Merge remote-tracking branch 'remotes/philmd/tags/mips-20210502' into staging
[qemu/ar7.git] / linux-user / sparc / signal.c
blobd27b7a3af79dcd4d462047c5cbb055851ec4b7ed
1 /*
2 * Emulation of Linux signals
4 * Copyright (c) 2003 Fabrice Bellard
6 * This program is free software; you can redistribute it and/or modify
7 * it under the terms of the GNU General Public License as published by
8 * the Free Software Foundation; either version 2 of the License, or
9 * (at your option) any later version.
11 * This program is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 * GNU General Public License for more details.
16 * You should have received a copy of the GNU General Public License
17 * along with this program; if not, see <http://www.gnu.org/licenses/>.
19 #include "qemu/osdep.h"
20 #include "qemu.h"
21 #include "signal-common.h"
22 #include "linux-user/trace.h"
24 #define __SUNOS_MAXWIN 31
26 /* This is what SunOS does, so shall I. */
27 struct target_sigcontext {
28 abi_ulong sigc_onstack; /* state to restore */
30 abi_ulong sigc_mask; /* sigmask to restore */
31 abi_ulong sigc_sp; /* stack pointer */
32 abi_ulong sigc_pc; /* program counter */
33 abi_ulong sigc_npc; /* next program counter */
34 abi_ulong sigc_psr; /* for condition codes etc */
35 abi_ulong sigc_g1; /* User uses these two registers */
36 abi_ulong sigc_o0; /* within the trampoline code. */
38 /* Now comes information regarding the users window set
39 * at the time of the signal.
41 abi_ulong sigc_oswins; /* outstanding windows */
43 /* stack ptrs for each regwin buf */
44 char *sigc_spbuf[__SUNOS_MAXWIN];
46 /* Windows to restore after signal */
47 struct {
48 abi_ulong locals[8];
49 abi_ulong ins[8];
50 } sigc_wbuf[__SUNOS_MAXWIN];
52 /* A Sparc stack frame */
53 struct sparc_stackf {
54 abi_ulong locals[8];
55 abi_ulong ins[8];
56 /* It's simpler to treat fp and callers_pc as elements of ins[]
57 * since we never need to access them ourselves.
59 char *structptr;
60 abi_ulong xargs[6];
61 abi_ulong xxargs[1];
64 typedef struct {
65 struct {
66 abi_ulong psr;
67 abi_ulong pc;
68 abi_ulong npc;
69 abi_ulong y;
70 abi_ulong u_regs[16]; /* globals and ins */
71 } si_regs;
72 int si_mask;
73 } __siginfo_t;
75 typedef struct {
76 abi_ulong si_float_regs[32];
77 unsigned long si_fsr;
78 unsigned long si_fpqdepth;
79 struct {
80 unsigned long *insn_addr;
81 unsigned long insn;
82 } si_fpqueue [16];
83 } qemu_siginfo_fpu_t;
86 struct target_signal_frame {
87 struct sparc_stackf ss;
88 __siginfo_t info;
89 abi_ulong fpu_save;
90 uint32_t insns[2] QEMU_ALIGNED(8);
91 abi_ulong extramask[TARGET_NSIG_WORDS - 1];
92 abi_ulong extra_size; /* Should be 0 */
93 qemu_siginfo_fpu_t fpu_state;
95 struct target_rt_signal_frame {
96 struct sparc_stackf ss;
97 siginfo_t info;
98 abi_ulong regs[20];
99 sigset_t mask;
100 abi_ulong fpu_save;
101 uint32_t insns[2];
102 stack_t stack;
103 unsigned int extra_size; /* Should be 0 */
104 qemu_siginfo_fpu_t fpu_state;
107 static inline abi_ulong get_sigframe(struct target_sigaction *sa,
108 CPUSPARCState *env,
109 unsigned long framesize)
111 abi_ulong sp = get_sp_from_cpustate(env);
114 * If we are on the alternate signal stack and would overflow it, don't.
115 * Return an always-bogus address instead so we will die with SIGSEGV.
117 if (on_sig_stack(sp) && !likely(on_sig_stack(sp - framesize))) {
118 return -1;
121 /* This is the X/Open sanctioned signal stack switching. */
122 sp = target_sigsp(sp, sa) - framesize;
124 /* Always align the stack frame. This handles two cases. First,
125 * sigaltstack need not be mindful of platform specific stack
126 * alignment. Second, if we took this signal because the stack
127 * is not aligned properly, we'd like to take the signal cleanly
128 * and report that.
130 sp &= ~15UL;
132 return sp;
135 static int
136 setup___siginfo(__siginfo_t *si, CPUSPARCState *env, abi_ulong mask)
138 int err = 0, i;
140 __put_user(env->psr, &si->si_regs.psr);
141 __put_user(env->pc, &si->si_regs.pc);
142 __put_user(env->npc, &si->si_regs.npc);
143 __put_user(env->y, &si->si_regs.y);
144 for (i=0; i < 8; i++) {
145 __put_user(env->gregs[i], &si->si_regs.u_regs[i]);
147 for (i=0; i < 8; i++) {
148 __put_user(env->regwptr[WREG_O0 + i], &si->si_regs.u_regs[i + 8]);
150 __put_user(mask, &si->si_mask);
151 return err;
154 #define NF_ALIGNEDSZ (((sizeof(struct target_signal_frame) + 7) & (~7)))
156 void setup_frame(int sig, struct target_sigaction *ka,
157 target_sigset_t *set, CPUSPARCState *env)
159 abi_ulong sf_addr;
160 struct target_signal_frame *sf;
161 int sigframe_size, err, i;
163 /* 1. Make sure everything is clean */
164 //synchronize_user_stack();
166 sigframe_size = NF_ALIGNEDSZ;
167 sf_addr = get_sigframe(ka, env, sigframe_size);
168 trace_user_setup_frame(env, sf_addr);
170 sf = lock_user(VERIFY_WRITE, sf_addr,
171 sizeof(struct target_signal_frame), 0);
172 if (!sf) {
173 goto sigsegv;
175 #if 0
176 if (invalid_frame_pointer(sf, sigframe_size))
177 goto sigill_and_return;
178 #endif
179 /* 2. Save the current process state */
180 err = setup___siginfo(&sf->info, env, set->sig[0]);
181 __put_user(0, &sf->extra_size);
183 //save_fpu_state(regs, &sf->fpu_state);
184 //__put_user(&sf->fpu_state, &sf->fpu_save);
186 __put_user(set->sig[0], &sf->info.si_mask);
187 for (i = 0; i < TARGET_NSIG_WORDS - 1; i++) {
188 __put_user(set->sig[i + 1], &sf->extramask[i]);
191 for (i = 0; i < 8; i++) {
192 __put_user(env->regwptr[i + WREG_L0], &sf->ss.locals[i]);
194 for (i = 0; i < 8; i++) {
195 __put_user(env->regwptr[i + WREG_I0], &sf->ss.ins[i]);
197 if (err)
198 goto sigsegv;
200 /* 3. signal handler back-trampoline and parameters */
201 env->regwptr[WREG_SP] = sf_addr;
202 env->regwptr[WREG_O0] = sig;
203 env->regwptr[WREG_O1] = sf_addr +
204 offsetof(struct target_signal_frame, info);
205 env->regwptr[WREG_O2] = sf_addr +
206 offsetof(struct target_signal_frame, info);
208 /* 4. signal handler */
209 env->pc = ka->_sa_handler;
210 env->npc = (env->pc + 4);
211 /* 5. return to kernel instructions */
212 if (ka->ka_restorer) {
213 env->regwptr[WREG_O7] = ka->ka_restorer;
214 } else {
215 uint32_t val32;
217 env->regwptr[WREG_O7] = sf_addr +
218 offsetof(struct target_signal_frame, insns) - 2 * 4;
220 /* mov __NR_sigreturn, %g1 */
221 val32 = 0x821020d8;
222 __put_user(val32, &sf->insns[0]);
224 /* t 0x10 */
225 val32 = 0x91d02010;
226 __put_user(val32, &sf->insns[1]);
228 unlock_user(sf, sf_addr, sizeof(struct target_signal_frame));
229 return;
230 #if 0
231 sigill_and_return:
232 force_sig(TARGET_SIGILL);
233 #endif
234 sigsegv:
235 unlock_user(sf, sf_addr, sizeof(struct target_signal_frame));
236 force_sigsegv(sig);
239 void setup_rt_frame(int sig, struct target_sigaction *ka,
240 target_siginfo_t *info,
241 target_sigset_t *set, CPUSPARCState *env)
243 qemu_log_mask(LOG_UNIMP, "setup_rt_frame: not implemented\n");
246 long do_sigreturn(CPUSPARCState *env)
248 abi_ulong sf_addr;
249 struct target_signal_frame *sf;
250 abi_ulong up_psr, pc, npc;
251 target_sigset_t set;
252 sigset_t host_set;
253 int i;
255 sf_addr = env->regwptr[WREG_SP];
256 trace_user_do_sigreturn(env, sf_addr);
257 if (!lock_user_struct(VERIFY_READ, sf, sf_addr, 1)) {
258 goto segv_and_exit;
261 /* 1. Make sure we are not getting garbage from the user */
263 if (sf_addr & 3)
264 goto segv_and_exit;
266 __get_user(pc, &sf->info.si_regs.pc);
267 __get_user(npc, &sf->info.si_regs.npc);
269 if ((pc | npc) & 3) {
270 goto segv_and_exit;
273 /* 2. Restore the state */
274 __get_user(up_psr, &sf->info.si_regs.psr);
276 /* User can only change condition codes and FPU enabling in %psr. */
277 env->psr = (up_psr & (PSR_ICC /* | PSR_EF */))
278 | (env->psr & ~(PSR_ICC /* | PSR_EF */));
280 env->pc = pc;
281 env->npc = npc;
282 __get_user(env->y, &sf->info.si_regs.y);
283 for (i=0; i < 8; i++) {
284 __get_user(env->gregs[i], &sf->info.si_regs.u_regs[i]);
286 for (i=0; i < 8; i++) {
287 __get_user(env->regwptr[i + WREG_O0], &sf->info.si_regs.u_regs[i + 8]);
290 /* FIXME: implement FPU save/restore:
291 * __get_user(fpu_save, &sf->fpu_save);
292 * if (fpu_save) {
293 * if (restore_fpu_state(env, fpu_save)) {
294 * goto segv_and_exit;
299 /* This is pretty much atomic, no amount locking would prevent
300 * the races which exist anyways.
302 __get_user(set.sig[0], &sf->info.si_mask);
303 for(i = 1; i < TARGET_NSIG_WORDS; i++) {
304 __get_user(set.sig[i], &sf->extramask[i - 1]);
307 target_to_host_sigset_internal(&host_set, &set);
308 set_sigmask(&host_set);
310 unlock_user_struct(sf, sf_addr, 0);
311 return -TARGET_QEMU_ESIGRETURN;
313 segv_and_exit:
314 unlock_user_struct(sf, sf_addr, 0);
315 force_sig(TARGET_SIGSEGV);
316 return -TARGET_QEMU_ESIGRETURN;
319 long do_rt_sigreturn(CPUSPARCState *env)
321 trace_user_do_rt_sigreturn(env, 0);
322 qemu_log_mask(LOG_UNIMP, "do_rt_sigreturn: not implemented\n");
323 return -TARGET_ENOSYS;
326 #if defined(TARGET_SPARC64) && !defined(TARGET_ABI32)
327 #define SPARC_MC_TSTATE 0
328 #define SPARC_MC_PC 1
329 #define SPARC_MC_NPC 2
330 #define SPARC_MC_Y 3
331 #define SPARC_MC_G1 4
332 #define SPARC_MC_G2 5
333 #define SPARC_MC_G3 6
334 #define SPARC_MC_G4 7
335 #define SPARC_MC_G5 8
336 #define SPARC_MC_G6 9
337 #define SPARC_MC_G7 10
338 #define SPARC_MC_O0 11
339 #define SPARC_MC_O1 12
340 #define SPARC_MC_O2 13
341 #define SPARC_MC_O3 14
342 #define SPARC_MC_O4 15
343 #define SPARC_MC_O5 16
344 #define SPARC_MC_O6 17
345 #define SPARC_MC_O7 18
346 #define SPARC_MC_NGREG 19
348 typedef abi_ulong target_mc_greg_t;
349 typedef target_mc_greg_t target_mc_gregset_t[SPARC_MC_NGREG];
351 struct target_mc_fq {
352 abi_ulong mcfq_addr;
353 uint32_t mcfq_insn;
357 * Note the manual 16-alignment; the kernel gets this because it
358 * includes a "long double qregs[16]" in the mcpu_fregs union,
359 * which we can't do.
361 struct target_mc_fpu {
362 union {
363 uint32_t sregs[32];
364 uint64_t dregs[32];
365 //uint128_t qregs[16];
366 } mcfpu_fregs;
367 abi_ulong mcfpu_fsr;
368 abi_ulong mcfpu_fprs;
369 abi_ulong mcfpu_gsr;
370 abi_ulong mcfpu_fq;
371 unsigned char mcfpu_qcnt;
372 unsigned char mcfpu_qentsz;
373 unsigned char mcfpu_enab;
374 } __attribute__((aligned(16)));
375 typedef struct target_mc_fpu target_mc_fpu_t;
377 typedef struct {
378 target_mc_gregset_t mc_gregs;
379 target_mc_greg_t mc_fp;
380 target_mc_greg_t mc_i7;
381 target_mc_fpu_t mc_fpregs;
382 } target_mcontext_t;
384 struct target_ucontext {
385 abi_ulong tuc_link;
386 abi_ulong tuc_flags;
387 target_sigset_t tuc_sigmask;
388 target_mcontext_t tuc_mcontext;
391 /* A V9 register window */
392 struct target_reg_window {
393 abi_ulong locals[8];
394 abi_ulong ins[8];
397 #define TARGET_STACK_BIAS 2047
399 /* {set, get}context() needed for 64-bit SparcLinux userland. */
400 void sparc64_set_context(CPUSPARCState *env)
402 abi_ulong ucp_addr;
403 struct target_ucontext *ucp;
404 target_mc_gregset_t *grp;
405 target_mc_fpu_t *fpup;
406 abi_ulong pc, npc, tstate;
407 unsigned int i;
408 unsigned char fenab;
410 ucp_addr = env->regwptr[WREG_O0];
411 if (!lock_user_struct(VERIFY_READ, ucp, ucp_addr, 1)) {
412 goto do_sigsegv;
414 grp = &ucp->tuc_mcontext.mc_gregs;
415 __get_user(pc, &((*grp)[SPARC_MC_PC]));
416 __get_user(npc, &((*grp)[SPARC_MC_NPC]));
417 if ((pc | npc) & 3) {
418 goto do_sigsegv;
420 if (env->regwptr[WREG_O1]) {
421 target_sigset_t target_set;
422 sigset_t set;
424 if (TARGET_NSIG_WORDS == 1) {
425 __get_user(target_set.sig[0], &ucp->tuc_sigmask.sig[0]);
426 } else {
427 abi_ulong *src, *dst;
428 src = ucp->tuc_sigmask.sig;
429 dst = target_set.sig;
430 for (i = 0; i < TARGET_NSIG_WORDS; i++, dst++, src++) {
431 __get_user(*dst, src);
434 target_to_host_sigset_internal(&set, &target_set);
435 set_sigmask(&set);
437 env->pc = pc;
438 env->npc = npc;
439 __get_user(env->y, &((*grp)[SPARC_MC_Y]));
440 __get_user(tstate, &((*grp)[SPARC_MC_TSTATE]));
441 /* Honour TSTATE_ASI, TSTATE_ICC and TSTATE_XCC only */
442 env->asi = (tstate >> 24) & 0xff;
443 cpu_put_ccr(env, (tstate >> 32) & 0xff);
444 __get_user(env->gregs[1], (&(*grp)[SPARC_MC_G1]));
445 __get_user(env->gregs[2], (&(*grp)[SPARC_MC_G2]));
446 __get_user(env->gregs[3], (&(*grp)[SPARC_MC_G3]));
447 __get_user(env->gregs[4], (&(*grp)[SPARC_MC_G4]));
448 __get_user(env->gregs[5], (&(*grp)[SPARC_MC_G5]));
449 __get_user(env->gregs[6], (&(*grp)[SPARC_MC_G6]));
450 /* Skip g7 as that's the thread register in userspace */
453 * Note that unlike the kernel, we didn't need to mess with the
454 * guest register window state to save it into a pt_regs to run
455 * the kernel. So for us the guest's O regs are still in WREG_O*
456 * (unlike the kernel which has put them in UREG_I* in a pt_regs)
457 * and the fp and i7 are still in WREG_I6 and WREG_I7 and don't
458 * need to be written back to userspace memory.
460 __get_user(env->regwptr[WREG_O0], (&(*grp)[SPARC_MC_O0]));
461 __get_user(env->regwptr[WREG_O1], (&(*grp)[SPARC_MC_O1]));
462 __get_user(env->regwptr[WREG_O2], (&(*grp)[SPARC_MC_O2]));
463 __get_user(env->regwptr[WREG_O3], (&(*grp)[SPARC_MC_O3]));
464 __get_user(env->regwptr[WREG_O4], (&(*grp)[SPARC_MC_O4]));
465 __get_user(env->regwptr[WREG_O5], (&(*grp)[SPARC_MC_O5]));
466 __get_user(env->regwptr[WREG_O6], (&(*grp)[SPARC_MC_O6]));
467 __get_user(env->regwptr[WREG_O7], (&(*grp)[SPARC_MC_O7]));
469 __get_user(env->regwptr[WREG_FP], &(ucp->tuc_mcontext.mc_fp));
470 __get_user(env->regwptr[WREG_I7], &(ucp->tuc_mcontext.mc_i7));
472 fpup = &ucp->tuc_mcontext.mc_fpregs;
474 __get_user(fenab, &(fpup->mcfpu_enab));
475 if (fenab) {
476 abi_ulong fprs;
479 * We use the FPRS from the guest only in deciding whether
480 * to restore the upper, lower, or both banks of the FPU regs.
481 * The kernel here writes the FPU register data into the
482 * process's current_thread_info state and unconditionally
483 * clears FPRS and TSTATE_PEF: this disables the FPU so that the
484 * next FPU-disabled trap will copy the data out of
485 * current_thread_info and into the real FPU registers.
486 * QEMU doesn't need to handle lazy-FPU-state-restoring like that,
487 * so we always load the data directly into the FPU registers
488 * and leave FPRS and TSTATE_PEF alone (so the FPU stays enabled).
489 * Note that because we (and the kernel) always write zeroes for
490 * the fenab and fprs in sparc64_get_context() none of this code
491 * will execute unless the guest manually constructed or changed
492 * the context structure.
494 __get_user(fprs, &(fpup->mcfpu_fprs));
495 if (fprs & FPRS_DL) {
496 for (i = 0; i < 16; i++) {
497 __get_user(env->fpr[i].ll, &(fpup->mcfpu_fregs.dregs[i]));
500 if (fprs & FPRS_DU) {
501 for (i = 16; i < 32; i++) {
502 __get_user(env->fpr[i].ll, &(fpup->mcfpu_fregs.dregs[i]));
505 __get_user(env->fsr, &(fpup->mcfpu_fsr));
506 __get_user(env->gsr, &(fpup->mcfpu_gsr));
508 unlock_user_struct(ucp, ucp_addr, 0);
509 return;
510 do_sigsegv:
511 unlock_user_struct(ucp, ucp_addr, 0);
512 force_sig(TARGET_SIGSEGV);
515 void sparc64_get_context(CPUSPARCState *env)
517 abi_ulong ucp_addr;
518 struct target_ucontext *ucp;
519 target_mc_gregset_t *grp;
520 target_mcontext_t *mcp;
521 int err;
522 unsigned int i;
523 target_sigset_t target_set;
524 sigset_t set;
526 ucp_addr = env->regwptr[WREG_O0];
527 if (!lock_user_struct(VERIFY_WRITE, ucp, ucp_addr, 0)) {
528 goto do_sigsegv;
531 memset(ucp, 0, sizeof(*ucp));
533 mcp = &ucp->tuc_mcontext;
534 grp = &mcp->mc_gregs;
536 /* Skip over the trap instruction, first. */
537 env->pc = env->npc;
538 env->npc += 4;
540 /* If we're only reading the signal mask then do_sigprocmask()
541 * is guaranteed not to fail, which is important because we don't
542 * have any way to signal a failure or restart this operation since
543 * this is not a normal syscall.
545 err = do_sigprocmask(0, NULL, &set);
546 assert(err == 0);
547 host_to_target_sigset_internal(&target_set, &set);
548 if (TARGET_NSIG_WORDS == 1) {
549 __put_user(target_set.sig[0],
550 (abi_ulong *)&ucp->tuc_sigmask);
551 } else {
552 abi_ulong *src, *dst;
553 src = target_set.sig;
554 dst = ucp->tuc_sigmask.sig;
555 for (i = 0; i < TARGET_NSIG_WORDS; i++, dst++, src++) {
556 __put_user(*src, dst);
560 __put_user(sparc64_tstate(env), &((*grp)[SPARC_MC_TSTATE]));
561 __put_user(env->pc, &((*grp)[SPARC_MC_PC]));
562 __put_user(env->npc, &((*grp)[SPARC_MC_NPC]));
563 __put_user(env->y, &((*grp)[SPARC_MC_Y]));
564 __put_user(env->gregs[1], &((*grp)[SPARC_MC_G1]));
565 __put_user(env->gregs[2], &((*grp)[SPARC_MC_G2]));
566 __put_user(env->gregs[3], &((*grp)[SPARC_MC_G3]));
567 __put_user(env->gregs[4], &((*grp)[SPARC_MC_G4]));
568 __put_user(env->gregs[5], &((*grp)[SPARC_MC_G5]));
569 __put_user(env->gregs[6], &((*grp)[SPARC_MC_G6]));
570 __put_user(env->gregs[7], &((*grp)[SPARC_MC_G7]));
573 * Note that unlike the kernel, we didn't need to mess with the
574 * guest register window state to save it into a pt_regs to run
575 * the kernel. So for us the guest's O regs are still in WREG_O*
576 * (unlike the kernel which has put them in UREG_I* in a pt_regs)
577 * and the fp and i7 are still in WREG_I6 and WREG_I7 and don't
578 * need to be fished out of userspace memory.
580 __put_user(env->regwptr[WREG_O0], &((*grp)[SPARC_MC_O0]));
581 __put_user(env->regwptr[WREG_O1], &((*grp)[SPARC_MC_O1]));
582 __put_user(env->regwptr[WREG_O2], &((*grp)[SPARC_MC_O2]));
583 __put_user(env->regwptr[WREG_O3], &((*grp)[SPARC_MC_O3]));
584 __put_user(env->regwptr[WREG_O4], &((*grp)[SPARC_MC_O4]));
585 __put_user(env->regwptr[WREG_O5], &((*grp)[SPARC_MC_O5]));
586 __put_user(env->regwptr[WREG_O6], &((*grp)[SPARC_MC_O6]));
587 __put_user(env->regwptr[WREG_O7], &((*grp)[SPARC_MC_O7]));
589 __put_user(env->regwptr[WREG_FP], &(mcp->mc_fp));
590 __put_user(env->regwptr[WREG_I7], &(mcp->mc_i7));
593 * We don't write out the FPU state. This matches the kernel's
594 * implementation (which has the code for doing this but
595 * hidden behind an "if (fenab)" where fenab is always 0).
598 unlock_user_struct(ucp, ucp_addr, 1);
599 return;
600 do_sigsegv:
601 unlock_user_struct(ucp, ucp_addr, 1);
602 force_sig(TARGET_SIGSEGV);
604 #endif