4 * Copyright (c) 2003-2005 Fabrice Bellard
6 * This library is free software; you can redistribute it and/or
7 * modify it under the terms of the GNU Lesser General Public
8 * License as published by the Free Software Foundation; either
9 * version 2 of the License, or (at your option) any later version.
11 * This library is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
14 * Lesser General Public License for more details.
16 * You should have received a copy of the GNU Lesser General Public
17 * License along with this library; if not, see <http://www.gnu.org/licenses/>.
20 #include "qemu-common.h"
21 #ifdef CONFIG_USER_ONLY
33 #include "qemu-char.h"
38 #define MAX_PACKET_LENGTH 4096
40 #include "qemu_socket.h"
48 GDB_SIGNAL_UNKNOWN
= 143
51 #ifdef CONFIG_USER_ONLY
53 /* Map target signal numbers to GDB protocol signal numbers and vice
54 * versa. For user emulation's currently supported systems, we can
55 * assume most signals are defined.
58 static int gdb_signal_table
[] = {
218 /* In system mode we only need SIGINT and SIGTRAP; other signals
219 are not yet supported. */
226 static int gdb_signal_table
[] = {
236 #ifdef CONFIG_USER_ONLY
237 static int target_signal_to_gdb (int sig
)
240 for (i
= 0; i
< ARRAY_SIZE (gdb_signal_table
); i
++)
241 if (gdb_signal_table
[i
] == sig
)
243 return GDB_SIGNAL_UNKNOWN
;
247 static int gdb_signal_to_target (int sig
)
249 if (sig
< ARRAY_SIZE (gdb_signal_table
))
250 return gdb_signal_table
[sig
];
257 typedef struct GDBRegisterState
{
263 struct GDBRegisterState
*next
;
274 typedef struct GDBState
{
275 CPUState
*c_cpu
; /* current CPU for step/continue ops */
276 CPUState
*g_cpu
; /* current CPU for other ops */
277 CPUState
*query_cpu
; /* for q{f|s}ThreadInfo */
278 enum RSState state
; /* parsing state */
279 char line_buf
[MAX_PACKET_LENGTH
];
282 uint8_t last_packet
[MAX_PACKET_LENGTH
+ 4];
285 #ifdef CONFIG_USER_ONLY
289 CharDriverState
*chr
;
290 CharDriverState
*mon_chr
;
294 /* By default use no IRQs and no timers while single stepping so as to
295 * make single stepping like an ICE HW step.
297 static int sstep_flags
= SSTEP_ENABLE
|SSTEP_NOIRQ
|SSTEP_NOTIMER
;
299 static GDBState
*gdbserver_state
;
301 /* This is an ugly hack to cope with both new and old gdb.
302 If gdb sends qXfer:features:read then assume we're talking to a newish
303 gdb that understands target descriptions. */
304 static int gdb_has_xml
;
306 #ifdef CONFIG_USER_ONLY
307 /* XXX: This is not thread safe. Do we care? */
308 static int gdbserver_fd
= -1;
310 static int get_char(GDBState
*s
)
316 ret
= recv(s
->fd
, &ch
, 1, 0);
318 if (errno
== ECONNRESET
)
320 if (errno
!= EINTR
&& errno
!= EAGAIN
)
322 } else if (ret
== 0) {
334 static gdb_syscall_complete_cb gdb_current_syscall_cb
;
342 /* If gdb is connected when the first semihosting syscall occurs then use
343 remote gdb syscalls. Otherwise use native file IO. */
344 int use_gdb_syscalls(void)
346 if (gdb_syscall_mode
== GDB_SYS_UNKNOWN
) {
347 gdb_syscall_mode
= (gdbserver_state
? GDB_SYS_ENABLED
350 return gdb_syscall_mode
== GDB_SYS_ENABLED
;
353 /* Resume execution. */
354 static inline void gdb_continue(GDBState
*s
)
356 #ifdef CONFIG_USER_ONLY
357 s
->running_state
= 1;
363 static void put_buffer(GDBState
*s
, const uint8_t *buf
, int len
)
365 #ifdef CONFIG_USER_ONLY
369 ret
= send(s
->fd
, buf
, len
, 0);
371 if (errno
!= EINTR
&& errno
!= EAGAIN
)
379 qemu_chr_write(s
->chr
, buf
, len
);
383 static inline int fromhex(int v
)
385 if (v
>= '0' && v
<= '9')
387 else if (v
>= 'A' && v
<= 'F')
389 else if (v
>= 'a' && v
<= 'f')
395 static inline int tohex(int v
)
403 static void memtohex(char *buf
, const uint8_t *mem
, int len
)
408 for(i
= 0; i
< len
; i
++) {
410 *q
++ = tohex(c
>> 4);
411 *q
++ = tohex(c
& 0xf);
416 static void hextomem(uint8_t *mem
, const char *buf
, int len
)
420 for(i
= 0; i
< len
; i
++) {
421 mem
[i
] = (fromhex(buf
[0]) << 4) | fromhex(buf
[1]);
426 /* return -1 if error, 0 if OK */
427 static int put_packet_binary(GDBState
*s
, const char *buf
, int len
)
438 for(i
= 0; i
< len
; i
++) {
442 *(p
++) = tohex((csum
>> 4) & 0xf);
443 *(p
++) = tohex((csum
) & 0xf);
445 s
->last_packet_len
= p
- s
->last_packet
;
446 put_buffer(s
, (uint8_t *)s
->last_packet
, s
->last_packet_len
);
448 #ifdef CONFIG_USER_ONLY
461 /* return -1 if error, 0 if OK */
462 static int put_packet(GDBState
*s
, const char *buf
)
465 printf("reply='%s'\n", buf
);
468 return put_packet_binary(s
, buf
, strlen(buf
));
471 /* The GDB remote protocol transfers values in target byte order. This means
472 we can use the raw memory access routines to access the value buffer.
473 Conveniently, these also handle the case where the buffer is mis-aligned.
475 #define GET_REG8(val) do { \
476 stb_p(mem_buf, val); \
479 #define GET_REG16(val) do { \
480 stw_p(mem_buf, val); \
483 #define GET_REG32(val) do { \
484 stl_p(mem_buf, val); \
487 #define GET_REG64(val) do { \
488 stq_p(mem_buf, val); \
492 #if TARGET_LONG_BITS == 64
493 #define GET_REGL(val) GET_REG64(val)
494 #define ldtul_p(addr) ldq_p(addr)
496 #define GET_REGL(val) GET_REG32(val)
497 #define ldtul_p(addr) ldl_p(addr)
500 #if defined(TARGET_I386)
503 static const int gpr_map
[16] = {
504 R_EAX
, R_EBX
, R_ECX
, R_EDX
, R_ESI
, R_EDI
, R_EBP
, R_ESP
,
505 8, 9, 10, 11, 12, 13, 14, 15
508 #define gpr_map gpr_map32
510 static const int gpr_map32
[8] = { 0, 1, 2, 3, 4, 5, 6, 7 };
512 #define NUM_CORE_REGS (CPU_NB_REGS * 2 + 25)
514 #define IDX_IP_REG CPU_NB_REGS
515 #define IDX_FLAGS_REG (IDX_IP_REG + 1)
516 #define IDX_SEG_REGS (IDX_FLAGS_REG + 1)
517 #define IDX_FP_REGS (IDX_SEG_REGS + 6)
518 #define IDX_XMM_REGS (IDX_FP_REGS + 16)
519 #define IDX_MXCSR_REG (IDX_XMM_REGS + CPU_NB_REGS)
521 static int cpu_gdb_read_register(CPUState
*env
, uint8_t *mem_buf
, int n
)
523 if (n
< CPU_NB_REGS
) {
524 if (TARGET_LONG_BITS
== 64 && env
->hflags
& HF_CS64_MASK
) {
525 GET_REG64(env
->regs
[gpr_map
[n
]]);
526 } else if (n
< CPU_NB_REGS32
) {
527 GET_REG32(env
->regs
[gpr_map32
[n
]]);
529 } else if (n
>= IDX_FP_REGS
&& n
< IDX_FP_REGS
+ 8) {
530 #ifdef USE_X86LDOUBLE
531 /* FIXME: byteswap float values - after fixing fpregs layout. */
532 memcpy(mem_buf
, &env
->fpregs
[n
- IDX_FP_REGS
], 10);
534 memset(mem_buf
, 0, 10);
537 } else if (n
>= IDX_XMM_REGS
&& n
< IDX_XMM_REGS
+ CPU_NB_REGS
) {
539 if (n
< CPU_NB_REGS32
||
540 (TARGET_LONG_BITS
== 64 && env
->hflags
& HF_CS64_MASK
)) {
541 stq_p(mem_buf
, env
->xmm_regs
[n
].XMM_Q(0));
542 stq_p(mem_buf
+ 8, env
->xmm_regs
[n
].XMM_Q(1));
548 if (TARGET_LONG_BITS
== 64 && env
->hflags
& HF_CS64_MASK
) {
553 case IDX_FLAGS_REG
: GET_REG32(env
->eflags
);
555 case IDX_SEG_REGS
: GET_REG32(env
->segs
[R_CS
].selector
);
556 case IDX_SEG_REGS
+ 1: GET_REG32(env
->segs
[R_SS
].selector
);
557 case IDX_SEG_REGS
+ 2: GET_REG32(env
->segs
[R_DS
].selector
);
558 case IDX_SEG_REGS
+ 3: GET_REG32(env
->segs
[R_ES
].selector
);
559 case IDX_SEG_REGS
+ 4: GET_REG32(env
->segs
[R_FS
].selector
);
560 case IDX_SEG_REGS
+ 5: GET_REG32(env
->segs
[R_GS
].selector
);
562 case IDX_FP_REGS
+ 8: GET_REG32(env
->fpuc
);
563 case IDX_FP_REGS
+ 9: GET_REG32((env
->fpus
& ~0x3800) |
564 (env
->fpstt
& 0x7) << 11);
565 case IDX_FP_REGS
+ 10: GET_REG32(0); /* ftag */
566 case IDX_FP_REGS
+ 11: GET_REG32(0); /* fiseg */
567 case IDX_FP_REGS
+ 12: GET_REG32(0); /* fioff */
568 case IDX_FP_REGS
+ 13: GET_REG32(0); /* foseg */
569 case IDX_FP_REGS
+ 14: GET_REG32(0); /* fooff */
570 case IDX_FP_REGS
+ 15: GET_REG32(0); /* fop */
572 case IDX_MXCSR_REG
: GET_REG32(env
->mxcsr
);
578 static int cpu_x86_gdb_load_seg(CPUState
*env
, int sreg
, uint8_t *mem_buf
)
580 uint16_t selector
= ldl_p(mem_buf
);
582 if (selector
!= env
->segs
[sreg
].selector
) {
583 #if defined(CONFIG_USER_ONLY)
584 cpu_x86_load_seg(env
, sreg
, selector
);
586 unsigned int limit
, flags
;
589 if (!(env
->cr
[0] & CR0_PE_MASK
) || (env
->eflags
& VM_MASK
)) {
590 base
= selector
<< 4;
594 if (!cpu_x86_get_descr_debug(env
, selector
, &base
, &limit
, &flags
))
597 cpu_x86_load_seg_cache(env
, sreg
, selector
, base
, limit
, flags
);
603 static int cpu_gdb_write_register(CPUState
*env
, uint8_t *mem_buf
, int n
)
607 if (n
< CPU_NB_REGS
) {
608 if (TARGET_LONG_BITS
== 64 && env
->hflags
& HF_CS64_MASK
) {
609 env
->regs
[gpr_map
[n
]] = ldtul_p(mem_buf
);
610 return sizeof(target_ulong
);
611 } else if (n
< CPU_NB_REGS32
) {
613 env
->regs
[n
] &= ~0xffffffffUL
;
614 env
->regs
[n
] |= (uint32_t)ldl_p(mem_buf
);
617 } else if (n
>= IDX_FP_REGS
&& n
< IDX_FP_REGS
+ 8) {
618 #ifdef USE_X86LDOUBLE
619 /* FIXME: byteswap float values - after fixing fpregs layout. */
620 memcpy(&env
->fpregs
[n
- IDX_FP_REGS
], mem_buf
, 10);
623 } else if (n
>= IDX_XMM_REGS
&& n
< IDX_XMM_REGS
+ CPU_NB_REGS
) {
625 if (n
< CPU_NB_REGS32
||
626 (TARGET_LONG_BITS
== 64 && env
->hflags
& HF_CS64_MASK
)) {
627 env
->xmm_regs
[n
].XMM_Q(0) = ldq_p(mem_buf
);
628 env
->xmm_regs
[n
].XMM_Q(1) = ldq_p(mem_buf
+ 8);
634 if (TARGET_LONG_BITS
== 64 && env
->hflags
& HF_CS64_MASK
) {
635 env
->eip
= ldq_p(mem_buf
);
638 env
->eip
&= ~0xffffffffUL
;
639 env
->eip
|= (uint32_t)ldl_p(mem_buf
);
643 env
->eflags
= ldl_p(mem_buf
);
646 case IDX_SEG_REGS
: return cpu_x86_gdb_load_seg(env
, R_CS
, mem_buf
);
647 case IDX_SEG_REGS
+ 1: return cpu_x86_gdb_load_seg(env
, R_SS
, mem_buf
);
648 case IDX_SEG_REGS
+ 2: return cpu_x86_gdb_load_seg(env
, R_DS
, mem_buf
);
649 case IDX_SEG_REGS
+ 3: return cpu_x86_gdb_load_seg(env
, R_ES
, mem_buf
);
650 case IDX_SEG_REGS
+ 4: return cpu_x86_gdb_load_seg(env
, R_FS
, mem_buf
);
651 case IDX_SEG_REGS
+ 5: return cpu_x86_gdb_load_seg(env
, R_GS
, mem_buf
);
653 case IDX_FP_REGS
+ 8:
654 env
->fpuc
= ldl_p(mem_buf
);
656 case IDX_FP_REGS
+ 9:
657 tmp
= ldl_p(mem_buf
);
658 env
->fpstt
= (tmp
>> 11) & 7;
659 env
->fpus
= tmp
& ~0x3800;
661 case IDX_FP_REGS
+ 10: /* ftag */ return 4;
662 case IDX_FP_REGS
+ 11: /* fiseg */ return 4;
663 case IDX_FP_REGS
+ 12: /* fioff */ return 4;
664 case IDX_FP_REGS
+ 13: /* foseg */ return 4;
665 case IDX_FP_REGS
+ 14: /* fooff */ return 4;
666 case IDX_FP_REGS
+ 15: /* fop */ return 4;
669 env
->mxcsr
= ldl_p(mem_buf
);
673 /* Unrecognised register. */
677 #elif defined (TARGET_PPC)
679 /* Old gdb always expects FP registers. Newer (xml-aware) gdb only
680 expects whatever the target description contains. Due to a
681 historical mishap the FP registers appear in between core integer
682 regs and PC, MSR, CR, and so forth. We hack round this by giving the
683 FP regs zero size when talking to a newer gdb. */
684 #define NUM_CORE_REGS 71
685 #if defined (TARGET_PPC64)
686 #define GDB_CORE_XML "power64-core.xml"
688 #define GDB_CORE_XML "power-core.xml"
691 static int cpu_gdb_read_register(CPUState
*env
, uint8_t *mem_buf
, int n
)
695 GET_REGL(env
->gpr
[n
]);
700 stfq_p(mem_buf
, env
->fpr
[n
-32]);
704 case 64: GET_REGL(env
->nip
);
705 case 65: GET_REGL(env
->msr
);
710 for (i
= 0; i
< 8; i
++)
711 cr
|= env
->crf
[i
] << (32 - ((i
+ 1) * 4));
714 case 67: GET_REGL(env
->lr
);
715 case 68: GET_REGL(env
->ctr
);
716 case 69: GET_REGL(env
->xer
);
721 GET_REG32(0); /* fpscr */
728 static int cpu_gdb_write_register(CPUState
*env
, uint8_t *mem_buf
, int n
)
732 env
->gpr
[n
] = ldtul_p(mem_buf
);
733 return sizeof(target_ulong
);
738 env
->fpr
[n
-32] = ldfq_p(mem_buf
);
743 env
->nip
= ldtul_p(mem_buf
);
744 return sizeof(target_ulong
);
746 ppc_store_msr(env
, ldtul_p(mem_buf
));
747 return sizeof(target_ulong
);
750 uint32_t cr
= ldl_p(mem_buf
);
752 for (i
= 0; i
< 8; i
++)
753 env
->crf
[i
] = (cr
>> (32 - ((i
+ 1) * 4))) & 0xF;
757 env
->lr
= ldtul_p(mem_buf
);
758 return sizeof(target_ulong
);
760 env
->ctr
= ldtul_p(mem_buf
);
761 return sizeof(target_ulong
);
763 env
->xer
= ldtul_p(mem_buf
);
764 return sizeof(target_ulong
);
775 #elif defined (TARGET_SPARC)
777 #if defined(TARGET_SPARC64) && !defined(TARGET_ABI32)
778 #define NUM_CORE_REGS 86
780 #define NUM_CORE_REGS 72
784 #define GET_REGA(val) GET_REG32(val)
786 #define GET_REGA(val) GET_REGL(val)
789 static int cpu_gdb_read_register(CPUState
*env
, uint8_t *mem_buf
, int n
)
793 GET_REGA(env
->gregs
[n
]);
796 /* register window */
797 GET_REGA(env
->regwptr
[n
- 8]);
799 #if defined(TARGET_ABI32) || !defined(TARGET_SPARC64)
802 GET_REG32(*((uint32_t *)&env
->fpr
[n
- 32]));
804 /* Y, PSR, WIM, TBR, PC, NPC, FPSR, CPSR */
806 case 64: GET_REGA(env
->y
);
807 case 65: GET_REGA(GET_PSR(env
));
808 case 66: GET_REGA(env
->wim
);
809 case 67: GET_REGA(env
->tbr
);
810 case 68: GET_REGA(env
->pc
);
811 case 69: GET_REGA(env
->npc
);
812 case 70: GET_REGA(env
->fsr
);
813 case 71: GET_REGA(0); /* csr */
814 default: GET_REGA(0);
819 GET_REG32(*((uint32_t *)&env
->fpr
[n
- 32]));
822 /* f32-f62 (double width, even numbers only) */
825 val
= (uint64_t)*((uint32_t *)&env
->fpr
[(n
- 64) * 2 + 32]) << 32;
826 val
|= *((uint32_t *)&env
->fpr
[(n
- 64) * 2 + 33]);
830 case 80: GET_REGL(env
->pc
);
831 case 81: GET_REGL(env
->npc
);
832 case 82: GET_REGL(((uint64_t)GET_CCR(env
) << 32) |
833 ((env
->asi
& 0xff) << 24) |
834 ((env
->pstate
& 0xfff) << 8) |
836 case 83: GET_REGL(env
->fsr
);
837 case 84: GET_REGL(env
->fprs
);
838 case 85: GET_REGL(env
->y
);
844 static int cpu_gdb_write_register(CPUState
*env
, uint8_t *mem_buf
, int n
)
846 #if defined(TARGET_ABI32)
849 tmp
= ldl_p(mem_buf
);
853 tmp
= ldtul_p(mem_buf
);
860 /* register window */
861 env
->regwptr
[n
- 8] = tmp
;
863 #if defined(TARGET_ABI32) || !defined(TARGET_SPARC64)
866 *((uint32_t *)&env
->fpr
[n
- 32]) = tmp
;
868 /* Y, PSR, WIM, TBR, PC, NPC, FPSR, CPSR */
870 case 64: env
->y
= tmp
; break;
871 case 65: PUT_PSR(env
, tmp
); break;
872 case 66: env
->wim
= tmp
; break;
873 case 67: env
->tbr
= tmp
; break;
874 case 68: env
->pc
= tmp
; break;
875 case 69: env
->npc
= tmp
; break;
876 case 70: env
->fsr
= tmp
; break;
884 env
->fpr
[n
] = ldfl_p(mem_buf
);
887 /* f32-f62 (double width, even numbers only) */
888 *((uint32_t *)&env
->fpr
[(n
- 64) * 2 + 32]) = tmp
>> 32;
889 *((uint32_t *)&env
->fpr
[(n
- 64) * 2 + 33]) = tmp
;
892 case 80: env
->pc
= tmp
; break;
893 case 81: env
->npc
= tmp
; break;
895 PUT_CCR(env
, tmp
>> 32);
896 env
->asi
= (tmp
>> 24) & 0xff;
897 env
->pstate
= (tmp
>> 8) & 0xfff;
898 PUT_CWP64(env
, tmp
& 0xff);
900 case 83: env
->fsr
= tmp
; break;
901 case 84: env
->fprs
= tmp
; break;
902 case 85: env
->y
= tmp
; break;
909 #elif defined (TARGET_ARM)
911 /* Old gdb always expect FPA registers. Newer (xml-aware) gdb only expect
912 whatever the target description contains. Due to a historical mishap
913 the FPA registers appear in between core integer regs and the CPSR.
914 We hack round this by giving the FPA regs zero size when talking to a
916 #define NUM_CORE_REGS 26
917 #define GDB_CORE_XML "arm-core.xml"
919 static int cpu_gdb_read_register(CPUState
*env
, uint8_t *mem_buf
, int n
)
922 /* Core integer register. */
923 GET_REG32(env
->regs
[n
]);
929 memset(mem_buf
, 0, 12);
934 /* FPA status register. */
940 GET_REG32(cpsr_read(env
));
942 /* Unknown register. */
946 static int cpu_gdb_write_register(CPUState
*env
, uint8_t *mem_buf
, int n
)
950 tmp
= ldl_p(mem_buf
);
952 /* Mask out low bit of PC to workaround gdb bugs. This will probably
953 cause problems if we ever implement the Jazelle DBX extensions. */
958 /* Core integer register. */
962 if (n
< 24) { /* 16-23 */
963 /* FPA registers (ignored). */
970 /* FPA status register (ignored). */
976 cpsr_write (env
, tmp
, 0xffffffff);
979 /* Unknown register. */
983 #elif defined (TARGET_M68K)
985 #define NUM_CORE_REGS 18
987 #define GDB_CORE_XML "cf-core.xml"
989 static int cpu_gdb_read_register(CPUState
*env
, uint8_t *mem_buf
, int n
)
993 GET_REG32(env
->dregs
[n
]);
996 GET_REG32(env
->aregs
[n
- 8]);
999 case 16: GET_REG32(env
->sr
);
1000 case 17: GET_REG32(env
->pc
);
1003 /* FP registers not included here because they vary between
1004 ColdFire and m68k. Use XML bits for these. */
1008 static int cpu_gdb_write_register(CPUState
*env
, uint8_t *mem_buf
, int n
)
1012 tmp
= ldl_p(mem_buf
);
1016 env
->dregs
[n
] = tmp
;
1019 env
->aregs
[n
- 8] = tmp
;
1022 case 16: env
->sr
= tmp
; break;
1023 case 17: env
->pc
= tmp
; break;
1029 #elif defined (TARGET_MIPS)
1031 #define NUM_CORE_REGS 73
1033 static int cpu_gdb_read_register(CPUState
*env
, uint8_t *mem_buf
, int n
)
1036 GET_REGL(env
->active_tc
.gpr
[n
]);
1038 if (env
->CP0_Config1
& (1 << CP0C1_FP
)) {
1039 if (n
>= 38 && n
< 70) {
1040 if (env
->CP0_Status
& (1 << CP0St_FR
))
1041 GET_REGL(env
->active_fpu
.fpr
[n
- 38].d
);
1043 GET_REGL(env
->active_fpu
.fpr
[n
- 38].w
[FP_ENDIAN_IDX
]);
1046 case 70: GET_REGL((int32_t)env
->active_fpu
.fcr31
);
1047 case 71: GET_REGL((int32_t)env
->active_fpu
.fcr0
);
1051 case 32: GET_REGL((int32_t)env
->CP0_Status
);
1052 case 33: GET_REGL(env
->active_tc
.LO
[0]);
1053 case 34: GET_REGL(env
->active_tc
.HI
[0]);
1054 case 35: GET_REGL(env
->CP0_BadVAddr
);
1055 case 36: GET_REGL((int32_t)env
->CP0_Cause
);
1056 case 37: GET_REGL(env
->active_tc
.PC
);
1057 case 72: GET_REGL(0); /* fp */
1058 case 89: GET_REGL((int32_t)env
->CP0_PRid
);
1060 if (n
>= 73 && n
<= 88) {
1061 /* 16 embedded regs. */
1068 /* convert MIPS rounding mode in FCR31 to IEEE library */
1069 static unsigned int ieee_rm
[] =
1071 float_round_nearest_even
,
1072 float_round_to_zero
,
1076 #define RESTORE_ROUNDING_MODE \
1077 set_float_rounding_mode(ieee_rm[env->active_fpu.fcr31 & 3], &env->active_fpu.fp_status)
1079 static int cpu_gdb_write_register(CPUState
*env
, uint8_t *mem_buf
, int n
)
1083 tmp
= ldtul_p(mem_buf
);
1086 env
->active_tc
.gpr
[n
] = tmp
;
1087 return sizeof(target_ulong
);
1089 if (env
->CP0_Config1
& (1 << CP0C1_FP
)
1090 && n
>= 38 && n
< 73) {
1092 if (env
->CP0_Status
& (1 << CP0St_FR
))
1093 env
->active_fpu
.fpr
[n
- 38].d
= tmp
;
1095 env
->active_fpu
.fpr
[n
- 38].w
[FP_ENDIAN_IDX
] = tmp
;
1099 env
->active_fpu
.fcr31
= tmp
& 0xFF83FFFF;
1100 /* set rounding mode */
1101 RESTORE_ROUNDING_MODE
;
1102 #ifndef CONFIG_SOFTFLOAT
1103 /* no floating point exception for native float */
1104 SET_FP_ENABLE(env
->active_fpu
.fcr31
, 0);
1107 case 71: env
->active_fpu
.fcr0
= tmp
; break;
1109 return sizeof(target_ulong
);
1112 case 32: env
->CP0_Status
= tmp
; break;
1113 case 33: env
->active_tc
.LO
[0] = tmp
; break;
1114 case 34: env
->active_tc
.HI
[0] = tmp
; break;
1115 case 35: env
->CP0_BadVAddr
= tmp
; break;
1116 case 36: env
->CP0_Cause
= tmp
; break;
1117 case 37: env
->active_tc
.PC
= tmp
; break;
1118 case 72: /* fp, ignored */ break;
1122 /* Other registers are readonly. Ignore writes. */
1126 return sizeof(target_ulong
);
1128 #elif defined (TARGET_SH4)
1130 /* Hint: Use "set architecture sh4" in GDB to see fpu registers */
1131 /* FIXME: We should use XML for this. */
1133 #define NUM_CORE_REGS 59
1135 static int cpu_gdb_read_register(CPUState
*env
, uint8_t *mem_buf
, int n
)
1138 if ((env
->sr
& (SR_MD
| SR_RB
)) == (SR_MD
| SR_RB
)) {
1139 GET_REGL(env
->gregs
[n
+ 16]);
1141 GET_REGL(env
->gregs
[n
]);
1143 } else if (n
< 16) {
1144 GET_REGL(env
->gregs
[n
- 8]);
1145 } else if (n
>= 25 && n
< 41) {
1146 GET_REGL(env
->fregs
[(n
- 25) + ((env
->fpscr
& FPSCR_FR
) ? 16 : 0)]);
1147 } else if (n
>= 43 && n
< 51) {
1148 GET_REGL(env
->gregs
[n
- 43]);
1149 } else if (n
>= 51 && n
< 59) {
1150 GET_REGL(env
->gregs
[n
- (51 - 16)]);
1153 case 16: GET_REGL(env
->pc
);
1154 case 17: GET_REGL(env
->pr
);
1155 case 18: GET_REGL(env
->gbr
);
1156 case 19: GET_REGL(env
->vbr
);
1157 case 20: GET_REGL(env
->mach
);
1158 case 21: GET_REGL(env
->macl
);
1159 case 22: GET_REGL(env
->sr
);
1160 case 23: GET_REGL(env
->fpul
);
1161 case 24: GET_REGL(env
->fpscr
);
1162 case 41: GET_REGL(env
->ssr
);
1163 case 42: GET_REGL(env
->spc
);
1169 static int cpu_gdb_write_register(CPUState
*env
, uint8_t *mem_buf
, int n
)
1173 tmp
= ldl_p(mem_buf
);
1176 if ((env
->sr
& (SR_MD
| SR_RB
)) == (SR_MD
| SR_RB
)) {
1177 env
->gregs
[n
+ 16] = tmp
;
1179 env
->gregs
[n
] = tmp
;
1182 } else if (n
< 16) {
1183 env
->gregs
[n
- 8] = tmp
;
1185 } else if (n
>= 25 && n
< 41) {
1186 env
->fregs
[(n
- 25) + ((env
->fpscr
& FPSCR_FR
) ? 16 : 0)] = tmp
;
1187 } else if (n
>= 43 && n
< 51) {
1188 env
->gregs
[n
- 43] = tmp
;
1190 } else if (n
>= 51 && n
< 59) {
1191 env
->gregs
[n
- (51 - 16)] = tmp
;
1195 case 16: env
->pc
= tmp
;
1196 case 17: env
->pr
= tmp
;
1197 case 18: env
->gbr
= tmp
;
1198 case 19: env
->vbr
= tmp
;
1199 case 20: env
->mach
= tmp
;
1200 case 21: env
->macl
= tmp
;
1201 case 22: env
->sr
= tmp
;
1202 case 23: env
->fpul
= tmp
;
1203 case 24: env
->fpscr
= tmp
;
1204 case 41: env
->ssr
= tmp
;
1205 case 42: env
->spc
= tmp
;
1211 #elif defined (TARGET_MICROBLAZE)
1213 #define NUM_CORE_REGS (32 + 5)
1215 static int cpu_gdb_read_register(CPUState
*env
, uint8_t *mem_buf
, int n
)
1218 GET_REG32(env
->regs
[n
]);
1220 GET_REG32(env
->sregs
[n
- 32]);
1225 static int cpu_gdb_write_register(CPUState
*env
, uint8_t *mem_buf
, int n
)
1229 if (n
> NUM_CORE_REGS
)
1232 tmp
= ldl_p(mem_buf
);
1237 env
->sregs
[n
- 32] = tmp
;
1241 #elif defined (TARGET_CRIS)
1243 #define NUM_CORE_REGS 49
1245 static int cpu_gdb_read_register(CPUState
*env
, uint8_t *mem_buf
, int n
)
1249 srs
= env
->pregs
[PR_SRS
];
1251 GET_REG32(env
->regs
[n
]);
1254 if (n
>= 21 && n
< 32) {
1255 GET_REG32(env
->pregs
[n
- 16]);
1257 if (n
>= 33 && n
< 49) {
1258 GET_REG32(env
->sregs
[srs
][n
- 33]);
1261 case 16: GET_REG8(env
->pregs
[0]);
1262 case 17: GET_REG8(env
->pregs
[1]);
1263 case 18: GET_REG32(env
->pregs
[2]);
1264 case 19: GET_REG8(srs
);
1265 case 20: GET_REG16(env
->pregs
[4]);
1266 case 32: GET_REG32(env
->pc
);
1272 static int cpu_gdb_write_register(CPUState
*env
, uint8_t *mem_buf
, int n
)
1279 tmp
= ldl_p(mem_buf
);
1285 if (n
>= 21 && n
< 32) {
1286 env
->pregs
[n
- 16] = tmp
;
1289 /* FIXME: Should support function regs be writable? */
1293 case 18: env
->pregs
[PR_PID
] = tmp
; break;
1296 case 32: env
->pc
= tmp
; break;
1301 #elif defined (TARGET_ALPHA)
1303 #define NUM_CORE_REGS 65
1305 static int cpu_gdb_read_register(CPUState
*env
, uint8_t *mem_buf
, int n
)
1308 GET_REGL(env
->ir
[n
]);
1316 val
= *((uint64_t *)&env
->fir
[n
-32]);
1320 GET_REGL(env
->fpcr
);
1332 static int cpu_gdb_write_register(CPUState
*env
, uint8_t *mem_buf
, int n
)
1335 tmp
= ldtul_p(mem_buf
);
1341 if (n
> 31 && n
< 63) {
1342 env
->fir
[n
- 32] = ldfl_p(mem_buf
);
1351 #elif defined (TARGET_S390X)
1353 #define NUM_CORE_REGS S390_NUM_TOTAL_REGS
1355 static int cpu_gdb_read_register(CPUState
*env
, uint8_t *mem_buf
, int n
)
1358 case S390_PSWM_REGNUM
: GET_REGL(env
->psw
.mask
); break;
1359 case S390_PSWA_REGNUM
: GET_REGL(env
->psw
.addr
); break;
1360 case S390_R0_REGNUM
... S390_R15_REGNUM
:
1361 GET_REGL(env
->regs
[n
-S390_R0_REGNUM
]); break;
1362 case S390_A0_REGNUM
... S390_A15_REGNUM
:
1363 GET_REG32(env
->aregs
[n
-S390_A0_REGNUM
]); break;
1364 case S390_FPC_REGNUM
: GET_REG32(env
->fpc
); break;
1365 case S390_F0_REGNUM
... S390_F15_REGNUM
:
1368 case S390_PC_REGNUM
: GET_REGL(env
->psw
.addr
); break;
1369 case S390_CC_REGNUM
: GET_REG32(env
->cc
); break;
1375 static int cpu_gdb_write_register(CPUState
*env
, uint8_t *mem_buf
, int n
)
1380 tmpl
= ldtul_p(mem_buf
);
1381 tmp32
= ldl_p(mem_buf
);
1384 case S390_PSWM_REGNUM
: env
->psw
.mask
= tmpl
; break;
1385 case S390_PSWA_REGNUM
: env
->psw
.addr
= tmpl
; break;
1386 case S390_R0_REGNUM
... S390_R15_REGNUM
:
1387 env
->regs
[n
-S390_R0_REGNUM
] = tmpl
; break;
1388 case S390_A0_REGNUM
... S390_A15_REGNUM
:
1389 env
->aregs
[n
-S390_A0_REGNUM
] = tmp32
; r
=4; break;
1390 case S390_FPC_REGNUM
: env
->fpc
= tmp32
; r
=4; break;
1391 case S390_F0_REGNUM
... S390_F15_REGNUM
:
1394 case S390_PC_REGNUM
: env
->psw
.addr
= tmpl
; break;
1395 case S390_CC_REGNUM
: env
->cc
= tmp32
; r
=4; break;
1402 #define NUM_CORE_REGS 0
1404 static int cpu_gdb_read_register(CPUState
*env
, uint8_t *mem_buf
, int n
)
1409 static int cpu_gdb_write_register(CPUState
*env
, uint8_t *mem_buf
, int n
)
1416 static int num_g_regs
= NUM_CORE_REGS
;
1419 /* Encode data using the encoding for 'x' packets. */
1420 static int memtox(char *buf
, const char *mem
, int len
)
1428 case '#': case '$': case '*': case '}':
1440 static const char *get_feature_xml(const char *p
, const char **newp
)
1442 extern const char *const xml_builtin
[][2];
1446 static char target_xml
[1024];
1449 while (p
[len
] && p
[len
] != ':')
1454 if (strncmp(p
, "target.xml", len
) == 0) {
1455 /* Generate the XML description for this CPU. */
1456 if (!target_xml
[0]) {
1457 GDBRegisterState
*r
;
1459 snprintf(target_xml
, sizeof(target_xml
),
1460 "<?xml version=\"1.0\"?>"
1461 "<!DOCTYPE target SYSTEM \"gdb-target.dtd\">"
1463 "<xi:include href=\"%s\"/>",
1466 for (r
= first_cpu
->gdb_regs
; r
; r
= r
->next
) {
1467 pstrcat(target_xml
, sizeof(target_xml
), "<xi:include href=\"");
1468 pstrcat(target_xml
, sizeof(target_xml
), r
->xml
);
1469 pstrcat(target_xml
, sizeof(target_xml
), "\"/>");
1471 pstrcat(target_xml
, sizeof(target_xml
), "</target>");
1475 for (i
= 0; ; i
++) {
1476 name
= xml_builtin
[i
][0];
1477 if (!name
|| (strncmp(name
, p
, len
) == 0 && strlen(name
) == len
))
1480 return name
? xml_builtin
[i
][1] : NULL
;
1484 static int gdb_read_register(CPUState
*env
, uint8_t *mem_buf
, int reg
)
1486 GDBRegisterState
*r
;
1488 if (reg
< NUM_CORE_REGS
)
1489 return cpu_gdb_read_register(env
, mem_buf
, reg
);
1491 for (r
= env
->gdb_regs
; r
; r
= r
->next
) {
1492 if (r
->base_reg
<= reg
&& reg
< r
->base_reg
+ r
->num_regs
) {
1493 return r
->get_reg(env
, mem_buf
, reg
- r
->base_reg
);
1499 static int gdb_write_register(CPUState
*env
, uint8_t *mem_buf
, int reg
)
1501 GDBRegisterState
*r
;
1503 if (reg
< NUM_CORE_REGS
)
1504 return cpu_gdb_write_register(env
, mem_buf
, reg
);
1506 for (r
= env
->gdb_regs
; r
; r
= r
->next
) {
1507 if (r
->base_reg
<= reg
&& reg
< r
->base_reg
+ r
->num_regs
) {
1508 return r
->set_reg(env
, mem_buf
, reg
- r
->base_reg
);
1514 /* Register a supplemental set of CPU registers. If g_pos is nonzero it
1515 specifies the first register number and these registers are included in
1516 a standard "g" packet. Direction is relative to gdb, i.e. get_reg is
1517 gdb reading a CPU register, and set_reg is gdb modifying a CPU register.
1520 void gdb_register_coprocessor(CPUState
* env
,
1521 gdb_reg_cb get_reg
, gdb_reg_cb set_reg
,
1522 int num_regs
, const char *xml
, int g_pos
)
1524 GDBRegisterState
*s
;
1525 GDBRegisterState
**p
;
1526 static int last_reg
= NUM_CORE_REGS
;
1528 s
= (GDBRegisterState
*)qemu_mallocz(sizeof(GDBRegisterState
));
1529 s
->base_reg
= last_reg
;
1530 s
->num_regs
= num_regs
;
1531 s
->get_reg
= get_reg
;
1532 s
->set_reg
= set_reg
;
1536 /* Check for duplicates. */
1537 if (strcmp((*p
)->xml
, xml
) == 0)
1541 /* Add to end of list. */
1542 last_reg
+= num_regs
;
1545 if (g_pos
!= s
->base_reg
) {
1546 fprintf(stderr
, "Error: Bad gdb register numbering for '%s'\n"
1547 "Expected %d got %d\n", xml
, g_pos
, s
->base_reg
);
1549 num_g_regs
= last_reg
;
1554 #ifndef CONFIG_USER_ONLY
1555 static const int xlat_gdb_type
[] = {
1556 [GDB_WATCHPOINT_WRITE
] = BP_GDB
| BP_MEM_WRITE
,
1557 [GDB_WATCHPOINT_READ
] = BP_GDB
| BP_MEM_READ
,
1558 [GDB_WATCHPOINT_ACCESS
] = BP_GDB
| BP_MEM_ACCESS
,
1562 static int gdb_breakpoint_insert(target_ulong addr
, target_ulong len
, int type
)
1568 return kvm_insert_breakpoint(gdbserver_state
->c_cpu
, addr
, len
, type
);
1571 case GDB_BREAKPOINT_SW
:
1572 case GDB_BREAKPOINT_HW
:
1573 for (env
= first_cpu
; env
!= NULL
; env
= env
->next_cpu
) {
1574 err
= cpu_breakpoint_insert(env
, addr
, BP_GDB
, NULL
);
1579 #ifndef CONFIG_USER_ONLY
1580 case GDB_WATCHPOINT_WRITE
:
1581 case GDB_WATCHPOINT_READ
:
1582 case GDB_WATCHPOINT_ACCESS
:
1583 for (env
= first_cpu
; env
!= NULL
; env
= env
->next_cpu
) {
1584 err
= cpu_watchpoint_insert(env
, addr
, len
, xlat_gdb_type
[type
],
1596 static int gdb_breakpoint_remove(target_ulong addr
, target_ulong len
, int type
)
1602 return kvm_remove_breakpoint(gdbserver_state
->c_cpu
, addr
, len
, type
);
1605 case GDB_BREAKPOINT_SW
:
1606 case GDB_BREAKPOINT_HW
:
1607 for (env
= first_cpu
; env
!= NULL
; env
= env
->next_cpu
) {
1608 err
= cpu_breakpoint_remove(env
, addr
, BP_GDB
);
1613 #ifndef CONFIG_USER_ONLY
1614 case GDB_WATCHPOINT_WRITE
:
1615 case GDB_WATCHPOINT_READ
:
1616 case GDB_WATCHPOINT_ACCESS
:
1617 for (env
= first_cpu
; env
!= NULL
; env
= env
->next_cpu
) {
1618 err
= cpu_watchpoint_remove(env
, addr
, len
, xlat_gdb_type
[type
]);
1629 static void gdb_breakpoint_remove_all(void)
1633 if (kvm_enabled()) {
1634 kvm_remove_all_breakpoints(gdbserver_state
->c_cpu
);
1638 for (env
= first_cpu
; env
!= NULL
; env
= env
->next_cpu
) {
1639 cpu_breakpoint_remove_all(env
, BP_GDB
);
1640 #ifndef CONFIG_USER_ONLY
1641 cpu_watchpoint_remove_all(env
, BP_GDB
);
1646 static void gdb_set_cpu_pc(GDBState
*s
, target_ulong pc
)
1648 #if defined(TARGET_I386)
1649 cpu_synchronize_state(s
->c_cpu
);
1651 #elif defined (TARGET_PPC)
1653 #elif defined (TARGET_SPARC)
1655 s
->c_cpu
->npc
= pc
+ 4;
1656 #elif defined (TARGET_ARM)
1657 s
->c_cpu
->regs
[15] = pc
;
1658 #elif defined (TARGET_SH4)
1660 #elif defined (TARGET_MIPS)
1661 s
->c_cpu
->active_tc
.PC
= pc
;
1662 #elif defined (TARGET_MICROBLAZE)
1663 s
->c_cpu
->sregs
[SR_PC
] = pc
;
1664 #elif defined (TARGET_CRIS)
1666 #elif defined (TARGET_ALPHA)
1668 #elif defined (TARGET_S390X)
1669 cpu_synchronize_state(s
->c_cpu
);
1670 s
->c_cpu
->psw
.addr
= pc
;
1674 static inline int gdb_id(CPUState
*env
)
1676 #if defined(CONFIG_USER_ONLY) && defined(CONFIG_USE_NPTL)
1677 return env
->host_tid
;
1679 return env
->cpu_index
+ 1;
1683 static CPUState
*find_cpu(uint32_t thread_id
)
1687 for (env
= first_cpu
; env
!= NULL
; env
= env
->next_cpu
) {
1688 if (gdb_id(env
) == thread_id
) {
1696 static int gdb_handle_packet(GDBState
*s
, const char *line_buf
)
1701 int ch
, reg_size
, type
, res
;
1702 char buf
[MAX_PACKET_LENGTH
];
1703 uint8_t mem_buf
[MAX_PACKET_LENGTH
];
1705 target_ulong addr
, len
;
1708 printf("command='%s'\n", line_buf
);
1714 /* TODO: Make this return the correct value for user-mode. */
1715 snprintf(buf
, sizeof(buf
), "T%02xthread:%02x;", GDB_SIGNAL_TRAP
,
1718 /* Remove all the breakpoints when this query is issued,
1719 * because gdb is doing and initial connect and the state
1720 * should be cleaned up.
1722 gdb_breakpoint_remove_all();
1726 addr
= strtoull(p
, (char **)&p
, 16);
1727 gdb_set_cpu_pc(s
, addr
);
1733 s
->signal
= gdb_signal_to_target (strtoul(p
, (char **)&p
, 16));
1734 if (s
->signal
== -1)
1739 if (strncmp(p
, "Cont", 4) == 0) {
1740 int res_signal
, res_thread
;
1744 put_packet(s
, "vCont;c;C;s;S");
1759 if (action
== 'C' || action
== 'S') {
1760 signal
= strtoul(p
, (char **)&p
, 16);
1761 } else if (action
!= 'c' && action
!= 's') {
1767 thread
= strtoull(p
+1, (char **)&p
, 16);
1769 action
= tolower(action
);
1770 if (res
== 0 || (res
== 'c' && action
== 's')) {
1772 res_signal
= signal
;
1773 res_thread
= thread
;
1777 if (res_thread
!= -1 && res_thread
!= 0) {
1778 env
= find_cpu(res_thread
);
1780 put_packet(s
, "E22");
1786 cpu_single_step(s
->c_cpu
, sstep_flags
);
1788 s
->signal
= res_signal
;
1794 goto unknown_command
;
1797 /* Kill the target */
1798 fprintf(stderr
, "\nQEMU: Terminated via GDBstub\n");
1802 gdb_breakpoint_remove_all();
1804 put_packet(s
, "OK");
1808 addr
= strtoull(p
, (char **)&p
, 16);
1809 gdb_set_cpu_pc(s
, addr
);
1811 cpu_single_step(s
->c_cpu
, sstep_flags
);
1819 ret
= strtoull(p
, (char **)&p
, 16);
1822 err
= strtoull(p
, (char **)&p
, 16);
1829 if (gdb_current_syscall_cb
)
1830 gdb_current_syscall_cb(s
->c_cpu
, ret
, err
);
1832 put_packet(s
, "T02");
1839 cpu_synchronize_state(s
->g_cpu
);
1841 for (addr
= 0; addr
< num_g_regs
; addr
++) {
1842 reg_size
= gdb_read_register(s
->g_cpu
, mem_buf
+ len
, addr
);
1845 memtohex(buf
, mem_buf
, len
);
1849 cpu_synchronize_state(s
->g_cpu
);
1850 registers
= mem_buf
;
1851 len
= strlen(p
) / 2;
1852 hextomem((uint8_t *)registers
, p
, len
);
1853 for (addr
= 0; addr
< num_g_regs
&& len
> 0; addr
++) {
1854 reg_size
= gdb_write_register(s
->g_cpu
, registers
, addr
);
1856 registers
+= reg_size
;
1858 put_packet(s
, "OK");
1861 addr
= strtoull(p
, (char **)&p
, 16);
1864 len
= strtoull(p
, NULL
, 16);
1865 if (cpu_memory_rw_debug(s
->g_cpu
, addr
, mem_buf
, len
, 0) != 0) {
1866 put_packet (s
, "E14");
1868 memtohex(buf
, mem_buf
, len
);
1873 addr
= strtoull(p
, (char **)&p
, 16);
1876 len
= strtoull(p
, (char **)&p
, 16);
1879 hextomem(mem_buf
, p
, len
);
1880 if (cpu_memory_rw_debug(s
->g_cpu
, addr
, mem_buf
, len
, 1) != 0)
1881 put_packet(s
, "E14");
1883 put_packet(s
, "OK");
1886 /* Older gdb are really dumb, and don't use 'g' if 'p' is avaialable.
1887 This works, but can be very slow. Anything new enough to
1888 understand XML also knows how to use this properly. */
1890 goto unknown_command
;
1891 addr
= strtoull(p
, (char **)&p
, 16);
1892 reg_size
= gdb_read_register(s
->g_cpu
, mem_buf
, addr
);
1894 memtohex(buf
, mem_buf
, reg_size
);
1897 put_packet(s
, "E14");
1902 goto unknown_command
;
1903 addr
= strtoull(p
, (char **)&p
, 16);
1906 reg_size
= strlen(p
) / 2;
1907 hextomem(mem_buf
, p
, reg_size
);
1908 gdb_write_register(s
->g_cpu
, mem_buf
, addr
);
1909 put_packet(s
, "OK");
1913 type
= strtoul(p
, (char **)&p
, 16);
1916 addr
= strtoull(p
, (char **)&p
, 16);
1919 len
= strtoull(p
, (char **)&p
, 16);
1921 res
= gdb_breakpoint_insert(addr
, len
, type
);
1923 res
= gdb_breakpoint_remove(addr
, len
, type
);
1925 put_packet(s
, "OK");
1926 else if (res
== -ENOSYS
)
1929 put_packet(s
, "E22");
1933 thread
= strtoull(p
, (char **)&p
, 16);
1934 if (thread
== -1 || thread
== 0) {
1935 put_packet(s
, "OK");
1938 env
= find_cpu(thread
);
1940 put_packet(s
, "E22");
1946 put_packet(s
, "OK");
1950 put_packet(s
, "OK");
1953 put_packet(s
, "E22");
1958 thread
= strtoull(p
, (char **)&p
, 16);
1959 env
= find_cpu(thread
);
1962 put_packet(s
, "OK");
1964 put_packet(s
, "E22");
1969 /* parse any 'q' packets here */
1970 if (!strcmp(p
,"qemu.sstepbits")) {
1971 /* Query Breakpoint bit definitions */
1972 snprintf(buf
, sizeof(buf
), "ENABLE=%x,NOIRQ=%x,NOTIMER=%x",
1978 } else if (strncmp(p
,"qemu.sstep",10) == 0) {
1979 /* Display or change the sstep_flags */
1982 /* Display current setting */
1983 snprintf(buf
, sizeof(buf
), "0x%x", sstep_flags
);
1988 type
= strtoul(p
, (char **)&p
, 16);
1990 put_packet(s
, "OK");
1992 } else if (strcmp(p
,"C") == 0) {
1993 /* "Current thread" remains vague in the spec, so always return
1994 * the first CPU (gdb returns the first thread). */
1995 put_packet(s
, "QC1");
1997 } else if (strcmp(p
,"fThreadInfo") == 0) {
1998 s
->query_cpu
= first_cpu
;
1999 goto report_cpuinfo
;
2000 } else if (strcmp(p
,"sThreadInfo") == 0) {
2003 snprintf(buf
, sizeof(buf
), "m%x", gdb_id(s
->query_cpu
));
2005 s
->query_cpu
= s
->query_cpu
->next_cpu
;
2009 } else if (strncmp(p
,"ThreadExtraInfo,", 16) == 0) {
2010 thread
= strtoull(p
+16, (char **)&p
, 16);
2011 env
= find_cpu(thread
);
2013 cpu_synchronize_state(env
);
2014 len
= snprintf((char *)mem_buf
, sizeof(mem_buf
),
2015 "CPU#%d [%s]", env
->cpu_index
,
2016 env
->halted
? "halted " : "running");
2017 memtohex(buf
, mem_buf
, len
);
2022 #ifdef CONFIG_USER_ONLY
2023 else if (strncmp(p
, "Offsets", 7) == 0) {
2024 TaskState
*ts
= s
->c_cpu
->opaque
;
2026 snprintf(buf
, sizeof(buf
),
2027 "Text=" TARGET_ABI_FMT_lx
";Data=" TARGET_ABI_FMT_lx
2028 ";Bss=" TARGET_ABI_FMT_lx
,
2029 ts
->info
->code_offset
,
2030 ts
->info
->data_offset
,
2031 ts
->info
->data_offset
);
2035 #else /* !CONFIG_USER_ONLY */
2036 else if (strncmp(p
, "Rcmd,", 5) == 0) {
2037 int len
= strlen(p
+ 5);
2039 if ((len
% 2) != 0) {
2040 put_packet(s
, "E01");
2043 hextomem(mem_buf
, p
+ 5, len
);
2046 qemu_chr_read(s
->mon_chr
, mem_buf
, len
);
2047 put_packet(s
, "OK");
2050 #endif /* !CONFIG_USER_ONLY */
2051 if (strncmp(p
, "Supported", 9) == 0) {
2052 snprintf(buf
, sizeof(buf
), "PacketSize=%x", MAX_PACKET_LENGTH
);
2054 pstrcat(buf
, sizeof(buf
), ";qXfer:features:read+");
2060 if (strncmp(p
, "Xfer:features:read:", 19) == 0) {
2062 target_ulong total_len
;
2066 xml
= get_feature_xml(p
, &p
);
2068 snprintf(buf
, sizeof(buf
), "E00");
2075 addr
= strtoul(p
, (char **)&p
, 16);
2078 len
= strtoul(p
, (char **)&p
, 16);
2080 total_len
= strlen(xml
);
2081 if (addr
> total_len
) {
2082 snprintf(buf
, sizeof(buf
), "E00");
2086 if (len
> (MAX_PACKET_LENGTH
- 5) / 2)
2087 len
= (MAX_PACKET_LENGTH
- 5) / 2;
2088 if (len
< total_len
- addr
) {
2090 len
= memtox(buf
+ 1, xml
+ addr
, len
);
2093 len
= memtox(buf
+ 1, xml
+ addr
, total_len
- addr
);
2095 put_packet_binary(s
, buf
, len
+ 1);
2099 /* Unrecognised 'q' command. */
2100 goto unknown_command
;
2104 /* put empty packet */
2112 void gdb_set_stop_cpu(CPUState
*env
)
2114 gdbserver_state
->c_cpu
= env
;
2115 gdbserver_state
->g_cpu
= env
;
2118 #ifndef CONFIG_USER_ONLY
2119 static void gdb_vm_state_change(void *opaque
, int running
, int reason
)
2121 GDBState
*s
= gdbserver_state
;
2122 CPUState
*env
= s
->c_cpu
;
2127 if (running
|| (reason
!= EXCP_DEBUG
&& reason
!= EXCP_INTERRUPT
) ||
2128 s
->state
== RS_INACTIVE
|| s
->state
== RS_SYSCALL
)
2131 /* disable single step if it was enable */
2132 cpu_single_step(env
, 0);
2134 if (reason
== EXCP_DEBUG
) {
2135 if (env
->watchpoint_hit
) {
2136 switch (env
->watchpoint_hit
->flags
& BP_MEM_ACCESS
) {
2147 snprintf(buf
, sizeof(buf
),
2148 "T%02xthread:%02x;%swatch:" TARGET_FMT_lx
";",
2149 GDB_SIGNAL_TRAP
, gdb_id(env
), type
,
2150 env
->watchpoint_hit
->vaddr
);
2152 env
->watchpoint_hit
= NULL
;
2156 ret
= GDB_SIGNAL_TRAP
;
2158 ret
= GDB_SIGNAL_INT
;
2160 snprintf(buf
, sizeof(buf
), "T%02xthread:%02x;", ret
, gdb_id(env
));
2165 /* Send a gdb syscall request.
2166 This accepts limited printf-style format specifiers, specifically:
2167 %x - target_ulong argument printed in hex.
2168 %lx - 64-bit argument printed in hex.
2169 %s - string pointer (target_ulong) and length (int) pair. */
2170 void gdb_do_syscall(gdb_syscall_complete_cb cb
, const char *fmt
, ...)
2179 s
= gdbserver_state
;
2182 gdb_current_syscall_cb
= cb
;
2183 s
->state
= RS_SYSCALL
;
2184 #ifndef CONFIG_USER_ONLY
2185 vm_stop(EXCP_DEBUG
);
2196 addr
= va_arg(va
, target_ulong
);
2197 p
+= snprintf(p
, &buf
[sizeof(buf
)] - p
, TARGET_FMT_lx
, addr
);
2200 if (*(fmt
++) != 'x')
2202 i64
= va_arg(va
, uint64_t);
2203 p
+= snprintf(p
, &buf
[sizeof(buf
)] - p
, "%" PRIx64
, i64
);
2206 addr
= va_arg(va
, target_ulong
);
2207 p
+= snprintf(p
, &buf
[sizeof(buf
)] - p
, TARGET_FMT_lx
"/%x",
2208 addr
, va_arg(va
, int));
2212 fprintf(stderr
, "gdbstub: Bad syscall format string '%s'\n",
2223 #ifdef CONFIG_USER_ONLY
2224 gdb_handlesig(s
->c_cpu
, 0);
2230 static void gdb_read_byte(GDBState
*s
, int ch
)
2235 #ifndef CONFIG_USER_ONLY
2236 if (s
->last_packet_len
) {
2237 /* Waiting for a response to the last packet. If we see the start
2238 of a new command then abandon the previous response. */
2241 printf("Got NACK, retransmitting\n");
2243 put_buffer(s
, (uint8_t *)s
->last_packet
, s
->last_packet_len
);
2247 printf("Got ACK\n");
2249 printf("Got '%c' when expecting ACK/NACK\n", ch
);
2251 if (ch
== '+' || ch
== '$')
2252 s
->last_packet_len
= 0;
2257 /* when the CPU is running, we cannot do anything except stop
2258 it when receiving a char */
2259 vm_stop(EXCP_INTERRUPT
);
2266 s
->line_buf_index
= 0;
2267 s
->state
= RS_GETLINE
;
2272 s
->state
= RS_CHKSUM1
;
2273 } else if (s
->line_buf_index
>= sizeof(s
->line_buf
) - 1) {
2276 s
->line_buf
[s
->line_buf_index
++] = ch
;
2280 s
->line_buf
[s
->line_buf_index
] = '\0';
2281 s
->line_csum
= fromhex(ch
) << 4;
2282 s
->state
= RS_CHKSUM2
;
2285 s
->line_csum
|= fromhex(ch
);
2287 for(i
= 0; i
< s
->line_buf_index
; i
++) {
2288 csum
+= s
->line_buf
[i
];
2290 if (s
->line_csum
!= (csum
& 0xff)) {
2292 put_buffer(s
, &reply
, 1);
2296 put_buffer(s
, &reply
, 1);
2297 s
->state
= gdb_handle_packet(s
, s
->line_buf
);
2306 #ifdef CONFIG_USER_ONLY
2312 s
= gdbserver_state
;
2314 if (gdbserver_fd
< 0 || s
->fd
< 0)
2321 gdb_handlesig (CPUState
*env
, int sig
)
2327 s
= gdbserver_state
;
2328 if (gdbserver_fd
< 0 || s
->fd
< 0)
2331 /* disable single step if it was enabled */
2332 cpu_single_step(env
, 0);
2337 snprintf(buf
, sizeof(buf
), "S%02x", target_signal_to_gdb (sig
));
2340 /* put_packet() might have detected that the peer terminated the
2347 s
->running_state
= 0;
2348 while (s
->running_state
== 0) {
2349 n
= read (s
->fd
, buf
, 256);
2354 for (i
= 0; i
< n
; i
++)
2355 gdb_read_byte (s
, buf
[i
]);
2357 else if (n
== 0 || errno
!= EAGAIN
)
2359 /* XXX: Connection closed. Should probably wait for annother
2360 connection before continuing. */
2369 /* Tell the remote gdb that the process has exited. */
2370 void gdb_exit(CPUState
*env
, int code
)
2375 s
= gdbserver_state
;
2376 if (gdbserver_fd
< 0 || s
->fd
< 0)
2379 snprintf(buf
, sizeof(buf
), "W%02x", code
);
2383 /* Tell the remote gdb that the process has exited due to SIG. */
2384 void gdb_signalled(CPUState
*env
, int sig
)
2389 s
= gdbserver_state
;
2390 if (gdbserver_fd
< 0 || s
->fd
< 0)
2393 snprintf(buf
, sizeof(buf
), "X%02x", target_signal_to_gdb (sig
));
2397 static void gdb_accept(void)
2400 struct sockaddr_in sockaddr
;
2405 len
= sizeof(sockaddr
);
2406 fd
= accept(gdbserver_fd
, (struct sockaddr
*)&sockaddr
, &len
);
2407 if (fd
< 0 && errno
!= EINTR
) {
2410 } else if (fd
>= 0) {
2412 fcntl(fd
, F_SETFD
, FD_CLOEXEC
);
2418 /* set short latency */
2420 setsockopt(fd
, IPPROTO_TCP
, TCP_NODELAY
, (char *)&val
, sizeof(val
));
2422 s
= qemu_mallocz(sizeof(GDBState
));
2423 s
->c_cpu
= first_cpu
;
2424 s
->g_cpu
= first_cpu
;
2428 gdbserver_state
= s
;
2430 fcntl(fd
, F_SETFL
, O_NONBLOCK
);
2433 static int gdbserver_open(int port
)
2435 struct sockaddr_in sockaddr
;
2438 fd
= socket(PF_INET
, SOCK_STREAM
, 0);
2444 fcntl(fd
, F_SETFD
, FD_CLOEXEC
);
2447 /* allow fast reuse */
2449 setsockopt(fd
, SOL_SOCKET
, SO_REUSEADDR
, (char *)&val
, sizeof(val
));
2451 sockaddr
.sin_family
= AF_INET
;
2452 sockaddr
.sin_port
= htons(port
);
2453 sockaddr
.sin_addr
.s_addr
= 0;
2454 ret
= bind(fd
, (struct sockaddr
*)&sockaddr
, sizeof(sockaddr
));
2459 ret
= listen(fd
, 0);
2467 int gdbserver_start(int port
)
2469 gdbserver_fd
= gdbserver_open(port
);
2470 if (gdbserver_fd
< 0)
2472 /* accept connections */
2477 /* Disable gdb stub for child processes. */
2478 void gdbserver_fork(CPUState
*env
)
2480 GDBState
*s
= gdbserver_state
;
2481 if (gdbserver_fd
< 0 || s
->fd
< 0)
2485 cpu_breakpoint_remove_all(env
, BP_GDB
);
2486 cpu_watchpoint_remove_all(env
, BP_GDB
);
2489 static int gdb_chr_can_receive(void *opaque
)
2491 /* We can handle an arbitrarily large amount of data.
2492 Pick the maximum packet size, which is as good as anything. */
2493 return MAX_PACKET_LENGTH
;
2496 static void gdb_chr_receive(void *opaque
, const uint8_t *buf
, int size
)
2500 for (i
= 0; i
< size
; i
++) {
2501 gdb_read_byte(gdbserver_state
, buf
[i
]);
2505 static void gdb_chr_event(void *opaque
, int event
)
2508 case CHR_EVENT_OPENED
:
2509 vm_stop(EXCP_INTERRUPT
);
2517 static void gdb_monitor_output(GDBState
*s
, const char *msg
, int len
)
2519 char buf
[MAX_PACKET_LENGTH
];
2522 if (len
> (MAX_PACKET_LENGTH
/2) - 1)
2523 len
= (MAX_PACKET_LENGTH
/2) - 1;
2524 memtohex(buf
+ 1, (uint8_t *)msg
, len
);
2528 static int gdb_monitor_write(CharDriverState
*chr
, const uint8_t *buf
, int len
)
2530 const char *p
= (const char *)buf
;
2533 max_sz
= (sizeof(gdbserver_state
->last_packet
) - 2) / 2;
2535 if (len
<= max_sz
) {
2536 gdb_monitor_output(gdbserver_state
, p
, len
);
2539 gdb_monitor_output(gdbserver_state
, p
, max_sz
);
2547 static void gdb_sigterm_handler(int signal
)
2550 vm_stop(EXCP_INTERRUPT
);
2554 int gdbserver_start(const char *device
)
2557 char gdbstub_device_name
[128];
2558 CharDriverState
*chr
= NULL
;
2559 CharDriverState
*mon_chr
;
2563 if (strcmp(device
, "none") != 0) {
2564 if (strstart(device
, "tcp:", NULL
)) {
2565 /* enforce required TCP attributes */
2566 snprintf(gdbstub_device_name
, sizeof(gdbstub_device_name
),
2567 "%s,nowait,nodelay,server", device
);
2568 device
= gdbstub_device_name
;
2571 else if (strcmp(device
, "stdio") == 0) {
2572 struct sigaction act
;
2574 memset(&act
, 0, sizeof(act
));
2575 act
.sa_handler
= gdb_sigterm_handler
;
2576 sigaction(SIGINT
, &act
, NULL
);
2579 chr
= qemu_chr_open("gdb", device
, NULL
);
2583 qemu_chr_add_handlers(chr
, gdb_chr_can_receive
, gdb_chr_receive
,
2584 gdb_chr_event
, NULL
);
2587 s
= gdbserver_state
;
2589 s
= qemu_mallocz(sizeof(GDBState
));
2590 gdbserver_state
= s
;
2592 qemu_add_vm_change_state_handler(gdb_vm_state_change
, NULL
);
2594 /* Initialize a monitor terminal for gdb */
2595 mon_chr
= qemu_mallocz(sizeof(*mon_chr
));
2596 mon_chr
->chr_write
= gdb_monitor_write
;
2597 monitor_init(mon_chr
, 0);
2600 qemu_chr_close(s
->chr
);
2601 mon_chr
= s
->mon_chr
;
2602 memset(s
, 0, sizeof(GDBState
));
2604 s
->c_cpu
= first_cpu
;
2605 s
->g_cpu
= first_cpu
;
2607 s
->state
= chr
? RS_IDLE
: RS_INACTIVE
;
2608 s
->mon_chr
= mon_chr
;