hw/arm/armsse: Add framework for data-driven device placement
[qemu/ar7.git] / hw / arm / armsse.c
blob22dd437a4ba3c924f2e360685e259d758af51b1b
1 /*
2 * Arm SSE (Subsystems for Embedded): IoTKit
4 * Copyright (c) 2018 Linaro Limited
5 * Written by Peter Maydell
7 * This program is free software; you can redistribute it and/or modify
8 * it under the terms of the GNU General Public License version 2 or
9 * (at your option) any later version.
12 #include "qemu/osdep.h"
13 #include "qemu/log.h"
14 #include "qemu/module.h"
15 #include "qemu/bitops.h"
16 #include "qapi/error.h"
17 #include "trace.h"
18 #include "hw/sysbus.h"
19 #include "migration/vmstate.h"
20 #include "hw/registerfields.h"
21 #include "hw/arm/armsse.h"
22 #include "hw/arm/armsse-version.h"
23 #include "hw/arm/boot.h"
24 #include "hw/irq.h"
25 #include "hw/qdev-clock.h"
28 * The SSE-300 puts some devices in different places to the
29 * SSE-200 (and original IoTKit). We use an array of these structs
30 * to define how each variant lays out these devices. (Parts of the
31 * SoC that are the same for all variants aren't handled via these
32 * data structures.)
35 #define NO_IRQ -1
36 #define NO_PPC -1
38 typedef struct ARMSSEDeviceInfo {
39 const char *name; /* name to use for the QOM object; NULL terminates list */
40 const char *type; /* QOM type name */
41 unsigned int index; /* Which of the N devices of this type is this ? */
42 hwaddr addr;
43 int ppc; /* Index of APB PPC this device is wired up to, or NO_PPC */
44 int ppc_port; /* Port number of this device on the PPC */
45 int irq; /* NO_IRQ, or 0..NUM_SSE_IRQS-1 */
46 } ARMSSEDeviceInfo;
48 struct ARMSSEInfo {
49 const char *name;
50 uint32_t sse_version;
51 int sram_banks;
52 int num_cpus;
53 uint32_t sys_version;
54 uint32_t iidr;
55 uint32_t cpuwait_rst;
56 bool has_mhus;
57 bool has_ppus;
58 bool has_cachectrl;
59 bool has_cpusecctrl;
60 bool has_cpuid;
61 Property *props;
62 const ARMSSEDeviceInfo *devinfo;
65 static Property iotkit_properties[] = {
66 DEFINE_PROP_LINK("memory", ARMSSE, board_memory, TYPE_MEMORY_REGION,
67 MemoryRegion *),
68 DEFINE_PROP_UINT32("EXP_NUMIRQ", ARMSSE, exp_numirq, 64),
69 DEFINE_PROP_UINT32("SRAM_ADDR_WIDTH", ARMSSE, sram_addr_width, 15),
70 DEFINE_PROP_UINT32("init-svtor", ARMSSE, init_svtor, 0x10000000),
71 DEFINE_PROP_BOOL("CPU0_FPU", ARMSSE, cpu_fpu[0], true),
72 DEFINE_PROP_BOOL("CPU0_DSP", ARMSSE, cpu_dsp[0], true),
73 DEFINE_PROP_END_OF_LIST()
76 static Property armsse_properties[] = {
77 DEFINE_PROP_LINK("memory", ARMSSE, board_memory, TYPE_MEMORY_REGION,
78 MemoryRegion *),
79 DEFINE_PROP_UINT32("EXP_NUMIRQ", ARMSSE, exp_numirq, 64),
80 DEFINE_PROP_UINT32("SRAM_ADDR_WIDTH", ARMSSE, sram_addr_width, 15),
81 DEFINE_PROP_UINT32("init-svtor", ARMSSE, init_svtor, 0x10000000),
82 DEFINE_PROP_BOOL("CPU0_FPU", ARMSSE, cpu_fpu[0], false),
83 DEFINE_PROP_BOOL("CPU0_DSP", ARMSSE, cpu_dsp[0], false),
84 DEFINE_PROP_BOOL("CPU1_FPU", ARMSSE, cpu_fpu[1], true),
85 DEFINE_PROP_BOOL("CPU1_DSP", ARMSSE, cpu_dsp[1], true),
86 DEFINE_PROP_END_OF_LIST()
89 static const ARMSSEDeviceInfo sse200_devices[] = {
91 .name = "timer0",
92 .type = TYPE_CMSDK_APB_TIMER,
93 .index = 0,
94 .addr = 0x40000000,
95 .ppc = 0,
96 .ppc_port = 0,
97 .irq = 3,
100 .name = "timer1",
101 .type = TYPE_CMSDK_APB_TIMER,
102 .index = 1,
103 .addr = 0x40001000,
104 .ppc = 0,
105 .ppc_port = 1,
106 .irq = 4,
109 .name = NULL,
113 static const ARMSSEInfo armsse_variants[] = {
115 .name = TYPE_IOTKIT,
116 .sse_version = ARMSSE_IOTKIT,
117 .sram_banks = 1,
118 .num_cpus = 1,
119 .sys_version = 0x41743,
120 .iidr = 0,
121 .cpuwait_rst = 0,
122 .has_mhus = false,
123 .has_ppus = false,
124 .has_cachectrl = false,
125 .has_cpusecctrl = false,
126 .has_cpuid = false,
127 .props = iotkit_properties,
128 .devinfo = sse200_devices,
131 .name = TYPE_SSE200,
132 .sse_version = ARMSSE_SSE200,
133 .sram_banks = 4,
134 .num_cpus = 2,
135 .sys_version = 0x22041743,
136 .iidr = 0,
137 .cpuwait_rst = 2,
138 .has_mhus = true,
139 .has_ppus = true,
140 .has_cachectrl = true,
141 .has_cpusecctrl = true,
142 .has_cpuid = true,
143 .props = armsse_properties,
144 .devinfo = sse200_devices,
148 static uint32_t armsse_sys_config_value(ARMSSE *s, const ARMSSEInfo *info)
150 /* Return the SYS_CONFIG value for this SSE */
151 uint32_t sys_config;
153 switch (info->sse_version) {
154 case ARMSSE_IOTKIT:
155 sys_config = 0;
156 sys_config = deposit32(sys_config, 0, 4, info->sram_banks);
157 sys_config = deposit32(sys_config, 4, 4, s->sram_addr_width - 12);
158 break;
159 case ARMSSE_SSE200:
160 sys_config = 0;
161 sys_config = deposit32(sys_config, 0, 4, info->sram_banks);
162 sys_config = deposit32(sys_config, 4, 5, s->sram_addr_width);
163 sys_config = deposit32(sys_config, 24, 4, 2);
164 if (info->num_cpus > 1) {
165 sys_config = deposit32(sys_config, 10, 1, 1);
166 sys_config = deposit32(sys_config, 20, 4, info->sram_banks - 1);
167 sys_config = deposit32(sys_config, 28, 4, 2);
169 break;
170 case ARMSSE_SSE300:
171 sys_config = 0;
172 sys_config = deposit32(sys_config, 0, 4, info->sram_banks);
173 sys_config = deposit32(sys_config, 4, 5, s->sram_addr_width);
174 sys_config = deposit32(sys_config, 16, 3, 3); /* CPU0 = Cortex-M55 */
175 break;
176 default:
177 g_assert_not_reached();
179 return sys_config;
182 /* Clock frequency in HZ of the 32KHz "slow clock" */
183 #define S32KCLK (32 * 1000)
185 /* Is internal IRQ n shared between CPUs in a multi-core SSE ? */
186 static bool irq_is_common[32] = {
187 [0 ... 5] = true,
188 /* 6, 7: per-CPU MHU interrupts */
189 [8 ... 12] = true,
190 /* 13: per-CPU icache interrupt */
191 /* 14: reserved */
192 [15 ... 20] = true,
193 /* 21: reserved */
194 [22 ... 26] = true,
195 /* 27: reserved */
196 /* 28, 29: per-CPU CTI interrupts */
197 /* 30, 31: reserved */
201 * Create an alias region in @container of @size bytes starting at @base
202 * which mirrors the memory starting at @orig.
204 static void make_alias(ARMSSE *s, MemoryRegion *mr, MemoryRegion *container,
205 const char *name, hwaddr base, hwaddr size, hwaddr orig)
207 memory_region_init_alias(mr, NULL, name, container, orig, size);
208 /* The alias is even lower priority than unimplemented_device regions */
209 memory_region_add_subregion_overlap(container, base, mr, -1500);
212 static void irq_status_forwarder(void *opaque, int n, int level)
214 qemu_irq destirq = opaque;
216 qemu_set_irq(destirq, level);
219 static void nsccfg_handler(void *opaque, int n, int level)
221 ARMSSE *s = ARM_SSE(opaque);
223 s->nsccfg = level;
226 static void armsse_forward_ppc(ARMSSE *s, const char *ppcname, int ppcnum)
228 /* Each of the 4 AHB and 4 APB PPCs that might be present in a
229 * system using the ARMSSE has a collection of control lines which
230 * are provided by the security controller and which we want to
231 * expose as control lines on the ARMSSE device itself, so the
232 * code using the ARMSSE can wire them up to the PPCs.
234 SplitIRQ *splitter = &s->ppc_irq_splitter[ppcnum];
235 DeviceState *armssedev = DEVICE(s);
236 DeviceState *dev_secctl = DEVICE(&s->secctl);
237 DeviceState *dev_splitter = DEVICE(splitter);
238 char *name;
240 name = g_strdup_printf("%s_nonsec", ppcname);
241 qdev_pass_gpios(dev_secctl, armssedev, name);
242 g_free(name);
243 name = g_strdup_printf("%s_ap", ppcname);
244 qdev_pass_gpios(dev_secctl, armssedev, name);
245 g_free(name);
246 name = g_strdup_printf("%s_irq_enable", ppcname);
247 qdev_pass_gpios(dev_secctl, armssedev, name);
248 g_free(name);
249 name = g_strdup_printf("%s_irq_clear", ppcname);
250 qdev_pass_gpios(dev_secctl, armssedev, name);
251 g_free(name);
253 /* irq_status is a little more tricky, because we need to
254 * split it so we can send it both to the security controller
255 * and to our OR gate for the NVIC interrupt line.
256 * Connect up the splitter's outputs, and create a GPIO input
257 * which will pass the line state to the input splitter.
259 name = g_strdup_printf("%s_irq_status", ppcname);
260 qdev_connect_gpio_out(dev_splitter, 0,
261 qdev_get_gpio_in_named(dev_secctl,
262 name, 0));
263 qdev_connect_gpio_out(dev_splitter, 1,
264 qdev_get_gpio_in(DEVICE(&s->ppc_irq_orgate), ppcnum));
265 s->irq_status_in[ppcnum] = qdev_get_gpio_in(dev_splitter, 0);
266 qdev_init_gpio_in_named_with_opaque(armssedev, irq_status_forwarder,
267 s->irq_status_in[ppcnum], name, 1);
268 g_free(name);
271 static void armsse_forward_sec_resp_cfg(ARMSSE *s)
273 /* Forward the 3rd output from the splitter device as a
274 * named GPIO output of the armsse object.
276 DeviceState *dev = DEVICE(s);
277 DeviceState *dev_splitter = DEVICE(&s->sec_resp_splitter);
279 qdev_init_gpio_out_named(dev, &s->sec_resp_cfg, "sec_resp_cfg", 1);
280 s->sec_resp_cfg_in = qemu_allocate_irq(irq_status_forwarder,
281 s->sec_resp_cfg, 1);
282 qdev_connect_gpio_out(dev_splitter, 2, s->sec_resp_cfg_in);
285 static void armsse_mainclk_update(void *opaque, ClockEvent event)
287 ARMSSE *s = ARM_SSE(opaque);
290 * Set system_clock_scale from our Clock input; this is what
291 * controls the tick rate of the CPU SysTick timer.
293 system_clock_scale = clock_ticks_to_ns(s->mainclk, 1);
296 static void armsse_init(Object *obj)
298 ARMSSE *s = ARM_SSE(obj);
299 ARMSSEClass *asc = ARM_SSE_GET_CLASS(obj);
300 const ARMSSEInfo *info = asc->info;
301 const ARMSSEDeviceInfo *devinfo;
302 int i;
304 assert(info->sram_banks <= MAX_SRAM_BANKS);
305 assert(info->num_cpus <= SSE_MAX_CPUS);
307 s->mainclk = qdev_init_clock_in(DEVICE(s), "MAINCLK",
308 armsse_mainclk_update, s, ClockUpdate);
309 s->s32kclk = qdev_init_clock_in(DEVICE(s), "S32KCLK", NULL, NULL, 0);
311 memory_region_init(&s->container, obj, "armsse-container", UINT64_MAX);
313 for (i = 0; i < info->num_cpus; i++) {
315 * We put each CPU in its own cluster as they are logically
316 * distinct and may be configured differently.
318 char *name;
320 name = g_strdup_printf("cluster%d", i);
321 object_initialize_child(obj, name, &s->cluster[i], TYPE_CPU_CLUSTER);
322 qdev_prop_set_uint32(DEVICE(&s->cluster[i]), "cluster-id", i);
323 g_free(name);
325 name = g_strdup_printf("armv7m%d", i);
326 object_initialize_child(OBJECT(&s->cluster[i]), name, &s->armv7m[i],
327 TYPE_ARMV7M);
328 qdev_prop_set_string(DEVICE(&s->armv7m[i]), "cpu-type",
329 ARM_CPU_TYPE_NAME("cortex-m33"));
330 g_free(name);
331 name = g_strdup_printf("arm-sse-cpu-container%d", i);
332 memory_region_init(&s->cpu_container[i], obj, name, UINT64_MAX);
333 g_free(name);
334 if (i > 0) {
335 name = g_strdup_printf("arm-sse-container-alias%d", i);
336 memory_region_init_alias(&s->container_alias[i - 1], obj,
337 name, &s->container, 0, UINT64_MAX);
338 g_free(name);
342 for (devinfo = info->devinfo; devinfo->name; devinfo++) {
343 assert(devinfo->ppc == NO_PPC || devinfo->ppc < ARRAY_SIZE(s->apb_ppc));
344 if (!strcmp(devinfo->type, TYPE_CMSDK_APB_TIMER)) {
345 assert(devinfo->index < ARRAY_SIZE(s->timer));
346 object_initialize_child(obj, devinfo->name,
347 &s->timer[devinfo->index],
348 TYPE_CMSDK_APB_TIMER);
349 } else {
350 g_assert_not_reached();
354 object_initialize_child(obj, "secctl", &s->secctl, TYPE_IOTKIT_SECCTL);
356 for (i = 0; i < ARRAY_SIZE(s->apb_ppc); i++) {
357 g_autofree char *name = g_strdup_printf("apb-ppc%d", i);
358 object_initialize_child(obj, name, &s->apb_ppc[i], TYPE_TZ_PPC);
361 for (i = 0; i < info->sram_banks; i++) {
362 char *name = g_strdup_printf("mpc%d", i);
363 object_initialize_child(obj, name, &s->mpc[i], TYPE_TZ_MPC);
364 g_free(name);
366 object_initialize_child(obj, "mpc-irq-orgate", &s->mpc_irq_orgate,
367 TYPE_OR_IRQ);
369 for (i = 0; i < IOTS_NUM_EXP_MPC + info->sram_banks; i++) {
370 char *name = g_strdup_printf("mpc-irq-splitter-%d", i);
371 SplitIRQ *splitter = &s->mpc_irq_splitter[i];
373 object_initialize_child(obj, name, splitter, TYPE_SPLIT_IRQ);
374 g_free(name);
376 object_initialize_child(obj, "s32ktimer", &s->s32ktimer,
377 TYPE_CMSDK_APB_TIMER);
378 object_initialize_child(obj, "dualtimer", &s->dualtimer,
379 TYPE_CMSDK_APB_DUALTIMER);
380 object_initialize_child(obj, "s32kwatchdog", &s->s32kwatchdog,
381 TYPE_CMSDK_APB_WATCHDOG);
382 object_initialize_child(obj, "nswatchdog", &s->nswatchdog,
383 TYPE_CMSDK_APB_WATCHDOG);
384 object_initialize_child(obj, "swatchdog", &s->swatchdog,
385 TYPE_CMSDK_APB_WATCHDOG);
386 object_initialize_child(obj, "armsse-sysctl", &s->sysctl,
387 TYPE_IOTKIT_SYSCTL);
388 object_initialize_child(obj, "armsse-sysinfo", &s->sysinfo,
389 TYPE_IOTKIT_SYSINFO);
390 if (info->has_mhus) {
391 object_initialize_child(obj, "mhu0", &s->mhu[0], TYPE_ARMSSE_MHU);
392 object_initialize_child(obj, "mhu1", &s->mhu[1], TYPE_ARMSSE_MHU);
394 if (info->has_ppus) {
395 for (i = 0; i < info->num_cpus; i++) {
396 char *name = g_strdup_printf("CPU%dCORE_PPU", i);
397 int ppuidx = CPU0CORE_PPU + i;
399 object_initialize_child(obj, name, &s->ppu[ppuidx],
400 TYPE_UNIMPLEMENTED_DEVICE);
401 g_free(name);
403 object_initialize_child(obj, "DBG_PPU", &s->ppu[DBG_PPU],
404 TYPE_UNIMPLEMENTED_DEVICE);
405 for (i = 0; i < info->sram_banks; i++) {
406 char *name = g_strdup_printf("RAM%d_PPU", i);
407 int ppuidx = RAM0_PPU + i;
409 object_initialize_child(obj, name, &s->ppu[ppuidx],
410 TYPE_UNIMPLEMENTED_DEVICE);
411 g_free(name);
414 if (info->has_cachectrl) {
415 for (i = 0; i < info->num_cpus; i++) {
416 char *name = g_strdup_printf("cachectrl%d", i);
418 object_initialize_child(obj, name, &s->cachectrl[i],
419 TYPE_UNIMPLEMENTED_DEVICE);
420 g_free(name);
423 if (info->has_cpusecctrl) {
424 for (i = 0; i < info->num_cpus; i++) {
425 char *name = g_strdup_printf("cpusecctrl%d", i);
427 object_initialize_child(obj, name, &s->cpusecctrl[i],
428 TYPE_UNIMPLEMENTED_DEVICE);
429 g_free(name);
432 if (info->has_cpuid) {
433 for (i = 0; i < info->num_cpus; i++) {
434 char *name = g_strdup_printf("cpuid%d", i);
436 object_initialize_child(obj, name, &s->cpuid[i],
437 TYPE_ARMSSE_CPUID);
438 g_free(name);
441 object_initialize_child(obj, "nmi-orgate", &s->nmi_orgate, TYPE_OR_IRQ);
442 object_initialize_child(obj, "ppc-irq-orgate", &s->ppc_irq_orgate,
443 TYPE_OR_IRQ);
444 object_initialize_child(obj, "sec-resp-splitter", &s->sec_resp_splitter,
445 TYPE_SPLIT_IRQ);
446 for (i = 0; i < ARRAY_SIZE(s->ppc_irq_splitter); i++) {
447 char *name = g_strdup_printf("ppc-irq-splitter-%d", i);
448 SplitIRQ *splitter = &s->ppc_irq_splitter[i];
450 object_initialize_child(obj, name, splitter, TYPE_SPLIT_IRQ);
451 g_free(name);
453 if (info->num_cpus > 1) {
454 for (i = 0; i < ARRAY_SIZE(s->cpu_irq_splitter); i++) {
455 if (irq_is_common[i]) {
456 char *name = g_strdup_printf("cpu-irq-splitter%d", i);
457 SplitIRQ *splitter = &s->cpu_irq_splitter[i];
459 object_initialize_child(obj, name, splitter, TYPE_SPLIT_IRQ);
460 g_free(name);
466 static void armsse_exp_irq(void *opaque, int n, int level)
468 qemu_irq *irqarray = opaque;
470 qemu_set_irq(irqarray[n], level);
473 static void armsse_mpcexp_status(void *opaque, int n, int level)
475 ARMSSE *s = ARM_SSE(opaque);
476 qemu_set_irq(s->mpcexp_status_in[n], level);
479 static qemu_irq armsse_get_common_irq_in(ARMSSE *s, int irqno)
482 * Return a qemu_irq which can be used to signal IRQ n to
483 * all CPUs in the SSE.
485 ARMSSEClass *asc = ARM_SSE_GET_CLASS(s);
486 const ARMSSEInfo *info = asc->info;
488 assert(irq_is_common[irqno]);
490 if (info->num_cpus == 1) {
491 /* Only one CPU -- just connect directly to it */
492 return qdev_get_gpio_in(DEVICE(&s->armv7m[0]), irqno);
493 } else {
494 /* Connect to the splitter which feeds all CPUs */
495 return qdev_get_gpio_in(DEVICE(&s->cpu_irq_splitter[irqno]), 0);
499 static void map_ppu(ARMSSE *s, int ppuidx, const char *name, hwaddr addr)
501 /* Map a PPU unimplemented device stub */
502 DeviceState *dev = DEVICE(&s->ppu[ppuidx]);
504 qdev_prop_set_string(dev, "name", name);
505 qdev_prop_set_uint64(dev, "size", 0x1000);
506 sysbus_realize(SYS_BUS_DEVICE(dev), &error_fatal);
507 sysbus_mmio_map(SYS_BUS_DEVICE(&s->ppu[ppuidx]), 0, addr);
510 static void armsse_realize(DeviceState *dev, Error **errp)
512 ARMSSE *s = ARM_SSE(dev);
513 ARMSSEClass *asc = ARM_SSE_GET_CLASS(dev);
514 const ARMSSEInfo *info = asc->info;
515 const ARMSSEDeviceInfo *devinfo;
516 int i;
517 MemoryRegion *mr;
518 Error *err = NULL;
519 SysBusDevice *sbd_apb_ppc0;
520 SysBusDevice *sbd_secctl;
521 DeviceState *dev_apb_ppc0;
522 DeviceState *dev_apb_ppc1;
523 DeviceState *dev_secctl;
524 DeviceState *dev_splitter;
525 uint32_t addr_width_max;
527 if (!s->board_memory) {
528 error_setg(errp, "memory property was not set");
529 return;
532 if (!clock_has_source(s->mainclk)) {
533 error_setg(errp, "MAINCLK clock was not connected");
535 if (!clock_has_source(s->s32kclk)) {
536 error_setg(errp, "S32KCLK clock was not connected");
539 assert(info->num_cpus <= SSE_MAX_CPUS);
541 /* max SRAM_ADDR_WIDTH: 24 - log2(SRAM_NUM_BANK) */
542 assert(is_power_of_2(info->sram_banks));
543 addr_width_max = 24 - ctz32(info->sram_banks);
544 if (s->sram_addr_width < 1 || s->sram_addr_width > addr_width_max) {
545 error_setg(errp, "SRAM_ADDR_WIDTH must be between 1 and %d",
546 addr_width_max);
547 return;
550 /* Handling of which devices should be available only to secure
551 * code is usually done differently for M profile than for A profile.
552 * Instead of putting some devices only into the secure address space,
553 * devices exist in both address spaces but with hard-wired security
554 * permissions that will cause the CPU to fault for non-secure accesses.
556 * The ARMSSE has an IDAU (Implementation Defined Access Unit),
557 * which specifies hard-wired security permissions for different
558 * areas of the physical address space. For the ARMSSE IDAU, the
559 * top 4 bits of the physical address are the IDAU region ID, and
560 * if bit 28 (ie the lowest bit of the ID) is 0 then this is an NS
561 * region, otherwise it is an S region.
563 * The various devices and RAMs are generally all mapped twice,
564 * once into a region that the IDAU defines as secure and once
565 * into a non-secure region. They sit behind either a Memory
566 * Protection Controller (for RAM) or a Peripheral Protection
567 * Controller (for devices), which allow a more fine grained
568 * configuration of whether non-secure accesses are permitted.
570 * (The other place that guest software can configure security
571 * permissions is in the architected SAU (Security Attribution
572 * Unit), which is entirely inside the CPU. The IDAU can upgrade
573 * the security attributes for a region to more restrictive than
574 * the SAU specifies, but cannot downgrade them.)
576 * 0x10000000..0x1fffffff alias of 0x00000000..0x0fffffff
577 * 0x20000000..0x2007ffff 32KB FPGA block RAM
578 * 0x30000000..0x3fffffff alias of 0x20000000..0x2fffffff
579 * 0x40000000..0x4000ffff base peripheral region 1
580 * 0x40010000..0x4001ffff CPU peripherals (none for ARMSSE)
581 * 0x40020000..0x4002ffff system control element peripherals
582 * 0x40080000..0x400fffff base peripheral region 2
583 * 0x50000000..0x5fffffff alias of 0x40000000..0x4fffffff
586 memory_region_add_subregion_overlap(&s->container, 0, s->board_memory, -2);
588 for (i = 0; i < info->num_cpus; i++) {
589 DeviceState *cpudev = DEVICE(&s->armv7m[i]);
590 Object *cpuobj = OBJECT(&s->armv7m[i]);
591 int j;
592 char *gpioname;
594 qdev_prop_set_uint32(cpudev, "num-irq", s->exp_numirq + NUM_SSE_IRQS);
596 * In real hardware the initial Secure VTOR is set from the INITSVTOR*
597 * registers in the IoT Kit System Control Register block. In QEMU
598 * we set the initial value here, and also the reset value of the
599 * sysctl register, from this object's QOM init-svtor property.
600 * If the guest changes the INITSVTOR* registers at runtime then the
601 * code in iotkit-sysctl.c will update the CPU init-svtor property
602 * (which will then take effect on the next CPU warm-reset).
604 * Note that typically a board using the SSE-200 will have a system
605 * control processor whose boot firmware initializes the INITSVTOR*
606 * registers before powering up the CPUs. QEMU doesn't emulate
607 * the control processor, so instead we behave in the way that the
608 * firmware does: the initial value should be set by the board code
609 * (using the init-svtor property on the ARMSSE object) to match
610 * whatever its firmware does.
612 qdev_prop_set_uint32(cpudev, "init-svtor", s->init_svtor);
614 * CPUs start powered down if the corresponding bit in the CPUWAIT
615 * register is 1. In real hardware the CPUWAIT register reset value is
616 * a configurable property of the SSE-200 (via the CPUWAIT0_RST and
617 * CPUWAIT1_RST parameters), but since all the boards we care about
618 * start CPU0 and leave CPU1 powered off, we hard-code that in
619 * info->cpuwait_rst for now. We can add QOM properties for this
620 * later if necessary.
622 if (extract32(info->cpuwait_rst, i, 1)) {
623 if (!object_property_set_bool(cpuobj, "start-powered-off", true,
624 errp)) {
625 return;
628 if (!s->cpu_fpu[i]) {
629 if (!object_property_set_bool(cpuobj, "vfp", false, errp)) {
630 return;
633 if (!s->cpu_dsp[i]) {
634 if (!object_property_set_bool(cpuobj, "dsp", false, errp)) {
635 return;
639 if (i > 0) {
640 memory_region_add_subregion_overlap(&s->cpu_container[i], 0,
641 &s->container_alias[i - 1], -1);
642 } else {
643 memory_region_add_subregion_overlap(&s->cpu_container[i], 0,
644 &s->container, -1);
646 object_property_set_link(cpuobj, "memory",
647 OBJECT(&s->cpu_container[i]), &error_abort);
648 object_property_set_link(cpuobj, "idau", OBJECT(s), &error_abort);
649 if (!sysbus_realize(SYS_BUS_DEVICE(cpuobj), errp)) {
650 return;
653 * The cluster must be realized after the armv7m container, as
654 * the container's CPU object is only created on realize, and the
655 * CPU must exist and have been parented into the cluster before
656 * the cluster is realized.
658 if (!qdev_realize(DEVICE(&s->cluster[i]), NULL, errp)) {
659 return;
662 /* Connect EXP_IRQ/EXP_CPUn_IRQ GPIOs to the NVIC's lines 32 and up */
663 s->exp_irqs[i] = g_new(qemu_irq, s->exp_numirq);
664 for (j = 0; j < s->exp_numirq; j++) {
665 s->exp_irqs[i][j] = qdev_get_gpio_in(cpudev, j + NUM_SSE_IRQS);
667 if (i == 0) {
668 gpioname = g_strdup("EXP_IRQ");
669 } else {
670 gpioname = g_strdup_printf("EXP_CPU%d_IRQ", i);
672 qdev_init_gpio_in_named_with_opaque(dev, armsse_exp_irq,
673 s->exp_irqs[i],
674 gpioname, s->exp_numirq);
675 g_free(gpioname);
678 /* Wire up the splitters that connect common IRQs to all CPUs */
679 if (info->num_cpus > 1) {
680 for (i = 0; i < ARRAY_SIZE(s->cpu_irq_splitter); i++) {
681 if (irq_is_common[i]) {
682 Object *splitter = OBJECT(&s->cpu_irq_splitter[i]);
683 DeviceState *devs = DEVICE(splitter);
684 int cpunum;
686 if (!object_property_set_int(splitter, "num-lines",
687 info->num_cpus, errp)) {
688 return;
690 if (!qdev_realize(DEVICE(splitter), NULL, errp)) {
691 return;
693 for (cpunum = 0; cpunum < info->num_cpus; cpunum++) {
694 DeviceState *cpudev = DEVICE(&s->armv7m[cpunum]);
696 qdev_connect_gpio_out(devs, cpunum,
697 qdev_get_gpio_in(cpudev, i));
703 /* Set up the big aliases first */
704 make_alias(s, &s->alias1, &s->container, "alias 1",
705 0x10000000, 0x10000000, 0x00000000);
706 make_alias(s, &s->alias2, &s->container,
707 "alias 2", 0x30000000, 0x10000000, 0x20000000);
708 /* The 0x50000000..0x5fffffff region is not a pure alias: it has
709 * a few extra devices that only appear there (generally the
710 * control interfaces for the protection controllers).
711 * We implement this by mapping those devices over the top of this
712 * alias MR at a higher priority. Some of the devices in this range
713 * are per-CPU, so we must put this alias in the per-cpu containers.
715 for (i = 0; i < info->num_cpus; i++) {
716 make_alias(s, &s->alias3[i], &s->cpu_container[i],
717 "alias 3", 0x50000000, 0x10000000, 0x40000000);
720 /* Security controller */
721 object_property_set_int(OBJECT(&s->secctl), "sse-version",
722 info->sse_version, &error_abort);
723 if (!sysbus_realize(SYS_BUS_DEVICE(&s->secctl), errp)) {
724 return;
726 sbd_secctl = SYS_BUS_DEVICE(&s->secctl);
727 dev_secctl = DEVICE(&s->secctl);
728 sysbus_mmio_map(sbd_secctl, 0, 0x50080000);
729 sysbus_mmio_map(sbd_secctl, 1, 0x40080000);
731 s->nsc_cfg_in = qemu_allocate_irq(nsccfg_handler, s, 1);
732 qdev_connect_gpio_out_named(dev_secctl, "nsc_cfg", 0, s->nsc_cfg_in);
734 /* The sec_resp_cfg output from the security controller must be split into
735 * multiple lines, one for each of the PPCs within the ARMSSE and one
736 * that will be an output from the ARMSSE to the system.
738 if (!object_property_set_int(OBJECT(&s->sec_resp_splitter),
739 "num-lines", 3, errp)) {
740 return;
742 if (!qdev_realize(DEVICE(&s->sec_resp_splitter), NULL, errp)) {
743 return;
745 dev_splitter = DEVICE(&s->sec_resp_splitter);
746 qdev_connect_gpio_out_named(dev_secctl, "sec_resp_cfg", 0,
747 qdev_get_gpio_in(dev_splitter, 0));
749 /* Each SRAM bank lives behind its own Memory Protection Controller */
750 for (i = 0; i < info->sram_banks; i++) {
751 char *ramname = g_strdup_printf("armsse.sram%d", i);
752 SysBusDevice *sbd_mpc;
753 uint32_t sram_bank_size = 1 << s->sram_addr_width;
755 memory_region_init_ram(&s->sram[i], NULL, ramname,
756 sram_bank_size, &err);
757 g_free(ramname);
758 if (err) {
759 error_propagate(errp, err);
760 return;
762 object_property_set_link(OBJECT(&s->mpc[i]), "downstream",
763 OBJECT(&s->sram[i]), &error_abort);
764 if (!sysbus_realize(SYS_BUS_DEVICE(&s->mpc[i]), errp)) {
765 return;
767 /* Map the upstream end of the MPC into the right place... */
768 sbd_mpc = SYS_BUS_DEVICE(&s->mpc[i]);
769 memory_region_add_subregion(&s->container,
770 0x20000000 + i * sram_bank_size,
771 sysbus_mmio_get_region(sbd_mpc, 1));
772 /* ...and its register interface */
773 memory_region_add_subregion(&s->container, 0x50083000 + i * 0x1000,
774 sysbus_mmio_get_region(sbd_mpc, 0));
777 /* We must OR together lines from the MPC splitters to go to the NVIC */
778 if (!object_property_set_int(OBJECT(&s->mpc_irq_orgate), "num-lines",
779 IOTS_NUM_EXP_MPC + info->sram_banks,
780 errp)) {
781 return;
783 if (!qdev_realize(DEVICE(&s->mpc_irq_orgate), NULL, errp)) {
784 return;
786 qdev_connect_gpio_out(DEVICE(&s->mpc_irq_orgate), 0,
787 armsse_get_common_irq_in(s, 9));
789 /* Devices behind APB PPC0:
790 * 0x40000000: timer0
791 * 0x40001000: timer1
792 * 0x40002000: dual timer
793 * 0x40003000: MHU0 (SSE-200 only)
794 * 0x40004000: MHU1 (SSE-200 only)
795 * We must configure and realize each downstream device and connect
796 * it to the appropriate PPC port; then we can realize the PPC and
797 * map its upstream ends to the right place in the container.
799 for (devinfo = info->devinfo; devinfo->name; devinfo++) {
800 SysBusDevice *sbd;
801 qemu_irq irq;
803 if (!strcmp(devinfo->type, TYPE_CMSDK_APB_TIMER)) {
804 sbd = SYS_BUS_DEVICE(&s->timer[devinfo->index]);
806 qdev_connect_clock_in(DEVICE(sbd), "pclk", s->mainclk);
807 if (!sysbus_realize(sbd, errp)) {
808 return;
810 mr = sysbus_mmio_get_region(sbd, 0);
811 } else {
812 g_assert_not_reached();
815 switch (devinfo->irq) {
816 case NO_IRQ:
817 irq = NULL;
818 break;
819 case 0 ... NUM_SSE_IRQS - 1:
820 irq = armsse_get_common_irq_in(s, devinfo->irq);
821 break;
822 default:
823 g_assert_not_reached();
826 if (irq) {
827 sysbus_connect_irq(sbd, 0, irq);
831 * Devices connected to a PPC are connected to the port here;
832 * we will map the upstream end of that port to the right address
833 * in the container later after the PPC has been realized.
834 * Devices not connected to a PPC can be mapped immediately.
836 if (devinfo->ppc != NO_PPC) {
837 TZPPC *ppc = &s->apb_ppc[devinfo->ppc];
838 g_autofree char *portname = g_strdup_printf("port[%d]",
839 devinfo->ppc_port);
840 object_property_set_link(OBJECT(ppc), portname, OBJECT(mr),
841 &error_abort);
842 } else {
843 memory_region_add_subregion(&s->container, devinfo->addr, mr);
847 qdev_connect_clock_in(DEVICE(&s->dualtimer), "TIMCLK", s->mainclk);
848 if (!sysbus_realize(SYS_BUS_DEVICE(&s->dualtimer), errp)) {
849 return;
851 sysbus_connect_irq(SYS_BUS_DEVICE(&s->dualtimer), 0,
852 armsse_get_common_irq_in(s, 5));
853 mr = sysbus_mmio_get_region(SYS_BUS_DEVICE(&s->dualtimer), 0);
854 object_property_set_link(OBJECT(&s->apb_ppc[0]), "port[2]", OBJECT(mr),
855 &error_abort);
857 if (info->has_mhus) {
859 * An SSE-200 with only one CPU should have only one MHU created,
860 * with the region where the second MHU usually is being RAZ/WI.
861 * We don't implement that SSE-200 config; if we want to support
862 * it then this code needs to be enhanced to handle creating the
863 * RAZ/WI region instead of the second MHU.
865 assert(info->num_cpus == ARRAY_SIZE(s->mhu));
867 for (i = 0; i < ARRAY_SIZE(s->mhu); i++) {
868 char *port;
869 int cpunum;
870 SysBusDevice *mhu_sbd = SYS_BUS_DEVICE(&s->mhu[i]);
872 if (!sysbus_realize(SYS_BUS_DEVICE(&s->mhu[i]), errp)) {
873 return;
875 port = g_strdup_printf("port[%d]", i + 3);
876 mr = sysbus_mmio_get_region(mhu_sbd, 0);
877 object_property_set_link(OBJECT(&s->apb_ppc[0]), port, OBJECT(mr),
878 &error_abort);
879 g_free(port);
882 * Each MHU has an irq line for each CPU:
883 * MHU 0 irq line 0 -> CPU 0 IRQ 6
884 * MHU 0 irq line 1 -> CPU 1 IRQ 6
885 * MHU 1 irq line 0 -> CPU 0 IRQ 7
886 * MHU 1 irq line 1 -> CPU 1 IRQ 7
888 for (cpunum = 0; cpunum < info->num_cpus; cpunum++) {
889 DeviceState *cpudev = DEVICE(&s->armv7m[cpunum]);
891 sysbus_connect_irq(mhu_sbd, cpunum,
892 qdev_get_gpio_in(cpudev, 6 + i));
897 if (!sysbus_realize(SYS_BUS_DEVICE(&s->apb_ppc[0]), errp)) {
898 return;
901 sbd_apb_ppc0 = SYS_BUS_DEVICE(&s->apb_ppc[0]);
902 dev_apb_ppc0 = DEVICE(&s->apb_ppc[0]);
904 mr = sysbus_mmio_get_region(sbd_apb_ppc0, 2);
905 memory_region_add_subregion(&s->container, 0x40002000, mr);
906 if (info->has_mhus) {
907 mr = sysbus_mmio_get_region(sbd_apb_ppc0, 3);
908 memory_region_add_subregion(&s->container, 0x40003000, mr);
909 mr = sysbus_mmio_get_region(sbd_apb_ppc0, 4);
910 memory_region_add_subregion(&s->container, 0x40004000, mr);
912 for (i = 0; i < IOTS_APB_PPC0_NUM_PORTS; i++) {
913 qdev_connect_gpio_out_named(dev_secctl, "apb_ppc0_nonsec", i,
914 qdev_get_gpio_in_named(dev_apb_ppc0,
915 "cfg_nonsec", i));
916 qdev_connect_gpio_out_named(dev_secctl, "apb_ppc0_ap", i,
917 qdev_get_gpio_in_named(dev_apb_ppc0,
918 "cfg_ap", i));
920 qdev_connect_gpio_out_named(dev_secctl, "apb_ppc0_irq_enable", 0,
921 qdev_get_gpio_in_named(dev_apb_ppc0,
922 "irq_enable", 0));
923 qdev_connect_gpio_out_named(dev_secctl, "apb_ppc0_irq_clear", 0,
924 qdev_get_gpio_in_named(dev_apb_ppc0,
925 "irq_clear", 0));
926 qdev_connect_gpio_out(dev_splitter, 0,
927 qdev_get_gpio_in_named(dev_apb_ppc0,
928 "cfg_sec_resp", 0));
930 /* All the PPC irq lines (from the 2 internal PPCs and the 8 external
931 * ones) are sent individually to the security controller, and also
932 * ORed together to give a single combined PPC interrupt to the NVIC.
934 if (!object_property_set_int(OBJECT(&s->ppc_irq_orgate),
935 "num-lines", NUM_PPCS, errp)) {
936 return;
938 if (!qdev_realize(DEVICE(&s->ppc_irq_orgate), NULL, errp)) {
939 return;
941 qdev_connect_gpio_out(DEVICE(&s->ppc_irq_orgate), 0,
942 armsse_get_common_irq_in(s, 10));
945 * 0x40010000 .. 0x4001ffff (and the 0x5001000... secure-only alias):
946 * private per-CPU region (all these devices are SSE-200 only):
947 * 0x50010000: L1 icache control registers
948 * 0x50011000: CPUSECCTRL (CPU local security control registers)
949 * 0x4001f000 and 0x5001f000: CPU_IDENTITY register block
951 if (info->has_cachectrl) {
952 for (i = 0; i < info->num_cpus; i++) {
953 char *name = g_strdup_printf("cachectrl%d", i);
954 MemoryRegion *mr;
956 qdev_prop_set_string(DEVICE(&s->cachectrl[i]), "name", name);
957 g_free(name);
958 qdev_prop_set_uint64(DEVICE(&s->cachectrl[i]), "size", 0x1000);
959 if (!sysbus_realize(SYS_BUS_DEVICE(&s->cachectrl[i]), errp)) {
960 return;
963 mr = sysbus_mmio_get_region(SYS_BUS_DEVICE(&s->cachectrl[i]), 0);
964 memory_region_add_subregion(&s->cpu_container[i], 0x50010000, mr);
967 if (info->has_cpusecctrl) {
968 for (i = 0; i < info->num_cpus; i++) {
969 char *name = g_strdup_printf("CPUSECCTRL%d", i);
970 MemoryRegion *mr;
972 qdev_prop_set_string(DEVICE(&s->cpusecctrl[i]), "name", name);
973 g_free(name);
974 qdev_prop_set_uint64(DEVICE(&s->cpusecctrl[i]), "size", 0x1000);
975 if (!sysbus_realize(SYS_BUS_DEVICE(&s->cpusecctrl[i]), errp)) {
976 return;
979 mr = sysbus_mmio_get_region(SYS_BUS_DEVICE(&s->cpusecctrl[i]), 0);
980 memory_region_add_subregion(&s->cpu_container[i], 0x50011000, mr);
983 if (info->has_cpuid) {
984 for (i = 0; i < info->num_cpus; i++) {
985 MemoryRegion *mr;
987 qdev_prop_set_uint32(DEVICE(&s->cpuid[i]), "CPUID", i);
988 if (!sysbus_realize(SYS_BUS_DEVICE(&s->cpuid[i]), errp)) {
989 return;
992 mr = sysbus_mmio_get_region(SYS_BUS_DEVICE(&s->cpuid[i]), 0);
993 memory_region_add_subregion(&s->cpu_container[i], 0x4001F000, mr);
997 /* 0x40020000 .. 0x4002ffff : ARMSSE system control peripheral region */
998 /* Devices behind APB PPC1:
999 * 0x4002f000: S32K timer
1001 qdev_connect_clock_in(DEVICE(&s->s32ktimer), "pclk", s->s32kclk);
1002 if (!sysbus_realize(SYS_BUS_DEVICE(&s->s32ktimer), errp)) {
1003 return;
1005 sysbus_connect_irq(SYS_BUS_DEVICE(&s->s32ktimer), 0,
1006 armsse_get_common_irq_in(s, 2));
1007 mr = sysbus_mmio_get_region(SYS_BUS_DEVICE(&s->s32ktimer), 0);
1008 object_property_set_link(OBJECT(&s->apb_ppc[1]), "port[0]", OBJECT(mr),
1009 &error_abort);
1011 if (!sysbus_realize(SYS_BUS_DEVICE(&s->apb_ppc[1]), errp)) {
1012 return;
1014 mr = sysbus_mmio_get_region(SYS_BUS_DEVICE(&s->apb_ppc[1]), 0);
1015 memory_region_add_subregion(&s->container, 0x4002f000, mr);
1017 dev_apb_ppc1 = DEVICE(&s->apb_ppc[1]);
1018 qdev_connect_gpio_out_named(dev_secctl, "apb_ppc1_nonsec", 0,
1019 qdev_get_gpio_in_named(dev_apb_ppc1,
1020 "cfg_nonsec", 0));
1021 qdev_connect_gpio_out_named(dev_secctl, "apb_ppc1_ap", 0,
1022 qdev_get_gpio_in_named(dev_apb_ppc1,
1023 "cfg_ap", 0));
1024 qdev_connect_gpio_out_named(dev_secctl, "apb_ppc1_irq_enable", 0,
1025 qdev_get_gpio_in_named(dev_apb_ppc1,
1026 "irq_enable", 0));
1027 qdev_connect_gpio_out_named(dev_secctl, "apb_ppc1_irq_clear", 0,
1028 qdev_get_gpio_in_named(dev_apb_ppc1,
1029 "irq_clear", 0));
1030 qdev_connect_gpio_out(dev_splitter, 1,
1031 qdev_get_gpio_in_named(dev_apb_ppc1,
1032 "cfg_sec_resp", 0));
1035 * Now both PPCs are realized we can map the upstream ends of
1036 * ports which correspond to entries in the devinfo array.
1037 * The ports which are connected to non-devinfo devices have
1038 * already been mapped.
1040 for (devinfo = info->devinfo; devinfo->name; devinfo++) {
1041 SysBusDevice *ppc_sbd;
1043 if (devinfo->ppc == NO_PPC) {
1044 continue;
1046 ppc_sbd = SYS_BUS_DEVICE(&s->apb_ppc[devinfo->ppc]);
1047 mr = sysbus_mmio_get_region(ppc_sbd, devinfo->ppc_port);
1048 memory_region_add_subregion(&s->container, devinfo->addr, mr);
1051 if (!object_property_set_int(OBJECT(&s->sysinfo), "SYS_VERSION",
1052 info->sys_version, errp)) {
1053 return;
1055 if (!object_property_set_int(OBJECT(&s->sysinfo), "SYS_CONFIG",
1056 armsse_sys_config_value(s, info), errp)) {
1057 return;
1059 object_property_set_int(OBJECT(&s->sysinfo), "sse-version",
1060 info->sse_version, &error_abort);
1061 object_property_set_int(OBJECT(&s->sysinfo), "IIDR",
1062 info->iidr, &error_abort);
1063 if (!sysbus_realize(SYS_BUS_DEVICE(&s->sysinfo), errp)) {
1064 return;
1066 /* System information registers */
1067 sysbus_mmio_map(SYS_BUS_DEVICE(&s->sysinfo), 0, 0x40020000);
1068 /* System control registers */
1069 object_property_set_int(OBJECT(&s->sysctl), "sse-version",
1070 info->sse_version, &error_abort);
1071 object_property_set_int(OBJECT(&s->sysctl), "CPUWAIT_RST",
1072 info->cpuwait_rst, &error_abort);
1073 object_property_set_int(OBJECT(&s->sysctl), "INITSVTOR0_RST",
1074 s->init_svtor, &error_abort);
1075 object_property_set_int(OBJECT(&s->sysctl), "INITSVTOR1_RST",
1076 s->init_svtor, &error_abort);
1077 if (!sysbus_realize(SYS_BUS_DEVICE(&s->sysctl), errp)) {
1078 return;
1080 sysbus_mmio_map(SYS_BUS_DEVICE(&s->sysctl), 0, 0x50021000);
1082 if (info->has_ppus) {
1083 /* CPUnCORE_PPU for each CPU */
1084 for (i = 0; i < info->num_cpus; i++) {
1085 char *name = g_strdup_printf("CPU%dCORE_PPU", i);
1087 map_ppu(s, CPU0CORE_PPU + i, name, 0x50023000 + i * 0x2000);
1089 * We don't support CPU debug so don't create the
1090 * CPU0DEBUG_PPU at 0x50024000 and 0x50026000.
1092 g_free(name);
1094 map_ppu(s, DBG_PPU, "DBG_PPU", 0x50029000);
1096 for (i = 0; i < info->sram_banks; i++) {
1097 char *name = g_strdup_printf("RAM%d_PPU", i);
1099 map_ppu(s, RAM0_PPU + i, name, 0x5002a000 + i * 0x1000);
1100 g_free(name);
1104 /* This OR gate wires together outputs from the secure watchdogs to NMI */
1105 if (!object_property_set_int(OBJECT(&s->nmi_orgate), "num-lines", 2,
1106 errp)) {
1107 return;
1109 if (!qdev_realize(DEVICE(&s->nmi_orgate), NULL, errp)) {
1110 return;
1112 qdev_connect_gpio_out(DEVICE(&s->nmi_orgate), 0,
1113 qdev_get_gpio_in_named(DEVICE(&s->armv7m), "NMI", 0));
1115 qdev_connect_clock_in(DEVICE(&s->s32kwatchdog), "WDOGCLK", s->s32kclk);
1116 if (!sysbus_realize(SYS_BUS_DEVICE(&s->s32kwatchdog), errp)) {
1117 return;
1119 sysbus_connect_irq(SYS_BUS_DEVICE(&s->s32kwatchdog), 0,
1120 qdev_get_gpio_in(DEVICE(&s->nmi_orgate), 0));
1121 sysbus_mmio_map(SYS_BUS_DEVICE(&s->s32kwatchdog), 0, 0x5002e000);
1123 /* 0x40080000 .. 0x4008ffff : ARMSSE second Base peripheral region */
1125 qdev_connect_clock_in(DEVICE(&s->nswatchdog), "WDOGCLK", s->mainclk);
1126 if (!sysbus_realize(SYS_BUS_DEVICE(&s->nswatchdog), errp)) {
1127 return;
1129 sysbus_connect_irq(SYS_BUS_DEVICE(&s->nswatchdog), 0,
1130 armsse_get_common_irq_in(s, 1));
1131 sysbus_mmio_map(SYS_BUS_DEVICE(&s->nswatchdog), 0, 0x40081000);
1133 qdev_connect_clock_in(DEVICE(&s->swatchdog), "WDOGCLK", s->mainclk);
1134 if (!sysbus_realize(SYS_BUS_DEVICE(&s->swatchdog), errp)) {
1135 return;
1137 sysbus_connect_irq(SYS_BUS_DEVICE(&s->swatchdog), 0,
1138 qdev_get_gpio_in(DEVICE(&s->nmi_orgate), 1));
1139 sysbus_mmio_map(SYS_BUS_DEVICE(&s->swatchdog), 0, 0x50081000);
1141 for (i = 0; i < ARRAY_SIZE(s->ppc_irq_splitter); i++) {
1142 Object *splitter = OBJECT(&s->ppc_irq_splitter[i]);
1144 if (!object_property_set_int(splitter, "num-lines", 2, errp)) {
1145 return;
1147 if (!qdev_realize(DEVICE(splitter), NULL, errp)) {
1148 return;
1152 for (i = 0; i < IOTS_NUM_AHB_EXP_PPC; i++) {
1153 char *ppcname = g_strdup_printf("ahb_ppcexp%d", i);
1155 armsse_forward_ppc(s, ppcname, i);
1156 g_free(ppcname);
1159 for (i = 0; i < IOTS_NUM_APB_EXP_PPC; i++) {
1160 char *ppcname = g_strdup_printf("apb_ppcexp%d", i);
1162 armsse_forward_ppc(s, ppcname, i + IOTS_NUM_AHB_EXP_PPC);
1163 g_free(ppcname);
1166 for (i = NUM_EXTERNAL_PPCS; i < NUM_PPCS; i++) {
1167 /* Wire up IRQ splitter for internal PPCs */
1168 DeviceState *devs = DEVICE(&s->ppc_irq_splitter[i]);
1169 char *gpioname = g_strdup_printf("apb_ppc%d_irq_status",
1170 i - NUM_EXTERNAL_PPCS);
1171 TZPPC *ppc = &s->apb_ppc[i - NUM_EXTERNAL_PPCS];
1173 qdev_connect_gpio_out(devs, 0,
1174 qdev_get_gpio_in_named(dev_secctl, gpioname, 0));
1175 qdev_connect_gpio_out(devs, 1,
1176 qdev_get_gpio_in(DEVICE(&s->ppc_irq_orgate), i));
1177 qdev_connect_gpio_out_named(DEVICE(ppc), "irq", 0,
1178 qdev_get_gpio_in(devs, 0));
1179 g_free(gpioname);
1182 /* Wire up the splitters for the MPC IRQs */
1183 for (i = 0; i < IOTS_NUM_EXP_MPC + info->sram_banks; i++) {
1184 SplitIRQ *splitter = &s->mpc_irq_splitter[i];
1185 DeviceState *dev_splitter = DEVICE(splitter);
1187 if (!object_property_set_int(OBJECT(splitter), "num-lines", 2,
1188 errp)) {
1189 return;
1191 if (!qdev_realize(DEVICE(splitter), NULL, errp)) {
1192 return;
1195 if (i < IOTS_NUM_EXP_MPC) {
1196 /* Splitter input is from GPIO input line */
1197 s->mpcexp_status_in[i] = qdev_get_gpio_in(dev_splitter, 0);
1198 qdev_connect_gpio_out(dev_splitter, 0,
1199 qdev_get_gpio_in_named(dev_secctl,
1200 "mpcexp_status", i));
1201 } else {
1202 /* Splitter input is from our own MPC */
1203 qdev_connect_gpio_out_named(DEVICE(&s->mpc[i - IOTS_NUM_EXP_MPC]),
1204 "irq", 0,
1205 qdev_get_gpio_in(dev_splitter, 0));
1206 qdev_connect_gpio_out(dev_splitter, 0,
1207 qdev_get_gpio_in_named(dev_secctl,
1208 "mpc_status",
1209 i - IOTS_NUM_EXP_MPC));
1212 qdev_connect_gpio_out(dev_splitter, 1,
1213 qdev_get_gpio_in(DEVICE(&s->mpc_irq_orgate), i));
1215 /* Create GPIO inputs which will pass the line state for our
1216 * mpcexp_irq inputs to the correct splitter devices.
1218 qdev_init_gpio_in_named(dev, armsse_mpcexp_status, "mpcexp_status",
1219 IOTS_NUM_EXP_MPC);
1221 armsse_forward_sec_resp_cfg(s);
1223 /* Forward the MSC related signals */
1224 qdev_pass_gpios(dev_secctl, dev, "mscexp_status");
1225 qdev_pass_gpios(dev_secctl, dev, "mscexp_clear");
1226 qdev_pass_gpios(dev_secctl, dev, "mscexp_ns");
1227 qdev_connect_gpio_out_named(dev_secctl, "msc_irq", 0,
1228 armsse_get_common_irq_in(s, 11));
1231 * Expose our container region to the board model; this corresponds
1232 * to the AHB Slave Expansion ports which allow bus master devices
1233 * (eg DMA controllers) in the board model to make transactions into
1234 * devices in the ARMSSE.
1236 sysbus_init_mmio(SYS_BUS_DEVICE(s), &s->container);
1238 /* Set initial system_clock_scale from MAINCLK */
1239 armsse_mainclk_update(s, ClockUpdate);
1242 static void armsse_idau_check(IDAUInterface *ii, uint32_t address,
1243 int *iregion, bool *exempt, bool *ns, bool *nsc)
1246 * For ARMSSE systems the IDAU responses are simple logical functions
1247 * of the address bits. The NSC attribute is guest-adjustable via the
1248 * NSCCFG register in the security controller.
1250 ARMSSE *s = ARM_SSE(ii);
1251 int region = extract32(address, 28, 4);
1253 *ns = !(region & 1);
1254 *nsc = (region == 1 && (s->nsccfg & 1)) || (region == 3 && (s->nsccfg & 2));
1255 /* 0xe0000000..0xe00fffff and 0xf0000000..0xf00fffff are exempt */
1256 *exempt = (address & 0xeff00000) == 0xe0000000;
1257 *iregion = region;
1260 static const VMStateDescription armsse_vmstate = {
1261 .name = "iotkit",
1262 .version_id = 2,
1263 .minimum_version_id = 2,
1264 .fields = (VMStateField[]) {
1265 VMSTATE_CLOCK(mainclk, ARMSSE),
1266 VMSTATE_CLOCK(s32kclk, ARMSSE),
1267 VMSTATE_UINT32(nsccfg, ARMSSE),
1268 VMSTATE_END_OF_LIST()
1272 static void armsse_reset(DeviceState *dev)
1274 ARMSSE *s = ARM_SSE(dev);
1276 s->nsccfg = 0;
1279 static void armsse_class_init(ObjectClass *klass, void *data)
1281 DeviceClass *dc = DEVICE_CLASS(klass);
1282 IDAUInterfaceClass *iic = IDAU_INTERFACE_CLASS(klass);
1283 ARMSSEClass *asc = ARM_SSE_CLASS(klass);
1284 const ARMSSEInfo *info = data;
1286 dc->realize = armsse_realize;
1287 dc->vmsd = &armsse_vmstate;
1288 device_class_set_props(dc, info->props);
1289 dc->reset = armsse_reset;
1290 iic->check = armsse_idau_check;
1291 asc->info = info;
1294 static const TypeInfo armsse_info = {
1295 .name = TYPE_ARM_SSE,
1296 .parent = TYPE_SYS_BUS_DEVICE,
1297 .instance_size = sizeof(ARMSSE),
1298 .class_size = sizeof(ARMSSEClass),
1299 .instance_init = armsse_init,
1300 .abstract = true,
1301 .interfaces = (InterfaceInfo[]) {
1302 { TYPE_IDAU_INTERFACE },
1307 static void armsse_register_types(void)
1309 int i;
1311 type_register_static(&armsse_info);
1313 for (i = 0; i < ARRAY_SIZE(armsse_variants); i++) {
1314 TypeInfo ti = {
1315 .name = armsse_variants[i].name,
1316 .parent = TYPE_ARM_SSE,
1317 .class_init = armsse_class_init,
1318 .class_data = (void *)&armsse_variants[i],
1320 type_register(&ti);
1324 type_init(armsse_register_types);