target/i86: implement PKS
[qemu/ar7.git] / target / i386 / tcg / excp_helper.c
blobb7d6259e4a74e6818a520f574af2a44bf9da254d
1 /*
2 * x86 exception helpers
4 * Copyright (c) 2003 Fabrice Bellard
6 * This library is free software; you can redistribute it and/or
7 * modify it under the terms of the GNU Lesser General Public
8 * License as published by the Free Software Foundation; either
9 * version 2.1 of the License, or (at your option) any later version.
11 * This library is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
14 * Lesser General Public License for more details.
16 * You should have received a copy of the GNU Lesser General Public
17 * License along with this library; if not, see <http://www.gnu.org/licenses/>.
20 #include "qemu/osdep.h"
21 #include "cpu.h"
22 #include "exec/exec-all.h"
23 #include "qemu/log.h"
24 #include "sysemu/runstate.h"
25 #include "exec/helper-proto.h"
26 #include "helper-tcg.h"
28 void helper_raise_interrupt(CPUX86State *env, int intno, int next_eip_addend)
30 raise_interrupt(env, intno, 1, 0, next_eip_addend);
33 void helper_raise_exception(CPUX86State *env, int exception_index)
35 raise_exception(env, exception_index);
39 * Check nested exceptions and change to double or triple fault if
40 * needed. It should only be called, if this is not an interrupt.
41 * Returns the new exception number.
43 static int check_exception(CPUX86State *env, int intno, int *error_code,
44 uintptr_t retaddr)
46 int first_contributory = env->old_exception == 0 ||
47 (env->old_exception >= 10 &&
48 env->old_exception <= 13);
49 int second_contributory = intno == 0 ||
50 (intno >= 10 && intno <= 13);
52 qemu_log_mask(CPU_LOG_INT, "check_exception old: 0x%x new 0x%x\n",
53 env->old_exception, intno);
55 #if !defined(CONFIG_USER_ONLY)
56 if (env->old_exception == EXCP08_DBLE) {
57 if (env->hflags & HF_GUEST_MASK) {
58 cpu_vmexit(env, SVM_EXIT_SHUTDOWN, 0, retaddr); /* does not return */
61 qemu_log_mask(CPU_LOG_RESET, "Triple fault\n");
63 qemu_system_reset_request(SHUTDOWN_CAUSE_GUEST_RESET);
64 return EXCP_HLT;
66 #endif
68 if ((first_contributory && second_contributory)
69 || (env->old_exception == EXCP0E_PAGE &&
70 (second_contributory || (intno == EXCP0E_PAGE)))) {
71 intno = EXCP08_DBLE;
72 *error_code = 0;
75 if (second_contributory || (intno == EXCP0E_PAGE) ||
76 (intno == EXCP08_DBLE)) {
77 env->old_exception = intno;
80 return intno;
84 * Signal an interruption. It is executed in the main CPU loop.
85 * is_int is TRUE if coming from the int instruction. next_eip is the
86 * env->eip value AFTER the interrupt instruction. It is only relevant if
87 * is_int is TRUE.
89 static void QEMU_NORETURN raise_interrupt2(CPUX86State *env, int intno,
90 int is_int, int error_code,
91 int next_eip_addend,
92 uintptr_t retaddr)
94 CPUState *cs = env_cpu(env);
96 if (!is_int) {
97 cpu_svm_check_intercept_param(env, SVM_EXIT_EXCP_BASE + intno,
98 error_code, retaddr);
99 intno = check_exception(env, intno, &error_code, retaddr);
100 } else {
101 cpu_svm_check_intercept_param(env, SVM_EXIT_SWINT, 0, retaddr);
104 cs->exception_index = intno;
105 env->error_code = error_code;
106 env->exception_is_int = is_int;
107 env->exception_next_eip = env->eip + next_eip_addend;
108 cpu_loop_exit_restore(cs, retaddr);
111 /* shortcuts to generate exceptions */
113 void QEMU_NORETURN raise_interrupt(CPUX86State *env, int intno, int is_int,
114 int error_code, int next_eip_addend)
116 raise_interrupt2(env, intno, is_int, error_code, next_eip_addend, 0);
119 void raise_exception_err(CPUX86State *env, int exception_index,
120 int error_code)
122 raise_interrupt2(env, exception_index, 0, error_code, 0, 0);
125 void raise_exception_err_ra(CPUX86State *env, int exception_index,
126 int error_code, uintptr_t retaddr)
128 raise_interrupt2(env, exception_index, 0, error_code, 0, retaddr);
131 void raise_exception(CPUX86State *env, int exception_index)
133 raise_interrupt2(env, exception_index, 0, 0, 0, 0);
136 void raise_exception_ra(CPUX86State *env, int exception_index, uintptr_t retaddr)
138 raise_interrupt2(env, exception_index, 0, 0, 0, retaddr);
141 #if !defined(CONFIG_USER_ONLY)
142 static hwaddr get_hphys(CPUState *cs, hwaddr gphys, MMUAccessType access_type,
143 int *prot)
145 CPUX86State *env = &X86_CPU(cs)->env;
146 uint64_t rsvd_mask = PG_HI_RSVD_MASK;
147 uint64_t ptep, pte;
148 uint64_t exit_info_1 = 0;
149 target_ulong pde_addr, pte_addr;
150 uint32_t page_offset;
151 int page_size;
153 if (likely(!(env->hflags2 & HF2_NPT_MASK))) {
154 return gphys;
157 if (!(env->nested_pg_mode & SVM_NPT_NXE)) {
158 rsvd_mask |= PG_NX_MASK;
161 if (env->nested_pg_mode & SVM_NPT_PAE) {
162 uint64_t pde, pdpe;
163 target_ulong pdpe_addr;
165 #ifdef TARGET_X86_64
166 if (env->nested_pg_mode & SVM_NPT_LMA) {
167 uint64_t pml5e;
168 uint64_t pml4e_addr, pml4e;
170 pml5e = env->nested_cr3;
171 ptep = PG_NX_MASK | PG_USER_MASK | PG_RW_MASK;
173 pml4e_addr = (pml5e & PG_ADDRESS_MASK) +
174 (((gphys >> 39) & 0x1ff) << 3);
175 pml4e = x86_ldq_phys(cs, pml4e_addr);
176 if (!(pml4e & PG_PRESENT_MASK)) {
177 goto do_fault;
179 if (pml4e & (rsvd_mask | PG_PSE_MASK)) {
180 goto do_fault_rsvd;
182 if (!(pml4e & PG_ACCESSED_MASK)) {
183 pml4e |= PG_ACCESSED_MASK;
184 x86_stl_phys_notdirty(cs, pml4e_addr, pml4e);
186 ptep &= pml4e ^ PG_NX_MASK;
187 pdpe_addr = (pml4e & PG_ADDRESS_MASK) +
188 (((gphys >> 30) & 0x1ff) << 3);
189 pdpe = x86_ldq_phys(cs, pdpe_addr);
190 if (!(pdpe & PG_PRESENT_MASK)) {
191 goto do_fault;
193 if (pdpe & rsvd_mask) {
194 goto do_fault_rsvd;
196 ptep &= pdpe ^ PG_NX_MASK;
197 if (!(pdpe & PG_ACCESSED_MASK)) {
198 pdpe |= PG_ACCESSED_MASK;
199 x86_stl_phys_notdirty(cs, pdpe_addr, pdpe);
201 if (pdpe & PG_PSE_MASK) {
202 /* 1 GB page */
203 page_size = 1024 * 1024 * 1024;
204 pte_addr = pdpe_addr;
205 pte = pdpe;
206 goto do_check_protect;
208 } else
209 #endif
211 pdpe_addr = (env->nested_cr3 & ~0x1f) + ((gphys >> 27) & 0x18);
212 pdpe = x86_ldq_phys(cs, pdpe_addr);
213 if (!(pdpe & PG_PRESENT_MASK)) {
214 goto do_fault;
216 rsvd_mask |= PG_HI_USER_MASK;
217 if (pdpe & (rsvd_mask | PG_NX_MASK)) {
218 goto do_fault_rsvd;
220 ptep = PG_NX_MASK | PG_USER_MASK | PG_RW_MASK;
223 pde_addr = (pdpe & PG_ADDRESS_MASK) + (((gphys >> 21) & 0x1ff) << 3);
224 pde = x86_ldq_phys(cs, pde_addr);
225 if (!(pde & PG_PRESENT_MASK)) {
226 goto do_fault;
228 if (pde & rsvd_mask) {
229 goto do_fault_rsvd;
231 ptep &= pde ^ PG_NX_MASK;
232 if (pde & PG_PSE_MASK) {
233 /* 2 MB page */
234 page_size = 2048 * 1024;
235 pte_addr = pde_addr;
236 pte = pde;
237 goto do_check_protect;
239 /* 4 KB page */
240 if (!(pde & PG_ACCESSED_MASK)) {
241 pde |= PG_ACCESSED_MASK;
242 x86_stl_phys_notdirty(cs, pde_addr, pde);
244 pte_addr = (pde & PG_ADDRESS_MASK) + (((gphys >> 12) & 0x1ff) << 3);
245 pte = x86_ldq_phys(cs, pte_addr);
246 if (!(pte & PG_PRESENT_MASK)) {
247 goto do_fault;
249 if (pte & rsvd_mask) {
250 goto do_fault_rsvd;
252 /* combine pde and pte nx, user and rw protections */
253 ptep &= pte ^ PG_NX_MASK;
254 page_size = 4096;
255 } else {
256 uint32_t pde;
258 /* page directory entry */
259 pde_addr = (env->nested_cr3 & ~0xfff) + ((gphys >> 20) & 0xffc);
260 pde = x86_ldl_phys(cs, pde_addr);
261 if (!(pde & PG_PRESENT_MASK)) {
262 goto do_fault;
264 ptep = pde | PG_NX_MASK;
266 /* if host cr4 PSE bit is set, then we use a 4MB page */
267 if ((pde & PG_PSE_MASK) && (env->nested_pg_mode & SVM_NPT_PSE)) {
268 page_size = 4096 * 1024;
269 pte_addr = pde_addr;
271 /* Bits 20-13 provide bits 39-32 of the address, bit 21 is reserved.
272 * Leave bits 20-13 in place for setting accessed/dirty bits below.
274 pte = pde | ((pde & 0x1fe000LL) << (32 - 13));
275 rsvd_mask = 0x200000;
276 goto do_check_protect_pse36;
279 if (!(pde & PG_ACCESSED_MASK)) {
280 pde |= PG_ACCESSED_MASK;
281 x86_stl_phys_notdirty(cs, pde_addr, pde);
284 /* page directory entry */
285 pte_addr = (pde & ~0xfff) + ((gphys >> 10) & 0xffc);
286 pte = x86_ldl_phys(cs, pte_addr);
287 if (!(pte & PG_PRESENT_MASK)) {
288 goto do_fault;
290 /* combine pde and pte user and rw protections */
291 ptep &= pte | PG_NX_MASK;
292 page_size = 4096;
293 rsvd_mask = 0;
296 do_check_protect:
297 rsvd_mask |= (page_size - 1) & PG_ADDRESS_MASK & ~PG_PSE_PAT_MASK;
298 do_check_protect_pse36:
299 if (pte & rsvd_mask) {
300 goto do_fault_rsvd;
302 ptep ^= PG_NX_MASK;
304 if (!(ptep & PG_USER_MASK)) {
305 goto do_fault_protect;
307 if (ptep & PG_NX_MASK) {
308 if (access_type == MMU_INST_FETCH) {
309 goto do_fault_protect;
311 *prot &= ~PAGE_EXEC;
313 if (!(ptep & PG_RW_MASK)) {
314 if (access_type == MMU_DATA_STORE) {
315 goto do_fault_protect;
317 *prot &= ~PAGE_WRITE;
320 pte &= PG_ADDRESS_MASK & ~(page_size - 1);
321 page_offset = gphys & (page_size - 1);
322 return pte + page_offset;
324 do_fault_rsvd:
325 exit_info_1 |= SVM_NPTEXIT_RSVD;
326 do_fault_protect:
327 exit_info_1 |= SVM_NPTEXIT_P;
328 do_fault:
329 x86_stq_phys(cs, env->vm_vmcb + offsetof(struct vmcb, control.exit_info_2),
330 gphys);
331 exit_info_1 |= SVM_NPTEXIT_US;
332 if (access_type == MMU_DATA_STORE) {
333 exit_info_1 |= SVM_NPTEXIT_RW;
334 } else if (access_type == MMU_INST_FETCH) {
335 exit_info_1 |= SVM_NPTEXIT_ID;
337 if (prot) {
338 exit_info_1 |= SVM_NPTEXIT_GPA;
339 } else { /* page table access */
340 exit_info_1 |= SVM_NPTEXIT_GPT;
342 cpu_vmexit(env, SVM_EXIT_NPF, exit_info_1, env->retaddr);
345 /* return value:
346 * -1 = cannot handle fault
347 * 0 = nothing more to do
348 * 1 = generate PF fault
350 static int handle_mmu_fault(CPUState *cs, vaddr addr, int size,
351 int is_write1, int mmu_idx)
353 X86CPU *cpu = X86_CPU(cs);
354 CPUX86State *env = &cpu->env;
355 uint64_t ptep, pte;
356 int32_t a20_mask;
357 target_ulong pde_addr, pte_addr;
358 int error_code = 0;
359 int is_dirty, prot, page_size, is_write, is_user;
360 hwaddr paddr;
361 uint64_t rsvd_mask = PG_HI_RSVD_MASK;
362 uint32_t page_offset;
363 target_ulong vaddr;
364 uint32_t pkr;
366 is_user = mmu_idx == MMU_USER_IDX;
367 #if defined(DEBUG_MMU)
368 printf("MMU fault: addr=%" VADDR_PRIx " w=%d u=%d eip=" TARGET_FMT_lx "\n",
369 addr, is_write1, is_user, env->eip);
370 #endif
371 is_write = is_write1 & 1;
373 a20_mask = x86_get_a20_mask(env);
374 if (!(env->cr[0] & CR0_PG_MASK)) {
375 pte = addr;
376 #ifdef TARGET_X86_64
377 if (!(env->hflags & HF_LMA_MASK)) {
378 /* Without long mode we can only address 32bits in real mode */
379 pte = (uint32_t)pte;
381 #endif
382 prot = PAGE_READ | PAGE_WRITE | PAGE_EXEC;
383 page_size = 4096;
384 goto do_mapping;
387 if (!(env->efer & MSR_EFER_NXE)) {
388 rsvd_mask |= PG_NX_MASK;
391 if (env->cr[4] & CR4_PAE_MASK) {
392 uint64_t pde, pdpe;
393 target_ulong pdpe_addr;
395 #ifdef TARGET_X86_64
396 if (env->hflags & HF_LMA_MASK) {
397 bool la57 = env->cr[4] & CR4_LA57_MASK;
398 uint64_t pml5e_addr, pml5e;
399 uint64_t pml4e_addr, pml4e;
400 int32_t sext;
402 /* test virtual address sign extension */
403 sext = la57 ? (int64_t)addr >> 56 : (int64_t)addr >> 47;
404 if (sext != 0 && sext != -1) {
405 env->error_code = 0;
406 cs->exception_index = EXCP0D_GPF;
407 return 1;
410 if (la57) {
411 pml5e_addr = ((env->cr[3] & ~0xfff) +
412 (((addr >> 48) & 0x1ff) << 3)) & a20_mask;
413 pml5e_addr = get_hphys(cs, pml5e_addr, MMU_DATA_STORE, NULL);
414 pml5e = x86_ldq_phys(cs, pml5e_addr);
415 if (!(pml5e & PG_PRESENT_MASK)) {
416 goto do_fault;
418 if (pml5e & (rsvd_mask | PG_PSE_MASK)) {
419 goto do_fault_rsvd;
421 if (!(pml5e & PG_ACCESSED_MASK)) {
422 pml5e |= PG_ACCESSED_MASK;
423 x86_stl_phys_notdirty(cs, pml5e_addr, pml5e);
425 ptep = pml5e ^ PG_NX_MASK;
426 } else {
427 pml5e = env->cr[3];
428 ptep = PG_NX_MASK | PG_USER_MASK | PG_RW_MASK;
431 pml4e_addr = ((pml5e & PG_ADDRESS_MASK) +
432 (((addr >> 39) & 0x1ff) << 3)) & a20_mask;
433 pml4e_addr = get_hphys(cs, pml4e_addr, MMU_DATA_STORE, false);
434 pml4e = x86_ldq_phys(cs, pml4e_addr);
435 if (!(pml4e & PG_PRESENT_MASK)) {
436 goto do_fault;
438 if (pml4e & (rsvd_mask | PG_PSE_MASK)) {
439 goto do_fault_rsvd;
441 if (!(pml4e & PG_ACCESSED_MASK)) {
442 pml4e |= PG_ACCESSED_MASK;
443 x86_stl_phys_notdirty(cs, pml4e_addr, pml4e);
445 ptep &= pml4e ^ PG_NX_MASK;
446 pdpe_addr = ((pml4e & PG_ADDRESS_MASK) + (((addr >> 30) & 0x1ff) << 3)) &
447 a20_mask;
448 pdpe_addr = get_hphys(cs, pdpe_addr, MMU_DATA_STORE, NULL);
449 pdpe = x86_ldq_phys(cs, pdpe_addr);
450 if (!(pdpe & PG_PRESENT_MASK)) {
451 goto do_fault;
453 if (pdpe & rsvd_mask) {
454 goto do_fault_rsvd;
456 ptep &= pdpe ^ PG_NX_MASK;
457 if (!(pdpe & PG_ACCESSED_MASK)) {
458 pdpe |= PG_ACCESSED_MASK;
459 x86_stl_phys_notdirty(cs, pdpe_addr, pdpe);
461 if (pdpe & PG_PSE_MASK) {
462 /* 1 GB page */
463 page_size = 1024 * 1024 * 1024;
464 pte_addr = pdpe_addr;
465 pte = pdpe;
466 goto do_check_protect;
468 } else
469 #endif
471 /* XXX: load them when cr3 is loaded ? */
472 pdpe_addr = ((env->cr[3] & ~0x1f) + ((addr >> 27) & 0x18)) &
473 a20_mask;
474 pdpe_addr = get_hphys(cs, pdpe_addr, MMU_DATA_STORE, false);
475 pdpe = x86_ldq_phys(cs, pdpe_addr);
476 if (!(pdpe & PG_PRESENT_MASK)) {
477 goto do_fault;
479 rsvd_mask |= PG_HI_USER_MASK;
480 if (pdpe & (rsvd_mask | PG_NX_MASK)) {
481 goto do_fault_rsvd;
483 ptep = PG_NX_MASK | PG_USER_MASK | PG_RW_MASK;
486 pde_addr = ((pdpe & PG_ADDRESS_MASK) + (((addr >> 21) & 0x1ff) << 3)) &
487 a20_mask;
488 pde_addr = get_hphys(cs, pde_addr, MMU_DATA_STORE, NULL);
489 pde = x86_ldq_phys(cs, pde_addr);
490 if (!(pde & PG_PRESENT_MASK)) {
491 goto do_fault;
493 if (pde & rsvd_mask) {
494 goto do_fault_rsvd;
496 ptep &= pde ^ PG_NX_MASK;
497 if (pde & PG_PSE_MASK) {
498 /* 2 MB page */
499 page_size = 2048 * 1024;
500 pte_addr = pde_addr;
501 pte = pde;
502 goto do_check_protect;
504 /* 4 KB page */
505 if (!(pde & PG_ACCESSED_MASK)) {
506 pde |= PG_ACCESSED_MASK;
507 x86_stl_phys_notdirty(cs, pde_addr, pde);
509 pte_addr = ((pde & PG_ADDRESS_MASK) + (((addr >> 12) & 0x1ff) << 3)) &
510 a20_mask;
511 pte_addr = get_hphys(cs, pte_addr, MMU_DATA_STORE, NULL);
512 pte = x86_ldq_phys(cs, pte_addr);
513 if (!(pte & PG_PRESENT_MASK)) {
514 goto do_fault;
516 if (pte & rsvd_mask) {
517 goto do_fault_rsvd;
519 /* combine pde and pte nx, user and rw protections */
520 ptep &= pte ^ PG_NX_MASK;
521 page_size = 4096;
522 } else {
523 uint32_t pde;
525 /* page directory entry */
526 pde_addr = ((env->cr[3] & ~0xfff) + ((addr >> 20) & 0xffc)) &
527 a20_mask;
528 pde_addr = get_hphys(cs, pde_addr, MMU_DATA_STORE, NULL);
529 pde = x86_ldl_phys(cs, pde_addr);
530 if (!(pde & PG_PRESENT_MASK)) {
531 goto do_fault;
533 ptep = pde | PG_NX_MASK;
535 /* if PSE bit is set, then we use a 4MB page */
536 if ((pde & PG_PSE_MASK) && (env->cr[4] & CR4_PSE_MASK)) {
537 page_size = 4096 * 1024;
538 pte_addr = pde_addr;
540 /* Bits 20-13 provide bits 39-32 of the address, bit 21 is reserved.
541 * Leave bits 20-13 in place for setting accessed/dirty bits below.
543 pte = pde | ((pde & 0x1fe000LL) << (32 - 13));
544 rsvd_mask = 0x200000;
545 goto do_check_protect_pse36;
548 if (!(pde & PG_ACCESSED_MASK)) {
549 pde |= PG_ACCESSED_MASK;
550 x86_stl_phys_notdirty(cs, pde_addr, pde);
553 /* page directory entry */
554 pte_addr = ((pde & ~0xfff) + ((addr >> 10) & 0xffc)) &
555 a20_mask;
556 pte_addr = get_hphys(cs, pte_addr, MMU_DATA_STORE, NULL);
557 pte = x86_ldl_phys(cs, pte_addr);
558 if (!(pte & PG_PRESENT_MASK)) {
559 goto do_fault;
561 /* combine pde and pte user and rw protections */
562 ptep &= pte | PG_NX_MASK;
563 page_size = 4096;
564 rsvd_mask = 0;
567 do_check_protect:
568 rsvd_mask |= (page_size - 1) & PG_ADDRESS_MASK & ~PG_PSE_PAT_MASK;
569 do_check_protect_pse36:
570 if (pte & rsvd_mask) {
571 goto do_fault_rsvd;
573 ptep ^= PG_NX_MASK;
575 /* can the page can be put in the TLB? prot will tell us */
576 if (is_user && !(ptep & PG_USER_MASK)) {
577 goto do_fault_protect;
580 prot = 0;
581 if (mmu_idx != MMU_KSMAP_IDX || !(ptep & PG_USER_MASK)) {
582 prot |= PAGE_READ;
583 if ((ptep & PG_RW_MASK) || (!is_user && !(env->cr[0] & CR0_WP_MASK))) {
584 prot |= PAGE_WRITE;
587 if (!(ptep & PG_NX_MASK) &&
588 (mmu_idx == MMU_USER_IDX ||
589 !((env->cr[4] & CR4_SMEP_MASK) && (ptep & PG_USER_MASK)))) {
590 prot |= PAGE_EXEC;
593 if (!(env->hflags & HF_LMA_MASK)) {
594 pkr = 0;
595 } else if (ptep & PG_USER_MASK) {
596 pkr = env->cr[4] & CR4_PKE_MASK ? env->pkru : 0;
597 } else {
598 pkr = env->cr[4] & CR4_PKS_MASK ? env->pkrs : 0;
600 if (pkr) {
601 uint32_t pk = (pte & PG_PKRU_MASK) >> PG_PKRU_BIT;
602 uint32_t pkr_ad = (pkr >> pk * 2) & 1;
603 uint32_t pkr_wd = (pkr >> pk * 2) & 2;
604 uint32_t pkr_prot = PAGE_READ | PAGE_WRITE | PAGE_EXEC;
606 if (pkr_ad) {
607 pkr_prot &= ~(PAGE_READ | PAGE_WRITE);
608 } else if (pkr_wd && (is_user || env->cr[0] & CR0_WP_MASK)) {
609 pkr_prot &= ~PAGE_WRITE;
612 prot &= pkr_prot;
613 if ((pkr_prot & (1 << is_write1)) == 0) {
614 assert(is_write1 != 2);
615 error_code |= PG_ERROR_PK_MASK;
616 goto do_fault_protect;
620 if ((prot & (1 << is_write1)) == 0) {
621 goto do_fault_protect;
624 /* yes, it can! */
625 is_dirty = is_write && !(pte & PG_DIRTY_MASK);
626 if (!(pte & PG_ACCESSED_MASK) || is_dirty) {
627 pte |= PG_ACCESSED_MASK;
628 if (is_dirty) {
629 pte |= PG_DIRTY_MASK;
631 x86_stl_phys_notdirty(cs, pte_addr, pte);
634 if (!(pte & PG_DIRTY_MASK)) {
635 /* only set write access if already dirty... otherwise wait
636 for dirty access */
637 assert(!is_write);
638 prot &= ~PAGE_WRITE;
641 do_mapping:
642 pte = pte & a20_mask;
644 /* align to page_size */
645 pte &= PG_ADDRESS_MASK & ~(page_size - 1);
646 page_offset = addr & (page_size - 1);
647 paddr = get_hphys(cs, pte + page_offset, is_write1, &prot);
649 /* Even if 4MB pages, we map only one 4KB page in the cache to
650 avoid filling it too fast */
651 vaddr = addr & TARGET_PAGE_MASK;
652 paddr &= TARGET_PAGE_MASK;
654 assert(prot & (1 << is_write1));
655 tlb_set_page_with_attrs(cs, vaddr, paddr, cpu_get_mem_attrs(env),
656 prot, mmu_idx, page_size);
657 return 0;
658 do_fault_rsvd:
659 error_code |= PG_ERROR_RSVD_MASK;
660 do_fault_protect:
661 error_code |= PG_ERROR_P_MASK;
662 do_fault:
663 error_code |= (is_write << PG_ERROR_W_BIT);
664 if (is_user)
665 error_code |= PG_ERROR_U_MASK;
666 if (is_write1 == 2 &&
667 (((env->efer & MSR_EFER_NXE) &&
668 (env->cr[4] & CR4_PAE_MASK)) ||
669 (env->cr[4] & CR4_SMEP_MASK)))
670 error_code |= PG_ERROR_I_D_MASK;
671 if (env->intercept_exceptions & (1 << EXCP0E_PAGE)) {
672 /* cr2 is not modified in case of exceptions */
673 x86_stq_phys(cs,
674 env->vm_vmcb + offsetof(struct vmcb, control.exit_info_2),
675 addr);
676 } else {
677 env->cr[2] = addr;
679 env->error_code = error_code;
680 cs->exception_index = EXCP0E_PAGE;
681 return 1;
683 #endif
685 bool x86_cpu_tlb_fill(CPUState *cs, vaddr addr, int size,
686 MMUAccessType access_type, int mmu_idx,
687 bool probe, uintptr_t retaddr)
689 X86CPU *cpu = X86_CPU(cs);
690 CPUX86State *env = &cpu->env;
692 #ifdef CONFIG_USER_ONLY
693 /* user mode only emulation */
694 env->cr[2] = addr;
695 env->error_code = (access_type == MMU_DATA_STORE) << PG_ERROR_W_BIT;
696 env->error_code |= PG_ERROR_U_MASK;
697 cs->exception_index = EXCP0E_PAGE;
698 env->exception_is_int = 0;
699 env->exception_next_eip = -1;
700 cpu_loop_exit_restore(cs, retaddr);
701 #else
702 env->retaddr = retaddr;
703 if (handle_mmu_fault(cs, addr, size, access_type, mmu_idx)) {
704 /* FIXME: On error in get_hphys we have already jumped out. */
705 g_assert(!probe);
706 raise_exception_err_ra(env, cs->exception_index,
707 env->error_code, retaddr);
709 return true;
710 #endif