = 0, .opc1 = 0, .opc2 = 1,
1838 .access = PL1_RW, .resetvalue = 0,
1839 .fieldoffset = offsetof(CPUARMState, cp15.c15_diagnostic) },
1840 { .name = "A9_PWRDIAG", .cp = 15, .crn = 15, .crm = 0, .opc1 = 0, .opc2 = 2,
1841 .access = PL1_RW, .resetvalue = 0,
1842 .fieldoffset = offsetof(CPUARMState, cp15.c15_power_diagnostic) },
1843 { .name = "NEONBUSY", .cp = 15, .crn = 15, .crm = 1, .opc1 = 0, .opc2 = 0,
1844 .access = PL1_RW, .resetvalue = 0, .type = ARM_CP_CONST },
1845 /* TLB lockdown control */
1846 { .name = "TLB_LOCKR", .cp = 15, .crn = 15, .crm = 4, .opc1 = 5, .opc2 = 2,
1847 .access = PL1_W, .resetvalue = 0, .type = ARM_CP_NOP },
1848 { .name = "TLB_LOCKW", .cp = 15, .crn = 15, .crm = 4, .opc1 = 5, .opc2 = 4,
1849 .access = PL1_W, .resetvalue = 0, .type = ARM_CP_NOP },
1850 { .name = "TLB_VA", .cp = 15, .crn = 15, .crm = 5, .opc1 = 5, .opc2 = 2,
1851 .access = PL1_RW, .resetvalue = 0, .type = ARM_CP_CONST },
1852 { .name = "TLB_PA", .cp = 15, .crn = 15, .crm = 6, .opc1 = 5, .opc2 = 2,
1853 .access = PL1_RW, .resetvalue = 0, .type = ARM_CP_CONST },
1854 { .name = "TLB_ATTR", .cp = 15, .crn = 15, .crm = 7, .opc1 = 5, .opc2 = 2,
1855 .access = PL1_RW, .resetvalue = 0, .type = ARM_CP_CONST },
1856 REGINFO_SENTINEL
1859 static void cortex_a9_initfn(Object *obj)
1861 ARMCPU *cpu = ARM_CPU(obj);
1863 cpu->dtb_compatible = "arm,cortex-a9";
1864 set_feature(&cpu->env, ARM_FEATURE_V7);
1865 set_feature(&cpu->env, ARM_FEATURE_VFP3);
1866 set_feature(&cpu->env, ARM_FEATURE_NEON);
1867 set_feature(&cpu->env, ARM_FEATURE_THUMB2EE);
1868 set_feature(&cpu->env, ARM_FEATURE_EL3);
1869 /* Note that A9 supports the MP extensions even for
1870 * A9UP and single-core A9MP (which are both different
1871 * and valid configurations; we don't model A9UP).
1873 set_feature(&cpu->env, ARM_FEATURE_V7MP);
1874 set_feature(&cpu->env, ARM_FEATURE_CBAR);
1875 cpu->midr = 0x410fc090;
1876 cpu->reset_fpsid = 0x41033090;
1877 cpu->isar.mvfr0 = 0x11110222;
1878 cpu->isar.mvfr1 = 0x01111111;
1879 cpu->ctr = 0x80038003;
1880 cpu->reset_sctlr = 0x00c50078;
1881 cpu->id_pfr0 = 0x1031;
1882 cpu->id_pfr1 = 0x11;
1883 cpu->id_dfr0 = 0x000;
1884 cpu->id_afr0 = 0;
1885 cpu->id_mmfr0 = 0x00100103;
1886 cpu->id_mmfr1 = 0x20000000;
1887 cpu->id_mmfr2 = 0x01230000;
1888 cpu->id_mmfr3 = 0x00002111;
1889 cpu->isar.id_isar0 = 0x00101111;
1890 cpu->isar.id_isar1 = 0x13112111;
1891 cpu->isar.id_isar2 = 0x21232041;
1892 cpu->isar.id_isar3 = 0x11112131;
1893 cpu->isar.id_isar4 = 0x00111142;
1894 cpu->dbgdidr = 0x35141000;
1895 cpu->clidr = (1 << 27) | (1 << 24) | 3;
1896 cpu->ccsidr[0] = 0xe00fe019; /* 16k L1 dcache. */
1897 cpu->ccsidr[1] = 0x200fe019; /* 16k L1 icache. */
1898 define_arm_cp_regs(cpu, cortexa9_cp_reginfo);
1901 #ifndef CONFIG_USER_ONLY
1902 static uint64_t a15_l2ctlr_read(CPUARMState *env, const ARMCPRegInfo *ri)
1904 /* Linux wants the number of processors from here.
1905 * Might as well set the interrupt-controller bit too.
1907 return ((smp_cpus - 1) << 24) | (1 << 23);
1909 #endif
1911 static const ARMCPRegInfo cortexa15_cp_reginfo[] = {
1912 #ifndef CONFIG_USER_ONLY
1913 { .name = "L2CTLR", .cp = 15, .crn = 9, .crm = 0, .opc1 = 1, .opc2 = 2,
1914 .access = PL1_RW, .resetvalue = 0, .readfn = a15_l2ctlr_read,
1915 .writefn = arm_cp_write_ignore, },
1916 #endif
1917 { .name = "L2ECTLR", .cp = 15, .crn = 9, .crm = 0, .opc1 = 1, .opc2 = 3,
1918 .access = PL1_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
1919 REGINFO_SENTINEL
1922 static void cortex_a7_initfn(Object *obj)
1924 ARMCPU *cpu = ARM_CPU(obj);
1926 cpu->dtb_compatible = "arm,cortex-a7";
1927 set_feature(&cpu->env, ARM_FEATURE_V7VE);
1928 set_feature(&cpu->env, ARM_FEATURE_VFP4);
1929 set_feature(&cpu->env, ARM_FEATURE_NEON);
1930 set_feature(&cpu->env, ARM_FEATURE_THUMB2EE);
1931 set_feature(&cpu->env, ARM_FEATURE_GENERIC_TIMER);
1932 set_feature(&cpu->env, ARM_FEATURE_DUMMY_C15_REGS);
1933 set_feature(&cpu->env, ARM_FEATURE_CBAR_RO);
1934 set_feature(&cpu->env, ARM_FEATURE_EL2);
1935 set_feature(&cpu->env, ARM_FEATURE_EL3);
1936 set_feature(&cpu->env, ARM_FEATURE_PMU);
1937 cpu->kvm_target = QEMU_KVM_ARM_TARGET_CORTEX_A7;
1938 cpu->midr = 0x410fc075;
1939 cpu->reset_fpsid = 0x41023075;
1940 cpu->isar.mvfr0 = 0x10110222;
1941 cpu->isar.mvfr1 = 0x11111111;
1942 cpu->ctr = 0x84448003;
1943 cpu->reset_sctlr = 0x00c50078;
1944 cpu->id_pfr0 = 0x00001131;
1945 cpu->id_pfr1 = 0x00011011;
1946 cpu->id_dfr0 = 0x02010555;
1947 cpu->id_afr0 = 0x00000000;
1948 cpu->id_mmfr0 = 0x10101105;
1949 cpu->id_mmfr1 = 0x40000000;
1950 cpu->id_mmfr2 = 0x01240000;
1951 cpu->id_mmfr3 = 0x02102211;
1952 /* a7_mpcore_r0p5_trm, page 4-4 gives 0x01101110; but
1953 * table 4-41 gives 0x02101110, which includes the arm div insns.
1955 cpu->isar.id_isar0 = 0x02101110;
1956 cpu->isar.id_isar1 = 0x13112111;
1957 cpu->isar.id_isar2 = 0x21232041;
1958 cpu->isar.id_isar3 = 0x11112131;
1959 cpu->isar.id_isar4 = 0x10011142;
1960 cpu->dbgdidr = 0x3515f005;
1961 cpu->clidr = 0x0a200023;
1962 cpu->ccsidr[0] = 0x701fe00a; /* 32K L1 dcache */
1963 cpu->ccsidr[1] = 0x201fe00a; /* 32K L1 icache */
1964 cpu->ccsidr[2] = 0x711fe07a; /* 4096K L2 unified cache */
1965 define_arm_cp_regs(cpu, cortexa15_cp_reginfo); /* Same as A15 */
1968 static void cortex_a15_initfn(Object *obj)
1970 ARMCPU *cpu = ARM_CPU(obj);
1972 cpu->dtb_compatible = "arm,cortex-a15";
1973 set_feature(&cpu->env, ARM_FEATURE_V7VE);
1974 set_feature(&cpu->env, ARM_FEATURE_VFP4);
1975 set_feature(&cpu->env, ARM_FEATURE_NEON);
1976 set_feature(&cpu->env, ARM_FEATURE_THUMB2EE);
1977 set_feature(&cpu->env, ARM_FEATURE_GENERIC_TIMER);
1978 set_feature(&cpu->env, ARM_FEATURE_DUMMY_C15_REGS);
1979 set_feature(&cpu->env, ARM_FEATURE_CBAR_RO);
1980 set_feature(&cpu->env, ARM_FEATURE_EL2);
1981 set_feature(&cpu->env, ARM_FEATURE_EL3);
1982 set_feature(&cpu->env, ARM_FEATURE_PMU);
1983 cpu->kvm_target = QEMU_KVM_ARM_TARGET_CORTEX_A15;
1984 cpu->midr = 0x412fc0f1;
1985 cpu->reset_fpsid = 0x410430f0;
1986 cpu->isar.mvfr0 = 0x10110222;
1987 cpu->isar.mvfr1 = 0x11111111;
1988 cpu->ctr = 0x8444c004;
1989 cpu->reset_sctlr = 0x00c50078;
1990 cpu->id_pfr0 = 0x00001131;
1991 cpu->id_pfr1 = 0x00011011;
1992 cpu->id_dfr0 = 0x02010555;
1993 cpu->id_afr0 = 0x00000000;
1994 cpu->id_mmfr0 = 0x10201105;
1995 cpu->id_mmfr1 = 0x20000000;
1996 cpu->id_mmfr2 = 0x01240000;
1997 cpu->id_mmfr3 = 0x02102211;
1998 cpu->isar.id_isar0 = 0x02101110;
1999 cpu->isar.id_isar1 = 0x13112111;
2000 cpu->isar.id_isar2 = 0x21232041;
2001 cpu->isar.id_isar3 = 0x11112131;
2002 cpu->isar.id_isar4 = 0x10011142;
2003 cpu->dbgdidr = 0x3515f021;
2004 cpu->clidr = 0x0a200023;
2005 cpu->ccsidr[0] = 0x701fe00a; /* 32K L1 dcache */
2006 cpu->ccsidr[1] = 0x201fe00a; /* 32K L1 icache */
2007 cpu->ccsidr[2] = 0x711fe07a; /* 4096K L2 unified cache */
2008 define_arm_cp_regs(cpu, cortexa15_cp_reginfo);
2011 static void ti925t_initfn(Object *obj)
2013 ARMCPU *cpu = ARM_CPU(obj);
2014 set_feature(&cpu->env, ARM_FEATURE_V4T);
2015 set_feature(&cpu->env, ARM_FEATURE_OMAPCP);
2016 cpu->midr = ARM_CPUID_TI925T;
2017 cpu->ctr = 0x5109149;
2018 cpu->reset_sctlr = 0x00000070;
2021 static void sa1100_initfn(Object *obj)
2023 ARMCPU *cpu = ARM_CPU(obj);
2025 cpu->dtb_compatible = "intel,sa1100";
2026 set_feature(&cpu->env, ARM_FEATURE_STRONGARM);
2027 set_feature(&cpu->env, ARM_FEATURE_DUMMY_C15_REGS);
2028 cpu->midr = 0x4401A11B;
2029 cpu->reset_sctlr = 0x00000070;
2032 static void sa1110_initfn(Object *obj)
2034 ARMCPU *cpu = ARM_CPU(obj);
2035 set_feature(&cpu->env, ARM_FEATURE_STRONGARM);
2036 set_feature(&cpu->env, ARM_FEATURE_DUMMY_C15_REGS);
2037 cpu->midr = 0x6901B119;
2038 cpu->reset_sctlr = 0x00000070;
2041 static void pxa250_initfn(Object *obj)
2043 ARMCPU *cpu = ARM_CPU(obj);
2045 cpu->dtb_compatible = "marvell,xscale";
2046 set_feature(&cpu->env, ARM_FEATURE_V5);
2047 set_feature(&cpu->env, ARM_FEATURE_XSCALE);
2048 cpu->midr = 0x69052100;
2049 cpu->ctr = 0xd172172;
2050 cpu->reset_sctlr = 0x00000078;
2053 static void pxa255_initfn(Object *obj)
2055 ARMCPU *cpu = ARM_CPU(obj);
2057 cpu->dtb_compatible = "marvell,xscale";
2058 set_feature(&cpu->env, ARM_FEATURE_V5);
2059 set_feature(&cpu->env, ARM_FEATURE_XSCALE);
2060 cpu->midr = 0x69052d00;
2061 cpu->ctr = 0xd172172;
2062 cpu->reset_sctlr = 0x00000078;
2065 static void pxa260_initfn(Object *obj)
2067 ARMCPU *cpu = ARM_CPU(obj);
2069 cpu->dtb_compatible = "marvell,xscale";
2070 set_feature(&cpu->env, ARM_FEATURE_V5);
2071 set_feature(&cpu->env, ARM_FEATURE_XSCALE);
2072 cpu->midr = 0x69052903;
2073 cpu->ctr = 0xd172172;
2074 cpu->reset_sctlr = 0x00000078;
2077 static void pxa261_initfn(Object *obj)
2079 ARMCPU *cpu = ARM_CPU(obj);
2081 cpu->dtb_compatible = "marvell,xscale";
2082 set_feature(&cpu->env, ARM_FEATURE_V5);
2083 set_feature(&cpu->env, ARM_FEATURE_XSCALE);
2084 cpu->midr = 0x69052d05;
2085 cpu->ctr = 0xd172172;
2086 cpu->reset_sctlr = 0x00000078;
2089 static void pxa262_initfn(Object *obj)
2091 ARMCPU *cpu = ARM_CPU(obj);
2093 cpu->dtb_compatible = "marvell,xscale";
2094 set_feature(&cpu->env, ARM_FEATURE_V5);
2095 set_feature(&cpu->env, ARM_FEATURE_XSCALE);
2096 cpu->midr = 0x69052d06;
2097 cpu->ctr = 0xd172172;
2098 cpu->reset_sctlr = 0x00000078;
2101 static void pxa270a0_initfn(Object *obj)
2103 ARMCPU *cpu = ARM_CPU(obj);
2105 cpu->dtb_compatible = "marvell,xscale";
2106 set_feature(&cpu->env, ARM_FEATURE_V5);
2107 set_feature(&cpu->env, ARM_FEATURE_XSCALE);
2108 set_feature(&cpu->env, ARM_FEATURE_IWMMXT);
2109 cpu->midr = 0x69054110;
2110 cpu->ctr = 0xd172172;
2111 cpu->reset_sctlr = 0x00000078;
2114 static void pxa270a1_initfn(Object *obj)
2116 ARMCPU *cpu = ARM_CPU(obj);
2118 cpu->dtb_compatible = "marvell,xscale";
2119 set_feature(&cpu->env, ARM_FEATURE_V5);
2120 set_feature(&cpu->env, ARM_FEATURE_XSCALE);
2121 set_feature(&cpu->env, ARM_FEATURE_IWMMXT);
2122 cpu->midr = 0x69054111;
2123 cpu->ctr = 0xd172172;
2124 cpu->reset_sctlr = 0x00000078;
2127 static void pxa270b0_initfn(Object *obj)
2129 ARMCPU *cpu = ARM_CPU(obj);
2131 cpu->dtb_compatible = "marvell,xscale";
2132 set_feature(&cpu->env, ARM_FEATURE_V5);
2133 set_feature(&cpu->env, ARM_FEATURE_XSCALE);
2134 set_feature(&cpu->env, ARM_FEATURE_IWMMXT);
2135 cpu->midr = 0x69054112;
2136 cpu->ctr = 0xd172172;
2137 cpu->reset_sctlr = 0x00000078;
2140 static void pxa270b1_initfn(Object *obj)
2142 ARMCPU *cpu = ARM_CPU(obj);
2144 cpu->dtb_compatible = "marvell,xscale";
2145 set_feature(&cpu->env, ARM_FEATURE_V5);
2146 set_feature(&cpu->env, ARM_FEATURE_XSCALE);
2147 set_feature(&cpu->env, ARM_FEATURE_IWMMXT);
2148 cpu->midr = 0x69054113;
2149 cpu->ctr = 0xd172172;
2150 cpu->reset_sctlr = 0x00000078;
2153 static void pxa270c0_initfn(Object *obj)
2155 ARMCPU *cpu = ARM_CPU(obj);
2157 cpu->dtb_compatible = "marvell,xscale";
2158 set_feature(&cpu->env, ARM_FEATURE_V5);
2159 set_feature(&cpu->env, ARM_FEATURE_XSCALE);
2160 set_feature(&cpu->env, ARM_FEATURE_IWMMXT);
2161 cpu->midr = 0x69054114;
2162 cpu->ctr = 0xd172172;
2163 cpu->reset_sctlr = 0x00000078;
2166 static void pxa270c5_initfn(Object *obj)
2168 ARMCPU *cpu = ARM_CPU(obj);
2170 cpu->dtb_compatible = "marvell,xscale";
2171 set_feature(&cpu->env, ARM_FEATURE_V5);
2172 set_feature(&cpu->env, ARM_FEATURE_XSCALE);
2173 set_feature(&cpu->env, ARM_FEATURE_IWMMXT);
2174 cpu->midr = 0x69054117;
2175 cpu->ctr = 0xd172172;
2176 cpu->reset_sctlr = 0x00000078;
2179 #ifndef TARGET_AARCH64
2180 /* -cpu max: if KVM is enabled, like -cpu host (best possible with this host);
2181 * otherwise, a CPU with as many features enabled as our emulation supports.
2182 * The version of '-cpu max' for qemu-system-aarch64 is defined in cpu64.c;
2183 * this only needs to handle 32 bits.
2185 static void arm_max_initfn(Object *obj)
2187 ARMCPU *cpu = ARM_CPU(obj);
2189 if (kvm_enabled()) {
2190 kvm_arm_set_cpu_features_from_host(cpu);
2191 } else {
2192 cortex_a15_initfn(obj);
2194 /* old-style VFP short-vector support */
2195 cpu->isar.mvfr0 = FIELD_DP32(cpu->isar.mvfr0, MVFR0, FPSHVEC, 1);
2197 #ifdef CONFIG_USER_ONLY
2198 /* We don't set these in system emulation mode for the moment,
2199 * since we don't correctly set (all of) the ID registers to
2200 * advertise them.
2202 set_feature(&cpu->env, ARM_FEATURE_V8);
2204 uint32_t t;
2206 t = cpu->isar.id_isar5;
2207 t = FIELD_DP32(t, ID_ISAR5, AES, 2);
2208 t = FIELD_DP32(t, ID_ISAR5, SHA1, 1);
2209 t = FIELD_DP32(t, ID_ISAR5, SHA2, 1);
2210 t = FIELD_DP32(t, ID_ISAR5, CRC32, 1);
2211 t = FIELD_DP32(t, ID_ISAR5, RDM, 1);
2212 t = FIELD_DP32(t, ID_ISAR5, VCMA, 1);
2213 cpu->isar.id_isar5 = t;
2215 t = cpu->isar.id_isar6;
2216 t = FIELD_DP32(t, ID_ISAR6, JSCVT, 1);
2217 t = FIELD_DP32(t, ID_ISAR6, DP, 1);
2218 t = FIELD_DP32(t, ID_ISAR6, FHM, 1);
2219 t = FIELD_DP32(t, ID_ISAR6, SB, 1);
2220 t = FIELD_DP32(t, ID_ISAR6, SPECRES, 1);
2221 cpu->isar.id_isar6 = t;
2223 t = cpu->isar.mvfr2;
2224 t = FIELD_DP32(t, MVFR2, SIMDMISC, 3); /* SIMD MaxNum */
2225 t = FIELD_DP32(t, MVFR2, FPMISC, 4); /* FP MaxNum */
2226 cpu->isar.mvfr2 = t;
2228 t = cpu->id_mmfr4;
2229 t = FIELD_DP32(t, ID_MMFR4, HPDS, 1); /* AA32HPD */
2230 cpu->id_mmfr4 = t;
2232 #endif
2235 #endif
2237 #endif /* !defined(CONFIG_USER_ONLY) || !defined(TARGET_AARCH64) */
2239 struct ARMCPUInfo {
2240 const char *name;
2241 void (*initfn)(Object *obj);
2242 void (*class_init)(ObjectClass *oc, void *data);
2245 static const ARMCPUInfo arm_cpus[] = {
2246 #if !defined(CONFIG_USER_ONLY) || !defined(TARGET_AARCH64)
2247 { .name = "arm926", .initfn = arm926_initfn },
2248 { .name = "arm946", .initfn = arm946_initfn },
2249 { .name = "arm1026", .initfn = arm1026_initfn },
2250 /* What QEMU calls "arm1136-r2" is actually the 1136 r0p2, i.e. an
2251 * older core than plain "arm1136". In particular this does not
2252 * have the v6K features.
2254 { .name = "arm1136-r2", .initfn = arm1136_r2_initfn },
2255 { .name = "arm1136", .initfn = arm1136_initfn },
2256 { .name = "arm1176", .initfn = arm1176_initfn },
2257 { .name = "arm11mpcore", .initfn = arm11mpcore_initfn },
2258 { .name = "cortex-m0", .initfn = cortex_m0_initfn,
2259 .class_init = arm_v7m_class_init },
2260 { .name = "cortex-m3", .initfn = cortex_m3_initfn,
2261 .class_init = arm_v7m_class_init },
2262 { .name = "cortex-m4", .initfn = cortex_m4_initfn,
2263 .class_init = arm_v7m_class_init },
2264 { .name = "cortex-m33", .initfn = cortex_m33_initfn,
2265 .class_init = arm_v7m_class_init },
2266 { .name = "cortex-r5", .initfn = cortex_r5_initfn },
2267 { .name = "cortex-r5f", .initfn = cortex_r5f_initfn },
2268 { .name = "cortex-a7", .initfn = cortex_a7_initfn },
2269 { .name = "cortex-a8", .initfn = cortex_a8_initfn },
2270 { .name = "cortex-a9", .initfn = cortex_a9_initfn },
2271 { .name = "cortex-a15", .initfn = cortex_a15_initfn },
2272 { .name = "ti925t", .initfn = ti925t_initfn },
2273 { .name = "sa1100", .initfn = sa1100_initfn },
2274 { .name = "sa1110", .initfn = sa1110_initfn },
2275 { .name = "pxa250", .initfn = pxa250_initfn },
2276 { .name = "pxa255", .initfn = pxa255_initfn },
2277 { .name = "pxa260", .initfn = pxa260_initfn },
2278 { .name = "pxa261", .initfn = pxa261_initfn },
2279 { .name = "pxa262", .initfn = pxa262_initfn },
2280 /* "pxa270" is an alias for "pxa270-a0" */
2281 { .name = "pxa270", .initfn = pxa270a0_initfn },
2282 { .name = "pxa270-a0", .initfn = pxa270a0_initfn },
2283 { .name = "pxa270-a1", .initfn = pxa270a1_initfn },
2284 { .name = "pxa270-b0", .initfn = pxa270b0_initfn },
2285 { .name = "pxa270-b1", .initfn = pxa270b1_initfn },
2286 { .name = "pxa270-c0", .initfn = pxa270c0_initfn },
2287 { .name = "pxa270-c5", .initfn = pxa270c5_initfn },
2288 #ifndef TARGET_AARCH64
2289 { .name = "max", .initfn = arm_max_initfn },
2290 #endif
2291 #ifdef CONFIG_USER_ONLY
2292 { .name = "any", .initfn = arm_max_initfn },
2293 #endif
2294 #endif
2295 { .name = NULL }
2298 static Property arm_cpu_properties[] = {
2299 DEFINE_PROP_BOOL("start-powered-off", ARMCPU, start_powered_off, false),
2300 DEFINE_PROP_UINT32("psci-conduit", ARMCPU, psci_conduit, 0),
2301 DEFINE_PROP_UINT32("midr", ARMCPU, midr, 0),
2302 DEFINE_PROP_UINT64("mp-affinity", ARMCPU,
2303 mp_affinity, ARM64_AFFINITY_INVALID),
2304 DEFINE_PROP_INT32("node-id", ARMCPU, node_id, CPU_UNSET_NUMA_NODE_ID),
2305 DEFINE_PROP_INT32("core-count", ARMCPU, core_count, -1),
2306 DEFINE_PROP_END_OF_LIST()
2309 static gchar *arm_gdb_arch_name(CPUState *cs)
2311 ARMCPU *cpu = ARM_CPU(cs);
2312 CPUARMState *env = &cpu->env;
2314 if (arm_feature(env, ARM_FEATURE_IWMMXT)) {
2315 return g_strdup("iwmmxt");
2317 return g_strdup("arm");
2320 static void arm_cpu_class_init(ObjectClass *oc, void *data)
2322 ARMCPUClass *acc = ARM_CPU_CLASS(oc);
2323 CPUClass *cc = CPU_CLASS(acc);
2324 DeviceClass *dc = DEVICE_CLASS(oc);
2326 device_class_set_parent_realize(dc, arm_cpu_realizefn,
2327 &acc->parent_realize);
2328 dc->props = arm_cpu_properties;
2330 acc->parent_reset = cc->reset;
2331 cc->reset = arm_cpu_reset;
2333 cc->class_by_name = arm_cpu_class_by_name;
2334 cc->has_work = arm_cpu_has_work;
2335 cc->cpu_exec_interrupt = arm_cpu_exec_interrupt;
2336 cc->dump_state = arm_cpu_dump_state;
2337 cc->set_pc = arm_cpu_set_pc;
2338 cc->synchronize_from_tb = arm_cpu_synchronize_from_tb;
2339 cc->gdb_read_register = arm_cpu_gdb_read_register;
2340 cc->gdb_write_register = arm_cpu_gdb_write_register;
2341 #ifndef CONFIG_USER_ONLY
2342 cc->do_interrupt = arm_cpu_do_interrupt;
2343 cc->do_unaligned_access = arm_cpu_do_unaligned_access;
2344 cc->do_transaction_failed = arm_cpu_do_transaction_failed;
2345 cc->get_phys_page_attrs_debug = arm_cpu_get_phys_page_attrs_debug;
2346 cc->asidx_from_attrs = arm_asidx_from_attrs;
2347 cc->vmsd = &vmstate_arm_cpu;
2348 cc->virtio_is_big_endian = arm_cpu_virtio_is_big_endian;
2349 cc->write_elf64_note = arm_cpu_write_elf64_note;
2350 cc->write_elf32_note = arm_cpu_write_elf32_note;
2351 #endif
2352 cc->gdb_num_core_regs = 26;
2353 cc->gdb_core_xml_file = "arm-core.xml";
2354 cc->gdb_arch_name = arm_gdb_arch_name;
2355 cc->gdb_get_dynamic_xml = arm_gdb_get_dynamic_xml;
2356 cc->gdb_stop_before_watchpoint = true;
2357 cc->debug_excp_handler = arm_debug_excp_handler;
2358 cc->debug_check_watchpoint = arm_debug_check_watchpoint;
2359 #if !defined(CONFIG_USER_ONLY)
2360 cc->adjust_watchpoint_address = arm_adjust_watchpoint_address;
2361 #endif
2363 cc->disas_set_info = arm_disas_set_info;
2364 #ifdef CONFIG_TCG
2365 cc->tcg_initialize = arm_translate_init;
2366 cc->tlb_fill = arm_cpu_tlb_fill;
2367 #endif
2370 #ifdef CONFIG_KVM
2371 static void arm_host_initfn(Object *obj)
2373 ARMCPU *cpu = ARM_CPU(obj);
2375 kvm_arm_set_cpu_features_from_host(cpu);
2376 arm_cpu_post_init(obj);
2379 static const TypeInfo host_arm_cpu_type_info = {
2380 .name = TYPE_ARM_HOST_CPU,
2381 #ifdef TARGET_AARCH64
2382 .parent = TYPE_AARCH64_CPU,
2383 #else
2384 .parent = TYPE_ARM_CPU,
2385 #endif
2386 .instance_init = arm_host_initfn,
2389 #endif
2391 static void arm_cpu_instance_init(Object *obj)
2393 ARMCPUClass *acc = ARM_CPU_GET_CLASS(obj);
2395 acc->info->initfn(obj);
2396 arm_cpu_post_init(obj);
2399 static void cpu_register_class_init(ObjectClass *oc, void *data)
2401 ARMCPUClass *acc = ARM_CPU_CLASS(oc);
2403 acc->info = data;
2406 static void cpu_register(const ARMCPUInfo *info)
2408 TypeInfo type_info = {
2409 .parent = TYPE_ARM_CPU,
2410 .instance_size = sizeof(ARMCPU),
2411 .instance_init = arm_cpu_instance_init,
2412 .class_size = sizeof(ARMCPUClass),
2413 .class_init = info->class_init ?: cpu_register_class_init,
2414 .class_data = (void *)info,
2417 type_info.name = g_strdup_printf("%s-" TYPE_ARM_CPU, info->name);
2418 type_register(&type_info);
2419 g_free((void *)type_info.name);
2422 static const TypeInfo arm_cpu_type_info = {
2423 .name = TYPE_ARM_CPU,
2424 .parent = TYPE_CPU,
2425 .instance_size = sizeof(ARMCPU),
2426 .instance_init = arm_cpu_initfn,
2427 .instance_finalize = arm_cpu_finalizefn,
2428 .abstract = true,
2429 .class_size = sizeof(ARMCPUClass),
2430 .class_init = arm_cpu_class_init,
2433 static const TypeInfo idau_interface_type_info = {
2434 .name = TYPE_IDAU_INTERFACE,
2435 .parent = TYPE_INTERFACE,
2436 .class_size = sizeof(IDAUInterfaceClass),
2439 static void arm_cpu_register_types(void)
2441 const ARMCPUInfo *info = arm_cpus;
2443 type_register_static(&arm_cpu_type_info);
2444 type_register_static(&idau_interface_type_info);
2446 while (info->name) {
2447 cpu_register(info);
2448 info++;
2451 #ifdef CONFIG_KVM
2452 type_register_static(&host_arm_cpu_type_info);
2453 #endif
2456 type_init(arm_cpu_register_types)