hw/mips/cps: Expose input clock and connect it to CPU cores
[qemu/ar7.git] / target / mips / internal.h
blobdd8a7809b645a177ac3145489f231d16400dc617
1 /*
2 * MIPS internal definitions and helpers
4 * This work is licensed under the terms of the GNU GPL, version 2 or later.
5 * See the COPYING file in the top-level directory.
6 */
8 #ifndef MIPS_INTERNAL_H
9 #define MIPS_INTERNAL_H
11 #include "fpu/softfloat-helpers.h"
14 * MMU types, the first four entries have the same layout as the
15 * CP0C0_MT field.
17 enum mips_mmu_types {
18 MMU_TYPE_NONE,
19 MMU_TYPE_R4000,
20 MMU_TYPE_RESERVED,
21 MMU_TYPE_FMT,
22 MMU_TYPE_R3000,
23 MMU_TYPE_R6000,
24 MMU_TYPE_R8000
27 struct mips_def_t {
28 const char *name;
29 int32_t CP0_PRid;
30 int32_t CP0_Config0;
31 int32_t CP0_Config1;
32 int32_t CP0_Config2;
33 int32_t CP0_Config3;
34 int32_t CP0_Config4;
35 int32_t CP0_Config4_rw_bitmask;
36 int32_t CP0_Config5;
37 int32_t CP0_Config5_rw_bitmask;
38 int32_t CP0_Config6;
39 int32_t CP0_Config6_rw_bitmask;
40 int32_t CP0_Config7;
41 int32_t CP0_Config7_rw_bitmask;
42 target_ulong CP0_LLAddr_rw_bitmask;
43 int CP0_LLAddr_shift;
44 int32_t SYNCI_Step;
45 int32_t CCRes;
46 int32_t CP0_Status_rw_bitmask;
47 int32_t CP0_TCStatus_rw_bitmask;
48 int32_t CP0_SRSCtl;
49 int32_t CP1_fcr0;
50 int32_t CP1_fcr31_rw_bitmask;
51 int32_t CP1_fcr31;
52 int32_t MSAIR;
53 int32_t SEGBITS;
54 int32_t PABITS;
55 int32_t CP0_SRSConf0_rw_bitmask;
56 int32_t CP0_SRSConf0;
57 int32_t CP0_SRSConf1_rw_bitmask;
58 int32_t CP0_SRSConf1;
59 int32_t CP0_SRSConf2_rw_bitmask;
60 int32_t CP0_SRSConf2;
61 int32_t CP0_SRSConf3_rw_bitmask;
62 int32_t CP0_SRSConf3;
63 int32_t CP0_SRSConf4_rw_bitmask;
64 int32_t CP0_SRSConf4;
65 int32_t CP0_PageGrain_rw_bitmask;
66 int32_t CP0_PageGrain;
67 target_ulong CP0_EBaseWG_rw_bitmask;
68 uint64_t insn_flags;
69 enum mips_mmu_types mmu_type;
70 int32_t SAARP;
73 extern const struct mips_def_t mips_defs[];
74 extern const int mips_defs_number;
76 enum CPUMIPSMSADataFormat {
77 DF_BYTE = 0,
78 DF_HALF,
79 DF_WORD,
80 DF_DOUBLE
83 void mips_cpu_do_interrupt(CPUState *cpu);
84 bool mips_cpu_exec_interrupt(CPUState *cpu, int int_req);
85 void mips_cpu_dump_state(CPUState *cpu, FILE *f, int flags);
86 hwaddr mips_cpu_get_phys_page_debug(CPUState *cpu, vaddr addr);
87 int mips_cpu_gdb_read_register(CPUState *cpu, GByteArray *buf, int reg);
88 int mips_cpu_gdb_write_register(CPUState *cpu, uint8_t *buf, int reg);
89 void mips_cpu_do_unaligned_access(CPUState *cpu, vaddr addr,
90 MMUAccessType access_type,
91 int mmu_idx, uintptr_t retaddr);
93 #if !defined(CONFIG_USER_ONLY)
95 typedef struct r4k_tlb_t r4k_tlb_t;
96 struct r4k_tlb_t {
97 target_ulong VPN;
98 uint32_t PageMask;
99 uint16_t ASID;
100 uint32_t MMID;
101 unsigned int G:1;
102 unsigned int C0:3;
103 unsigned int C1:3;
104 unsigned int V0:1;
105 unsigned int V1:1;
106 unsigned int D0:1;
107 unsigned int D1:1;
108 unsigned int XI0:1;
109 unsigned int XI1:1;
110 unsigned int RI0:1;
111 unsigned int RI1:1;
112 unsigned int EHINV:1;
113 uint64_t PFN[2];
116 struct CPUMIPSTLBContext {
117 uint32_t nb_tlb;
118 uint32_t tlb_in_use;
119 int (*map_address)(struct CPUMIPSState *env, hwaddr *physical, int *prot,
120 target_ulong address, int rw, int access_type);
121 void (*helper_tlbwi)(struct CPUMIPSState *env);
122 void (*helper_tlbwr)(struct CPUMIPSState *env);
123 void (*helper_tlbp)(struct CPUMIPSState *env);
124 void (*helper_tlbr)(struct CPUMIPSState *env);
125 void (*helper_tlbinv)(struct CPUMIPSState *env);
126 void (*helper_tlbinvf)(struct CPUMIPSState *env);
127 union {
128 struct {
129 r4k_tlb_t tlb[MIPS_TLB_MAX];
130 } r4k;
131 } mmu;
134 int no_mmu_map_address(CPUMIPSState *env, hwaddr *physical, int *prot,
135 target_ulong address, int rw, int access_type);
136 int fixed_mmu_map_address(CPUMIPSState *env, hwaddr *physical, int *prot,
137 target_ulong address, int rw, int access_type);
138 int r4k_map_address(CPUMIPSState *env, hwaddr *physical, int *prot,
139 target_ulong address, int rw, int access_type);
140 void r4k_helper_tlbwi(CPUMIPSState *env);
141 void r4k_helper_tlbwr(CPUMIPSState *env);
142 void r4k_helper_tlbp(CPUMIPSState *env);
143 void r4k_helper_tlbr(CPUMIPSState *env);
144 void r4k_helper_tlbinv(CPUMIPSState *env);
145 void r4k_helper_tlbinvf(CPUMIPSState *env);
146 void r4k_invalidate_tlb(CPUMIPSState *env, int idx, int use_extra);
147 uint32_t cpu_mips_get_random(CPUMIPSState *env);
149 void mips_cpu_do_transaction_failed(CPUState *cs, hwaddr physaddr,
150 vaddr addr, unsigned size,
151 MMUAccessType access_type,
152 int mmu_idx, MemTxAttrs attrs,
153 MemTxResult response, uintptr_t retaddr);
154 hwaddr cpu_mips_translate_address(CPUMIPSState *env, target_ulong address,
155 int rw);
156 #endif
158 #define cpu_signal_handler cpu_mips_signal_handler
160 #ifndef CONFIG_USER_ONLY
161 extern const VMStateDescription vmstate_mips_cpu;
162 #endif
164 static inline bool cpu_mips_hw_interrupts_enabled(CPUMIPSState *env)
166 return (env->CP0_Status & (1 << CP0St_IE)) &&
167 !(env->CP0_Status & (1 << CP0St_EXL)) &&
168 !(env->CP0_Status & (1 << CP0St_ERL)) &&
169 !(env->hflags & MIPS_HFLAG_DM) &&
171 * Note that the TCStatus IXMT field is initialized to zero,
172 * and only MT capable cores can set it to one. So we don't
173 * need to check for MT capabilities here.
175 !(env->active_tc.CP0_TCStatus & (1 << CP0TCSt_IXMT));
178 /* Check if there is pending and not masked out interrupt */
179 static inline bool cpu_mips_hw_interrupts_pending(CPUMIPSState *env)
181 int32_t pending;
182 int32_t status;
183 bool r;
185 pending = env->CP0_Cause & CP0Ca_IP_mask;
186 status = env->CP0_Status & CP0Ca_IP_mask;
188 if (env->CP0_Config3 & (1 << CP0C3_VEIC)) {
190 * A MIPS configured with a vectorizing external interrupt controller
191 * will feed a vector into the Cause pending lines. The core treats
192 * the status lines as a vector level, not as individual masks.
194 r = pending > status;
195 } else {
197 * A MIPS configured with compatibility or VInt (Vectored Interrupts)
198 * treats the pending lines as individual interrupt lines, the status
199 * lines are individual masks.
201 r = (pending & status) != 0;
203 return r;
206 void mips_tcg_init(void);
208 /* TODO QOM'ify CPU reset and remove */
209 void cpu_state_reset(CPUMIPSState *s);
210 void cpu_mips_realize_env(CPUMIPSState *env);
212 /* cp0_timer.c */
213 uint32_t cpu_mips_get_count(CPUMIPSState *env);
214 void cpu_mips_store_count(CPUMIPSState *env, uint32_t value);
215 void cpu_mips_store_compare(CPUMIPSState *env, uint32_t value);
216 void cpu_mips_start_count(CPUMIPSState *env);
217 void cpu_mips_stop_count(CPUMIPSState *env);
219 /* helper.c */
220 bool mips_cpu_tlb_fill(CPUState *cs, vaddr address, int size,
221 MMUAccessType access_type, int mmu_idx,
222 bool probe, uintptr_t retaddr);
224 /* op_helper.c */
225 uint32_t float_class_s(uint32_t arg, float_status *fst);
226 uint64_t float_class_d(uint64_t arg, float_status *fst);
228 extern unsigned int ieee_rm[];
229 void update_pagemask(CPUMIPSState *env, target_ulong arg1, int32_t *pagemask);
231 static inline void restore_rounding_mode(CPUMIPSState *env)
233 set_float_rounding_mode(ieee_rm[env->active_fpu.fcr31 & 3],
234 &env->active_fpu.fp_status);
237 static inline void restore_flush_mode(CPUMIPSState *env)
239 set_flush_to_zero((env->active_fpu.fcr31 & (1 << FCR31_FS)) != 0,
240 &env->active_fpu.fp_status);
243 static inline void restore_snan_bit_mode(CPUMIPSState *env)
245 set_snan_bit_is_one((env->active_fpu.fcr31 & (1 << FCR31_NAN2008)) == 0,
246 &env->active_fpu.fp_status);
249 static inline void restore_fp_status(CPUMIPSState *env)
251 restore_rounding_mode(env);
252 restore_flush_mode(env);
253 restore_snan_bit_mode(env);
256 static inline void restore_msa_fp_status(CPUMIPSState *env)
258 float_status *status = &env->active_tc.msa_fp_status;
259 int rounding_mode = (env->active_tc.msacsr & MSACSR_RM_MASK) >> MSACSR_RM;
260 bool flush_to_zero = (env->active_tc.msacsr & MSACSR_FS_MASK) != 0;
262 set_float_rounding_mode(ieee_rm[rounding_mode], status);
263 set_flush_to_zero(flush_to_zero, status);
264 set_flush_inputs_to_zero(flush_to_zero, status);
267 static inline void restore_pamask(CPUMIPSState *env)
269 if (env->hflags & MIPS_HFLAG_ELPA) {
270 env->PAMask = (1ULL << env->PABITS) - 1;
271 } else {
272 env->PAMask = PAMASK_BASE;
276 static inline int mips_vpe_active(CPUMIPSState *env)
278 int active = 1;
280 /* Check that the VPE is enabled. */
281 if (!(env->mvp->CP0_MVPControl & (1 << CP0MVPCo_EVP))) {
282 active = 0;
284 /* Check that the VPE is activated. */
285 if (!(env->CP0_VPEConf0 & (1 << CP0VPEC0_VPA))) {
286 active = 0;
290 * Now verify that there are active thread contexts in the VPE.
292 * This assumes the CPU model will internally reschedule threads
293 * if the active one goes to sleep. If there are no threads available
294 * the active one will be in a sleeping state, and we can turn off
295 * the entire VPE.
297 if (!(env->active_tc.CP0_TCStatus & (1 << CP0TCSt_A))) {
298 /* TC is not activated. */
299 active = 0;
301 if (env->active_tc.CP0_TCHalt & 1) {
302 /* TC is in halt state. */
303 active = 0;
306 return active;
309 static inline int mips_vp_active(CPUMIPSState *env)
311 CPUState *other_cs = first_cpu;
313 /* Check if the VP disabled other VPs (which means the VP is enabled) */
314 if ((env->CP0_VPControl >> CP0VPCtl_DIS) & 1) {
315 return 1;
318 /* Check if the virtual processor is disabled due to a DVP */
319 CPU_FOREACH(other_cs) {
320 MIPSCPU *other_cpu = MIPS_CPU(other_cs);
321 if ((&other_cpu->env != env) &&
322 ((other_cpu->env.CP0_VPControl >> CP0VPCtl_DIS) & 1)) {
323 return 0;
326 return 1;
329 static inline void compute_hflags(CPUMIPSState *env)
331 env->hflags &= ~(MIPS_HFLAG_COP1X | MIPS_HFLAG_64 | MIPS_HFLAG_CP0 |
332 MIPS_HFLAG_F64 | MIPS_HFLAG_FPU | MIPS_HFLAG_KSU |
333 MIPS_HFLAG_AWRAP | MIPS_HFLAG_DSP | MIPS_HFLAG_DSP_R2 |
334 MIPS_HFLAG_DSP_R3 | MIPS_HFLAG_SBRI | MIPS_HFLAG_MSA |
335 MIPS_HFLAG_FRE | MIPS_HFLAG_ELPA | MIPS_HFLAG_ERL);
336 if (env->CP0_Status & (1 << CP0St_ERL)) {
337 env->hflags |= MIPS_HFLAG_ERL;
339 if (!(env->CP0_Status & (1 << CP0St_EXL)) &&
340 !(env->CP0_Status & (1 << CP0St_ERL)) &&
341 !(env->hflags & MIPS_HFLAG_DM)) {
342 env->hflags |= (env->CP0_Status >> CP0St_KSU) &
343 MIPS_HFLAG_KSU;
345 #if defined(TARGET_MIPS64)
346 if ((env->insn_flags & ISA_MIPS3) &&
347 (((env->hflags & MIPS_HFLAG_KSU) != MIPS_HFLAG_UM) ||
348 (env->CP0_Status & (1 << CP0St_PX)) ||
349 (env->CP0_Status & (1 << CP0St_UX)))) {
350 env->hflags |= MIPS_HFLAG_64;
353 if (!(env->insn_flags & ISA_MIPS3)) {
354 env->hflags |= MIPS_HFLAG_AWRAP;
355 } else if (((env->hflags & MIPS_HFLAG_KSU) == MIPS_HFLAG_UM) &&
356 !(env->CP0_Status & (1 << CP0St_UX))) {
357 env->hflags |= MIPS_HFLAG_AWRAP;
358 } else if (env->insn_flags & ISA_MIPS64R6) {
359 /* Address wrapping for Supervisor and Kernel is specified in R6 */
360 if ((((env->hflags & MIPS_HFLAG_KSU) == MIPS_HFLAG_SM) &&
361 !(env->CP0_Status & (1 << CP0St_SX))) ||
362 (((env->hflags & MIPS_HFLAG_KSU) == MIPS_HFLAG_KM) &&
363 !(env->CP0_Status & (1 << CP0St_KX)))) {
364 env->hflags |= MIPS_HFLAG_AWRAP;
367 #endif
368 if (((env->CP0_Status & (1 << CP0St_CU0)) &&
369 !(env->insn_flags & ISA_MIPS32R6)) ||
370 !(env->hflags & MIPS_HFLAG_KSU)) {
371 env->hflags |= MIPS_HFLAG_CP0;
373 if (env->CP0_Status & (1 << CP0St_CU1)) {
374 env->hflags |= MIPS_HFLAG_FPU;
376 if (env->CP0_Status & (1 << CP0St_FR)) {
377 env->hflags |= MIPS_HFLAG_F64;
379 if (((env->hflags & MIPS_HFLAG_KSU) != MIPS_HFLAG_KM) &&
380 (env->CP0_Config5 & (1 << CP0C5_SBRI))) {
381 env->hflags |= MIPS_HFLAG_SBRI;
383 if (env->insn_flags & ASE_DSP_R3) {
385 * Our cpu supports DSP R3 ASE, so enable
386 * access to DSP R3 resources.
388 if (env->CP0_Status & (1 << CP0St_MX)) {
389 env->hflags |= MIPS_HFLAG_DSP | MIPS_HFLAG_DSP_R2 |
390 MIPS_HFLAG_DSP_R3;
392 } else if (env->insn_flags & ASE_DSP_R2) {
394 * Our cpu supports DSP R2 ASE, so enable
395 * access to DSP R2 resources.
397 if (env->CP0_Status & (1 << CP0St_MX)) {
398 env->hflags |= MIPS_HFLAG_DSP | MIPS_HFLAG_DSP_R2;
401 } else if (env->insn_flags & ASE_DSP) {
403 * Our cpu supports DSP ASE, so enable
404 * access to DSP resources.
406 if (env->CP0_Status & (1 << CP0St_MX)) {
407 env->hflags |= MIPS_HFLAG_DSP;
411 if (env->insn_flags & ISA_MIPS32R2) {
412 if (env->active_fpu.fcr0 & (1 << FCR0_F64)) {
413 env->hflags |= MIPS_HFLAG_COP1X;
415 } else if (env->insn_flags & ISA_MIPS32) {
416 if (env->hflags & MIPS_HFLAG_64) {
417 env->hflags |= MIPS_HFLAG_COP1X;
419 } else if (env->insn_flags & ISA_MIPS4) {
421 * All supported MIPS IV CPUs use the XX (CU3) to enable
422 * and disable the MIPS IV extensions to the MIPS III ISA.
423 * Some other MIPS IV CPUs ignore the bit, so the check here
424 * would be too restrictive for them.
426 if (env->CP0_Status & (1U << CP0St_CU3)) {
427 env->hflags |= MIPS_HFLAG_COP1X;
430 if (env->insn_flags & ASE_MSA) {
431 if (env->CP0_Config5 & (1 << CP0C5_MSAEn)) {
432 env->hflags |= MIPS_HFLAG_MSA;
435 if (env->active_fpu.fcr0 & (1 << FCR0_FREP)) {
436 if (env->CP0_Config5 & (1 << CP0C5_FRE)) {
437 env->hflags |= MIPS_HFLAG_FRE;
440 if (env->CP0_Config3 & (1 << CP0C3_LPA)) {
441 if (env->CP0_PageGrain & (1 << CP0PG_ELPA)) {
442 env->hflags |= MIPS_HFLAG_ELPA;
447 void cpu_mips_tlb_flush(CPUMIPSState *env);
448 void sync_c0_status(CPUMIPSState *env, CPUMIPSState *cpu, int tc);
449 void cpu_mips_store_status(CPUMIPSState *env, target_ulong val);
450 void cpu_mips_store_cause(CPUMIPSState *env, target_ulong val);
452 void QEMU_NORETURN do_raise_exception_err(CPUMIPSState *env, uint32_t exception,
453 int error_code, uintptr_t pc);
455 static inline void QEMU_NORETURN do_raise_exception(CPUMIPSState *env,
456 uint32_t exception,
457 uintptr_t pc)
459 do_raise_exception_err(env, exception, 0, pc);
462 #endif