2 * QEMU PowerPC sPAPR XIVE interrupt controller model
4 * Copyright (c) 2017-2018, IBM Corporation.
6 * This code is licensed under the GPL version 2 or later. See the
7 * COPYING file in the top-level directory.
10 #include "qemu/osdep.h"
12 #include "qemu/module.h"
13 #include "qapi/error.h"
14 #include "qemu/error-report.h"
15 #include "target/ppc/cpu.h"
16 #include "sysemu/cpus.h"
17 #include "sysemu/reset.h"
18 #include "migration/vmstate.h"
19 #include "monitor/monitor.h"
20 #include "hw/ppc/fdt.h"
21 #include "hw/ppc/spapr.h"
22 #include "hw/ppc/spapr_cpu_core.h"
23 #include "hw/ppc/spapr_xive.h"
24 #include "hw/ppc/xive.h"
25 #include "hw/ppc/xive_regs.h"
26 #include "hw/qdev-properties.h"
29 * XIVE Virtualization Controller BAR and Thread Managment BAR that we
30 * use for the ESB pages and the TIMA pages
32 #define SPAPR_XIVE_VC_BASE 0x0006010000000000ull
33 #define SPAPR_XIVE_TM_BASE 0x0006030203180000ull
36 * The allocation of VP blocks is a complex operation in OPAL and the
37 * VP identifiers have a relation with the number of HW chips, the
38 * size of the VP blocks, VP grouping, etc. The QEMU sPAPR XIVE
39 * controller model does not have the same constraints and can use a
40 * simple mapping scheme of the CPU vcpu_id
42 * These identifiers are never returned to the OS.
45 #define SPAPR_XIVE_NVT_BASE 0x400
48 * sPAPR NVT and END indexing helpers
50 static uint32_t spapr_xive_nvt_to_target(uint8_t nvt_blk
, uint32_t nvt_idx
)
52 return nvt_idx
- SPAPR_XIVE_NVT_BASE
;
55 static void spapr_xive_cpu_to_nvt(PowerPCCPU
*cpu
,
56 uint8_t *out_nvt_blk
, uint32_t *out_nvt_idx
)
61 *out_nvt_blk
= SPAPR_XIVE_BLOCK_ID
;
65 *out_nvt_idx
= SPAPR_XIVE_NVT_BASE
+ cpu
->vcpu_id
;
69 static int spapr_xive_target_to_nvt(uint32_t target
,
70 uint8_t *out_nvt_blk
, uint32_t *out_nvt_idx
)
72 PowerPCCPU
*cpu
= spapr_find_cpu(target
);
78 spapr_xive_cpu_to_nvt(cpu
, out_nvt_blk
, out_nvt_idx
);
83 * sPAPR END indexing uses a simple mapping of the CPU vcpu_id, 8
86 int spapr_xive_end_to_target(uint8_t end_blk
, uint32_t end_idx
,
87 uint32_t *out_server
, uint8_t *out_prio
)
90 assert(end_blk
== SPAPR_XIVE_BLOCK_ID
);
93 *out_server
= end_idx
>> 3;
97 *out_prio
= end_idx
& 0x7;
102 static void spapr_xive_cpu_to_end(PowerPCCPU
*cpu
, uint8_t prio
,
103 uint8_t *out_end_blk
, uint32_t *out_end_idx
)
108 *out_end_blk
= SPAPR_XIVE_BLOCK_ID
;
112 *out_end_idx
= (cpu
->vcpu_id
<< 3) + prio
;
116 static int spapr_xive_target_to_end(uint32_t target
, uint8_t prio
,
117 uint8_t *out_end_blk
, uint32_t *out_end_idx
)
119 PowerPCCPU
*cpu
= spapr_find_cpu(target
);
125 spapr_xive_cpu_to_end(cpu
, prio
, out_end_blk
, out_end_idx
);
130 * On sPAPR machines, use a simplified output for the XIVE END
131 * structure dumping only the information related to the OS EQ.
133 static void spapr_xive_end_pic_print_info(SpaprXive
*xive
, XiveEND
*end
,
136 uint64_t qaddr_base
= xive_end_qaddr(end
);
137 uint32_t qindex
= xive_get_field32(END_W1_PAGE_OFF
, end
->w1
);
138 uint32_t qgen
= xive_get_field32(END_W1_GENERATION
, end
->w1
);
139 uint32_t qsize
= xive_get_field32(END_W0_QSIZE
, end
->w0
);
140 uint32_t qentries
= 1 << (qsize
+ 10);
141 uint32_t nvt
= xive_get_field32(END_W6_NVT_INDEX
, end
->w6
);
142 uint8_t priority
= xive_get_field32(END_W7_F0_PRIORITY
, end
->w7
);
144 monitor_printf(mon
, "%3d/%d % 6d/%5d @%"PRIx64
" ^%d",
145 spapr_xive_nvt_to_target(0, nvt
),
146 priority
, qindex
, qentries
, qaddr_base
, qgen
);
148 xive_end_queue_pic_print_info(end
, 6, mon
);
152 * kvm_irqchip_in_kernel() will cause the compiler to turn this
153 * info a nop if CONFIG_KVM isn't defined.
155 #define spapr_xive_in_kernel(xive) \
156 (kvm_irqchip_in_kernel() && (xive)->fd != -1)
158 void spapr_xive_pic_print_info(SpaprXive
*xive
, Monitor
*mon
)
160 XiveSource
*xsrc
= &xive
->source
;
163 if (spapr_xive_in_kernel(xive
)) {
164 Error
*local_err
= NULL
;
166 kvmppc_xive_synchronize_state(xive
, &local_err
);
168 error_report_err(local_err
);
173 monitor_printf(mon
, " LISN PQ EISN CPU/PRIO EQ\n");
175 for (i
= 0; i
< xive
->nr_irqs
; i
++) {
176 uint8_t pq
= xive_source_esb_get(xsrc
, i
);
177 XiveEAS
*eas
= &xive
->eat
[i
];
179 if (!xive_eas_is_valid(eas
)) {
183 monitor_printf(mon
, " %08x %s %c%c%c %s %08x ", i
,
184 xive_source_irq_is_lsi(xsrc
, i
) ? "LSI" : "MSI",
185 pq
& XIVE_ESB_VAL_P
? 'P' : '-',
186 pq
& XIVE_ESB_VAL_Q
? 'Q' : '-',
187 xsrc
->status
[i
] & XIVE_STATUS_ASSERTED
? 'A' : ' ',
188 xive_eas_is_masked(eas
) ? "M" : " ",
189 (int) xive_get_field64(EAS_END_DATA
, eas
->w
));
191 if (!xive_eas_is_masked(eas
)) {
192 uint32_t end_idx
= xive_get_field64(EAS_END_INDEX
, eas
->w
);
195 assert(end_idx
< xive
->nr_ends
);
196 end
= &xive
->endt
[end_idx
];
198 if (xive_end_is_valid(end
)) {
199 spapr_xive_end_pic_print_info(xive
, end
, mon
);
202 monitor_printf(mon
, "\n");
206 void spapr_xive_mmio_set_enabled(SpaprXive
*xive
, bool enable
)
208 memory_region_set_enabled(&xive
->source
.esb_mmio
, enable
);
209 memory_region_set_enabled(&xive
->tm_mmio
, enable
);
211 /* Disable the END ESBs until a guest OS makes use of them */
212 memory_region_set_enabled(&xive
->end_source
.esb_mmio
, false);
215 static void spapr_xive_tm_write(void *opaque
, hwaddr offset
,
216 uint64_t value
, unsigned size
)
218 XiveTCTX
*tctx
= spapr_cpu_state(POWERPC_CPU(current_cpu
))->tctx
;
220 xive_tctx_tm_write(XIVE_PRESENTER(opaque
), tctx
, offset
, value
, size
);
223 static uint64_t spapr_xive_tm_read(void *opaque
, hwaddr offset
, unsigned size
)
225 XiveTCTX
*tctx
= spapr_cpu_state(POWERPC_CPU(current_cpu
))->tctx
;
227 return xive_tctx_tm_read(XIVE_PRESENTER(opaque
), tctx
, offset
, size
);
230 const MemoryRegionOps spapr_xive_tm_ops
= {
231 .read
= spapr_xive_tm_read
,
232 .write
= spapr_xive_tm_write
,
233 .endianness
= DEVICE_BIG_ENDIAN
,
235 .min_access_size
= 1,
236 .max_access_size
= 8,
239 .min_access_size
= 1,
240 .max_access_size
= 8,
244 static void spapr_xive_end_reset(XiveEND
*end
)
246 memset(end
, 0, sizeof(*end
));
248 /* switch off the escalation and notification ESBs */
249 end
->w1
= cpu_to_be32(END_W1_ESe_Q
| END_W1_ESn_Q
);
252 static void spapr_xive_reset(void *dev
)
254 SpaprXive
*xive
= SPAPR_XIVE(dev
);
258 * The XiveSource has its own reset handler, which mask off all
262 /* Mask all valid EASs in the IRQ number space. */
263 for (i
= 0; i
< xive
->nr_irqs
; i
++) {
264 XiveEAS
*eas
= &xive
->eat
[i
];
265 if (xive_eas_is_valid(eas
)) {
266 eas
->w
= cpu_to_be64(EAS_VALID
| EAS_MASKED
);
273 for (i
= 0; i
< xive
->nr_ends
; i
++) {
274 spapr_xive_end_reset(&xive
->endt
[i
]);
278 static void spapr_xive_instance_init(Object
*obj
)
280 SpaprXive
*xive
= SPAPR_XIVE(obj
);
282 object_initialize_child(obj
, "source", &xive
->source
, TYPE_XIVE_SOURCE
);
284 object_initialize_child(obj
, "end_source", &xive
->end_source
,
285 TYPE_XIVE_END_SOURCE
);
287 /* Not connected to the KVM XIVE device */
291 static void spapr_xive_realize(DeviceState
*dev
, Error
**errp
)
293 SpaprXive
*xive
= SPAPR_XIVE(dev
);
294 SpaprXiveClass
*sxc
= SPAPR_XIVE_GET_CLASS(xive
);
295 XiveSource
*xsrc
= &xive
->source
;
296 XiveENDSource
*end_xsrc
= &xive
->end_source
;
297 Error
*local_err
= NULL
;
299 /* Set by spapr_irq_init() */
300 g_assert(xive
->nr_irqs
);
301 g_assert(xive
->nr_ends
);
303 sxc
->parent_realize(dev
, &local_err
);
305 error_propagate(errp
, local_err
);
310 * Initialize the internal sources, for IPIs and virtual devices.
312 object_property_set_int(OBJECT(xsrc
), "nr-irqs", xive
->nr_irqs
,
314 object_property_set_link(OBJECT(xsrc
), "xive", OBJECT(xive
), &error_abort
);
315 if (!qdev_realize(DEVICE(xsrc
), NULL
, errp
)) {
318 sysbus_init_mmio(SYS_BUS_DEVICE(xive
), &xsrc
->esb_mmio
);
321 * Initialize the END ESB source
323 object_property_set_int(OBJECT(end_xsrc
), "nr-ends", xive
->nr_irqs
,
325 object_property_set_link(OBJECT(end_xsrc
), "xive", OBJECT(xive
),
327 if (!qdev_realize(DEVICE(end_xsrc
), NULL
, errp
)) {
330 sysbus_init_mmio(SYS_BUS_DEVICE(xive
), &end_xsrc
->esb_mmio
);
332 /* Set the mapping address of the END ESB pages after the source ESBs */
333 xive
->end_base
= xive
->vc_base
+ xive_source_esb_len(xsrc
);
336 * Allocate the routing tables
338 xive
->eat
= g_new0(XiveEAS
, xive
->nr_irqs
);
339 xive
->endt
= g_new0(XiveEND
, xive
->nr_ends
);
341 xive
->nodename
= g_strdup_printf("interrupt-controller@%" PRIx64
,
342 xive
->tm_base
+ XIVE_TM_USER_PAGE
* (1 << TM_SHIFT
));
344 qemu_register_reset(spapr_xive_reset
, dev
);
346 /* TIMA initialization */
347 memory_region_init_io(&xive
->tm_mmio
, OBJECT(xive
), &spapr_xive_tm_ops
,
348 xive
, "xive.tima", 4ull << TM_SHIFT
);
349 sysbus_init_mmio(SYS_BUS_DEVICE(xive
), &xive
->tm_mmio
);
352 * Map all regions. These will be enabled or disabled at reset and
353 * can also be overridden by KVM memory regions if active
355 sysbus_mmio_map(SYS_BUS_DEVICE(xive
), 0, xive
->vc_base
);
356 sysbus_mmio_map(SYS_BUS_DEVICE(xive
), 1, xive
->end_base
);
357 sysbus_mmio_map(SYS_BUS_DEVICE(xive
), 2, xive
->tm_base
);
360 static int spapr_xive_get_eas(XiveRouter
*xrtr
, uint8_t eas_blk
,
361 uint32_t eas_idx
, XiveEAS
*eas
)
363 SpaprXive
*xive
= SPAPR_XIVE(xrtr
);
365 if (eas_idx
>= xive
->nr_irqs
) {
369 *eas
= xive
->eat
[eas_idx
];
373 static int spapr_xive_get_end(XiveRouter
*xrtr
,
374 uint8_t end_blk
, uint32_t end_idx
, XiveEND
*end
)
376 SpaprXive
*xive
= SPAPR_XIVE(xrtr
);
378 if (end_idx
>= xive
->nr_ends
) {
382 memcpy(end
, &xive
->endt
[end_idx
], sizeof(XiveEND
));
386 static int spapr_xive_write_end(XiveRouter
*xrtr
, uint8_t end_blk
,
387 uint32_t end_idx
, XiveEND
*end
,
390 SpaprXive
*xive
= SPAPR_XIVE(xrtr
);
392 if (end_idx
>= xive
->nr_ends
) {
396 memcpy(&xive
->endt
[end_idx
], end
, sizeof(XiveEND
));
400 static int spapr_xive_get_nvt(XiveRouter
*xrtr
,
401 uint8_t nvt_blk
, uint32_t nvt_idx
, XiveNVT
*nvt
)
403 uint32_t vcpu_id
= spapr_xive_nvt_to_target(nvt_blk
, nvt_idx
);
404 PowerPCCPU
*cpu
= spapr_find_cpu(vcpu_id
);
407 /* TODO: should we assert() if we can find a NVT ? */
412 * sPAPR does not maintain a NVT table. Return that the NVT is
413 * valid if we have found a matching CPU
415 nvt
->w0
= cpu_to_be32(NVT_W0_VALID
);
419 static int spapr_xive_write_nvt(XiveRouter
*xrtr
, uint8_t nvt_blk
,
420 uint32_t nvt_idx
, XiveNVT
*nvt
,
424 * We don't need to write back to the NVTs because the sPAPR
425 * machine should never hit a non-scheduled NVT. It should never
428 g_assert_not_reached();
431 static int spapr_xive_match_nvt(XivePresenter
*xptr
, uint8_t format
,
432 uint8_t nvt_blk
, uint32_t nvt_idx
,
433 bool cam_ignore
, uint8_t priority
,
434 uint32_t logic_serv
, XiveTCTXMatch
*match
)
440 PowerPCCPU
*cpu
= POWERPC_CPU(cs
);
441 XiveTCTX
*tctx
= spapr_cpu_state(cpu
)->tctx
;
445 * Skip partially initialized vCPUs. This can happen when
446 * vCPUs are hotplugged.
453 * Check the thread context CAM lines and record matches.
455 ring
= xive_presenter_tctx_match(xptr
, tctx
, format
, nvt_blk
, nvt_idx
,
456 cam_ignore
, logic_serv
);
458 * Save the matching thread interrupt context and follow on to
459 * check for duplicates which are invalid.
463 qemu_log_mask(LOG_GUEST_ERROR
, "XIVE: already found a thread "
464 "context NVT %x/%x\n", nvt_blk
, nvt_idx
);
477 static uint8_t spapr_xive_get_block_id(XiveRouter
*xrtr
)
479 return SPAPR_XIVE_BLOCK_ID
;
482 static const VMStateDescription vmstate_spapr_xive_end
= {
483 .name
= TYPE_SPAPR_XIVE
"/end",
485 .minimum_version_id
= 1,
486 .fields
= (VMStateField
[]) {
487 VMSTATE_UINT32(w0
, XiveEND
),
488 VMSTATE_UINT32(w1
, XiveEND
),
489 VMSTATE_UINT32(w2
, XiveEND
),
490 VMSTATE_UINT32(w3
, XiveEND
),
491 VMSTATE_UINT32(w4
, XiveEND
),
492 VMSTATE_UINT32(w5
, XiveEND
),
493 VMSTATE_UINT32(w6
, XiveEND
),
494 VMSTATE_UINT32(w7
, XiveEND
),
495 VMSTATE_END_OF_LIST()
499 static const VMStateDescription vmstate_spapr_xive_eas
= {
500 .name
= TYPE_SPAPR_XIVE
"/eas",
502 .minimum_version_id
= 1,
503 .fields
= (VMStateField
[]) {
504 VMSTATE_UINT64(w
, XiveEAS
),
505 VMSTATE_END_OF_LIST()
509 static int vmstate_spapr_xive_pre_save(void *opaque
)
511 SpaprXive
*xive
= SPAPR_XIVE(opaque
);
513 if (spapr_xive_in_kernel(xive
)) {
514 return kvmppc_xive_pre_save(xive
);
521 * Called by the sPAPR IRQ backend 'post_load' method at the machine
524 static int spapr_xive_post_load(SpaprInterruptController
*intc
, int version_id
)
526 SpaprXive
*xive
= SPAPR_XIVE(intc
);
528 if (spapr_xive_in_kernel(xive
)) {
529 return kvmppc_xive_post_load(xive
, version_id
);
535 static const VMStateDescription vmstate_spapr_xive
= {
536 .name
= TYPE_SPAPR_XIVE
,
538 .minimum_version_id
= 1,
539 .pre_save
= vmstate_spapr_xive_pre_save
,
540 .post_load
= NULL
, /* handled at the machine level */
541 .fields
= (VMStateField
[]) {
542 VMSTATE_UINT32_EQUAL(nr_irqs
, SpaprXive
, NULL
),
543 VMSTATE_STRUCT_VARRAY_POINTER_UINT32(eat
, SpaprXive
, nr_irqs
,
544 vmstate_spapr_xive_eas
, XiveEAS
),
545 VMSTATE_STRUCT_VARRAY_POINTER_UINT32(endt
, SpaprXive
, nr_ends
,
546 vmstate_spapr_xive_end
, XiveEND
),
547 VMSTATE_END_OF_LIST()
551 static int spapr_xive_claim_irq(SpaprInterruptController
*intc
, int lisn
,
552 bool lsi
, Error
**errp
)
554 SpaprXive
*xive
= SPAPR_XIVE(intc
);
555 XiveSource
*xsrc
= &xive
->source
;
557 assert(lisn
< xive
->nr_irqs
);
559 if (xive_eas_is_valid(&xive
->eat
[lisn
])) {
560 error_setg(errp
, "IRQ %d is not free", lisn
);
565 * Set default values when allocating an IRQ number
567 xive
->eat
[lisn
].w
|= cpu_to_be64(EAS_VALID
| EAS_MASKED
);
569 xive_source_irq_set_lsi(xsrc
, lisn
);
572 if (spapr_xive_in_kernel(xive
)) {
573 return kvmppc_xive_source_reset_one(xsrc
, lisn
, errp
);
579 static void spapr_xive_free_irq(SpaprInterruptController
*intc
, int lisn
)
581 SpaprXive
*xive
= SPAPR_XIVE(intc
);
582 assert(lisn
< xive
->nr_irqs
);
584 xive
->eat
[lisn
].w
&= cpu_to_be64(~EAS_VALID
);
587 static Property spapr_xive_properties
[] = {
588 DEFINE_PROP_UINT32("nr-irqs", SpaprXive
, nr_irqs
, 0),
589 DEFINE_PROP_UINT32("nr-ends", SpaprXive
, nr_ends
, 0),
590 DEFINE_PROP_UINT64("vc-base", SpaprXive
, vc_base
, SPAPR_XIVE_VC_BASE
),
591 DEFINE_PROP_UINT64("tm-base", SpaprXive
, tm_base
, SPAPR_XIVE_TM_BASE
),
592 DEFINE_PROP_UINT8("hv-prio", SpaprXive
, hv_prio
, 7),
593 DEFINE_PROP_END_OF_LIST(),
596 static int spapr_xive_cpu_intc_create(SpaprInterruptController
*intc
,
597 PowerPCCPU
*cpu
, Error
**errp
)
599 SpaprXive
*xive
= SPAPR_XIVE(intc
);
601 SpaprCpuState
*spapr_cpu
= spapr_cpu_state(cpu
);
603 obj
= xive_tctx_create(OBJECT(cpu
), XIVE_PRESENTER(xive
), errp
);
608 spapr_cpu
->tctx
= XIVE_TCTX(obj
);
612 static void xive_tctx_set_os_cam(XiveTCTX
*tctx
, uint32_t os_cam
)
614 uint32_t qw1w2
= cpu_to_be32(TM_QW1W2_VO
| os_cam
);
615 memcpy(&tctx
->regs
[TM_QW1_OS
+ TM_WORD2
], &qw1w2
, 4);
618 static void spapr_xive_cpu_intc_reset(SpaprInterruptController
*intc
,
621 XiveTCTX
*tctx
= spapr_cpu_state(cpu
)->tctx
;
625 xive_tctx_reset(tctx
);
628 * When a Virtual Processor is scheduled to run on a HW thread,
629 * the hypervisor pushes its identifier in the OS CAM line.
630 * Emulate the same behavior under QEMU.
632 spapr_xive_cpu_to_nvt(cpu
, &nvt_blk
, &nvt_idx
);
634 xive_tctx_set_os_cam(tctx
, xive_nvt_cam_line(nvt_blk
, nvt_idx
));
637 static void spapr_xive_cpu_intc_destroy(SpaprInterruptController
*intc
,
640 SpaprCpuState
*spapr_cpu
= spapr_cpu_state(cpu
);
642 xive_tctx_destroy(spapr_cpu
->tctx
);
643 spapr_cpu
->tctx
= NULL
;
646 static void spapr_xive_set_irq(SpaprInterruptController
*intc
, int irq
, int val
)
648 SpaprXive
*xive
= SPAPR_XIVE(intc
);
650 if (spapr_xive_in_kernel(xive
)) {
651 kvmppc_xive_source_set_irq(&xive
->source
, irq
, val
);
653 xive_source_set_irq(&xive
->source
, irq
, val
);
657 static void spapr_xive_print_info(SpaprInterruptController
*intc
, Monitor
*mon
)
659 SpaprXive
*xive
= SPAPR_XIVE(intc
);
663 PowerPCCPU
*cpu
= POWERPC_CPU(cs
);
665 xive_tctx_pic_print_info(spapr_cpu_state(cpu
)->tctx
, mon
);
668 spapr_xive_pic_print_info(xive
, mon
);
671 static void spapr_xive_dt(SpaprInterruptController
*intc
, uint32_t nr_servers
,
672 void *fdt
, uint32_t phandle
)
674 SpaprXive
*xive
= SPAPR_XIVE(intc
);
676 uint64_t timas
[2 * 2];
677 /* Interrupt number ranges for the IPIs */
678 uint32_t lisn_ranges
[] = {
679 cpu_to_be32(SPAPR_IRQ_IPI
),
680 cpu_to_be32(SPAPR_IRQ_IPI
+ nr_servers
),
683 * EQ size - the sizes of pages supported by the system 4K, 64K,
684 * 2M, 16M. We only advertise 64K for the moment.
686 uint32_t eq_sizes
[] = {
687 cpu_to_be32(16), /* 64K */
690 * QEMU/KVM only needs to define a single range to reserve the
691 * escalation priority. A priority bitmask would have been more
694 uint32_t plat_res_int_priorities
[] = {
695 cpu_to_be32(xive
->hv_prio
), /* start */
696 cpu_to_be32(0xff - xive
->hv_prio
), /* count */
699 /* Thread Interrupt Management Area : User (ring 3) and OS (ring 2) */
700 timas
[0] = cpu_to_be64(xive
->tm_base
+
701 XIVE_TM_USER_PAGE
* (1ull << TM_SHIFT
));
702 timas
[1] = cpu_to_be64(1ull << TM_SHIFT
);
703 timas
[2] = cpu_to_be64(xive
->tm_base
+
704 XIVE_TM_OS_PAGE
* (1ull << TM_SHIFT
));
705 timas
[3] = cpu_to_be64(1ull << TM_SHIFT
);
707 _FDT(node
= fdt_add_subnode(fdt
, 0, xive
->nodename
));
709 _FDT(fdt_setprop_string(fdt
, node
, "device_type", "power-ivpe"));
710 _FDT(fdt_setprop(fdt
, node
, "reg", timas
, sizeof(timas
)));
712 _FDT(fdt_setprop_string(fdt
, node
, "compatible", "ibm,power-ivpe"));
713 _FDT(fdt_setprop(fdt
, node
, "ibm,xive-eq-sizes", eq_sizes
,
715 _FDT(fdt_setprop(fdt
, node
, "ibm,xive-lisn-ranges", lisn_ranges
,
716 sizeof(lisn_ranges
)));
718 /* For Linux to link the LSIs to the interrupt controller. */
719 _FDT(fdt_setprop(fdt
, node
, "interrupt-controller", NULL
, 0));
720 _FDT(fdt_setprop_cell(fdt
, node
, "#interrupt-cells", 2));
723 _FDT(fdt_setprop_cell(fdt
, node
, "linux,phandle", phandle
));
724 _FDT(fdt_setprop_cell(fdt
, node
, "phandle", phandle
));
727 * The "ibm,plat-res-int-priorities" property defines the priority
728 * ranges reserved by the hypervisor
730 _FDT(fdt_setprop(fdt
, 0, "ibm,plat-res-int-priorities",
731 plat_res_int_priorities
, sizeof(plat_res_int_priorities
)));
734 static int spapr_xive_activate(SpaprInterruptController
*intc
,
735 uint32_t nr_servers
, Error
**errp
)
737 SpaprXive
*xive
= SPAPR_XIVE(intc
);
740 int rc
= spapr_irq_init_kvm(kvmppc_xive_connect
, intc
, nr_servers
,
747 /* Activate the XIVE MMIOs */
748 spapr_xive_mmio_set_enabled(xive
, true);
753 static void spapr_xive_deactivate(SpaprInterruptController
*intc
)
755 SpaprXive
*xive
= SPAPR_XIVE(intc
);
757 spapr_xive_mmio_set_enabled(xive
, false);
759 if (spapr_xive_in_kernel(xive
)) {
760 kvmppc_xive_disconnect(intc
);
764 static bool spapr_xive_in_kernel_xptr(const XivePresenter
*xptr
)
766 return spapr_xive_in_kernel(SPAPR_XIVE(xptr
));
769 static void spapr_xive_class_init(ObjectClass
*klass
, void *data
)
771 DeviceClass
*dc
= DEVICE_CLASS(klass
);
772 XiveRouterClass
*xrc
= XIVE_ROUTER_CLASS(klass
);
773 SpaprInterruptControllerClass
*sicc
= SPAPR_INTC_CLASS(klass
);
774 XivePresenterClass
*xpc
= XIVE_PRESENTER_CLASS(klass
);
775 SpaprXiveClass
*sxc
= SPAPR_XIVE_CLASS(klass
);
777 dc
->desc
= "sPAPR XIVE Interrupt Controller";
778 device_class_set_props(dc
, spapr_xive_properties
);
779 device_class_set_parent_realize(dc
, spapr_xive_realize
,
780 &sxc
->parent_realize
);
781 dc
->vmsd
= &vmstate_spapr_xive
;
783 xrc
->get_eas
= spapr_xive_get_eas
;
784 xrc
->get_end
= spapr_xive_get_end
;
785 xrc
->write_end
= spapr_xive_write_end
;
786 xrc
->get_nvt
= spapr_xive_get_nvt
;
787 xrc
->write_nvt
= spapr_xive_write_nvt
;
788 xrc
->get_block_id
= spapr_xive_get_block_id
;
790 sicc
->activate
= spapr_xive_activate
;
791 sicc
->deactivate
= spapr_xive_deactivate
;
792 sicc
->cpu_intc_create
= spapr_xive_cpu_intc_create
;
793 sicc
->cpu_intc_reset
= spapr_xive_cpu_intc_reset
;
794 sicc
->cpu_intc_destroy
= spapr_xive_cpu_intc_destroy
;
795 sicc
->claim_irq
= spapr_xive_claim_irq
;
796 sicc
->free_irq
= spapr_xive_free_irq
;
797 sicc
->set_irq
= spapr_xive_set_irq
;
798 sicc
->print_info
= spapr_xive_print_info
;
799 sicc
->dt
= spapr_xive_dt
;
800 sicc
->post_load
= spapr_xive_post_load
;
802 xpc
->match_nvt
= spapr_xive_match_nvt
;
803 xpc
->in_kernel
= spapr_xive_in_kernel_xptr
;
806 static const TypeInfo spapr_xive_info
= {
807 .name
= TYPE_SPAPR_XIVE
,
808 .parent
= TYPE_XIVE_ROUTER
,
809 .instance_init
= spapr_xive_instance_init
,
810 .instance_size
= sizeof(SpaprXive
),
811 .class_init
= spapr_xive_class_init
,
812 .class_size
= sizeof(SpaprXiveClass
),
813 .interfaces
= (InterfaceInfo
[]) {
819 static void spapr_xive_register_types(void)
821 type_register_static(&spapr_xive_info
);
824 type_init(spapr_xive_register_types
)
829 * The terminology used by the XIVE hcalls is the following :
832 * EQ Event Queue assigned by OS to receive event data
833 * ESB page for source interrupt management
834 * LISN Logical Interrupt Source Number identifying a source in the
836 * EISN Effective Interrupt Source Number used by guest OS to
837 * identify source in the guest
839 * The EAS, END, NVT structures are not exposed.
843 * On POWER9, the KVM XIVE device uses priority 7 for the escalation
844 * interrupts. So we only allow the guest to use priorities [0..6].
846 static bool spapr_xive_priority_is_reserved(SpaprXive
*xive
, uint8_t priority
)
848 return priority
>= xive
->hv_prio
;
852 * The H_INT_GET_SOURCE_INFO hcall() is used to obtain the logical
853 * real address of the MMIO page through which the Event State Buffer
854 * entry associated with the value of the "lisn" parameter is managed.
860 * - R5: "lisn" is per "interrupts", "interrupt-map", or
861 * "ibm,xive-lisn-ranges" properties, or as returned by the
862 * ibm,query-interrupt-source-number RTAS call, or as returned
863 * by the H_ALLOCATE_VAS_WINDOW hcall
867 * Bits 0-59: Reserved
868 * Bit 60: H_INT_ESB must be used for Event State Buffer
870 * Bit 61: 1 == LSI 0 == MSI
871 * Bit 62: the full function page supports trigger
872 * Bit 63: Store EOI Supported
873 * - R5: Logical Real address of full function Event State Buffer
874 * management page, -1 if H_INT_ESB hcall flag is set to 1.
875 * - R6: Logical Real Address of trigger only Event State Buffer
876 * management page or -1.
877 * - R7: Power of 2 page size for the ESB management pages returned in
881 #define SPAPR_XIVE_SRC_H_INT_ESB PPC_BIT(60) /* ESB manage with H_INT_ESB */
882 #define SPAPR_XIVE_SRC_LSI PPC_BIT(61) /* Virtual LSI type */
883 #define SPAPR_XIVE_SRC_TRIGGER PPC_BIT(62) /* Trigger and management
885 #define SPAPR_XIVE_SRC_STORE_EOI PPC_BIT(63) /* Store EOI support */
887 static target_ulong
h_int_get_source_info(PowerPCCPU
*cpu
,
888 SpaprMachineState
*spapr
,
892 SpaprXive
*xive
= spapr
->xive
;
893 XiveSource
*xsrc
= &xive
->source
;
894 target_ulong flags
= args
[0];
895 target_ulong lisn
= args
[1];
897 if (!spapr_ovec_test(spapr
->ov5_cas
, OV5_XIVE_EXPLOIT
)) {
905 if (lisn
>= xive
->nr_irqs
) {
906 qemu_log_mask(LOG_GUEST_ERROR
, "XIVE: Unknown LISN " TARGET_FMT_lx
"\n",
911 if (!xive_eas_is_valid(&xive
->eat
[lisn
])) {
912 qemu_log_mask(LOG_GUEST_ERROR
, "XIVE: Invalid LISN " TARGET_FMT_lx
"\n",
918 * All sources are emulated under the main XIVE object and share
919 * the same characteristics.
922 if (!xive_source_esb_has_2page(xsrc
)) {
923 args
[0] |= SPAPR_XIVE_SRC_TRIGGER
;
925 if (xsrc
->esb_flags
& XIVE_SRC_STORE_EOI
) {
926 args
[0] |= SPAPR_XIVE_SRC_STORE_EOI
;
930 * Force the use of the H_INT_ESB hcall in case of an LSI
931 * interrupt. This is necessary under KVM to re-trigger the
932 * interrupt if the level is still asserted
934 if (xive_source_irq_is_lsi(xsrc
, lisn
)) {
935 args
[0] |= SPAPR_XIVE_SRC_H_INT_ESB
| SPAPR_XIVE_SRC_LSI
;
938 if (!(args
[0] & SPAPR_XIVE_SRC_H_INT_ESB
)) {
939 args
[1] = xive
->vc_base
+ xive_source_esb_mgmt(xsrc
, lisn
);
944 if (xive_source_esb_has_2page(xsrc
) &&
945 !(args
[0] & SPAPR_XIVE_SRC_H_INT_ESB
)) {
946 args
[2] = xive
->vc_base
+ xive_source_esb_page(xsrc
, lisn
);
951 if (xive_source_esb_has_2page(xsrc
)) {
952 args
[3] = xsrc
->esb_shift
- 1;
954 args
[3] = xsrc
->esb_shift
;
961 * The H_INT_SET_SOURCE_CONFIG hcall() is used to assign a Logical
962 * Interrupt Source to a target. The Logical Interrupt Source is
963 * designated with the "lisn" parameter and the target is designated
964 * with the "target" and "priority" parameters. Upon return from the
965 * hcall(), no additional interrupts will be directed to the old EQ.
970 * Bits 0-61: Reserved
971 * Bit 62: set the "eisn" in the EAS
972 * Bit 63: masks the interrupt source in the hardware interrupt
973 * control structure. An interrupt masked by this mechanism will
974 * be dropped, but it's source state bits will still be
975 * set. There is no race-free way of unmasking and restoring the
976 * source. Thus this should only be used in interrupts that are
977 * also masked at the source, and only in cases where the
978 * interrupt is not meant to be used for a large amount of time
979 * because no valid target exists for it for example
980 * - R5: "lisn" is per "interrupts", "interrupt-map", or
981 * "ibm,xive-lisn-ranges" properties, or as returned by the
982 * ibm,query-interrupt-source-number RTAS call, or as returned by
983 * the H_ALLOCATE_VAS_WINDOW hcall
984 * - R6: "target" is per "ibm,ppc-interrupt-server#s" or
985 * "ibm,ppc-interrupt-gserver#s"
986 * - R7: "priority" is a valid priority not in
987 * "ibm,plat-res-int-priorities"
988 * - R8: "eisn" is the guest EISN associated with the "lisn"
994 #define SPAPR_XIVE_SRC_SET_EISN PPC_BIT(62)
995 #define SPAPR_XIVE_SRC_MASK PPC_BIT(63)
997 static target_ulong
h_int_set_source_config(PowerPCCPU
*cpu
,
998 SpaprMachineState
*spapr
,
1002 SpaprXive
*xive
= spapr
->xive
;
1003 XiveEAS eas
, new_eas
;
1004 target_ulong flags
= args
[0];
1005 target_ulong lisn
= args
[1];
1006 target_ulong target
= args
[2];
1007 target_ulong priority
= args
[3];
1008 target_ulong eisn
= args
[4];
1012 if (!spapr_ovec_test(spapr
->ov5_cas
, OV5_XIVE_EXPLOIT
)) {
1016 if (flags
& ~(SPAPR_XIVE_SRC_SET_EISN
| SPAPR_XIVE_SRC_MASK
)) {
1020 if (lisn
>= xive
->nr_irqs
) {
1021 qemu_log_mask(LOG_GUEST_ERROR
, "XIVE: Unknown LISN " TARGET_FMT_lx
"\n",
1026 eas
= xive
->eat
[lisn
];
1027 if (!xive_eas_is_valid(&eas
)) {
1028 qemu_log_mask(LOG_GUEST_ERROR
, "XIVE: Invalid LISN " TARGET_FMT_lx
"\n",
1033 /* priority 0xff is used to reset the EAS */
1034 if (priority
== 0xff) {
1035 new_eas
.w
= cpu_to_be64(EAS_VALID
| EAS_MASKED
);
1039 if (flags
& SPAPR_XIVE_SRC_MASK
) {
1040 new_eas
.w
= eas
.w
| cpu_to_be64(EAS_MASKED
);
1042 new_eas
.w
= eas
.w
& cpu_to_be64(~EAS_MASKED
);
1045 if (spapr_xive_priority_is_reserved(xive
, priority
)) {
1046 qemu_log_mask(LOG_GUEST_ERROR
, "XIVE: priority " TARGET_FMT_ld
1047 " is reserved\n", priority
);
1052 * Validate that "target" is part of the list of threads allocated
1053 * to the partition. For that, find the END corresponding to the
1056 if (spapr_xive_target_to_end(target
, priority
, &end_blk
, &end_idx
)) {
1060 new_eas
.w
= xive_set_field64(EAS_END_BLOCK
, new_eas
.w
, end_blk
);
1061 new_eas
.w
= xive_set_field64(EAS_END_INDEX
, new_eas
.w
, end_idx
);
1063 if (flags
& SPAPR_XIVE_SRC_SET_EISN
) {
1064 new_eas
.w
= xive_set_field64(EAS_END_DATA
, new_eas
.w
, eisn
);
1067 if (spapr_xive_in_kernel(xive
)) {
1068 Error
*local_err
= NULL
;
1070 kvmppc_xive_set_source_config(xive
, lisn
, &new_eas
, &local_err
);
1072 error_report_err(local_err
);
1078 xive
->eat
[lisn
] = new_eas
;
1083 * The H_INT_GET_SOURCE_CONFIG hcall() is used to determine to which
1084 * target/priority pair is assigned to the specified Logical Interrupt
1090 * Bits 0-63 Reserved
1091 * - R5: "lisn" is per "interrupts", "interrupt-map", or
1092 * "ibm,xive-lisn-ranges" properties, or as returned by the
1093 * ibm,query-interrupt-source-number RTAS call, or as
1094 * returned by the H_ALLOCATE_VAS_WINDOW hcall
1097 * - R4: Target to which the specified Logical Interrupt Source is
1099 * - R5: Priority to which the specified Logical Interrupt Source is
1101 * - R6: EISN for the specified Logical Interrupt Source (this will be
1102 * equivalent to the LISN if not changed by H_INT_SET_SOURCE_CONFIG)
1104 static target_ulong
h_int_get_source_config(PowerPCCPU
*cpu
,
1105 SpaprMachineState
*spapr
,
1106 target_ulong opcode
,
1109 SpaprXive
*xive
= spapr
->xive
;
1110 target_ulong flags
= args
[0];
1111 target_ulong lisn
= args
[1];
1115 uint32_t end_idx
, nvt_idx
;
1117 if (!spapr_ovec_test(spapr
->ov5_cas
, OV5_XIVE_EXPLOIT
)) {
1125 if (lisn
>= xive
->nr_irqs
) {
1126 qemu_log_mask(LOG_GUEST_ERROR
, "XIVE: Unknown LISN " TARGET_FMT_lx
"\n",
1131 eas
= xive
->eat
[lisn
];
1132 if (!xive_eas_is_valid(&eas
)) {
1133 qemu_log_mask(LOG_GUEST_ERROR
, "XIVE: Invalid LISN " TARGET_FMT_lx
"\n",
1138 /* EAS_END_BLOCK is unused on sPAPR */
1139 end_idx
= xive_get_field64(EAS_END_INDEX
, eas
.w
);
1141 assert(end_idx
< xive
->nr_ends
);
1142 end
= &xive
->endt
[end_idx
];
1144 nvt_blk
= xive_get_field32(END_W6_NVT_BLOCK
, end
->w6
);
1145 nvt_idx
= xive_get_field32(END_W6_NVT_INDEX
, end
->w6
);
1146 args
[0] = spapr_xive_nvt_to_target(nvt_blk
, nvt_idx
);
1148 if (xive_eas_is_masked(&eas
)) {
1151 args
[1] = xive_get_field32(END_W7_F0_PRIORITY
, end
->w7
);
1154 args
[2] = xive_get_field64(EAS_END_DATA
, eas
.w
);
1160 * The H_INT_GET_QUEUE_INFO hcall() is used to get the logical real
1161 * address of the notification management page associated with the
1162 * specified target and priority.
1167 * Bits 0-63 Reserved
1168 * - R5: "target" is per "ibm,ppc-interrupt-server#s" or
1169 * "ibm,ppc-interrupt-gserver#s"
1170 * - R6: "priority" is a valid priority not in
1171 * "ibm,plat-res-int-priorities"
1174 * - R4: Logical real address of notification page
1175 * - R5: Power of 2 page size of the notification page
1177 static target_ulong
h_int_get_queue_info(PowerPCCPU
*cpu
,
1178 SpaprMachineState
*spapr
,
1179 target_ulong opcode
,
1182 SpaprXive
*xive
= spapr
->xive
;
1183 XiveENDSource
*end_xsrc
= &xive
->end_source
;
1184 target_ulong flags
= args
[0];
1185 target_ulong target
= args
[1];
1186 target_ulong priority
= args
[2];
1191 if (!spapr_ovec_test(spapr
->ov5_cas
, OV5_XIVE_EXPLOIT
)) {
1200 * H_STATE should be returned if a H_INT_RESET is in progress.
1201 * This is not needed when running the emulation under QEMU
1204 if (spapr_xive_priority_is_reserved(xive
, priority
)) {
1205 qemu_log_mask(LOG_GUEST_ERROR
, "XIVE: priority " TARGET_FMT_ld
1206 " is reserved\n", priority
);
1211 * Validate that "target" is part of the list of threads allocated
1212 * to the partition. For that, find the END corresponding to the
1215 if (spapr_xive_target_to_end(target
, priority
, &end_blk
, &end_idx
)) {
1219 assert(end_idx
< xive
->nr_ends
);
1220 end
= &xive
->endt
[end_idx
];
1222 args
[0] = xive
->end_base
+ (1ull << (end_xsrc
->esb_shift
+ 1)) * end_idx
;
1223 if (xive_end_is_enqueue(end
)) {
1224 args
[1] = xive_get_field32(END_W0_QSIZE
, end
->w0
) + 12;
1233 * The H_INT_SET_QUEUE_CONFIG hcall() is used to set or reset a EQ for
1234 * a given "target" and "priority". It is also used to set the
1235 * notification config associated with the EQ. An EQ size of 0 is
1236 * used to reset the EQ config for a given target and priority. If
1237 * resetting the EQ config, the END associated with the given "target"
1238 * and "priority" will be changed to disable queueing.
1240 * Upon return from the hcall(), no additional interrupts will be
1241 * directed to the old EQ (if one was set). The old EQ (if one was
1242 * set) should be investigated for interrupts that occurred prior to
1243 * or during the hcall().
1248 * Bits 0-62: Reserved
1249 * Bit 63: Unconditional Notify (n) per the XIVE spec
1250 * - R5: "target" is per "ibm,ppc-interrupt-server#s" or
1251 * "ibm,ppc-interrupt-gserver#s"
1252 * - R6: "priority" is a valid priority not in
1253 * "ibm,plat-res-int-priorities"
1254 * - R7: "eventQueue": The logical real address of the start of the EQ
1255 * - R8: "eventQueueSize": The power of 2 EQ size per "ibm,xive-eq-sizes"
1261 #define SPAPR_XIVE_END_ALWAYS_NOTIFY PPC_BIT(63)
1263 static target_ulong
h_int_set_queue_config(PowerPCCPU
*cpu
,
1264 SpaprMachineState
*spapr
,
1265 target_ulong opcode
,
1268 SpaprXive
*xive
= spapr
->xive
;
1269 target_ulong flags
= args
[0];
1270 target_ulong target
= args
[1];
1271 target_ulong priority
= args
[2];
1272 target_ulong qpage
= args
[3];
1273 target_ulong qsize
= args
[4];
1275 uint8_t end_blk
, nvt_blk
;
1276 uint32_t end_idx
, nvt_idx
;
1278 if (!spapr_ovec_test(spapr
->ov5_cas
, OV5_XIVE_EXPLOIT
)) {
1282 if (flags
& ~SPAPR_XIVE_END_ALWAYS_NOTIFY
) {
1287 * H_STATE should be returned if a H_INT_RESET is in progress.
1288 * This is not needed when running the emulation under QEMU
1291 if (spapr_xive_priority_is_reserved(xive
, priority
)) {
1292 qemu_log_mask(LOG_GUEST_ERROR
, "XIVE: priority " TARGET_FMT_ld
1293 " is reserved\n", priority
);
1298 * Validate that "target" is part of the list of threads allocated
1299 * to the partition. For that, find the END corresponding to the
1303 if (spapr_xive_target_to_end(target
, priority
, &end_blk
, &end_idx
)) {
1307 assert(end_idx
< xive
->nr_ends
);
1308 memcpy(&end
, &xive
->endt
[end_idx
], sizeof(XiveEND
));
1315 if (!QEMU_IS_ALIGNED(qpage
, 1ul << qsize
)) {
1316 qemu_log_mask(LOG_GUEST_ERROR
, "XIVE: EQ @0x%" HWADDR_PRIx
1317 " is not naturally aligned with %" HWADDR_PRIx
"\n",
1318 qpage
, (hwaddr
)1 << qsize
);
1321 end
.w2
= cpu_to_be32((qpage
>> 32) & 0x0fffffff);
1322 end
.w3
= cpu_to_be32(qpage
& 0xffffffff);
1323 end
.w0
|= cpu_to_be32(END_W0_ENQUEUE
);
1324 end
.w0
= xive_set_field32(END_W0_QSIZE
, end
.w0
, qsize
- 12);
1327 /* reset queue and disable queueing */
1328 spapr_xive_end_reset(&end
);
1332 qemu_log_mask(LOG_GUEST_ERROR
, "XIVE: invalid EQ size %"PRIx64
"\n",
1338 hwaddr plen
= 1 << qsize
;
1342 * Validate the guest EQ. We should also check that the queue
1343 * has been zeroed by the OS.
1345 eq
= address_space_map(CPU(cpu
)->as
, qpage
, &plen
, true,
1346 MEMTXATTRS_UNSPECIFIED
);
1347 if (plen
!= 1 << qsize
) {
1348 qemu_log_mask(LOG_GUEST_ERROR
, "XIVE: failed to map EQ @0x%"
1349 HWADDR_PRIx
"\n", qpage
);
1352 address_space_unmap(CPU(cpu
)->as
, eq
, plen
, true, plen
);
1355 /* "target" should have been validated above */
1356 if (spapr_xive_target_to_nvt(target
, &nvt_blk
, &nvt_idx
)) {
1357 g_assert_not_reached();
1361 * Ensure the priority and target are correctly set (they will not
1362 * be right after allocation)
1364 end
.w6
= xive_set_field32(END_W6_NVT_BLOCK
, 0ul, nvt_blk
) |
1365 xive_set_field32(END_W6_NVT_INDEX
, 0ul, nvt_idx
);
1366 end
.w7
= xive_set_field32(END_W7_F0_PRIORITY
, 0ul, priority
);
1368 if (flags
& SPAPR_XIVE_END_ALWAYS_NOTIFY
) {
1369 end
.w0
|= cpu_to_be32(END_W0_UCOND_NOTIFY
);
1371 end
.w0
&= cpu_to_be32((uint32_t)~END_W0_UCOND_NOTIFY
);
1375 * The generation bit for the END starts at 1 and The END page
1376 * offset counter starts at 0.
1378 end
.w1
= cpu_to_be32(END_W1_GENERATION
) |
1379 xive_set_field32(END_W1_PAGE_OFF
, 0ul, 0ul);
1380 end
.w0
|= cpu_to_be32(END_W0_VALID
);
1383 * TODO: issue syncs required to ensure all in-flight interrupts
1384 * are complete on the old END
1388 if (spapr_xive_in_kernel(xive
)) {
1389 Error
*local_err
= NULL
;
1391 kvmppc_xive_set_queue_config(xive
, end_blk
, end_idx
, &end
, &local_err
);
1393 error_report_err(local_err
);
1399 memcpy(&xive
->endt
[end_idx
], &end
, sizeof(XiveEND
));
1404 * The H_INT_GET_QUEUE_CONFIG hcall() is used to get a EQ for a given
1405 * target and priority.
1410 * Bits 0-62: Reserved
1411 * Bit 63: Debug: Return debug data
1412 * - R5: "target" is per "ibm,ppc-interrupt-server#s" or
1413 * "ibm,ppc-interrupt-gserver#s"
1414 * - R6: "priority" is a valid priority not in
1415 * "ibm,plat-res-int-priorities"
1419 * Bits 0-61: Reserved
1420 * Bit 62: The value of Event Queue Generation Number (g) per
1421 * the XIVE spec if "Debug" = 1
1422 * Bit 63: The value of Unconditional Notify (n) per the XIVE spec
1423 * - R5: The logical real address of the start of the EQ
1424 * - R6: The power of 2 EQ size per "ibm,xive-eq-sizes"
1425 * - R7: The value of Event Queue Offset Counter per XIVE spec
1426 * if "Debug" = 1, else 0
1430 #define SPAPR_XIVE_END_DEBUG PPC_BIT(63)
1432 static target_ulong
h_int_get_queue_config(PowerPCCPU
*cpu
,
1433 SpaprMachineState
*spapr
,
1434 target_ulong opcode
,
1437 SpaprXive
*xive
= spapr
->xive
;
1438 target_ulong flags
= args
[0];
1439 target_ulong target
= args
[1];
1440 target_ulong priority
= args
[2];
1445 if (!spapr_ovec_test(spapr
->ov5_cas
, OV5_XIVE_EXPLOIT
)) {
1449 if (flags
& ~SPAPR_XIVE_END_DEBUG
) {
1454 * H_STATE should be returned if a H_INT_RESET is in progress.
1455 * This is not needed when running the emulation under QEMU
1458 if (spapr_xive_priority_is_reserved(xive
, priority
)) {
1459 qemu_log_mask(LOG_GUEST_ERROR
, "XIVE: priority " TARGET_FMT_ld
1460 " is reserved\n", priority
);
1465 * Validate that "target" is part of the list of threads allocated
1466 * to the partition. For that, find the END corresponding to the
1469 if (spapr_xive_target_to_end(target
, priority
, &end_blk
, &end_idx
)) {
1473 assert(end_idx
< xive
->nr_ends
);
1474 end
= &xive
->endt
[end_idx
];
1477 if (xive_end_is_notify(end
)) {
1478 args
[0] |= SPAPR_XIVE_END_ALWAYS_NOTIFY
;
1481 if (xive_end_is_enqueue(end
)) {
1482 args
[1] = xive_end_qaddr(end
);
1483 args
[2] = xive_get_field32(END_W0_QSIZE
, end
->w0
) + 12;
1489 if (spapr_xive_in_kernel(xive
)) {
1490 Error
*local_err
= NULL
;
1492 kvmppc_xive_get_queue_config(xive
, end_blk
, end_idx
, end
, &local_err
);
1494 error_report_err(local_err
);
1499 /* TODO: do we need any locking on the END ? */
1500 if (flags
& SPAPR_XIVE_END_DEBUG
) {
1501 /* Load the event queue generation number into the return flags */
1502 args
[0] |= (uint64_t)xive_get_field32(END_W1_GENERATION
, end
->w1
) << 62;
1504 /* Load R7 with the event queue offset counter */
1505 args
[3] = xive_get_field32(END_W1_PAGE_OFF
, end
->w1
);
1514 * The H_INT_SET_OS_REPORTING_LINE hcall() is used to set the
1515 * reporting cache line pair for the calling thread. The reporting
1516 * cache lines will contain the OS interrupt context when the OS
1517 * issues a CI store byte to @TIMA+0xC10 to acknowledge the OS
1518 * interrupt. The reporting cache lines can be reset by inputting -1
1519 * in "reportingLine". Issuing the CI store byte without reporting
1520 * cache lines registered will result in the data not being accessible
1526 * Bits 0-63: Reserved
1527 * - R5: "reportingLine": The logical real address of the reporting cache
1533 static target_ulong
h_int_set_os_reporting_line(PowerPCCPU
*cpu
,
1534 SpaprMachineState
*spapr
,
1535 target_ulong opcode
,
1538 if (!spapr_ovec_test(spapr
->ov5_cas
, OV5_XIVE_EXPLOIT
)) {
1543 * H_STATE should be returned if a H_INT_RESET is in progress.
1544 * This is not needed when running the emulation under QEMU
1547 /* TODO: H_INT_SET_OS_REPORTING_LINE */
1552 * The H_INT_GET_OS_REPORTING_LINE hcall() is used to get the logical
1553 * real address of the reporting cache line pair set for the input
1554 * "target". If no reporting cache line pair has been set, -1 is
1560 * Bits 0-63: Reserved
1561 * - R5: "target" is per "ibm,ppc-interrupt-server#s" or
1562 * "ibm,ppc-interrupt-gserver#s"
1563 * - R6: "reportingLine": The logical real address of the reporting
1567 * - R4: The logical real address of the reporting line if set, else -1
1569 static target_ulong
h_int_get_os_reporting_line(PowerPCCPU
*cpu
,
1570 SpaprMachineState
*spapr
,
1571 target_ulong opcode
,
1574 if (!spapr_ovec_test(spapr
->ov5_cas
, OV5_XIVE_EXPLOIT
)) {
1579 * H_STATE should be returned if a H_INT_RESET is in progress.
1580 * This is not needed when running the emulation under QEMU
1583 /* TODO: H_INT_GET_OS_REPORTING_LINE */
1588 * The H_INT_ESB hcall() is used to issue a load or store to the ESB
1589 * page for the input "lisn". This hcall is only supported for LISNs
1590 * that have the ESB hcall flag set to 1 when returned from hcall()
1591 * H_INT_GET_SOURCE_INFO.
1596 * Bits 0-62: Reserved
1597 * bit 63: Store: Store=1, store operation, else load operation
1598 * - R5: "lisn" is per "interrupts", "interrupt-map", or
1599 * "ibm,xive-lisn-ranges" properties, or as returned by the
1600 * ibm,query-interrupt-source-number RTAS call, or as
1601 * returned by the H_ALLOCATE_VAS_WINDOW hcall
1602 * - R6: "esbOffset" is the offset into the ESB page for the load or
1604 * - R7: "storeData" is the data to write for a store operation
1607 * - R4: The value of the load if load operation, else -1
1610 #define SPAPR_XIVE_ESB_STORE PPC_BIT(63)
1612 static target_ulong
h_int_esb(PowerPCCPU
*cpu
,
1613 SpaprMachineState
*spapr
,
1614 target_ulong opcode
,
1617 SpaprXive
*xive
= spapr
->xive
;
1619 target_ulong flags
= args
[0];
1620 target_ulong lisn
= args
[1];
1621 target_ulong offset
= args
[2];
1622 target_ulong data
= args
[3];
1624 XiveSource
*xsrc
= &xive
->source
;
1626 if (!spapr_ovec_test(spapr
->ov5_cas
, OV5_XIVE_EXPLOIT
)) {
1630 if (flags
& ~SPAPR_XIVE_ESB_STORE
) {
1634 if (lisn
>= xive
->nr_irqs
) {
1635 qemu_log_mask(LOG_GUEST_ERROR
, "XIVE: Unknown LISN " TARGET_FMT_lx
"\n",
1640 eas
= xive
->eat
[lisn
];
1641 if (!xive_eas_is_valid(&eas
)) {
1642 qemu_log_mask(LOG_GUEST_ERROR
, "XIVE: Invalid LISN " TARGET_FMT_lx
"\n",
1647 if (offset
> (1ull << xsrc
->esb_shift
)) {
1651 if (spapr_xive_in_kernel(xive
)) {
1652 args
[0] = kvmppc_xive_esb_rw(xsrc
, lisn
, offset
, data
,
1653 flags
& SPAPR_XIVE_ESB_STORE
);
1655 mmio_addr
= xive
->vc_base
+ xive_source_esb_mgmt(xsrc
, lisn
) + offset
;
1657 if (dma_memory_rw(&address_space_memory
, mmio_addr
, &data
, 8,
1658 (flags
& SPAPR_XIVE_ESB_STORE
))) {
1659 qemu_log_mask(LOG_GUEST_ERROR
, "XIVE: failed to access ESB @0x%"
1660 HWADDR_PRIx
"\n", mmio_addr
);
1663 args
[0] = (flags
& SPAPR_XIVE_ESB_STORE
) ? -1 : data
;
1669 * The H_INT_SYNC hcall() is used to issue hardware syncs that will
1670 * ensure any in flight events for the input lisn are in the event
1676 * Bits 0-63: Reserved
1677 * - R5: "lisn" is per "interrupts", "interrupt-map", or
1678 * "ibm,xive-lisn-ranges" properties, or as returned by the
1679 * ibm,query-interrupt-source-number RTAS call, or as
1680 * returned by the H_ALLOCATE_VAS_WINDOW hcall
1685 static target_ulong
h_int_sync(PowerPCCPU
*cpu
,
1686 SpaprMachineState
*spapr
,
1687 target_ulong opcode
,
1690 SpaprXive
*xive
= spapr
->xive
;
1692 target_ulong flags
= args
[0];
1693 target_ulong lisn
= args
[1];
1695 if (!spapr_ovec_test(spapr
->ov5_cas
, OV5_XIVE_EXPLOIT
)) {
1703 if (lisn
>= xive
->nr_irqs
) {
1704 qemu_log_mask(LOG_GUEST_ERROR
, "XIVE: Unknown LISN " TARGET_FMT_lx
"\n",
1709 eas
= xive
->eat
[lisn
];
1710 if (!xive_eas_is_valid(&eas
)) {
1711 qemu_log_mask(LOG_GUEST_ERROR
, "XIVE: Invalid LISN " TARGET_FMT_lx
"\n",
1717 * H_STATE should be returned if a H_INT_RESET is in progress.
1718 * This is not needed when running the emulation under QEMU
1722 * This is not real hardware. Nothing to be done unless when
1726 if (spapr_xive_in_kernel(xive
)) {
1727 Error
*local_err
= NULL
;
1729 kvmppc_xive_sync_source(xive
, lisn
, &local_err
);
1731 error_report_err(local_err
);
1739 * The H_INT_RESET hcall() is used to reset all of the partition's
1740 * interrupt exploitation structures to their initial state. This
1741 * means losing all previously set interrupt state set via
1742 * H_INT_SET_SOURCE_CONFIG and H_INT_SET_QUEUE_CONFIG.
1747 * Bits 0-63: Reserved
1752 static target_ulong
h_int_reset(PowerPCCPU
*cpu
,
1753 SpaprMachineState
*spapr
,
1754 target_ulong opcode
,
1757 SpaprXive
*xive
= spapr
->xive
;
1758 target_ulong flags
= args
[0];
1760 if (!spapr_ovec_test(spapr
->ov5_cas
, OV5_XIVE_EXPLOIT
)) {
1768 device_legacy_reset(DEVICE(xive
));
1770 if (spapr_xive_in_kernel(xive
)) {
1771 Error
*local_err
= NULL
;
1773 kvmppc_xive_reset(xive
, &local_err
);
1775 error_report_err(local_err
);
1782 void spapr_xive_hcall_init(SpaprMachineState
*spapr
)
1784 spapr_register_hypercall(H_INT_GET_SOURCE_INFO
, h_int_get_source_info
);
1785 spapr_register_hypercall(H_INT_SET_SOURCE_CONFIG
, h_int_set_source_config
);
1786 spapr_register_hypercall(H_INT_GET_SOURCE_CONFIG
, h_int_get_source_config
);
1787 spapr_register_hypercall(H_INT_GET_QUEUE_INFO
, h_int_get_queue_info
);
1788 spapr_register_hypercall(H_INT_SET_QUEUE_CONFIG
, h_int_set_queue_config
);
1789 spapr_register_hypercall(H_INT_GET_QUEUE_CONFIG
, h_int_get_queue_config
);
1790 spapr_register_hypercall(H_INT_SET_OS_REPORTING_LINE
,
1791 h_int_set_os_reporting_line
);
1792 spapr_register_hypercall(H_INT_GET_OS_REPORTING_LINE
,
1793 h_int_get_os_reporting_line
);
1794 spapr_register_hypercall(H_INT_ESB
, h_int_esb
);
1795 spapr_register_hypercall(H_INT_SYNC
, h_int_sync
);
1796 spapr_register_hypercall(H_INT_RESET
, h_int_reset
);