2 * QEMU PowerPC pSeries Logical Partition (aka sPAPR) hardware System Emulator
4 * Copyright (c) 2004-2007 Fabrice Bellard
5 * Copyright (c) 2007 Jocelyn Mayer
6 * Copyright (c) 2010 David Gibson, IBM Corporation.
8 * Permission is hereby granted, free of charge, to any person obtaining a copy
9 * of this software and associated documentation files (the "Software"), to deal
10 * in the Software without restriction, including without limitation the rights
11 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
12 * copies of the Software, and to permit persons to whom the Software is
13 * furnished to do so, subject to the following conditions:
15 * The above copyright notice and this permission notice shall be included in
16 * all copies or substantial portions of the Software.
18 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
19 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
20 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
21 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
22 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
23 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
36 #include "hw/boards.h"
38 #include "hw/loader.h"
41 #include "hw/spapr_vio.h"
42 #include "hw/spapr_pci.h"
50 #include "exec-memory.h"
55 /* SLOF memory layout:
57 * SLOF raw image loaded at 0, copies its romfs right below the flat
58 * device-tree, then position SLOF itself 31M below that
60 * So we set FW_OVERHEAD to 40MB which should account for all of that
63 * We load our kernel at 4M, leaving space for SLOF initial image
65 #define FDT_MAX_SIZE 0x10000
66 #define RTAS_MAX_SIZE 0x10000
67 #define FW_MAX_SIZE 0x400000
68 #define FW_FILE_NAME "slof.bin"
69 #define FW_OVERHEAD 0x2800000
70 #define KERNEL_LOAD_ADDR FW_MAX_SIZE
72 #define MIN_RMA_SLOF 128UL
74 #define TIMEBASE_FREQ 512000000ULL
77 #define XICS_IRQS 1024
79 #define SPAPR_PCI_BUID 0x800000020000001ULL
80 #define SPAPR_PCI_MEM_WIN_ADDR (0x10000000000ULL + 0xA0000000)
81 #define SPAPR_PCI_MEM_WIN_SIZE 0x20000000
82 #define SPAPR_PCI_IO_WIN_ADDR (0x10000000000ULL + 0x80000000)
83 #define SPAPR_PCI_MSI_WIN_ADDR (0x10000000000ULL + 0x90000000)
85 #define PHANDLE_XICP 0x00001111
87 #define HTAB_SIZE(spapr) (1ULL << ((spapr)->htab_shift))
89 sPAPREnvironment
*spapr
;
91 int spapr_allocate_irq(int hint
, bool lsi
)
97 /* FIXME: we should probably check for collisions somehow */
99 irq
= spapr
->next_irq
++;
102 /* Configure irq type */
103 if (!xics_get_qirq(spapr
->icp
, irq
)) {
107 xics_set_irq_type(spapr
->icp
, irq
, lsi
);
112 /* Allocate block of consequtive IRQs, returns a number of the first */
113 int spapr_allocate_irq_block(int num
, bool lsi
)
118 for (i
= 0; i
< num
; ++i
) {
121 irq
= spapr_allocate_irq(0, lsi
);
130 /* If the above doesn't create a consecutive block then that's
132 assert(irq
== (first
+ i
));
138 static int spapr_fixup_cpu_dt(void *fdt
, sPAPREnvironment
*spapr
)
143 int smt
= kvmppc_smt_threads();
144 uint32_t pft_size_prop
[] = {0, cpu_to_be32(spapr
->htab_shift
)};
146 assert(spapr
->cpu_model
);
148 for (env
= first_cpu
; env
!= NULL
; env
= env
->next_cpu
) {
149 uint32_t associativity
[] = {cpu_to_be32(0x5),
153 cpu_to_be32(env
->numa_node
),
154 cpu_to_be32(env
->cpu_index
)};
156 if ((env
->cpu_index
% smt
) != 0) {
160 snprintf(cpu_model
, 32, "/cpus/%s@%x", spapr
->cpu_model
,
163 offset
= fdt_path_offset(fdt
, cpu_model
);
168 if (nb_numa_nodes
> 1) {
169 ret
= fdt_setprop(fdt
, offset
, "ibm,associativity", associativity
,
170 sizeof(associativity
));
176 ret
= fdt_setprop(fdt
, offset
, "ibm,pft-size",
177 pft_size_prop
, sizeof(pft_size_prop
));
186 static size_t create_page_sizes_prop(CPUPPCState
*env
, uint32_t *prop
,
189 size_t maxcells
= maxsize
/ sizeof(uint32_t);
193 for (i
= 0; i
< PPC_PAGE_SIZES_MAX_SZ
; i
++) {
194 struct ppc_one_seg_page_size
*sps
= &env
->sps
.sps
[i
];
196 if (!sps
->page_shift
) {
199 for (count
= 0; count
< PPC_PAGE_SIZES_MAX_SZ
; count
++) {
200 if (sps
->enc
[count
].page_shift
== 0) {
204 if ((p
- prop
) >= (maxcells
- 3 - count
* 2)) {
207 *(p
++) = cpu_to_be32(sps
->page_shift
);
208 *(p
++) = cpu_to_be32(sps
->slb_enc
);
209 *(p
++) = cpu_to_be32(count
);
210 for (j
= 0; j
< count
; j
++) {
211 *(p
++) = cpu_to_be32(sps
->enc
[j
].page_shift
);
212 *(p
++) = cpu_to_be32(sps
->enc
[j
].pte_enc
);
216 return (p
- prop
) * sizeof(uint32_t);
223 fprintf(stderr, "qemu: error creating device tree: %s: %s\n", \
224 #exp, fdt_strerror(ret)); \
230 static void *spapr_create_fdt_skel(const char *cpu_model
,
234 const char *boot_device
,
235 const char *kernel_cmdline
,
240 uint32_t start_prop
= cpu_to_be32(initrd_base
);
241 uint32_t end_prop
= cpu_to_be32(initrd_base
+ initrd_size
);
242 char hypertas_prop
[] = "hcall-pft\0hcall-term\0hcall-dabr\0hcall-interrupt"
243 "\0hcall-tce\0hcall-vio\0hcall-splpar\0hcall-bulk";
244 char qemu_hypertas_prop
[] = "hcall-memop1";
245 uint32_t refpoints
[] = {cpu_to_be32(0x4), cpu_to_be32(0x4)};
246 uint32_t interrupt_server_ranges_prop
[] = {0, cpu_to_be32(smp_cpus
)};
248 int i
, smt
= kvmppc_smt_threads();
249 unsigned char vec5
[] = {0x0, 0x0, 0x0, 0x0, 0x0, 0x80};
251 fdt
= g_malloc0(FDT_MAX_SIZE
);
252 _FDT((fdt_create(fdt
, FDT_MAX_SIZE
)));
255 _FDT((fdt_add_reservemap_entry(fdt
, KERNEL_LOAD_ADDR
, kernel_size
)));
258 _FDT((fdt_add_reservemap_entry(fdt
, initrd_base
, initrd_size
)));
260 _FDT((fdt_finish_reservemap(fdt
)));
263 _FDT((fdt_begin_node(fdt
, "")));
264 _FDT((fdt_property_string(fdt
, "device_type", "chrp")));
265 _FDT((fdt_property_string(fdt
, "model", "IBM pSeries (emulated by qemu)")));
267 _FDT((fdt_property_cell(fdt
, "#address-cells", 0x2)));
268 _FDT((fdt_property_cell(fdt
, "#size-cells", 0x2)));
271 _FDT((fdt_begin_node(fdt
, "chosen")));
273 /* Set Form1_affinity */
274 _FDT((fdt_property(fdt
, "ibm,architecture-vec-5", vec5
, sizeof(vec5
))));
276 _FDT((fdt_property_string(fdt
, "bootargs", kernel_cmdline
)));
277 _FDT((fdt_property(fdt
, "linux,initrd-start",
278 &start_prop
, sizeof(start_prop
))));
279 _FDT((fdt_property(fdt
, "linux,initrd-end",
280 &end_prop
, sizeof(end_prop
))));
282 uint64_t kprop
[2] = { cpu_to_be64(KERNEL_LOAD_ADDR
),
283 cpu_to_be64(kernel_size
) };
285 _FDT((fdt_property(fdt
, "qemu,boot-kernel", &kprop
, sizeof(kprop
))));
287 _FDT((fdt_property_string(fdt
, "qemu,boot-device", boot_device
)));
288 _FDT((fdt_property_cell(fdt
, "qemu,graphic-width", graphic_width
)));
289 _FDT((fdt_property_cell(fdt
, "qemu,graphic-height", graphic_height
)));
290 _FDT((fdt_property_cell(fdt
, "qemu,graphic-depth", graphic_depth
)));
292 _FDT((fdt_end_node(fdt
)));
295 _FDT((fdt_begin_node(fdt
, "cpus")));
297 _FDT((fdt_property_cell(fdt
, "#address-cells", 0x1)));
298 _FDT((fdt_property_cell(fdt
, "#size-cells", 0x0)));
300 modelname
= g_strdup(cpu_model
);
302 for (i
= 0; i
< strlen(modelname
); i
++) {
303 modelname
[i
] = toupper(modelname
[i
]);
306 /* This is needed during FDT finalization */
307 spapr
->cpu_model
= g_strdup(modelname
);
309 for (env
= first_cpu
; env
!= NULL
; env
= env
->next_cpu
) {
310 int index
= env
->cpu_index
;
311 uint32_t servers_prop
[smp_threads
];
312 uint32_t gservers_prop
[smp_threads
* 2];
314 uint32_t segs
[] = {cpu_to_be32(28), cpu_to_be32(40),
315 0xffffffff, 0xffffffff};
316 uint32_t tbfreq
= kvm_enabled() ? kvmppc_get_tbfreq() : TIMEBASE_FREQ
;
317 uint32_t cpufreq
= kvm_enabled() ? kvmppc_get_clockfreq() : 1000000000;
318 uint32_t page_sizes_prop
[64];
319 size_t page_sizes_prop_size
;
321 if ((index
% smt
) != 0) {
325 if (asprintf(&nodename
, "%s@%x", modelname
, index
) < 0) {
326 fprintf(stderr
, "Allocation failure\n");
330 _FDT((fdt_begin_node(fdt
, nodename
)));
334 _FDT((fdt_property_cell(fdt
, "reg", index
)));
335 _FDT((fdt_property_string(fdt
, "device_type", "cpu")));
337 _FDT((fdt_property_cell(fdt
, "cpu-version", env
->spr
[SPR_PVR
])));
338 _FDT((fdt_property_cell(fdt
, "dcache-block-size",
339 env
->dcache_line_size
)));
340 _FDT((fdt_property_cell(fdt
, "icache-block-size",
341 env
->icache_line_size
)));
342 _FDT((fdt_property_cell(fdt
, "timebase-frequency", tbfreq
)));
343 _FDT((fdt_property_cell(fdt
, "clock-frequency", cpufreq
)));
344 _FDT((fdt_property_cell(fdt
, "ibm,slb-size", env
->slb_nr
)));
345 _FDT((fdt_property_string(fdt
, "status", "okay")));
346 _FDT((fdt_property(fdt
, "64-bit", NULL
, 0)));
348 /* Build interrupt servers and gservers properties */
349 for (i
= 0; i
< smp_threads
; i
++) {
350 servers_prop
[i
] = cpu_to_be32(index
+ i
);
351 /* Hack, direct the group queues back to cpu 0 */
352 gservers_prop
[i
*2] = cpu_to_be32(index
+ i
);
353 gservers_prop
[i
*2 + 1] = 0;
355 _FDT((fdt_property(fdt
, "ibm,ppc-interrupt-server#s",
356 servers_prop
, sizeof(servers_prop
))));
357 _FDT((fdt_property(fdt
, "ibm,ppc-interrupt-gserver#s",
358 gservers_prop
, sizeof(gservers_prop
))));
360 if (env
->mmu_model
& POWERPC_MMU_1TSEG
) {
361 _FDT((fdt_property(fdt
, "ibm,processor-segment-sizes",
362 segs
, sizeof(segs
))));
365 /* Advertise VMX/VSX (vector extensions) if available
366 * 0 / no property == no vector extensions
367 * 1 == VMX / Altivec available
368 * 2 == VSX available */
369 if (env
->insns_flags
& PPC_ALTIVEC
) {
370 uint32_t vmx
= (env
->insns_flags2
& PPC2_VSX
) ? 2 : 1;
372 _FDT((fdt_property_cell(fdt
, "ibm,vmx", vmx
)));
375 /* Advertise DFP (Decimal Floating Point) if available
376 * 0 / no property == no DFP
377 * 1 == DFP available */
378 if (env
->insns_flags2
& PPC2_DFP
) {
379 _FDT((fdt_property_cell(fdt
, "ibm,dfp", 1)));
382 page_sizes_prop_size
= create_page_sizes_prop(env
, page_sizes_prop
,
383 sizeof(page_sizes_prop
));
384 if (page_sizes_prop_size
) {
385 _FDT((fdt_property(fdt
, "ibm,segment-page-sizes",
386 page_sizes_prop
, page_sizes_prop_size
)));
389 _FDT((fdt_end_node(fdt
)));
394 _FDT((fdt_end_node(fdt
)));
397 _FDT((fdt_begin_node(fdt
, "rtas")));
399 _FDT((fdt_property(fdt
, "ibm,hypertas-functions", hypertas_prop
,
400 sizeof(hypertas_prop
))));
401 _FDT((fdt_property(fdt
, "qemu,hypertas-functions", qemu_hypertas_prop
,
402 sizeof(qemu_hypertas_prop
))));
404 _FDT((fdt_property(fdt
, "ibm,associativity-reference-points",
405 refpoints
, sizeof(refpoints
))));
407 _FDT((fdt_property_cell(fdt
, "rtas-error-log-max", RTAS_ERROR_LOG_MAX
)));
409 _FDT((fdt_end_node(fdt
)));
411 /* interrupt controller */
412 _FDT((fdt_begin_node(fdt
, "interrupt-controller")));
414 _FDT((fdt_property_string(fdt
, "device_type",
415 "PowerPC-External-Interrupt-Presentation")));
416 _FDT((fdt_property_string(fdt
, "compatible", "IBM,ppc-xicp")));
417 _FDT((fdt_property(fdt
, "interrupt-controller", NULL
, 0)));
418 _FDT((fdt_property(fdt
, "ibm,interrupt-server-ranges",
419 interrupt_server_ranges_prop
,
420 sizeof(interrupt_server_ranges_prop
))));
421 _FDT((fdt_property_cell(fdt
, "#interrupt-cells", 2)));
422 _FDT((fdt_property_cell(fdt
, "linux,phandle", PHANDLE_XICP
)));
423 _FDT((fdt_property_cell(fdt
, "phandle", PHANDLE_XICP
)));
425 _FDT((fdt_end_node(fdt
)));
428 _FDT((fdt_begin_node(fdt
, "vdevice")));
430 _FDT((fdt_property_string(fdt
, "device_type", "vdevice")));
431 _FDT((fdt_property_string(fdt
, "compatible", "IBM,vdevice")));
432 _FDT((fdt_property_cell(fdt
, "#address-cells", 0x1)));
433 _FDT((fdt_property_cell(fdt
, "#size-cells", 0x0)));
434 _FDT((fdt_property_cell(fdt
, "#interrupt-cells", 0x2)));
435 _FDT((fdt_property(fdt
, "interrupt-controller", NULL
, 0)));
437 _FDT((fdt_end_node(fdt
)));
440 spapr_events_fdt_skel(fdt
, epow_irq
);
442 _FDT((fdt_end_node(fdt
))); /* close root node */
443 _FDT((fdt_finish(fdt
)));
448 static int spapr_populate_memory(sPAPREnvironment
*spapr
, void *fdt
)
450 uint32_t associativity
[] = {cpu_to_be32(0x4), cpu_to_be32(0x0),
451 cpu_to_be32(0x0), cpu_to_be32(0x0),
454 hwaddr node0_size
, mem_start
;
455 uint64_t mem_reg_property
[2];
459 node0_size
= (nb_numa_nodes
> 1) ? node_mem
[0] : ram_size
;
460 if (spapr
->rma_size
> node0_size
) {
461 spapr
->rma_size
= node0_size
;
465 mem_reg_property
[0] = 0;
466 mem_reg_property
[1] = cpu_to_be64(spapr
->rma_size
);
467 off
= fdt_add_subnode(fdt
, 0, "memory@0");
469 _FDT((fdt_setprop_string(fdt
, off
, "device_type", "memory")));
470 _FDT((fdt_setprop(fdt
, off
, "reg", mem_reg_property
,
471 sizeof(mem_reg_property
))));
472 _FDT((fdt_setprop(fdt
, off
, "ibm,associativity", associativity
,
473 sizeof(associativity
))));
476 if (node0_size
> spapr
->rma_size
) {
477 mem_reg_property
[0] = cpu_to_be64(spapr
->rma_size
);
478 mem_reg_property
[1] = cpu_to_be64(node0_size
- spapr
->rma_size
);
480 sprintf(mem_name
, "memory@" TARGET_FMT_lx
, spapr
->rma_size
);
481 off
= fdt_add_subnode(fdt
, 0, mem_name
);
483 _FDT((fdt_setprop_string(fdt
, off
, "device_type", "memory")));
484 _FDT((fdt_setprop(fdt
, off
, "reg", mem_reg_property
,
485 sizeof(mem_reg_property
))));
486 _FDT((fdt_setprop(fdt
, off
, "ibm,associativity", associativity
,
487 sizeof(associativity
))));
490 /* RAM: Node 1 and beyond */
491 mem_start
= node0_size
;
492 for (i
= 1; i
< nb_numa_nodes
; i
++) {
493 mem_reg_property
[0] = cpu_to_be64(mem_start
);
494 mem_reg_property
[1] = cpu_to_be64(node_mem
[i
]);
495 associativity
[3] = associativity
[4] = cpu_to_be32(i
);
496 sprintf(mem_name
, "memory@" TARGET_FMT_lx
, mem_start
);
497 off
= fdt_add_subnode(fdt
, 0, mem_name
);
499 _FDT((fdt_setprop_string(fdt
, off
, "device_type", "memory")));
500 _FDT((fdt_setprop(fdt
, off
, "reg", mem_reg_property
,
501 sizeof(mem_reg_property
))));
502 _FDT((fdt_setprop(fdt
, off
, "ibm,associativity", associativity
,
503 sizeof(associativity
))));
504 mem_start
+= node_mem
[i
];
510 static void spapr_finalize_fdt(sPAPREnvironment
*spapr
,
519 fdt
= g_malloc(FDT_MAX_SIZE
);
521 /* open out the base tree into a temp buffer for the final tweaks */
522 _FDT((fdt_open_into(spapr
->fdt_skel
, fdt
, FDT_MAX_SIZE
)));
524 ret
= spapr_populate_memory(spapr
, fdt
);
526 fprintf(stderr
, "couldn't setup memory nodes in fdt\n");
530 ret
= spapr_populate_vdevice(spapr
->vio_bus
, fdt
);
532 fprintf(stderr
, "couldn't setup vio devices in fdt\n");
536 QLIST_FOREACH(phb
, &spapr
->phbs
, list
) {
537 ret
= spapr_populate_pci_dt(phb
, PHANDLE_XICP
, fdt
);
541 fprintf(stderr
, "couldn't setup PCI devices in fdt\n");
546 ret
= spapr_rtas_device_tree_setup(fdt
, rtas_addr
, rtas_size
);
548 fprintf(stderr
, "Couldn't set up RTAS device tree properties\n");
551 /* Advertise NUMA via ibm,associativity */
552 ret
= spapr_fixup_cpu_dt(fdt
, spapr
);
554 fprintf(stderr
, "Couldn't finalize CPU device tree properties\n");
557 if (!spapr
->has_graphics
) {
558 spapr_populate_chosen_stdout(fdt
, spapr
->vio_bus
);
561 _FDT((fdt_pack(fdt
)));
563 if (fdt_totalsize(fdt
) > FDT_MAX_SIZE
) {
564 hw_error("FDT too big ! 0x%x bytes (max is 0x%x)\n",
565 fdt_totalsize(fdt
), FDT_MAX_SIZE
);
569 cpu_physical_memory_write(fdt_addr
, fdt
, fdt_totalsize(fdt
));
574 static uint64_t translate_kernel_address(void *opaque
, uint64_t addr
)
576 return (addr
& 0x0fffffff) + KERNEL_LOAD_ADDR
;
579 static void emulate_spapr_hypercall(PowerPCCPU
*cpu
)
581 CPUPPCState
*env
= &cpu
->env
;
584 hcall_dprintf("Hypercall made with MSR[PR]=1\n");
585 env
->gpr
[3] = H_PRIVILEGE
;
587 env
->gpr
[3] = spapr_hypercall(cpu
, env
->gpr
[3], &env
->gpr
[4]);
591 static void spapr_reset_htab(sPAPREnvironment
*spapr
)
595 /* allocate hash page table. For now we always make this 16mb,
596 * later we should probably make it scale to the size of guest
599 shift
= kvmppc_reset_htab(spapr
->htab_shift
);
602 /* Kernel handles htab, we don't need to allocate one */
603 spapr
->htab_shift
= shift
;
606 /* Allocate an htab if we don't yet have one */
607 spapr
->htab
= qemu_memalign(HTAB_SIZE(spapr
), HTAB_SIZE(spapr
));
611 memset(spapr
->htab
, 0, HTAB_SIZE(spapr
));
614 /* Update the RMA size if necessary */
615 if (spapr
->vrma_adjust
) {
616 spapr
->rma_size
= kvmppc_rma_size(ram_size
, spapr
->htab_shift
);
620 static void ppc_spapr_reset(void)
622 /* Reset the hash table & recalc the RMA */
623 spapr_reset_htab(spapr
);
625 qemu_devices_reset();
628 spapr_finalize_fdt(spapr
, spapr
->fdt_addr
, spapr
->rtas_addr
,
631 /* Set up the entry state */
632 first_cpu
->gpr
[3] = spapr
->fdt_addr
;
633 first_cpu
->gpr
[5] = 0;
634 first_cpu
->halted
= 0;
635 first_cpu
->nip
= spapr
->entry_point
;
639 static void spapr_cpu_reset(void *opaque
)
641 PowerPCCPU
*cpu
= opaque
;
642 CPUPPCState
*env
= &cpu
->env
;
646 /* All CPUs start halted. CPU0 is unhalted from the machine level
647 * reset code and the rest are explicitly started up by the guest
648 * using an RTAS call */
651 env
->spr
[SPR_HIOR
] = 0;
653 env
->external_htab
= spapr
->htab
;
655 env
->htab_mask
= HTAB_SIZE(spapr
) - 1;
656 env
->spr
[SPR_SDR1
] = (unsigned long)spapr
->htab
|
657 (spapr
->htab_shift
- 18);
660 /* Returns whether we want to use VGA or not */
661 static int spapr_vga_init(PCIBus
*pci_bus
)
663 switch (vga_interface_type
) {
666 return pci_vga_init(pci_bus
) != NULL
;
668 fprintf(stderr
, "This vga model is not supported,"
669 "currently it only supports -vga std\n");
675 /* pSeries LPAR / sPAPR hardware init */
676 static void ppc_spapr_init(QEMUMachineInitArgs
*args
)
678 ram_addr_t ram_size
= args
->ram_size
;
679 const char *cpu_model
= args
->cpu_model
;
680 const char *kernel_filename
= args
->kernel_filename
;
681 const char *kernel_cmdline
= args
->kernel_cmdline
;
682 const char *initrd_filename
= args
->initrd_filename
;
683 const char *boot_device
= args
->boot_device
;
688 MemoryRegion
*sysmem
= get_system_memory();
689 MemoryRegion
*ram
= g_new(MemoryRegion
, 1);
690 hwaddr rma_alloc_size
;
691 uint32_t initrd_base
= 0;
692 long kernel_size
= 0, initrd_size
= 0;
693 long load_limit
, rtas_limit
, fw_size
;
696 msi_supported
= true;
698 spapr
= g_malloc0(sizeof(*spapr
));
699 QLIST_INIT(&spapr
->phbs
);
701 cpu_ppc_hypercall
= emulate_spapr_hypercall
;
703 /* Allocate RMA if necessary */
704 rma_alloc_size
= kvmppc_alloc_rma("ppc_spapr.rma", sysmem
);
706 if (rma_alloc_size
== -1) {
707 hw_error("qemu: Unable to create RMA\n");
711 if (rma_alloc_size
&& (rma_alloc_size
< ram_size
)) {
712 spapr
->rma_size
= rma_alloc_size
;
714 spapr
->rma_size
= ram_size
;
716 /* With KVM, we don't actually know whether KVM supports an
717 * unbounded RMA (PR KVM) or is limited by the hash table size
718 * (HV KVM using VRMA), so we always assume the latter
720 * In that case, we also limit the initial allocations for RTAS
721 * etc... to 256M since we have no way to know what the VRMA size
722 * is going to be as it depends on the size of the hash table
723 * isn't determined yet.
726 spapr
->vrma_adjust
= 1;
727 spapr
->rma_size
= MIN(spapr
->rma_size
, 0x10000000);
731 /* We place the device tree and RTAS just below either the top of the RMA,
732 * or just below 2GB, whichever is lowere, so that it can be
733 * processed with 32-bit real mode code if necessary */
734 rtas_limit
= MIN(spapr
->rma_size
, 0x80000000);
735 spapr
->rtas_addr
= rtas_limit
- RTAS_MAX_SIZE
;
736 spapr
->fdt_addr
= spapr
->rtas_addr
- FDT_MAX_SIZE
;
737 load_limit
= spapr
->fdt_addr
- FW_OVERHEAD
;
739 /* We aim for a hash table of size 1/128 the size of RAM. The
740 * normal rule of thumb is 1/64 the size of RAM, but that's much
741 * more than needed for the Linux guests we support. */
742 spapr
->htab_shift
= 18; /* Minimum architected size */
743 while (spapr
->htab_shift
<= 46) {
744 if ((1ULL << (spapr
->htab_shift
+ 7)) >= ram_size
) {
751 if (cpu_model
== NULL
) {
752 cpu_model
= kvm_enabled() ? "host" : "POWER7";
754 for (i
= 0; i
< smp_cpus
; i
++) {
755 cpu
= cpu_ppc_init(cpu_model
);
757 fprintf(stderr
, "Unable to find PowerPC CPU definition\n");
762 /* Set time-base frequency to 512 MHz */
763 cpu_ppc_tb_init(env
, TIMEBASE_FREQ
);
765 /* PAPR always has exception vectors in RAM not ROM */
766 env
->hreset_excp_prefix
= 0;
768 /* Tell KVM that we're in PAPR mode */
770 kvmppc_set_papr(env
);
773 qemu_register_reset(spapr_cpu_reset
, cpu
);
777 spapr
->ram_limit
= ram_size
;
778 if (spapr
->ram_limit
> rma_alloc_size
) {
779 ram_addr_t nonrma_base
= rma_alloc_size
;
780 ram_addr_t nonrma_size
= spapr
->ram_limit
- rma_alloc_size
;
782 memory_region_init_ram(ram
, "ppc_spapr.ram", nonrma_size
);
783 vmstate_register_ram_global(ram
);
784 memory_region_add_subregion(sysmem
, nonrma_base
, ram
);
787 filename
= qemu_find_file(QEMU_FILE_TYPE_BIOS
, "spapr-rtas.bin");
788 spapr
->rtas_size
= load_image_targphys(filename
, spapr
->rtas_addr
,
789 rtas_limit
- spapr
->rtas_addr
);
790 if (spapr
->rtas_size
< 0) {
791 hw_error("qemu: could not load LPAR rtas '%s'\n", filename
);
794 if (spapr
->rtas_size
> RTAS_MAX_SIZE
) {
795 hw_error("RTAS too big ! 0x%lx bytes (max is 0x%x)\n",
796 spapr
->rtas_size
, RTAS_MAX_SIZE
);
802 /* Set up Interrupt Controller */
803 spapr
->icp
= xics_system_init(XICS_IRQS
);
804 spapr
->next_irq
= 16;
806 /* Set up EPOW events infrastructure */
807 spapr_events_init(spapr
);
813 spapr
->vio_bus
= spapr_vio_bus_init();
815 for (i
= 0; i
< MAX_SERIAL_PORTS
; i
++) {
817 spapr_vty_create(spapr
->vio_bus
, serial_hds
[i
]);
822 spapr_pci_rtas_init();
824 spapr_create_phb(spapr
, "pci", SPAPR_PCI_BUID
,
825 SPAPR_PCI_MEM_WIN_ADDR
,
826 SPAPR_PCI_MEM_WIN_SIZE
,
827 SPAPR_PCI_IO_WIN_ADDR
,
828 SPAPR_PCI_MSI_WIN_ADDR
);
829 phb
= PCI_HOST_BRIDGE(QLIST_FIRST(&spapr
->phbs
));
831 for (i
= 0; i
< nb_nics
; i
++) {
832 NICInfo
*nd
= &nd_table
[i
];
835 nd
->model
= g_strdup("ibmveth");
838 if (strcmp(nd
->model
, "ibmveth") == 0) {
839 spapr_vlan_create(spapr
->vio_bus
, nd
);
841 pci_nic_init_nofail(&nd_table
[i
], nd
->model
, NULL
);
845 for (i
= 0; i
<= drive_get_max_bus(IF_SCSI
); i
++) {
846 spapr_vscsi_create(spapr
->vio_bus
);
850 if (spapr_vga_init(phb
->bus
)) {
851 spapr
->has_graphics
= true;
854 if (usb_enabled(spapr
->has_graphics
)) {
855 pci_create_simple(phb
->bus
, -1, "pci-ohci");
856 if (spapr
->has_graphics
) {
857 usbdevice_create("keyboard");
858 usbdevice_create("mouse");
862 if (spapr
->rma_size
< (MIN_RMA_SLOF
<< 20)) {
863 fprintf(stderr
, "qemu: pSeries SLOF firmware requires >= "
864 "%ldM guest RMA (Real Mode Area memory)\n", MIN_RMA_SLOF
);
868 if (kernel_filename
) {
869 uint64_t lowaddr
= 0;
871 kernel_size
= load_elf(kernel_filename
, translate_kernel_address
, NULL
,
872 NULL
, &lowaddr
, NULL
, 1, ELF_MACHINE
, 0);
873 if (kernel_size
< 0) {
874 kernel_size
= load_image_targphys(kernel_filename
,
876 load_limit
- KERNEL_LOAD_ADDR
);
878 if (kernel_size
< 0) {
879 fprintf(stderr
, "qemu: could not load kernel '%s'\n",
885 if (initrd_filename
) {
886 /* Try to locate the initrd in the gap between the kernel
887 * and the firmware. Add a bit of space just in case
889 initrd_base
= (KERNEL_LOAD_ADDR
+ kernel_size
+ 0x1ffff) & ~0xffff;
890 initrd_size
= load_image_targphys(initrd_filename
, initrd_base
,
891 load_limit
- initrd_base
);
892 if (initrd_size
< 0) {
893 fprintf(stderr
, "qemu: could not load initial ram disk '%s'\n",
903 filename
= qemu_find_file(QEMU_FILE_TYPE_BIOS
, FW_FILE_NAME
);
904 fw_size
= load_image_targphys(filename
, 0, FW_MAX_SIZE
);
906 hw_error("qemu: could not load LPAR rtas '%s'\n", filename
);
911 spapr
->entry_point
= 0x100;
913 /* Prepare the device tree */
914 spapr
->fdt_skel
= spapr_create_fdt_skel(cpu_model
,
915 initrd_base
, initrd_size
,
917 boot_device
, kernel_cmdline
,
919 assert(spapr
->fdt_skel
!= NULL
);
922 static QEMUMachine spapr_machine
= {
924 .desc
= "pSeries Logical Partition (PAPR compliant)",
925 .init
= ppc_spapr_init
,
926 .reset
= ppc_spapr_reset
,
927 .max_cpus
= MAX_CPUS
,
932 static void spapr_machine_init(void)
934 qemu_register_machine(&spapr_machine
);
937 machine_init(spapr_machine_init
);