spapr/pci: Free MSIs during reset
[qemu/ar7.git] / exec.c
blob4aaa14b075fe522259a428c9a6473a655abc9702
1 /*
2 * Virtual page mapping
4 * Copyright (c) 2003 Fabrice Bellard
6 * This library is free software; you can redistribute it and/or
7 * modify it under the terms of the GNU Lesser General Public
8 * License as published by the Free Software Foundation; either
9 * version 2 of the License, or (at your option) any later version.
11 * This library is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
14 * Lesser General Public License for more details.
16 * You should have received a copy of the GNU Lesser General Public
17 * License along with this library; if not, see <http://www.gnu.org/licenses/>.
20 #include "qemu/osdep.h"
21 #include "qemu-common.h"
22 #include "qapi/error.h"
24 #include "qemu/cutils.h"
25 #include "cpu.h"
26 #include "exec/exec-all.h"
27 #include "exec/target_page.h"
28 #include "tcg.h"
29 #include "hw/qdev-core.h"
30 #include "hw/qdev-properties.h"
31 #if !defined(CONFIG_USER_ONLY)
32 #include "hw/boards.h"
33 #include "hw/xen/xen.h"
34 #endif
35 #include "sysemu/kvm.h"
36 #include "sysemu/sysemu.h"
37 #include "sysemu/tcg.h"
38 #include "qemu/timer.h"
39 #include "qemu/config-file.h"
40 #include "qemu/error-report.h"
41 #include "qemu/qemu-print.h"
42 #if defined(CONFIG_USER_ONLY)
43 #include "qemu.h"
44 #else /* !CONFIG_USER_ONLY */
45 #include "exec/memory.h"
46 #include "exec/ioport.h"
47 #include "sysemu/dma.h"
48 #include "sysemu/hostmem.h"
49 #include "sysemu/hw_accel.h"
50 #include "exec/address-spaces.h"
51 #include "sysemu/xen-mapcache.h"
52 #include "trace-root.h"
54 #ifdef CONFIG_FALLOCATE_PUNCH_HOLE
55 #include <linux/falloc.h>
56 #endif
58 #endif
59 #include "qemu/rcu_queue.h"
60 #include "qemu/main-loop.h"
61 #include "translate-all.h"
62 #include "sysemu/replay.h"
64 #include "exec/memory-internal.h"
65 #include "exec/ram_addr.h"
66 #include "exec/log.h"
68 #include "migration/vmstate.h"
70 #include "qemu/range.h"
71 #ifndef _WIN32
72 #include "qemu/mmap-alloc.h"
73 #endif
75 #include "monitor/monitor.h"
77 //#define DEBUG_SUBPAGE
79 #if !defined(CONFIG_USER_ONLY)
80 /* ram_list is read under rcu_read_lock()/rcu_read_unlock(). Writes
81 * are protected by the ramlist lock.
83 RAMList ram_list = { .blocks = QLIST_HEAD_INITIALIZER(ram_list.blocks) };
85 static MemoryRegion *system_memory;
86 static MemoryRegion *system_io;
88 AddressSpace address_space_io;
89 AddressSpace address_space_memory;
91 MemoryRegion io_mem_rom, io_mem_notdirty;
92 static MemoryRegion io_mem_unassigned;
93 #endif
95 #ifdef TARGET_PAGE_BITS_VARY
96 int target_page_bits;
97 bool target_page_bits_decided;
98 #endif
100 CPUTailQ cpus = QTAILQ_HEAD_INITIALIZER(cpus);
102 /* current CPU in the current thread. It is only valid inside
103 cpu_exec() */
104 __thread CPUState *current_cpu;
105 /* 0 = Do not count executed instructions.
106 1 = Precise instruction counting.
107 2 = Adaptive rate instruction counting. */
108 int use_icount;
110 uintptr_t qemu_host_page_size;
111 intptr_t qemu_host_page_mask;
113 bool set_preferred_target_page_bits(int bits)
115 /* The target page size is the lowest common denominator for all
116 * the CPUs in the system, so we can only make it smaller, never
117 * larger. And we can't make it smaller once we've committed to
118 * a particular size.
120 #ifdef TARGET_PAGE_BITS_VARY
121 assert(bits >= TARGET_PAGE_BITS_MIN);
122 if (target_page_bits == 0 || target_page_bits > bits) {
123 if (target_page_bits_decided) {
124 return false;
126 target_page_bits = bits;
128 #endif
129 return true;
132 #if !defined(CONFIG_USER_ONLY)
134 static void finalize_target_page_bits(void)
136 #ifdef TARGET_PAGE_BITS_VARY
137 if (target_page_bits == 0) {
138 target_page_bits = TARGET_PAGE_BITS_MIN;
140 target_page_bits_decided = true;
141 #endif
144 typedef struct PhysPageEntry PhysPageEntry;
146 struct PhysPageEntry {
147 /* How many bits skip to next level (in units of L2_SIZE). 0 for a leaf. */
148 uint32_t skip : 6;
149 /* index into phys_sections (!skip) or phys_map_nodes (skip) */
150 uint32_t ptr : 26;
153 #define PHYS_MAP_NODE_NIL (((uint32_t)~0) >> 6)
155 /* Size of the L2 (and L3, etc) page tables. */
156 #define ADDR_SPACE_BITS 64
158 #define P_L2_BITS 9
159 #define P_L2_SIZE (1 << P_L2_BITS)
161 #define P_L2_LEVELS (((ADDR_SPACE_BITS - TARGET_PAGE_BITS - 1) / P_L2_BITS) + 1)
163 typedef PhysPageEntry Node[P_L2_SIZE];
165 typedef struct PhysPageMap {
166 struct rcu_head rcu;
168 unsigned sections_nb;
169 unsigned sections_nb_alloc;
170 unsigned nodes_nb;
171 unsigned nodes_nb_alloc;
172 Node *nodes;
173 MemoryRegionSection *sections;
174 } PhysPageMap;
176 struct AddressSpaceDispatch {
177 MemoryRegionSection *mru_section;
178 /* This is a multi-level map on the physical address space.
179 * The bottom level has pointers to MemoryRegionSections.
181 PhysPageEntry phys_map;
182 PhysPageMap map;
185 #define SUBPAGE_IDX(addr) ((addr) & ~TARGET_PAGE_MASK)
186 typedef struct subpage_t {
187 MemoryRegion iomem;
188 FlatView *fv;
189 hwaddr base;
190 uint16_t sub_section[];
191 } subpage_t;
193 #define PHYS_SECTION_UNASSIGNED 0
194 #define PHYS_SECTION_NOTDIRTY 1
195 #define PHYS_SECTION_ROM 2
196 #define PHYS_SECTION_WATCH 3
198 static void io_mem_init(void);
199 static void memory_map_init(void);
200 static void tcg_commit(MemoryListener *listener);
202 static MemoryRegion io_mem_watch;
205 * CPUAddressSpace: all the information a CPU needs about an AddressSpace
206 * @cpu: the CPU whose AddressSpace this is
207 * @as: the AddressSpace itself
208 * @memory_dispatch: its dispatch pointer (cached, RCU protected)
209 * @tcg_as_listener: listener for tracking changes to the AddressSpace
211 struct CPUAddressSpace {
212 CPUState *cpu;
213 AddressSpace *as;
214 struct AddressSpaceDispatch *memory_dispatch;
215 MemoryListener tcg_as_listener;
218 struct DirtyBitmapSnapshot {
219 ram_addr_t start;
220 ram_addr_t end;
221 unsigned long dirty[];
224 #endif
226 #if !defined(CONFIG_USER_ONLY)
228 static void phys_map_node_reserve(PhysPageMap *map, unsigned nodes)
230 static unsigned alloc_hint = 16;
231 if (map->nodes_nb + nodes > map->nodes_nb_alloc) {
232 map->nodes_nb_alloc = MAX(map->nodes_nb_alloc, alloc_hint);
233 map->nodes_nb_alloc = MAX(map->nodes_nb_alloc, map->nodes_nb + nodes);
234 map->nodes = g_renew(Node, map->nodes, map->nodes_nb_alloc);
235 alloc_hint = map->nodes_nb_alloc;
239 static uint32_t phys_map_node_alloc(PhysPageMap *map, bool leaf)
241 unsigned i;
242 uint32_t ret;
243 PhysPageEntry e;
244 PhysPageEntry *p;
246 ret = map->nodes_nb++;
247 p = map->nodes[ret];
248 assert(ret != PHYS_MAP_NODE_NIL);
249 assert(ret != map->nodes_nb_alloc);
251 e.skip = leaf ? 0 : 1;
252 e.ptr = leaf ? PHYS_SECTION_UNASSIGNED : PHYS_MAP_NODE_NIL;
253 for (i = 0; i < P_L2_SIZE; ++i) {
254 memcpy(&p[i], &e, sizeof(e));
256 return ret;
259 static void phys_page_set_level(PhysPageMap *map, PhysPageEntry *lp,
260 hwaddr *index, hwaddr *nb, uint16_t leaf,
261 int level)
263 PhysPageEntry *p;
264 hwaddr step = (hwaddr)1 << (level * P_L2_BITS);
266 if (lp->skip && lp->ptr == PHYS_MAP_NODE_NIL) {
267 lp->ptr = phys_map_node_alloc(map, level == 0);
269 p = map->nodes[lp->ptr];
270 lp = &p[(*index >> (level * P_L2_BITS)) & (P_L2_SIZE - 1)];
272 while (*nb && lp < &p[P_L2_SIZE]) {
273 if ((*index & (step - 1)) == 0 && *nb >= step) {
274 lp->skip = 0;
275 lp->ptr = leaf;
276 *index += step;
277 *nb -= step;
278 } else {
279 phys_page_set_level(map, lp, index, nb, leaf, level - 1);
281 ++lp;
285 static void phys_page_set(AddressSpaceDispatch *d,
286 hwaddr index, hwaddr nb,
287 uint16_t leaf)
289 /* Wildly overreserve - it doesn't matter much. */
290 phys_map_node_reserve(&d->map, 3 * P_L2_LEVELS);
292 phys_page_set_level(&d->map, &d->phys_map, &index, &nb, leaf, P_L2_LEVELS - 1);
295 /* Compact a non leaf page entry. Simply detect that the entry has a single child,
296 * and update our entry so we can skip it and go directly to the destination.
298 static void phys_page_compact(PhysPageEntry *lp, Node *nodes)
300 unsigned valid_ptr = P_L2_SIZE;
301 int valid = 0;
302 PhysPageEntry *p;
303 int i;
305 if (lp->ptr == PHYS_MAP_NODE_NIL) {
306 return;
309 p = nodes[lp->ptr];
310 for (i = 0; i < P_L2_SIZE; i++) {
311 if (p[i].ptr == PHYS_MAP_NODE_NIL) {
312 continue;
315 valid_ptr = i;
316 valid++;
317 if (p[i].skip) {
318 phys_page_compact(&p[i], nodes);
322 /* We can only compress if there's only one child. */
323 if (valid != 1) {
324 return;
327 assert(valid_ptr < P_L2_SIZE);
329 /* Don't compress if it won't fit in the # of bits we have. */
330 if (lp->skip + p[valid_ptr].skip >= (1 << 3)) {
331 return;
334 lp->ptr = p[valid_ptr].ptr;
335 if (!p[valid_ptr].skip) {
336 /* If our only child is a leaf, make this a leaf. */
337 /* By design, we should have made this node a leaf to begin with so we
338 * should never reach here.
339 * But since it's so simple to handle this, let's do it just in case we
340 * change this rule.
342 lp->skip = 0;
343 } else {
344 lp->skip += p[valid_ptr].skip;
348 void address_space_dispatch_compact(AddressSpaceDispatch *d)
350 if (d->phys_map.skip) {
351 phys_page_compact(&d->phys_map, d->map.nodes);
355 static inline bool section_covers_addr(const MemoryRegionSection *section,
356 hwaddr addr)
358 /* Memory topology clips a memory region to [0, 2^64); size.hi > 0 means
359 * the section must cover the entire address space.
361 return int128_gethi(section->size) ||
362 range_covers_byte(section->offset_within_address_space,
363 int128_getlo(section->size), addr);
366 static MemoryRegionSection *phys_page_find(AddressSpaceDispatch *d, hwaddr addr)
368 PhysPageEntry lp = d->phys_map, *p;
369 Node *nodes = d->map.nodes;
370 MemoryRegionSection *sections = d->map.sections;
371 hwaddr index = addr >> TARGET_PAGE_BITS;
372 int i;
374 for (i = P_L2_LEVELS; lp.skip && (i -= lp.skip) >= 0;) {
375 if (lp.ptr == PHYS_MAP_NODE_NIL) {
376 return &sections[PHYS_SECTION_UNASSIGNED];
378 p = nodes[lp.ptr];
379 lp = p[(index >> (i * P_L2_BITS)) & (P_L2_SIZE - 1)];
382 if (section_covers_addr(&sections[lp.ptr], addr)) {
383 return &sections[lp.ptr];
384 } else {
385 return &sections[PHYS_SECTION_UNASSIGNED];
389 /* Called from RCU critical section */
390 static MemoryRegionSection *address_space_lookup_region(AddressSpaceDispatch *d,
391 hwaddr addr,
392 bool resolve_subpage)
394 MemoryRegionSection *section = atomic_read(&d->mru_section);
395 subpage_t *subpage;
397 if (!section || section == &d->map.sections[PHYS_SECTION_UNASSIGNED] ||
398 !section_covers_addr(section, addr)) {
399 section = phys_page_find(d, addr);
400 atomic_set(&d->mru_section, section);
402 if (resolve_subpage && section->mr->subpage) {
403 subpage = container_of(section->mr, subpage_t, iomem);
404 section = &d->map.sections[subpage->sub_section[SUBPAGE_IDX(addr)]];
406 return section;
409 /* Called from RCU critical section */
410 static MemoryRegionSection *
411 address_space_translate_internal(AddressSpaceDispatch *d, hwaddr addr, hwaddr *xlat,
412 hwaddr *plen, bool resolve_subpage)
414 MemoryRegionSection *section;
415 MemoryRegion *mr;
416 Int128 diff;
418 section = address_space_lookup_region(d, addr, resolve_subpage);
419 /* Compute offset within MemoryRegionSection */
420 addr -= section->offset_within_address_space;
422 /* Compute offset within MemoryRegion */
423 *xlat = addr + section->offset_within_region;
425 mr = section->mr;
427 /* MMIO registers can be expected to perform full-width accesses based only
428 * on their address, without considering adjacent registers that could
429 * decode to completely different MemoryRegions. When such registers
430 * exist (e.g. I/O ports 0xcf8 and 0xcf9 on most PC chipsets), MMIO
431 * regions overlap wildly. For this reason we cannot clamp the accesses
432 * here.
434 * If the length is small (as is the case for address_space_ldl/stl),
435 * everything works fine. If the incoming length is large, however,
436 * the caller really has to do the clamping through memory_access_size.
438 if (memory_region_is_ram(mr)) {
439 diff = int128_sub(section->size, int128_make64(addr));
440 *plen = int128_get64(int128_min(diff, int128_make64(*plen)));
442 return section;
446 * address_space_translate_iommu - translate an address through an IOMMU
447 * memory region and then through the target address space.
449 * @iommu_mr: the IOMMU memory region that we start the translation from
450 * @addr: the address to be translated through the MMU
451 * @xlat: the translated address offset within the destination memory region.
452 * It cannot be %NULL.
453 * @plen_out: valid read/write length of the translated address. It
454 * cannot be %NULL.
455 * @page_mask_out: page mask for the translated address. This
456 * should only be meaningful for IOMMU translated
457 * addresses, since there may be huge pages that this bit
458 * would tell. It can be %NULL if we don't care about it.
459 * @is_write: whether the translation operation is for write
460 * @is_mmio: whether this can be MMIO, set true if it can
461 * @target_as: the address space targeted by the IOMMU
462 * @attrs: transaction attributes
464 * This function is called from RCU critical section. It is the common
465 * part of flatview_do_translate and address_space_translate_cached.
467 static MemoryRegionSection address_space_translate_iommu(IOMMUMemoryRegion *iommu_mr,
468 hwaddr *xlat,
469 hwaddr *plen_out,
470 hwaddr *page_mask_out,
471 bool is_write,
472 bool is_mmio,
473 AddressSpace **target_as,
474 MemTxAttrs attrs)
476 MemoryRegionSection *section;
477 hwaddr page_mask = (hwaddr)-1;
479 do {
480 hwaddr addr = *xlat;
481 IOMMUMemoryRegionClass *imrc = memory_region_get_iommu_class_nocheck(iommu_mr);
482 int iommu_idx = 0;
483 IOMMUTLBEntry iotlb;
485 if (imrc->attrs_to_index) {
486 iommu_idx = imrc->attrs_to_index(iommu_mr, attrs);
489 iotlb = imrc->translate(iommu_mr, addr, is_write ?
490 IOMMU_WO : IOMMU_RO, iommu_idx);
492 if (!(iotlb.perm & (1 << is_write))) {
493 goto unassigned;
496 addr = ((iotlb.translated_addr & ~iotlb.addr_mask)
497 | (addr & iotlb.addr_mask));
498 page_mask &= iotlb.addr_mask;
499 *plen_out = MIN(*plen_out, (addr | iotlb.addr_mask) - addr + 1);
500 *target_as = iotlb.target_as;
502 section = address_space_translate_internal(
503 address_space_to_dispatch(iotlb.target_as), addr, xlat,
504 plen_out, is_mmio);
506 iommu_mr = memory_region_get_iommu(section->mr);
507 } while (unlikely(iommu_mr));
509 if (page_mask_out) {
510 *page_mask_out = page_mask;
512 return *section;
514 unassigned:
515 return (MemoryRegionSection) { .mr = &io_mem_unassigned };
519 * flatview_do_translate - translate an address in FlatView
521 * @fv: the flat view that we want to translate on
522 * @addr: the address to be translated in above address space
523 * @xlat: the translated address offset within memory region. It
524 * cannot be @NULL.
525 * @plen_out: valid read/write length of the translated address. It
526 * can be @NULL when we don't care about it.
527 * @page_mask_out: page mask for the translated address. This
528 * should only be meaningful for IOMMU translated
529 * addresses, since there may be huge pages that this bit
530 * would tell. It can be @NULL if we don't care about it.
531 * @is_write: whether the translation operation is for write
532 * @is_mmio: whether this can be MMIO, set true if it can
533 * @target_as: the address space targeted by the IOMMU
534 * @attrs: memory transaction attributes
536 * This function is called from RCU critical section
538 static MemoryRegionSection flatview_do_translate(FlatView *fv,
539 hwaddr addr,
540 hwaddr *xlat,
541 hwaddr *plen_out,
542 hwaddr *page_mask_out,
543 bool is_write,
544 bool is_mmio,
545 AddressSpace **target_as,
546 MemTxAttrs attrs)
548 MemoryRegionSection *section;
549 IOMMUMemoryRegion *iommu_mr;
550 hwaddr plen = (hwaddr)(-1);
552 if (!plen_out) {
553 plen_out = &plen;
556 section = address_space_translate_internal(
557 flatview_to_dispatch(fv), addr, xlat,
558 plen_out, is_mmio);
560 iommu_mr = memory_region_get_iommu(section->mr);
561 if (unlikely(iommu_mr)) {
562 return address_space_translate_iommu(iommu_mr, xlat,
563 plen_out, page_mask_out,
564 is_write, is_mmio,
565 target_as, attrs);
567 if (page_mask_out) {
568 /* Not behind an IOMMU, use default page size. */
569 *page_mask_out = ~TARGET_PAGE_MASK;
572 return *section;
575 /* Called from RCU critical section */
576 IOMMUTLBEntry address_space_get_iotlb_entry(AddressSpace *as, hwaddr addr,
577 bool is_write, MemTxAttrs attrs)
579 MemoryRegionSection section;
580 hwaddr xlat, page_mask;
583 * This can never be MMIO, and we don't really care about plen,
584 * but page mask.
586 section = flatview_do_translate(address_space_to_flatview(as), addr, &xlat,
587 NULL, &page_mask, is_write, false, &as,
588 attrs);
590 /* Illegal translation */
591 if (section.mr == &io_mem_unassigned) {
592 goto iotlb_fail;
595 /* Convert memory region offset into address space offset */
596 xlat += section.offset_within_address_space -
597 section.offset_within_region;
599 return (IOMMUTLBEntry) {
600 .target_as = as,
601 .iova = addr & ~page_mask,
602 .translated_addr = xlat & ~page_mask,
603 .addr_mask = page_mask,
604 /* IOTLBs are for DMAs, and DMA only allows on RAMs. */
605 .perm = IOMMU_RW,
608 iotlb_fail:
609 return (IOMMUTLBEntry) {0};
612 /* Called from RCU critical section */
613 MemoryRegion *flatview_translate(FlatView *fv, hwaddr addr, hwaddr *xlat,
614 hwaddr *plen, bool is_write,
615 MemTxAttrs attrs)
617 MemoryRegion *mr;
618 MemoryRegionSection section;
619 AddressSpace *as = NULL;
621 /* This can be MMIO, so setup MMIO bit. */
622 section = flatview_do_translate(fv, addr, xlat, plen, NULL,
623 is_write, true, &as, attrs);
624 mr = section.mr;
626 if (xen_enabled() && memory_access_is_direct(mr, is_write)) {
627 hwaddr page = ((addr & TARGET_PAGE_MASK) + TARGET_PAGE_SIZE) - addr;
628 *plen = MIN(page, *plen);
631 return mr;
634 typedef struct TCGIOMMUNotifier {
635 IOMMUNotifier n;
636 MemoryRegion *mr;
637 CPUState *cpu;
638 int iommu_idx;
639 bool active;
640 } TCGIOMMUNotifier;
642 static void tcg_iommu_unmap_notify(IOMMUNotifier *n, IOMMUTLBEntry *iotlb)
644 TCGIOMMUNotifier *notifier = container_of(n, TCGIOMMUNotifier, n);
646 if (!notifier->active) {
647 return;
649 tlb_flush(notifier->cpu);
650 notifier->active = false;
651 /* We leave the notifier struct on the list to avoid reallocating it later.
652 * Generally the number of IOMMUs a CPU deals with will be small.
653 * In any case we can't unregister the iommu notifier from a notify
654 * callback.
658 static void tcg_register_iommu_notifier(CPUState *cpu,
659 IOMMUMemoryRegion *iommu_mr,
660 int iommu_idx)
662 /* Make sure this CPU has an IOMMU notifier registered for this
663 * IOMMU/IOMMU index combination, so that we can flush its TLB
664 * when the IOMMU tells us the mappings we've cached have changed.
666 MemoryRegion *mr = MEMORY_REGION(iommu_mr);
667 TCGIOMMUNotifier *notifier;
668 int i;
670 for (i = 0; i < cpu->iommu_notifiers->len; i++) {
671 notifier = g_array_index(cpu->iommu_notifiers, TCGIOMMUNotifier *, i);
672 if (notifier->mr == mr && notifier->iommu_idx == iommu_idx) {
673 break;
676 if (i == cpu->iommu_notifiers->len) {
677 /* Not found, add a new entry at the end of the array */
678 cpu->iommu_notifiers = g_array_set_size(cpu->iommu_notifiers, i + 1);
679 notifier = g_new0(TCGIOMMUNotifier, 1);
680 g_array_index(cpu->iommu_notifiers, TCGIOMMUNotifier *, i) = notifier;
682 notifier->mr = mr;
683 notifier->iommu_idx = iommu_idx;
684 notifier->cpu = cpu;
685 /* Rather than trying to register interest in the specific part
686 * of the iommu's address space that we've accessed and then
687 * expand it later as subsequent accesses touch more of it, we
688 * just register interest in the whole thing, on the assumption
689 * that iommu reconfiguration will be rare.
691 iommu_notifier_init(&notifier->n,
692 tcg_iommu_unmap_notify,
693 IOMMU_NOTIFIER_UNMAP,
695 HWADDR_MAX,
696 iommu_idx);
697 memory_region_register_iommu_notifier(notifier->mr, &notifier->n);
700 if (!notifier->active) {
701 notifier->active = true;
705 static void tcg_iommu_free_notifier_list(CPUState *cpu)
707 /* Destroy the CPU's notifier list */
708 int i;
709 TCGIOMMUNotifier *notifier;
711 for (i = 0; i < cpu->iommu_notifiers->len; i++) {
712 notifier = g_array_index(cpu->iommu_notifiers, TCGIOMMUNotifier *, i);
713 memory_region_unregister_iommu_notifier(notifier->mr, &notifier->n);
714 g_free(notifier);
716 g_array_free(cpu->iommu_notifiers, true);
719 /* Called from RCU critical section */
720 MemoryRegionSection *
721 address_space_translate_for_iotlb(CPUState *cpu, int asidx, hwaddr addr,
722 hwaddr *xlat, hwaddr *plen,
723 MemTxAttrs attrs, int *prot)
725 MemoryRegionSection *section;
726 IOMMUMemoryRegion *iommu_mr;
727 IOMMUMemoryRegionClass *imrc;
728 IOMMUTLBEntry iotlb;
729 int iommu_idx;
730 AddressSpaceDispatch *d = atomic_rcu_read(&cpu->cpu_ases[asidx].memory_dispatch);
732 for (;;) {
733 section = address_space_translate_internal(d, addr, &addr, plen, false);
735 iommu_mr = memory_region_get_iommu(section->mr);
736 if (!iommu_mr) {
737 break;
740 imrc = memory_region_get_iommu_class_nocheck(iommu_mr);
742 iommu_idx = imrc->attrs_to_index(iommu_mr, attrs);
743 tcg_register_iommu_notifier(cpu, iommu_mr, iommu_idx);
744 /* We need all the permissions, so pass IOMMU_NONE so the IOMMU
745 * doesn't short-cut its translation table walk.
747 iotlb = imrc->translate(iommu_mr, addr, IOMMU_NONE, iommu_idx);
748 addr = ((iotlb.translated_addr & ~iotlb.addr_mask)
749 | (addr & iotlb.addr_mask));
750 /* Update the caller's prot bits to remove permissions the IOMMU
751 * is giving us a failure response for. If we get down to no
752 * permissions left at all we can give up now.
754 if (!(iotlb.perm & IOMMU_RO)) {
755 *prot &= ~(PAGE_READ | PAGE_EXEC);
757 if (!(iotlb.perm & IOMMU_WO)) {
758 *prot &= ~PAGE_WRITE;
761 if (!*prot) {
762 goto translate_fail;
765 d = flatview_to_dispatch(address_space_to_flatview(iotlb.target_as));
768 assert(!memory_region_is_iommu(section->mr));
769 *xlat = addr;
770 return section;
772 translate_fail:
773 return &d->map.sections[PHYS_SECTION_UNASSIGNED];
775 #endif
777 #if !defined(CONFIG_USER_ONLY)
779 static int cpu_common_post_load(void *opaque, int version_id)
781 CPUState *cpu = opaque;
783 /* 0x01 was CPU_INTERRUPT_EXIT. This line can be removed when the
784 version_id is increased. */
785 cpu->interrupt_request &= ~0x01;
786 tlb_flush(cpu);
788 /* loadvm has just updated the content of RAM, bypassing the
789 * usual mechanisms that ensure we flush TBs for writes to
790 * memory we've translated code from. So we must flush all TBs,
791 * which will now be stale.
793 tb_flush(cpu);
795 return 0;
798 static int cpu_common_pre_load(void *opaque)
800 CPUState *cpu = opaque;
802 cpu->exception_index = -1;
804 return 0;
807 static bool cpu_common_exception_index_needed(void *opaque)
809 CPUState *cpu = opaque;
811 return tcg_enabled() && cpu->exception_index != -1;
814 static const VMStateDescription vmstate_cpu_common_exception_index = {
815 .name = "cpu_common/exception_index",
816 .version_id = 1,
817 .minimum_version_id = 1,
818 .needed = cpu_common_exception_index_needed,
819 .fields = (VMStateField[]) {
820 VMSTATE_INT32(exception_index, CPUState),
821 VMSTATE_END_OF_LIST()
825 static bool cpu_common_crash_occurred_needed(void *opaque)
827 CPUState *cpu = opaque;
829 return cpu->crash_occurred;
832 static const VMStateDescription vmstate_cpu_common_crash_occurred = {
833 .name = "cpu_common/crash_occurred",
834 .version_id = 1,
835 .minimum_version_id = 1,
836 .needed = cpu_common_crash_occurred_needed,
837 .fields = (VMStateField[]) {
838 VMSTATE_BOOL(crash_occurred, CPUState),
839 VMSTATE_END_OF_LIST()
843 const VMStateDescription vmstate_cpu_common = {
844 .name = "cpu_common",
845 .version_id = 1,
846 .minimum_version_id = 1,
847 .pre_load = cpu_common_pre_load,
848 .post_load = cpu_common_post_load,
849 .fields = (VMStateField[]) {
850 VMSTATE_UINT32(halted, CPUState),
851 VMSTATE_UINT32(interrupt_request, CPUState),
852 VMSTATE_END_OF_LIST()
854 .subsections = (const VMStateDescription*[]) {
855 &vmstate_cpu_common_exception_index,
856 &vmstate_cpu_common_crash_occurred,
857 NULL
861 #endif
863 CPUState *qemu_get_cpu(int index)
865 CPUState *cpu;
867 CPU_FOREACH(cpu) {
868 if (cpu->cpu_index == index) {
869 return cpu;
873 return NULL;
876 #if !defined(CONFIG_USER_ONLY)
877 void cpu_address_space_init(CPUState *cpu, int asidx,
878 const char *prefix, MemoryRegion *mr)
880 CPUAddressSpace *newas;
881 AddressSpace *as = g_new0(AddressSpace, 1);
882 char *as_name;
884 assert(mr);
885 as_name = g_strdup_printf("%s-%d", prefix, cpu->cpu_index);
886 address_space_init(as, mr, as_name);
887 g_free(as_name);
889 /* Target code should have set num_ases before calling us */
890 assert(asidx < cpu->num_ases);
892 if (asidx == 0) {
893 /* address space 0 gets the convenience alias */
894 cpu->as = as;
897 /* KVM cannot currently support multiple address spaces. */
898 assert(asidx == 0 || !kvm_enabled());
900 if (!cpu->cpu_ases) {
901 cpu->cpu_ases = g_new0(CPUAddressSpace, cpu->num_ases);
904 newas = &cpu->cpu_ases[asidx];
905 newas->cpu = cpu;
906 newas->as = as;
907 if (tcg_enabled()) {
908 newas->tcg_as_listener.commit = tcg_commit;
909 memory_listener_register(&newas->tcg_as_listener, as);
913 AddressSpace *cpu_get_address_space(CPUState *cpu, int asidx)
915 /* Return the AddressSpace corresponding to the specified index */
916 return cpu->cpu_ases[asidx].as;
918 #endif
920 void cpu_exec_unrealizefn(CPUState *cpu)
922 CPUClass *cc = CPU_GET_CLASS(cpu);
924 cpu_list_remove(cpu);
926 if (cc->vmsd != NULL) {
927 vmstate_unregister(NULL, cc->vmsd, cpu);
929 if (qdev_get_vmsd(DEVICE(cpu)) == NULL) {
930 vmstate_unregister(NULL, &vmstate_cpu_common, cpu);
932 #ifndef CONFIG_USER_ONLY
933 tcg_iommu_free_notifier_list(cpu);
934 #endif
937 Property cpu_common_props[] = {
938 #ifndef CONFIG_USER_ONLY
939 /* Create a memory property for softmmu CPU object,
940 * so users can wire up its memory. (This can't go in qom/cpu.c
941 * because that file is compiled only once for both user-mode
942 * and system builds.) The default if no link is set up is to use
943 * the system address space.
945 DEFINE_PROP_LINK("memory", CPUState, memory, TYPE_MEMORY_REGION,
946 MemoryRegion *),
947 #endif
948 DEFINE_PROP_END_OF_LIST(),
951 void cpu_exec_initfn(CPUState *cpu)
953 cpu->as = NULL;
954 cpu->num_ases = 0;
956 #ifndef CONFIG_USER_ONLY
957 cpu->thread_id = qemu_get_thread_id();
958 cpu->memory = system_memory;
959 object_ref(OBJECT(cpu->memory));
960 #endif
963 void cpu_exec_realizefn(CPUState *cpu, Error **errp)
965 CPUClass *cc = CPU_GET_CLASS(cpu);
966 static bool tcg_target_initialized;
968 cpu_list_add(cpu);
970 if (tcg_enabled() && !tcg_target_initialized) {
971 tcg_target_initialized = true;
972 cc->tcg_initialize();
974 tlb_init(cpu);
976 #ifndef CONFIG_USER_ONLY
977 if (qdev_get_vmsd(DEVICE(cpu)) == NULL) {
978 vmstate_register(NULL, cpu->cpu_index, &vmstate_cpu_common, cpu);
980 if (cc->vmsd != NULL) {
981 vmstate_register(NULL, cpu->cpu_index, cc->vmsd, cpu);
984 cpu->iommu_notifiers = g_array_new(false, true, sizeof(TCGIOMMUNotifier *));
985 #endif
988 const char *parse_cpu_option(const char *cpu_option)
990 ObjectClass *oc;
991 CPUClass *cc;
992 gchar **model_pieces;
993 const char *cpu_type;
995 model_pieces = g_strsplit(cpu_option, ",", 2);
996 if (!model_pieces[0]) {
997 error_report("-cpu option cannot be empty");
998 exit(1);
1001 oc = cpu_class_by_name(CPU_RESOLVING_TYPE, model_pieces[0]);
1002 if (oc == NULL) {
1003 error_report("unable to find CPU model '%s'", model_pieces[0]);
1004 g_strfreev(model_pieces);
1005 exit(EXIT_FAILURE);
1008 cpu_type = object_class_get_name(oc);
1009 cc = CPU_CLASS(oc);
1010 cc->parse_features(cpu_type, model_pieces[1], &error_fatal);
1011 g_strfreev(model_pieces);
1012 return cpu_type;
1015 #if defined(CONFIG_USER_ONLY)
1016 void tb_invalidate_phys_addr(target_ulong addr)
1018 mmap_lock();
1019 tb_invalidate_phys_page_range(addr, addr + 1, 0);
1020 mmap_unlock();
1023 static void breakpoint_invalidate(CPUState *cpu, target_ulong pc)
1025 tb_invalidate_phys_addr(pc);
1027 #else
1028 void tb_invalidate_phys_addr(AddressSpace *as, hwaddr addr, MemTxAttrs attrs)
1030 ram_addr_t ram_addr;
1031 MemoryRegion *mr;
1032 hwaddr l = 1;
1034 if (!tcg_enabled()) {
1035 return;
1038 rcu_read_lock();
1039 mr = address_space_translate(as, addr, &addr, &l, false, attrs);
1040 if (!(memory_region_is_ram(mr)
1041 || memory_region_is_romd(mr))) {
1042 rcu_read_unlock();
1043 return;
1045 ram_addr = memory_region_get_ram_addr(mr) + addr;
1046 tb_invalidate_phys_page_range(ram_addr, ram_addr + 1, 0);
1047 rcu_read_unlock();
1050 static void breakpoint_invalidate(CPUState *cpu, target_ulong pc)
1052 MemTxAttrs attrs;
1053 hwaddr phys = cpu_get_phys_page_attrs_debug(cpu, pc, &attrs);
1054 int asidx = cpu_asidx_from_attrs(cpu, attrs);
1055 if (phys != -1) {
1056 /* Locks grabbed by tb_invalidate_phys_addr */
1057 tb_invalidate_phys_addr(cpu->cpu_ases[asidx].as,
1058 phys | (pc & ~TARGET_PAGE_MASK), attrs);
1061 #endif
1063 #if defined(CONFIG_USER_ONLY)
1064 void cpu_watchpoint_remove_all(CPUState *cpu, int mask)
1069 int cpu_watchpoint_remove(CPUState *cpu, vaddr addr, vaddr len,
1070 int flags)
1072 return -ENOSYS;
1075 void cpu_watchpoint_remove_by_ref(CPUState *cpu, CPUWatchpoint *watchpoint)
1079 int cpu_watchpoint_insert(CPUState *cpu, vaddr addr, vaddr len,
1080 int flags, CPUWatchpoint **watchpoint)
1082 return -ENOSYS;
1084 #else
1085 /* Add a watchpoint. */
1086 int cpu_watchpoint_insert(CPUState *cpu, vaddr addr, vaddr len,
1087 int flags, CPUWatchpoint **watchpoint)
1089 CPUWatchpoint *wp;
1091 /* forbid ranges which are empty or run off the end of the address space */
1092 if (len == 0 || (addr + len - 1) < addr) {
1093 error_report("tried to set invalid watchpoint at %"
1094 VADDR_PRIx ", len=%" VADDR_PRIu, addr, len);
1095 return -EINVAL;
1097 wp = g_malloc(sizeof(*wp));
1099 wp->vaddr = addr;
1100 wp->len = len;
1101 wp->flags = flags;
1103 /* keep all GDB-injected watchpoints in front */
1104 if (flags & BP_GDB) {
1105 QTAILQ_INSERT_HEAD(&cpu->watchpoints, wp, entry);
1106 } else {
1107 QTAILQ_INSERT_TAIL(&cpu->watchpoints, wp, entry);
1110 tlb_flush_page(cpu, addr);
1112 if (watchpoint)
1113 *watchpoint = wp;
1114 return 0;
1117 /* Remove a specific watchpoint. */
1118 int cpu_watchpoint_remove(CPUState *cpu, vaddr addr, vaddr len,
1119 int flags)
1121 CPUWatchpoint *wp;
1123 QTAILQ_FOREACH(wp, &cpu->watchpoints, entry) {
1124 if (addr == wp->vaddr && len == wp->len
1125 && flags == (wp->flags & ~BP_WATCHPOINT_HIT)) {
1126 cpu_watchpoint_remove_by_ref(cpu, wp);
1127 return 0;
1130 return -ENOENT;
1133 /* Remove a specific watchpoint by reference. */
1134 void cpu_watchpoint_remove_by_ref(CPUState *cpu, CPUWatchpoint *watchpoint)
1136 QTAILQ_REMOVE(&cpu->watchpoints, watchpoint, entry);
1138 tlb_flush_page(cpu, watchpoint->vaddr);
1140 g_free(watchpoint);
1143 /* Remove all matching watchpoints. */
1144 void cpu_watchpoint_remove_all(CPUState *cpu, int mask)
1146 CPUWatchpoint *wp, *next;
1148 QTAILQ_FOREACH_SAFE(wp, &cpu->watchpoints, entry, next) {
1149 if (wp->flags & mask) {
1150 cpu_watchpoint_remove_by_ref(cpu, wp);
1155 /* Return true if this watchpoint address matches the specified
1156 * access (ie the address range covered by the watchpoint overlaps
1157 * partially or completely with the address range covered by the
1158 * access).
1160 static inline bool cpu_watchpoint_address_matches(CPUWatchpoint *wp,
1161 vaddr addr,
1162 vaddr len)
1164 /* We know the lengths are non-zero, but a little caution is
1165 * required to avoid errors in the case where the range ends
1166 * exactly at the top of the address space and so addr + len
1167 * wraps round to zero.
1169 vaddr wpend = wp->vaddr + wp->len - 1;
1170 vaddr addrend = addr + len - 1;
1172 return !(addr > wpend || wp->vaddr > addrend);
1175 #endif
1177 /* Add a breakpoint. */
1178 int cpu_breakpoint_insert(CPUState *cpu, vaddr pc, int flags,
1179 CPUBreakpoint **breakpoint)
1181 CPUBreakpoint *bp;
1183 bp = g_malloc(sizeof(*bp));
1185 bp->pc = pc;
1186 bp->flags = flags;
1188 /* keep all GDB-injected breakpoints in front */
1189 if (flags & BP_GDB) {
1190 QTAILQ_INSERT_HEAD(&cpu->breakpoints, bp, entry);
1191 } else {
1192 QTAILQ_INSERT_TAIL(&cpu->breakpoints, bp, entry);
1195 breakpoint_invalidate(cpu, pc);
1197 if (breakpoint) {
1198 *breakpoint = bp;
1200 return 0;
1203 /* Remove a specific breakpoint. */
1204 int cpu_breakpoint_remove(CPUState *cpu, vaddr pc, int flags)
1206 CPUBreakpoint *bp;
1208 QTAILQ_FOREACH(bp, &cpu->breakpoints, entry) {
1209 if (bp->pc == pc && bp->flags == flags) {
1210 cpu_breakpoint_remove_by_ref(cpu, bp);
1211 return 0;
1214 return -ENOENT;
1217 /* Remove a specific breakpoint by reference. */
1218 void cpu_breakpoint_remove_by_ref(CPUState *cpu, CPUBreakpoint *breakpoint)
1220 QTAILQ_REMOVE(&cpu->breakpoints, breakpoint, entry);
1222 breakpoint_invalidate(cpu, breakpoint->pc);
1224 g_free(breakpoint);
1227 /* Remove all matching breakpoints. */
1228 void cpu_breakpoint_remove_all(CPUState *cpu, int mask)
1230 CPUBreakpoint *bp, *next;
1232 QTAILQ_FOREACH_SAFE(bp, &cpu->breakpoints, entry, next) {
1233 if (bp->flags & mask) {
1234 cpu_breakpoint_remove_by_ref(cpu, bp);
1239 /* enable or disable single step mode. EXCP_DEBUG is returned by the
1240 CPU loop after each instruction */
1241 void cpu_single_step(CPUState *cpu, int enabled)
1243 if (cpu->singlestep_enabled != enabled) {
1244 cpu->singlestep_enabled = enabled;
1245 if (kvm_enabled()) {
1246 kvm_update_guest_debug(cpu, 0);
1247 } else {
1248 /* must flush all the translated code to avoid inconsistencies */
1249 /* XXX: only flush what is necessary */
1250 tb_flush(cpu);
1255 void cpu_abort(CPUState *cpu, const char *fmt, ...)
1257 va_list ap;
1258 va_list ap2;
1260 va_start(ap, fmt);
1261 va_copy(ap2, ap);
1262 fprintf(stderr, "qemu: fatal: ");
1263 vfprintf(stderr, fmt, ap);
1264 fprintf(stderr, "\n");
1265 cpu_dump_state(cpu, stderr, CPU_DUMP_FPU | CPU_DUMP_CCOP);
1266 if (qemu_log_separate()) {
1267 qemu_log_lock();
1268 qemu_log("qemu: fatal: ");
1269 qemu_log_vprintf(fmt, ap2);
1270 qemu_log("\n");
1271 log_cpu_state(cpu, CPU_DUMP_FPU | CPU_DUMP_CCOP);
1272 qemu_log_flush();
1273 qemu_log_unlock();
1274 qemu_log_close();
1276 va_end(ap2);
1277 va_end(ap);
1278 replay_finish();
1279 #if defined(CONFIG_USER_ONLY)
1281 struct sigaction act;
1282 sigfillset(&act.sa_mask);
1283 act.sa_handler = SIG_DFL;
1284 act.sa_flags = 0;
1285 sigaction(SIGABRT, &act, NULL);
1287 #endif
1288 abort();
1291 #if !defined(CONFIG_USER_ONLY)
1292 /* Called from RCU critical section */
1293 static RAMBlock *qemu_get_ram_block(ram_addr_t addr)
1295 RAMBlock *block;
1297 block = atomic_rcu_read(&ram_list.mru_block);
1298 if (block && addr - block->offset < block->max_length) {
1299 return block;
1301 RAMBLOCK_FOREACH(block) {
1302 if (addr - block->offset < block->max_length) {
1303 goto found;
1307 fprintf(stderr, "Bad ram offset %" PRIx64 "\n", (uint64_t)addr);
1308 abort();
1310 found:
1311 /* It is safe to write mru_block outside the iothread lock. This
1312 * is what happens:
1314 * mru_block = xxx
1315 * rcu_read_unlock()
1316 * xxx removed from list
1317 * rcu_read_lock()
1318 * read mru_block
1319 * mru_block = NULL;
1320 * call_rcu(reclaim_ramblock, xxx);
1321 * rcu_read_unlock()
1323 * atomic_rcu_set is not needed here. The block was already published
1324 * when it was placed into the list. Here we're just making an extra
1325 * copy of the pointer.
1327 ram_list.mru_block = block;
1328 return block;
1331 static void tlb_reset_dirty_range_all(ram_addr_t start, ram_addr_t length)
1333 CPUState *cpu;
1334 ram_addr_t start1;
1335 RAMBlock *block;
1336 ram_addr_t end;
1338 assert(tcg_enabled());
1339 end = TARGET_PAGE_ALIGN(start + length);
1340 start &= TARGET_PAGE_MASK;
1342 rcu_read_lock();
1343 block = qemu_get_ram_block(start);
1344 assert(block == qemu_get_ram_block(end - 1));
1345 start1 = (uintptr_t)ramblock_ptr(block, start - block->offset);
1346 CPU_FOREACH(cpu) {
1347 tlb_reset_dirty(cpu, start1, length);
1349 rcu_read_unlock();
1352 /* Note: start and end must be within the same ram block. */
1353 bool cpu_physical_memory_test_and_clear_dirty(ram_addr_t start,
1354 ram_addr_t length,
1355 unsigned client)
1357 DirtyMemoryBlocks *blocks;
1358 unsigned long end, page;
1359 bool dirty = false;
1360 RAMBlock *ramblock;
1361 uint64_t mr_offset, mr_size;
1363 if (length == 0) {
1364 return false;
1367 end = TARGET_PAGE_ALIGN(start + length) >> TARGET_PAGE_BITS;
1368 page = start >> TARGET_PAGE_BITS;
1370 rcu_read_lock();
1372 blocks = atomic_rcu_read(&ram_list.dirty_memory[client]);
1373 ramblock = qemu_get_ram_block(start);
1374 /* Range sanity check on the ramblock */
1375 assert(start >= ramblock->offset &&
1376 start + length <= ramblock->offset + ramblock->used_length);
1378 while (page < end) {
1379 unsigned long idx = page / DIRTY_MEMORY_BLOCK_SIZE;
1380 unsigned long offset = page % DIRTY_MEMORY_BLOCK_SIZE;
1381 unsigned long num = MIN(end - page, DIRTY_MEMORY_BLOCK_SIZE - offset);
1383 dirty |= bitmap_test_and_clear_atomic(blocks->blocks[idx],
1384 offset, num);
1385 page += num;
1388 mr_offset = (ram_addr_t)(page << TARGET_PAGE_BITS) - ramblock->offset;
1389 mr_size = (end - page) << TARGET_PAGE_BITS;
1390 memory_region_clear_dirty_bitmap(ramblock->mr, mr_offset, mr_size);
1392 rcu_read_unlock();
1394 if (dirty && tcg_enabled()) {
1395 tlb_reset_dirty_range_all(start, length);
1398 return dirty;
1401 DirtyBitmapSnapshot *cpu_physical_memory_snapshot_and_clear_dirty
1402 (MemoryRegion *mr, hwaddr offset, hwaddr length, unsigned client)
1404 DirtyMemoryBlocks *blocks;
1405 ram_addr_t start = memory_region_get_ram_addr(mr) + offset;
1406 unsigned long align = 1UL << (TARGET_PAGE_BITS + BITS_PER_LEVEL);
1407 ram_addr_t first = QEMU_ALIGN_DOWN(start, align);
1408 ram_addr_t last = QEMU_ALIGN_UP(start + length, align);
1409 DirtyBitmapSnapshot *snap;
1410 unsigned long page, end, dest;
1412 snap = g_malloc0(sizeof(*snap) +
1413 ((last - first) >> (TARGET_PAGE_BITS + 3)));
1414 snap->start = first;
1415 snap->end = last;
1417 page = first >> TARGET_PAGE_BITS;
1418 end = last >> TARGET_PAGE_BITS;
1419 dest = 0;
1421 rcu_read_lock();
1423 blocks = atomic_rcu_read(&ram_list.dirty_memory[client]);
1425 while (page < end) {
1426 unsigned long idx = page / DIRTY_MEMORY_BLOCK_SIZE;
1427 unsigned long offset = page % DIRTY_MEMORY_BLOCK_SIZE;
1428 unsigned long num = MIN(end - page, DIRTY_MEMORY_BLOCK_SIZE - offset);
1430 assert(QEMU_IS_ALIGNED(offset, (1 << BITS_PER_LEVEL)));
1431 assert(QEMU_IS_ALIGNED(num, (1 << BITS_PER_LEVEL)));
1432 offset >>= BITS_PER_LEVEL;
1434 bitmap_copy_and_clear_atomic(snap->dirty + dest,
1435 blocks->blocks[idx] + offset,
1436 num);
1437 page += num;
1438 dest += num >> BITS_PER_LEVEL;
1441 rcu_read_unlock();
1443 if (tcg_enabled()) {
1444 tlb_reset_dirty_range_all(start, length);
1447 memory_region_clear_dirty_bitmap(mr, offset, length);
1449 return snap;
1452 bool cpu_physical_memory_snapshot_get_dirty(DirtyBitmapSnapshot *snap,
1453 ram_addr_t start,
1454 ram_addr_t length)
1456 unsigned long page, end;
1458 assert(start >= snap->start);
1459 assert(start + length <= snap->end);
1461 end = TARGET_PAGE_ALIGN(start + length - snap->start) >> TARGET_PAGE_BITS;
1462 page = (start - snap->start) >> TARGET_PAGE_BITS;
1464 while (page < end) {
1465 if (test_bit(page, snap->dirty)) {
1466 return true;
1468 page++;
1470 return false;
1473 /* Called from RCU critical section */
1474 hwaddr memory_region_section_get_iotlb(CPUState *cpu,
1475 MemoryRegionSection *section,
1476 target_ulong vaddr,
1477 hwaddr paddr, hwaddr xlat,
1478 int prot,
1479 target_ulong *address)
1481 hwaddr iotlb;
1482 CPUWatchpoint *wp;
1484 if (memory_region_is_ram(section->mr)) {
1485 /* Normal RAM. */
1486 iotlb = memory_region_get_ram_addr(section->mr) + xlat;
1487 if (!section->readonly) {
1488 iotlb |= PHYS_SECTION_NOTDIRTY;
1489 } else {
1490 iotlb |= PHYS_SECTION_ROM;
1492 } else {
1493 AddressSpaceDispatch *d;
1495 d = flatview_to_dispatch(section->fv);
1496 iotlb = section - d->map.sections;
1497 iotlb += xlat;
1500 /* Make accesses to pages with watchpoints go via the
1501 watchpoint trap routines. */
1502 QTAILQ_FOREACH(wp, &cpu->watchpoints, entry) {
1503 if (cpu_watchpoint_address_matches(wp, vaddr, TARGET_PAGE_SIZE)) {
1504 /* Avoid trapping reads of pages with a write breakpoint. */
1505 if ((prot & PAGE_WRITE) || (wp->flags & BP_MEM_READ)) {
1506 iotlb = PHYS_SECTION_WATCH + paddr;
1507 *address |= TLB_MMIO;
1508 break;
1513 return iotlb;
1515 #endif /* defined(CONFIG_USER_ONLY) */
1517 #if !defined(CONFIG_USER_ONLY)
1519 static int subpage_register (subpage_t *mmio, uint32_t start, uint32_t end,
1520 uint16_t section);
1521 static subpage_t *subpage_init(FlatView *fv, hwaddr base);
1523 static void *(*phys_mem_alloc)(size_t size, uint64_t *align, bool shared) =
1524 qemu_anon_ram_alloc;
1527 * Set a custom physical guest memory alloator.
1528 * Accelerators with unusual needs may need this. Hopefully, we can
1529 * get rid of it eventually.
1531 void phys_mem_set_alloc(void *(*alloc)(size_t, uint64_t *align, bool shared))
1533 phys_mem_alloc = alloc;
1536 static uint16_t phys_section_add(PhysPageMap *map,
1537 MemoryRegionSection *section)
1539 /* The physical section number is ORed with a page-aligned
1540 * pointer to produce the iotlb entries. Thus it should
1541 * never overflow into the page-aligned value.
1543 assert(map->sections_nb < TARGET_PAGE_SIZE);
1545 if (map->sections_nb == map->sections_nb_alloc) {
1546 map->sections_nb_alloc = MAX(map->sections_nb_alloc * 2, 16);
1547 map->sections = g_renew(MemoryRegionSection, map->sections,
1548 map->sections_nb_alloc);
1550 map->sections[map->sections_nb] = *section;
1551 memory_region_ref(section->mr);
1552 return map->sections_nb++;
1555 static void phys_section_destroy(MemoryRegion *mr)
1557 bool have_sub_page = mr->subpage;
1559 memory_region_unref(mr);
1561 if (have_sub_page) {
1562 subpage_t *subpage = container_of(mr, subpage_t, iomem);
1563 object_unref(OBJECT(&subpage->iomem));
1564 g_free(subpage);
1568 static void phys_sections_free(PhysPageMap *map)
1570 while (map->sections_nb > 0) {
1571 MemoryRegionSection *section = &map->sections[--map->sections_nb];
1572 phys_section_destroy(section->mr);
1574 g_free(map->sections);
1575 g_free(map->nodes);
1578 static void register_subpage(FlatView *fv, MemoryRegionSection *section)
1580 AddressSpaceDispatch *d = flatview_to_dispatch(fv);
1581 subpage_t *subpage;
1582 hwaddr base = section->offset_within_address_space
1583 & TARGET_PAGE_MASK;
1584 MemoryRegionSection *existing = phys_page_find(d, base);
1585 MemoryRegionSection subsection = {
1586 .offset_within_address_space = base,
1587 .size = int128_make64(TARGET_PAGE_SIZE),
1589 hwaddr start, end;
1591 assert(existing->mr->subpage || existing->mr == &io_mem_unassigned);
1593 if (!(existing->mr->subpage)) {
1594 subpage = subpage_init(fv, base);
1595 subsection.fv = fv;
1596 subsection.mr = &subpage->iomem;
1597 phys_page_set(d, base >> TARGET_PAGE_BITS, 1,
1598 phys_section_add(&d->map, &subsection));
1599 } else {
1600 subpage = container_of(existing->mr, subpage_t, iomem);
1602 start = section->offset_within_address_space & ~TARGET_PAGE_MASK;
1603 end = start + int128_get64(section->size) - 1;
1604 subpage_register(subpage, start, end,
1605 phys_section_add(&d->map, section));
1609 static void register_multipage(FlatView *fv,
1610 MemoryRegionSection *section)
1612 AddressSpaceDispatch *d = flatview_to_dispatch(fv);
1613 hwaddr start_addr = section->offset_within_address_space;
1614 uint16_t section_index = phys_section_add(&d->map, section);
1615 uint64_t num_pages = int128_get64(int128_rshift(section->size,
1616 TARGET_PAGE_BITS));
1618 assert(num_pages);
1619 phys_page_set(d, start_addr >> TARGET_PAGE_BITS, num_pages, section_index);
1623 * The range in *section* may look like this:
1625 * |s|PPPPPPP|s|
1627 * where s stands for subpage and P for page.
1629 void flatview_add_to_dispatch(FlatView *fv, MemoryRegionSection *section)
1631 MemoryRegionSection remain = *section;
1632 Int128 page_size = int128_make64(TARGET_PAGE_SIZE);
1634 /* register first subpage */
1635 if (remain.offset_within_address_space & ~TARGET_PAGE_MASK) {
1636 uint64_t left = TARGET_PAGE_ALIGN(remain.offset_within_address_space)
1637 - remain.offset_within_address_space;
1639 MemoryRegionSection now = remain;
1640 now.size = int128_min(int128_make64(left), now.size);
1641 register_subpage(fv, &now);
1642 if (int128_eq(remain.size, now.size)) {
1643 return;
1645 remain.size = int128_sub(remain.size, now.size);
1646 remain.offset_within_address_space += int128_get64(now.size);
1647 remain.offset_within_region += int128_get64(now.size);
1650 /* register whole pages */
1651 if (int128_ge(remain.size, page_size)) {
1652 MemoryRegionSection now = remain;
1653 now.size = int128_and(now.size, int128_neg(page_size));
1654 register_multipage(fv, &now);
1655 if (int128_eq(remain.size, now.size)) {
1656 return;
1658 remain.size = int128_sub(remain.size, now.size);
1659 remain.offset_within_address_space += int128_get64(now.size);
1660 remain.offset_within_region += int128_get64(now.size);
1663 /* register last subpage */
1664 register_subpage(fv, &remain);
1667 void qemu_flush_coalesced_mmio_buffer(void)
1669 if (kvm_enabled())
1670 kvm_flush_coalesced_mmio_buffer();
1673 void qemu_mutex_lock_ramlist(void)
1675 qemu_mutex_lock(&ram_list.mutex);
1678 void qemu_mutex_unlock_ramlist(void)
1680 qemu_mutex_unlock(&ram_list.mutex);
1683 void ram_block_dump(Monitor *mon)
1685 RAMBlock *block;
1686 char *psize;
1688 rcu_read_lock();
1689 monitor_printf(mon, "%24s %8s %18s %18s %18s\n",
1690 "Block Name", "PSize", "Offset", "Used", "Total");
1691 RAMBLOCK_FOREACH(block) {
1692 psize = size_to_str(block->page_size);
1693 monitor_printf(mon, "%24s %8s 0x%016" PRIx64 " 0x%016" PRIx64
1694 " 0x%016" PRIx64 "\n", block->idstr, psize,
1695 (uint64_t)block->offset,
1696 (uint64_t)block->used_length,
1697 (uint64_t)block->max_length);
1698 g_free(psize);
1700 rcu_read_unlock();
1703 #ifdef __linux__
1705 * FIXME TOCTTOU: this iterates over memory backends' mem-path, which
1706 * may or may not name the same files / on the same filesystem now as
1707 * when we actually open and map them. Iterate over the file
1708 * descriptors instead, and use qemu_fd_getpagesize().
1710 static int find_min_backend_pagesize(Object *obj, void *opaque)
1712 long *hpsize_min = opaque;
1714 if (object_dynamic_cast(obj, TYPE_MEMORY_BACKEND)) {
1715 HostMemoryBackend *backend = MEMORY_BACKEND(obj);
1716 long hpsize = host_memory_backend_pagesize(backend);
1718 if (host_memory_backend_is_mapped(backend) && (hpsize < *hpsize_min)) {
1719 *hpsize_min = hpsize;
1723 return 0;
1726 static int find_max_backend_pagesize(Object *obj, void *opaque)
1728 long *hpsize_max = opaque;
1730 if (object_dynamic_cast(obj, TYPE_MEMORY_BACKEND)) {
1731 HostMemoryBackend *backend = MEMORY_BACKEND(obj);
1732 long hpsize = host_memory_backend_pagesize(backend);
1734 if (host_memory_backend_is_mapped(backend) && (hpsize > *hpsize_max)) {
1735 *hpsize_max = hpsize;
1739 return 0;
1743 * TODO: We assume right now that all mapped host memory backends are
1744 * used as RAM, however some might be used for different purposes.
1746 long qemu_minrampagesize(void)
1748 long hpsize = LONG_MAX;
1749 long mainrampagesize;
1750 Object *memdev_root;
1752 mainrampagesize = qemu_mempath_getpagesize(mem_path);
1754 /* it's possible we have memory-backend objects with
1755 * hugepage-backed RAM. these may get mapped into system
1756 * address space via -numa parameters or memory hotplug
1757 * hooks. we want to take these into account, but we
1758 * also want to make sure these supported hugepage
1759 * sizes are applicable across the entire range of memory
1760 * we may boot from, so we take the min across all
1761 * backends, and assume normal pages in cases where a
1762 * backend isn't backed by hugepages.
1764 memdev_root = object_resolve_path("/objects", NULL);
1765 if (memdev_root) {
1766 object_child_foreach(memdev_root, find_min_backend_pagesize, &hpsize);
1768 if (hpsize == LONG_MAX) {
1769 /* No additional memory regions found ==> Report main RAM page size */
1770 return mainrampagesize;
1773 /* If NUMA is disabled or the NUMA nodes are not backed with a
1774 * memory-backend, then there is at least one node using "normal" RAM,
1775 * so if its page size is smaller we have got to report that size instead.
1777 if (hpsize > mainrampagesize &&
1778 (nb_numa_nodes == 0 || numa_info[0].node_memdev == NULL)) {
1779 static bool warned;
1780 if (!warned) {
1781 error_report("Huge page support disabled (n/a for main memory).");
1782 warned = true;
1784 return mainrampagesize;
1787 return hpsize;
1790 long qemu_maxrampagesize(void)
1792 long pagesize = qemu_mempath_getpagesize(mem_path);
1793 Object *memdev_root = object_resolve_path("/objects", NULL);
1795 if (memdev_root) {
1796 object_child_foreach(memdev_root, find_max_backend_pagesize,
1797 &pagesize);
1799 return pagesize;
1801 #else
1802 long qemu_minrampagesize(void)
1804 return getpagesize();
1806 long qemu_maxrampagesize(void)
1808 return getpagesize();
1810 #endif
1812 #ifdef CONFIG_POSIX
1813 static int64_t get_file_size(int fd)
1815 int64_t size = lseek(fd, 0, SEEK_END);
1816 if (size < 0) {
1817 return -errno;
1819 return size;
1822 static int file_ram_open(const char *path,
1823 const char *region_name,
1824 bool *created,
1825 Error **errp)
1827 char *filename;
1828 char *sanitized_name;
1829 char *c;
1830 int fd = -1;
1832 *created = false;
1833 for (;;) {
1834 fd = open(path, O_RDWR);
1835 if (fd >= 0) {
1836 /* @path names an existing file, use it */
1837 break;
1839 if (errno == ENOENT) {
1840 /* @path names a file that doesn't exist, create it */
1841 fd = open(path, O_RDWR | O_CREAT | O_EXCL, 0644);
1842 if (fd >= 0) {
1843 *created = true;
1844 break;
1846 } else if (errno == EISDIR) {
1847 /* @path names a directory, create a file there */
1848 /* Make name safe to use with mkstemp by replacing '/' with '_'. */
1849 sanitized_name = g_strdup(region_name);
1850 for (c = sanitized_name; *c != '\0'; c++) {
1851 if (*c == '/') {
1852 *c = '_';
1856 filename = g_strdup_printf("%s/qemu_back_mem.%s.XXXXXX", path,
1857 sanitized_name);
1858 g_free(sanitized_name);
1860 fd = mkstemp(filename);
1861 if (fd >= 0) {
1862 unlink(filename);
1863 g_free(filename);
1864 break;
1866 g_free(filename);
1868 if (errno != EEXIST && errno != EINTR) {
1869 error_setg_errno(errp, errno,
1870 "can't open backing store %s for guest RAM",
1871 path);
1872 return -1;
1875 * Try again on EINTR and EEXIST. The latter happens when
1876 * something else creates the file between our two open().
1880 return fd;
1883 static void *file_ram_alloc(RAMBlock *block,
1884 ram_addr_t memory,
1885 int fd,
1886 bool truncate,
1887 Error **errp)
1889 MachineState *ms = MACHINE(qdev_get_machine());
1890 void *area;
1892 block->page_size = qemu_fd_getpagesize(fd);
1893 if (block->mr->align % block->page_size) {
1894 error_setg(errp, "alignment 0x%" PRIx64
1895 " must be multiples of page size 0x%zx",
1896 block->mr->align, block->page_size);
1897 return NULL;
1898 } else if (block->mr->align && !is_power_of_2(block->mr->align)) {
1899 error_setg(errp, "alignment 0x%" PRIx64
1900 " must be a power of two", block->mr->align);
1901 return NULL;
1903 block->mr->align = MAX(block->page_size, block->mr->align);
1904 #if defined(__s390x__)
1905 if (kvm_enabled()) {
1906 block->mr->align = MAX(block->mr->align, QEMU_VMALLOC_ALIGN);
1908 #endif
1910 if (memory < block->page_size) {
1911 error_setg(errp, "memory size 0x" RAM_ADDR_FMT " must be equal to "
1912 "or larger than page size 0x%zx",
1913 memory, block->page_size);
1914 return NULL;
1917 memory = ROUND_UP(memory, block->page_size);
1920 * ftruncate is not supported by hugetlbfs in older
1921 * hosts, so don't bother bailing out on errors.
1922 * If anything goes wrong with it under other filesystems,
1923 * mmap will fail.
1925 * Do not truncate the non-empty backend file to avoid corrupting
1926 * the existing data in the file. Disabling shrinking is not
1927 * enough. For example, the current vNVDIMM implementation stores
1928 * the guest NVDIMM labels at the end of the backend file. If the
1929 * backend file is later extended, QEMU will not be able to find
1930 * those labels. Therefore, extending the non-empty backend file
1931 * is disabled as well.
1933 if (truncate && ftruncate(fd, memory)) {
1934 perror("ftruncate");
1937 area = qemu_ram_mmap(fd, memory, block->mr->align,
1938 block->flags & RAM_SHARED, block->flags & RAM_PMEM);
1939 if (area == MAP_FAILED) {
1940 error_setg_errno(errp, errno,
1941 "unable to map backing store for guest RAM");
1942 return NULL;
1945 if (mem_prealloc) {
1946 os_mem_prealloc(fd, area, memory, ms->smp.cpus, errp);
1947 if (errp && *errp) {
1948 qemu_ram_munmap(fd, area, memory);
1949 return NULL;
1953 block->fd = fd;
1954 return area;
1956 #endif
1958 /* Allocate space within the ram_addr_t space that governs the
1959 * dirty bitmaps.
1960 * Called with the ramlist lock held.
1962 static ram_addr_t find_ram_offset(ram_addr_t size)
1964 RAMBlock *block, *next_block;
1965 ram_addr_t offset = RAM_ADDR_MAX, mingap = RAM_ADDR_MAX;
1967 assert(size != 0); /* it would hand out same offset multiple times */
1969 if (QLIST_EMPTY_RCU(&ram_list.blocks)) {
1970 return 0;
1973 RAMBLOCK_FOREACH(block) {
1974 ram_addr_t candidate, next = RAM_ADDR_MAX;
1976 /* Align blocks to start on a 'long' in the bitmap
1977 * which makes the bitmap sync'ing take the fast path.
1979 candidate = block->offset + block->max_length;
1980 candidate = ROUND_UP(candidate, BITS_PER_LONG << TARGET_PAGE_BITS);
1982 /* Search for the closest following block
1983 * and find the gap.
1985 RAMBLOCK_FOREACH(next_block) {
1986 if (next_block->offset >= candidate) {
1987 next = MIN(next, next_block->offset);
1991 /* If it fits remember our place and remember the size
1992 * of gap, but keep going so that we might find a smaller
1993 * gap to fill so avoiding fragmentation.
1995 if (next - candidate >= size && next - candidate < mingap) {
1996 offset = candidate;
1997 mingap = next - candidate;
2000 trace_find_ram_offset_loop(size, candidate, offset, next, mingap);
2003 if (offset == RAM_ADDR_MAX) {
2004 fprintf(stderr, "Failed to find gap of requested size: %" PRIu64 "\n",
2005 (uint64_t)size);
2006 abort();
2009 trace_find_ram_offset(size, offset);
2011 return offset;
2014 static unsigned long last_ram_page(void)
2016 RAMBlock *block;
2017 ram_addr_t last = 0;
2019 rcu_read_lock();
2020 RAMBLOCK_FOREACH(block) {
2021 last = MAX(last, block->offset + block->max_length);
2023 rcu_read_unlock();
2024 return last >> TARGET_PAGE_BITS;
2027 static void qemu_ram_setup_dump(void *addr, ram_addr_t size)
2029 int ret;
2031 /* Use MADV_DONTDUMP, if user doesn't want the guest memory in the core */
2032 if (!machine_dump_guest_core(current_machine)) {
2033 ret = qemu_madvise(addr, size, QEMU_MADV_DONTDUMP);
2034 if (ret) {
2035 perror("qemu_madvise");
2036 fprintf(stderr, "madvise doesn't support MADV_DONTDUMP, "
2037 "but dump_guest_core=off specified\n");
2042 const char *qemu_ram_get_idstr(RAMBlock *rb)
2044 return rb->idstr;
2047 void *qemu_ram_get_host_addr(RAMBlock *rb)
2049 return rb->host;
2052 ram_addr_t qemu_ram_get_offset(RAMBlock *rb)
2054 return rb->offset;
2057 ram_addr_t qemu_ram_get_used_length(RAMBlock *rb)
2059 return rb->used_length;
2062 bool qemu_ram_is_shared(RAMBlock *rb)
2064 return rb->flags & RAM_SHARED;
2067 /* Note: Only set at the start of postcopy */
2068 bool qemu_ram_is_uf_zeroable(RAMBlock *rb)
2070 return rb->flags & RAM_UF_ZEROPAGE;
2073 void qemu_ram_set_uf_zeroable(RAMBlock *rb)
2075 rb->flags |= RAM_UF_ZEROPAGE;
2078 bool qemu_ram_is_migratable(RAMBlock *rb)
2080 return rb->flags & RAM_MIGRATABLE;
2083 void qemu_ram_set_migratable(RAMBlock *rb)
2085 rb->flags |= RAM_MIGRATABLE;
2088 void qemu_ram_unset_migratable(RAMBlock *rb)
2090 rb->flags &= ~RAM_MIGRATABLE;
2093 /* Called with iothread lock held. */
2094 void qemu_ram_set_idstr(RAMBlock *new_block, const char *name, DeviceState *dev)
2096 RAMBlock *block;
2098 assert(new_block);
2099 assert(!new_block->idstr[0]);
2101 if (dev) {
2102 char *id = qdev_get_dev_path(dev);
2103 if (id) {
2104 snprintf(new_block->idstr, sizeof(new_block->idstr), "%s/", id);
2105 g_free(id);
2108 pstrcat(new_block->idstr, sizeof(new_block->idstr), name);
2110 rcu_read_lock();
2111 RAMBLOCK_FOREACH(block) {
2112 if (block != new_block &&
2113 !strcmp(block->idstr, new_block->idstr)) {
2114 fprintf(stderr, "RAMBlock \"%s\" already registered, abort!\n",
2115 new_block->idstr);
2116 abort();
2119 rcu_read_unlock();
2122 /* Called with iothread lock held. */
2123 void qemu_ram_unset_idstr(RAMBlock *block)
2125 /* FIXME: arch_init.c assumes that this is not called throughout
2126 * migration. Ignore the problem since hot-unplug during migration
2127 * does not work anyway.
2129 if (block) {
2130 memset(block->idstr, 0, sizeof(block->idstr));
2134 size_t qemu_ram_pagesize(RAMBlock *rb)
2136 return rb->page_size;
2139 /* Returns the largest size of page in use */
2140 size_t qemu_ram_pagesize_largest(void)
2142 RAMBlock *block;
2143 size_t largest = 0;
2145 RAMBLOCK_FOREACH(block) {
2146 largest = MAX(largest, qemu_ram_pagesize(block));
2149 return largest;
2152 static int memory_try_enable_merging(void *addr, size_t len)
2154 if (!machine_mem_merge(current_machine)) {
2155 /* disabled by the user */
2156 return 0;
2159 return qemu_madvise(addr, len, QEMU_MADV_MERGEABLE);
2162 /* Only legal before guest might have detected the memory size: e.g. on
2163 * incoming migration, or right after reset.
2165 * As memory core doesn't know how is memory accessed, it is up to
2166 * resize callback to update device state and/or add assertions to detect
2167 * misuse, if necessary.
2169 int qemu_ram_resize(RAMBlock *block, ram_addr_t newsize, Error **errp)
2171 assert(block);
2173 newsize = HOST_PAGE_ALIGN(newsize);
2175 if (block->used_length == newsize) {
2176 return 0;
2179 if (!(block->flags & RAM_RESIZEABLE)) {
2180 error_setg_errno(errp, EINVAL,
2181 "Length mismatch: %s: 0x" RAM_ADDR_FMT
2182 " in != 0x" RAM_ADDR_FMT, block->idstr,
2183 newsize, block->used_length);
2184 return -EINVAL;
2187 if (block->max_length < newsize) {
2188 error_setg_errno(errp, EINVAL,
2189 "Length too large: %s: 0x" RAM_ADDR_FMT
2190 " > 0x" RAM_ADDR_FMT, block->idstr,
2191 newsize, block->max_length);
2192 return -EINVAL;
2195 cpu_physical_memory_clear_dirty_range(block->offset, block->used_length);
2196 block->used_length = newsize;
2197 cpu_physical_memory_set_dirty_range(block->offset, block->used_length,
2198 DIRTY_CLIENTS_ALL);
2199 memory_region_set_size(block->mr, newsize);
2200 if (block->resized) {
2201 block->resized(block->idstr, newsize, block->host);
2203 return 0;
2206 /* Called with ram_list.mutex held */
2207 static void dirty_memory_extend(ram_addr_t old_ram_size,
2208 ram_addr_t new_ram_size)
2210 ram_addr_t old_num_blocks = DIV_ROUND_UP(old_ram_size,
2211 DIRTY_MEMORY_BLOCK_SIZE);
2212 ram_addr_t new_num_blocks = DIV_ROUND_UP(new_ram_size,
2213 DIRTY_MEMORY_BLOCK_SIZE);
2214 int i;
2216 /* Only need to extend if block count increased */
2217 if (new_num_blocks <= old_num_blocks) {
2218 return;
2221 for (i = 0; i < DIRTY_MEMORY_NUM; i++) {
2222 DirtyMemoryBlocks *old_blocks;
2223 DirtyMemoryBlocks *new_blocks;
2224 int j;
2226 old_blocks = atomic_rcu_read(&ram_list.dirty_memory[i]);
2227 new_blocks = g_malloc(sizeof(*new_blocks) +
2228 sizeof(new_blocks->blocks[0]) * new_num_blocks);
2230 if (old_num_blocks) {
2231 memcpy(new_blocks->blocks, old_blocks->blocks,
2232 old_num_blocks * sizeof(old_blocks->blocks[0]));
2235 for (j = old_num_blocks; j < new_num_blocks; j++) {
2236 new_blocks->blocks[j] = bitmap_new(DIRTY_MEMORY_BLOCK_SIZE);
2239 atomic_rcu_set(&ram_list.dirty_memory[i], new_blocks);
2241 if (old_blocks) {
2242 g_free_rcu(old_blocks, rcu);
2247 static void ram_block_add(RAMBlock *new_block, Error **errp, bool shared)
2249 RAMBlock *block;
2250 RAMBlock *last_block = NULL;
2251 ram_addr_t old_ram_size, new_ram_size;
2252 Error *err = NULL;
2254 old_ram_size = last_ram_page();
2256 qemu_mutex_lock_ramlist();
2257 new_block->offset = find_ram_offset(new_block->max_length);
2259 if (!new_block->host) {
2260 if (xen_enabled()) {
2261 xen_ram_alloc(new_block->offset, new_block->max_length,
2262 new_block->mr, &err);
2263 if (err) {
2264 error_propagate(errp, err);
2265 qemu_mutex_unlock_ramlist();
2266 return;
2268 } else {
2269 new_block->host = phys_mem_alloc(new_block->max_length,
2270 &new_block->mr->align, shared);
2271 if (!new_block->host) {
2272 error_setg_errno(errp, errno,
2273 "cannot set up guest memory '%s'",
2274 memory_region_name(new_block->mr));
2275 qemu_mutex_unlock_ramlist();
2276 return;
2278 memory_try_enable_merging(new_block->host, new_block->max_length);
2282 new_ram_size = MAX(old_ram_size,
2283 (new_block->offset + new_block->max_length) >> TARGET_PAGE_BITS);
2284 if (new_ram_size > old_ram_size) {
2285 dirty_memory_extend(old_ram_size, new_ram_size);
2287 /* Keep the list sorted from biggest to smallest block. Unlike QTAILQ,
2288 * QLIST (which has an RCU-friendly variant) does not have insertion at
2289 * tail, so save the last element in last_block.
2291 RAMBLOCK_FOREACH(block) {
2292 last_block = block;
2293 if (block->max_length < new_block->max_length) {
2294 break;
2297 if (block) {
2298 QLIST_INSERT_BEFORE_RCU(block, new_block, next);
2299 } else if (last_block) {
2300 QLIST_INSERT_AFTER_RCU(last_block, new_block, next);
2301 } else { /* list is empty */
2302 QLIST_INSERT_HEAD_RCU(&ram_list.blocks, new_block, next);
2304 ram_list.mru_block = NULL;
2306 /* Write list before version */
2307 smp_wmb();
2308 ram_list.version++;
2309 qemu_mutex_unlock_ramlist();
2311 cpu_physical_memory_set_dirty_range(new_block->offset,
2312 new_block->used_length,
2313 DIRTY_CLIENTS_ALL);
2315 if (new_block->host) {
2316 qemu_ram_setup_dump(new_block->host, new_block->max_length);
2317 qemu_madvise(new_block->host, new_block->max_length, QEMU_MADV_HUGEPAGE);
2318 /* MADV_DONTFORK is also needed by KVM in absence of synchronous MMU */
2319 qemu_madvise(new_block->host, new_block->max_length, QEMU_MADV_DONTFORK);
2320 ram_block_notify_add(new_block->host, new_block->max_length);
2324 #ifdef CONFIG_POSIX
2325 RAMBlock *qemu_ram_alloc_from_fd(ram_addr_t size, MemoryRegion *mr,
2326 uint32_t ram_flags, int fd,
2327 Error **errp)
2329 RAMBlock *new_block;
2330 Error *local_err = NULL;
2331 int64_t file_size;
2333 /* Just support these ram flags by now. */
2334 assert((ram_flags & ~(RAM_SHARED | RAM_PMEM)) == 0);
2336 if (xen_enabled()) {
2337 error_setg(errp, "-mem-path not supported with Xen");
2338 return NULL;
2341 if (kvm_enabled() && !kvm_has_sync_mmu()) {
2342 error_setg(errp,
2343 "host lacks kvm mmu notifiers, -mem-path unsupported");
2344 return NULL;
2347 if (phys_mem_alloc != qemu_anon_ram_alloc) {
2349 * file_ram_alloc() needs to allocate just like
2350 * phys_mem_alloc, but we haven't bothered to provide
2351 * a hook there.
2353 error_setg(errp,
2354 "-mem-path not supported with this accelerator");
2355 return NULL;
2358 size = HOST_PAGE_ALIGN(size);
2359 file_size = get_file_size(fd);
2360 if (file_size > 0 && file_size < size) {
2361 error_setg(errp, "backing store %s size 0x%" PRIx64
2362 " does not match 'size' option 0x" RAM_ADDR_FMT,
2363 mem_path, file_size, size);
2364 return NULL;
2367 new_block = g_malloc0(sizeof(*new_block));
2368 new_block->mr = mr;
2369 new_block->used_length = size;
2370 new_block->max_length = size;
2371 new_block->flags = ram_flags;
2372 new_block->host = file_ram_alloc(new_block, size, fd, !file_size, errp);
2373 if (!new_block->host) {
2374 g_free(new_block);
2375 return NULL;
2378 ram_block_add(new_block, &local_err, ram_flags & RAM_SHARED);
2379 if (local_err) {
2380 g_free(new_block);
2381 error_propagate(errp, local_err);
2382 return NULL;
2384 return new_block;
2389 RAMBlock *qemu_ram_alloc_from_file(ram_addr_t size, MemoryRegion *mr,
2390 uint32_t ram_flags, const char *mem_path,
2391 Error **errp)
2393 int fd;
2394 bool created;
2395 RAMBlock *block;
2397 fd = file_ram_open(mem_path, memory_region_name(mr), &created, errp);
2398 if (fd < 0) {
2399 return NULL;
2402 block = qemu_ram_alloc_from_fd(size, mr, ram_flags, fd, errp);
2403 if (!block) {
2404 if (created) {
2405 unlink(mem_path);
2407 close(fd);
2408 return NULL;
2411 return block;
2413 #endif
2415 static
2416 RAMBlock *qemu_ram_alloc_internal(ram_addr_t size, ram_addr_t max_size,
2417 void (*resized)(const char*,
2418 uint64_t length,
2419 void *host),
2420 void *host, bool resizeable, bool share,
2421 MemoryRegion *mr, Error **errp)
2423 RAMBlock *new_block;
2424 Error *local_err = NULL;
2426 size = HOST_PAGE_ALIGN(size);
2427 max_size = HOST_PAGE_ALIGN(max_size);
2428 new_block = g_malloc0(sizeof(*new_block));
2429 new_block->mr = mr;
2430 new_block->resized = resized;
2431 new_block->used_length = size;
2432 new_block->max_length = max_size;
2433 assert(max_size >= size);
2434 new_block->fd = -1;
2435 new_block->page_size = getpagesize();
2436 new_block->host = host;
2437 if (host) {
2438 new_block->flags |= RAM_PREALLOC;
2440 if (resizeable) {
2441 new_block->flags |= RAM_RESIZEABLE;
2443 ram_block_add(new_block, &local_err, share);
2444 if (local_err) {
2445 g_free(new_block);
2446 error_propagate(errp, local_err);
2447 return NULL;
2449 return new_block;
2452 RAMBlock *qemu_ram_alloc_from_ptr(ram_addr_t size, void *host,
2453 MemoryRegion *mr, Error **errp)
2455 return qemu_ram_alloc_internal(size, size, NULL, host, false,
2456 false, mr, errp);
2459 RAMBlock *qemu_ram_alloc(ram_addr_t size, bool share,
2460 MemoryRegion *mr, Error **errp)
2462 return qemu_ram_alloc_internal(size, size, NULL, NULL, false,
2463 share, mr, errp);
2466 RAMBlock *qemu_ram_alloc_resizeable(ram_addr_t size, ram_addr_t maxsz,
2467 void (*resized)(const char*,
2468 uint64_t length,
2469 void *host),
2470 MemoryRegion *mr, Error **errp)
2472 return qemu_ram_alloc_internal(size, maxsz, resized, NULL, true,
2473 false, mr, errp);
2476 static void reclaim_ramblock(RAMBlock *block)
2478 if (block->flags & RAM_PREALLOC) {
2480 } else if (xen_enabled()) {
2481 xen_invalidate_map_cache_entry(block->host);
2482 #ifndef _WIN32
2483 } else if (block->fd >= 0) {
2484 qemu_ram_munmap(block->fd, block->host, block->max_length);
2485 close(block->fd);
2486 #endif
2487 } else {
2488 qemu_anon_ram_free(block->host, block->max_length);
2490 g_free(block);
2493 void qemu_ram_free(RAMBlock *block)
2495 if (!block) {
2496 return;
2499 if (block->host) {
2500 ram_block_notify_remove(block->host, block->max_length);
2503 qemu_mutex_lock_ramlist();
2504 QLIST_REMOVE_RCU(block, next);
2505 ram_list.mru_block = NULL;
2506 /* Write list before version */
2507 smp_wmb();
2508 ram_list.version++;
2509 call_rcu(block, reclaim_ramblock, rcu);
2510 qemu_mutex_unlock_ramlist();
2513 #ifndef _WIN32
2514 void qemu_ram_remap(ram_addr_t addr, ram_addr_t length)
2516 RAMBlock *block;
2517 ram_addr_t offset;
2518 int flags;
2519 void *area, *vaddr;
2521 RAMBLOCK_FOREACH(block) {
2522 offset = addr - block->offset;
2523 if (offset < block->max_length) {
2524 vaddr = ramblock_ptr(block, offset);
2525 if (block->flags & RAM_PREALLOC) {
2527 } else if (xen_enabled()) {
2528 abort();
2529 } else {
2530 flags = MAP_FIXED;
2531 if (block->fd >= 0) {
2532 flags |= (block->flags & RAM_SHARED ?
2533 MAP_SHARED : MAP_PRIVATE);
2534 area = mmap(vaddr, length, PROT_READ | PROT_WRITE,
2535 flags, block->fd, offset);
2536 } else {
2538 * Remap needs to match alloc. Accelerators that
2539 * set phys_mem_alloc never remap. If they did,
2540 * we'd need a remap hook here.
2542 assert(phys_mem_alloc == qemu_anon_ram_alloc);
2544 flags |= MAP_PRIVATE | MAP_ANONYMOUS;
2545 area = mmap(vaddr, length, PROT_READ | PROT_WRITE,
2546 flags, -1, 0);
2548 if (area != vaddr) {
2549 error_report("Could not remap addr: "
2550 RAM_ADDR_FMT "@" RAM_ADDR_FMT "",
2551 length, addr);
2552 exit(1);
2554 memory_try_enable_merging(vaddr, length);
2555 qemu_ram_setup_dump(vaddr, length);
2560 #endif /* !_WIN32 */
2562 /* Return a host pointer to ram allocated with qemu_ram_alloc.
2563 * This should not be used for general purpose DMA. Use address_space_map
2564 * or address_space_rw instead. For local memory (e.g. video ram) that the
2565 * device owns, use memory_region_get_ram_ptr.
2567 * Called within RCU critical section.
2569 void *qemu_map_ram_ptr(RAMBlock *ram_block, ram_addr_t addr)
2571 RAMBlock *block = ram_block;
2573 if (block == NULL) {
2574 block = qemu_get_ram_block(addr);
2575 addr -= block->offset;
2578 if (xen_enabled() && block->host == NULL) {
2579 /* We need to check if the requested address is in the RAM
2580 * because we don't want to map the entire memory in QEMU.
2581 * In that case just map until the end of the page.
2583 if (block->offset == 0) {
2584 return xen_map_cache(addr, 0, 0, false);
2587 block->host = xen_map_cache(block->offset, block->max_length, 1, false);
2589 return ramblock_ptr(block, addr);
2592 /* Return a host pointer to guest's ram. Similar to qemu_map_ram_ptr
2593 * but takes a size argument.
2595 * Called within RCU critical section.
2597 static void *qemu_ram_ptr_length(RAMBlock *ram_block, ram_addr_t addr,
2598 hwaddr *size, bool lock)
2600 RAMBlock *block = ram_block;
2601 if (*size == 0) {
2602 return NULL;
2605 if (block == NULL) {
2606 block = qemu_get_ram_block(addr);
2607 addr -= block->offset;
2609 *size = MIN(*size, block->max_length - addr);
2611 if (xen_enabled() && block->host == NULL) {
2612 /* We need to check if the requested address is in the RAM
2613 * because we don't want to map the entire memory in QEMU.
2614 * In that case just map the requested area.
2616 if (block->offset == 0) {
2617 return xen_map_cache(addr, *size, lock, lock);
2620 block->host = xen_map_cache(block->offset, block->max_length, 1, lock);
2623 return ramblock_ptr(block, addr);
2626 /* Return the offset of a hostpointer within a ramblock */
2627 ram_addr_t qemu_ram_block_host_offset(RAMBlock *rb, void *host)
2629 ram_addr_t res = (uint8_t *)host - (uint8_t *)rb->host;
2630 assert((uintptr_t)host >= (uintptr_t)rb->host);
2631 assert(res < rb->max_length);
2633 return res;
2637 * Translates a host ptr back to a RAMBlock, a ram_addr and an offset
2638 * in that RAMBlock.
2640 * ptr: Host pointer to look up
2641 * round_offset: If true round the result offset down to a page boundary
2642 * *ram_addr: set to result ram_addr
2643 * *offset: set to result offset within the RAMBlock
2645 * Returns: RAMBlock (or NULL if not found)
2647 * By the time this function returns, the returned pointer is not protected
2648 * by RCU anymore. If the caller is not within an RCU critical section and
2649 * does not hold the iothread lock, it must have other means of protecting the
2650 * pointer, such as a reference to the region that includes the incoming
2651 * ram_addr_t.
2653 RAMBlock *qemu_ram_block_from_host(void *ptr, bool round_offset,
2654 ram_addr_t *offset)
2656 RAMBlock *block;
2657 uint8_t *host = ptr;
2659 if (xen_enabled()) {
2660 ram_addr_t ram_addr;
2661 rcu_read_lock();
2662 ram_addr = xen_ram_addr_from_mapcache(ptr);
2663 block = qemu_get_ram_block(ram_addr);
2664 if (block) {
2665 *offset = ram_addr - block->offset;
2667 rcu_read_unlock();
2668 return block;
2671 rcu_read_lock();
2672 block = atomic_rcu_read(&ram_list.mru_block);
2673 if (block && block->host && host - block->host < block->max_length) {
2674 goto found;
2677 RAMBLOCK_FOREACH(block) {
2678 /* This case append when the block is not mapped. */
2679 if (block->host == NULL) {
2680 continue;
2682 if (host - block->host < block->max_length) {
2683 goto found;
2687 rcu_read_unlock();
2688 return NULL;
2690 found:
2691 *offset = (host - block->host);
2692 if (round_offset) {
2693 *offset &= TARGET_PAGE_MASK;
2695 rcu_read_unlock();
2696 return block;
2700 * Finds the named RAMBlock
2702 * name: The name of RAMBlock to find
2704 * Returns: RAMBlock (or NULL if not found)
2706 RAMBlock *qemu_ram_block_by_name(const char *name)
2708 RAMBlock *block;
2710 RAMBLOCK_FOREACH(block) {
2711 if (!strcmp(name, block->idstr)) {
2712 return block;
2716 return NULL;
2719 /* Some of the softmmu routines need to translate from a host pointer
2720 (typically a TLB entry) back to a ram offset. */
2721 ram_addr_t qemu_ram_addr_from_host(void *ptr)
2723 RAMBlock *block;
2724 ram_addr_t offset;
2726 block = qemu_ram_block_from_host(ptr, false, &offset);
2727 if (!block) {
2728 return RAM_ADDR_INVALID;
2731 return block->offset + offset;
2734 /* Called within RCU critical section. */
2735 void memory_notdirty_write_prepare(NotDirtyInfo *ndi,
2736 CPUState *cpu,
2737 vaddr mem_vaddr,
2738 ram_addr_t ram_addr,
2739 unsigned size)
2741 ndi->cpu = cpu;
2742 ndi->ram_addr = ram_addr;
2743 ndi->mem_vaddr = mem_vaddr;
2744 ndi->size = size;
2745 ndi->pages = NULL;
2747 assert(tcg_enabled());
2748 if (!cpu_physical_memory_get_dirty_flag(ram_addr, DIRTY_MEMORY_CODE)) {
2749 ndi->pages = page_collection_lock(ram_addr, ram_addr + size);
2750 tb_invalidate_phys_page_fast(ndi->pages, ram_addr, size);
2754 /* Called within RCU critical section. */
2755 void memory_notdirty_write_complete(NotDirtyInfo *ndi)
2757 if (ndi->pages) {
2758 assert(tcg_enabled());
2759 page_collection_unlock(ndi->pages);
2760 ndi->pages = NULL;
2763 /* Set both VGA and migration bits for simplicity and to remove
2764 * the notdirty callback faster.
2766 cpu_physical_memory_set_dirty_range(ndi->ram_addr, ndi->size,
2767 DIRTY_CLIENTS_NOCODE);
2768 /* we remove the notdirty callback only if the code has been
2769 flushed */
2770 if (!cpu_physical_memory_is_clean(ndi->ram_addr)) {
2771 tlb_set_dirty(ndi->cpu, ndi->mem_vaddr);
2775 /* Called within RCU critical section. */
2776 static void notdirty_mem_write(void *opaque, hwaddr ram_addr,
2777 uint64_t val, unsigned size)
2779 NotDirtyInfo ndi;
2781 memory_notdirty_write_prepare(&ndi, current_cpu, current_cpu->mem_io_vaddr,
2782 ram_addr, size);
2784 stn_p(qemu_map_ram_ptr(NULL, ram_addr), size, val);
2785 memory_notdirty_write_complete(&ndi);
2788 static bool notdirty_mem_accepts(void *opaque, hwaddr addr,
2789 unsigned size, bool is_write,
2790 MemTxAttrs attrs)
2792 return is_write;
2795 static const MemoryRegionOps notdirty_mem_ops = {
2796 .write = notdirty_mem_write,
2797 .valid.accepts = notdirty_mem_accepts,
2798 .endianness = DEVICE_NATIVE_ENDIAN,
2799 .valid = {
2800 .min_access_size = 1,
2801 .max_access_size = 8,
2802 .unaligned = false,
2804 .impl = {
2805 .min_access_size = 1,
2806 .max_access_size = 8,
2807 .unaligned = false,
2811 /* Generate a debug exception if a watchpoint has been hit. */
2812 static void check_watchpoint(int offset, int len, MemTxAttrs attrs, int flags)
2814 CPUState *cpu = current_cpu;
2815 CPUClass *cc = CPU_GET_CLASS(cpu);
2816 target_ulong vaddr;
2817 CPUWatchpoint *wp;
2819 assert(tcg_enabled());
2820 if (cpu->watchpoint_hit) {
2821 /* We re-entered the check after replacing the TB. Now raise
2822 * the debug interrupt so that is will trigger after the
2823 * current instruction. */
2824 cpu_interrupt(cpu, CPU_INTERRUPT_DEBUG);
2825 return;
2827 vaddr = (cpu->mem_io_vaddr & TARGET_PAGE_MASK) + offset;
2828 vaddr = cc->adjust_watchpoint_address(cpu, vaddr, len);
2829 QTAILQ_FOREACH(wp, &cpu->watchpoints, entry) {
2830 if (cpu_watchpoint_address_matches(wp, vaddr, len)
2831 && (wp->flags & flags)) {
2832 if (flags == BP_MEM_READ) {
2833 wp->flags |= BP_WATCHPOINT_HIT_READ;
2834 } else {
2835 wp->flags |= BP_WATCHPOINT_HIT_WRITE;
2837 wp->hitaddr = vaddr;
2838 wp->hitattrs = attrs;
2839 if (!cpu->watchpoint_hit) {
2840 if (wp->flags & BP_CPU &&
2841 !cc->debug_check_watchpoint(cpu, wp)) {
2842 wp->flags &= ~BP_WATCHPOINT_HIT;
2843 continue;
2845 cpu->watchpoint_hit = wp;
2847 mmap_lock();
2848 tb_check_watchpoint(cpu);
2849 if (wp->flags & BP_STOP_BEFORE_ACCESS) {
2850 cpu->exception_index = EXCP_DEBUG;
2851 mmap_unlock();
2852 cpu_loop_exit(cpu);
2853 } else {
2854 /* Force execution of one insn next time. */
2855 cpu->cflags_next_tb = 1 | curr_cflags();
2856 mmap_unlock();
2857 cpu_loop_exit_noexc(cpu);
2860 } else {
2861 wp->flags &= ~BP_WATCHPOINT_HIT;
2866 /* Watchpoint access routines. Watchpoints are inserted using TLB tricks,
2867 so these check for a hit then pass through to the normal out-of-line
2868 phys routines. */
2869 static MemTxResult watch_mem_read(void *opaque, hwaddr addr, uint64_t *pdata,
2870 unsigned size, MemTxAttrs attrs)
2872 MemTxResult res;
2873 uint64_t data;
2874 int asidx = cpu_asidx_from_attrs(current_cpu, attrs);
2875 AddressSpace *as = current_cpu->cpu_ases[asidx].as;
2877 check_watchpoint(addr & ~TARGET_PAGE_MASK, size, attrs, BP_MEM_READ);
2878 switch (size) {
2879 case 1:
2880 data = address_space_ldub(as, addr, attrs, &res);
2881 break;
2882 case 2:
2883 data = address_space_lduw(as, addr, attrs, &res);
2884 break;
2885 case 4:
2886 data = address_space_ldl(as, addr, attrs, &res);
2887 break;
2888 case 8:
2889 data = address_space_ldq(as, addr, attrs, &res);
2890 break;
2891 default: abort();
2893 *pdata = data;
2894 return res;
2897 static MemTxResult watch_mem_write(void *opaque, hwaddr addr,
2898 uint64_t val, unsigned size,
2899 MemTxAttrs attrs)
2901 MemTxResult res;
2902 int asidx = cpu_asidx_from_attrs(current_cpu, attrs);
2903 AddressSpace *as = current_cpu->cpu_ases[asidx].as;
2905 check_watchpoint(addr & ~TARGET_PAGE_MASK, size, attrs, BP_MEM_WRITE);
2906 switch (size) {
2907 case 1:
2908 address_space_stb(as, addr, val, attrs, &res);
2909 break;
2910 case 2:
2911 address_space_stw(as, addr, val, attrs, &res);
2912 break;
2913 case 4:
2914 address_space_stl(as, addr, val, attrs, &res);
2915 break;
2916 case 8:
2917 address_space_stq(as, addr, val, attrs, &res);
2918 break;
2919 default: abort();
2921 return res;
2924 static const MemoryRegionOps watch_mem_ops = {
2925 .read_with_attrs = watch_mem_read,
2926 .write_with_attrs = watch_mem_write,
2927 .endianness = DEVICE_NATIVE_ENDIAN,
2928 .valid = {
2929 .min_access_size = 1,
2930 .max_access_size = 8,
2931 .unaligned = false,
2933 .impl = {
2934 .min_access_size = 1,
2935 .max_access_size = 8,
2936 .unaligned = false,
2940 static MemTxResult flatview_read(FlatView *fv, hwaddr addr,
2941 MemTxAttrs attrs, uint8_t *buf, hwaddr len);
2942 static MemTxResult flatview_write(FlatView *fv, hwaddr addr, MemTxAttrs attrs,
2943 const uint8_t *buf, hwaddr len);
2944 static bool flatview_access_valid(FlatView *fv, hwaddr addr, hwaddr len,
2945 bool is_write, MemTxAttrs attrs);
2947 static MemTxResult subpage_read(void *opaque, hwaddr addr, uint64_t *data,
2948 unsigned len, MemTxAttrs attrs)
2950 subpage_t *subpage = opaque;
2951 uint8_t buf[8];
2952 MemTxResult res;
2954 #if defined(DEBUG_SUBPAGE)
2955 printf("%s: subpage %p len %u addr " TARGET_FMT_plx "\n", __func__,
2956 subpage, len, addr);
2957 #endif
2958 res = flatview_read(subpage->fv, addr + subpage->base, attrs, buf, len);
2959 if (res) {
2960 return res;
2962 *data = ldn_p(buf, len);
2963 return MEMTX_OK;
2966 static MemTxResult subpage_write(void *opaque, hwaddr addr,
2967 uint64_t value, unsigned len, MemTxAttrs attrs)
2969 subpage_t *subpage = opaque;
2970 uint8_t buf[8];
2972 #if defined(DEBUG_SUBPAGE)
2973 printf("%s: subpage %p len %u addr " TARGET_FMT_plx
2974 " value %"PRIx64"\n",
2975 __func__, subpage, len, addr, value);
2976 #endif
2977 stn_p(buf, len, value);
2978 return flatview_write(subpage->fv, addr + subpage->base, attrs, buf, len);
2981 static bool subpage_accepts(void *opaque, hwaddr addr,
2982 unsigned len, bool is_write,
2983 MemTxAttrs attrs)
2985 subpage_t *subpage = opaque;
2986 #if defined(DEBUG_SUBPAGE)
2987 printf("%s: subpage %p %c len %u addr " TARGET_FMT_plx "\n",
2988 __func__, subpage, is_write ? 'w' : 'r', len, addr);
2989 #endif
2991 return flatview_access_valid(subpage->fv, addr + subpage->base,
2992 len, is_write, attrs);
2995 static const MemoryRegionOps subpage_ops = {
2996 .read_with_attrs = subpage_read,
2997 .write_with_attrs = subpage_write,
2998 .impl.min_access_size = 1,
2999 .impl.max_access_size = 8,
3000 .valid.min_access_size = 1,
3001 .valid.max_access_size = 8,
3002 .valid.accepts = subpage_accepts,
3003 .endianness = DEVICE_NATIVE_ENDIAN,
3006 static int subpage_register (subpage_t *mmio, uint32_t start, uint32_t end,
3007 uint16_t section)
3009 int idx, eidx;
3011 if (start >= TARGET_PAGE_SIZE || end >= TARGET_PAGE_SIZE)
3012 return -1;
3013 idx = SUBPAGE_IDX(start);
3014 eidx = SUBPAGE_IDX(end);
3015 #if defined(DEBUG_SUBPAGE)
3016 printf("%s: %p start %08x end %08x idx %08x eidx %08x section %d\n",
3017 __func__, mmio, start, end, idx, eidx, section);
3018 #endif
3019 for (; idx <= eidx; idx++) {
3020 mmio->sub_section[idx] = section;
3023 return 0;
3026 static subpage_t *subpage_init(FlatView *fv, hwaddr base)
3028 subpage_t *mmio;
3030 mmio = g_malloc0(sizeof(subpage_t) + TARGET_PAGE_SIZE * sizeof(uint16_t));
3031 mmio->fv = fv;
3032 mmio->base = base;
3033 memory_region_init_io(&mmio->iomem, NULL, &subpage_ops, mmio,
3034 NULL, TARGET_PAGE_SIZE);
3035 mmio->iomem.subpage = true;
3036 #if defined(DEBUG_SUBPAGE)
3037 printf("%s: %p base " TARGET_FMT_plx " len %08x\n", __func__,
3038 mmio, base, TARGET_PAGE_SIZE);
3039 #endif
3040 subpage_register(mmio, 0, TARGET_PAGE_SIZE-1, PHYS_SECTION_UNASSIGNED);
3042 return mmio;
3045 static uint16_t dummy_section(PhysPageMap *map, FlatView *fv, MemoryRegion *mr)
3047 assert(fv);
3048 MemoryRegionSection section = {
3049 .fv = fv,
3050 .mr = mr,
3051 .offset_within_address_space = 0,
3052 .offset_within_region = 0,
3053 .size = int128_2_64(),
3056 return phys_section_add(map, &section);
3059 static void readonly_mem_write(void *opaque, hwaddr addr,
3060 uint64_t val, unsigned size)
3062 /* Ignore any write to ROM. */
3065 static bool readonly_mem_accepts(void *opaque, hwaddr addr,
3066 unsigned size, bool is_write,
3067 MemTxAttrs attrs)
3069 return is_write;
3072 /* This will only be used for writes, because reads are special cased
3073 * to directly access the underlying host ram.
3075 static const MemoryRegionOps readonly_mem_ops = {
3076 .write = readonly_mem_write,
3077 .valid.accepts = readonly_mem_accepts,
3078 .endianness = DEVICE_NATIVE_ENDIAN,
3079 .valid = {
3080 .min_access_size = 1,
3081 .max_access_size = 8,
3082 .unaligned = false,
3084 .impl = {
3085 .min_access_size = 1,
3086 .max_access_size = 8,
3087 .unaligned = false,
3091 MemoryRegionSection *iotlb_to_section(CPUState *cpu,
3092 hwaddr index, MemTxAttrs attrs)
3094 int asidx = cpu_asidx_from_attrs(cpu, attrs);
3095 CPUAddressSpace *cpuas = &cpu->cpu_ases[asidx];
3096 AddressSpaceDispatch *d = atomic_rcu_read(&cpuas->memory_dispatch);
3097 MemoryRegionSection *sections = d->map.sections;
3099 return &sections[index & ~TARGET_PAGE_MASK];
3102 static void io_mem_init(void)
3104 memory_region_init_io(&io_mem_rom, NULL, &readonly_mem_ops,
3105 NULL, NULL, UINT64_MAX);
3106 memory_region_init_io(&io_mem_unassigned, NULL, &unassigned_mem_ops, NULL,
3107 NULL, UINT64_MAX);
3109 /* io_mem_notdirty calls tb_invalidate_phys_page_fast,
3110 * which can be called without the iothread mutex.
3112 memory_region_init_io(&io_mem_notdirty, NULL, &notdirty_mem_ops, NULL,
3113 NULL, UINT64_MAX);
3114 memory_region_clear_global_locking(&io_mem_notdirty);
3116 memory_region_init_io(&io_mem_watch, NULL, &watch_mem_ops, NULL,
3117 NULL, UINT64_MAX);
3120 AddressSpaceDispatch *address_space_dispatch_new(FlatView *fv)
3122 AddressSpaceDispatch *d = g_new0(AddressSpaceDispatch, 1);
3123 uint16_t n;
3125 n = dummy_section(&d->map, fv, &io_mem_unassigned);
3126 assert(n == PHYS_SECTION_UNASSIGNED);
3127 n = dummy_section(&d->map, fv, &io_mem_notdirty);
3128 assert(n == PHYS_SECTION_NOTDIRTY);
3129 n = dummy_section(&d->map, fv, &io_mem_rom);
3130 assert(n == PHYS_SECTION_ROM);
3131 n = dummy_section(&d->map, fv, &io_mem_watch);
3132 assert(n == PHYS_SECTION_WATCH);
3134 d->phys_map = (PhysPageEntry) { .ptr = PHYS_MAP_NODE_NIL, .skip = 1 };
3136 return d;
3139 void address_space_dispatch_free(AddressSpaceDispatch *d)
3141 phys_sections_free(&d->map);
3142 g_free(d);
3145 static void tcg_commit(MemoryListener *listener)
3147 CPUAddressSpace *cpuas;
3148 AddressSpaceDispatch *d;
3150 assert(tcg_enabled());
3151 /* since each CPU stores ram addresses in its TLB cache, we must
3152 reset the modified entries */
3153 cpuas = container_of(listener, CPUAddressSpace, tcg_as_listener);
3154 cpu_reloading_memory_map();
3155 /* The CPU and TLB are protected by the iothread lock.
3156 * We reload the dispatch pointer now because cpu_reloading_memory_map()
3157 * may have split the RCU critical section.
3159 d = address_space_to_dispatch(cpuas->as);
3160 atomic_rcu_set(&cpuas->memory_dispatch, d);
3161 tlb_flush(cpuas->cpu);
3164 static void memory_map_init(void)
3166 system_memory = g_malloc(sizeof(*system_memory));
3168 memory_region_init(system_memory, NULL, "system", UINT64_MAX);
3169 address_space_init(&address_space_memory, system_memory, "memory");
3171 system_io = g_malloc(sizeof(*system_io));
3172 memory_region_init_io(system_io, NULL, &unassigned_io_ops, NULL, "io",
3173 65536);
3174 address_space_init(&address_space_io, system_io, "I/O");
3177 MemoryRegion *get_system_memory(void)
3179 return system_memory;
3182 MemoryRegion *get_system_io(void)
3184 return system_io;
3187 #endif /* !defined(CONFIG_USER_ONLY) */
3189 /* physical memory access (slow version, mainly for debug) */
3190 #if defined(CONFIG_USER_ONLY)
3191 int cpu_memory_rw_debug(CPUState *cpu, target_ulong addr,
3192 uint8_t *buf, target_ulong len, int is_write)
3194 int flags;
3195 target_ulong l, page;
3196 void * p;
3198 while (len > 0) {
3199 page = addr & TARGET_PAGE_MASK;
3200 l = (page + TARGET_PAGE_SIZE) - addr;
3201 if (l > len)
3202 l = len;
3203 flags = page_get_flags(page);
3204 if (!(flags & PAGE_VALID))
3205 return -1;
3206 if (is_write) {
3207 if (!(flags & PAGE_WRITE))
3208 return -1;
3209 /* XXX: this code should not depend on lock_user */
3210 if (!(p = lock_user(VERIFY_WRITE, addr, l, 0)))
3211 return -1;
3212 memcpy(p, buf, l);
3213 unlock_user(p, addr, l);
3214 } else {
3215 if (!(flags & PAGE_READ))
3216 return -1;
3217 /* XXX: this code should not depend on lock_user */
3218 if (!(p = lock_user(VERIFY_READ, addr, l, 1)))
3219 return -1;
3220 memcpy(buf, p, l);
3221 unlock_user(p, addr, 0);
3223 len -= l;
3224 buf += l;
3225 addr += l;
3227 return 0;
3230 #else
3232 static void invalidate_and_set_dirty(MemoryRegion *mr, hwaddr addr,
3233 hwaddr length)
3235 uint8_t dirty_log_mask = memory_region_get_dirty_log_mask(mr);
3236 addr += memory_region_get_ram_addr(mr);
3238 /* No early return if dirty_log_mask is or becomes 0, because
3239 * cpu_physical_memory_set_dirty_range will still call
3240 * xen_modified_memory.
3242 if (dirty_log_mask) {
3243 dirty_log_mask =
3244 cpu_physical_memory_range_includes_clean(addr, length, dirty_log_mask);
3246 if (dirty_log_mask & (1 << DIRTY_MEMORY_CODE)) {
3247 assert(tcg_enabled());
3248 tb_invalidate_phys_range(addr, addr + length);
3249 dirty_log_mask &= ~(1 << DIRTY_MEMORY_CODE);
3251 cpu_physical_memory_set_dirty_range(addr, length, dirty_log_mask);
3254 void memory_region_flush_rom_device(MemoryRegion *mr, hwaddr addr, hwaddr size)
3257 * In principle this function would work on other memory region types too,
3258 * but the ROM device use case is the only one where this operation is
3259 * necessary. Other memory regions should use the
3260 * address_space_read/write() APIs.
3262 assert(memory_region_is_romd(mr));
3264 invalidate_and_set_dirty(mr, addr, size);
3267 static int memory_access_size(MemoryRegion *mr, unsigned l, hwaddr addr)
3269 unsigned access_size_max = mr->ops->valid.max_access_size;
3271 /* Regions are assumed to support 1-4 byte accesses unless
3272 otherwise specified. */
3273 if (access_size_max == 0) {
3274 access_size_max = 4;
3277 /* Bound the maximum access by the alignment of the address. */
3278 if (!mr->ops->impl.unaligned) {
3279 unsigned align_size_max = addr & -addr;
3280 if (align_size_max != 0 && align_size_max < access_size_max) {
3281 access_size_max = align_size_max;
3285 /* Don't attempt accesses larger than the maximum. */
3286 if (l > access_size_max) {
3287 l = access_size_max;
3289 l = pow2floor(l);
3291 return l;
3294 static bool prepare_mmio_access(MemoryRegion *mr)
3296 bool unlocked = !qemu_mutex_iothread_locked();
3297 bool release_lock = false;
3299 if (unlocked && mr->global_locking) {
3300 qemu_mutex_lock_iothread();
3301 unlocked = false;
3302 release_lock = true;
3304 if (mr->flush_coalesced_mmio) {
3305 if (unlocked) {
3306 qemu_mutex_lock_iothread();
3308 qemu_flush_coalesced_mmio_buffer();
3309 if (unlocked) {
3310 qemu_mutex_unlock_iothread();
3314 return release_lock;
3317 /* Called within RCU critical section. */
3318 static MemTxResult flatview_write_continue(FlatView *fv, hwaddr addr,
3319 MemTxAttrs attrs,
3320 const uint8_t *buf,
3321 hwaddr len, hwaddr addr1,
3322 hwaddr l, MemoryRegion *mr)
3324 uint8_t *ptr;
3325 uint64_t val;
3326 MemTxResult result = MEMTX_OK;
3327 bool release_lock = false;
3329 for (;;) {
3330 if (!memory_access_is_direct(mr, true)) {
3331 release_lock |= prepare_mmio_access(mr);
3332 l = memory_access_size(mr, l, addr1);
3333 /* XXX: could force current_cpu to NULL to avoid
3334 potential bugs */
3335 val = ldn_p(buf, l);
3336 result |= memory_region_dispatch_write(mr, addr1, val, l, attrs);
3337 } else {
3338 /* RAM case */
3339 ptr = qemu_ram_ptr_length(mr->ram_block, addr1, &l, false);
3340 memcpy(ptr, buf, l);
3341 invalidate_and_set_dirty(mr, addr1, l);
3344 if (release_lock) {
3345 qemu_mutex_unlock_iothread();
3346 release_lock = false;
3349 len -= l;
3350 buf += l;
3351 addr += l;
3353 if (!len) {
3354 break;
3357 l = len;
3358 mr = flatview_translate(fv, addr, &addr1, &l, true, attrs);
3361 return result;
3364 /* Called from RCU critical section. */
3365 static MemTxResult flatview_write(FlatView *fv, hwaddr addr, MemTxAttrs attrs,
3366 const uint8_t *buf, hwaddr len)
3368 hwaddr l;
3369 hwaddr addr1;
3370 MemoryRegion *mr;
3371 MemTxResult result = MEMTX_OK;
3373 l = len;
3374 mr = flatview_translate(fv, addr, &addr1, &l, true, attrs);
3375 result = flatview_write_continue(fv, addr, attrs, buf, len,
3376 addr1, l, mr);
3378 return result;
3381 /* Called within RCU critical section. */
3382 MemTxResult flatview_read_continue(FlatView *fv, hwaddr addr,
3383 MemTxAttrs attrs, uint8_t *buf,
3384 hwaddr len, hwaddr addr1, hwaddr l,
3385 MemoryRegion *mr)
3387 uint8_t *ptr;
3388 uint64_t val;
3389 MemTxResult result = MEMTX_OK;
3390 bool release_lock = false;
3392 for (;;) {
3393 if (!memory_access_is_direct(mr, false)) {
3394 /* I/O case */
3395 release_lock |= prepare_mmio_access(mr);
3396 l = memory_access_size(mr, l, addr1);
3397 result |= memory_region_dispatch_read(mr, addr1, &val, l, attrs);
3398 stn_p(buf, l, val);
3399 } else {
3400 /* RAM case */
3401 ptr = qemu_ram_ptr_length(mr->ram_block, addr1, &l, false);
3402 memcpy(buf, ptr, l);
3405 if (release_lock) {
3406 qemu_mutex_unlock_iothread();
3407 release_lock = false;
3410 len -= l;
3411 buf += l;
3412 addr += l;
3414 if (!len) {
3415 break;
3418 l = len;
3419 mr = flatview_translate(fv, addr, &addr1, &l, false, attrs);
3422 return result;
3425 /* Called from RCU critical section. */
3426 static MemTxResult flatview_read(FlatView *fv, hwaddr addr,
3427 MemTxAttrs attrs, uint8_t *buf, hwaddr len)
3429 hwaddr l;
3430 hwaddr addr1;
3431 MemoryRegion *mr;
3433 l = len;
3434 mr = flatview_translate(fv, addr, &addr1, &l, false, attrs);
3435 return flatview_read_continue(fv, addr, attrs, buf, len,
3436 addr1, l, mr);
3439 MemTxResult address_space_read_full(AddressSpace *as, hwaddr addr,
3440 MemTxAttrs attrs, uint8_t *buf, hwaddr len)
3442 MemTxResult result = MEMTX_OK;
3443 FlatView *fv;
3445 if (len > 0) {
3446 rcu_read_lock();
3447 fv = address_space_to_flatview(as);
3448 result = flatview_read(fv, addr, attrs, buf, len);
3449 rcu_read_unlock();
3452 return result;
3455 MemTxResult address_space_write(AddressSpace *as, hwaddr addr,
3456 MemTxAttrs attrs,
3457 const uint8_t *buf, hwaddr len)
3459 MemTxResult result = MEMTX_OK;
3460 FlatView *fv;
3462 if (len > 0) {
3463 rcu_read_lock();
3464 fv = address_space_to_flatview(as);
3465 result = flatview_write(fv, addr, attrs, buf, len);
3466 rcu_read_unlock();
3469 return result;
3472 MemTxResult address_space_rw(AddressSpace *as, hwaddr addr, MemTxAttrs attrs,
3473 uint8_t *buf, hwaddr len, bool is_write)
3475 if (is_write) {
3476 return address_space_write(as, addr, attrs, buf, len);
3477 } else {
3478 return address_space_read_full(as, addr, attrs, buf, len);
3482 void cpu_physical_memory_rw(hwaddr addr, uint8_t *buf,
3483 hwaddr len, int is_write)
3485 address_space_rw(&address_space_memory, addr, MEMTXATTRS_UNSPECIFIED,
3486 buf, len, is_write);
3489 enum write_rom_type {
3490 WRITE_DATA,
3491 FLUSH_CACHE,
3494 static inline MemTxResult address_space_write_rom_internal(AddressSpace *as,
3495 hwaddr addr,
3496 MemTxAttrs attrs,
3497 const uint8_t *buf,
3498 hwaddr len,
3499 enum write_rom_type type)
3501 hwaddr l;
3502 uint8_t *ptr;
3503 hwaddr addr1;
3504 MemoryRegion *mr;
3506 rcu_read_lock();
3507 while (len > 0) {
3508 l = len;
3509 mr = address_space_translate(as, addr, &addr1, &l, true, attrs);
3511 if (!(memory_region_is_ram(mr) ||
3512 memory_region_is_romd(mr))) {
3513 l = memory_access_size(mr, l, addr1);
3514 } else {
3515 /* ROM/RAM case */
3516 ptr = qemu_map_ram_ptr(mr->ram_block, addr1);
3517 switch (type) {
3518 case WRITE_DATA:
3519 memcpy(ptr, buf, l);
3520 invalidate_and_set_dirty(mr, addr1, l);
3521 break;
3522 case FLUSH_CACHE:
3523 flush_icache_range((uintptr_t)ptr, (uintptr_t)ptr + l);
3524 break;
3527 len -= l;
3528 buf += l;
3529 addr += l;
3531 rcu_read_unlock();
3532 return MEMTX_OK;
3535 /* used for ROM loading : can write in RAM and ROM */
3536 MemTxResult address_space_write_rom(AddressSpace *as, hwaddr addr,
3537 MemTxAttrs attrs,
3538 const uint8_t *buf, hwaddr len)
3540 return address_space_write_rom_internal(as, addr, attrs,
3541 buf, len, WRITE_DATA);
3544 void cpu_flush_icache_range(hwaddr start, hwaddr len)
3547 * This function should do the same thing as an icache flush that was
3548 * triggered from within the guest. For TCG we are always cache coherent,
3549 * so there is no need to flush anything. For KVM / Xen we need to flush
3550 * the host's instruction cache at least.
3552 if (tcg_enabled()) {
3553 return;
3556 address_space_write_rom_internal(&address_space_memory,
3557 start, MEMTXATTRS_UNSPECIFIED,
3558 NULL, len, FLUSH_CACHE);
3561 typedef struct {
3562 MemoryRegion *mr;
3563 void *buffer;
3564 hwaddr addr;
3565 hwaddr len;
3566 bool in_use;
3567 } BounceBuffer;
3569 static BounceBuffer bounce;
3571 typedef struct MapClient {
3572 QEMUBH *bh;
3573 QLIST_ENTRY(MapClient) link;
3574 } MapClient;
3576 QemuMutex map_client_list_lock;
3577 static QLIST_HEAD(, MapClient) map_client_list
3578 = QLIST_HEAD_INITIALIZER(map_client_list);
3580 static void cpu_unregister_map_client_do(MapClient *client)
3582 QLIST_REMOVE(client, link);
3583 g_free(client);
3586 static void cpu_notify_map_clients_locked(void)
3588 MapClient *client;
3590 while (!QLIST_EMPTY(&map_client_list)) {
3591 client = QLIST_FIRST(&map_client_list);
3592 qemu_bh_schedule(client->bh);
3593 cpu_unregister_map_client_do(client);
3597 void cpu_register_map_client(QEMUBH *bh)
3599 MapClient *client = g_malloc(sizeof(*client));
3601 qemu_mutex_lock(&map_client_list_lock);
3602 client->bh = bh;
3603 QLIST_INSERT_HEAD(&map_client_list, client, link);
3604 if (!atomic_read(&bounce.in_use)) {
3605 cpu_notify_map_clients_locked();
3607 qemu_mutex_unlock(&map_client_list_lock);
3610 void cpu_exec_init_all(void)
3612 qemu_mutex_init(&ram_list.mutex);
3613 /* The data structures we set up here depend on knowing the page size,
3614 * so no more changes can be made after this point.
3615 * In an ideal world, nothing we did before we had finished the
3616 * machine setup would care about the target page size, and we could
3617 * do this much later, rather than requiring board models to state
3618 * up front what their requirements are.
3620 finalize_target_page_bits();
3621 io_mem_init();
3622 memory_map_init();
3623 qemu_mutex_init(&map_client_list_lock);
3626 void cpu_unregister_map_client(QEMUBH *bh)
3628 MapClient *client;
3630 qemu_mutex_lock(&map_client_list_lock);
3631 QLIST_FOREACH(client, &map_client_list, link) {
3632 if (client->bh == bh) {
3633 cpu_unregister_map_client_do(client);
3634 break;
3637 qemu_mutex_unlock(&map_client_list_lock);
3640 static void cpu_notify_map_clients(void)
3642 qemu_mutex_lock(&map_client_list_lock);
3643 cpu_notify_map_clients_locked();
3644 qemu_mutex_unlock(&map_client_list_lock);
3647 static bool flatview_access_valid(FlatView *fv, hwaddr addr, hwaddr len,
3648 bool is_write, MemTxAttrs attrs)
3650 MemoryRegion *mr;
3651 hwaddr l, xlat;
3653 while (len > 0) {
3654 l = len;
3655 mr = flatview_translate(fv, addr, &xlat, &l, is_write, attrs);
3656 if (!memory_access_is_direct(mr, is_write)) {
3657 l = memory_access_size(mr, l, addr);
3658 if (!memory_region_access_valid(mr, xlat, l, is_write, attrs)) {
3659 return false;
3663 len -= l;
3664 addr += l;
3666 return true;
3669 bool address_space_access_valid(AddressSpace *as, hwaddr addr,
3670 hwaddr len, bool is_write,
3671 MemTxAttrs attrs)
3673 FlatView *fv;
3674 bool result;
3676 rcu_read_lock();
3677 fv = address_space_to_flatview(as);
3678 result = flatview_access_valid(fv, addr, len, is_write, attrs);
3679 rcu_read_unlock();
3680 return result;
3683 static hwaddr
3684 flatview_extend_translation(FlatView *fv, hwaddr addr,
3685 hwaddr target_len,
3686 MemoryRegion *mr, hwaddr base, hwaddr len,
3687 bool is_write, MemTxAttrs attrs)
3689 hwaddr done = 0;
3690 hwaddr xlat;
3691 MemoryRegion *this_mr;
3693 for (;;) {
3694 target_len -= len;
3695 addr += len;
3696 done += len;
3697 if (target_len == 0) {
3698 return done;
3701 len = target_len;
3702 this_mr = flatview_translate(fv, addr, &xlat,
3703 &len, is_write, attrs);
3704 if (this_mr != mr || xlat != base + done) {
3705 return done;
3710 /* Map a physical memory region into a host virtual address.
3711 * May map a subset of the requested range, given by and returned in *plen.
3712 * May return NULL if resources needed to perform the mapping are exhausted.
3713 * Use only for reads OR writes - not for read-modify-write operations.
3714 * Use cpu_register_map_client() to know when retrying the map operation is
3715 * likely to succeed.
3717 void *address_space_map(AddressSpace *as,
3718 hwaddr addr,
3719 hwaddr *plen,
3720 bool is_write,
3721 MemTxAttrs attrs)
3723 hwaddr len = *plen;
3724 hwaddr l, xlat;
3725 MemoryRegion *mr;
3726 void *ptr;
3727 FlatView *fv;
3729 if (len == 0) {
3730 return NULL;
3733 l = len;
3734 rcu_read_lock();
3735 fv = address_space_to_flatview(as);
3736 mr = flatview_translate(fv, addr, &xlat, &l, is_write, attrs);
3738 if (!memory_access_is_direct(mr, is_write)) {
3739 if (atomic_xchg(&bounce.in_use, true)) {
3740 rcu_read_unlock();
3741 return NULL;
3743 /* Avoid unbounded allocations */
3744 l = MIN(l, TARGET_PAGE_SIZE);
3745 bounce.buffer = qemu_memalign(TARGET_PAGE_SIZE, l);
3746 bounce.addr = addr;
3747 bounce.len = l;
3749 memory_region_ref(mr);
3750 bounce.mr = mr;
3751 if (!is_write) {
3752 flatview_read(fv, addr, MEMTXATTRS_UNSPECIFIED,
3753 bounce.buffer, l);
3756 rcu_read_unlock();
3757 *plen = l;
3758 return bounce.buffer;
3762 memory_region_ref(mr);
3763 *plen = flatview_extend_translation(fv, addr, len, mr, xlat,
3764 l, is_write, attrs);
3765 ptr = qemu_ram_ptr_length(mr->ram_block, xlat, plen, true);
3766 rcu_read_unlock();
3768 return ptr;
3771 /* Unmaps a memory region previously mapped by address_space_map().
3772 * Will also mark the memory as dirty if is_write == 1. access_len gives
3773 * the amount of memory that was actually read or written by the caller.
3775 void address_space_unmap(AddressSpace *as, void *buffer, hwaddr len,
3776 int is_write, hwaddr access_len)
3778 if (buffer != bounce.buffer) {
3779 MemoryRegion *mr;
3780 ram_addr_t addr1;
3782 mr = memory_region_from_host(buffer, &addr1);
3783 assert(mr != NULL);
3784 if (is_write) {
3785 invalidate_and_set_dirty(mr, addr1, access_len);
3787 if (xen_enabled()) {
3788 xen_invalidate_map_cache_entry(buffer);
3790 memory_region_unref(mr);
3791 return;
3793 if (is_write) {
3794 address_space_write(as, bounce.addr, MEMTXATTRS_UNSPECIFIED,
3795 bounce.buffer, access_len);
3797 qemu_vfree(bounce.buffer);
3798 bounce.buffer = NULL;
3799 memory_region_unref(bounce.mr);
3800 atomic_mb_set(&bounce.in_use, false);
3801 cpu_notify_map_clients();
3804 void *cpu_physical_memory_map(hwaddr addr,
3805 hwaddr *plen,
3806 int is_write)
3808 return address_space_map(&address_space_memory, addr, plen, is_write,
3809 MEMTXATTRS_UNSPECIFIED);
3812 void cpu_physical_memory_unmap(void *buffer, hwaddr len,
3813 int is_write, hwaddr access_len)
3815 return address_space_unmap(&address_space_memory, buffer, len, is_write, access_len);
3818 #define ARG1_DECL AddressSpace *as
3819 #define ARG1 as
3820 #define SUFFIX
3821 #define TRANSLATE(...) address_space_translate(as, __VA_ARGS__)
3822 #define RCU_READ_LOCK(...) rcu_read_lock()
3823 #define RCU_READ_UNLOCK(...) rcu_read_unlock()
3824 #include "memory_ldst.inc.c"
3826 int64_t address_space_cache_init(MemoryRegionCache *cache,
3827 AddressSpace *as,
3828 hwaddr addr,
3829 hwaddr len,
3830 bool is_write)
3832 AddressSpaceDispatch *d;
3833 hwaddr l;
3834 MemoryRegion *mr;
3836 assert(len > 0);
3838 l = len;
3839 cache->fv = address_space_get_flatview(as);
3840 d = flatview_to_dispatch(cache->fv);
3841 cache->mrs = *address_space_translate_internal(d, addr, &cache->xlat, &l, true);
3843 mr = cache->mrs.mr;
3844 memory_region_ref(mr);
3845 if (memory_access_is_direct(mr, is_write)) {
3846 /* We don't care about the memory attributes here as we're only
3847 * doing this if we found actual RAM, which behaves the same
3848 * regardless of attributes; so UNSPECIFIED is fine.
3850 l = flatview_extend_translation(cache->fv, addr, len, mr,
3851 cache->xlat, l, is_write,
3852 MEMTXATTRS_UNSPECIFIED);
3853 cache->ptr = qemu_ram_ptr_length(mr->ram_block, cache->xlat, &l, true);
3854 } else {
3855 cache->ptr = NULL;
3858 cache->len = l;
3859 cache->is_write = is_write;
3860 return l;
3863 void address_space_cache_invalidate(MemoryRegionCache *cache,
3864 hwaddr addr,
3865 hwaddr access_len)
3867 assert(cache->is_write);
3868 if (likely(cache->ptr)) {
3869 invalidate_and_set_dirty(cache->mrs.mr, addr + cache->xlat, access_len);
3873 void address_space_cache_destroy(MemoryRegionCache *cache)
3875 if (!cache->mrs.mr) {
3876 return;
3879 if (xen_enabled()) {
3880 xen_invalidate_map_cache_entry(cache->ptr);
3882 memory_region_unref(cache->mrs.mr);
3883 flatview_unref(cache->fv);
3884 cache->mrs.mr = NULL;
3885 cache->fv = NULL;
3888 /* Called from RCU critical section. This function has the same
3889 * semantics as address_space_translate, but it only works on a
3890 * predefined range of a MemoryRegion that was mapped with
3891 * address_space_cache_init.
3893 static inline MemoryRegion *address_space_translate_cached(
3894 MemoryRegionCache *cache, hwaddr addr, hwaddr *xlat,
3895 hwaddr *plen, bool is_write, MemTxAttrs attrs)
3897 MemoryRegionSection section;
3898 MemoryRegion *mr;
3899 IOMMUMemoryRegion *iommu_mr;
3900 AddressSpace *target_as;
3902 assert(!cache->ptr);
3903 *xlat = addr + cache->xlat;
3905 mr = cache->mrs.mr;
3906 iommu_mr = memory_region_get_iommu(mr);
3907 if (!iommu_mr) {
3908 /* MMIO region. */
3909 return mr;
3912 section = address_space_translate_iommu(iommu_mr, xlat, plen,
3913 NULL, is_write, true,
3914 &target_as, attrs);
3915 return section.mr;
3918 /* Called from RCU critical section. address_space_read_cached uses this
3919 * out of line function when the target is an MMIO or IOMMU region.
3921 void
3922 address_space_read_cached_slow(MemoryRegionCache *cache, hwaddr addr,
3923 void *buf, hwaddr len)
3925 hwaddr addr1, l;
3926 MemoryRegion *mr;
3928 l = len;
3929 mr = address_space_translate_cached(cache, addr, &addr1, &l, false,
3930 MEMTXATTRS_UNSPECIFIED);
3931 flatview_read_continue(cache->fv,
3932 addr, MEMTXATTRS_UNSPECIFIED, buf, len,
3933 addr1, l, mr);
3936 /* Called from RCU critical section. address_space_write_cached uses this
3937 * out of line function when the target is an MMIO or IOMMU region.
3939 void
3940 address_space_write_cached_slow(MemoryRegionCache *cache, hwaddr addr,
3941 const void *buf, hwaddr len)
3943 hwaddr addr1, l;
3944 MemoryRegion *mr;
3946 l = len;
3947 mr = address_space_translate_cached(cache, addr, &addr1, &l, true,
3948 MEMTXATTRS_UNSPECIFIED);
3949 flatview_write_continue(cache->fv,
3950 addr, MEMTXATTRS_UNSPECIFIED, buf, len,
3951 addr1, l, mr);
3954 #define ARG1_DECL MemoryRegionCache *cache
3955 #define ARG1 cache
3956 #define SUFFIX _cached_slow
3957 #define TRANSLATE(...) address_space_translate_cached(cache, __VA_ARGS__)
3958 #define RCU_READ_LOCK() ((void)0)
3959 #define RCU_READ_UNLOCK() ((void)0)
3960 #include "memory_ldst.inc.c"
3962 /* virtual memory access for debug (includes writing to ROM) */
3963 int cpu_memory_rw_debug(CPUState *cpu, target_ulong addr,
3964 uint8_t *buf, target_ulong len, int is_write)
3966 hwaddr phys_addr;
3967 target_ulong l, page;
3969 cpu_synchronize_state(cpu);
3970 while (len > 0) {
3971 int asidx;
3972 MemTxAttrs attrs;
3974 page = addr & TARGET_PAGE_MASK;
3975 phys_addr = cpu_get_phys_page_attrs_debug(cpu, page, &attrs);
3976 asidx = cpu_asidx_from_attrs(cpu, attrs);
3977 /* if no physical page mapped, return an error */
3978 if (phys_addr == -1)
3979 return -1;
3980 l = (page + TARGET_PAGE_SIZE) - addr;
3981 if (l > len)
3982 l = len;
3983 phys_addr += (addr & ~TARGET_PAGE_MASK);
3984 if (is_write) {
3985 address_space_write_rom(cpu->cpu_ases[asidx].as, phys_addr,
3986 attrs, buf, l);
3987 } else {
3988 address_space_rw(cpu->cpu_ases[asidx].as, phys_addr,
3989 attrs, buf, l, 0);
3991 len -= l;
3992 buf += l;
3993 addr += l;
3995 return 0;
3999 * Allows code that needs to deal with migration bitmaps etc to still be built
4000 * target independent.
4002 size_t qemu_target_page_size(void)
4004 return TARGET_PAGE_SIZE;
4007 int qemu_target_page_bits(void)
4009 return TARGET_PAGE_BITS;
4012 int qemu_target_page_bits_min(void)
4014 return TARGET_PAGE_BITS_MIN;
4016 #endif
4018 bool target_words_bigendian(void)
4020 #if defined(TARGET_WORDS_BIGENDIAN)
4021 return true;
4022 #else
4023 return false;
4024 #endif
4027 #ifndef CONFIG_USER_ONLY
4028 bool cpu_physical_memory_is_io(hwaddr phys_addr)
4030 MemoryRegion*mr;
4031 hwaddr l = 1;
4032 bool res;
4034 rcu_read_lock();
4035 mr = address_space_translate(&address_space_memory,
4036 phys_addr, &phys_addr, &l, false,
4037 MEMTXATTRS_UNSPECIFIED);
4039 res = !(memory_region_is_ram(mr) || memory_region_is_romd(mr));
4040 rcu_read_unlock();
4041 return res;
4044 int qemu_ram_foreach_block(RAMBlockIterFunc func, void *opaque)
4046 RAMBlock *block;
4047 int ret = 0;
4049 rcu_read_lock();
4050 RAMBLOCK_FOREACH(block) {
4051 ret = func(block, opaque);
4052 if (ret) {
4053 break;
4056 rcu_read_unlock();
4057 return ret;
4061 * Unmap pages of memory from start to start+length such that
4062 * they a) read as 0, b) Trigger whatever fault mechanism
4063 * the OS provides for postcopy.
4064 * The pages must be unmapped by the end of the function.
4065 * Returns: 0 on success, none-0 on failure
4068 int ram_block_discard_range(RAMBlock *rb, uint64_t start, size_t length)
4070 int ret = -1;
4072 uint8_t *host_startaddr = rb->host + start;
4074 if ((uintptr_t)host_startaddr & (rb->page_size - 1)) {
4075 error_report("ram_block_discard_range: Unaligned start address: %p",
4076 host_startaddr);
4077 goto err;
4080 if ((start + length) <= rb->used_length) {
4081 bool need_madvise, need_fallocate;
4082 uint8_t *host_endaddr = host_startaddr + length;
4083 if ((uintptr_t)host_endaddr & (rb->page_size - 1)) {
4084 error_report("ram_block_discard_range: Unaligned end address: %p",
4085 host_endaddr);
4086 goto err;
4089 errno = ENOTSUP; /* If we are missing MADVISE etc */
4091 /* The logic here is messy;
4092 * madvise DONTNEED fails for hugepages
4093 * fallocate works on hugepages and shmem
4095 need_madvise = (rb->page_size == qemu_host_page_size);
4096 need_fallocate = rb->fd != -1;
4097 if (need_fallocate) {
4098 /* For a file, this causes the area of the file to be zero'd
4099 * if read, and for hugetlbfs also causes it to be unmapped
4100 * so a userfault will trigger.
4102 #ifdef CONFIG_FALLOCATE_PUNCH_HOLE
4103 ret = fallocate(rb->fd, FALLOC_FL_PUNCH_HOLE | FALLOC_FL_KEEP_SIZE,
4104 start, length);
4105 if (ret) {
4106 ret = -errno;
4107 error_report("ram_block_discard_range: Failed to fallocate "
4108 "%s:%" PRIx64 " +%zx (%d)",
4109 rb->idstr, start, length, ret);
4110 goto err;
4112 #else
4113 ret = -ENOSYS;
4114 error_report("ram_block_discard_range: fallocate not available/file"
4115 "%s:%" PRIx64 " +%zx (%d)",
4116 rb->idstr, start, length, ret);
4117 goto err;
4118 #endif
4120 if (need_madvise) {
4121 /* For normal RAM this causes it to be unmapped,
4122 * for shared memory it causes the local mapping to disappear
4123 * and to fall back on the file contents (which we just
4124 * fallocate'd away).
4126 #if defined(CONFIG_MADVISE)
4127 ret = madvise(host_startaddr, length, MADV_DONTNEED);
4128 if (ret) {
4129 ret = -errno;
4130 error_report("ram_block_discard_range: Failed to discard range "
4131 "%s:%" PRIx64 " +%zx (%d)",
4132 rb->idstr, start, length, ret);
4133 goto err;
4135 #else
4136 ret = -ENOSYS;
4137 error_report("ram_block_discard_range: MADVISE not available"
4138 "%s:%" PRIx64 " +%zx (%d)",
4139 rb->idstr, start, length, ret);
4140 goto err;
4141 #endif
4143 trace_ram_block_discard_range(rb->idstr, host_startaddr, length,
4144 need_madvise, need_fallocate, ret);
4145 } else {
4146 error_report("ram_block_discard_range: Overrun block '%s' (%" PRIu64
4147 "/%zx/" RAM_ADDR_FMT")",
4148 rb->idstr, start, length, rb->used_length);
4151 err:
4152 return ret;
4155 bool ramblock_is_pmem(RAMBlock *rb)
4157 return rb->flags & RAM_PMEM;
4160 #endif
4162 void page_size_init(void)
4164 /* NOTE: we can always suppose that qemu_host_page_size >=
4165 TARGET_PAGE_SIZE */
4166 if (qemu_host_page_size == 0) {
4167 qemu_host_page_size = qemu_real_host_page_size;
4169 if (qemu_host_page_size < TARGET_PAGE_SIZE) {
4170 qemu_host_page_size = TARGET_PAGE_SIZE;
4172 qemu_host_page_mask = -(intptr_t)qemu_host_page_size;
4175 #if !defined(CONFIG_USER_ONLY)
4177 static void mtree_print_phys_entries(int start, int end, int skip, int ptr)
4179 if (start == end - 1) {
4180 qemu_printf("\t%3d ", start);
4181 } else {
4182 qemu_printf("\t%3d..%-3d ", start, end - 1);
4184 qemu_printf(" skip=%d ", skip);
4185 if (ptr == PHYS_MAP_NODE_NIL) {
4186 qemu_printf(" ptr=NIL");
4187 } else if (!skip) {
4188 qemu_printf(" ptr=#%d", ptr);
4189 } else {
4190 qemu_printf(" ptr=[%d]", ptr);
4192 qemu_printf("\n");
4195 #define MR_SIZE(size) (int128_nz(size) ? (hwaddr)int128_get64( \
4196 int128_sub((size), int128_one())) : 0)
4198 void mtree_print_dispatch(AddressSpaceDispatch *d, MemoryRegion *root)
4200 int i;
4202 qemu_printf(" Dispatch\n");
4203 qemu_printf(" Physical sections\n");
4205 for (i = 0; i < d->map.sections_nb; ++i) {
4206 MemoryRegionSection *s = d->map.sections + i;
4207 const char *names[] = { " [unassigned]", " [not dirty]",
4208 " [ROM]", " [watch]" };
4210 qemu_printf(" #%d @" TARGET_FMT_plx ".." TARGET_FMT_plx
4211 " %s%s%s%s%s",
4213 s->offset_within_address_space,
4214 s->offset_within_address_space + MR_SIZE(s->mr->size),
4215 s->mr->name ? s->mr->name : "(noname)",
4216 i < ARRAY_SIZE(names) ? names[i] : "",
4217 s->mr == root ? " [ROOT]" : "",
4218 s == d->mru_section ? " [MRU]" : "",
4219 s->mr->is_iommu ? " [iommu]" : "");
4221 if (s->mr->alias) {
4222 qemu_printf(" alias=%s", s->mr->alias->name ?
4223 s->mr->alias->name : "noname");
4225 qemu_printf("\n");
4228 qemu_printf(" Nodes (%d bits per level, %d levels) ptr=[%d] skip=%d\n",
4229 P_L2_BITS, P_L2_LEVELS, d->phys_map.ptr, d->phys_map.skip);
4230 for (i = 0; i < d->map.nodes_nb; ++i) {
4231 int j, jprev;
4232 PhysPageEntry prev;
4233 Node *n = d->map.nodes + i;
4235 qemu_printf(" [%d]\n", i);
4237 for (j = 0, jprev = 0, prev = *n[0]; j < ARRAY_SIZE(*n); ++j) {
4238 PhysPageEntry *pe = *n + j;
4240 if (pe->ptr == prev.ptr && pe->skip == prev.skip) {
4241 continue;
4244 mtree_print_phys_entries(jprev, j, prev.skip, prev.ptr);
4246 jprev = j;
4247 prev = *pe;
4250 if (jprev != ARRAY_SIZE(*n)) {
4251 mtree_print_phys_entries(jprev, j, prev.skip, prev.ptr);
4256 #endif