s390x: Convert s390-virtio to hotplug handler API
[qemu/ar7.git] / hw / char / cadence_uart.c
bloba5736cbc071668a73cbc3421abb0ec166bd5649e
1 /*
2 * Device model for Cadence UART
4 * Copyright (c) 2010 Xilinx Inc.
5 * Copyright (c) 2012 Peter A.G. Crosthwaite (peter.crosthwaite@petalogix.com)
6 * Copyright (c) 2012 PetaLogix Pty Ltd.
7 * Written by Haibing Ma
8 * M.Habib
10 * This program is free software; you can redistribute it and/or
11 * modify it under the terms of the GNU General Public License
12 * as published by the Free Software Foundation; either version
13 * 2 of the License, or (at your option) any later version.
15 * You should have received a copy of the GNU General Public License along
16 * with this program; if not, see <http://www.gnu.org/licenses/>.
19 #include "hw/sysbus.h"
20 #include "sysemu/char.h"
21 #include "qemu/timer.h"
23 #ifdef CADENCE_UART_ERR_DEBUG
24 #define DB_PRINT(...) do { \
25 fprintf(stderr, ": %s: ", __func__); \
26 fprintf(stderr, ## __VA_ARGS__); \
27 } while (0);
28 #else
29 #define DB_PRINT(...)
30 #endif
32 #define UART_SR_INTR_RTRIG 0x00000001
33 #define UART_SR_INTR_REMPTY 0x00000002
34 #define UART_SR_INTR_RFUL 0x00000004
35 #define UART_SR_INTR_TEMPTY 0x00000008
36 #define UART_SR_INTR_TFUL 0x00000010
37 /* somewhat awkwardly, TTRIG is misaligned between SR and ISR */
38 #define UART_SR_TTRIG 0x00002000
39 #define UART_INTR_TTRIG 0x00000400
40 /* bits fields in CSR that correlate to CISR. If any of these bits are set in
41 * SR, then the same bit in CISR is set high too */
42 #define UART_SR_TO_CISR_MASK 0x0000001F
44 #define UART_INTR_ROVR 0x00000020
45 #define UART_INTR_FRAME 0x00000040
46 #define UART_INTR_PARE 0x00000080
47 #define UART_INTR_TIMEOUT 0x00000100
48 #define UART_INTR_DMSI 0x00000200
49 #define UART_INTR_TOVR 0x00001000
51 #define UART_SR_RACTIVE 0x00000400
52 #define UART_SR_TACTIVE 0x00000800
53 #define UART_SR_FDELT 0x00001000
55 #define UART_CR_RXRST 0x00000001
56 #define UART_CR_TXRST 0x00000002
57 #define UART_CR_RX_EN 0x00000004
58 #define UART_CR_RX_DIS 0x00000008
59 #define UART_CR_TX_EN 0x00000010
60 #define UART_CR_TX_DIS 0x00000020
61 #define UART_CR_RST_TO 0x00000040
62 #define UART_CR_STARTBRK 0x00000080
63 #define UART_CR_STOPBRK 0x00000100
65 #define UART_MR_CLKS 0x00000001
66 #define UART_MR_CHRL 0x00000006
67 #define UART_MR_CHRL_SH 1
68 #define UART_MR_PAR 0x00000038
69 #define UART_MR_PAR_SH 3
70 #define UART_MR_NBSTOP 0x000000C0
71 #define UART_MR_NBSTOP_SH 6
72 #define UART_MR_CHMODE 0x00000300
73 #define UART_MR_CHMODE_SH 8
74 #define UART_MR_UCLKEN 0x00000400
75 #define UART_MR_IRMODE 0x00000800
77 #define UART_DATA_BITS_6 (0x3 << UART_MR_CHRL_SH)
78 #define UART_DATA_BITS_7 (0x2 << UART_MR_CHRL_SH)
79 #define UART_PARITY_ODD (0x1 << UART_MR_PAR_SH)
80 #define UART_PARITY_EVEN (0x0 << UART_MR_PAR_SH)
81 #define UART_STOP_BITS_1 (0x3 << UART_MR_NBSTOP_SH)
82 #define UART_STOP_BITS_2 (0x2 << UART_MR_NBSTOP_SH)
83 #define NORMAL_MODE (0x0 << UART_MR_CHMODE_SH)
84 #define ECHO_MODE (0x1 << UART_MR_CHMODE_SH)
85 #define LOCAL_LOOPBACK (0x2 << UART_MR_CHMODE_SH)
86 #define REMOTE_LOOPBACK (0x3 << UART_MR_CHMODE_SH)
88 #define RX_FIFO_SIZE 16
89 #define TX_FIFO_SIZE 16
90 #define UART_INPUT_CLK 50000000
92 #define R_CR (0x00/4)
93 #define R_MR (0x04/4)
94 #define R_IER (0x08/4)
95 #define R_IDR (0x0C/4)
96 #define R_IMR (0x10/4)
97 #define R_CISR (0x14/4)
98 #define R_BRGR (0x18/4)
99 #define R_RTOR (0x1C/4)
100 #define R_RTRIG (0x20/4)
101 #define R_MCR (0x24/4)
102 #define R_MSR (0x28/4)
103 #define R_SR (0x2C/4)
104 #define R_TX_RX (0x30/4)
105 #define R_BDIV (0x34/4)
106 #define R_FDEL (0x38/4)
107 #define R_PMIN (0x3C/4)
108 #define R_PWID (0x40/4)
109 #define R_TTRIG (0x44/4)
111 #define R_MAX (R_TTRIG + 1)
113 #define TYPE_CADENCE_UART "cadence_uart"
114 #define CADENCE_UART(obj) OBJECT_CHECK(UartState, (obj), TYPE_CADENCE_UART)
116 typedef struct {
117 /*< private >*/
118 SysBusDevice parent_obj;
119 /*< public >*/
121 MemoryRegion iomem;
122 uint32_t r[R_MAX];
123 uint8_t rx_fifo[RX_FIFO_SIZE];
124 uint8_t tx_fifo[TX_FIFO_SIZE];
125 uint32_t rx_wpos;
126 uint32_t rx_count;
127 uint32_t tx_count;
128 uint64_t char_tx_time;
129 CharDriverState *chr;
130 qemu_irq irq;
131 QEMUTimer *fifo_trigger_handle;
132 } UartState;
134 static void uart_update_status(UartState *s)
136 s->r[R_SR] = 0;
138 s->r[R_SR] |= s->rx_count == RX_FIFO_SIZE ? UART_SR_INTR_RFUL : 0;
139 s->r[R_SR] |= !s->rx_count ? UART_SR_INTR_REMPTY : 0;
140 s->r[R_SR] |= s->rx_count >= s->r[R_RTRIG] ? UART_SR_INTR_RTRIG : 0;
142 s->r[R_SR] |= s->tx_count == TX_FIFO_SIZE ? UART_SR_INTR_TFUL : 0;
143 s->r[R_SR] |= !s->tx_count ? UART_SR_INTR_TEMPTY : 0;
144 s->r[R_SR] |= s->tx_count >= s->r[R_TTRIG] ? UART_SR_TTRIG : 0;
146 s->r[R_CISR] |= s->r[R_SR] & UART_SR_TO_CISR_MASK;
147 s->r[R_CISR] |= s->r[R_SR] & UART_SR_TTRIG ? UART_INTR_TTRIG : 0;
148 qemu_set_irq(s->irq, !!(s->r[R_IMR] & s->r[R_CISR]));
151 static void fifo_trigger_update(void *opaque)
153 UartState *s = (UartState *)opaque;
155 s->r[R_CISR] |= UART_INTR_TIMEOUT;
157 uart_update_status(s);
160 static void uart_rx_reset(UartState *s)
162 s->rx_wpos = 0;
163 s->rx_count = 0;
164 if (s->chr) {
165 qemu_chr_accept_input(s->chr);
169 static void uart_tx_reset(UartState *s)
171 s->tx_count = 0;
174 static void uart_send_breaks(UartState *s)
176 int break_enabled = 1;
178 if (s->chr) {
179 qemu_chr_fe_ioctl(s->chr, CHR_IOCTL_SERIAL_SET_BREAK,
180 &break_enabled);
184 static void uart_parameters_setup(UartState *s)
186 QEMUSerialSetParams ssp;
187 unsigned int baud_rate, packet_size;
189 baud_rate = (s->r[R_MR] & UART_MR_CLKS) ?
190 UART_INPUT_CLK / 8 : UART_INPUT_CLK;
192 ssp.speed = baud_rate / (s->r[R_BRGR] * (s->r[R_BDIV] + 1));
193 packet_size = 1;
195 switch (s->r[R_MR] & UART_MR_PAR) {
196 case UART_PARITY_EVEN:
197 ssp.parity = 'E';
198 packet_size++;
199 break;
200 case UART_PARITY_ODD:
201 ssp.parity = 'O';
202 packet_size++;
203 break;
204 default:
205 ssp.parity = 'N';
206 break;
209 switch (s->r[R_MR] & UART_MR_CHRL) {
210 case UART_DATA_BITS_6:
211 ssp.data_bits = 6;
212 break;
213 case UART_DATA_BITS_7:
214 ssp.data_bits = 7;
215 break;
216 default:
217 ssp.data_bits = 8;
218 break;
221 switch (s->r[R_MR] & UART_MR_NBSTOP) {
222 case UART_STOP_BITS_1:
223 ssp.stop_bits = 1;
224 break;
225 default:
226 ssp.stop_bits = 2;
227 break;
230 packet_size += ssp.data_bits + ssp.stop_bits;
231 s->char_tx_time = (get_ticks_per_sec() / ssp.speed) * packet_size;
232 if (s->chr) {
233 qemu_chr_fe_ioctl(s->chr, CHR_IOCTL_SERIAL_SET_PARAMS, &ssp);
237 static int uart_can_receive(void *opaque)
239 UartState *s = (UartState *)opaque;
240 int ret = MAX(RX_FIFO_SIZE, TX_FIFO_SIZE);
241 uint32_t ch_mode = s->r[R_MR] & UART_MR_CHMODE;
243 if (ch_mode == NORMAL_MODE || ch_mode == ECHO_MODE) {
244 ret = MIN(ret, RX_FIFO_SIZE - s->rx_count);
246 if (ch_mode == REMOTE_LOOPBACK || ch_mode == ECHO_MODE) {
247 ret = MIN(ret, TX_FIFO_SIZE - s->tx_count);
249 return ret;
252 static void uart_ctrl_update(UartState *s)
254 if (s->r[R_CR] & UART_CR_TXRST) {
255 uart_tx_reset(s);
258 if (s->r[R_CR] & UART_CR_RXRST) {
259 uart_rx_reset(s);
262 s->r[R_CR] &= ~(UART_CR_TXRST | UART_CR_RXRST);
264 if (s->r[R_CR] & UART_CR_STARTBRK && !(s->r[R_CR] & UART_CR_STOPBRK)) {
265 uart_send_breaks(s);
269 static void uart_write_rx_fifo(void *opaque, const uint8_t *buf, int size)
271 UartState *s = (UartState *)opaque;
272 uint64_t new_rx_time = qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL);
273 int i;
275 if ((s->r[R_CR] & UART_CR_RX_DIS) || !(s->r[R_CR] & UART_CR_RX_EN)) {
276 return;
279 if (s->rx_count == RX_FIFO_SIZE) {
280 s->r[R_CISR] |= UART_INTR_ROVR;
281 } else {
282 for (i = 0; i < size; i++) {
283 s->rx_fifo[s->rx_wpos] = buf[i];
284 s->rx_wpos = (s->rx_wpos + 1) % RX_FIFO_SIZE;
285 s->rx_count++;
287 timer_mod(s->fifo_trigger_handle, new_rx_time +
288 (s->char_tx_time * 4));
290 uart_update_status(s);
293 static gboolean cadence_uart_xmit(GIOChannel *chan, GIOCondition cond,
294 void *opaque)
296 UartState *s = opaque;
297 int ret;
299 /* instant drain the fifo when there's no back-end */
300 if (!s->chr) {
301 s->tx_count = 0;
302 return FALSE;
305 if (!s->tx_count) {
306 return FALSE;
309 ret = qemu_chr_fe_write(s->chr, s->tx_fifo, s->tx_count);
310 s->tx_count -= ret;
311 memmove(s->tx_fifo, s->tx_fifo + ret, s->tx_count);
313 if (s->tx_count) {
314 int r = qemu_chr_fe_add_watch(s->chr, G_IO_OUT|G_IO_HUP,
315 cadence_uart_xmit, s);
316 assert(r);
319 uart_update_status(s);
320 return FALSE;
323 static void uart_write_tx_fifo(UartState *s, const uint8_t *buf, int size)
325 if ((s->r[R_CR] & UART_CR_TX_DIS) || !(s->r[R_CR] & UART_CR_TX_EN)) {
326 return;
329 if (size > TX_FIFO_SIZE - s->tx_count) {
330 size = TX_FIFO_SIZE - s->tx_count;
332 * This can only be a guest error via a bad tx fifo register push,
333 * as can_receive() should stop remote loop and echo modes ever getting
334 * us to here.
336 qemu_log_mask(LOG_GUEST_ERROR, "cadence_uart: TxFIFO overflow");
337 s->r[R_CISR] |= UART_INTR_ROVR;
340 memcpy(s->tx_fifo + s->tx_count, buf, size);
341 s->tx_count += size;
343 cadence_uart_xmit(NULL, G_IO_OUT, s);
346 static void uart_receive(void *opaque, const uint8_t *buf, int size)
348 UartState *s = (UartState *)opaque;
349 uint32_t ch_mode = s->r[R_MR] & UART_MR_CHMODE;
351 if (ch_mode == NORMAL_MODE || ch_mode == ECHO_MODE) {
352 uart_write_rx_fifo(opaque, buf, size);
354 if (ch_mode == REMOTE_LOOPBACK || ch_mode == ECHO_MODE) {
355 uart_write_tx_fifo(s, buf, size);
359 static void uart_event(void *opaque, int event)
361 UartState *s = (UartState *)opaque;
362 uint8_t buf = '\0';
364 if (event == CHR_EVENT_BREAK) {
365 uart_write_rx_fifo(opaque, &buf, 1);
368 uart_update_status(s);
371 static void uart_read_rx_fifo(UartState *s, uint32_t *c)
373 if ((s->r[R_CR] & UART_CR_RX_DIS) || !(s->r[R_CR] & UART_CR_RX_EN)) {
374 return;
377 if (s->rx_count) {
378 uint32_t rx_rpos =
379 (RX_FIFO_SIZE + s->rx_wpos - s->rx_count) % RX_FIFO_SIZE;
380 *c = s->rx_fifo[rx_rpos];
381 s->rx_count--;
383 if (s->chr) {
384 qemu_chr_accept_input(s->chr);
386 } else {
387 *c = 0;
390 uart_update_status(s);
393 static void uart_write(void *opaque, hwaddr offset,
394 uint64_t value, unsigned size)
396 UartState *s = (UartState *)opaque;
398 DB_PRINT(" offset:%x data:%08x\n", (unsigned)offset, (unsigned)value);
399 offset >>= 2;
400 switch (offset) {
401 case R_IER: /* ier (wts imr) */
402 s->r[R_IMR] |= value;
403 break;
404 case R_IDR: /* idr (wtc imr) */
405 s->r[R_IMR] &= ~value;
406 break;
407 case R_IMR: /* imr (read only) */
408 break;
409 case R_CISR: /* cisr (wtc) */
410 s->r[R_CISR] &= ~value;
411 break;
412 case R_TX_RX: /* UARTDR */
413 switch (s->r[R_MR] & UART_MR_CHMODE) {
414 case NORMAL_MODE:
415 uart_write_tx_fifo(s, (uint8_t *) &value, 1);
416 break;
417 case LOCAL_LOOPBACK:
418 uart_write_rx_fifo(opaque, (uint8_t *) &value, 1);
419 break;
421 break;
422 default:
423 s->r[offset] = value;
426 switch (offset) {
427 case R_CR:
428 uart_ctrl_update(s);
429 break;
430 case R_MR:
431 uart_parameters_setup(s);
432 break;
434 uart_update_status(s);
437 static uint64_t uart_read(void *opaque, hwaddr offset,
438 unsigned size)
440 UartState *s = (UartState *)opaque;
441 uint32_t c = 0;
443 offset >>= 2;
444 if (offset >= R_MAX) {
445 c = 0;
446 } else if (offset == R_TX_RX) {
447 uart_read_rx_fifo(s, &c);
448 } else {
449 c = s->r[offset];
452 DB_PRINT(" offset:%x data:%08x\n", (unsigned)(offset << 2), (unsigned)c);
453 return c;
456 static const MemoryRegionOps uart_ops = {
457 .read = uart_read,
458 .write = uart_write,
459 .endianness = DEVICE_NATIVE_ENDIAN,
462 static void cadence_uart_reset(DeviceState *dev)
464 UartState *s = CADENCE_UART(dev);
466 s->r[R_CR] = 0x00000128;
467 s->r[R_IMR] = 0;
468 s->r[R_CISR] = 0;
469 s->r[R_RTRIG] = 0x00000020;
470 s->r[R_BRGR] = 0x0000000F;
471 s->r[R_TTRIG] = 0x00000020;
473 uart_rx_reset(s);
474 uart_tx_reset(s);
476 uart_update_status(s);
479 static int cadence_uart_init(SysBusDevice *dev)
481 UartState *s = CADENCE_UART(dev);
483 memory_region_init_io(&s->iomem, OBJECT(s), &uart_ops, s, "uart", 0x1000);
484 sysbus_init_mmio(dev, &s->iomem);
485 sysbus_init_irq(dev, &s->irq);
487 s->fifo_trigger_handle = timer_new_ns(QEMU_CLOCK_VIRTUAL,
488 (QEMUTimerCB *)fifo_trigger_update, s);
490 s->char_tx_time = (get_ticks_per_sec() / 9600) * 10;
492 s->chr = qemu_char_get_next_serial();
494 if (s->chr) {
495 qemu_chr_add_handlers(s->chr, uart_can_receive, uart_receive,
496 uart_event, s);
499 return 0;
502 static int cadence_uart_post_load(void *opaque, int version_id)
504 UartState *s = opaque;
506 uart_parameters_setup(s);
507 uart_update_status(s);
508 return 0;
511 static const VMStateDescription vmstate_cadence_uart = {
512 .name = "cadence_uart",
513 .version_id = 2,
514 .minimum_version_id = 2,
515 .post_load = cadence_uart_post_load,
516 .fields = (VMStateField[]) {
517 VMSTATE_UINT32_ARRAY(r, UartState, R_MAX),
518 VMSTATE_UINT8_ARRAY(rx_fifo, UartState, RX_FIFO_SIZE),
519 VMSTATE_UINT8_ARRAY(tx_fifo, UartState, RX_FIFO_SIZE),
520 VMSTATE_UINT32(rx_count, UartState),
521 VMSTATE_UINT32(tx_count, UartState),
522 VMSTATE_UINT32(rx_wpos, UartState),
523 VMSTATE_TIMER(fifo_trigger_handle, UartState),
524 VMSTATE_END_OF_LIST()
528 static void cadence_uart_class_init(ObjectClass *klass, void *data)
530 DeviceClass *dc = DEVICE_CLASS(klass);
531 SysBusDeviceClass *sdc = SYS_BUS_DEVICE_CLASS(klass);
533 sdc->init = cadence_uart_init;
534 dc->vmsd = &vmstate_cadence_uart;
535 dc->reset = cadence_uart_reset;
538 static const TypeInfo cadence_uart_info = {
539 .name = TYPE_CADENCE_UART,
540 .parent = TYPE_SYS_BUS_DEVICE,
541 .instance_size = sizeof(UartState),
542 .class_init = cadence_uart_class_init,
545 static void cadence_uart_register_types(void)
547 type_register_static(&cadence_uart_info);
550 type_init(cadence_uart_register_types)