hw/arm/smmuv3: Support HAD and advertise SMMUv3.1 support
[qemu/ar7.git] / hw / arm / smmuv3-internal.h
blob9ae7d97fafd5a85583adda5937475fa981e84842
1 /*
2 * ARM SMMUv3 support - Internal API
4 * Copyright (C) 2014-2016 Broadcom Corporation
5 * Copyright (c) 2017 Red Hat, Inc.
6 * Written by Prem Mallappa, Eric Auger
8 * This program is free software; you can redistribute it and/or modify
9 * it under the terms of the GNU General Public License version 2 as
10 * published by the Free Software Foundation.
12 * This program is distributed in the hope that it will be useful,
13 * but WITHOUT ANY WARRANTY; without even the implied warranty of
14 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 * GNU General Public License for more details.
17 * You should have received a copy of the GNU General Public License along
18 * with this program; if not, see <http://www.gnu.org/licenses/>.
21 #ifndef HW_ARM_SMMUV3_INTERNAL_H
22 #define HW_ARM_SMMUV3_INTERNAL_H
24 #include "hw/arm/smmu-common.h"
26 typedef enum SMMUTranslationStatus {
27 SMMU_TRANS_DISABLE,
28 SMMU_TRANS_ABORT,
29 SMMU_TRANS_BYPASS,
30 SMMU_TRANS_ERROR,
31 SMMU_TRANS_SUCCESS,
32 } SMMUTranslationStatus;
34 /* MMIO Registers */
36 REG32(IDR0, 0x0)
37 FIELD(IDR0, S1P, 1 , 1)
38 FIELD(IDR0, TTF, 2 , 2)
39 FIELD(IDR0, COHACC, 4 , 1)
40 FIELD(IDR0, ASID16, 12, 1)
41 FIELD(IDR0, TTENDIAN, 21, 2)
42 FIELD(IDR0, STALL_MODEL, 24, 2)
43 FIELD(IDR0, TERM_MODEL, 26, 1)
44 FIELD(IDR0, STLEVEL, 27, 2)
46 REG32(IDR1, 0x4)
47 FIELD(IDR1, SIDSIZE, 0 , 6)
48 FIELD(IDR1, EVENTQS, 16, 5)
49 FIELD(IDR1, CMDQS, 21, 5)
51 #define SMMU_IDR1_SIDSIZE 16
52 #define SMMU_CMDQS 19
53 #define SMMU_EVENTQS 19
55 REG32(IDR2, 0x8)
56 REG32(IDR3, 0xc)
57 FIELD(IDR3, HAD, 2, 1);
58 REG32(IDR4, 0x10)
59 REG32(IDR5, 0x14)
60 FIELD(IDR5, OAS, 0, 3);
61 FIELD(IDR5, GRAN4K, 4, 1);
62 FIELD(IDR5, GRAN16K, 5, 1);
63 FIELD(IDR5, GRAN64K, 6, 1);
65 #define SMMU_IDR5_OAS 4
67 REG32(IIDR, 0x18)
68 REG32(AIDR, 0x1c)
69 REG32(CR0, 0x20)
70 FIELD(CR0, SMMU_ENABLE, 0, 1)
71 FIELD(CR0, EVENTQEN, 2, 1)
72 FIELD(CR0, CMDQEN, 3, 1)
74 #define SMMU_CR0_RESERVED 0xFFFFFC20
76 REG32(CR0ACK, 0x24)
77 REG32(CR1, 0x28)
78 REG32(CR2, 0x2c)
79 REG32(STATUSR, 0x40)
80 REG32(IRQ_CTRL, 0x50)
81 FIELD(IRQ_CTRL, GERROR_IRQEN, 0, 1)
82 FIELD(IRQ_CTRL, PRI_IRQEN, 1, 1)
83 FIELD(IRQ_CTRL, EVENTQ_IRQEN, 2, 1)
85 REG32(IRQ_CTRL_ACK, 0x54)
86 REG32(GERROR, 0x60)
87 FIELD(GERROR, CMDQ_ERR, 0, 1)
88 FIELD(GERROR, EVENTQ_ABT_ERR, 2, 1)
89 FIELD(GERROR, PRIQ_ABT_ERR, 3, 1)
90 FIELD(GERROR, MSI_CMDQ_ABT_ERR, 4, 1)
91 FIELD(GERROR, MSI_EVENTQ_ABT_ERR, 5, 1)
92 FIELD(GERROR, MSI_PRIQ_ABT_ERR, 6, 1)
93 FIELD(GERROR, MSI_GERROR_ABT_ERR, 7, 1)
94 FIELD(GERROR, MSI_SFM_ERR, 8, 1)
96 REG32(GERRORN, 0x64)
98 #define A_GERROR_IRQ_CFG0 0x68 /* 64b */
99 REG32(GERROR_IRQ_CFG1, 0x70)
100 REG32(GERROR_IRQ_CFG2, 0x74)
102 #define A_STRTAB_BASE 0x80 /* 64b */
104 #define SMMU_BASE_ADDR_MASK 0xfffffffffffc0
106 REG32(STRTAB_BASE_CFG, 0x88)
107 FIELD(STRTAB_BASE_CFG, FMT, 16, 2)
108 FIELD(STRTAB_BASE_CFG, SPLIT, 6 , 5)
109 FIELD(STRTAB_BASE_CFG, LOG2SIZE, 0 , 6)
111 #define A_CMDQ_BASE 0x90 /* 64b */
112 REG32(CMDQ_PROD, 0x98)
113 REG32(CMDQ_CONS, 0x9c)
114 FIELD(CMDQ_CONS, ERR, 24, 7)
116 #define A_EVENTQ_BASE 0xa0 /* 64b */
117 REG32(EVENTQ_PROD, 0xa8)
118 REG32(EVENTQ_CONS, 0xac)
120 #define A_EVENTQ_IRQ_CFG0 0xb0 /* 64b */
121 REG32(EVENTQ_IRQ_CFG1, 0xb8)
122 REG32(EVENTQ_IRQ_CFG2, 0xbc)
124 #define A_IDREGS 0xfd0
126 static inline int smmu_enabled(SMMUv3State *s)
128 return FIELD_EX32(s->cr[0], CR0, SMMU_ENABLE);
131 /* Command Queue Entry */
132 typedef struct Cmd {
133 uint32_t word[4];
134 } Cmd;
136 /* Event Queue Entry */
137 typedef struct Evt {
138 uint32_t word[8];
139 } Evt;
141 static inline uint32_t smmuv3_idreg(int regoffset)
144 * Return the value of the Primecell/Corelink ID registers at the
145 * specified offset from the first ID register.
146 * These value indicate an ARM implementation of MMU600 p1
148 static const uint8_t smmuv3_ids[] = {
149 0x04, 0, 0, 0, 0x84, 0xB4, 0xF0, 0x10, 0x0D, 0xF0, 0x05, 0xB1
151 return smmuv3_ids[regoffset / 4];
154 static inline bool smmuv3_eventq_irq_enabled(SMMUv3State *s)
156 return FIELD_EX32(s->irq_ctrl, IRQ_CTRL, EVENTQ_IRQEN);
159 static inline bool smmuv3_gerror_irq_enabled(SMMUv3State *s)
161 return FIELD_EX32(s->irq_ctrl, IRQ_CTRL, GERROR_IRQEN);
164 /* Queue Handling */
166 #define Q_BASE(q) ((q)->base & SMMU_BASE_ADDR_MASK)
167 #define WRAP_MASK(q) (1 << (q)->log2size)
168 #define INDEX_MASK(q) (((1 << (q)->log2size)) - 1)
169 #define WRAP_INDEX_MASK(q) ((1 << ((q)->log2size + 1)) - 1)
171 #define Q_CONS(q) ((q)->cons & INDEX_MASK(q))
172 #define Q_PROD(q) ((q)->prod & INDEX_MASK(q))
174 #define Q_CONS_ENTRY(q) (Q_BASE(q) + (q)->entry_size * Q_CONS(q))
175 #define Q_PROD_ENTRY(q) (Q_BASE(q) + (q)->entry_size * Q_PROD(q))
177 #define Q_CONS_WRAP(q) (((q)->cons & WRAP_MASK(q)) >> (q)->log2size)
178 #define Q_PROD_WRAP(q) (((q)->prod & WRAP_MASK(q)) >> (q)->log2size)
180 static inline bool smmuv3_q_full(SMMUQueue *q)
182 return ((q->cons ^ q->prod) & WRAP_INDEX_MASK(q)) == WRAP_MASK(q);
185 static inline bool smmuv3_q_empty(SMMUQueue *q)
187 return (q->cons & WRAP_INDEX_MASK(q)) == (q->prod & WRAP_INDEX_MASK(q));
190 static inline void queue_prod_incr(SMMUQueue *q)
192 q->prod = (q->prod + 1) & WRAP_INDEX_MASK(q);
195 static inline void queue_cons_incr(SMMUQueue *q)
198 * We have to use deposit for the CONS registers to preserve
199 * the ERR field in the high bits.
201 q->cons = deposit32(q->cons, 0, q->log2size + 1, q->cons + 1);
204 static inline bool smmuv3_cmdq_enabled(SMMUv3State *s)
206 return FIELD_EX32(s->cr[0], CR0, CMDQEN);
209 static inline bool smmuv3_eventq_enabled(SMMUv3State *s)
211 return FIELD_EX32(s->cr[0], CR0, EVENTQEN);
214 static inline void smmu_write_cmdq_err(SMMUv3State *s, uint32_t err_type)
216 s->cmdq.cons = FIELD_DP32(s->cmdq.cons, CMDQ_CONS, ERR, err_type);
219 /* Commands */
221 typedef enum SMMUCommandType {
222 SMMU_CMD_NONE = 0x00,
223 SMMU_CMD_PREFETCH_CONFIG ,
224 SMMU_CMD_PREFETCH_ADDR,
225 SMMU_CMD_CFGI_STE,
226 SMMU_CMD_CFGI_STE_RANGE,
227 SMMU_CMD_CFGI_CD,
228 SMMU_CMD_CFGI_CD_ALL,
229 SMMU_CMD_CFGI_ALL,
230 SMMU_CMD_TLBI_NH_ALL = 0x10,
231 SMMU_CMD_TLBI_NH_ASID,
232 SMMU_CMD_TLBI_NH_VA,
233 SMMU_CMD_TLBI_NH_VAA,
234 SMMU_CMD_TLBI_EL3_ALL = 0x18,
235 SMMU_CMD_TLBI_EL3_VA = 0x1a,
236 SMMU_CMD_TLBI_EL2_ALL = 0x20,
237 SMMU_CMD_TLBI_EL2_ASID,
238 SMMU_CMD_TLBI_EL2_VA,
239 SMMU_CMD_TLBI_EL2_VAA,
240 SMMU_CMD_TLBI_S12_VMALL = 0x28,
241 SMMU_CMD_TLBI_S2_IPA = 0x2a,
242 SMMU_CMD_TLBI_NSNH_ALL = 0x30,
243 SMMU_CMD_ATC_INV = 0x40,
244 SMMU_CMD_PRI_RESP,
245 SMMU_CMD_RESUME = 0x44,
246 SMMU_CMD_STALL_TERM,
247 SMMU_CMD_SYNC,
248 } SMMUCommandType;
250 static const char *cmd_stringify[] = {
251 [SMMU_CMD_PREFETCH_CONFIG] = "SMMU_CMD_PREFETCH_CONFIG",
252 [SMMU_CMD_PREFETCH_ADDR] = "SMMU_CMD_PREFETCH_ADDR",
253 [SMMU_CMD_CFGI_STE] = "SMMU_CMD_CFGI_STE",
254 [SMMU_CMD_CFGI_STE_RANGE] = "SMMU_CMD_CFGI_STE_RANGE",
255 [SMMU_CMD_CFGI_CD] = "SMMU_CMD_CFGI_CD",
256 [SMMU_CMD_CFGI_CD_ALL] = "SMMU_CMD_CFGI_CD_ALL",
257 [SMMU_CMD_CFGI_ALL] = "SMMU_CMD_CFGI_ALL",
258 [SMMU_CMD_TLBI_NH_ALL] = "SMMU_CMD_TLBI_NH_ALL",
259 [SMMU_CMD_TLBI_NH_ASID] = "SMMU_CMD_TLBI_NH_ASID",
260 [SMMU_CMD_TLBI_NH_VA] = "SMMU_CMD_TLBI_NH_VA",
261 [SMMU_CMD_TLBI_NH_VAA] = "SMMU_CMD_TLBI_NH_VAA",
262 [SMMU_CMD_TLBI_EL3_ALL] = "SMMU_CMD_TLBI_EL3_ALL",
263 [SMMU_CMD_TLBI_EL3_VA] = "SMMU_CMD_TLBI_EL3_VA",
264 [SMMU_CMD_TLBI_EL2_ALL] = "SMMU_CMD_TLBI_EL2_ALL",
265 [SMMU_CMD_TLBI_EL2_ASID] = "SMMU_CMD_TLBI_EL2_ASID",
266 [SMMU_CMD_TLBI_EL2_VA] = "SMMU_CMD_TLBI_EL2_VA",
267 [SMMU_CMD_TLBI_EL2_VAA] = "SMMU_CMD_TLBI_EL2_VAA",
268 [SMMU_CMD_TLBI_S12_VMALL] = "SMMU_CMD_TLBI_S12_VMALL",
269 [SMMU_CMD_TLBI_S2_IPA] = "SMMU_CMD_TLBI_S2_IPA",
270 [SMMU_CMD_TLBI_NSNH_ALL] = "SMMU_CMD_TLBI_NSNH_ALL",
271 [SMMU_CMD_ATC_INV] = "SMMU_CMD_ATC_INV",
272 [SMMU_CMD_PRI_RESP] = "SMMU_CMD_PRI_RESP",
273 [SMMU_CMD_RESUME] = "SMMU_CMD_RESUME",
274 [SMMU_CMD_STALL_TERM] = "SMMU_CMD_STALL_TERM",
275 [SMMU_CMD_SYNC] = "SMMU_CMD_SYNC",
278 static inline const char *smmu_cmd_string(SMMUCommandType type)
280 if (type > SMMU_CMD_NONE && type < ARRAY_SIZE(cmd_stringify)) {
281 return cmd_stringify[type] ? cmd_stringify[type] : "UNKNOWN";
282 } else {
283 return "INVALID";
287 /* CMDQ fields */
289 typedef enum {
290 SMMU_CERROR_NONE = 0,
291 SMMU_CERROR_ILL,
292 SMMU_CERROR_ABT,
293 SMMU_CERROR_ATC_INV_SYNC,
294 } SMMUCmdError;
296 enum { /* Command completion notification */
297 CMD_SYNC_SIG_NONE,
298 CMD_SYNC_SIG_IRQ,
299 CMD_SYNC_SIG_SEV,
302 #define CMD_TYPE(x) extract32((x)->word[0], 0 , 8)
303 #define CMD_NUM(x) extract32((x)->word[0], 12 , 5)
304 #define CMD_SCALE(x) extract32((x)->word[0], 20 , 5)
305 #define CMD_SSEC(x) extract32((x)->word[0], 10, 1)
306 #define CMD_SSV(x) extract32((x)->word[0], 11, 1)
307 #define CMD_RESUME_AC(x) extract32((x)->word[0], 12, 1)
308 #define CMD_RESUME_AB(x) extract32((x)->word[0], 13, 1)
309 #define CMD_SYNC_CS(x) extract32((x)->word[0], 12, 2)
310 #define CMD_SSID(x) extract32((x)->word[0], 12, 20)
311 #define CMD_SID(x) ((x)->word[1])
312 #define CMD_VMID(x) extract32((x)->word[1], 0 , 16)
313 #define CMD_ASID(x) extract32((x)->word[1], 16, 16)
314 #define CMD_RESUME_STAG(x) extract32((x)->word[2], 0 , 16)
315 #define CMD_RESP(x) extract32((x)->word[2], 11, 2)
316 #define CMD_LEAF(x) extract32((x)->word[2], 0 , 1)
317 #define CMD_TTL(x) extract32((x)->word[2], 8 , 2)
318 #define CMD_TG(x) extract32((x)->word[2], 10, 2)
319 #define CMD_STE_RANGE(x) extract32((x)->word[2], 0 , 5)
320 #define CMD_ADDR(x) ({ \
321 uint64_t high = (uint64_t)(x)->word[3]; \
322 uint64_t low = extract32((x)->word[2], 12, 20); \
323 uint64_t addr = high << 32 | (low << 12); \
324 addr; \
327 #define SMMU_FEATURE_2LVL_STE (1 << 0)
329 /* Events */
331 typedef enum SMMUEventType {
332 SMMU_EVT_NONE = 0x00,
333 SMMU_EVT_F_UUT ,
334 SMMU_EVT_C_BAD_STREAMID ,
335 SMMU_EVT_F_STE_FETCH ,
336 SMMU_EVT_C_BAD_STE ,
337 SMMU_EVT_F_BAD_ATS_TREQ ,
338 SMMU_EVT_F_STREAM_DISABLED ,
339 SMMU_EVT_F_TRANS_FORBIDDEN ,
340 SMMU_EVT_C_BAD_SUBSTREAMID ,
341 SMMU_EVT_F_CD_FETCH ,
342 SMMU_EVT_C_BAD_CD ,
343 SMMU_EVT_F_WALK_EABT ,
344 SMMU_EVT_F_TRANSLATION = 0x10,
345 SMMU_EVT_F_ADDR_SIZE ,
346 SMMU_EVT_F_ACCESS ,
347 SMMU_EVT_F_PERMISSION ,
348 SMMU_EVT_F_TLB_CONFLICT = 0x20,
349 SMMU_EVT_F_CFG_CONFLICT ,
350 SMMU_EVT_E_PAGE_REQ = 0x24,
351 } SMMUEventType;
353 static const char *event_stringify[] = {
354 [SMMU_EVT_NONE] = "no recorded event",
355 [SMMU_EVT_F_UUT] = "SMMU_EVT_F_UUT",
356 [SMMU_EVT_C_BAD_STREAMID] = "SMMU_EVT_C_BAD_STREAMID",
357 [SMMU_EVT_F_STE_FETCH] = "SMMU_EVT_F_STE_FETCH",
358 [SMMU_EVT_C_BAD_STE] = "SMMU_EVT_C_BAD_STE",
359 [SMMU_EVT_F_BAD_ATS_TREQ] = "SMMU_EVT_F_BAD_ATS_TREQ",
360 [SMMU_EVT_F_STREAM_DISABLED] = "SMMU_EVT_F_STREAM_DISABLED",
361 [SMMU_EVT_F_TRANS_FORBIDDEN] = "SMMU_EVT_F_TRANS_FORBIDDEN",
362 [SMMU_EVT_C_BAD_SUBSTREAMID] = "SMMU_EVT_C_BAD_SUBSTREAMID",
363 [SMMU_EVT_F_CD_FETCH] = "SMMU_EVT_F_CD_FETCH",
364 [SMMU_EVT_C_BAD_CD] = "SMMU_EVT_C_BAD_CD",
365 [SMMU_EVT_F_WALK_EABT] = "SMMU_EVT_F_WALK_EABT",
366 [SMMU_EVT_F_TRANSLATION] = "SMMU_EVT_F_TRANSLATION",
367 [SMMU_EVT_F_ADDR_SIZE] = "SMMU_EVT_F_ADDR_SIZE",
368 [SMMU_EVT_F_ACCESS] = "SMMU_EVT_F_ACCESS",
369 [SMMU_EVT_F_PERMISSION] = "SMMU_EVT_F_PERMISSION",
370 [SMMU_EVT_F_TLB_CONFLICT] = "SMMU_EVT_F_TLB_CONFLICT",
371 [SMMU_EVT_F_CFG_CONFLICT] = "SMMU_EVT_F_CFG_CONFLICT",
372 [SMMU_EVT_E_PAGE_REQ] = "SMMU_EVT_E_PAGE_REQ",
375 static inline const char *smmu_event_string(SMMUEventType type)
377 if (type < ARRAY_SIZE(event_stringify)) {
378 return event_stringify[type] ? event_stringify[type] : "UNKNOWN";
379 } else {
380 return "INVALID";
384 /* Encode an event record */
385 typedef struct SMMUEventInfo {
386 SMMUEventType type;
387 uint32_t sid;
388 bool recorded;
389 bool record_trans_faults;
390 bool inval_ste_allowed;
391 union {
392 struct {
393 uint32_t ssid;
394 bool ssv;
395 dma_addr_t addr;
396 bool rnw;
397 bool pnu;
398 bool ind;
399 } f_uut;
400 struct SSIDInfo {
401 uint32_t ssid;
402 bool ssv;
403 } c_bad_streamid;
404 struct SSIDAddrInfo {
405 uint32_t ssid;
406 bool ssv;
407 dma_addr_t addr;
408 } f_ste_fetch;
409 struct SSIDInfo c_bad_ste;
410 struct {
411 dma_addr_t addr;
412 bool rnw;
413 } f_transl_forbidden;
414 struct {
415 uint32_t ssid;
416 } c_bad_substream;
417 struct SSIDAddrInfo f_cd_fetch;
418 struct SSIDInfo c_bad_cd;
419 struct FullInfo {
420 bool stall;
421 uint16_t stag;
422 uint32_t ssid;
423 bool ssv;
424 bool s2;
425 dma_addr_t addr;
426 bool rnw;
427 bool pnu;
428 bool ind;
429 uint8_t class;
430 dma_addr_t addr2;
431 } f_walk_eabt;
432 struct FullInfo f_translation;
433 struct FullInfo f_addr_size;
434 struct FullInfo f_access;
435 struct FullInfo f_permission;
436 struct SSIDInfo f_cfg_conflict;
438 * not supported yet:
439 * F_BAD_ATS_TREQ
440 * F_BAD_ATS_TREQ
441 * F_TLB_CONFLICT
442 * E_PAGE_REQUEST
443 * IMPDEF_EVENTn
445 } u;
446 } SMMUEventInfo;
448 /* EVTQ fields */
450 #define EVT_Q_OVERFLOW (1 << 31)
452 #define EVT_SET_TYPE(x, v) ((x)->word[0] = deposit32((x)->word[0], 0 , 8 , v))
453 #define EVT_SET_SSV(x, v) ((x)->word[0] = deposit32((x)->word[0], 11, 1 , v))
454 #define EVT_SET_SSID(x, v) ((x)->word[0] = deposit32((x)->word[0], 12, 20, v))
455 #define EVT_SET_SID(x, v) ((x)->word[1] = v)
456 #define EVT_SET_STAG(x, v) ((x)->word[2] = deposit32((x)->word[2], 0 , 16, v))
457 #define EVT_SET_STALL(x, v) ((x)->word[2] = deposit32((x)->word[2], 31, 1 , v))
458 #define EVT_SET_PNU(x, v) ((x)->word[3] = deposit32((x)->word[3], 1 , 1 , v))
459 #define EVT_SET_IND(x, v) ((x)->word[3] = deposit32((x)->word[3], 2 , 1 , v))
460 #define EVT_SET_RNW(x, v) ((x)->word[3] = deposit32((x)->word[3], 3 , 1 , v))
461 #define EVT_SET_S2(x, v) ((x)->word[3] = deposit32((x)->word[3], 7 , 1 , v))
462 #define EVT_SET_CLASS(x, v) ((x)->word[3] = deposit32((x)->word[3], 8 , 2 , v))
463 #define EVT_SET_ADDR(x, addr) \
464 do { \
465 (x)->word[5] = (uint32_t)(addr >> 32); \
466 (x)->word[4] = (uint32_t)(addr & 0xffffffff); \
467 } while (0)
468 #define EVT_SET_ADDR2(x, addr) \
469 do { \
470 (x)->word[7] = (uint32_t)(addr >> 32); \
471 (x)->word[6] = (uint32_t)(addr & 0xffffffff); \
472 } while (0)
474 void smmuv3_record_event(SMMUv3State *s, SMMUEventInfo *event);
476 /* Configuration Data */
478 /* STE Level 1 Descriptor */
479 typedef struct STEDesc {
480 uint32_t word[2];
481 } STEDesc;
483 /* CD Level 1 Descriptor */
484 typedef struct CDDesc {
485 uint32_t word[2];
486 } CDDesc;
488 /* Stream Table Entry(STE) */
489 typedef struct STE {
490 uint32_t word[16];
491 } STE;
493 /* Context Descriptor(CD) */
494 typedef struct CD {
495 uint32_t word[16];
496 } CD;
498 /* STE fields */
500 #define STE_VALID(x) extract32((x)->word[0], 0, 1)
502 #define STE_CONFIG(x) extract32((x)->word[0], 1, 3)
503 #define STE_CFG_S1_ENABLED(config) (config & 0x1)
504 #define STE_CFG_S2_ENABLED(config) (config & 0x2)
505 #define STE_CFG_ABORT(config) (!(config & 0x4))
506 #define STE_CFG_BYPASS(config) (config == 0x4)
508 #define STE_S1FMT(x) extract32((x)->word[0], 4 , 2)
509 #define STE_S1CDMAX(x) extract32((x)->word[1], 27, 5)
510 #define STE_S1STALLD(x) extract32((x)->word[2], 27, 1)
511 #define STE_EATS(x) extract32((x)->word[2], 28, 2)
512 #define STE_STRW(x) extract32((x)->word[2], 30, 2)
513 #define STE_S2VMID(x) extract32((x)->word[4], 0 , 16)
514 #define STE_S2T0SZ(x) extract32((x)->word[5], 0 , 6)
515 #define STE_S2SL0(x) extract32((x)->word[5], 6 , 2)
516 #define STE_S2TG(x) extract32((x)->word[5], 14, 2)
517 #define STE_S2PS(x) extract32((x)->word[5], 16, 3)
518 #define STE_S2AA64(x) extract32((x)->word[5], 19, 1)
519 #define STE_S2HD(x) extract32((x)->word[5], 24, 1)
520 #define STE_S2HA(x) extract32((x)->word[5], 25, 1)
521 #define STE_S2S(x) extract32((x)->word[5], 26, 1)
522 #define STE_CTXPTR(x) \
523 ({ \
524 unsigned long addr; \
525 addr = (uint64_t)extract32((x)->word[1], 0, 16) << 32; \
526 addr |= (uint64_t)((x)->word[0] & 0xffffffc0); \
527 addr; \
530 #define STE_S2TTB(x) \
531 ({ \
532 unsigned long addr; \
533 addr = (uint64_t)extract32((x)->word[7], 0, 16) << 32; \
534 addr |= (uint64_t)((x)->word[6] & 0xfffffff0); \
535 addr; \
538 static inline int oas2bits(int oas_field)
540 switch (oas_field) {
541 case 0:
542 return 32;
543 case 1:
544 return 36;
545 case 2:
546 return 40;
547 case 3:
548 return 42;
549 case 4:
550 return 44;
551 case 5:
552 return 48;
554 return -1;
557 static inline int pa_range(STE *ste)
559 int oas_field = MIN(STE_S2PS(ste), SMMU_IDR5_OAS);
561 if (!STE_S2AA64(ste)) {
562 return 40;
565 return oas2bits(oas_field);
568 #define MAX_PA(ste) ((1 << pa_range(ste)) - 1)
570 /* CD fields */
572 #define CD_VALID(x) extract32((x)->word[0], 30, 1)
573 #define CD_ASID(x) extract32((x)->word[1], 16, 16)
574 #define CD_TTB(x, sel) \
575 ({ \
576 uint64_t hi, lo; \
577 hi = extract32((x)->word[(sel) * 2 + 3], 0, 19); \
578 hi <<= 32; \
579 lo = (x)->word[(sel) * 2 + 2] & ~0xfULL; \
580 hi | lo; \
582 #define CD_HAD(x, sel) extract32((x)->word[(sel) * 2 + 2], 1, 1)
584 #define CD_TSZ(x, sel) extract32((x)->word[0], (16 * (sel)) + 0, 6)
585 #define CD_TG(x, sel) extract32((x)->word[0], (16 * (sel)) + 6, 2)
586 #define CD_EPD(x, sel) extract32((x)->word[0], (16 * (sel)) + 14, 1)
587 #define CD_ENDI(x) extract32((x)->word[0], 15, 1)
588 #define CD_IPS(x) extract32((x)->word[1], 0 , 3)
589 #define CD_TBI(x) extract32((x)->word[1], 6 , 2)
590 #define CD_HD(x) extract32((x)->word[1], 10 , 1)
591 #define CD_HA(x) extract32((x)->word[1], 11 , 1)
592 #define CD_S(x) extract32((x)->word[1], 12, 1)
593 #define CD_R(x) extract32((x)->word[1], 13, 1)
594 #define CD_A(x) extract32((x)->word[1], 14, 1)
595 #define CD_AARCH64(x) extract32((x)->word[1], 9 , 1)
597 #define CDM_VALID(x) ((x)->word[0] & 0x1)
599 static inline int is_cd_valid(SMMUv3State *s, STE *ste, CD *cd)
601 return CD_VALID(cd);
605 * tg2granule - Decodes the CD translation granule size field according
606 * to the ttbr in use
607 * @bits: TG0/1 fields
608 * @ttbr: ttbr index in use
610 static inline int tg2granule(int bits, int ttbr)
612 switch (bits) {
613 case 0:
614 return ttbr ? 0 : 12;
615 case 1:
616 return ttbr ? 14 : 16;
617 case 2:
618 return ttbr ? 12 : 14;
619 case 3:
620 return ttbr ? 16 : 0;
621 default:
622 return 0;
626 static inline uint64_t l1std_l2ptr(STEDesc *desc)
628 uint64_t hi, lo;
630 hi = desc->word[1];
631 lo = desc->word[0] & ~0x1fULL;
632 return hi << 32 | lo;
635 #define L1STD_SPAN(stm) (extract32((stm)->word[0], 0, 4))
637 #endif