kvm: accept non-mapped memory in kvm_dirty_pages_log_change
[qemu/ar7.git] / kvm-all.c
blob36e81099fbb99ef51d7b7f319c7c73deb5cb17e6
1 /*
2 * QEMU KVM support
4 * Copyright IBM, Corp. 2008
5 * Red Hat, Inc. 2008
7 * Authors:
8 * Anthony Liguori <aliguori@us.ibm.com>
9 * Glauber Costa <gcosta@redhat.com>
11 * This work is licensed under the terms of the GNU GPL, version 2 or later.
12 * See the COPYING file in the top-level directory.
16 #include <sys/types.h>
17 #include <sys/ioctl.h>
18 #include <sys/mman.h>
19 #include <stdarg.h>
21 #include <linux/kvm.h>
23 #include "qemu-common.h"
24 #include "qemu/atomic.h"
25 #include "qemu/option.h"
26 #include "qemu/config-file.h"
27 #include "sysemu/sysemu.h"
28 #include "sysemu/accel.h"
29 #include "hw/hw.h"
30 #include "hw/pci/msi.h"
31 #include "hw/s390x/adapter.h"
32 #include "exec/gdbstub.h"
33 #include "sysemu/kvm.h"
34 #include "qemu/bswap.h"
35 #include "exec/memory.h"
36 #include "exec/ram_addr.h"
37 #include "exec/address-spaces.h"
38 #include "qemu/event_notifier.h"
39 #include "trace.h"
41 #include "hw/boards.h"
43 /* This check must be after config-host.h is included */
44 #ifdef CONFIG_EVENTFD
45 #include <sys/eventfd.h>
46 #endif
48 /* KVM uses PAGE_SIZE in its definition of COALESCED_MMIO_MAX */
49 #define PAGE_SIZE TARGET_PAGE_SIZE
51 //#define DEBUG_KVM
53 #ifdef DEBUG_KVM
54 #define DPRINTF(fmt, ...) \
55 do { fprintf(stderr, fmt, ## __VA_ARGS__); } while (0)
56 #else
57 #define DPRINTF(fmt, ...) \
58 do { } while (0)
59 #endif
61 #define KVM_MSI_HASHTAB_SIZE 256
63 typedef struct KVMSlot
65 hwaddr start_addr;
66 ram_addr_t memory_size;
67 void *ram;
68 int slot;
69 int flags;
70 } KVMSlot;
72 typedef struct kvm_dirty_log KVMDirtyLog;
74 struct KVMState
76 AccelState parent_obj;
78 KVMSlot *slots;
79 int nr_slots;
80 int fd;
81 int vmfd;
82 int coalesced_mmio;
83 struct kvm_coalesced_mmio_ring *coalesced_mmio_ring;
84 bool coalesced_flush_in_progress;
85 int broken_set_mem_region;
86 int migration_log;
87 int vcpu_events;
88 int robust_singlestep;
89 int debugregs;
90 #ifdef KVM_CAP_SET_GUEST_DEBUG
91 struct kvm_sw_breakpoint_head kvm_sw_breakpoints;
92 #endif
93 int pit_state2;
94 int xsave, xcrs;
95 int many_ioeventfds;
96 int intx_set_mask;
97 /* The man page (and posix) say ioctl numbers are signed int, but
98 * they're not. Linux, glibc and *BSD all treat ioctl numbers as
99 * unsigned, and treating them as signed here can break things */
100 unsigned irq_set_ioctl;
101 unsigned int sigmask_len;
102 #ifdef KVM_CAP_IRQ_ROUTING
103 struct kvm_irq_routing *irq_routes;
104 int nr_allocated_irq_routes;
105 uint32_t *used_gsi_bitmap;
106 unsigned int gsi_count;
107 QTAILQ_HEAD(msi_hashtab, KVMMSIRoute) msi_hashtab[KVM_MSI_HASHTAB_SIZE];
108 bool direct_msi;
109 #endif
112 #define TYPE_KVM_ACCEL ACCEL_CLASS_NAME("kvm")
114 #define KVM_STATE(obj) \
115 OBJECT_CHECK(KVMState, (obj), TYPE_KVM_ACCEL)
117 KVMState *kvm_state;
118 bool kvm_kernel_irqchip;
119 bool kvm_async_interrupts_allowed;
120 bool kvm_halt_in_kernel_allowed;
121 bool kvm_eventfds_allowed;
122 bool kvm_irqfds_allowed;
123 bool kvm_resamplefds_allowed;
124 bool kvm_msi_via_irqfd_allowed;
125 bool kvm_gsi_routing_allowed;
126 bool kvm_gsi_direct_mapping;
127 bool kvm_allowed;
128 bool kvm_readonly_mem_allowed;
129 bool kvm_vm_attributes_allowed;
131 static const KVMCapabilityInfo kvm_required_capabilites[] = {
132 KVM_CAP_INFO(USER_MEMORY),
133 KVM_CAP_INFO(DESTROY_MEMORY_REGION_WORKS),
134 KVM_CAP_LAST_INFO
137 static KVMSlot *kvm_get_free_slot(KVMState *s)
139 int i;
141 for (i = 0; i < s->nr_slots; i++) {
142 if (s->slots[i].memory_size == 0) {
143 return &s->slots[i];
147 return NULL;
150 bool kvm_has_free_slot(MachineState *ms)
152 return kvm_get_free_slot(KVM_STATE(ms->accelerator));
155 static KVMSlot *kvm_alloc_slot(KVMState *s)
157 KVMSlot *slot = kvm_get_free_slot(s);
159 if (slot) {
160 return slot;
163 fprintf(stderr, "%s: no free slot available\n", __func__);
164 abort();
167 static KVMSlot *kvm_lookup_matching_slot(KVMState *s,
168 hwaddr start_addr,
169 hwaddr end_addr)
171 int i;
173 for (i = 0; i < s->nr_slots; i++) {
174 KVMSlot *mem = &s->slots[i];
176 if (start_addr == mem->start_addr &&
177 end_addr == mem->start_addr + mem->memory_size) {
178 return mem;
182 return NULL;
186 * Find overlapping slot with lowest start address
188 static KVMSlot *kvm_lookup_overlapping_slot(KVMState *s,
189 hwaddr start_addr,
190 hwaddr end_addr)
192 KVMSlot *found = NULL;
193 int i;
195 for (i = 0; i < s->nr_slots; i++) {
196 KVMSlot *mem = &s->slots[i];
198 if (mem->memory_size == 0 ||
199 (found && found->start_addr < mem->start_addr)) {
200 continue;
203 if (end_addr > mem->start_addr &&
204 start_addr < mem->start_addr + mem->memory_size) {
205 found = mem;
209 return found;
212 int kvm_physical_memory_addr_from_host(KVMState *s, void *ram,
213 hwaddr *phys_addr)
215 int i;
217 for (i = 0; i < s->nr_slots; i++) {
218 KVMSlot *mem = &s->slots[i];
220 if (ram >= mem->ram && ram < mem->ram + mem->memory_size) {
221 *phys_addr = mem->start_addr + (ram - mem->ram);
222 return 1;
226 return 0;
229 static int kvm_set_user_memory_region(KVMState *s, KVMSlot *slot)
231 struct kvm_userspace_memory_region mem;
233 mem.slot = slot->slot;
234 mem.guest_phys_addr = slot->start_addr;
235 mem.userspace_addr = (unsigned long)slot->ram;
236 mem.flags = slot->flags;
237 if (s->migration_log) {
238 mem.flags |= KVM_MEM_LOG_DIRTY_PAGES;
241 if (slot->memory_size && mem.flags & KVM_MEM_READONLY) {
242 /* Set the slot size to 0 before setting the slot to the desired
243 * value. This is needed based on KVM commit 75d61fbc. */
244 mem.memory_size = 0;
245 kvm_vm_ioctl(s, KVM_SET_USER_MEMORY_REGION, &mem);
247 mem.memory_size = slot->memory_size;
248 return kvm_vm_ioctl(s, KVM_SET_USER_MEMORY_REGION, &mem);
251 int kvm_init_vcpu(CPUState *cpu)
253 KVMState *s = kvm_state;
254 long mmap_size;
255 int ret;
257 DPRINTF("kvm_init_vcpu\n");
259 ret = kvm_vm_ioctl(s, KVM_CREATE_VCPU, (void *)kvm_arch_vcpu_id(cpu));
260 if (ret < 0) {
261 DPRINTF("kvm_create_vcpu failed\n");
262 goto err;
265 cpu->kvm_fd = ret;
266 cpu->kvm_state = s;
267 cpu->kvm_vcpu_dirty = true;
269 mmap_size = kvm_ioctl(s, KVM_GET_VCPU_MMAP_SIZE, 0);
270 if (mmap_size < 0) {
271 ret = mmap_size;
272 DPRINTF("KVM_GET_VCPU_MMAP_SIZE failed\n");
273 goto err;
276 cpu->kvm_run = mmap(NULL, mmap_size, PROT_READ | PROT_WRITE, MAP_SHARED,
277 cpu->kvm_fd, 0);
278 if (cpu->kvm_run == MAP_FAILED) {
279 ret = -errno;
280 DPRINTF("mmap'ing vcpu state failed\n");
281 goto err;
284 if (s->coalesced_mmio && !s->coalesced_mmio_ring) {
285 s->coalesced_mmio_ring =
286 (void *)cpu->kvm_run + s->coalesced_mmio * PAGE_SIZE;
289 ret = kvm_arch_init_vcpu(cpu);
290 err:
291 return ret;
295 * dirty pages logging control
298 static int kvm_mem_flags(KVMState *s, bool log_dirty, bool readonly)
300 int flags = 0;
301 flags = log_dirty ? KVM_MEM_LOG_DIRTY_PAGES : 0;
302 if (readonly && kvm_readonly_mem_allowed) {
303 flags |= KVM_MEM_READONLY;
305 return flags;
308 static int kvm_slot_dirty_pages_log_change(KVMSlot *mem, bool log_dirty)
310 KVMState *s = kvm_state;
311 int flags, mask = KVM_MEM_LOG_DIRTY_PAGES;
312 int old_flags;
314 old_flags = mem->flags;
316 flags = (mem->flags & ~mask) | kvm_mem_flags(s, log_dirty, false);
317 mem->flags = flags;
319 /* If nothing changed effectively, no need to issue ioctl */
320 if (s->migration_log) {
321 flags |= KVM_MEM_LOG_DIRTY_PAGES;
324 if (flags == old_flags) {
325 return 0;
328 return kvm_set_user_memory_region(s, mem);
331 static int kvm_dirty_pages_log_change(hwaddr phys_addr,
332 ram_addr_t size, bool log_dirty)
334 KVMState *s = kvm_state;
335 KVMSlot *mem = kvm_lookup_matching_slot(s, phys_addr, phys_addr + size);
337 if (mem == NULL) {
338 return 0;
339 } else {
340 return kvm_slot_dirty_pages_log_change(mem, log_dirty);
344 static void kvm_log_start(MemoryListener *listener,
345 MemoryRegionSection *section,
346 int old, int new)
348 int r;
350 if (old != 0) {
351 return;
354 r = kvm_dirty_pages_log_change(section->offset_within_address_space,
355 int128_get64(section->size), true);
356 if (r < 0) {
357 abort();
361 static void kvm_log_stop(MemoryListener *listener,
362 MemoryRegionSection *section,
363 int old, int new)
365 int r;
367 if (new != 0) {
368 return;
371 r = kvm_dirty_pages_log_change(section->offset_within_address_space,
372 int128_get64(section->size), false);
373 if (r < 0) {
374 abort();
378 static int kvm_set_migration_log(bool enable)
380 KVMState *s = kvm_state;
381 KVMSlot *mem;
382 int i, err;
384 s->migration_log = enable;
386 for (i = 0; i < s->nr_slots; i++) {
387 mem = &s->slots[i];
389 if (!mem->memory_size) {
390 continue;
392 if (!!(mem->flags & KVM_MEM_LOG_DIRTY_PAGES) == enable) {
393 continue;
395 err = kvm_set_user_memory_region(s, mem);
396 if (err) {
397 return err;
400 return 0;
403 /* get kvm's dirty pages bitmap and update qemu's */
404 static int kvm_get_dirty_pages_log_range(MemoryRegionSection *section,
405 unsigned long *bitmap)
407 ram_addr_t start = section->offset_within_region + section->mr->ram_addr;
408 ram_addr_t pages = int128_get64(section->size) / getpagesize();
410 cpu_physical_memory_set_dirty_lebitmap(bitmap, start, pages);
411 return 0;
414 #define ALIGN(x, y) (((x)+(y)-1) & ~((y)-1))
417 * kvm_physical_sync_dirty_bitmap - Grab dirty bitmap from kernel space
418 * This function updates qemu's dirty bitmap using
419 * memory_region_set_dirty(). This means all bits are set
420 * to dirty.
422 * @start_add: start of logged region.
423 * @end_addr: end of logged region.
425 static int kvm_physical_sync_dirty_bitmap(MemoryRegionSection *section)
427 KVMState *s = kvm_state;
428 unsigned long size, allocated_size = 0;
429 KVMDirtyLog d = {};
430 KVMSlot *mem;
431 int ret = 0;
432 hwaddr start_addr = section->offset_within_address_space;
433 hwaddr end_addr = start_addr + int128_get64(section->size);
435 d.dirty_bitmap = NULL;
436 while (start_addr < end_addr) {
437 mem = kvm_lookup_overlapping_slot(s, start_addr, end_addr);
438 if (mem == NULL) {
439 break;
442 /* XXX bad kernel interface alert
443 * For dirty bitmap, kernel allocates array of size aligned to
444 * bits-per-long. But for case when the kernel is 64bits and
445 * the userspace is 32bits, userspace can't align to the same
446 * bits-per-long, since sizeof(long) is different between kernel
447 * and user space. This way, userspace will provide buffer which
448 * may be 4 bytes less than the kernel will use, resulting in
449 * userspace memory corruption (which is not detectable by valgrind
450 * too, in most cases).
451 * So for now, let's align to 64 instead of HOST_LONG_BITS here, in
452 * a hope that sizeof(long) wont become >8 any time soon.
454 size = ALIGN(((mem->memory_size) >> TARGET_PAGE_BITS),
455 /*HOST_LONG_BITS*/ 64) / 8;
456 if (!d.dirty_bitmap) {
457 d.dirty_bitmap = g_malloc(size);
458 } else if (size > allocated_size) {
459 d.dirty_bitmap = g_realloc(d.dirty_bitmap, size);
461 allocated_size = size;
462 memset(d.dirty_bitmap, 0, allocated_size);
464 d.slot = mem->slot;
466 if (kvm_vm_ioctl(s, KVM_GET_DIRTY_LOG, &d) == -1) {
467 DPRINTF("ioctl failed %d\n", errno);
468 ret = -1;
469 break;
472 kvm_get_dirty_pages_log_range(section, d.dirty_bitmap);
473 start_addr = mem->start_addr + mem->memory_size;
475 g_free(d.dirty_bitmap);
477 return ret;
480 static void kvm_coalesce_mmio_region(MemoryListener *listener,
481 MemoryRegionSection *secion,
482 hwaddr start, hwaddr size)
484 KVMState *s = kvm_state;
486 if (s->coalesced_mmio) {
487 struct kvm_coalesced_mmio_zone zone;
489 zone.addr = start;
490 zone.size = size;
491 zone.pad = 0;
493 (void)kvm_vm_ioctl(s, KVM_REGISTER_COALESCED_MMIO, &zone);
497 static void kvm_uncoalesce_mmio_region(MemoryListener *listener,
498 MemoryRegionSection *secion,
499 hwaddr start, hwaddr size)
501 KVMState *s = kvm_state;
503 if (s->coalesced_mmio) {
504 struct kvm_coalesced_mmio_zone zone;
506 zone.addr = start;
507 zone.size = size;
508 zone.pad = 0;
510 (void)kvm_vm_ioctl(s, KVM_UNREGISTER_COALESCED_MMIO, &zone);
514 int kvm_check_extension(KVMState *s, unsigned int extension)
516 int ret;
518 ret = kvm_ioctl(s, KVM_CHECK_EXTENSION, extension);
519 if (ret < 0) {
520 ret = 0;
523 return ret;
526 int kvm_vm_check_extension(KVMState *s, unsigned int extension)
528 int ret;
530 ret = kvm_vm_ioctl(s, KVM_CHECK_EXTENSION, extension);
531 if (ret < 0) {
532 /* VM wide version not implemented, use global one instead */
533 ret = kvm_check_extension(s, extension);
536 return ret;
539 static uint32_t adjust_ioeventfd_endianness(uint32_t val, uint32_t size)
541 #if defined(HOST_WORDS_BIGENDIAN) != defined(TARGET_WORDS_BIGENDIAN)
542 /* The kernel expects ioeventfd values in HOST_WORDS_BIGENDIAN
543 * endianness, but the memory core hands them in target endianness.
544 * For example, PPC is always treated as big-endian even if running
545 * on KVM and on PPC64LE. Correct here.
547 switch (size) {
548 case 2:
549 val = bswap16(val);
550 break;
551 case 4:
552 val = bswap32(val);
553 break;
555 #endif
556 return val;
559 static int kvm_set_ioeventfd_mmio(int fd, hwaddr addr, uint32_t val,
560 bool assign, uint32_t size, bool datamatch)
562 int ret;
563 struct kvm_ioeventfd iofd = {
564 .datamatch = datamatch ? adjust_ioeventfd_endianness(val, size) : 0,
565 .addr = addr,
566 .len = size,
567 .flags = 0,
568 .fd = fd,
571 if (!kvm_enabled()) {
572 return -ENOSYS;
575 if (datamatch) {
576 iofd.flags |= KVM_IOEVENTFD_FLAG_DATAMATCH;
578 if (!assign) {
579 iofd.flags |= KVM_IOEVENTFD_FLAG_DEASSIGN;
582 ret = kvm_vm_ioctl(kvm_state, KVM_IOEVENTFD, &iofd);
584 if (ret < 0) {
585 return -errno;
588 return 0;
591 static int kvm_set_ioeventfd_pio(int fd, uint16_t addr, uint16_t val,
592 bool assign, uint32_t size, bool datamatch)
594 struct kvm_ioeventfd kick = {
595 .datamatch = datamatch ? adjust_ioeventfd_endianness(val, size) : 0,
596 .addr = addr,
597 .flags = KVM_IOEVENTFD_FLAG_PIO,
598 .len = size,
599 .fd = fd,
601 int r;
602 if (!kvm_enabled()) {
603 return -ENOSYS;
605 if (datamatch) {
606 kick.flags |= KVM_IOEVENTFD_FLAG_DATAMATCH;
608 if (!assign) {
609 kick.flags |= KVM_IOEVENTFD_FLAG_DEASSIGN;
611 r = kvm_vm_ioctl(kvm_state, KVM_IOEVENTFD, &kick);
612 if (r < 0) {
613 return r;
615 return 0;
619 static int kvm_check_many_ioeventfds(void)
621 /* Userspace can use ioeventfd for io notification. This requires a host
622 * that supports eventfd(2) and an I/O thread; since eventfd does not
623 * support SIGIO it cannot interrupt the vcpu.
625 * Older kernels have a 6 device limit on the KVM io bus. Find out so we
626 * can avoid creating too many ioeventfds.
628 #if defined(CONFIG_EVENTFD)
629 int ioeventfds[7];
630 int i, ret = 0;
631 for (i = 0; i < ARRAY_SIZE(ioeventfds); i++) {
632 ioeventfds[i] = eventfd(0, EFD_CLOEXEC);
633 if (ioeventfds[i] < 0) {
634 break;
636 ret = kvm_set_ioeventfd_pio(ioeventfds[i], 0, i, true, 2, true);
637 if (ret < 0) {
638 close(ioeventfds[i]);
639 break;
643 /* Decide whether many devices are supported or not */
644 ret = i == ARRAY_SIZE(ioeventfds);
646 while (i-- > 0) {
647 kvm_set_ioeventfd_pio(ioeventfds[i], 0, i, false, 2, true);
648 close(ioeventfds[i]);
650 return ret;
651 #else
652 return 0;
653 #endif
656 static const KVMCapabilityInfo *
657 kvm_check_extension_list(KVMState *s, const KVMCapabilityInfo *list)
659 while (list->name) {
660 if (!kvm_check_extension(s, list->value)) {
661 return list;
663 list++;
665 return NULL;
668 static void kvm_set_phys_mem(MemoryRegionSection *section, bool add)
670 KVMState *s = kvm_state;
671 KVMSlot *mem, old;
672 int err;
673 MemoryRegion *mr = section->mr;
674 bool log_dirty =
675 memory_region_get_dirty_log_mask(mr) & ~(1 << DIRTY_MEMORY_MIGRATION);
676 bool writeable = !mr->readonly && !mr->rom_device;
677 bool readonly_flag = mr->readonly || memory_region_is_romd(mr);
678 hwaddr start_addr = section->offset_within_address_space;
679 ram_addr_t size = int128_get64(section->size);
680 void *ram = NULL;
681 unsigned delta;
683 /* kvm works in page size chunks, but the function may be called
684 with sub-page size and unaligned start address. Pad the start
685 address to next and truncate size to previous page boundary. */
686 delta = (TARGET_PAGE_SIZE - (start_addr & ~TARGET_PAGE_MASK));
687 delta &= ~TARGET_PAGE_MASK;
688 if (delta > size) {
689 return;
691 start_addr += delta;
692 size -= delta;
693 size &= TARGET_PAGE_MASK;
694 if (!size || (start_addr & ~TARGET_PAGE_MASK)) {
695 return;
698 if (!memory_region_is_ram(mr)) {
699 if (writeable || !kvm_readonly_mem_allowed) {
700 return;
701 } else if (!mr->romd_mode) {
702 /* If the memory device is not in romd_mode, then we actually want
703 * to remove the kvm memory slot so all accesses will trap. */
704 add = false;
708 ram = memory_region_get_ram_ptr(mr) + section->offset_within_region + delta;
710 while (1) {
711 mem = kvm_lookup_overlapping_slot(s, start_addr, start_addr + size);
712 if (!mem) {
713 break;
716 if (add && start_addr >= mem->start_addr &&
717 (start_addr + size <= mem->start_addr + mem->memory_size) &&
718 (ram - start_addr == mem->ram - mem->start_addr)) {
719 /* The new slot fits into the existing one and comes with
720 * identical parameters - update flags and done. */
721 kvm_slot_dirty_pages_log_change(mem, log_dirty);
722 return;
725 old = *mem;
727 if ((mem->flags & KVM_MEM_LOG_DIRTY_PAGES) || s->migration_log) {
728 kvm_physical_sync_dirty_bitmap(section);
731 /* unregister the overlapping slot */
732 mem->memory_size = 0;
733 err = kvm_set_user_memory_region(s, mem);
734 if (err) {
735 fprintf(stderr, "%s: error unregistering overlapping slot: %s\n",
736 __func__, strerror(-err));
737 abort();
740 /* Workaround for older KVM versions: we can't join slots, even not by
741 * unregistering the previous ones and then registering the larger
742 * slot. We have to maintain the existing fragmentation. Sigh.
744 * This workaround assumes that the new slot starts at the same
745 * address as the first existing one. If not or if some overlapping
746 * slot comes around later, we will fail (not seen in practice so far)
747 * - and actually require a recent KVM version. */
748 if (s->broken_set_mem_region &&
749 old.start_addr == start_addr && old.memory_size < size && add) {
750 mem = kvm_alloc_slot(s);
751 mem->memory_size = old.memory_size;
752 mem->start_addr = old.start_addr;
753 mem->ram = old.ram;
754 mem->flags = kvm_mem_flags(s, log_dirty, readonly_flag);
756 err = kvm_set_user_memory_region(s, mem);
757 if (err) {
758 fprintf(stderr, "%s: error updating slot: %s\n", __func__,
759 strerror(-err));
760 abort();
763 start_addr += old.memory_size;
764 ram += old.memory_size;
765 size -= old.memory_size;
766 continue;
769 /* register prefix slot */
770 if (old.start_addr < start_addr) {
771 mem = kvm_alloc_slot(s);
772 mem->memory_size = start_addr - old.start_addr;
773 mem->start_addr = old.start_addr;
774 mem->ram = old.ram;
775 mem->flags = kvm_mem_flags(s, log_dirty, readonly_flag);
777 err = kvm_set_user_memory_region(s, mem);
778 if (err) {
779 fprintf(stderr, "%s: error registering prefix slot: %s\n",
780 __func__, strerror(-err));
781 #ifdef TARGET_PPC
782 fprintf(stderr, "%s: This is probably because your kernel's " \
783 "PAGE_SIZE is too big. Please try to use 4k " \
784 "PAGE_SIZE!\n", __func__);
785 #endif
786 abort();
790 /* register suffix slot */
791 if (old.start_addr + old.memory_size > start_addr + size) {
792 ram_addr_t size_delta;
794 mem = kvm_alloc_slot(s);
795 mem->start_addr = start_addr + size;
796 size_delta = mem->start_addr - old.start_addr;
797 mem->memory_size = old.memory_size - size_delta;
798 mem->ram = old.ram + size_delta;
799 mem->flags = kvm_mem_flags(s, log_dirty, readonly_flag);
801 err = kvm_set_user_memory_region(s, mem);
802 if (err) {
803 fprintf(stderr, "%s: error registering suffix slot: %s\n",
804 __func__, strerror(-err));
805 abort();
810 /* in case the KVM bug workaround already "consumed" the new slot */
811 if (!size) {
812 return;
814 if (!add) {
815 return;
817 mem = kvm_alloc_slot(s);
818 mem->memory_size = size;
819 mem->start_addr = start_addr;
820 mem->ram = ram;
821 mem->flags = kvm_mem_flags(s, log_dirty, readonly_flag);
823 err = kvm_set_user_memory_region(s, mem);
824 if (err) {
825 fprintf(stderr, "%s: error registering slot: %s\n", __func__,
826 strerror(-err));
827 abort();
831 static void kvm_region_add(MemoryListener *listener,
832 MemoryRegionSection *section)
834 memory_region_ref(section->mr);
835 kvm_set_phys_mem(section, true);
838 static void kvm_region_del(MemoryListener *listener,
839 MemoryRegionSection *section)
841 kvm_set_phys_mem(section, false);
842 memory_region_unref(section->mr);
845 static void kvm_log_sync(MemoryListener *listener,
846 MemoryRegionSection *section)
848 int r;
850 r = kvm_physical_sync_dirty_bitmap(section);
851 if (r < 0) {
852 abort();
856 static void kvm_log_global_start(struct MemoryListener *listener)
858 int r;
860 r = kvm_set_migration_log(1);
861 assert(r >= 0);
864 static void kvm_log_global_stop(struct MemoryListener *listener)
866 int r;
868 r = kvm_set_migration_log(0);
869 assert(r >= 0);
872 static void kvm_mem_ioeventfd_add(MemoryListener *listener,
873 MemoryRegionSection *section,
874 bool match_data, uint64_t data,
875 EventNotifier *e)
877 int fd = event_notifier_get_fd(e);
878 int r;
880 r = kvm_set_ioeventfd_mmio(fd, section->offset_within_address_space,
881 data, true, int128_get64(section->size),
882 match_data);
883 if (r < 0) {
884 fprintf(stderr, "%s: error adding ioeventfd: %s\n",
885 __func__, strerror(-r));
886 abort();
890 static void kvm_mem_ioeventfd_del(MemoryListener *listener,
891 MemoryRegionSection *section,
892 bool match_data, uint64_t data,
893 EventNotifier *e)
895 int fd = event_notifier_get_fd(e);
896 int r;
898 r = kvm_set_ioeventfd_mmio(fd, section->offset_within_address_space,
899 data, false, int128_get64(section->size),
900 match_data);
901 if (r < 0) {
902 abort();
906 static void kvm_io_ioeventfd_add(MemoryListener *listener,
907 MemoryRegionSection *section,
908 bool match_data, uint64_t data,
909 EventNotifier *e)
911 int fd = event_notifier_get_fd(e);
912 int r;
914 r = kvm_set_ioeventfd_pio(fd, section->offset_within_address_space,
915 data, true, int128_get64(section->size),
916 match_data);
917 if (r < 0) {
918 fprintf(stderr, "%s: error adding ioeventfd: %s\n",
919 __func__, strerror(-r));
920 abort();
924 static void kvm_io_ioeventfd_del(MemoryListener *listener,
925 MemoryRegionSection *section,
926 bool match_data, uint64_t data,
927 EventNotifier *e)
930 int fd = event_notifier_get_fd(e);
931 int r;
933 r = kvm_set_ioeventfd_pio(fd, section->offset_within_address_space,
934 data, false, int128_get64(section->size),
935 match_data);
936 if (r < 0) {
937 abort();
941 static MemoryListener kvm_memory_listener = {
942 .region_add = kvm_region_add,
943 .region_del = kvm_region_del,
944 .log_start = kvm_log_start,
945 .log_stop = kvm_log_stop,
946 .log_sync = kvm_log_sync,
947 .log_global_start = kvm_log_global_start,
948 .log_global_stop = kvm_log_global_stop,
949 .eventfd_add = kvm_mem_ioeventfd_add,
950 .eventfd_del = kvm_mem_ioeventfd_del,
951 .coalesced_mmio_add = kvm_coalesce_mmio_region,
952 .coalesced_mmio_del = kvm_uncoalesce_mmio_region,
953 .priority = 10,
956 static MemoryListener kvm_io_listener = {
957 .eventfd_add = kvm_io_ioeventfd_add,
958 .eventfd_del = kvm_io_ioeventfd_del,
959 .priority = 10,
962 static void kvm_handle_interrupt(CPUState *cpu, int mask)
964 cpu->interrupt_request |= mask;
966 if (!qemu_cpu_is_self(cpu)) {
967 qemu_cpu_kick(cpu);
971 int kvm_set_irq(KVMState *s, int irq, int level)
973 struct kvm_irq_level event;
974 int ret;
976 assert(kvm_async_interrupts_enabled());
978 event.level = level;
979 event.irq = irq;
980 ret = kvm_vm_ioctl(s, s->irq_set_ioctl, &event);
981 if (ret < 0) {
982 perror("kvm_set_irq");
983 abort();
986 return (s->irq_set_ioctl == KVM_IRQ_LINE) ? 1 : event.status;
989 #ifdef KVM_CAP_IRQ_ROUTING
990 typedef struct KVMMSIRoute {
991 struct kvm_irq_routing_entry kroute;
992 QTAILQ_ENTRY(KVMMSIRoute) entry;
993 } KVMMSIRoute;
995 static void set_gsi(KVMState *s, unsigned int gsi)
997 s->used_gsi_bitmap[gsi / 32] |= 1U << (gsi % 32);
1000 static void clear_gsi(KVMState *s, unsigned int gsi)
1002 s->used_gsi_bitmap[gsi / 32] &= ~(1U << (gsi % 32));
1005 void kvm_init_irq_routing(KVMState *s)
1007 int gsi_count, i;
1009 gsi_count = kvm_check_extension(s, KVM_CAP_IRQ_ROUTING) - 1;
1010 if (gsi_count > 0) {
1011 unsigned int gsi_bits, i;
1013 /* Round up so we can search ints using ffs */
1014 gsi_bits = ALIGN(gsi_count, 32);
1015 s->used_gsi_bitmap = g_malloc0(gsi_bits / 8);
1016 s->gsi_count = gsi_count;
1018 /* Mark any over-allocated bits as already in use */
1019 for (i = gsi_count; i < gsi_bits; i++) {
1020 set_gsi(s, i);
1024 s->irq_routes = g_malloc0(sizeof(*s->irq_routes));
1025 s->nr_allocated_irq_routes = 0;
1027 if (!s->direct_msi) {
1028 for (i = 0; i < KVM_MSI_HASHTAB_SIZE; i++) {
1029 QTAILQ_INIT(&s->msi_hashtab[i]);
1033 kvm_arch_init_irq_routing(s);
1036 void kvm_irqchip_commit_routes(KVMState *s)
1038 int ret;
1040 s->irq_routes->flags = 0;
1041 ret = kvm_vm_ioctl(s, KVM_SET_GSI_ROUTING, s->irq_routes);
1042 assert(ret == 0);
1045 static void kvm_add_routing_entry(KVMState *s,
1046 struct kvm_irq_routing_entry *entry)
1048 struct kvm_irq_routing_entry *new;
1049 int n, size;
1051 if (s->irq_routes->nr == s->nr_allocated_irq_routes) {
1052 n = s->nr_allocated_irq_routes * 2;
1053 if (n < 64) {
1054 n = 64;
1056 size = sizeof(struct kvm_irq_routing);
1057 size += n * sizeof(*new);
1058 s->irq_routes = g_realloc(s->irq_routes, size);
1059 s->nr_allocated_irq_routes = n;
1061 n = s->irq_routes->nr++;
1062 new = &s->irq_routes->entries[n];
1064 *new = *entry;
1066 set_gsi(s, entry->gsi);
1069 static int kvm_update_routing_entry(KVMState *s,
1070 struct kvm_irq_routing_entry *new_entry)
1072 struct kvm_irq_routing_entry *entry;
1073 int n;
1075 for (n = 0; n < s->irq_routes->nr; n++) {
1076 entry = &s->irq_routes->entries[n];
1077 if (entry->gsi != new_entry->gsi) {
1078 continue;
1081 if(!memcmp(entry, new_entry, sizeof *entry)) {
1082 return 0;
1085 *entry = *new_entry;
1087 kvm_irqchip_commit_routes(s);
1089 return 0;
1092 return -ESRCH;
1095 void kvm_irqchip_add_irq_route(KVMState *s, int irq, int irqchip, int pin)
1097 struct kvm_irq_routing_entry e = {};
1099 assert(pin < s->gsi_count);
1101 e.gsi = irq;
1102 e.type = KVM_IRQ_ROUTING_IRQCHIP;
1103 e.flags = 0;
1104 e.u.irqchip.irqchip = irqchip;
1105 e.u.irqchip.pin = pin;
1106 kvm_add_routing_entry(s, &e);
1109 void kvm_irqchip_release_virq(KVMState *s, int virq)
1111 struct kvm_irq_routing_entry *e;
1112 int i;
1114 if (kvm_gsi_direct_mapping()) {
1115 return;
1118 for (i = 0; i < s->irq_routes->nr; i++) {
1119 e = &s->irq_routes->entries[i];
1120 if (e->gsi == virq) {
1121 s->irq_routes->nr--;
1122 *e = s->irq_routes->entries[s->irq_routes->nr];
1125 clear_gsi(s, virq);
1128 static unsigned int kvm_hash_msi(uint32_t data)
1130 /* This is optimized for IA32 MSI layout. However, no other arch shall
1131 * repeat the mistake of not providing a direct MSI injection API. */
1132 return data & 0xff;
1135 static void kvm_flush_dynamic_msi_routes(KVMState *s)
1137 KVMMSIRoute *route, *next;
1138 unsigned int hash;
1140 for (hash = 0; hash < KVM_MSI_HASHTAB_SIZE; hash++) {
1141 QTAILQ_FOREACH_SAFE(route, &s->msi_hashtab[hash], entry, next) {
1142 kvm_irqchip_release_virq(s, route->kroute.gsi);
1143 QTAILQ_REMOVE(&s->msi_hashtab[hash], route, entry);
1144 g_free(route);
1149 static int kvm_irqchip_get_virq(KVMState *s)
1151 uint32_t *word = s->used_gsi_bitmap;
1152 int max_words = ALIGN(s->gsi_count, 32) / 32;
1153 int i, zeroes;
1154 bool retry = true;
1156 again:
1157 /* Return the lowest unused GSI in the bitmap */
1158 for (i = 0; i < max_words; i++) {
1159 zeroes = ctz32(~word[i]);
1160 if (zeroes == 32) {
1161 continue;
1164 return zeroes + i * 32;
1166 if (!s->direct_msi && retry) {
1167 retry = false;
1168 kvm_flush_dynamic_msi_routes(s);
1169 goto again;
1171 return -ENOSPC;
1175 static KVMMSIRoute *kvm_lookup_msi_route(KVMState *s, MSIMessage msg)
1177 unsigned int hash = kvm_hash_msi(msg.data);
1178 KVMMSIRoute *route;
1180 QTAILQ_FOREACH(route, &s->msi_hashtab[hash], entry) {
1181 if (route->kroute.u.msi.address_lo == (uint32_t)msg.address &&
1182 route->kroute.u.msi.address_hi == (msg.address >> 32) &&
1183 route->kroute.u.msi.data == le32_to_cpu(msg.data)) {
1184 return route;
1187 return NULL;
1190 int kvm_irqchip_send_msi(KVMState *s, MSIMessage msg)
1192 struct kvm_msi msi;
1193 KVMMSIRoute *route;
1195 if (s->direct_msi) {
1196 msi.address_lo = (uint32_t)msg.address;
1197 msi.address_hi = msg.address >> 32;
1198 msi.data = le32_to_cpu(msg.data);
1199 msi.flags = 0;
1200 memset(msi.pad, 0, sizeof(msi.pad));
1202 return kvm_vm_ioctl(s, KVM_SIGNAL_MSI, &msi);
1205 route = kvm_lookup_msi_route(s, msg);
1206 if (!route) {
1207 int virq;
1209 virq = kvm_irqchip_get_virq(s);
1210 if (virq < 0) {
1211 return virq;
1214 route = g_malloc0(sizeof(KVMMSIRoute));
1215 route->kroute.gsi = virq;
1216 route->kroute.type = KVM_IRQ_ROUTING_MSI;
1217 route->kroute.flags = 0;
1218 route->kroute.u.msi.address_lo = (uint32_t)msg.address;
1219 route->kroute.u.msi.address_hi = msg.address >> 32;
1220 route->kroute.u.msi.data = le32_to_cpu(msg.data);
1222 kvm_add_routing_entry(s, &route->kroute);
1223 kvm_irqchip_commit_routes(s);
1225 QTAILQ_INSERT_TAIL(&s->msi_hashtab[kvm_hash_msi(msg.data)], route,
1226 entry);
1229 assert(route->kroute.type == KVM_IRQ_ROUTING_MSI);
1231 return kvm_set_irq(s, route->kroute.gsi, 1);
1234 int kvm_irqchip_add_msi_route(KVMState *s, MSIMessage msg)
1236 struct kvm_irq_routing_entry kroute = {};
1237 int virq;
1239 if (kvm_gsi_direct_mapping()) {
1240 return kvm_arch_msi_data_to_gsi(msg.data);
1243 if (!kvm_gsi_routing_enabled()) {
1244 return -ENOSYS;
1247 virq = kvm_irqchip_get_virq(s);
1248 if (virq < 0) {
1249 return virq;
1252 kroute.gsi = virq;
1253 kroute.type = KVM_IRQ_ROUTING_MSI;
1254 kroute.flags = 0;
1255 kroute.u.msi.address_lo = (uint32_t)msg.address;
1256 kroute.u.msi.address_hi = msg.address >> 32;
1257 kroute.u.msi.data = le32_to_cpu(msg.data);
1258 if (kvm_arch_fixup_msi_route(&kroute, msg.address, msg.data)) {
1259 kvm_irqchip_release_virq(s, virq);
1260 return -EINVAL;
1263 kvm_add_routing_entry(s, &kroute);
1264 kvm_irqchip_commit_routes(s);
1266 return virq;
1269 int kvm_irqchip_update_msi_route(KVMState *s, int virq, MSIMessage msg)
1271 struct kvm_irq_routing_entry kroute = {};
1273 if (kvm_gsi_direct_mapping()) {
1274 return 0;
1277 if (!kvm_irqchip_in_kernel()) {
1278 return -ENOSYS;
1281 kroute.gsi = virq;
1282 kroute.type = KVM_IRQ_ROUTING_MSI;
1283 kroute.flags = 0;
1284 kroute.u.msi.address_lo = (uint32_t)msg.address;
1285 kroute.u.msi.address_hi = msg.address >> 32;
1286 kroute.u.msi.data = le32_to_cpu(msg.data);
1287 if (kvm_arch_fixup_msi_route(&kroute, msg.address, msg.data)) {
1288 return -EINVAL;
1291 return kvm_update_routing_entry(s, &kroute);
1294 static int kvm_irqchip_assign_irqfd(KVMState *s, int fd, int rfd, int virq,
1295 bool assign)
1297 struct kvm_irqfd irqfd = {
1298 .fd = fd,
1299 .gsi = virq,
1300 .flags = assign ? 0 : KVM_IRQFD_FLAG_DEASSIGN,
1303 if (rfd != -1) {
1304 irqfd.flags |= KVM_IRQFD_FLAG_RESAMPLE;
1305 irqfd.resamplefd = rfd;
1308 if (!kvm_irqfds_enabled()) {
1309 return -ENOSYS;
1312 return kvm_vm_ioctl(s, KVM_IRQFD, &irqfd);
1315 int kvm_irqchip_add_adapter_route(KVMState *s, AdapterInfo *adapter)
1317 struct kvm_irq_routing_entry kroute = {};
1318 int virq;
1320 if (!kvm_gsi_routing_enabled()) {
1321 return -ENOSYS;
1324 virq = kvm_irqchip_get_virq(s);
1325 if (virq < 0) {
1326 return virq;
1329 kroute.gsi = virq;
1330 kroute.type = KVM_IRQ_ROUTING_S390_ADAPTER;
1331 kroute.flags = 0;
1332 kroute.u.adapter.summary_addr = adapter->summary_addr;
1333 kroute.u.adapter.ind_addr = adapter->ind_addr;
1334 kroute.u.adapter.summary_offset = adapter->summary_offset;
1335 kroute.u.adapter.ind_offset = adapter->ind_offset;
1336 kroute.u.adapter.adapter_id = adapter->adapter_id;
1338 kvm_add_routing_entry(s, &kroute);
1339 kvm_irqchip_commit_routes(s);
1341 return virq;
1344 #else /* !KVM_CAP_IRQ_ROUTING */
1346 void kvm_init_irq_routing(KVMState *s)
1350 void kvm_irqchip_release_virq(KVMState *s, int virq)
1354 int kvm_irqchip_send_msi(KVMState *s, MSIMessage msg)
1356 abort();
1359 int kvm_irqchip_add_msi_route(KVMState *s, MSIMessage msg)
1361 return -ENOSYS;
1364 int kvm_irqchip_add_adapter_route(KVMState *s, AdapterInfo *adapter)
1366 return -ENOSYS;
1369 static int kvm_irqchip_assign_irqfd(KVMState *s, int fd, int virq, bool assign)
1371 abort();
1374 int kvm_irqchip_update_msi_route(KVMState *s, int virq, MSIMessage msg)
1376 return -ENOSYS;
1378 #endif /* !KVM_CAP_IRQ_ROUTING */
1380 int kvm_irqchip_add_irqfd_notifier(KVMState *s, EventNotifier *n,
1381 EventNotifier *rn, int virq)
1383 return kvm_irqchip_assign_irqfd(s, event_notifier_get_fd(n),
1384 rn ? event_notifier_get_fd(rn) : -1, virq, true);
1387 int kvm_irqchip_remove_irqfd_notifier(KVMState *s, EventNotifier *n, int virq)
1389 return kvm_irqchip_assign_irqfd(s, event_notifier_get_fd(n), -1, virq,
1390 false);
1393 static int kvm_irqchip_create(MachineState *machine, KVMState *s)
1395 int ret;
1397 if (!machine_kernel_irqchip_allowed(machine) ||
1398 (!kvm_check_extension(s, KVM_CAP_IRQCHIP) &&
1399 (kvm_vm_enable_cap(s, KVM_CAP_S390_IRQCHIP, 0) < 0))) {
1400 return 0;
1403 /* First probe and see if there's a arch-specific hook to create the
1404 * in-kernel irqchip for us */
1405 ret = kvm_arch_irqchip_create(s);
1406 if (ret < 0) {
1407 return ret;
1408 } else if (ret == 0) {
1409 ret = kvm_vm_ioctl(s, KVM_CREATE_IRQCHIP);
1410 if (ret < 0) {
1411 fprintf(stderr, "Create kernel irqchip failed\n");
1412 return ret;
1416 kvm_kernel_irqchip = true;
1417 /* If we have an in-kernel IRQ chip then we must have asynchronous
1418 * interrupt delivery (though the reverse is not necessarily true)
1420 kvm_async_interrupts_allowed = true;
1421 kvm_halt_in_kernel_allowed = true;
1423 kvm_init_irq_routing(s);
1425 return 0;
1428 /* Find number of supported CPUs using the recommended
1429 * procedure from the kernel API documentation to cope with
1430 * older kernels that may be missing capabilities.
1432 static int kvm_recommended_vcpus(KVMState *s)
1434 int ret = kvm_check_extension(s, KVM_CAP_NR_VCPUS);
1435 return (ret) ? ret : 4;
1438 static int kvm_max_vcpus(KVMState *s)
1440 int ret = kvm_check_extension(s, KVM_CAP_MAX_VCPUS);
1441 return (ret) ? ret : kvm_recommended_vcpus(s);
1444 static int kvm_init(MachineState *ms)
1446 MachineClass *mc = MACHINE_GET_CLASS(ms);
1447 static const char upgrade_note[] =
1448 "Please upgrade to at least kernel 2.6.29 or recent kvm-kmod\n"
1449 "(see http://sourceforge.net/projects/kvm).\n";
1450 struct {
1451 const char *name;
1452 int num;
1453 } num_cpus[] = {
1454 { "SMP", smp_cpus },
1455 { "hotpluggable", max_cpus },
1456 { NULL, }
1457 }, *nc = num_cpus;
1458 int soft_vcpus_limit, hard_vcpus_limit;
1459 KVMState *s;
1460 const KVMCapabilityInfo *missing_cap;
1461 int ret;
1462 int i, type = 0;
1463 const char *kvm_type;
1465 s = KVM_STATE(ms->accelerator);
1468 * On systems where the kernel can support different base page
1469 * sizes, host page size may be different from TARGET_PAGE_SIZE,
1470 * even with KVM. TARGET_PAGE_SIZE is assumed to be the minimum
1471 * page size for the system though.
1473 assert(TARGET_PAGE_SIZE <= getpagesize());
1474 page_size_init();
1476 s->sigmask_len = 8;
1478 #ifdef KVM_CAP_SET_GUEST_DEBUG
1479 QTAILQ_INIT(&s->kvm_sw_breakpoints);
1480 #endif
1481 s->vmfd = -1;
1482 s->fd = qemu_open("/dev/kvm", O_RDWR);
1483 if (s->fd == -1) {
1484 fprintf(stderr, "Could not access KVM kernel module: %m\n");
1485 ret = -errno;
1486 goto err;
1489 ret = kvm_ioctl(s, KVM_GET_API_VERSION, 0);
1490 if (ret < KVM_API_VERSION) {
1491 if (ret >= 0) {
1492 ret = -EINVAL;
1494 fprintf(stderr, "kvm version too old\n");
1495 goto err;
1498 if (ret > KVM_API_VERSION) {
1499 ret = -EINVAL;
1500 fprintf(stderr, "kvm version not supported\n");
1501 goto err;
1504 s->nr_slots = kvm_check_extension(s, KVM_CAP_NR_MEMSLOTS);
1506 /* If unspecified, use the default value */
1507 if (!s->nr_slots) {
1508 s->nr_slots = 32;
1511 s->slots = g_malloc0(s->nr_slots * sizeof(KVMSlot));
1513 for (i = 0; i < s->nr_slots; i++) {
1514 s->slots[i].slot = i;
1517 /* check the vcpu limits */
1518 soft_vcpus_limit = kvm_recommended_vcpus(s);
1519 hard_vcpus_limit = kvm_max_vcpus(s);
1521 while (nc->name) {
1522 if (nc->num > soft_vcpus_limit) {
1523 fprintf(stderr,
1524 "Warning: Number of %s cpus requested (%d) exceeds "
1525 "the recommended cpus supported by KVM (%d)\n",
1526 nc->name, nc->num, soft_vcpus_limit);
1528 if (nc->num > hard_vcpus_limit) {
1529 fprintf(stderr, "Number of %s cpus requested (%d) exceeds "
1530 "the maximum cpus supported by KVM (%d)\n",
1531 nc->name, nc->num, hard_vcpus_limit);
1532 exit(1);
1535 nc++;
1538 kvm_type = qemu_opt_get(qemu_get_machine_opts(), "kvm-type");
1539 if (mc->kvm_type) {
1540 type = mc->kvm_type(kvm_type);
1541 } else if (kvm_type) {
1542 ret = -EINVAL;
1543 fprintf(stderr, "Invalid argument kvm-type=%s\n", kvm_type);
1544 goto err;
1547 do {
1548 ret = kvm_ioctl(s, KVM_CREATE_VM, type);
1549 } while (ret == -EINTR);
1551 if (ret < 0) {
1552 fprintf(stderr, "ioctl(KVM_CREATE_VM) failed: %d %s\n", -ret,
1553 strerror(-ret));
1555 #ifdef TARGET_S390X
1556 if (ret == -EINVAL) {
1557 fprintf(stderr,
1558 "Host kernel setup problem detected. Please verify:\n");
1559 fprintf(stderr, "- for kernels supporting the switch_amode or"
1560 " user_mode parameters, whether\n");
1561 fprintf(stderr,
1562 " user space is running in primary address space\n");
1563 fprintf(stderr,
1564 "- for kernels supporting the vm.allocate_pgste sysctl, "
1565 "whether it is enabled\n");
1567 #endif
1568 goto err;
1571 s->vmfd = ret;
1572 missing_cap = kvm_check_extension_list(s, kvm_required_capabilites);
1573 if (!missing_cap) {
1574 missing_cap =
1575 kvm_check_extension_list(s, kvm_arch_required_capabilities);
1577 if (missing_cap) {
1578 ret = -EINVAL;
1579 fprintf(stderr, "kvm does not support %s\n%s",
1580 missing_cap->name, upgrade_note);
1581 goto err;
1584 s->coalesced_mmio = kvm_check_extension(s, KVM_CAP_COALESCED_MMIO);
1586 s->broken_set_mem_region = 1;
1587 ret = kvm_check_extension(s, KVM_CAP_JOIN_MEMORY_REGIONS_WORKS);
1588 if (ret > 0) {
1589 s->broken_set_mem_region = 0;
1592 #ifdef KVM_CAP_VCPU_EVENTS
1593 s->vcpu_events = kvm_check_extension(s, KVM_CAP_VCPU_EVENTS);
1594 #endif
1596 s->robust_singlestep =
1597 kvm_check_extension(s, KVM_CAP_X86_ROBUST_SINGLESTEP);
1599 #ifdef KVM_CAP_DEBUGREGS
1600 s->debugregs = kvm_check_extension(s, KVM_CAP_DEBUGREGS);
1601 #endif
1603 #ifdef KVM_CAP_XSAVE
1604 s->xsave = kvm_check_extension(s, KVM_CAP_XSAVE);
1605 #endif
1607 #ifdef KVM_CAP_XCRS
1608 s->xcrs = kvm_check_extension(s, KVM_CAP_XCRS);
1609 #endif
1611 #ifdef KVM_CAP_PIT_STATE2
1612 s->pit_state2 = kvm_check_extension(s, KVM_CAP_PIT_STATE2);
1613 #endif
1615 #ifdef KVM_CAP_IRQ_ROUTING
1616 s->direct_msi = (kvm_check_extension(s, KVM_CAP_SIGNAL_MSI) > 0);
1617 #endif
1619 s->intx_set_mask = kvm_check_extension(s, KVM_CAP_PCI_2_3);
1621 s->irq_set_ioctl = KVM_IRQ_LINE;
1622 if (kvm_check_extension(s, KVM_CAP_IRQ_INJECT_STATUS)) {
1623 s->irq_set_ioctl = KVM_IRQ_LINE_STATUS;
1626 #ifdef KVM_CAP_READONLY_MEM
1627 kvm_readonly_mem_allowed =
1628 (kvm_check_extension(s, KVM_CAP_READONLY_MEM) > 0);
1629 #endif
1631 kvm_eventfds_allowed =
1632 (kvm_check_extension(s, KVM_CAP_IOEVENTFD) > 0);
1634 kvm_irqfds_allowed =
1635 (kvm_check_extension(s, KVM_CAP_IRQFD) > 0);
1637 kvm_resamplefds_allowed =
1638 (kvm_check_extension(s, KVM_CAP_IRQFD_RESAMPLE) > 0);
1640 kvm_vm_attributes_allowed =
1641 (kvm_check_extension(s, KVM_CAP_VM_ATTRIBUTES) > 0);
1643 ret = kvm_arch_init(ms, s);
1644 if (ret < 0) {
1645 goto err;
1648 ret = kvm_irqchip_create(ms, s);
1649 if (ret < 0) {
1650 goto err;
1653 kvm_state = s;
1654 memory_listener_register(&kvm_memory_listener, &address_space_memory);
1655 memory_listener_register(&kvm_io_listener, &address_space_io);
1657 s->many_ioeventfds = kvm_check_many_ioeventfds();
1659 cpu_interrupt_handler = kvm_handle_interrupt;
1661 return 0;
1663 err:
1664 assert(ret < 0);
1665 if (s->vmfd >= 0) {
1666 close(s->vmfd);
1668 if (s->fd != -1) {
1669 close(s->fd);
1671 g_free(s->slots);
1673 return ret;
1676 void kvm_set_sigmask_len(KVMState *s, unsigned int sigmask_len)
1678 s->sigmask_len = sigmask_len;
1681 static void kvm_handle_io(uint16_t port, MemTxAttrs attrs, void *data, int direction,
1682 int size, uint32_t count)
1684 int i;
1685 uint8_t *ptr = data;
1687 for (i = 0; i < count; i++) {
1688 address_space_rw(&address_space_io, port, attrs,
1689 ptr, size,
1690 direction == KVM_EXIT_IO_OUT);
1691 ptr += size;
1695 static int kvm_handle_internal_error(CPUState *cpu, struct kvm_run *run)
1697 fprintf(stderr, "KVM internal error. Suberror: %d\n",
1698 run->internal.suberror);
1700 if (kvm_check_extension(kvm_state, KVM_CAP_INTERNAL_ERROR_DATA)) {
1701 int i;
1703 for (i = 0; i < run->internal.ndata; ++i) {
1704 fprintf(stderr, "extra data[%d]: %"PRIx64"\n",
1705 i, (uint64_t)run->internal.data[i]);
1708 if (run->internal.suberror == KVM_INTERNAL_ERROR_EMULATION) {
1709 fprintf(stderr, "emulation failure\n");
1710 if (!kvm_arch_stop_on_emulation_error(cpu)) {
1711 cpu_dump_state(cpu, stderr, fprintf, CPU_DUMP_CODE);
1712 return EXCP_INTERRUPT;
1715 /* FIXME: Should trigger a qmp message to let management know
1716 * something went wrong.
1718 return -1;
1721 void kvm_flush_coalesced_mmio_buffer(void)
1723 KVMState *s = kvm_state;
1725 if (s->coalesced_flush_in_progress) {
1726 return;
1729 s->coalesced_flush_in_progress = true;
1731 if (s->coalesced_mmio_ring) {
1732 struct kvm_coalesced_mmio_ring *ring = s->coalesced_mmio_ring;
1733 while (ring->first != ring->last) {
1734 struct kvm_coalesced_mmio *ent;
1736 ent = &ring->coalesced_mmio[ring->first];
1738 cpu_physical_memory_write(ent->phys_addr, ent->data, ent->len);
1739 smp_wmb();
1740 ring->first = (ring->first + 1) % KVM_COALESCED_MMIO_MAX;
1744 s->coalesced_flush_in_progress = false;
1747 static void do_kvm_cpu_synchronize_state(void *arg)
1749 CPUState *cpu = arg;
1751 if (!cpu->kvm_vcpu_dirty) {
1752 kvm_arch_get_registers(cpu);
1753 cpu->kvm_vcpu_dirty = true;
1757 void kvm_cpu_synchronize_state(CPUState *cpu)
1759 if (!cpu->kvm_vcpu_dirty) {
1760 run_on_cpu(cpu, do_kvm_cpu_synchronize_state, cpu);
1764 static void do_kvm_cpu_synchronize_post_reset(void *arg)
1766 CPUState *cpu = arg;
1768 kvm_arch_put_registers(cpu, KVM_PUT_RESET_STATE);
1769 cpu->kvm_vcpu_dirty = false;
1772 void kvm_cpu_synchronize_post_reset(CPUState *cpu)
1774 run_on_cpu(cpu, do_kvm_cpu_synchronize_post_reset, cpu);
1777 static void do_kvm_cpu_synchronize_post_init(void *arg)
1779 CPUState *cpu = arg;
1781 kvm_arch_put_registers(cpu, KVM_PUT_FULL_STATE);
1782 cpu->kvm_vcpu_dirty = false;
1785 void kvm_cpu_synchronize_post_init(CPUState *cpu)
1787 run_on_cpu(cpu, do_kvm_cpu_synchronize_post_init, cpu);
1790 void kvm_cpu_clean_state(CPUState *cpu)
1792 cpu->kvm_vcpu_dirty = false;
1795 int kvm_cpu_exec(CPUState *cpu)
1797 struct kvm_run *run = cpu->kvm_run;
1798 int ret, run_ret;
1800 DPRINTF("kvm_cpu_exec()\n");
1802 if (kvm_arch_process_async_events(cpu)) {
1803 cpu->exit_request = 0;
1804 return EXCP_HLT;
1807 do {
1808 MemTxAttrs attrs;
1810 if (cpu->kvm_vcpu_dirty) {
1811 kvm_arch_put_registers(cpu, KVM_PUT_RUNTIME_STATE);
1812 cpu->kvm_vcpu_dirty = false;
1815 kvm_arch_pre_run(cpu, run);
1816 if (cpu->exit_request) {
1817 DPRINTF("interrupt exit requested\n");
1819 * KVM requires us to reenter the kernel after IO exits to complete
1820 * instruction emulation. This self-signal will ensure that we
1821 * leave ASAP again.
1823 qemu_cpu_kick_self();
1825 qemu_mutex_unlock_iothread();
1827 run_ret = kvm_vcpu_ioctl(cpu, KVM_RUN, 0);
1829 qemu_mutex_lock_iothread();
1830 attrs = kvm_arch_post_run(cpu, run);
1832 if (run_ret < 0) {
1833 if (run_ret == -EINTR || run_ret == -EAGAIN) {
1834 DPRINTF("io window exit\n");
1835 ret = EXCP_INTERRUPT;
1836 break;
1838 fprintf(stderr, "error: kvm run failed %s\n",
1839 strerror(-run_ret));
1840 #ifdef TARGET_PPC
1841 if (run_ret == -EBUSY) {
1842 fprintf(stderr,
1843 "This is probably because your SMT is enabled.\n"
1844 "VCPU can only run on primary threads with all "
1845 "secondary threads offline.\n");
1847 #endif
1848 ret = -1;
1849 break;
1852 trace_kvm_run_exit(cpu->cpu_index, run->exit_reason);
1853 switch (run->exit_reason) {
1854 case KVM_EXIT_IO:
1855 DPRINTF("handle_io\n");
1856 kvm_handle_io(run->io.port, attrs,
1857 (uint8_t *)run + run->io.data_offset,
1858 run->io.direction,
1859 run->io.size,
1860 run->io.count);
1861 ret = 0;
1862 break;
1863 case KVM_EXIT_MMIO:
1864 DPRINTF("handle_mmio\n");
1865 address_space_rw(&address_space_memory,
1866 run->mmio.phys_addr, attrs,
1867 run->mmio.data,
1868 run->mmio.len,
1869 run->mmio.is_write);
1870 ret = 0;
1871 break;
1872 case KVM_EXIT_IRQ_WINDOW_OPEN:
1873 DPRINTF("irq_window_open\n");
1874 ret = EXCP_INTERRUPT;
1875 break;
1876 case KVM_EXIT_SHUTDOWN:
1877 DPRINTF("shutdown\n");
1878 qemu_system_reset_request();
1879 ret = EXCP_INTERRUPT;
1880 break;
1881 case KVM_EXIT_UNKNOWN:
1882 fprintf(stderr, "KVM: unknown exit, hardware reason %" PRIx64 "\n",
1883 (uint64_t)run->hw.hardware_exit_reason);
1884 ret = -1;
1885 break;
1886 case KVM_EXIT_INTERNAL_ERROR:
1887 ret = kvm_handle_internal_error(cpu, run);
1888 break;
1889 case KVM_EXIT_SYSTEM_EVENT:
1890 switch (run->system_event.type) {
1891 case KVM_SYSTEM_EVENT_SHUTDOWN:
1892 qemu_system_shutdown_request();
1893 ret = EXCP_INTERRUPT;
1894 break;
1895 case KVM_SYSTEM_EVENT_RESET:
1896 qemu_system_reset_request();
1897 ret = EXCP_INTERRUPT;
1898 break;
1899 default:
1900 DPRINTF("kvm_arch_handle_exit\n");
1901 ret = kvm_arch_handle_exit(cpu, run);
1902 break;
1904 break;
1905 default:
1906 DPRINTF("kvm_arch_handle_exit\n");
1907 ret = kvm_arch_handle_exit(cpu, run);
1908 break;
1910 } while (ret == 0);
1912 if (ret < 0) {
1913 cpu_dump_state(cpu, stderr, fprintf, CPU_DUMP_CODE);
1914 vm_stop(RUN_STATE_INTERNAL_ERROR);
1917 cpu->exit_request = 0;
1918 return ret;
1921 int kvm_ioctl(KVMState *s, int type, ...)
1923 int ret;
1924 void *arg;
1925 va_list ap;
1927 va_start(ap, type);
1928 arg = va_arg(ap, void *);
1929 va_end(ap);
1931 trace_kvm_ioctl(type, arg);
1932 ret = ioctl(s->fd, type, arg);
1933 if (ret == -1) {
1934 ret = -errno;
1936 return ret;
1939 int kvm_vm_ioctl(KVMState *s, int type, ...)
1941 int ret;
1942 void *arg;
1943 va_list ap;
1945 va_start(ap, type);
1946 arg = va_arg(ap, void *);
1947 va_end(ap);
1949 trace_kvm_vm_ioctl(type, arg);
1950 ret = ioctl(s->vmfd, type, arg);
1951 if (ret == -1) {
1952 ret = -errno;
1954 return ret;
1957 int kvm_vcpu_ioctl(CPUState *cpu, int type, ...)
1959 int ret;
1960 void *arg;
1961 va_list ap;
1963 va_start(ap, type);
1964 arg = va_arg(ap, void *);
1965 va_end(ap);
1967 trace_kvm_vcpu_ioctl(cpu->cpu_index, type, arg);
1968 ret = ioctl(cpu->kvm_fd, type, arg);
1969 if (ret == -1) {
1970 ret = -errno;
1972 return ret;
1975 int kvm_device_ioctl(int fd, int type, ...)
1977 int ret;
1978 void *arg;
1979 va_list ap;
1981 va_start(ap, type);
1982 arg = va_arg(ap, void *);
1983 va_end(ap);
1985 trace_kvm_device_ioctl(fd, type, arg);
1986 ret = ioctl(fd, type, arg);
1987 if (ret == -1) {
1988 ret = -errno;
1990 return ret;
1993 int kvm_vm_check_attr(KVMState *s, uint32_t group, uint64_t attr)
1995 int ret;
1996 struct kvm_device_attr attribute = {
1997 .group = group,
1998 .attr = attr,
2001 if (!kvm_vm_attributes_allowed) {
2002 return 0;
2005 ret = kvm_vm_ioctl(s, KVM_HAS_DEVICE_ATTR, &attribute);
2006 /* kvm returns 0 on success for HAS_DEVICE_ATTR */
2007 return ret ? 0 : 1;
2010 int kvm_has_sync_mmu(void)
2012 return kvm_check_extension(kvm_state, KVM_CAP_SYNC_MMU);
2015 int kvm_has_vcpu_events(void)
2017 return kvm_state->vcpu_events;
2020 int kvm_has_robust_singlestep(void)
2022 return kvm_state->robust_singlestep;
2025 int kvm_has_debugregs(void)
2027 return kvm_state->debugregs;
2030 int kvm_has_xsave(void)
2032 return kvm_state->xsave;
2035 int kvm_has_xcrs(void)
2037 return kvm_state->xcrs;
2040 int kvm_has_pit_state2(void)
2042 return kvm_state->pit_state2;
2045 int kvm_has_many_ioeventfds(void)
2047 if (!kvm_enabled()) {
2048 return 0;
2050 return kvm_state->many_ioeventfds;
2053 int kvm_has_gsi_routing(void)
2055 #ifdef KVM_CAP_IRQ_ROUTING
2056 return kvm_check_extension(kvm_state, KVM_CAP_IRQ_ROUTING);
2057 #else
2058 return false;
2059 #endif
2062 int kvm_has_intx_set_mask(void)
2064 return kvm_state->intx_set_mask;
2067 void kvm_setup_guest_memory(void *start, size_t size)
2069 if (!kvm_has_sync_mmu()) {
2070 int ret = qemu_madvise(start, size, QEMU_MADV_DONTFORK);
2072 if (ret) {
2073 perror("qemu_madvise");
2074 fprintf(stderr,
2075 "Need MADV_DONTFORK in absence of synchronous KVM MMU\n");
2076 exit(1);
2081 #ifdef KVM_CAP_SET_GUEST_DEBUG
2082 struct kvm_sw_breakpoint *kvm_find_sw_breakpoint(CPUState *cpu,
2083 target_ulong pc)
2085 struct kvm_sw_breakpoint *bp;
2087 QTAILQ_FOREACH(bp, &cpu->kvm_state->kvm_sw_breakpoints, entry) {
2088 if (bp->pc == pc) {
2089 return bp;
2092 return NULL;
2095 int kvm_sw_breakpoints_active(CPUState *cpu)
2097 return !QTAILQ_EMPTY(&cpu->kvm_state->kvm_sw_breakpoints);
2100 struct kvm_set_guest_debug_data {
2101 struct kvm_guest_debug dbg;
2102 CPUState *cpu;
2103 int err;
2106 static void kvm_invoke_set_guest_debug(void *data)
2108 struct kvm_set_guest_debug_data *dbg_data = data;
2110 dbg_data->err = kvm_vcpu_ioctl(dbg_data->cpu, KVM_SET_GUEST_DEBUG,
2111 &dbg_data->dbg);
2114 int kvm_update_guest_debug(CPUState *cpu, unsigned long reinject_trap)
2116 struct kvm_set_guest_debug_data data;
2118 data.dbg.control = reinject_trap;
2120 if (cpu->singlestep_enabled) {
2121 data.dbg.control |= KVM_GUESTDBG_ENABLE | KVM_GUESTDBG_SINGLESTEP;
2123 kvm_arch_update_guest_debug(cpu, &data.dbg);
2124 data.cpu = cpu;
2126 run_on_cpu(cpu, kvm_invoke_set_guest_debug, &data);
2127 return data.err;
2130 int kvm_insert_breakpoint(CPUState *cpu, target_ulong addr,
2131 target_ulong len, int type)
2133 struct kvm_sw_breakpoint *bp;
2134 int err;
2136 if (type == GDB_BREAKPOINT_SW) {
2137 bp = kvm_find_sw_breakpoint(cpu, addr);
2138 if (bp) {
2139 bp->use_count++;
2140 return 0;
2143 bp = g_malloc(sizeof(struct kvm_sw_breakpoint));
2144 bp->pc = addr;
2145 bp->use_count = 1;
2146 err = kvm_arch_insert_sw_breakpoint(cpu, bp);
2147 if (err) {
2148 g_free(bp);
2149 return err;
2152 QTAILQ_INSERT_HEAD(&cpu->kvm_state->kvm_sw_breakpoints, bp, entry);
2153 } else {
2154 err = kvm_arch_insert_hw_breakpoint(addr, len, type);
2155 if (err) {
2156 return err;
2160 CPU_FOREACH(cpu) {
2161 err = kvm_update_guest_debug(cpu, 0);
2162 if (err) {
2163 return err;
2166 return 0;
2169 int kvm_remove_breakpoint(CPUState *cpu, target_ulong addr,
2170 target_ulong len, int type)
2172 struct kvm_sw_breakpoint *bp;
2173 int err;
2175 if (type == GDB_BREAKPOINT_SW) {
2176 bp = kvm_find_sw_breakpoint(cpu, addr);
2177 if (!bp) {
2178 return -ENOENT;
2181 if (bp->use_count > 1) {
2182 bp->use_count--;
2183 return 0;
2186 err = kvm_arch_remove_sw_breakpoint(cpu, bp);
2187 if (err) {
2188 return err;
2191 QTAILQ_REMOVE(&cpu->kvm_state->kvm_sw_breakpoints, bp, entry);
2192 g_free(bp);
2193 } else {
2194 err = kvm_arch_remove_hw_breakpoint(addr, len, type);
2195 if (err) {
2196 return err;
2200 CPU_FOREACH(cpu) {
2201 err = kvm_update_guest_debug(cpu, 0);
2202 if (err) {
2203 return err;
2206 return 0;
2209 void kvm_remove_all_breakpoints(CPUState *cpu)
2211 struct kvm_sw_breakpoint *bp, *next;
2212 KVMState *s = cpu->kvm_state;
2213 CPUState *tmpcpu;
2215 QTAILQ_FOREACH_SAFE(bp, &s->kvm_sw_breakpoints, entry, next) {
2216 if (kvm_arch_remove_sw_breakpoint(cpu, bp) != 0) {
2217 /* Try harder to find a CPU that currently sees the breakpoint. */
2218 CPU_FOREACH(tmpcpu) {
2219 if (kvm_arch_remove_sw_breakpoint(tmpcpu, bp) == 0) {
2220 break;
2224 QTAILQ_REMOVE(&s->kvm_sw_breakpoints, bp, entry);
2225 g_free(bp);
2227 kvm_arch_remove_all_hw_breakpoints();
2229 CPU_FOREACH(cpu) {
2230 kvm_update_guest_debug(cpu, 0);
2234 #else /* !KVM_CAP_SET_GUEST_DEBUG */
2236 int kvm_update_guest_debug(CPUState *cpu, unsigned long reinject_trap)
2238 return -EINVAL;
2241 int kvm_insert_breakpoint(CPUState *cpu, target_ulong addr,
2242 target_ulong len, int type)
2244 return -EINVAL;
2247 int kvm_remove_breakpoint(CPUState *cpu, target_ulong addr,
2248 target_ulong len, int type)
2250 return -EINVAL;
2253 void kvm_remove_all_breakpoints(CPUState *cpu)
2256 #endif /* !KVM_CAP_SET_GUEST_DEBUG */
2258 int kvm_set_signal_mask(CPUState *cpu, const sigset_t *sigset)
2260 KVMState *s = kvm_state;
2261 struct kvm_signal_mask *sigmask;
2262 int r;
2264 if (!sigset) {
2265 return kvm_vcpu_ioctl(cpu, KVM_SET_SIGNAL_MASK, NULL);
2268 sigmask = g_malloc(sizeof(*sigmask) + sizeof(*sigset));
2270 sigmask->len = s->sigmask_len;
2271 memcpy(sigmask->sigset, sigset, sizeof(*sigset));
2272 r = kvm_vcpu_ioctl(cpu, KVM_SET_SIGNAL_MASK, sigmask);
2273 g_free(sigmask);
2275 return r;
2277 int kvm_on_sigbus_vcpu(CPUState *cpu, int code, void *addr)
2279 return kvm_arch_on_sigbus_vcpu(cpu, code, addr);
2282 int kvm_on_sigbus(int code, void *addr)
2284 return kvm_arch_on_sigbus(code, addr);
2287 int kvm_create_device(KVMState *s, uint64_t type, bool test)
2289 int ret;
2290 struct kvm_create_device create_dev;
2292 create_dev.type = type;
2293 create_dev.fd = -1;
2294 create_dev.flags = test ? KVM_CREATE_DEVICE_TEST : 0;
2296 if (!kvm_check_extension(s, KVM_CAP_DEVICE_CTRL)) {
2297 return -ENOTSUP;
2300 ret = kvm_vm_ioctl(s, KVM_CREATE_DEVICE, &create_dev);
2301 if (ret) {
2302 return ret;
2305 return test ? 0 : create_dev.fd;
2308 int kvm_set_one_reg(CPUState *cs, uint64_t id, void *source)
2310 struct kvm_one_reg reg;
2311 int r;
2313 reg.id = id;
2314 reg.addr = (uintptr_t) source;
2315 r = kvm_vcpu_ioctl(cs, KVM_SET_ONE_REG, &reg);
2316 if (r) {
2317 trace_kvm_failed_reg_set(id, strerror(r));
2319 return r;
2322 int kvm_get_one_reg(CPUState *cs, uint64_t id, void *target)
2324 struct kvm_one_reg reg;
2325 int r;
2327 reg.id = id;
2328 reg.addr = (uintptr_t) target;
2329 r = kvm_vcpu_ioctl(cs, KVM_GET_ONE_REG, &reg);
2330 if (r) {
2331 trace_kvm_failed_reg_get(id, strerror(r));
2333 return r;
2336 static void kvm_accel_class_init(ObjectClass *oc, void *data)
2338 AccelClass *ac = ACCEL_CLASS(oc);
2339 ac->name = "KVM";
2340 ac->init_machine = kvm_init;
2341 ac->allowed = &kvm_allowed;
2344 static const TypeInfo kvm_accel_type = {
2345 .name = TYPE_KVM_ACCEL,
2346 .parent = TYPE_ACCEL,
2347 .class_init = kvm_accel_class_init,
2348 .instance_size = sizeof(KVMState),
2351 static void kvm_type_init(void)
2353 type_register_static(&kvm_accel_type);
2356 type_init(kvm_type_init);