acpi_table_add(): extract and reimplement internals
[qemu/ar7.git] / target-m68k / helper.c
blob54fa419ace8e113612d3a36e5ad885ba879bfc4d
1 /*
2 * m68k op helpers
4 * Copyright (c) 2006-2007 CodeSourcery
5 * Written by Paul Brook
7 * This library is free software; you can redistribute it and/or
8 * modify it under the terms of the GNU Lesser General Public
9 * License as published by the Free Software Foundation; either
10 * version 2 of the License, or (at your option) any later version.
12 * This library is distributed in the hope that it will be useful,
13 * but WITHOUT ANY WARRANTY; without even the implied warranty of
14 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
15 * General Public License for more details.
17 * You should have received a copy of the GNU Lesser General Public
18 * License along with this library; if not, see <http://www.gnu.org/licenses/>.
21 #include "cpu.h"
22 #include "exec/gdbstub.h"
24 #include "helpers.h"
26 #define SIGNBIT (1u << 31)
28 /* Sort alphabetically, except for "any". */
29 static gint m68k_cpu_list_compare(gconstpointer a, gconstpointer b)
31 ObjectClass *class_a = (ObjectClass *)a;
32 ObjectClass *class_b = (ObjectClass *)b;
33 const char *name_a, *name_b;
35 name_a = object_class_get_name(class_a);
36 name_b = object_class_get_name(class_b);
37 if (strcmp(name_a, "any-" TYPE_M68K_CPU) == 0) {
38 return 1;
39 } else if (strcmp(name_b, "any-" TYPE_M68K_CPU) == 0) {
40 return -1;
41 } else {
42 return strcasecmp(name_a, name_b);
46 static void m68k_cpu_list_entry(gpointer data, gpointer user_data)
48 ObjectClass *c = data;
49 CPUListState *s = user_data;
50 const char *typename;
51 char *name;
53 typename = object_class_get_name(c);
54 name = g_strndup(typename, strlen(typename) - strlen("-" TYPE_M68K_CPU));
55 (*s->cpu_fprintf)(s->file, "%s\n",
56 name);
57 g_free(name);
60 void m68k_cpu_list(FILE *f, fprintf_function cpu_fprintf)
62 CPUListState s = {
63 .file = f,
64 .cpu_fprintf = cpu_fprintf,
66 GSList *list;
68 list = object_class_get_list(TYPE_M68K_CPU, false);
69 list = g_slist_sort(list, m68k_cpu_list_compare);
70 g_slist_foreach(list, m68k_cpu_list_entry, &s);
71 g_slist_free(list);
74 static int fpu_gdb_get_reg(CPUM68KState *env, uint8_t *mem_buf, int n)
76 if (n < 8) {
77 stfq_p(mem_buf, env->fregs[n]);
78 return 8;
80 if (n < 11) {
81 /* FP control registers (not implemented) */
82 memset(mem_buf, 0, 4);
83 return 4;
85 return 0;
88 static int fpu_gdb_set_reg(CPUM68KState *env, uint8_t *mem_buf, int n)
90 if (n < 8) {
91 env->fregs[n] = ldfq_p(mem_buf);
92 return 8;
94 if (n < 11) {
95 /* FP control registers (not implemented) */
96 return 4;
98 return 0;
101 M68kCPU *cpu_m68k_init(const char *cpu_model)
103 M68kCPU *cpu;
104 CPUM68KState *env;
105 ObjectClass *oc;
107 oc = cpu_class_by_name(TYPE_M68K_CPU, cpu_model);
108 if (oc == NULL) {
109 return NULL;
111 cpu = M68K_CPU(object_new(object_class_get_name(oc)));
112 env = &cpu->env;
113 env->cpu_model_str = cpu_model;
115 register_m68k_insns(env);
117 object_property_set_bool(OBJECT(cpu), true, "realized", NULL);
119 return cpu;
122 void m68k_cpu_init_gdb(M68kCPU *cpu)
124 CPUM68KState *env = &cpu->env;
126 if (m68k_feature(env, M68K_FEATURE_CF_FPU)) {
127 gdb_register_coprocessor(env, fpu_gdb_get_reg, fpu_gdb_set_reg,
128 11, "cf-fp.xml", 18);
130 /* TODO: Add [E]MAC registers. */
133 void cpu_m68k_flush_flags(CPUM68KState *env, int cc_op)
135 int flags;
136 uint32_t src;
137 uint32_t dest;
138 uint32_t tmp;
140 #define HIGHBIT 0x80000000u
142 #define SET_NZ(x) do { \
143 if ((x) == 0) \
144 flags |= CCF_Z; \
145 else if ((int32_t)(x) < 0) \
146 flags |= CCF_N; \
147 } while (0)
149 #define SET_FLAGS_SUB(type, utype) do { \
150 SET_NZ((type)dest); \
151 tmp = dest + src; \
152 if ((utype) tmp < (utype) src) \
153 flags |= CCF_C; \
154 if ((1u << (sizeof(type) * 8 - 1)) & (tmp ^ dest) & (tmp ^ src)) \
155 flags |= CCF_V; \
156 } while (0)
158 flags = 0;
159 src = env->cc_src;
160 dest = env->cc_dest;
161 switch (cc_op) {
162 case CC_OP_FLAGS:
163 flags = dest;
164 break;
165 case CC_OP_LOGIC:
166 SET_NZ(dest);
167 break;
168 case CC_OP_ADD:
169 SET_NZ(dest);
170 if (dest < src)
171 flags |= CCF_C;
172 tmp = dest - src;
173 if (HIGHBIT & (src ^ dest) & ~(tmp ^ src))
174 flags |= CCF_V;
175 break;
176 case CC_OP_SUB:
177 SET_FLAGS_SUB(int32_t, uint32_t);
178 break;
179 case CC_OP_CMPB:
180 SET_FLAGS_SUB(int8_t, uint8_t);
181 break;
182 case CC_OP_CMPW:
183 SET_FLAGS_SUB(int16_t, uint16_t);
184 break;
185 case CC_OP_ADDX:
186 SET_NZ(dest);
187 if (dest <= src)
188 flags |= CCF_C;
189 tmp = dest - src - 1;
190 if (HIGHBIT & (src ^ dest) & ~(tmp ^ src))
191 flags |= CCF_V;
192 break;
193 case CC_OP_SUBX:
194 SET_NZ(dest);
195 tmp = dest + src + 1;
196 if (tmp <= src)
197 flags |= CCF_C;
198 if (HIGHBIT & (tmp ^ dest) & (tmp ^ src))
199 flags |= CCF_V;
200 break;
201 case CC_OP_SHIFT:
202 SET_NZ(dest);
203 if (src)
204 flags |= CCF_C;
205 break;
206 default:
207 cpu_abort(env, "Bad CC_OP %d", cc_op);
209 env->cc_op = CC_OP_FLAGS;
210 env->cc_dest = flags;
213 void HELPER(movec)(CPUM68KState *env, uint32_t reg, uint32_t val)
215 switch (reg) {
216 case 0x02: /* CACR */
217 env->cacr = val;
218 m68k_switch_sp(env);
219 break;
220 case 0x04: case 0x05: case 0x06: case 0x07: /* ACR[0-3] */
221 /* TODO: Implement Access Control Registers. */
222 break;
223 case 0x801: /* VBR */
224 env->vbr = val;
225 break;
226 /* TODO: Implement control registers. */
227 default:
228 cpu_abort(env, "Unimplemented control register write 0x%x = 0x%x\n",
229 reg, val);
233 void HELPER(set_macsr)(CPUM68KState *env, uint32_t val)
235 uint32_t acc;
236 int8_t exthigh;
237 uint8_t extlow;
238 uint64_t regval;
239 int i;
240 if ((env->macsr ^ val) & (MACSR_FI | MACSR_SU)) {
241 for (i = 0; i < 4; i++) {
242 regval = env->macc[i];
243 exthigh = regval >> 40;
244 if (env->macsr & MACSR_FI) {
245 acc = regval >> 8;
246 extlow = regval;
247 } else {
248 acc = regval;
249 extlow = regval >> 32;
251 if (env->macsr & MACSR_FI) {
252 regval = (((uint64_t)acc) << 8) | extlow;
253 regval |= ((int64_t)exthigh) << 40;
254 } else if (env->macsr & MACSR_SU) {
255 regval = acc | (((int64_t)extlow) << 32);
256 regval |= ((int64_t)exthigh) << 40;
257 } else {
258 regval = acc | (((uint64_t)extlow) << 32);
259 regval |= ((uint64_t)(uint8_t)exthigh) << 40;
261 env->macc[i] = regval;
264 env->macsr = val;
267 void m68k_switch_sp(CPUM68KState *env)
269 int new_sp;
271 env->sp[env->current_sp] = env->aregs[7];
272 new_sp = (env->sr & SR_S && env->cacr & M68K_CACR_EUSP)
273 ? M68K_SSP : M68K_USP;
274 env->aregs[7] = env->sp[new_sp];
275 env->current_sp = new_sp;
278 #if defined(CONFIG_USER_ONLY)
280 int cpu_m68k_handle_mmu_fault (CPUM68KState *env, target_ulong address, int rw,
281 int mmu_idx)
283 env->exception_index = EXCP_ACCESS;
284 env->mmu.ar = address;
285 return 1;
288 #else
290 /* MMU */
292 /* TODO: This will need fixing once the MMU is implemented. */
293 hwaddr cpu_get_phys_page_debug(CPUM68KState *env, target_ulong addr)
295 return addr;
298 int cpu_m68k_handle_mmu_fault (CPUM68KState *env, target_ulong address, int rw,
299 int mmu_idx)
301 int prot;
303 address &= TARGET_PAGE_MASK;
304 prot = PAGE_READ | PAGE_WRITE | PAGE_EXEC;
305 tlb_set_page(env, address, address, prot, mmu_idx, TARGET_PAGE_SIZE);
306 return 0;
309 /* Notify CPU of a pending interrupt. Prioritization and vectoring should
310 be handled by the interrupt controller. Real hardware only requests
311 the vector when the interrupt is acknowledged by the CPU. For
312 simplicitly we calculate it when the interrupt is signalled. */
313 void m68k_set_irq_level(M68kCPU *cpu, int level, uint8_t vector)
315 CPUState *cs = CPU(cpu);
316 CPUM68KState *env = &cpu->env;
318 env->pending_level = level;
319 env->pending_vector = vector;
320 if (level) {
321 cpu_interrupt(cs, CPU_INTERRUPT_HARD);
322 } else {
323 cpu_reset_interrupt(cs, CPU_INTERRUPT_HARD);
327 #endif
329 uint32_t HELPER(bitrev)(uint32_t x)
331 x = ((x >> 1) & 0x55555555u) | ((x << 1) & 0xaaaaaaaau);
332 x = ((x >> 2) & 0x33333333u) | ((x << 2) & 0xccccccccu);
333 x = ((x >> 4) & 0x0f0f0f0fu) | ((x << 4) & 0xf0f0f0f0u);
334 return bswap32(x);
337 uint32_t HELPER(ff1)(uint32_t x)
339 int n;
340 for (n = 32; x; n--)
341 x >>= 1;
342 return n;
345 uint32_t HELPER(sats)(uint32_t val, uint32_t ccr)
347 /* The result has the opposite sign to the original value. */
348 if (ccr & CCF_V)
349 val = (((int32_t)val) >> 31) ^ SIGNBIT;
350 return val;
353 uint32_t HELPER(subx_cc)(CPUM68KState *env, uint32_t op1, uint32_t op2)
355 uint32_t res;
356 uint32_t old_flags;
358 old_flags = env->cc_dest;
359 if (env->cc_x) {
360 env->cc_x = (op1 <= op2);
361 env->cc_op = CC_OP_SUBX;
362 res = op1 - (op2 + 1);
363 } else {
364 env->cc_x = (op1 < op2);
365 env->cc_op = CC_OP_SUB;
366 res = op1 - op2;
368 env->cc_dest = res;
369 env->cc_src = op2;
370 cpu_m68k_flush_flags(env, env->cc_op);
371 /* !Z is sticky. */
372 env->cc_dest &= (old_flags | ~CCF_Z);
373 return res;
376 uint32_t HELPER(addx_cc)(CPUM68KState *env, uint32_t op1, uint32_t op2)
378 uint32_t res;
379 uint32_t old_flags;
381 old_flags = env->cc_dest;
382 if (env->cc_x) {
383 res = op1 + op2 + 1;
384 env->cc_x = (res <= op2);
385 env->cc_op = CC_OP_ADDX;
386 } else {
387 res = op1 + op2;
388 env->cc_x = (res < op2);
389 env->cc_op = CC_OP_ADD;
391 env->cc_dest = res;
392 env->cc_src = op2;
393 cpu_m68k_flush_flags(env, env->cc_op);
394 /* !Z is sticky. */
395 env->cc_dest &= (old_flags | ~CCF_Z);
396 return res;
399 uint32_t HELPER(xflag_lt)(uint32_t a, uint32_t b)
401 return a < b;
404 void HELPER(set_sr)(CPUM68KState *env, uint32_t val)
406 env->sr = val & 0xffff;
407 m68k_switch_sp(env);
410 uint32_t HELPER(shl_cc)(CPUM68KState *env, uint32_t val, uint32_t shift)
412 uint32_t result;
413 uint32_t cf;
415 shift &= 63;
416 if (shift == 0) {
417 result = val;
418 cf = env->cc_src & CCF_C;
419 } else if (shift < 32) {
420 result = val << shift;
421 cf = (val >> (32 - shift)) & 1;
422 } else if (shift == 32) {
423 result = 0;
424 cf = val & 1;
425 } else /* shift > 32 */ {
426 result = 0;
427 cf = 0;
429 env->cc_src = cf;
430 env->cc_x = (cf != 0);
431 env->cc_dest = result;
432 return result;
435 uint32_t HELPER(shr_cc)(CPUM68KState *env, uint32_t val, uint32_t shift)
437 uint32_t result;
438 uint32_t cf;
440 shift &= 63;
441 if (shift == 0) {
442 result = val;
443 cf = env->cc_src & CCF_C;
444 } else if (shift < 32) {
445 result = val >> shift;
446 cf = (val >> (shift - 1)) & 1;
447 } else if (shift == 32) {
448 result = 0;
449 cf = val >> 31;
450 } else /* shift > 32 */ {
451 result = 0;
452 cf = 0;
454 env->cc_src = cf;
455 env->cc_x = (cf != 0);
456 env->cc_dest = result;
457 return result;
460 uint32_t HELPER(sar_cc)(CPUM68KState *env, uint32_t val, uint32_t shift)
462 uint32_t result;
463 uint32_t cf;
465 shift &= 63;
466 if (shift == 0) {
467 result = val;
468 cf = (env->cc_src & CCF_C) != 0;
469 } else if (shift < 32) {
470 result = (int32_t)val >> shift;
471 cf = (val >> (shift - 1)) & 1;
472 } else /* shift >= 32 */ {
473 result = (int32_t)val >> 31;
474 cf = val >> 31;
476 env->cc_src = cf;
477 env->cc_x = cf;
478 env->cc_dest = result;
479 return result;
482 /* FPU helpers. */
483 uint32_t HELPER(f64_to_i32)(CPUM68KState *env, float64 val)
485 return float64_to_int32(val, &env->fp_status);
488 float32 HELPER(f64_to_f32)(CPUM68KState *env, float64 val)
490 return float64_to_float32(val, &env->fp_status);
493 float64 HELPER(i32_to_f64)(CPUM68KState *env, uint32_t val)
495 return int32_to_float64(val, &env->fp_status);
498 float64 HELPER(f32_to_f64)(CPUM68KState *env, float32 val)
500 return float32_to_float64(val, &env->fp_status);
503 float64 HELPER(iround_f64)(CPUM68KState *env, float64 val)
505 return float64_round_to_int(val, &env->fp_status);
508 float64 HELPER(itrunc_f64)(CPUM68KState *env, float64 val)
510 return float64_trunc_to_int(val, &env->fp_status);
513 float64 HELPER(sqrt_f64)(CPUM68KState *env, float64 val)
515 return float64_sqrt(val, &env->fp_status);
518 float64 HELPER(abs_f64)(float64 val)
520 return float64_abs(val);
523 float64 HELPER(chs_f64)(float64 val)
525 return float64_chs(val);
528 float64 HELPER(add_f64)(CPUM68KState *env, float64 a, float64 b)
530 return float64_add(a, b, &env->fp_status);
533 float64 HELPER(sub_f64)(CPUM68KState *env, float64 a, float64 b)
535 return float64_sub(a, b, &env->fp_status);
538 float64 HELPER(mul_f64)(CPUM68KState *env, float64 a, float64 b)
540 return float64_mul(a, b, &env->fp_status);
543 float64 HELPER(div_f64)(CPUM68KState *env, float64 a, float64 b)
545 return float64_div(a, b, &env->fp_status);
548 float64 HELPER(sub_cmp_f64)(CPUM68KState *env, float64 a, float64 b)
550 /* ??? This may incorrectly raise exceptions. */
551 /* ??? Should flush denormals to zero. */
552 float64 res;
553 res = float64_sub(a, b, &env->fp_status);
554 if (float64_is_quiet_nan(res)) {
555 /* +/-inf compares equal against itself, but sub returns nan. */
556 if (!float64_is_quiet_nan(a)
557 && !float64_is_quiet_nan(b)) {
558 res = float64_zero;
559 if (float64_lt_quiet(a, res, &env->fp_status))
560 res = float64_chs(res);
563 return res;
566 uint32_t HELPER(compare_f64)(CPUM68KState *env, float64 val)
568 return float64_compare_quiet(val, float64_zero, &env->fp_status);
571 /* MAC unit. */
572 /* FIXME: The MAC unit implementation is a bit of a mess. Some helpers
573 take values, others take register numbers and manipulate the contents
574 in-place. */
575 void HELPER(mac_move)(CPUM68KState *env, uint32_t dest, uint32_t src)
577 uint32_t mask;
578 env->macc[dest] = env->macc[src];
579 mask = MACSR_PAV0 << dest;
580 if (env->macsr & (MACSR_PAV0 << src))
581 env->macsr |= mask;
582 else
583 env->macsr &= ~mask;
586 uint64_t HELPER(macmuls)(CPUM68KState *env, uint32_t op1, uint32_t op2)
588 int64_t product;
589 int64_t res;
591 product = (uint64_t)op1 * op2;
592 res = (product << 24) >> 24;
593 if (res != product) {
594 env->macsr |= MACSR_V;
595 if (env->macsr & MACSR_OMC) {
596 /* Make sure the accumulate operation overflows. */
597 if (product < 0)
598 res = ~(1ll << 50);
599 else
600 res = 1ll << 50;
603 return res;
606 uint64_t HELPER(macmulu)(CPUM68KState *env, uint32_t op1, uint32_t op2)
608 uint64_t product;
610 product = (uint64_t)op1 * op2;
611 if (product & (0xffffffull << 40)) {
612 env->macsr |= MACSR_V;
613 if (env->macsr & MACSR_OMC) {
614 /* Make sure the accumulate operation overflows. */
615 product = 1ll << 50;
616 } else {
617 product &= ((1ull << 40) - 1);
620 return product;
623 uint64_t HELPER(macmulf)(CPUM68KState *env, uint32_t op1, uint32_t op2)
625 uint64_t product;
626 uint32_t remainder;
628 product = (uint64_t)op1 * op2;
629 if (env->macsr & MACSR_RT) {
630 remainder = product & 0xffffff;
631 product >>= 24;
632 if (remainder > 0x800000)
633 product++;
634 else if (remainder == 0x800000)
635 product += (product & 1);
636 } else {
637 product >>= 24;
639 return product;
642 void HELPER(macsats)(CPUM68KState *env, uint32_t acc)
644 int64_t tmp;
645 int64_t result;
646 tmp = env->macc[acc];
647 result = ((tmp << 16) >> 16);
648 if (result != tmp) {
649 env->macsr |= MACSR_V;
651 if (env->macsr & MACSR_V) {
652 env->macsr |= MACSR_PAV0 << acc;
653 if (env->macsr & MACSR_OMC) {
654 /* The result is saturated to 32 bits, despite overflow occurring
655 at 48 bits. Seems weird, but that's what the hardware docs
656 say. */
657 result = (result >> 63) ^ 0x7fffffff;
660 env->macc[acc] = result;
663 void HELPER(macsatu)(CPUM68KState *env, uint32_t acc)
665 uint64_t val;
667 val = env->macc[acc];
668 if (val & (0xffffull << 48)) {
669 env->macsr |= MACSR_V;
671 if (env->macsr & MACSR_V) {
672 env->macsr |= MACSR_PAV0 << acc;
673 if (env->macsr & MACSR_OMC) {
674 if (val > (1ull << 53))
675 val = 0;
676 else
677 val = (1ull << 48) - 1;
678 } else {
679 val &= ((1ull << 48) - 1);
682 env->macc[acc] = val;
685 void HELPER(macsatf)(CPUM68KState *env, uint32_t acc)
687 int64_t sum;
688 int64_t result;
690 sum = env->macc[acc];
691 result = (sum << 16) >> 16;
692 if (result != sum) {
693 env->macsr |= MACSR_V;
695 if (env->macsr & MACSR_V) {
696 env->macsr |= MACSR_PAV0 << acc;
697 if (env->macsr & MACSR_OMC) {
698 result = (result >> 63) ^ 0x7fffffffffffll;
701 env->macc[acc] = result;
704 void HELPER(mac_set_flags)(CPUM68KState *env, uint32_t acc)
706 uint64_t val;
707 val = env->macc[acc];
708 if (val == 0) {
709 env->macsr |= MACSR_Z;
710 } else if (val & (1ull << 47)) {
711 env->macsr |= MACSR_N;
713 if (env->macsr & (MACSR_PAV0 << acc)) {
714 env->macsr |= MACSR_V;
716 if (env->macsr & MACSR_FI) {
717 val = ((int64_t)val) >> 40;
718 if (val != 0 && val != -1)
719 env->macsr |= MACSR_EV;
720 } else if (env->macsr & MACSR_SU) {
721 val = ((int64_t)val) >> 32;
722 if (val != 0 && val != -1)
723 env->macsr |= MACSR_EV;
724 } else {
725 if ((val >> 32) != 0)
726 env->macsr |= MACSR_EV;
730 void HELPER(flush_flags)(CPUM68KState *env, uint32_t cc_op)
732 cpu_m68k_flush_flags(env, cc_op);
735 uint32_t HELPER(get_macf)(CPUM68KState *env, uint64_t val)
737 int rem;
738 uint32_t result;
740 if (env->macsr & MACSR_SU) {
741 /* 16-bit rounding. */
742 rem = val & 0xffffff;
743 val = (val >> 24) & 0xffffu;
744 if (rem > 0x800000)
745 val++;
746 else if (rem == 0x800000)
747 val += (val & 1);
748 } else if (env->macsr & MACSR_RT) {
749 /* 32-bit rounding. */
750 rem = val & 0xff;
751 val >>= 8;
752 if (rem > 0x80)
753 val++;
754 else if (rem == 0x80)
755 val += (val & 1);
756 } else {
757 /* No rounding. */
758 val >>= 8;
760 if (env->macsr & MACSR_OMC) {
761 /* Saturate. */
762 if (env->macsr & MACSR_SU) {
763 if (val != (uint16_t) val) {
764 result = ((val >> 63) ^ 0x7fff) & 0xffff;
765 } else {
766 result = val & 0xffff;
768 } else {
769 if (val != (uint32_t)val) {
770 result = ((uint32_t)(val >> 63) & 0x7fffffff);
771 } else {
772 result = (uint32_t)val;
775 } else {
776 /* No saturation. */
777 if (env->macsr & MACSR_SU) {
778 result = val & 0xffff;
779 } else {
780 result = (uint32_t)val;
783 return result;
786 uint32_t HELPER(get_macs)(uint64_t val)
788 if (val == (int32_t)val) {
789 return (int32_t)val;
790 } else {
791 return (val >> 61) ^ ~SIGNBIT;
795 uint32_t HELPER(get_macu)(uint64_t val)
797 if ((val >> 32) == 0) {
798 return (uint32_t)val;
799 } else {
800 return 0xffffffffu;
804 uint32_t HELPER(get_mac_extf)(CPUM68KState *env, uint32_t acc)
806 uint32_t val;
807 val = env->macc[acc] & 0x00ff;
808 val = (env->macc[acc] >> 32) & 0xff00;
809 val |= (env->macc[acc + 1] << 16) & 0x00ff0000;
810 val |= (env->macc[acc + 1] >> 16) & 0xff000000;
811 return val;
814 uint32_t HELPER(get_mac_exti)(CPUM68KState *env, uint32_t acc)
816 uint32_t val;
817 val = (env->macc[acc] >> 32) & 0xffff;
818 val |= (env->macc[acc + 1] >> 16) & 0xffff0000;
819 return val;
822 void HELPER(set_mac_extf)(CPUM68KState *env, uint32_t val, uint32_t acc)
824 int64_t res;
825 int32_t tmp;
826 res = env->macc[acc] & 0xffffffff00ull;
827 tmp = (int16_t)(val & 0xff00);
828 res |= ((int64_t)tmp) << 32;
829 res |= val & 0xff;
830 env->macc[acc] = res;
831 res = env->macc[acc + 1] & 0xffffffff00ull;
832 tmp = (val & 0xff000000);
833 res |= ((int64_t)tmp) << 16;
834 res |= (val >> 16) & 0xff;
835 env->macc[acc + 1] = res;
838 void HELPER(set_mac_exts)(CPUM68KState *env, uint32_t val, uint32_t acc)
840 int64_t res;
841 int32_t tmp;
842 res = (uint32_t)env->macc[acc];
843 tmp = (int16_t)val;
844 res |= ((int64_t)tmp) << 32;
845 env->macc[acc] = res;
846 res = (uint32_t)env->macc[acc + 1];
847 tmp = val & 0xffff0000;
848 res |= (int64_t)tmp << 16;
849 env->macc[acc + 1] = res;
852 void HELPER(set_mac_extu)(CPUM68KState *env, uint32_t val, uint32_t acc)
854 uint64_t res;
855 res = (uint32_t)env->macc[acc];
856 res |= ((uint64_t)(val & 0xffff)) << 32;
857 env->macc[acc] = res;
858 res = (uint32_t)env->macc[acc + 1];
859 res |= (uint64_t)(val & 0xffff0000) << 16;
860 env->macc[acc + 1] = res;