spapr: Do NVDIMM/PC-DIMM device hotplug sanity checks at pre-plug only
[qemu/ar7.git] / hw / riscv / spike.c
blobfacac6e7d2d7491b54504b0c72d1b8b6d98802a8
1 /*
2 * QEMU RISC-V Spike Board
4 * Copyright (c) 2016-2017 Sagar Karandikar, sagark@eecs.berkeley.edu
5 * Copyright (c) 2017-2018 SiFive, Inc.
7 * This provides a RISC-V Board with the following devices:
9 * 0) HTIF Console and Poweroff
10 * 1) CLINT (Timer and IPI)
11 * 2) PLIC (Platform Level Interrupt Controller)
13 * This program is free software; you can redistribute it and/or modify it
14 * under the terms and conditions of the GNU General Public License,
15 * version 2 or later, as published by the Free Software Foundation.
17 * This program is distributed in the hope it will be useful, but WITHOUT
18 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
19 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
20 * more details.
22 * You should have received a copy of the GNU General Public License along with
23 * this program. If not, see <http://www.gnu.org/licenses/>.
26 #include "qemu/osdep.h"
27 #include "qemu/log.h"
28 #include "qemu/error-report.h"
29 #include "qapi/error.h"
30 #include "hw/boards.h"
31 #include "hw/loader.h"
32 #include "hw/sysbus.h"
33 #include "target/riscv/cpu.h"
34 #include "hw/riscv/riscv_hart.h"
35 #include "hw/riscv/spike.h"
36 #include "hw/riscv/boot.h"
37 #include "hw/riscv/numa.h"
38 #include "hw/char/riscv_htif.h"
39 #include "hw/intc/sifive_clint.h"
40 #include "chardev/char.h"
41 #include "sysemu/arch_init.h"
42 #include "sysemu/device_tree.h"
43 #include "sysemu/qtest.h"
44 #include "sysemu/sysemu.h"
47 * Not like other RISC-V machines that use plain binary bios images,
48 * keeping ELF files here was intentional because BIN files don't work
49 * for the Spike machine as HTIF emulation depends on ELF parsing.
51 #if defined(TARGET_RISCV32)
52 # define BIOS_FILENAME "opensbi-riscv32-generic-fw_dynamic.elf"
53 #else
54 # define BIOS_FILENAME "opensbi-riscv64-generic-fw_dynamic.elf"
55 #endif
57 static const struct MemmapEntry {
58 hwaddr base;
59 hwaddr size;
60 } spike_memmap[] = {
61 [SPIKE_MROM] = { 0x1000, 0xf000 },
62 [SPIKE_CLINT] = { 0x2000000, 0x10000 },
63 [SPIKE_DRAM] = { 0x80000000, 0x0 },
66 static void create_fdt(SpikeState *s, const struct MemmapEntry *memmap,
67 uint64_t mem_size, const char *cmdline)
69 void *fdt;
70 uint64_t addr, size;
71 unsigned long clint_addr;
72 int cpu, socket;
73 MachineState *mc = MACHINE(s);
74 uint32_t *clint_cells;
75 uint32_t cpu_phandle, intc_phandle, phandle = 1;
76 char *name, *mem_name, *clint_name, *clust_name;
77 char *core_name, *cpu_name, *intc_name;
79 fdt = s->fdt = create_device_tree(&s->fdt_size);
80 if (!fdt) {
81 error_report("create_device_tree() failed");
82 exit(1);
85 qemu_fdt_setprop_string(fdt, "/", "model", "ucbbar,spike-bare,qemu");
86 qemu_fdt_setprop_string(fdt, "/", "compatible", "ucbbar,spike-bare-dev");
87 qemu_fdt_setprop_cell(fdt, "/", "#size-cells", 0x2);
88 qemu_fdt_setprop_cell(fdt, "/", "#address-cells", 0x2);
90 qemu_fdt_add_subnode(fdt, "/htif");
91 qemu_fdt_setprop_string(fdt, "/htif", "compatible", "ucb,htif0");
93 qemu_fdt_add_subnode(fdt, "/soc");
94 qemu_fdt_setprop(fdt, "/soc", "ranges", NULL, 0);
95 qemu_fdt_setprop_string(fdt, "/soc", "compatible", "simple-bus");
96 qemu_fdt_setprop_cell(fdt, "/soc", "#size-cells", 0x2);
97 qemu_fdt_setprop_cell(fdt, "/soc", "#address-cells", 0x2);
99 qemu_fdt_add_subnode(fdt, "/cpus");
100 qemu_fdt_setprop_cell(fdt, "/cpus", "timebase-frequency",
101 SIFIVE_CLINT_TIMEBASE_FREQ);
102 qemu_fdt_setprop_cell(fdt, "/cpus", "#size-cells", 0x0);
103 qemu_fdt_setprop_cell(fdt, "/cpus", "#address-cells", 0x1);
104 qemu_fdt_add_subnode(fdt, "/cpus/cpu-map");
106 for (socket = (riscv_socket_count(mc) - 1); socket >= 0; socket--) {
107 clust_name = g_strdup_printf("/cpus/cpu-map/cluster%d", socket);
108 qemu_fdt_add_subnode(fdt, clust_name);
110 clint_cells = g_new0(uint32_t, s->soc[socket].num_harts * 4);
112 for (cpu = s->soc[socket].num_harts - 1; cpu >= 0; cpu--) {
113 cpu_phandle = phandle++;
115 cpu_name = g_strdup_printf("/cpus/cpu@%d",
116 s->soc[socket].hartid_base + cpu);
117 qemu_fdt_add_subnode(fdt, cpu_name);
118 #if defined(TARGET_RISCV32)
119 qemu_fdt_setprop_string(fdt, cpu_name, "mmu-type", "riscv,sv32");
120 #else
121 qemu_fdt_setprop_string(fdt, cpu_name, "mmu-type", "riscv,sv48");
122 #endif
123 name = riscv_isa_string(&s->soc[socket].harts[cpu]);
124 qemu_fdt_setprop_string(fdt, cpu_name, "riscv,isa", name);
125 g_free(name);
126 qemu_fdt_setprop_string(fdt, cpu_name, "compatible", "riscv");
127 qemu_fdt_setprop_string(fdt, cpu_name, "status", "okay");
128 qemu_fdt_setprop_cell(fdt, cpu_name, "reg",
129 s->soc[socket].hartid_base + cpu);
130 qemu_fdt_setprop_string(fdt, cpu_name, "device_type", "cpu");
131 riscv_socket_fdt_write_id(mc, fdt, cpu_name, socket);
132 qemu_fdt_setprop_cell(fdt, cpu_name, "phandle", cpu_phandle);
134 intc_name = g_strdup_printf("%s/interrupt-controller", cpu_name);
135 qemu_fdt_add_subnode(fdt, intc_name);
136 intc_phandle = phandle++;
137 qemu_fdt_setprop_cell(fdt, intc_name, "phandle", intc_phandle);
138 qemu_fdt_setprop_string(fdt, intc_name, "compatible",
139 "riscv,cpu-intc");
140 qemu_fdt_setprop(fdt, intc_name, "interrupt-controller", NULL, 0);
141 qemu_fdt_setprop_cell(fdt, intc_name, "#interrupt-cells", 1);
143 clint_cells[cpu * 4 + 0] = cpu_to_be32(intc_phandle);
144 clint_cells[cpu * 4 + 1] = cpu_to_be32(IRQ_M_SOFT);
145 clint_cells[cpu * 4 + 2] = cpu_to_be32(intc_phandle);
146 clint_cells[cpu * 4 + 3] = cpu_to_be32(IRQ_M_TIMER);
148 core_name = g_strdup_printf("%s/core%d", clust_name, cpu);
149 qemu_fdt_add_subnode(fdt, core_name);
150 qemu_fdt_setprop_cell(fdt, core_name, "cpu", cpu_phandle);
152 g_free(core_name);
153 g_free(intc_name);
154 g_free(cpu_name);
157 addr = memmap[SPIKE_DRAM].base + riscv_socket_mem_offset(mc, socket);
158 size = riscv_socket_mem_size(mc, socket);
159 mem_name = g_strdup_printf("/memory@%lx", (long)addr);
160 qemu_fdt_add_subnode(fdt, mem_name);
161 qemu_fdt_setprop_cells(fdt, mem_name, "reg",
162 addr >> 32, addr, size >> 32, size);
163 qemu_fdt_setprop_string(fdt, mem_name, "device_type", "memory");
164 riscv_socket_fdt_write_id(mc, fdt, mem_name, socket);
165 g_free(mem_name);
167 clint_addr = memmap[SPIKE_CLINT].base +
168 (memmap[SPIKE_CLINT].size * socket);
169 clint_name = g_strdup_printf("/soc/clint@%lx", clint_addr);
170 qemu_fdt_add_subnode(fdt, clint_name);
171 qemu_fdt_setprop_string(fdt, clint_name, "compatible", "riscv,clint0");
172 qemu_fdt_setprop_cells(fdt, clint_name, "reg",
173 0x0, clint_addr, 0x0, memmap[SPIKE_CLINT].size);
174 qemu_fdt_setprop(fdt, clint_name, "interrupts-extended",
175 clint_cells, s->soc[socket].num_harts * sizeof(uint32_t) * 4);
176 riscv_socket_fdt_write_id(mc, fdt, clint_name, socket);
178 g_free(clint_name);
179 g_free(clint_cells);
180 g_free(clust_name);
183 riscv_socket_fdt_write_distance_matrix(mc, fdt);
185 if (cmdline) {
186 qemu_fdt_add_subnode(fdt, "/chosen");
187 qemu_fdt_setprop_string(fdt, "/chosen", "bootargs", cmdline);
191 static void spike_board_init(MachineState *machine)
193 const struct MemmapEntry *memmap = spike_memmap;
194 SpikeState *s = SPIKE_MACHINE(machine);
195 MemoryRegion *system_memory = get_system_memory();
196 MemoryRegion *main_mem = g_new(MemoryRegion, 1);
197 MemoryRegion *mask_rom = g_new(MemoryRegion, 1);
198 target_ulong firmware_end_addr, kernel_start_addr;
199 uint32_t fdt_load_addr;
200 uint64_t kernel_entry;
201 char *soc_name;
202 int i, base_hartid, hart_count;
204 /* Check socket count limit */
205 if (SPIKE_SOCKETS_MAX < riscv_socket_count(machine)) {
206 error_report("number of sockets/nodes should be less than %d",
207 SPIKE_SOCKETS_MAX);
208 exit(1);
211 /* Initialize sockets */
212 for (i = 0; i < riscv_socket_count(machine); i++) {
213 if (!riscv_socket_check_hartids(machine, i)) {
214 error_report("discontinuous hartids in socket%d", i);
215 exit(1);
218 base_hartid = riscv_socket_first_hartid(machine, i);
219 if (base_hartid < 0) {
220 error_report("can't find hartid base for socket%d", i);
221 exit(1);
224 hart_count = riscv_socket_hart_count(machine, i);
225 if (hart_count < 0) {
226 error_report("can't find hart count for socket%d", i);
227 exit(1);
230 soc_name = g_strdup_printf("soc%d", i);
231 object_initialize_child(OBJECT(machine), soc_name, &s->soc[i],
232 TYPE_RISCV_HART_ARRAY);
233 g_free(soc_name);
234 object_property_set_str(OBJECT(&s->soc[i]), "cpu-type",
235 machine->cpu_type, &error_abort);
236 object_property_set_int(OBJECT(&s->soc[i]), "hartid-base",
237 base_hartid, &error_abort);
238 object_property_set_int(OBJECT(&s->soc[i]), "num-harts",
239 hart_count, &error_abort);
240 sysbus_realize(SYS_BUS_DEVICE(&s->soc[i]), &error_abort);
242 /* Core Local Interruptor (timer and IPI) for each socket */
243 sifive_clint_create(
244 memmap[SPIKE_CLINT].base + i * memmap[SPIKE_CLINT].size,
245 memmap[SPIKE_CLINT].size, base_hartid, hart_count,
246 SIFIVE_SIP_BASE, SIFIVE_TIMECMP_BASE, SIFIVE_TIME_BASE,
247 SIFIVE_CLINT_TIMEBASE_FREQ, false);
250 /* register system main memory (actual RAM) */
251 memory_region_init_ram(main_mem, NULL, "riscv.spike.ram",
252 machine->ram_size, &error_fatal);
253 memory_region_add_subregion(system_memory, memmap[SPIKE_DRAM].base,
254 main_mem);
256 /* create device tree */
257 create_fdt(s, memmap, machine->ram_size, machine->kernel_cmdline);
259 /* boot rom */
260 memory_region_init_rom(mask_rom, NULL, "riscv.spike.mrom",
261 memmap[SPIKE_MROM].size, &error_fatal);
262 memory_region_add_subregion(system_memory, memmap[SPIKE_MROM].base,
263 mask_rom);
265 firmware_end_addr = riscv_find_and_load_firmware(machine, BIOS_FILENAME,
266 memmap[SPIKE_DRAM].base,
267 htif_symbol_callback);
269 if (machine->kernel_filename) {
270 kernel_start_addr = riscv_calc_kernel_start_addr(machine,
271 firmware_end_addr);
273 kernel_entry = riscv_load_kernel(machine->kernel_filename,
274 kernel_start_addr,
275 htif_symbol_callback);
277 if (machine->initrd_filename) {
278 hwaddr start;
279 hwaddr end = riscv_load_initrd(machine->initrd_filename,
280 machine->ram_size, kernel_entry,
281 &start);
282 qemu_fdt_setprop_cell(s->fdt, "/chosen",
283 "linux,initrd-start", start);
284 qemu_fdt_setprop_cell(s->fdt, "/chosen", "linux,initrd-end",
285 end);
287 } else {
289 * If dynamic firmware is used, it doesn't know where is the next mode
290 * if kernel argument is not set.
292 kernel_entry = 0;
295 /* Compute the fdt load address in dram */
296 fdt_load_addr = riscv_load_fdt(memmap[SPIKE_DRAM].base,
297 machine->ram_size, s->fdt);
298 /* load the reset vector */
299 riscv_setup_rom_reset_vec(memmap[SPIKE_DRAM].base, memmap[SPIKE_MROM].base,
300 memmap[SPIKE_MROM].size, kernel_entry,
301 fdt_load_addr, s->fdt);
303 /* initialize HTIF using symbols found in load_kernel */
304 htif_mm_init(system_memory, mask_rom,
305 &s->soc[0].harts[0].env, serial_hd(0));
308 static void spike_machine_instance_init(Object *obj)
312 static void spike_machine_class_init(ObjectClass *oc, void *data)
314 MachineClass *mc = MACHINE_CLASS(oc);
316 mc->desc = "RISC-V Spike board";
317 mc->init = spike_board_init;
318 mc->max_cpus = SPIKE_CPUS_MAX;
319 mc->is_default = true;
320 mc->default_cpu_type = SPIKE_V1_10_0_CPU;
321 mc->possible_cpu_arch_ids = riscv_numa_possible_cpu_arch_ids;
322 mc->cpu_index_to_instance_props = riscv_numa_cpu_index_to_props;
323 mc->get_default_cpu_node_id = riscv_numa_get_default_cpu_node_id;
324 mc->numa_mem_supported = true;
327 static const TypeInfo spike_machine_typeinfo = {
328 .name = MACHINE_TYPE_NAME("spike"),
329 .parent = TYPE_MACHINE,
330 .class_init = spike_machine_class_init,
331 .instance_init = spike_machine_instance_init,
332 .instance_size = sizeof(SpikeState),
335 static void spike_machine_init_register_types(void)
337 type_register_static(&spike_machine_typeinfo);
340 type_init(spike_machine_init_register_types)