4 * Copyright (c) 2003-2008 Fabrice Bellard
6 * This program is free software; you can redistribute it and/or modify
7 * it under the terms of the GNU General Public License as published by
8 * the Free Software Foundation; either version 2 of the License, or
9 * (at your option) any later version.
11 * This program is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 * GNU General Public License for more details.
16 * You should have received a copy of the GNU General Public License
17 * along with this program; if not, see <http://www.gnu.org/licenses/>.
19 #include "qemu/osdep.h"
20 #include "qemu-version.h"
21 #include <sys/syscall.h>
22 #include <sys/resource.h>
24 #include "qapi/error.h"
26 #include "qemu/path.h"
27 #include "qemu/config-file.h"
28 #include "qemu/cutils.h"
29 #include "qemu/help_option.h"
31 #include "exec/exec-all.h"
33 #include "qemu/timer.h"
34 #include "qemu/envlist.h"
37 #include "trace/control.h"
38 #include "glib-compat.h"
43 static const char *filename
;
44 static const char *argv0
;
45 static int gdbstub_port
;
46 static envlist_t
*envlist
;
47 static const char *cpu_model
;
48 unsigned long mmap_min_addr
;
49 unsigned long guest_base
;
52 #define EXCP_DUMP(env, fmt, ...) \
54 CPUState *cs = ENV_GET_CPU(env); \
55 fprintf(stderr, fmt , ## __VA_ARGS__); \
56 cpu_dump_state(cs, stderr, fprintf, 0); \
57 if (qemu_log_separate()) { \
58 qemu_log(fmt, ## __VA_ARGS__); \
59 log_cpu_state(cs, 0); \
63 #if (TARGET_LONG_BITS == 32) && (HOST_LONG_BITS == 64)
65 * When running 32-on-64 we should make sure we can fit all of the possible
66 * guest address space into a contiguous chunk of virtual host memory.
68 * This way we will never overlap with our own libraries or binaries or stack
69 * or anything else that QEMU maps.
71 # if defined(TARGET_MIPS) || defined(TARGET_NIOS2)
73 * MIPS only supports 31 bits of virtual address space for user space.
74 * Nios2 also only supports 31 bits.
76 unsigned long reserved_va
= 0x77000000;
78 unsigned long reserved_va
= 0xf7000000;
81 unsigned long reserved_va
;
84 static void usage(int exitcode
);
86 static const char *interp_prefix
= CONFIG_QEMU_INTERP_PREFIX
;
87 const char *qemu_uname_release
;
89 /* XXX: on x86 MAP_GROWSDOWN only works if ESP <= address + 32, so
90 we allocate a bigger stack. Need a better solution, for example
91 by remapping the process stack directly at the right place */
92 unsigned long guest_stack_size
= 8 * 1024 * 1024UL;
94 void gemu_log(const char *fmt
, ...)
99 vfprintf(stderr
, fmt
, ap
);
103 #if defined(TARGET_I386)
104 int cpu_get_pic_interrupt(CPUX86State
*env
)
110 /***********************************************************/
111 /* Helper routines for implementing atomic operations. */
113 /* Make sure everything is in a consistent state for calling fork(). */
114 void fork_start(void)
117 qemu_mutex_lock(&tcg_ctx
.tb_ctx
.tb_lock
);
121 void fork_end(int child
)
123 mmap_fork_end(child
);
125 CPUState
*cpu
, *next_cpu
;
126 /* Child processes created by fork() only have a single thread.
127 Discard information about the parent threads. */
128 CPU_FOREACH_SAFE(cpu
, next_cpu
) {
129 if (cpu
!= thread_cpu
) {
130 QTAILQ_REMOVE(&cpus
, cpu
, node
);
133 qemu_mutex_init(&tcg_ctx
.tb_ctx
.tb_lock
);
134 qemu_init_cpu_list();
135 gdbserver_fork(thread_cpu
);
137 qemu_mutex_unlock(&tcg_ctx
.tb_ctx
.tb_lock
);
143 /***********************************************************/
144 /* CPUX86 core interface */
146 uint64_t cpu_get_tsc(CPUX86State
*env
)
148 return cpu_get_host_ticks();
151 static void write_dt(void *ptr
, unsigned long addr
, unsigned long limit
,
156 e1
= (addr
<< 16) | (limit
& 0xffff);
157 e2
= ((addr
>> 16) & 0xff) | (addr
& 0xff000000) | (limit
& 0x000f0000);
164 static uint64_t *idt_table
;
166 static void set_gate64(void *ptr
, unsigned int type
, unsigned int dpl
,
167 uint64_t addr
, unsigned int sel
)
170 e1
= (addr
& 0xffff) | (sel
<< 16);
171 e2
= (addr
& 0xffff0000) | 0x8000 | (dpl
<< 13) | (type
<< 8);
175 p
[2] = tswap32(addr
>> 32);
178 /* only dpl matters as we do only user space emulation */
179 static void set_idt(int n
, unsigned int dpl
)
181 set_gate64(idt_table
+ n
* 2, 0, dpl
, 0, 0);
184 static void set_gate(void *ptr
, unsigned int type
, unsigned int dpl
,
185 uint32_t addr
, unsigned int sel
)
188 e1
= (addr
& 0xffff) | (sel
<< 16);
189 e2
= (addr
& 0xffff0000) | 0x8000 | (dpl
<< 13) | (type
<< 8);
195 /* only dpl matters as we do only user space emulation */
196 static void set_idt(int n
, unsigned int dpl
)
198 set_gate(idt_table
+ n
, 0, dpl
, 0, 0);
202 void cpu_loop(CPUX86State
*env
)
204 CPUState
*cs
= CPU(x86_env_get_cpu(env
));
208 target_siginfo_t info
;
212 trapnr
= cpu_exec(cs
);
214 process_queued_cpu_work(cs
);
218 /* linux syscall from int $0x80 */
219 ret
= do_syscall(env
,
228 if (ret
== -TARGET_ERESTARTSYS
) {
230 } else if (ret
!= -TARGET_QEMU_ESIGRETURN
) {
231 env
->regs
[R_EAX
] = ret
;
236 /* linux syscall from syscall instruction */
237 ret
= do_syscall(env
,
246 if (ret
== -TARGET_ERESTARTSYS
) {
248 } else if (ret
!= -TARGET_QEMU_ESIGRETURN
) {
249 env
->regs
[R_EAX
] = ret
;
255 info
.si_signo
= TARGET_SIGBUS
;
257 info
.si_code
= TARGET_SI_KERNEL
;
258 info
._sifields
._sigfault
._addr
= 0;
259 queue_signal(env
, info
.si_signo
, QEMU_SI_FAULT
, &info
);
262 /* XXX: potential problem if ABI32 */
263 #ifndef TARGET_X86_64
264 if (env
->eflags
& VM_MASK
) {
265 handle_vm86_fault(env
);
269 info
.si_signo
= TARGET_SIGSEGV
;
271 info
.si_code
= TARGET_SI_KERNEL
;
272 info
._sifields
._sigfault
._addr
= 0;
273 queue_signal(env
, info
.si_signo
, QEMU_SI_FAULT
, &info
);
277 info
.si_signo
= TARGET_SIGSEGV
;
279 if (!(env
->error_code
& 1))
280 info
.si_code
= TARGET_SEGV_MAPERR
;
282 info
.si_code
= TARGET_SEGV_ACCERR
;
283 info
._sifields
._sigfault
._addr
= env
->cr
[2];
284 queue_signal(env
, info
.si_signo
, QEMU_SI_FAULT
, &info
);
287 #ifndef TARGET_X86_64
288 if (env
->eflags
& VM_MASK
) {
289 handle_vm86_trap(env
, trapnr
);
293 /* division by zero */
294 info
.si_signo
= TARGET_SIGFPE
;
296 info
.si_code
= TARGET_FPE_INTDIV
;
297 info
._sifields
._sigfault
._addr
= env
->eip
;
298 queue_signal(env
, info
.si_signo
, QEMU_SI_FAULT
, &info
);
303 #ifndef TARGET_X86_64
304 if (env
->eflags
& VM_MASK
) {
305 handle_vm86_trap(env
, trapnr
);
309 info
.si_signo
= TARGET_SIGTRAP
;
311 if (trapnr
== EXCP01_DB
) {
312 info
.si_code
= TARGET_TRAP_BRKPT
;
313 info
._sifields
._sigfault
._addr
= env
->eip
;
315 info
.si_code
= TARGET_SI_KERNEL
;
316 info
._sifields
._sigfault
._addr
= 0;
318 queue_signal(env
, info
.si_signo
, QEMU_SI_FAULT
, &info
);
323 #ifndef TARGET_X86_64
324 if (env
->eflags
& VM_MASK
) {
325 handle_vm86_trap(env
, trapnr
);
329 info
.si_signo
= TARGET_SIGSEGV
;
331 info
.si_code
= TARGET_SI_KERNEL
;
332 info
._sifields
._sigfault
._addr
= 0;
333 queue_signal(env
, info
.si_signo
, QEMU_SI_FAULT
, &info
);
337 info
.si_signo
= TARGET_SIGILL
;
339 info
.si_code
= TARGET_ILL_ILLOPN
;
340 info
._sifields
._sigfault
._addr
= env
->eip
;
341 queue_signal(env
, info
.si_signo
, QEMU_SI_FAULT
, &info
);
344 /* just indicate that signals should be handled asap */
350 sig
= gdb_handlesig(cs
, TARGET_SIGTRAP
);
355 info
.si_code
= TARGET_TRAP_BRKPT
;
356 queue_signal(env
, info
.si_signo
, QEMU_SI_FAULT
, &info
);
361 cpu_exec_step_atomic(cs
);
364 pc
= env
->segs
[R_CS
].base
+ env
->eip
;
365 EXCP_DUMP(env
, "qemu: 0x%08lx: unhandled CPU exception 0x%x - aborting\n",
369 process_pending_signals(env
);
376 #define get_user_code_u32(x, gaddr, env) \
377 ({ abi_long __r = get_user_u32((x), (gaddr)); \
378 if (!__r && bswap_code(arm_sctlr_b(env))) { \
384 #define get_user_code_u16(x, gaddr, env) \
385 ({ abi_long __r = get_user_u16((x), (gaddr)); \
386 if (!__r && bswap_code(arm_sctlr_b(env))) { \
392 #define get_user_data_u32(x, gaddr, env) \
393 ({ abi_long __r = get_user_u32((x), (gaddr)); \
394 if (!__r && arm_cpu_bswap_data(env)) { \
400 #define get_user_data_u16(x, gaddr, env) \
401 ({ abi_long __r = get_user_u16((x), (gaddr)); \
402 if (!__r && arm_cpu_bswap_data(env)) { \
408 #define put_user_data_u32(x, gaddr, env) \
409 ({ typeof(x) __x = (x); \
410 if (arm_cpu_bswap_data(env)) { \
411 __x = bswap32(__x); \
413 put_user_u32(__x, (gaddr)); \
416 #define put_user_data_u16(x, gaddr, env) \
417 ({ typeof(x) __x = (x); \
418 if (arm_cpu_bswap_data(env)) { \
419 __x = bswap16(__x); \
421 put_user_u16(__x, (gaddr)); \
425 /* Commpage handling -- there is no commpage for AArch64 */
428 * See the Linux kernel's Documentation/arm/kernel_user_helpers.txt
430 * r0 = pointer to oldval
431 * r1 = pointer to newval
432 * r2 = pointer to target value
435 * r0 = 0 if *ptr was changed, non-0 if no exchange happened
436 * C set if *ptr was changed, clear if no exchange happened
438 * Note segv's in kernel helpers are a bit tricky, we can set the
439 * data address sensibly but the PC address is just the entry point.
441 static void arm_kernel_cmpxchg64_helper(CPUARMState
*env
)
443 uint64_t oldval
, newval
, val
;
445 target_siginfo_t info
;
447 /* Based on the 32 bit code in do_kernel_trap */
449 /* XXX: This only works between threads, not between processes.
450 It's probably possible to implement this with native host
451 operations. However things like ldrex/strex are much harder so
452 there's not much point trying. */
454 cpsr
= cpsr_read(env
);
457 if (get_user_u64(oldval
, env
->regs
[0])) {
458 env
->exception
.vaddress
= env
->regs
[0];
462 if (get_user_u64(newval
, env
->regs
[1])) {
463 env
->exception
.vaddress
= env
->regs
[1];
467 if (get_user_u64(val
, addr
)) {
468 env
->exception
.vaddress
= addr
;
475 if (put_user_u64(val
, addr
)) {
476 env
->exception
.vaddress
= addr
;
486 cpsr_write(env
, cpsr
, CPSR_C
, CPSRWriteByInstr
);
492 /* We get the PC of the entry address - which is as good as anything,
493 on a real kernel what you get depends on which mode it uses. */
494 info
.si_signo
= TARGET_SIGSEGV
;
496 /* XXX: check env->error_code */
497 info
.si_code
= TARGET_SEGV_MAPERR
;
498 info
._sifields
._sigfault
._addr
= env
->exception
.vaddress
;
499 queue_signal(env
, info
.si_signo
, QEMU_SI_FAULT
, &info
);
502 /* Handle a jump to the kernel code page. */
504 do_kernel_trap(CPUARMState
*env
)
510 switch (env
->regs
[15]) {
511 case 0xffff0fa0: /* __kernel_memory_barrier */
512 /* ??? No-op. Will need to do better for SMP. */
514 case 0xffff0fc0: /* __kernel_cmpxchg */
515 /* XXX: This only works between threads, not between processes.
516 It's probably possible to implement this with native host
517 operations. However things like ldrex/strex are much harder so
518 there's not much point trying. */
520 cpsr
= cpsr_read(env
);
522 /* FIXME: This should SEGV if the access fails. */
523 if (get_user_u32(val
, addr
))
525 if (val
== env
->regs
[0]) {
527 /* FIXME: Check for segfaults. */
528 put_user_u32(val
, addr
);
535 cpsr_write(env
, cpsr
, CPSR_C
, CPSRWriteByInstr
);
538 case 0xffff0fe0: /* __kernel_get_tls */
539 env
->regs
[0] = cpu_get_tls(env
);
541 case 0xffff0f60: /* __kernel_cmpxchg64 */
542 arm_kernel_cmpxchg64_helper(env
);
548 /* Jump back to the caller. */
549 addr
= env
->regs
[14];
554 env
->regs
[15] = addr
;
559 void cpu_loop(CPUARMState
*env
)
561 CPUState
*cs
= CPU(arm_env_get_cpu(env
));
563 unsigned int n
, insn
;
564 target_siginfo_t info
;
570 trapnr
= cpu_exec(cs
);
572 process_queued_cpu_work(cs
);
579 TaskState
*ts
= cs
->opaque
;
583 /* we handle the FPU emulation here, as Linux */
584 /* we get the opcode */
585 /* FIXME - what to do if get_user() fails? */
586 get_user_code_u32(opcode
, env
->regs
[15], env
);
588 rc
= EmulateAll(opcode
, &ts
->fpa
, env
);
589 if (rc
== 0) { /* illegal instruction */
590 info
.si_signo
= TARGET_SIGILL
;
592 info
.si_code
= TARGET_ILL_ILLOPN
;
593 info
._sifields
._sigfault
._addr
= env
->regs
[15];
594 queue_signal(env
, info
.si_signo
, QEMU_SI_FAULT
, &info
);
595 } else if (rc
< 0) { /* FP exception */
598 /* translate softfloat flags to FPSR flags */
599 if (-rc
& float_flag_invalid
)
601 if (-rc
& float_flag_divbyzero
)
603 if (-rc
& float_flag_overflow
)
605 if (-rc
& float_flag_underflow
)
607 if (-rc
& float_flag_inexact
)
610 FPSR fpsr
= ts
->fpa
.fpsr
;
611 //printf("fpsr 0x%x, arm_fpe 0x%x\n",fpsr,arm_fpe);
613 if (fpsr
& (arm_fpe
<< 16)) { /* exception enabled? */
614 info
.si_signo
= TARGET_SIGFPE
;
617 /* ordered by priority, least first */
618 if (arm_fpe
& BIT_IXC
) info
.si_code
= TARGET_FPE_FLTRES
;
619 if (arm_fpe
& BIT_UFC
) info
.si_code
= TARGET_FPE_FLTUND
;
620 if (arm_fpe
& BIT_OFC
) info
.si_code
= TARGET_FPE_FLTOVF
;
621 if (arm_fpe
& BIT_DZC
) info
.si_code
= TARGET_FPE_FLTDIV
;
622 if (arm_fpe
& BIT_IOC
) info
.si_code
= TARGET_FPE_FLTINV
;
624 info
._sifields
._sigfault
._addr
= env
->regs
[15];
625 queue_signal(env
, info
.si_signo
, QEMU_SI_FAULT
, &info
);
630 /* accumulate unenabled exceptions */
631 if ((!(fpsr
& BIT_IXE
)) && (arm_fpe
& BIT_IXC
))
633 if ((!(fpsr
& BIT_UFE
)) && (arm_fpe
& BIT_UFC
))
635 if ((!(fpsr
& BIT_OFE
)) && (arm_fpe
& BIT_OFC
))
637 if ((!(fpsr
& BIT_DZE
)) && (arm_fpe
& BIT_DZC
))
639 if ((!(fpsr
& BIT_IOE
)) && (arm_fpe
& BIT_IOC
))
642 } else { /* everything OK */
653 if (trapnr
== EXCP_BKPT
) {
655 /* FIXME - what to do if get_user() fails? */
656 get_user_code_u16(insn
, env
->regs
[15], env
);
660 /* FIXME - what to do if get_user() fails? */
661 get_user_code_u32(insn
, env
->regs
[15], env
);
662 n
= (insn
& 0xf) | ((insn
>> 4) & 0xff0);
667 /* FIXME - what to do if get_user() fails? */
668 get_user_code_u16(insn
, env
->regs
[15] - 2, env
);
671 /* FIXME - what to do if get_user() fails? */
672 get_user_code_u32(insn
, env
->regs
[15] - 4, env
);
677 if (n
== ARM_NR_cacheflush
) {
679 } else if (n
== ARM_NR_semihosting
680 || n
== ARM_NR_thumb_semihosting
) {
681 env
->regs
[0] = do_arm_semihosting (env
);
682 } else if (n
== 0 || n
>= ARM_SYSCALL_BASE
|| env
->thumb
) {
684 if (env
->thumb
|| n
== 0) {
687 n
-= ARM_SYSCALL_BASE
;
690 if ( n
> ARM_NR_BASE
) {
692 case ARM_NR_cacheflush
:
696 cpu_set_tls(env
, env
->regs
[0]);
699 case ARM_NR_breakpoint
:
700 env
->regs
[15] -= env
->thumb
? 2 : 4;
703 gemu_log("qemu: Unsupported ARM syscall: 0x%x\n",
705 env
->regs
[0] = -TARGET_ENOSYS
;
709 ret
= do_syscall(env
,
718 if (ret
== -TARGET_ERESTARTSYS
) {
719 env
->regs
[15] -= env
->thumb
? 2 : 4;
720 } else if (ret
!= -TARGET_QEMU_ESIGRETURN
) {
730 env
->regs
[0] = do_arm_semihosting(env
);
733 /* just indicate that signals should be handled asap */
735 case EXCP_PREFETCH_ABORT
:
736 case EXCP_DATA_ABORT
:
737 addr
= env
->exception
.vaddress
;
739 info
.si_signo
= TARGET_SIGSEGV
;
741 /* XXX: check env->error_code */
742 info
.si_code
= TARGET_SEGV_MAPERR
;
743 info
._sifields
._sigfault
._addr
= addr
;
744 queue_signal(env
, info
.si_signo
, QEMU_SI_FAULT
, &info
);
752 sig
= gdb_handlesig(cs
, TARGET_SIGTRAP
);
757 info
.si_code
= TARGET_TRAP_BRKPT
;
758 queue_signal(env
, info
.si_signo
, QEMU_SI_FAULT
, &info
);
762 case EXCP_KERNEL_TRAP
:
763 if (do_kernel_trap(env
))
767 /* nothing to do here for user-mode, just resume guest code */
770 cpu_exec_step_atomic(cs
);
774 EXCP_DUMP(env
, "qemu: unhandled CPU exception 0x%x - aborting\n", trapnr
);
777 process_pending_signals(env
);
783 /* AArch64 main loop */
784 void cpu_loop(CPUARMState
*env
)
786 CPUState
*cs
= CPU(arm_env_get_cpu(env
));
789 target_siginfo_t info
;
793 trapnr
= cpu_exec(cs
);
795 process_queued_cpu_work(cs
);
799 ret
= do_syscall(env
,
808 if (ret
== -TARGET_ERESTARTSYS
) {
810 } else if (ret
!= -TARGET_QEMU_ESIGRETURN
) {
815 /* just indicate that signals should be handled asap */
818 info
.si_signo
= TARGET_SIGILL
;
820 info
.si_code
= TARGET_ILL_ILLOPN
;
821 info
._sifields
._sigfault
._addr
= env
->pc
;
822 queue_signal(env
, info
.si_signo
, QEMU_SI_FAULT
, &info
);
824 case EXCP_PREFETCH_ABORT
:
825 case EXCP_DATA_ABORT
:
826 info
.si_signo
= TARGET_SIGSEGV
;
828 /* XXX: check env->error_code */
829 info
.si_code
= TARGET_SEGV_MAPERR
;
830 info
._sifields
._sigfault
._addr
= env
->exception
.vaddress
;
831 queue_signal(env
, info
.si_signo
, QEMU_SI_FAULT
, &info
);
835 sig
= gdb_handlesig(cs
, TARGET_SIGTRAP
);
839 info
.si_code
= TARGET_TRAP_BRKPT
;
840 queue_signal(env
, info
.si_signo
, QEMU_SI_FAULT
, &info
);
844 env
->xregs
[0] = do_arm_semihosting(env
);
847 /* nothing to do here for user-mode, just resume guest code */
850 cpu_exec_step_atomic(cs
);
853 EXCP_DUMP(env
, "qemu: unhandled CPU exception 0x%x - aborting\n", trapnr
);
856 process_pending_signals(env
);
857 /* Exception return on AArch64 always clears the exclusive monitor,
858 * so any return to running guest code implies this.
860 env
->exclusive_addr
= -1;
863 #endif /* ndef TARGET_ABI32 */
867 #ifdef TARGET_UNICORE32
869 void cpu_loop(CPUUniCore32State
*env
)
871 CPUState
*cs
= CPU(uc32_env_get_cpu(env
));
873 unsigned int n
, insn
;
874 target_siginfo_t info
;
878 trapnr
= cpu_exec(cs
);
880 process_queued_cpu_work(cs
);
886 get_user_u32(insn
, env
->regs
[31] - 4);
889 if (n
>= UC32_SYSCALL_BASE
) {
891 n
-= UC32_SYSCALL_BASE
;
892 if (n
== UC32_SYSCALL_NR_set_tls
) {
893 cpu_set_tls(env
, env
->regs
[0]);
896 abi_long ret
= do_syscall(env
,
905 if (ret
== -TARGET_ERESTARTSYS
) {
907 } else if (ret
!= -TARGET_QEMU_ESIGRETURN
) {
916 case UC32_EXCP_DTRAP
:
917 case UC32_EXCP_ITRAP
:
918 info
.si_signo
= TARGET_SIGSEGV
;
920 /* XXX: check env->error_code */
921 info
.si_code
= TARGET_SEGV_MAPERR
;
922 info
._sifields
._sigfault
._addr
= env
->cp0
.c4_faultaddr
;
923 queue_signal(env
, info
.si_signo
, QEMU_SI_FAULT
, &info
);
926 /* just indicate that signals should be handled asap */
932 sig
= gdb_handlesig(cs
, TARGET_SIGTRAP
);
936 info
.si_code
= TARGET_TRAP_BRKPT
;
937 queue_signal(env
, info
.si_signo
, QEMU_SI_FAULT
, &info
);
942 cpu_exec_step_atomic(cs
);
947 process_pending_signals(env
);
951 EXCP_DUMP(env
, "qemu: unhandled CPU exception 0x%x - aborting\n", trapnr
);
957 #define SPARC64_STACK_BIAS 2047
961 /* WARNING: dealing with register windows _is_ complicated. More info
962 can be found at http://www.sics.se/~psm/sparcstack.html */
963 static inline int get_reg_index(CPUSPARCState
*env
, int cwp
, int index
)
965 index
= (index
+ cwp
* 16) % (16 * env
->nwindows
);
966 /* wrap handling : if cwp is on the last window, then we use the
967 registers 'after' the end */
968 if (index
< 8 && env
->cwp
== env
->nwindows
- 1)
969 index
+= 16 * env
->nwindows
;
973 /* save the register window 'cwp1' */
974 static inline void save_window_offset(CPUSPARCState
*env
, int cwp1
)
979 sp_ptr
= env
->regbase
[get_reg_index(env
, cwp1
, 6)];
980 #ifdef TARGET_SPARC64
982 sp_ptr
+= SPARC64_STACK_BIAS
;
984 #if defined(DEBUG_WIN)
985 printf("win_overflow: sp_ptr=0x" TARGET_ABI_FMT_lx
" save_cwp=%d\n",
988 for(i
= 0; i
< 16; i
++) {
989 /* FIXME - what to do if put_user() fails? */
990 put_user_ual(env
->regbase
[get_reg_index(env
, cwp1
, 8 + i
)], sp_ptr
);
991 sp_ptr
+= sizeof(abi_ulong
);
995 static void save_window(CPUSPARCState
*env
)
997 #ifndef TARGET_SPARC64
998 unsigned int new_wim
;
999 new_wim
= ((env
->wim
>> 1) | (env
->wim
<< (env
->nwindows
- 1))) &
1000 ((1LL << env
->nwindows
) - 1);
1001 save_window_offset(env
, cpu_cwp_dec(env
, env
->cwp
- 2));
1004 save_window_offset(env
, cpu_cwp_dec(env
, env
->cwp
- 2));
1010 static void restore_window(CPUSPARCState
*env
)
1012 #ifndef TARGET_SPARC64
1013 unsigned int new_wim
;
1015 unsigned int i
, cwp1
;
1018 #ifndef TARGET_SPARC64
1019 new_wim
= ((env
->wim
<< 1) | (env
->wim
>> (env
->nwindows
- 1))) &
1020 ((1LL << env
->nwindows
) - 1);
1023 /* restore the invalid window */
1024 cwp1
= cpu_cwp_inc(env
, env
->cwp
+ 1);
1025 sp_ptr
= env
->regbase
[get_reg_index(env
, cwp1
, 6)];
1026 #ifdef TARGET_SPARC64
1028 sp_ptr
+= SPARC64_STACK_BIAS
;
1030 #if defined(DEBUG_WIN)
1031 printf("win_underflow: sp_ptr=0x" TARGET_ABI_FMT_lx
" load_cwp=%d\n",
1034 for(i
= 0; i
< 16; i
++) {
1035 /* FIXME - what to do if get_user() fails? */
1036 get_user_ual(env
->regbase
[get_reg_index(env
, cwp1
, 8 + i
)], sp_ptr
);
1037 sp_ptr
+= sizeof(abi_ulong
);
1039 #ifdef TARGET_SPARC64
1041 if (env
->cleanwin
< env
->nwindows
- 1)
1049 static void flush_windows(CPUSPARCState
*env
)
1055 /* if restore would invoke restore_window(), then we can stop */
1056 cwp1
= cpu_cwp_inc(env
, env
->cwp
+ offset
);
1057 #ifndef TARGET_SPARC64
1058 if (env
->wim
& (1 << cwp1
))
1061 if (env
->canrestore
== 0)
1066 save_window_offset(env
, cwp1
);
1069 cwp1
= cpu_cwp_inc(env
, env
->cwp
+ 1);
1070 #ifndef TARGET_SPARC64
1071 /* set wim so that restore will reload the registers */
1072 env
->wim
= 1 << cwp1
;
1074 #if defined(DEBUG_WIN)
1075 printf("flush_windows: nb=%d\n", offset
- 1);
1079 void cpu_loop (CPUSPARCState
*env
)
1081 CPUState
*cs
= CPU(sparc_env_get_cpu(env
));
1084 target_siginfo_t info
;
1088 trapnr
= cpu_exec(cs
);
1090 process_queued_cpu_work(cs
);
1092 /* Compute PSR before exposing state. */
1093 if (env
->cc_op
!= CC_OP_FLAGS
) {
1098 #ifndef TARGET_SPARC64
1105 ret
= do_syscall (env
, env
->gregs
[1],
1106 env
->regwptr
[0], env
->regwptr
[1],
1107 env
->regwptr
[2], env
->regwptr
[3],
1108 env
->regwptr
[4], env
->regwptr
[5],
1110 if (ret
== -TARGET_ERESTARTSYS
|| ret
== -TARGET_QEMU_ESIGRETURN
) {
1113 if ((abi_ulong
)ret
>= (abi_ulong
)(-515)) {
1114 #if defined(TARGET_SPARC64) && !defined(TARGET_ABI32)
1115 env
->xcc
|= PSR_CARRY
;
1117 env
->psr
|= PSR_CARRY
;
1121 #if defined(TARGET_SPARC64) && !defined(TARGET_ABI32)
1122 env
->xcc
&= ~PSR_CARRY
;
1124 env
->psr
&= ~PSR_CARRY
;
1127 env
->regwptr
[0] = ret
;
1128 /* next instruction */
1130 env
->npc
= env
->npc
+ 4;
1132 case 0x83: /* flush windows */
1137 /* next instruction */
1139 env
->npc
= env
->npc
+ 4;
1141 #ifndef TARGET_SPARC64
1142 case TT_WIN_OVF
: /* window overflow */
1145 case TT_WIN_UNF
: /* window underflow */
1146 restore_window(env
);
1151 info
.si_signo
= TARGET_SIGSEGV
;
1153 /* XXX: check env->error_code */
1154 info
.si_code
= TARGET_SEGV_MAPERR
;
1155 info
._sifields
._sigfault
._addr
= env
->mmuregs
[4];
1156 queue_signal(env
, info
.si_signo
, QEMU_SI_FAULT
, &info
);
1160 case TT_SPILL
: /* window overflow */
1163 case TT_FILL
: /* window underflow */
1164 restore_window(env
);
1169 info
.si_signo
= TARGET_SIGSEGV
;
1171 /* XXX: check env->error_code */
1172 info
.si_code
= TARGET_SEGV_MAPERR
;
1173 if (trapnr
== TT_DFAULT
)
1174 info
._sifields
._sigfault
._addr
= env
->dmmu
.mmuregs
[4];
1176 info
._sifields
._sigfault
._addr
= cpu_tsptr(env
)->tpc
;
1177 queue_signal(env
, info
.si_signo
, QEMU_SI_FAULT
, &info
);
1180 #ifndef TARGET_ABI32
1183 sparc64_get_context(env
);
1187 sparc64_set_context(env
);
1191 case EXCP_INTERRUPT
:
1192 /* just indicate that signals should be handled asap */
1196 info
.si_signo
= TARGET_SIGILL
;
1198 info
.si_code
= TARGET_ILL_ILLOPC
;
1199 info
._sifields
._sigfault
._addr
= env
->pc
;
1200 queue_signal(env
, info
.si_signo
, QEMU_SI_FAULT
, &info
);
1207 sig
= gdb_handlesig(cs
, TARGET_SIGTRAP
);
1210 info
.si_signo
= sig
;
1212 info
.si_code
= TARGET_TRAP_BRKPT
;
1213 queue_signal(env
, info
.si_signo
, QEMU_SI_FAULT
, &info
);
1218 cpu_exec_step_atomic(cs
);
1221 printf ("Unhandled trap: 0x%x\n", trapnr
);
1222 cpu_dump_state(cs
, stderr
, fprintf
, 0);
1225 process_pending_signals (env
);
1232 static inline uint64_t cpu_ppc_get_tb(CPUPPCState
*env
)
1234 return cpu_get_host_ticks();
1237 uint64_t cpu_ppc_load_tbl(CPUPPCState
*env
)
1239 return cpu_ppc_get_tb(env
);
1242 uint32_t cpu_ppc_load_tbu(CPUPPCState
*env
)
1244 return cpu_ppc_get_tb(env
) >> 32;
1247 uint64_t cpu_ppc_load_atbl(CPUPPCState
*env
)
1249 return cpu_ppc_get_tb(env
);
1252 uint32_t cpu_ppc_load_atbu(CPUPPCState
*env
)
1254 return cpu_ppc_get_tb(env
) >> 32;
1257 uint32_t cpu_ppc601_load_rtcu(CPUPPCState
*env
)
1258 __attribute__ (( alias ("cpu_ppc_load_tbu") ));
1260 uint32_t cpu_ppc601_load_rtcl(CPUPPCState
*env
)
1262 return cpu_ppc_load_tbl(env
) & 0x3FFFFF80;
1265 /* XXX: to be fixed */
1266 int ppc_dcr_read (ppc_dcr_t
*dcr_env
, int dcrn
, uint32_t *valp
)
1271 int ppc_dcr_write (ppc_dcr_t
*dcr_env
, int dcrn
, uint32_t val
)
1276 static int do_store_exclusive(CPUPPCState
*env
)
1279 target_ulong page_addr
;
1280 target_ulong val
, val2
__attribute__((unused
)) = 0;
1284 addr
= env
->reserve_ea
;
1285 page_addr
= addr
& TARGET_PAGE_MASK
;
1288 flags
= page_get_flags(page_addr
);
1289 if ((flags
& PAGE_READ
) == 0) {
1292 int reg
= env
->reserve_info
& 0x1f;
1293 int size
= env
->reserve_info
>> 5;
1296 if (addr
== env
->reserve_addr
) {
1298 case 1: segv
= get_user_u8(val
, addr
); break;
1299 case 2: segv
= get_user_u16(val
, addr
); break;
1300 case 4: segv
= get_user_u32(val
, addr
); break;
1301 #if defined(TARGET_PPC64)
1302 case 8: segv
= get_user_u64(val
, addr
); break;
1304 segv
= get_user_u64(val
, addr
);
1306 segv
= get_user_u64(val2
, addr
+ 8);
1313 if (!segv
&& val
== env
->reserve_val
) {
1314 val
= env
->gpr
[reg
];
1316 case 1: segv
= put_user_u8(val
, addr
); break;
1317 case 2: segv
= put_user_u16(val
, addr
); break;
1318 case 4: segv
= put_user_u32(val
, addr
); break;
1319 #if defined(TARGET_PPC64)
1320 case 8: segv
= put_user_u64(val
, addr
); break;
1322 if (val2
== env
->reserve_val2
) {
1325 val
= env
->gpr
[reg
+1];
1327 val2
= env
->gpr
[reg
+1];
1329 segv
= put_user_u64(val
, addr
);
1331 segv
= put_user_u64(val2
, addr
+ 8);
1344 env
->crf
[0] = (stored
<< 1) | xer_so
;
1345 env
->reserve_addr
= (target_ulong
)-1;
1355 void cpu_loop(CPUPPCState
*env
)
1357 CPUState
*cs
= CPU(ppc_env_get_cpu(env
));
1358 target_siginfo_t info
;
1364 trapnr
= cpu_exec(cs
);
1366 process_queued_cpu_work(cs
);
1369 case POWERPC_EXCP_NONE
:
1372 case POWERPC_EXCP_CRITICAL
: /* Critical input */
1373 cpu_abort(cs
, "Critical interrupt while in user mode. "
1376 case POWERPC_EXCP_MCHECK
: /* Machine check exception */
1377 cpu_abort(cs
, "Machine check exception while in user mode. "
1380 case POWERPC_EXCP_DSI
: /* Data storage exception */
1381 /* XXX: check this. Seems bugged */
1382 switch (env
->error_code
& 0xFF000000) {
1385 info
.si_signo
= TARGET_SIGSEGV
;
1387 info
.si_code
= TARGET_SEGV_MAPERR
;
1390 info
.si_signo
= TARGET_SIGILL
;
1392 info
.si_code
= TARGET_ILL_ILLADR
;
1395 info
.si_signo
= TARGET_SIGSEGV
;
1397 info
.si_code
= TARGET_SEGV_ACCERR
;
1400 /* Let's send a regular segfault... */
1401 EXCP_DUMP(env
, "Invalid segfault errno (%02x)\n",
1403 info
.si_signo
= TARGET_SIGSEGV
;
1405 info
.si_code
= TARGET_SEGV_MAPERR
;
1408 info
._sifields
._sigfault
._addr
= env
->nip
;
1409 queue_signal(env
, info
.si_signo
, QEMU_SI_FAULT
, &info
);
1411 case POWERPC_EXCP_ISI
: /* Instruction storage exception */
1412 /* XXX: check this */
1413 switch (env
->error_code
& 0xFF000000) {
1415 info
.si_signo
= TARGET_SIGSEGV
;
1417 info
.si_code
= TARGET_SEGV_MAPERR
;
1421 info
.si_signo
= TARGET_SIGSEGV
;
1423 info
.si_code
= TARGET_SEGV_ACCERR
;
1426 /* Let's send a regular segfault... */
1427 EXCP_DUMP(env
, "Invalid segfault errno (%02x)\n",
1429 info
.si_signo
= TARGET_SIGSEGV
;
1431 info
.si_code
= TARGET_SEGV_MAPERR
;
1434 info
._sifields
._sigfault
._addr
= env
->nip
- 4;
1435 queue_signal(env
, info
.si_signo
, QEMU_SI_FAULT
, &info
);
1437 case POWERPC_EXCP_EXTERNAL
: /* External input */
1438 cpu_abort(cs
, "External interrupt while in user mode. "
1441 case POWERPC_EXCP_ALIGN
: /* Alignment exception */
1442 /* XXX: check this */
1443 info
.si_signo
= TARGET_SIGBUS
;
1445 info
.si_code
= TARGET_BUS_ADRALN
;
1446 info
._sifields
._sigfault
._addr
= env
->nip
;
1447 queue_signal(env
, info
.si_signo
, QEMU_SI_FAULT
, &info
);
1449 case POWERPC_EXCP_PROGRAM
: /* Program exception */
1450 case POWERPC_EXCP_HV_EMU
: /* HV emulation */
1451 /* XXX: check this */
1452 switch (env
->error_code
& ~0xF) {
1453 case POWERPC_EXCP_FP
:
1454 info
.si_signo
= TARGET_SIGFPE
;
1456 switch (env
->error_code
& 0xF) {
1457 case POWERPC_EXCP_FP_OX
:
1458 info
.si_code
= TARGET_FPE_FLTOVF
;
1460 case POWERPC_EXCP_FP_UX
:
1461 info
.si_code
= TARGET_FPE_FLTUND
;
1463 case POWERPC_EXCP_FP_ZX
:
1464 case POWERPC_EXCP_FP_VXZDZ
:
1465 info
.si_code
= TARGET_FPE_FLTDIV
;
1467 case POWERPC_EXCP_FP_XX
:
1468 info
.si_code
= TARGET_FPE_FLTRES
;
1470 case POWERPC_EXCP_FP_VXSOFT
:
1471 info
.si_code
= TARGET_FPE_FLTINV
;
1473 case POWERPC_EXCP_FP_VXSNAN
:
1474 case POWERPC_EXCP_FP_VXISI
:
1475 case POWERPC_EXCP_FP_VXIDI
:
1476 case POWERPC_EXCP_FP_VXIMZ
:
1477 case POWERPC_EXCP_FP_VXVC
:
1478 case POWERPC_EXCP_FP_VXSQRT
:
1479 case POWERPC_EXCP_FP_VXCVI
:
1480 info
.si_code
= TARGET_FPE_FLTSUB
;
1483 EXCP_DUMP(env
, "Unknown floating point exception (%02x)\n",
1488 case POWERPC_EXCP_INVAL
:
1489 info
.si_signo
= TARGET_SIGILL
;
1491 switch (env
->error_code
& 0xF) {
1492 case POWERPC_EXCP_INVAL_INVAL
:
1493 info
.si_code
= TARGET_ILL_ILLOPC
;
1495 case POWERPC_EXCP_INVAL_LSWX
:
1496 info
.si_code
= TARGET_ILL_ILLOPN
;
1498 case POWERPC_EXCP_INVAL_SPR
:
1499 info
.si_code
= TARGET_ILL_PRVREG
;
1501 case POWERPC_EXCP_INVAL_FP
:
1502 info
.si_code
= TARGET_ILL_COPROC
;
1505 EXCP_DUMP(env
, "Unknown invalid operation (%02x)\n",
1506 env
->error_code
& 0xF);
1507 info
.si_code
= TARGET_ILL_ILLADR
;
1511 case POWERPC_EXCP_PRIV
:
1512 info
.si_signo
= TARGET_SIGILL
;
1514 switch (env
->error_code
& 0xF) {
1515 case POWERPC_EXCP_PRIV_OPC
:
1516 info
.si_code
= TARGET_ILL_PRVOPC
;
1518 case POWERPC_EXCP_PRIV_REG
:
1519 info
.si_code
= TARGET_ILL_PRVREG
;
1522 EXCP_DUMP(env
, "Unknown privilege violation (%02x)\n",
1523 env
->error_code
& 0xF);
1524 info
.si_code
= TARGET_ILL_PRVOPC
;
1528 case POWERPC_EXCP_TRAP
:
1529 cpu_abort(cs
, "Tried to call a TRAP\n");
1532 /* Should not happen ! */
1533 cpu_abort(cs
, "Unknown program exception (%02x)\n",
1537 info
._sifields
._sigfault
._addr
= env
->nip
;
1538 queue_signal(env
, info
.si_signo
, QEMU_SI_FAULT
, &info
);
1540 case POWERPC_EXCP_FPU
: /* Floating-point unavailable exception */
1541 info
.si_signo
= TARGET_SIGILL
;
1543 info
.si_code
= TARGET_ILL_COPROC
;
1544 info
._sifields
._sigfault
._addr
= env
->nip
;
1545 queue_signal(env
, info
.si_signo
, QEMU_SI_FAULT
, &info
);
1547 case POWERPC_EXCP_SYSCALL
: /* System call exception */
1548 cpu_abort(cs
, "Syscall exception while in user mode. "
1551 case POWERPC_EXCP_APU
: /* Auxiliary processor unavailable */
1552 info
.si_signo
= TARGET_SIGILL
;
1554 info
.si_code
= TARGET_ILL_COPROC
;
1555 info
._sifields
._sigfault
._addr
= env
->nip
;
1556 queue_signal(env
, info
.si_signo
, QEMU_SI_FAULT
, &info
);
1558 case POWERPC_EXCP_DECR
: /* Decrementer exception */
1559 cpu_abort(cs
, "Decrementer interrupt while in user mode. "
1562 case POWERPC_EXCP_FIT
: /* Fixed-interval timer interrupt */
1563 cpu_abort(cs
, "Fix interval timer interrupt while in user mode. "
1566 case POWERPC_EXCP_WDT
: /* Watchdog timer interrupt */
1567 cpu_abort(cs
, "Watchdog timer interrupt while in user mode. "
1570 case POWERPC_EXCP_DTLB
: /* Data TLB error */
1571 cpu_abort(cs
, "Data TLB exception while in user mode. "
1574 case POWERPC_EXCP_ITLB
: /* Instruction TLB error */
1575 cpu_abort(cs
, "Instruction TLB exception while in user mode. "
1578 case POWERPC_EXCP_SPEU
: /* SPE/embedded floating-point unavail. */
1579 info
.si_signo
= TARGET_SIGILL
;
1581 info
.si_code
= TARGET_ILL_COPROC
;
1582 info
._sifields
._sigfault
._addr
= env
->nip
;
1583 queue_signal(env
, info
.si_signo
, QEMU_SI_FAULT
, &info
);
1585 case POWERPC_EXCP_EFPDI
: /* Embedded floating-point data IRQ */
1586 cpu_abort(cs
, "Embedded floating-point data IRQ not handled\n");
1588 case POWERPC_EXCP_EFPRI
: /* Embedded floating-point round IRQ */
1589 cpu_abort(cs
, "Embedded floating-point round IRQ not handled\n");
1591 case POWERPC_EXCP_EPERFM
: /* Embedded performance monitor IRQ */
1592 cpu_abort(cs
, "Performance monitor exception not handled\n");
1594 case POWERPC_EXCP_DOORI
: /* Embedded doorbell interrupt */
1595 cpu_abort(cs
, "Doorbell interrupt while in user mode. "
1598 case POWERPC_EXCP_DOORCI
: /* Embedded doorbell critical interrupt */
1599 cpu_abort(cs
, "Doorbell critical interrupt while in user mode. "
1602 case POWERPC_EXCP_RESET
: /* System reset exception */
1603 cpu_abort(cs
, "Reset interrupt while in user mode. "
1606 case POWERPC_EXCP_DSEG
: /* Data segment exception */
1607 cpu_abort(cs
, "Data segment exception while in user mode. "
1610 case POWERPC_EXCP_ISEG
: /* Instruction segment exception */
1611 cpu_abort(cs
, "Instruction segment exception "
1612 "while in user mode. Aborting\n");
1614 /* PowerPC 64 with hypervisor mode support */
1615 case POWERPC_EXCP_HDECR
: /* Hypervisor decrementer exception */
1616 cpu_abort(cs
, "Hypervisor decrementer interrupt "
1617 "while in user mode. Aborting\n");
1619 case POWERPC_EXCP_TRACE
: /* Trace exception */
1621 * we use this exception to emulate step-by-step execution mode.
1624 /* PowerPC 64 with hypervisor mode support */
1625 case POWERPC_EXCP_HDSI
: /* Hypervisor data storage exception */
1626 cpu_abort(cs
, "Hypervisor data storage exception "
1627 "while in user mode. Aborting\n");
1629 case POWERPC_EXCP_HISI
: /* Hypervisor instruction storage excp */
1630 cpu_abort(cs
, "Hypervisor instruction storage exception "
1631 "while in user mode. Aborting\n");
1633 case POWERPC_EXCP_HDSEG
: /* Hypervisor data segment exception */
1634 cpu_abort(cs
, "Hypervisor data segment exception "
1635 "while in user mode. Aborting\n");
1637 case POWERPC_EXCP_HISEG
: /* Hypervisor instruction segment excp */
1638 cpu_abort(cs
, "Hypervisor instruction segment exception "
1639 "while in user mode. Aborting\n");
1641 case POWERPC_EXCP_VPU
: /* Vector unavailable exception */
1642 info
.si_signo
= TARGET_SIGILL
;
1644 info
.si_code
= TARGET_ILL_COPROC
;
1645 info
._sifields
._sigfault
._addr
= env
->nip
;
1646 queue_signal(env
, info
.si_signo
, QEMU_SI_FAULT
, &info
);
1648 case POWERPC_EXCP_PIT
: /* Programmable interval timer IRQ */
1649 cpu_abort(cs
, "Programmable interval timer interrupt "
1650 "while in user mode. Aborting\n");
1652 case POWERPC_EXCP_IO
: /* IO error exception */
1653 cpu_abort(cs
, "IO error exception while in user mode. "
1656 case POWERPC_EXCP_RUNM
: /* Run mode exception */
1657 cpu_abort(cs
, "Run mode exception while in user mode. "
1660 case POWERPC_EXCP_EMUL
: /* Emulation trap exception */
1661 cpu_abort(cs
, "Emulation trap exception not handled\n");
1663 case POWERPC_EXCP_IFTLB
: /* Instruction fetch TLB error */
1664 cpu_abort(cs
, "Instruction fetch TLB exception "
1665 "while in user-mode. Aborting");
1667 case POWERPC_EXCP_DLTLB
: /* Data load TLB miss */
1668 cpu_abort(cs
, "Data load TLB exception while in user-mode. "
1671 case POWERPC_EXCP_DSTLB
: /* Data store TLB miss */
1672 cpu_abort(cs
, "Data store TLB exception while in user-mode. "
1675 case POWERPC_EXCP_FPA
: /* Floating-point assist exception */
1676 cpu_abort(cs
, "Floating-point assist exception not handled\n");
1678 case POWERPC_EXCP_IABR
: /* Instruction address breakpoint */
1679 cpu_abort(cs
, "Instruction address breakpoint exception "
1682 case POWERPC_EXCP_SMI
: /* System management interrupt */
1683 cpu_abort(cs
, "System management interrupt while in user mode. "
1686 case POWERPC_EXCP_THERM
: /* Thermal interrupt */
1687 cpu_abort(cs
, "Thermal interrupt interrupt while in user mode. "
1690 case POWERPC_EXCP_PERFM
: /* Embedded performance monitor IRQ */
1691 cpu_abort(cs
, "Performance monitor exception not handled\n");
1693 case POWERPC_EXCP_VPUA
: /* Vector assist exception */
1694 cpu_abort(cs
, "Vector assist exception not handled\n");
1696 case POWERPC_EXCP_SOFTP
: /* Soft patch exception */
1697 cpu_abort(cs
, "Soft patch exception not handled\n");
1699 case POWERPC_EXCP_MAINT
: /* Maintenance exception */
1700 cpu_abort(cs
, "Maintenance exception while in user mode. "
1703 case POWERPC_EXCP_STOP
: /* stop translation */
1704 /* We did invalidate the instruction cache. Go on */
1706 case POWERPC_EXCP_BRANCH
: /* branch instruction: */
1707 /* We just stopped because of a branch. Go on */
1709 case POWERPC_EXCP_SYSCALL_USER
:
1710 /* system call in user-mode emulation */
1712 * PPC ABI uses overflow flag in cr0 to signal an error
1715 env
->crf
[0] &= ~0x1;
1717 ret
= do_syscall(env
, env
->gpr
[0], env
->gpr
[3], env
->gpr
[4],
1718 env
->gpr
[5], env
->gpr
[6], env
->gpr
[7],
1720 if (ret
== -TARGET_ERESTARTSYS
) {
1724 if (ret
== (target_ulong
)(-TARGET_QEMU_ESIGRETURN
)) {
1725 /* Returning from a successful sigreturn syscall.
1726 Avoid corrupting register state. */
1729 if (ret
> (target_ulong
)(-515)) {
1735 case POWERPC_EXCP_STCX
:
1736 if (do_store_exclusive(env
)) {
1737 info
.si_signo
= TARGET_SIGSEGV
;
1739 info
.si_code
= TARGET_SEGV_MAPERR
;
1740 info
._sifields
._sigfault
._addr
= env
->nip
;
1741 queue_signal(env
, info
.si_signo
, QEMU_SI_FAULT
, &info
);
1748 sig
= gdb_handlesig(cs
, TARGET_SIGTRAP
);
1750 info
.si_signo
= sig
;
1752 info
.si_code
= TARGET_TRAP_BRKPT
;
1753 queue_signal(env
, info
.si_signo
, QEMU_SI_FAULT
, &info
);
1757 case EXCP_INTERRUPT
:
1758 /* just indicate that signals should be handled asap */
1761 cpu_exec_step_atomic(cs
);
1764 cpu_abort(cs
, "Unknown exception 0x%x. Aborting\n", trapnr
);
1767 process_pending_signals(env
);
1774 # ifdef TARGET_ABI_MIPSO32
1775 # define MIPS_SYS(name, args) args,
1776 static const uint8_t mips_syscall_args
[] = {
1777 MIPS_SYS(sys_syscall
, 8) /* 4000 */
1778 MIPS_SYS(sys_exit
, 1)
1779 MIPS_SYS(sys_fork
, 0)
1780 MIPS_SYS(sys_read
, 3)
1781 MIPS_SYS(sys_write
, 3)
1782 MIPS_SYS(sys_open
, 3) /* 4005 */
1783 MIPS_SYS(sys_close
, 1)
1784 MIPS_SYS(sys_waitpid
, 3)
1785 MIPS_SYS(sys_creat
, 2)
1786 MIPS_SYS(sys_link
, 2)
1787 MIPS_SYS(sys_unlink
, 1) /* 4010 */
1788 MIPS_SYS(sys_execve
, 0)
1789 MIPS_SYS(sys_chdir
, 1)
1790 MIPS_SYS(sys_time
, 1)
1791 MIPS_SYS(sys_mknod
, 3)
1792 MIPS_SYS(sys_chmod
, 2) /* 4015 */
1793 MIPS_SYS(sys_lchown
, 3)
1794 MIPS_SYS(sys_ni_syscall
, 0)
1795 MIPS_SYS(sys_ni_syscall
, 0) /* was sys_stat */
1796 MIPS_SYS(sys_lseek
, 3)
1797 MIPS_SYS(sys_getpid
, 0) /* 4020 */
1798 MIPS_SYS(sys_mount
, 5)
1799 MIPS_SYS(sys_umount
, 1)
1800 MIPS_SYS(sys_setuid
, 1)
1801 MIPS_SYS(sys_getuid
, 0)
1802 MIPS_SYS(sys_stime
, 1) /* 4025 */
1803 MIPS_SYS(sys_ptrace
, 4)
1804 MIPS_SYS(sys_alarm
, 1)
1805 MIPS_SYS(sys_ni_syscall
, 0) /* was sys_fstat */
1806 MIPS_SYS(sys_pause
, 0)
1807 MIPS_SYS(sys_utime
, 2) /* 4030 */
1808 MIPS_SYS(sys_ni_syscall
, 0)
1809 MIPS_SYS(sys_ni_syscall
, 0)
1810 MIPS_SYS(sys_access
, 2)
1811 MIPS_SYS(sys_nice
, 1)
1812 MIPS_SYS(sys_ni_syscall
, 0) /* 4035 */
1813 MIPS_SYS(sys_sync
, 0)
1814 MIPS_SYS(sys_kill
, 2)
1815 MIPS_SYS(sys_rename
, 2)
1816 MIPS_SYS(sys_mkdir
, 2)
1817 MIPS_SYS(sys_rmdir
, 1) /* 4040 */
1818 MIPS_SYS(sys_dup
, 1)
1819 MIPS_SYS(sys_pipe
, 0)
1820 MIPS_SYS(sys_times
, 1)
1821 MIPS_SYS(sys_ni_syscall
, 0)
1822 MIPS_SYS(sys_brk
, 1) /* 4045 */
1823 MIPS_SYS(sys_setgid
, 1)
1824 MIPS_SYS(sys_getgid
, 0)
1825 MIPS_SYS(sys_ni_syscall
, 0) /* was signal(2) */
1826 MIPS_SYS(sys_geteuid
, 0)
1827 MIPS_SYS(sys_getegid
, 0) /* 4050 */
1828 MIPS_SYS(sys_acct
, 0)
1829 MIPS_SYS(sys_umount2
, 2)
1830 MIPS_SYS(sys_ni_syscall
, 0)
1831 MIPS_SYS(sys_ioctl
, 3)
1832 MIPS_SYS(sys_fcntl
, 3) /* 4055 */
1833 MIPS_SYS(sys_ni_syscall
, 2)
1834 MIPS_SYS(sys_setpgid
, 2)
1835 MIPS_SYS(sys_ni_syscall
, 0)
1836 MIPS_SYS(sys_olduname
, 1)
1837 MIPS_SYS(sys_umask
, 1) /* 4060 */
1838 MIPS_SYS(sys_chroot
, 1)
1839 MIPS_SYS(sys_ustat
, 2)
1840 MIPS_SYS(sys_dup2
, 2)
1841 MIPS_SYS(sys_getppid
, 0)
1842 MIPS_SYS(sys_getpgrp
, 0) /* 4065 */
1843 MIPS_SYS(sys_setsid
, 0)
1844 MIPS_SYS(sys_sigaction
, 3)
1845 MIPS_SYS(sys_sgetmask
, 0)
1846 MIPS_SYS(sys_ssetmask
, 1)
1847 MIPS_SYS(sys_setreuid
, 2) /* 4070 */
1848 MIPS_SYS(sys_setregid
, 2)
1849 MIPS_SYS(sys_sigsuspend
, 0)
1850 MIPS_SYS(sys_sigpending
, 1)
1851 MIPS_SYS(sys_sethostname
, 2)
1852 MIPS_SYS(sys_setrlimit
, 2) /* 4075 */
1853 MIPS_SYS(sys_getrlimit
, 2)
1854 MIPS_SYS(sys_getrusage
, 2)
1855 MIPS_SYS(sys_gettimeofday
, 2)
1856 MIPS_SYS(sys_settimeofday
, 2)
1857 MIPS_SYS(sys_getgroups
, 2) /* 4080 */
1858 MIPS_SYS(sys_setgroups
, 2)
1859 MIPS_SYS(sys_ni_syscall
, 0) /* old_select */
1860 MIPS_SYS(sys_symlink
, 2)
1861 MIPS_SYS(sys_ni_syscall
, 0) /* was sys_lstat */
1862 MIPS_SYS(sys_readlink
, 3) /* 4085 */
1863 MIPS_SYS(sys_uselib
, 1)
1864 MIPS_SYS(sys_swapon
, 2)
1865 MIPS_SYS(sys_reboot
, 3)
1866 MIPS_SYS(old_readdir
, 3)
1867 MIPS_SYS(old_mmap
, 6) /* 4090 */
1868 MIPS_SYS(sys_munmap
, 2)
1869 MIPS_SYS(sys_truncate
, 2)
1870 MIPS_SYS(sys_ftruncate
, 2)
1871 MIPS_SYS(sys_fchmod
, 2)
1872 MIPS_SYS(sys_fchown
, 3) /* 4095 */
1873 MIPS_SYS(sys_getpriority
, 2)
1874 MIPS_SYS(sys_setpriority
, 3)
1875 MIPS_SYS(sys_ni_syscall
, 0)
1876 MIPS_SYS(sys_statfs
, 2)
1877 MIPS_SYS(sys_fstatfs
, 2) /* 4100 */
1878 MIPS_SYS(sys_ni_syscall
, 0) /* was ioperm(2) */
1879 MIPS_SYS(sys_socketcall
, 2)
1880 MIPS_SYS(sys_syslog
, 3)
1881 MIPS_SYS(sys_setitimer
, 3)
1882 MIPS_SYS(sys_getitimer
, 2) /* 4105 */
1883 MIPS_SYS(sys_newstat
, 2)
1884 MIPS_SYS(sys_newlstat
, 2)
1885 MIPS_SYS(sys_newfstat
, 2)
1886 MIPS_SYS(sys_uname
, 1)
1887 MIPS_SYS(sys_ni_syscall
, 0) /* 4110 was iopl(2) */
1888 MIPS_SYS(sys_vhangup
, 0)
1889 MIPS_SYS(sys_ni_syscall
, 0) /* was sys_idle() */
1890 MIPS_SYS(sys_ni_syscall
, 0) /* was sys_vm86 */
1891 MIPS_SYS(sys_wait4
, 4)
1892 MIPS_SYS(sys_swapoff
, 1) /* 4115 */
1893 MIPS_SYS(sys_sysinfo
, 1)
1894 MIPS_SYS(sys_ipc
, 6)
1895 MIPS_SYS(sys_fsync
, 1)
1896 MIPS_SYS(sys_sigreturn
, 0)
1897 MIPS_SYS(sys_clone
, 6) /* 4120 */
1898 MIPS_SYS(sys_setdomainname
, 2)
1899 MIPS_SYS(sys_newuname
, 1)
1900 MIPS_SYS(sys_ni_syscall
, 0) /* sys_modify_ldt */
1901 MIPS_SYS(sys_adjtimex
, 1)
1902 MIPS_SYS(sys_mprotect
, 3) /* 4125 */
1903 MIPS_SYS(sys_sigprocmask
, 3)
1904 MIPS_SYS(sys_ni_syscall
, 0) /* was create_module */
1905 MIPS_SYS(sys_init_module
, 5)
1906 MIPS_SYS(sys_delete_module
, 1)
1907 MIPS_SYS(sys_ni_syscall
, 0) /* 4130 was get_kernel_syms */
1908 MIPS_SYS(sys_quotactl
, 0)
1909 MIPS_SYS(sys_getpgid
, 1)
1910 MIPS_SYS(sys_fchdir
, 1)
1911 MIPS_SYS(sys_bdflush
, 2)
1912 MIPS_SYS(sys_sysfs
, 3) /* 4135 */
1913 MIPS_SYS(sys_personality
, 1)
1914 MIPS_SYS(sys_ni_syscall
, 0) /* for afs_syscall */
1915 MIPS_SYS(sys_setfsuid
, 1)
1916 MIPS_SYS(sys_setfsgid
, 1)
1917 MIPS_SYS(sys_llseek
, 5) /* 4140 */
1918 MIPS_SYS(sys_getdents
, 3)
1919 MIPS_SYS(sys_select
, 5)
1920 MIPS_SYS(sys_flock
, 2)
1921 MIPS_SYS(sys_msync
, 3)
1922 MIPS_SYS(sys_readv
, 3) /* 4145 */
1923 MIPS_SYS(sys_writev
, 3)
1924 MIPS_SYS(sys_cacheflush
, 3)
1925 MIPS_SYS(sys_cachectl
, 3)
1926 MIPS_SYS(sys_sysmips
, 4)
1927 MIPS_SYS(sys_ni_syscall
, 0) /* 4150 */
1928 MIPS_SYS(sys_getsid
, 1)
1929 MIPS_SYS(sys_fdatasync
, 0)
1930 MIPS_SYS(sys_sysctl
, 1)
1931 MIPS_SYS(sys_mlock
, 2)
1932 MIPS_SYS(sys_munlock
, 2) /* 4155 */
1933 MIPS_SYS(sys_mlockall
, 1)
1934 MIPS_SYS(sys_munlockall
, 0)
1935 MIPS_SYS(sys_sched_setparam
, 2)
1936 MIPS_SYS(sys_sched_getparam
, 2)
1937 MIPS_SYS(sys_sched_setscheduler
, 3) /* 4160 */
1938 MIPS_SYS(sys_sched_getscheduler
, 1)
1939 MIPS_SYS(sys_sched_yield
, 0)
1940 MIPS_SYS(sys_sched_get_priority_max
, 1)
1941 MIPS_SYS(sys_sched_get_priority_min
, 1)
1942 MIPS_SYS(sys_sched_rr_get_interval
, 2) /* 4165 */
1943 MIPS_SYS(sys_nanosleep
, 2)
1944 MIPS_SYS(sys_mremap
, 5)
1945 MIPS_SYS(sys_accept
, 3)
1946 MIPS_SYS(sys_bind
, 3)
1947 MIPS_SYS(sys_connect
, 3) /* 4170 */
1948 MIPS_SYS(sys_getpeername
, 3)
1949 MIPS_SYS(sys_getsockname
, 3)
1950 MIPS_SYS(sys_getsockopt
, 5)
1951 MIPS_SYS(sys_listen
, 2)
1952 MIPS_SYS(sys_recv
, 4) /* 4175 */
1953 MIPS_SYS(sys_recvfrom
, 6)
1954 MIPS_SYS(sys_recvmsg
, 3)
1955 MIPS_SYS(sys_send
, 4)
1956 MIPS_SYS(sys_sendmsg
, 3)
1957 MIPS_SYS(sys_sendto
, 6) /* 4180 */
1958 MIPS_SYS(sys_setsockopt
, 5)
1959 MIPS_SYS(sys_shutdown
, 2)
1960 MIPS_SYS(sys_socket
, 3)
1961 MIPS_SYS(sys_socketpair
, 4)
1962 MIPS_SYS(sys_setresuid
, 3) /* 4185 */
1963 MIPS_SYS(sys_getresuid
, 3)
1964 MIPS_SYS(sys_ni_syscall
, 0) /* was sys_query_module */
1965 MIPS_SYS(sys_poll
, 3)
1966 MIPS_SYS(sys_nfsservctl
, 3)
1967 MIPS_SYS(sys_setresgid
, 3) /* 4190 */
1968 MIPS_SYS(sys_getresgid
, 3)
1969 MIPS_SYS(sys_prctl
, 5)
1970 MIPS_SYS(sys_rt_sigreturn
, 0)
1971 MIPS_SYS(sys_rt_sigaction
, 4)
1972 MIPS_SYS(sys_rt_sigprocmask
, 4) /* 4195 */
1973 MIPS_SYS(sys_rt_sigpending
, 2)
1974 MIPS_SYS(sys_rt_sigtimedwait
, 4)
1975 MIPS_SYS(sys_rt_sigqueueinfo
, 3)
1976 MIPS_SYS(sys_rt_sigsuspend
, 0)
1977 MIPS_SYS(sys_pread64
, 6) /* 4200 */
1978 MIPS_SYS(sys_pwrite64
, 6)
1979 MIPS_SYS(sys_chown
, 3)
1980 MIPS_SYS(sys_getcwd
, 2)
1981 MIPS_SYS(sys_capget
, 2)
1982 MIPS_SYS(sys_capset
, 2) /* 4205 */
1983 MIPS_SYS(sys_sigaltstack
, 2)
1984 MIPS_SYS(sys_sendfile
, 4)
1985 MIPS_SYS(sys_ni_syscall
, 0)
1986 MIPS_SYS(sys_ni_syscall
, 0)
1987 MIPS_SYS(sys_mmap2
, 6) /* 4210 */
1988 MIPS_SYS(sys_truncate64
, 4)
1989 MIPS_SYS(sys_ftruncate64
, 4)
1990 MIPS_SYS(sys_stat64
, 2)
1991 MIPS_SYS(sys_lstat64
, 2)
1992 MIPS_SYS(sys_fstat64
, 2) /* 4215 */
1993 MIPS_SYS(sys_pivot_root
, 2)
1994 MIPS_SYS(sys_mincore
, 3)
1995 MIPS_SYS(sys_madvise
, 3)
1996 MIPS_SYS(sys_getdents64
, 3)
1997 MIPS_SYS(sys_fcntl64
, 3) /* 4220 */
1998 MIPS_SYS(sys_ni_syscall
, 0)
1999 MIPS_SYS(sys_gettid
, 0)
2000 MIPS_SYS(sys_readahead
, 5)
2001 MIPS_SYS(sys_setxattr
, 5)
2002 MIPS_SYS(sys_lsetxattr
, 5) /* 4225 */
2003 MIPS_SYS(sys_fsetxattr
, 5)
2004 MIPS_SYS(sys_getxattr
, 4)
2005 MIPS_SYS(sys_lgetxattr
, 4)
2006 MIPS_SYS(sys_fgetxattr
, 4)
2007 MIPS_SYS(sys_listxattr
, 3) /* 4230 */
2008 MIPS_SYS(sys_llistxattr
, 3)
2009 MIPS_SYS(sys_flistxattr
, 3)
2010 MIPS_SYS(sys_removexattr
, 2)
2011 MIPS_SYS(sys_lremovexattr
, 2)
2012 MIPS_SYS(sys_fremovexattr
, 2) /* 4235 */
2013 MIPS_SYS(sys_tkill
, 2)
2014 MIPS_SYS(sys_sendfile64
, 5)
2015 MIPS_SYS(sys_futex
, 6)
2016 MIPS_SYS(sys_sched_setaffinity
, 3)
2017 MIPS_SYS(sys_sched_getaffinity
, 3) /* 4240 */
2018 MIPS_SYS(sys_io_setup
, 2)
2019 MIPS_SYS(sys_io_destroy
, 1)
2020 MIPS_SYS(sys_io_getevents
, 5)
2021 MIPS_SYS(sys_io_submit
, 3)
2022 MIPS_SYS(sys_io_cancel
, 3) /* 4245 */
2023 MIPS_SYS(sys_exit_group
, 1)
2024 MIPS_SYS(sys_lookup_dcookie
, 3)
2025 MIPS_SYS(sys_epoll_create
, 1)
2026 MIPS_SYS(sys_epoll_ctl
, 4)
2027 MIPS_SYS(sys_epoll_wait
, 3) /* 4250 */
2028 MIPS_SYS(sys_remap_file_pages
, 5)
2029 MIPS_SYS(sys_set_tid_address
, 1)
2030 MIPS_SYS(sys_restart_syscall
, 0)
2031 MIPS_SYS(sys_fadvise64_64
, 7)
2032 MIPS_SYS(sys_statfs64
, 3) /* 4255 */
2033 MIPS_SYS(sys_fstatfs64
, 2)
2034 MIPS_SYS(sys_timer_create
, 3)
2035 MIPS_SYS(sys_timer_settime
, 4)
2036 MIPS_SYS(sys_timer_gettime
, 2)
2037 MIPS_SYS(sys_timer_getoverrun
, 1) /* 4260 */
2038 MIPS_SYS(sys_timer_delete
, 1)
2039 MIPS_SYS(sys_clock_settime
, 2)
2040 MIPS_SYS(sys_clock_gettime
, 2)
2041 MIPS_SYS(sys_clock_getres
, 2)
2042 MIPS_SYS(sys_clock_nanosleep
, 4) /* 4265 */
2043 MIPS_SYS(sys_tgkill
, 3)
2044 MIPS_SYS(sys_utimes
, 2)
2045 MIPS_SYS(sys_mbind
, 4)
2046 MIPS_SYS(sys_ni_syscall
, 0) /* sys_get_mempolicy */
2047 MIPS_SYS(sys_ni_syscall
, 0) /* 4270 sys_set_mempolicy */
2048 MIPS_SYS(sys_mq_open
, 4)
2049 MIPS_SYS(sys_mq_unlink
, 1)
2050 MIPS_SYS(sys_mq_timedsend
, 5)
2051 MIPS_SYS(sys_mq_timedreceive
, 5)
2052 MIPS_SYS(sys_mq_notify
, 2) /* 4275 */
2053 MIPS_SYS(sys_mq_getsetattr
, 3)
2054 MIPS_SYS(sys_ni_syscall
, 0) /* sys_vserver */
2055 MIPS_SYS(sys_waitid
, 4)
2056 MIPS_SYS(sys_ni_syscall
, 0) /* available, was setaltroot */
2057 MIPS_SYS(sys_add_key
, 5)
2058 MIPS_SYS(sys_request_key
, 4)
2059 MIPS_SYS(sys_keyctl
, 5)
2060 MIPS_SYS(sys_set_thread_area
, 1)
2061 MIPS_SYS(sys_inotify_init
, 0)
2062 MIPS_SYS(sys_inotify_add_watch
, 3) /* 4285 */
2063 MIPS_SYS(sys_inotify_rm_watch
, 2)
2064 MIPS_SYS(sys_migrate_pages
, 4)
2065 MIPS_SYS(sys_openat
, 4)
2066 MIPS_SYS(sys_mkdirat
, 3)
2067 MIPS_SYS(sys_mknodat
, 4) /* 4290 */
2068 MIPS_SYS(sys_fchownat
, 5)
2069 MIPS_SYS(sys_futimesat
, 3)
2070 MIPS_SYS(sys_fstatat64
, 4)
2071 MIPS_SYS(sys_unlinkat
, 3)
2072 MIPS_SYS(sys_renameat
, 4) /* 4295 */
2073 MIPS_SYS(sys_linkat
, 5)
2074 MIPS_SYS(sys_symlinkat
, 3)
2075 MIPS_SYS(sys_readlinkat
, 4)
2076 MIPS_SYS(sys_fchmodat
, 3)
2077 MIPS_SYS(sys_faccessat
, 3) /* 4300 */
2078 MIPS_SYS(sys_pselect6
, 6)
2079 MIPS_SYS(sys_ppoll
, 5)
2080 MIPS_SYS(sys_unshare
, 1)
2081 MIPS_SYS(sys_splice
, 6)
2082 MIPS_SYS(sys_sync_file_range
, 7) /* 4305 */
2083 MIPS_SYS(sys_tee
, 4)
2084 MIPS_SYS(sys_vmsplice
, 4)
2085 MIPS_SYS(sys_move_pages
, 6)
2086 MIPS_SYS(sys_set_robust_list
, 2)
2087 MIPS_SYS(sys_get_robust_list
, 3) /* 4310 */
2088 MIPS_SYS(sys_kexec_load
, 4)
2089 MIPS_SYS(sys_getcpu
, 3)
2090 MIPS_SYS(sys_epoll_pwait
, 6)
2091 MIPS_SYS(sys_ioprio_set
, 3)
2092 MIPS_SYS(sys_ioprio_get
, 2)
2093 MIPS_SYS(sys_utimensat
, 4)
2094 MIPS_SYS(sys_signalfd
, 3)
2095 MIPS_SYS(sys_ni_syscall
, 0) /* was timerfd */
2096 MIPS_SYS(sys_eventfd
, 1)
2097 MIPS_SYS(sys_fallocate
, 6) /* 4320 */
2098 MIPS_SYS(sys_timerfd_create
, 2)
2099 MIPS_SYS(sys_timerfd_gettime
, 2)
2100 MIPS_SYS(sys_timerfd_settime
, 4)
2101 MIPS_SYS(sys_signalfd4
, 4)
2102 MIPS_SYS(sys_eventfd2
, 2) /* 4325 */
2103 MIPS_SYS(sys_epoll_create1
, 1)
2104 MIPS_SYS(sys_dup3
, 3)
2105 MIPS_SYS(sys_pipe2
, 2)
2106 MIPS_SYS(sys_inotify_init1
, 1)
2107 MIPS_SYS(sys_preadv
, 5) /* 4330 */
2108 MIPS_SYS(sys_pwritev
, 5)
2109 MIPS_SYS(sys_rt_tgsigqueueinfo
, 4)
2110 MIPS_SYS(sys_perf_event_open
, 5)
2111 MIPS_SYS(sys_accept4
, 4)
2112 MIPS_SYS(sys_recvmmsg
, 5) /* 4335 */
2113 MIPS_SYS(sys_fanotify_init
, 2)
2114 MIPS_SYS(sys_fanotify_mark
, 6)
2115 MIPS_SYS(sys_prlimit64
, 4)
2116 MIPS_SYS(sys_name_to_handle_at
, 5)
2117 MIPS_SYS(sys_open_by_handle_at
, 3) /* 4340 */
2118 MIPS_SYS(sys_clock_adjtime
, 2)
2119 MIPS_SYS(sys_syncfs
, 1)
2120 MIPS_SYS(sys_sendmmsg
, 4)
2121 MIPS_SYS(sys_setns
, 2)
2122 MIPS_SYS(sys_process_vm_readv
, 6) /* 345 */
2123 MIPS_SYS(sys_process_vm_writev
, 6)
2124 MIPS_SYS(sys_kcmp
, 5)
2125 MIPS_SYS(sys_finit_module
, 3)
2126 MIPS_SYS(sys_sched_setattr
, 2)
2127 MIPS_SYS(sys_sched_getattr
, 3) /* 350 */
2128 MIPS_SYS(sys_renameat2
, 5)
2129 MIPS_SYS(sys_seccomp
, 3)
2130 MIPS_SYS(sys_getrandom
, 3)
2131 MIPS_SYS(sys_memfd_create
, 2)
2132 MIPS_SYS(sys_bpf
, 3) /* 355 */
2133 MIPS_SYS(sys_execveat
, 5)
2134 MIPS_SYS(sys_userfaultfd
, 1)
2135 MIPS_SYS(sys_membarrier
, 2)
2136 MIPS_SYS(sys_mlock2
, 3)
2137 MIPS_SYS(sys_copy_file_range
, 6) /* 360 */
2138 MIPS_SYS(sys_preadv2
, 6)
2139 MIPS_SYS(sys_pwritev2
, 6)
2144 static int do_store_exclusive(CPUMIPSState
*env
)
2147 target_ulong page_addr
;
2155 page_addr
= addr
& TARGET_PAGE_MASK
;
2158 flags
= page_get_flags(page_addr
);
2159 if ((flags
& PAGE_READ
) == 0) {
2162 reg
= env
->llreg
& 0x1f;
2163 d
= (env
->llreg
& 0x20) != 0;
2165 segv
= get_user_s64(val
, addr
);
2167 segv
= get_user_s32(val
, addr
);
2170 if (val
!= env
->llval
) {
2171 env
->active_tc
.gpr
[reg
] = 0;
2174 segv
= put_user_u64(env
->llnewval
, addr
);
2176 segv
= put_user_u32(env
->llnewval
, addr
);
2179 env
->active_tc
.gpr
[reg
] = 1;
2186 env
->active_tc
.PC
+= 4;
2199 static int do_break(CPUMIPSState
*env
, target_siginfo_t
*info
,
2207 info
->si_signo
= TARGET_SIGFPE
;
2209 info
->si_code
= (code
== BRK_OVERFLOW
) ? FPE_INTOVF
: FPE_INTDIV
;
2210 queue_signal(env
, info
->si_signo
, QEMU_SI_FAULT
, &*info
);
2214 info
->si_signo
= TARGET_SIGTRAP
;
2216 queue_signal(env
, info
->si_signo
, QEMU_SI_FAULT
, &*info
);
2224 void cpu_loop(CPUMIPSState
*env
)
2226 CPUState
*cs
= CPU(mips_env_get_cpu(env
));
2227 target_siginfo_t info
;
2230 # ifdef TARGET_ABI_MIPSO32
2231 unsigned int syscall_num
;
2236 trapnr
= cpu_exec(cs
);
2238 process_queued_cpu_work(cs
);
2242 env
->active_tc
.PC
+= 4;
2243 # ifdef TARGET_ABI_MIPSO32
2244 syscall_num
= env
->active_tc
.gpr
[2] - 4000;
2245 if (syscall_num
>= sizeof(mips_syscall_args
)) {
2246 ret
= -TARGET_ENOSYS
;
2250 abi_ulong arg5
= 0, arg6
= 0, arg7
= 0, arg8
= 0;
2252 nb_args
= mips_syscall_args
[syscall_num
];
2253 sp_reg
= env
->active_tc
.gpr
[29];
2255 /* these arguments are taken from the stack */
2257 if ((ret
= get_user_ual(arg8
, sp_reg
+ 28)) != 0) {
2261 if ((ret
= get_user_ual(arg7
, sp_reg
+ 24)) != 0) {
2265 if ((ret
= get_user_ual(arg6
, sp_reg
+ 20)) != 0) {
2269 if ((ret
= get_user_ual(arg5
, sp_reg
+ 16)) != 0) {
2275 ret
= do_syscall(env
, env
->active_tc
.gpr
[2],
2276 env
->active_tc
.gpr
[4],
2277 env
->active_tc
.gpr
[5],
2278 env
->active_tc
.gpr
[6],
2279 env
->active_tc
.gpr
[7],
2280 arg5
, arg6
, arg7
, arg8
);
2284 ret
= do_syscall(env
, env
->active_tc
.gpr
[2],
2285 env
->active_tc
.gpr
[4], env
->active_tc
.gpr
[5],
2286 env
->active_tc
.gpr
[6], env
->active_tc
.gpr
[7],
2287 env
->active_tc
.gpr
[8], env
->active_tc
.gpr
[9],
2288 env
->active_tc
.gpr
[10], env
->active_tc
.gpr
[11]);
2290 if (ret
== -TARGET_ERESTARTSYS
) {
2291 env
->active_tc
.PC
-= 4;
2294 if (ret
== -TARGET_QEMU_ESIGRETURN
) {
2295 /* Returning from a successful sigreturn syscall.
2296 Avoid clobbering register state. */
2299 if ((abi_ulong
)ret
>= (abi_ulong
)-1133) {
2300 env
->active_tc
.gpr
[7] = 1; /* error flag */
2303 env
->active_tc
.gpr
[7] = 0; /* error flag */
2305 env
->active_tc
.gpr
[2] = ret
;
2311 info
.si_signo
= TARGET_SIGSEGV
;
2313 /* XXX: check env->error_code */
2314 info
.si_code
= TARGET_SEGV_MAPERR
;
2315 info
._sifields
._sigfault
._addr
= env
->CP0_BadVAddr
;
2316 queue_signal(env
, info
.si_signo
, QEMU_SI_FAULT
, &info
);
2320 info
.si_signo
= TARGET_SIGILL
;
2323 queue_signal(env
, info
.si_signo
, QEMU_SI_FAULT
, &info
);
2325 case EXCP_INTERRUPT
:
2326 /* just indicate that signals should be handled asap */
2332 sig
= gdb_handlesig(cs
, TARGET_SIGTRAP
);
2335 info
.si_signo
= sig
;
2337 info
.si_code
= TARGET_TRAP_BRKPT
;
2338 queue_signal(env
, info
.si_signo
, QEMU_SI_FAULT
, &info
);
2343 if (do_store_exclusive(env
)) {
2344 info
.si_signo
= TARGET_SIGSEGV
;
2346 info
.si_code
= TARGET_SEGV_MAPERR
;
2347 info
._sifields
._sigfault
._addr
= env
->active_tc
.PC
;
2348 queue_signal(env
, info
.si_signo
, QEMU_SI_FAULT
, &info
);
2352 info
.si_signo
= TARGET_SIGILL
;
2354 info
.si_code
= TARGET_ILL_ILLOPC
;
2355 queue_signal(env
, info
.si_signo
, QEMU_SI_FAULT
, &info
);
2357 /* The code below was inspired by the MIPS Linux kernel trap
2358 * handling code in arch/mips/kernel/traps.c.
2362 abi_ulong trap_instr
;
2365 if (env
->hflags
& MIPS_HFLAG_M16
) {
2366 if (env
->insn_flags
& ASE_MICROMIPS
) {
2367 /* microMIPS mode */
2368 ret
= get_user_u16(trap_instr
, env
->active_tc
.PC
);
2373 if ((trap_instr
>> 10) == 0x11) {
2374 /* 16-bit instruction */
2375 code
= trap_instr
& 0xf;
2377 /* 32-bit instruction */
2380 ret
= get_user_u16(instr_lo
,
2381 env
->active_tc
.PC
+ 2);
2385 trap_instr
= (trap_instr
<< 16) | instr_lo
;
2386 code
= ((trap_instr
>> 6) & ((1 << 20) - 1));
2387 /* Unfortunately, microMIPS also suffers from
2388 the old assembler bug... */
2389 if (code
>= (1 << 10)) {
2395 ret
= get_user_u16(trap_instr
, env
->active_tc
.PC
);
2399 code
= (trap_instr
>> 6) & 0x3f;
2402 ret
= get_user_u32(trap_instr
, env
->active_tc
.PC
);
2407 /* As described in the original Linux kernel code, the
2408 * below checks on 'code' are to work around an old
2411 code
= ((trap_instr
>> 6) & ((1 << 20) - 1));
2412 if (code
>= (1 << 10)) {
2417 if (do_break(env
, &info
, code
) != 0) {
2424 abi_ulong trap_instr
;
2425 unsigned int code
= 0;
2427 if (env
->hflags
& MIPS_HFLAG_M16
) {
2428 /* microMIPS mode */
2431 ret
= get_user_u16(instr
[0], env
->active_tc
.PC
) ||
2432 get_user_u16(instr
[1], env
->active_tc
.PC
+ 2);
2434 trap_instr
= (instr
[0] << 16) | instr
[1];
2436 ret
= get_user_u32(trap_instr
, env
->active_tc
.PC
);
2443 /* The immediate versions don't provide a code. */
2444 if (!(trap_instr
& 0xFC000000)) {
2445 if (env
->hflags
& MIPS_HFLAG_M16
) {
2446 /* microMIPS mode */
2447 code
= ((trap_instr
>> 12) & ((1 << 4) - 1));
2449 code
= ((trap_instr
>> 6) & ((1 << 10) - 1));
2453 if (do_break(env
, &info
, code
) != 0) {
2459 cpu_exec_step_atomic(cs
);
2463 EXCP_DUMP(env
, "qemu: unhandled CPU exception 0x%x - aborting\n", trapnr
);
2466 process_pending_signals(env
);
2473 void cpu_loop(CPUNios2State
*env
)
2475 CPUState
*cs
= ENV_GET_CPU(env
);
2476 Nios2CPU
*cpu
= NIOS2_CPU(cs
);
2477 target_siginfo_t info
;
2478 int trapnr
, gdbsig
, ret
;
2482 trapnr
= cpu_exec(cs
);
2487 case EXCP_INTERRUPT
:
2488 /* just indicate that signals should be handled asap */
2491 if (env
->regs
[R_AT
] == 0) {
2493 qemu_log_mask(CPU_LOG_INT
, "\nSyscall\n");
2495 ret
= do_syscall(env
, env
->regs
[2],
2496 env
->regs
[4], env
->regs
[5], env
->regs
[6],
2497 env
->regs
[7], env
->regs
[8], env
->regs
[9],
2500 if (env
->regs
[2] == 0) { /* FIXME: syscall 0 workaround */
2504 env
->regs
[2] = abs(ret
);
2505 /* Return value is 0..4096 */
2506 env
->regs
[7] = (ret
> 0xfffffffffffff000ULL
);
2507 env
->regs
[CR_ESTATUS
] = env
->regs
[CR_STATUS
];
2508 env
->regs
[CR_STATUS
] &= ~0x3;
2509 env
->regs
[R_EA
] = env
->regs
[R_PC
] + 4;
2510 env
->regs
[R_PC
] += 4;
2513 qemu_log_mask(CPU_LOG_INT
, "\nTrap\n");
2515 env
->regs
[CR_ESTATUS
] = env
->regs
[CR_STATUS
];
2516 env
->regs
[CR_STATUS
] &= ~0x3;
2517 env
->regs
[R_EA
] = env
->regs
[R_PC
] + 4;
2518 env
->regs
[R_PC
] = cpu
->exception_addr
;
2520 gdbsig
= TARGET_SIGTRAP
;
2524 switch (env
->regs
[R_PC
]) {
2525 /*case 0x1000:*/ /* TODO:__kuser_helper_version */
2526 case 0x1004: /* __kuser_cmpxchg */
2528 if (env
->regs
[4] & 0x3) {
2531 ret
= get_user_u32(env
->regs
[2], env
->regs
[4]);
2536 env
->regs
[2] -= env
->regs
[5];
2537 if (env
->regs
[2] == 0) {
2538 put_user_u32(env
->regs
[6], env
->regs
[4]);
2541 env
->regs
[R_PC
] = env
->regs
[R_RA
];
2543 /*case 0x1040:*/ /* TODO:__kuser_sigtramp */
2547 info
.si_signo
= TARGET_SIGSEGV
;
2549 /* TODO: check env->error_code */
2550 info
.si_code
= TARGET_SEGV_MAPERR
;
2551 info
._sifields
._sigfault
._addr
= env
->regs
[R_PC
];
2552 queue_signal(env
, info
.si_signo
, QEMU_SI_FAULT
, &info
);
2556 EXCP_DUMP(env
, "\nqemu: unhandled CPU exception %#x - aborting\n",
2558 gdbsig
= TARGET_SIGILL
;
2562 gdb_handlesig(cs
, gdbsig
);
2563 if (gdbsig
!= TARGET_SIGTRAP
) {
2568 process_pending_signals(env
);
2572 #endif /* TARGET_NIOS2 */
2574 #ifdef TARGET_OPENRISC
2576 void cpu_loop(CPUOpenRISCState
*env
)
2578 CPUState
*cs
= CPU(openrisc_env_get_cpu(env
));
2581 target_siginfo_t info
;
2585 trapnr
= cpu_exec(cs
);
2587 process_queued_cpu_work(cs
);
2591 env
->pc
+= 4; /* 0xc00; */
2592 ret
= do_syscall(env
,
2593 cpu_get_gpr(env
, 11), /* return value */
2594 cpu_get_gpr(env
, 3), /* r3 - r7 are params */
2595 cpu_get_gpr(env
, 4),
2596 cpu_get_gpr(env
, 5),
2597 cpu_get_gpr(env
, 6),
2598 cpu_get_gpr(env
, 7),
2599 cpu_get_gpr(env
, 8), 0, 0);
2600 if (ret
== -TARGET_ERESTARTSYS
) {
2602 } else if (ret
!= -TARGET_QEMU_ESIGRETURN
) {
2603 cpu_set_gpr(env
, 11, ret
);
2609 info
.si_signo
= TARGET_SIGSEGV
;
2611 info
.si_code
= TARGET_SEGV_MAPERR
;
2612 info
._sifields
._sigfault
._addr
= env
->pc
;
2613 queue_signal(env
, info
.si_signo
, QEMU_SI_FAULT
, &info
);
2616 info
.si_signo
= TARGET_SIGBUS
;
2618 info
.si_code
= TARGET_BUS_ADRALN
;
2619 info
._sifields
._sigfault
._addr
= env
->pc
;
2620 queue_signal(env
, info
.si_signo
, QEMU_SI_FAULT
, &info
);
2623 info
.si_signo
= TARGET_SIGILL
;
2625 info
.si_code
= TARGET_ILL_ILLOPC
;
2626 info
._sifields
._sigfault
._addr
= env
->pc
;
2627 queue_signal(env
, info
.si_signo
, QEMU_SI_FAULT
, &info
);
2630 info
.si_signo
= TARGET_SIGFPE
;
2633 info
._sifields
._sigfault
._addr
= env
->pc
;
2634 queue_signal(env
, info
.si_signo
, QEMU_SI_FAULT
, &info
);
2636 case EXCP_INTERRUPT
:
2637 /* We processed the pending cpu work above. */
2640 trapnr
= gdb_handlesig(cs
, TARGET_SIGTRAP
);
2642 info
.si_signo
= trapnr
;
2644 info
.si_code
= TARGET_TRAP_BRKPT
;
2645 queue_signal(env
, info
.si_signo
, QEMU_SI_FAULT
, &info
);
2649 cpu_exec_step_atomic(cs
);
2652 g_assert_not_reached();
2654 process_pending_signals(env
);
2658 #endif /* TARGET_OPENRISC */
2661 void cpu_loop(CPUSH4State
*env
)
2663 CPUState
*cs
= CPU(sh_env_get_cpu(env
));
2665 target_siginfo_t info
;
2669 trapnr
= cpu_exec(cs
);
2671 process_queued_cpu_work(cs
);
2676 ret
= do_syscall(env
,
2685 if (ret
== -TARGET_ERESTARTSYS
) {
2687 } else if (ret
!= -TARGET_QEMU_ESIGRETURN
) {
2688 env
->gregs
[0] = ret
;
2691 case EXCP_INTERRUPT
:
2692 /* just indicate that signals should be handled asap */
2698 sig
= gdb_handlesig(cs
, TARGET_SIGTRAP
);
2701 info
.si_signo
= sig
;
2703 info
.si_code
= TARGET_TRAP_BRKPT
;
2704 queue_signal(env
, info
.si_signo
, QEMU_SI_FAULT
, &info
);
2710 info
.si_signo
= TARGET_SIGSEGV
;
2712 info
.si_code
= TARGET_SEGV_MAPERR
;
2713 info
._sifields
._sigfault
._addr
= env
->tea
;
2714 queue_signal(env
, info
.si_signo
, QEMU_SI_FAULT
, &info
);
2718 cpu_exec_step_atomic(cs
);
2721 printf ("Unhandled trap: 0x%x\n", trapnr
);
2722 cpu_dump_state(cs
, stderr
, fprintf
, 0);
2725 process_pending_signals (env
);
2731 void cpu_loop(CPUCRISState
*env
)
2733 CPUState
*cs
= CPU(cris_env_get_cpu(env
));
2735 target_siginfo_t info
;
2739 trapnr
= cpu_exec(cs
);
2741 process_queued_cpu_work(cs
);
2746 info
.si_signo
= TARGET_SIGSEGV
;
2748 /* XXX: check env->error_code */
2749 info
.si_code
= TARGET_SEGV_MAPERR
;
2750 info
._sifields
._sigfault
._addr
= env
->pregs
[PR_EDA
];
2751 queue_signal(env
, info
.si_signo
, QEMU_SI_FAULT
, &info
);
2754 case EXCP_INTERRUPT
:
2755 /* just indicate that signals should be handled asap */
2758 ret
= do_syscall(env
,
2767 if (ret
== -TARGET_ERESTARTSYS
) {
2769 } else if (ret
!= -TARGET_QEMU_ESIGRETURN
) {
2770 env
->regs
[10] = ret
;
2777 sig
= gdb_handlesig(cs
, TARGET_SIGTRAP
);
2780 info
.si_signo
= sig
;
2782 info
.si_code
= TARGET_TRAP_BRKPT
;
2783 queue_signal(env
, info
.si_signo
, QEMU_SI_FAULT
, &info
);
2788 cpu_exec_step_atomic(cs
);
2791 printf ("Unhandled trap: 0x%x\n", trapnr
);
2792 cpu_dump_state(cs
, stderr
, fprintf
, 0);
2795 process_pending_signals (env
);
2800 #ifdef TARGET_MICROBLAZE
2801 void cpu_loop(CPUMBState
*env
)
2803 CPUState
*cs
= CPU(mb_env_get_cpu(env
));
2805 target_siginfo_t info
;
2809 trapnr
= cpu_exec(cs
);
2811 process_queued_cpu_work(cs
);
2816 info
.si_signo
= TARGET_SIGSEGV
;
2818 /* XXX: check env->error_code */
2819 info
.si_code
= TARGET_SEGV_MAPERR
;
2820 info
._sifields
._sigfault
._addr
= 0;
2821 queue_signal(env
, info
.si_signo
, QEMU_SI_FAULT
, &info
);
2824 case EXCP_INTERRUPT
:
2825 /* just indicate that signals should be handled asap */
2828 /* Return address is 4 bytes after the call. */
2830 env
->sregs
[SR_PC
] = env
->regs
[14];
2831 ret
= do_syscall(env
,
2840 if (ret
== -TARGET_ERESTARTSYS
) {
2841 /* Wind back to before the syscall. */
2842 env
->sregs
[SR_PC
] -= 4;
2843 } else if (ret
!= -TARGET_QEMU_ESIGRETURN
) {
2846 /* All syscall exits result in guest r14 being equal to the
2847 * PC we return to, because the kernel syscall exit "rtbd" does
2848 * this. (This is true even for sigreturn(); note that r14 is
2849 * not a userspace-usable register, as the kernel may clobber it
2852 env
->regs
[14] = env
->sregs
[SR_PC
];
2855 env
->regs
[17] = env
->sregs
[SR_PC
] + 4;
2856 if (env
->iflags
& D_FLAG
) {
2857 env
->sregs
[SR_ESR
] |= 1 << 12;
2858 env
->sregs
[SR_PC
] -= 4;
2859 /* FIXME: if branch was immed, replay the imm as well. */
2862 env
->iflags
&= ~(IMM_FLAG
| D_FLAG
);
2864 switch (env
->sregs
[SR_ESR
] & 31) {
2865 case ESR_EC_DIVZERO
:
2866 info
.si_signo
= TARGET_SIGFPE
;
2868 info
.si_code
= TARGET_FPE_FLTDIV
;
2869 info
._sifields
._sigfault
._addr
= 0;
2870 queue_signal(env
, info
.si_signo
, QEMU_SI_FAULT
, &info
);
2873 info
.si_signo
= TARGET_SIGFPE
;
2875 if (env
->sregs
[SR_FSR
] & FSR_IO
) {
2876 info
.si_code
= TARGET_FPE_FLTINV
;
2878 if (env
->sregs
[SR_FSR
] & FSR_DZ
) {
2879 info
.si_code
= TARGET_FPE_FLTDIV
;
2881 info
._sifields
._sigfault
._addr
= 0;
2882 queue_signal(env
, info
.si_signo
, QEMU_SI_FAULT
, &info
);
2885 printf ("Unhandled hw-exception: 0x%x\n",
2886 env
->sregs
[SR_ESR
] & ESR_EC_MASK
);
2887 cpu_dump_state(cs
, stderr
, fprintf
, 0);
2896 sig
= gdb_handlesig(cs
, TARGET_SIGTRAP
);
2899 info
.si_signo
= sig
;
2901 info
.si_code
= TARGET_TRAP_BRKPT
;
2902 queue_signal(env
, info
.si_signo
, QEMU_SI_FAULT
, &info
);
2907 cpu_exec_step_atomic(cs
);
2910 printf ("Unhandled trap: 0x%x\n", trapnr
);
2911 cpu_dump_state(cs
, stderr
, fprintf
, 0);
2914 process_pending_signals (env
);
2921 void cpu_loop(CPUM68KState
*env
)
2923 CPUState
*cs
= CPU(m68k_env_get_cpu(env
));
2926 target_siginfo_t info
;
2927 TaskState
*ts
= cs
->opaque
;
2931 trapnr
= cpu_exec(cs
);
2933 process_queued_cpu_work(cs
);
2938 if (ts
->sim_syscalls
) {
2940 get_user_u16(nr
, env
->pc
+ 2);
2942 do_m68k_simcall(env
, nr
);
2948 case EXCP_HALT_INSN
:
2949 /* Semihosing syscall. */
2951 do_m68k_semihosting(env
, env
->dregs
[0]);
2955 case EXCP_UNSUPPORTED
:
2957 info
.si_signo
= TARGET_SIGILL
;
2959 info
.si_code
= TARGET_ILL_ILLOPN
;
2960 info
._sifields
._sigfault
._addr
= env
->pc
;
2961 queue_signal(env
, info
.si_signo
, QEMU_SI_FAULT
, &info
);
2964 info
.si_signo
= TARGET_SIGFPE
;
2966 info
.si_code
= TARGET_FPE_INTDIV
;
2967 info
._sifields
._sigfault
._addr
= env
->pc
;
2968 queue_signal(env
, info
.si_signo
, QEMU_SI_FAULT
, &info
);
2973 ts
->sim_syscalls
= 0;
2976 ret
= do_syscall(env
,
2985 if (ret
== -TARGET_ERESTARTSYS
) {
2987 } else if (ret
!= -TARGET_QEMU_ESIGRETURN
) {
2988 env
->dregs
[0] = ret
;
2992 case EXCP_INTERRUPT
:
2993 /* just indicate that signals should be handled asap */
2997 info
.si_signo
= TARGET_SIGSEGV
;
2999 /* XXX: check env->error_code */
3000 info
.si_code
= TARGET_SEGV_MAPERR
;
3001 info
._sifields
._sigfault
._addr
= env
->mmu
.ar
;
3002 queue_signal(env
, info
.si_signo
, QEMU_SI_FAULT
, &info
);
3009 sig
= gdb_handlesig(cs
, TARGET_SIGTRAP
);
3012 info
.si_signo
= sig
;
3014 info
.si_code
= TARGET_TRAP_BRKPT
;
3015 queue_signal(env
, info
.si_signo
, QEMU_SI_FAULT
, &info
);
3020 cpu_exec_step_atomic(cs
);
3023 EXCP_DUMP(env
, "qemu: unhandled CPU exception 0x%x - aborting\n", trapnr
);
3026 process_pending_signals(env
);
3029 #endif /* TARGET_M68K */
3032 void cpu_loop(CPUAlphaState
*env
)
3034 CPUState
*cs
= CPU(alpha_env_get_cpu(env
));
3036 target_siginfo_t info
;
3040 bool arch_interrupt
= true;
3043 trapnr
= cpu_exec(cs
);
3045 process_queued_cpu_work(cs
);
3049 fprintf(stderr
, "Reset requested. Exit\n");
3053 fprintf(stderr
, "Machine check exception. Exit\n");
3056 case EXCP_SMP_INTERRUPT
:
3057 case EXCP_CLK_INTERRUPT
:
3058 case EXCP_DEV_INTERRUPT
:
3059 fprintf(stderr
, "External interrupt. Exit\n");
3063 info
.si_signo
= TARGET_SIGSEGV
;
3065 info
.si_code
= (page_get_flags(env
->trap_arg0
) & PAGE_VALID
3066 ? TARGET_SEGV_ACCERR
: TARGET_SEGV_MAPERR
);
3067 info
._sifields
._sigfault
._addr
= env
->trap_arg0
;
3068 queue_signal(env
, info
.si_signo
, QEMU_SI_FAULT
, &info
);
3071 info
.si_signo
= TARGET_SIGBUS
;
3073 info
.si_code
= TARGET_BUS_ADRALN
;
3074 info
._sifields
._sigfault
._addr
= env
->trap_arg0
;
3075 queue_signal(env
, info
.si_signo
, QEMU_SI_FAULT
, &info
);
3079 info
.si_signo
= TARGET_SIGILL
;
3081 info
.si_code
= TARGET_ILL_ILLOPC
;
3082 info
._sifields
._sigfault
._addr
= env
->pc
;
3083 queue_signal(env
, info
.si_signo
, QEMU_SI_FAULT
, &info
);
3086 info
.si_signo
= TARGET_SIGFPE
;
3088 info
.si_code
= TARGET_FPE_FLTINV
;
3089 info
._sifields
._sigfault
._addr
= env
->pc
;
3090 queue_signal(env
, info
.si_signo
, QEMU_SI_FAULT
, &info
);
3093 /* No-op. Linux simply re-enables the FPU. */
3096 switch (env
->error_code
) {
3099 info
.si_signo
= TARGET_SIGTRAP
;
3101 info
.si_code
= TARGET_TRAP_BRKPT
;
3102 info
._sifields
._sigfault
._addr
= env
->pc
;
3103 queue_signal(env
, info
.si_signo
, QEMU_SI_FAULT
, &info
);
3107 info
.si_signo
= TARGET_SIGTRAP
;
3110 info
._sifields
._sigfault
._addr
= env
->pc
;
3111 queue_signal(env
, info
.si_signo
, QEMU_SI_FAULT
, &info
);
3115 trapnr
= env
->ir
[IR_V0
];
3116 sysret
= do_syscall(env
, trapnr
,
3117 env
->ir
[IR_A0
], env
->ir
[IR_A1
],
3118 env
->ir
[IR_A2
], env
->ir
[IR_A3
],
3119 env
->ir
[IR_A4
], env
->ir
[IR_A5
],
3121 if (sysret
== -TARGET_ERESTARTSYS
) {
3125 if (sysret
== -TARGET_QEMU_ESIGRETURN
) {
3128 /* Syscall writes 0 to V0 to bypass error check, similar
3129 to how this is handled internal to Linux kernel.
3130 (Ab)use trapnr temporarily as boolean indicating error. */
3131 trapnr
= (env
->ir
[IR_V0
] != 0 && sysret
< 0);
3132 env
->ir
[IR_V0
] = (trapnr
? -sysret
: sysret
);
3133 env
->ir
[IR_A3
] = trapnr
;
3137 /* ??? We can probably elide the code using page_unprotect
3138 that is checking for self-modifying code. Instead we
3139 could simply call tb_flush here. Until we work out the
3140 changes required to turn off the extra write protection,
3141 this can be a no-op. */
3145 /* Handled in the translator for usermode. */
3149 /* Handled in the translator for usermode. */
3153 info
.si_signo
= TARGET_SIGFPE
;
3154 switch (env
->ir
[IR_A0
]) {
3155 case TARGET_GEN_INTOVF
:
3156 info
.si_code
= TARGET_FPE_INTOVF
;
3158 case TARGET_GEN_INTDIV
:
3159 info
.si_code
= TARGET_FPE_INTDIV
;
3161 case TARGET_GEN_FLTOVF
:
3162 info
.si_code
= TARGET_FPE_FLTOVF
;
3164 case TARGET_GEN_FLTUND
:
3165 info
.si_code
= TARGET_FPE_FLTUND
;
3167 case TARGET_GEN_FLTINV
:
3168 info
.si_code
= TARGET_FPE_FLTINV
;
3170 case TARGET_GEN_FLTINE
:
3171 info
.si_code
= TARGET_FPE_FLTRES
;
3173 case TARGET_GEN_ROPRAND
:
3177 info
.si_signo
= TARGET_SIGTRAP
;
3182 info
._sifields
._sigfault
._addr
= env
->pc
;
3183 queue_signal(env
, info
.si_signo
, QEMU_SI_FAULT
, &info
);
3190 info
.si_signo
= gdb_handlesig(cs
, TARGET_SIGTRAP
);
3191 if (info
.si_signo
) {
3193 info
.si_code
= TARGET_TRAP_BRKPT
;
3194 queue_signal(env
, info
.si_signo
, QEMU_SI_FAULT
, &info
);
3196 arch_interrupt
= false;
3199 case EXCP_INTERRUPT
:
3200 /* Just indicate that signals should be handled asap. */
3203 cpu_exec_step_atomic(cs
);
3204 arch_interrupt
= false;
3207 printf ("Unhandled trap: 0x%x\n", trapnr
);
3208 cpu_dump_state(cs
, stderr
, fprintf
, 0);
3211 process_pending_signals (env
);
3213 /* Most of the traps imply a transition through PALcode, which
3214 implies an REI instruction has been executed. Which means
3215 that RX and LOCK_ADDR should be cleared. But there are a
3216 few exceptions for traps internal to QEMU. */
3217 if (arch_interrupt
) {
3218 env
->flags
&= ~ENV_FLAG_RX_FLAG
;
3219 env
->lock_addr
= -1;
3223 #endif /* TARGET_ALPHA */
3226 void cpu_loop(CPUS390XState
*env
)
3228 CPUState
*cs
= CPU(s390_env_get_cpu(env
));
3230 target_siginfo_t info
;
3236 trapnr
= cpu_exec(cs
);
3238 process_queued_cpu_work(cs
);
3241 case EXCP_INTERRUPT
:
3242 /* Just indicate that signals should be handled asap. */
3246 n
= env
->int_svc_code
;
3248 /* syscalls > 255 */
3251 env
->psw
.addr
+= env
->int_svc_ilen
;
3252 ret
= do_syscall(env
, n
, env
->regs
[2], env
->regs
[3],
3253 env
->regs
[4], env
->regs
[5],
3254 env
->regs
[6], env
->regs
[7], 0, 0);
3255 if (ret
== -TARGET_ERESTARTSYS
) {
3256 env
->psw
.addr
-= env
->int_svc_ilen
;
3257 } else if (ret
!= -TARGET_QEMU_ESIGRETURN
) {
3263 sig
= gdb_handlesig(cs
, TARGET_SIGTRAP
);
3265 n
= TARGET_TRAP_BRKPT
;
3270 n
= env
->int_pgm_code
;
3273 case PGM_PRIVILEGED
:
3274 sig
= TARGET_SIGILL
;
3275 n
= TARGET_ILL_ILLOPC
;
3277 case PGM_PROTECTION
:
3278 case PGM_ADDRESSING
:
3279 sig
= TARGET_SIGSEGV
;
3280 /* XXX: check env->error_code */
3281 n
= TARGET_SEGV_MAPERR
;
3282 addr
= env
->__excp_addr
;
3285 case PGM_SPECIFICATION
:
3286 case PGM_SPECIAL_OP
:
3289 sig
= TARGET_SIGILL
;
3290 n
= TARGET_ILL_ILLOPN
;
3293 case PGM_FIXPT_OVERFLOW
:
3294 sig
= TARGET_SIGFPE
;
3295 n
= TARGET_FPE_INTOVF
;
3297 case PGM_FIXPT_DIVIDE
:
3298 sig
= TARGET_SIGFPE
;
3299 n
= TARGET_FPE_INTDIV
;
3303 n
= (env
->fpc
>> 8) & 0xff;
3305 /* compare-and-trap */
3308 /* An IEEE exception, simulated or otherwise. */
3310 n
= TARGET_FPE_FLTINV
;
3311 } else if (n
& 0x40) {
3312 n
= TARGET_FPE_FLTDIV
;
3313 } else if (n
& 0x20) {
3314 n
= TARGET_FPE_FLTOVF
;
3315 } else if (n
& 0x10) {
3316 n
= TARGET_FPE_FLTUND
;
3317 } else if (n
& 0x08) {
3318 n
= TARGET_FPE_FLTRES
;
3320 /* ??? Quantum exception; BFP, DFP error. */
3323 sig
= TARGET_SIGFPE
;
3328 fprintf(stderr
, "Unhandled program exception: %#x\n", n
);
3329 cpu_dump_state(cs
, stderr
, fprintf
, 0);
3335 addr
= env
->psw
.addr
;
3337 info
.si_signo
= sig
;
3340 info
._sifields
._sigfault
._addr
= addr
;
3341 queue_signal(env
, info
.si_signo
, QEMU_SI_FAULT
, &info
);
3345 cpu_exec_step_atomic(cs
);
3348 fprintf(stderr
, "Unhandled trap: 0x%x\n", trapnr
);
3349 cpu_dump_state(cs
, stderr
, fprintf
, 0);
3352 process_pending_signals (env
);
3356 #endif /* TARGET_S390X */
3358 #ifdef TARGET_TILEGX
3360 static void gen_sigill_reg(CPUTLGState
*env
)
3362 target_siginfo_t info
;
3364 info
.si_signo
= TARGET_SIGILL
;
3366 info
.si_code
= TARGET_ILL_PRVREG
;
3367 info
._sifields
._sigfault
._addr
= env
->pc
;
3368 queue_signal(env
, info
.si_signo
, QEMU_SI_FAULT
, &info
);
3371 static void do_signal(CPUTLGState
*env
, int signo
, int sigcode
)
3373 target_siginfo_t info
;
3375 info
.si_signo
= signo
;
3377 info
._sifields
._sigfault
._addr
= env
->pc
;
3379 if (signo
== TARGET_SIGSEGV
) {
3380 /* The passed in sigcode is a dummy; check for a page mapping
3381 and pass either MAPERR or ACCERR. */
3382 target_ulong addr
= env
->excaddr
;
3383 info
._sifields
._sigfault
._addr
= addr
;
3384 if (page_check_range(addr
, 1, PAGE_VALID
) < 0) {
3385 sigcode
= TARGET_SEGV_MAPERR
;
3387 sigcode
= TARGET_SEGV_ACCERR
;
3390 info
.si_code
= sigcode
;
3392 queue_signal(env
, info
.si_signo
, QEMU_SI_FAULT
, &info
);
3395 static void gen_sigsegv_maperr(CPUTLGState
*env
, target_ulong addr
)
3397 env
->excaddr
= addr
;
3398 do_signal(env
, TARGET_SIGSEGV
, 0);
3401 static void set_regval(CPUTLGState
*env
, uint8_t reg
, uint64_t val
)
3403 if (unlikely(reg
>= TILEGX_R_COUNT
)) {
3414 gen_sigill_reg(env
);
3417 g_assert_not_reached();
3420 env
->regs
[reg
] = val
;
3424 * Compare the 8-byte contents of the CmpValue SPR with the 8-byte value in
3425 * memory at the address held in the first source register. If the values are
3426 * not equal, then no memory operation is performed. If the values are equal,
3427 * the 8-byte quantity from the second source register is written into memory
3428 * at the address held in the first source register. In either case, the result
3429 * of the instruction is the value read from memory. The compare and write to
3430 * memory are atomic and thus can be used for synchronization purposes. This
3431 * instruction only operates for addresses aligned to a 8-byte boundary.
3432 * Unaligned memory access causes an Unaligned Data Reference interrupt.
3434 * Functional Description (64-bit)
3435 * uint64_t memVal = memoryReadDoubleWord (rf[SrcA]);
3436 * rf[Dest] = memVal;
3437 * if (memVal == SPR[CmpValueSPR])
3438 * memoryWriteDoubleWord (rf[SrcA], rf[SrcB]);
3440 * Functional Description (32-bit)
3441 * uint64_t memVal = signExtend32 (memoryReadWord (rf[SrcA]));
3442 * rf[Dest] = memVal;
3443 * if (memVal == signExtend32 (SPR[CmpValueSPR]))
3444 * memoryWriteWord (rf[SrcA], rf[SrcB]);
3447 * This function also processes exch and exch4 which need not process SPR.
3449 static void do_exch(CPUTLGState
*env
, bool quad
, bool cmp
)
3452 target_long val
, sprval
;
3456 addr
= env
->atomic_srca
;
3457 if (quad
? get_user_s64(val
, addr
) : get_user_s32(val
, addr
)) {
3458 goto sigsegv_maperr
;
3463 sprval
= env
->spregs
[TILEGX_SPR_CMPEXCH
];
3465 sprval
= sextract64(env
->spregs
[TILEGX_SPR_CMPEXCH
], 0, 32);
3469 if (!cmp
|| val
== sprval
) {
3470 target_long valb
= env
->atomic_srcb
;
3471 if (quad
? put_user_u64(valb
, addr
) : put_user_u32(valb
, addr
)) {
3472 goto sigsegv_maperr
;
3476 set_regval(env
, env
->atomic_dstr
, val
);
3482 gen_sigsegv_maperr(env
, addr
);
3485 static void do_fetch(CPUTLGState
*env
, int trapnr
, bool quad
)
3489 target_long val
, valb
;
3493 addr
= env
->atomic_srca
;
3494 valb
= env
->atomic_srcb
;
3495 if (quad
? get_user_s64(val
, addr
) : get_user_s32(val
, addr
)) {
3496 goto sigsegv_maperr
;
3500 case TILEGX_EXCP_OPCODE_FETCHADD
:
3501 case TILEGX_EXCP_OPCODE_FETCHADD4
:
3504 case TILEGX_EXCP_OPCODE_FETCHADDGEZ
:
3510 case TILEGX_EXCP_OPCODE_FETCHADDGEZ4
:
3512 if ((int32_t)valb
< 0) {
3516 case TILEGX_EXCP_OPCODE_FETCHAND
:
3517 case TILEGX_EXCP_OPCODE_FETCHAND4
:
3520 case TILEGX_EXCP_OPCODE_FETCHOR
:
3521 case TILEGX_EXCP_OPCODE_FETCHOR4
:
3525 g_assert_not_reached();
3529 if (quad
? put_user_u64(valb
, addr
) : put_user_u32(valb
, addr
)) {
3530 goto sigsegv_maperr
;
3534 set_regval(env
, env
->atomic_dstr
, val
);
3540 gen_sigsegv_maperr(env
, addr
);
3543 void cpu_loop(CPUTLGState
*env
)
3545 CPUState
*cs
= CPU(tilegx_env_get_cpu(env
));
3550 trapnr
= cpu_exec(cs
);
3552 process_queued_cpu_work(cs
);
3555 case TILEGX_EXCP_SYSCALL
:
3557 abi_ulong ret
= do_syscall(env
, env
->regs
[TILEGX_R_NR
],
3558 env
->regs
[0], env
->regs
[1],
3559 env
->regs
[2], env
->regs
[3],
3560 env
->regs
[4], env
->regs
[5],
3561 env
->regs
[6], env
->regs
[7]);
3562 if (ret
== -TARGET_ERESTARTSYS
) {
3564 } else if (ret
!= -TARGET_QEMU_ESIGRETURN
) {
3565 env
->regs
[TILEGX_R_RE
] = ret
;
3566 env
->regs
[TILEGX_R_ERR
] = TILEGX_IS_ERRNO(ret
) ? -ret
: 0;
3570 case TILEGX_EXCP_OPCODE_EXCH
:
3571 do_exch(env
, true, false);
3573 case TILEGX_EXCP_OPCODE_EXCH4
:
3574 do_exch(env
, false, false);
3576 case TILEGX_EXCP_OPCODE_CMPEXCH
:
3577 do_exch(env
, true, true);
3579 case TILEGX_EXCP_OPCODE_CMPEXCH4
:
3580 do_exch(env
, false, true);
3582 case TILEGX_EXCP_OPCODE_FETCHADD
:
3583 case TILEGX_EXCP_OPCODE_FETCHADDGEZ
:
3584 case TILEGX_EXCP_OPCODE_FETCHAND
:
3585 case TILEGX_EXCP_OPCODE_FETCHOR
:
3586 do_fetch(env
, trapnr
, true);
3588 case TILEGX_EXCP_OPCODE_FETCHADD4
:
3589 case TILEGX_EXCP_OPCODE_FETCHADDGEZ4
:
3590 case TILEGX_EXCP_OPCODE_FETCHAND4
:
3591 case TILEGX_EXCP_OPCODE_FETCHOR4
:
3592 do_fetch(env
, trapnr
, false);
3594 case TILEGX_EXCP_SIGNAL
:
3595 do_signal(env
, env
->signo
, env
->sigcode
);
3597 case TILEGX_EXCP_REG_IDN_ACCESS
:
3598 case TILEGX_EXCP_REG_UDN_ACCESS
:
3599 gen_sigill_reg(env
);
3602 cpu_exec_step_atomic(cs
);
3605 fprintf(stderr
, "trapnr is %d[0x%x].\n", trapnr
, trapnr
);
3606 g_assert_not_reached();
3608 process_pending_signals(env
);
3616 static abi_ulong
hppa_lws(CPUHPPAState
*env
)
3618 uint32_t which
= env
->gr
[20];
3619 abi_ulong addr
= env
->gr
[26];
3620 abi_ulong old
= env
->gr
[25];
3621 abi_ulong
new = env
->gr
[24];
3622 abi_ulong size
, ret
;
3626 return -TARGET_ENOSYS
;
3628 case 0: /* elf32 atomic 32bit cmpxchg */
3629 if ((addr
& 3) || !access_ok(VERIFY_WRITE
, addr
, 4)) {
3630 return -TARGET_EFAULT
;
3634 ret
= atomic_cmpxchg((uint32_t *)g2h(addr
), old
, new);
3638 case 2: /* elf32 atomic "new" cmpxchg */
3641 return -TARGET_ENOSYS
;
3643 if (((addr
| old
| new) & ((1 << size
) - 1))
3644 || !access_ok(VERIFY_WRITE
, addr
, 1 << size
)
3645 || !access_ok(VERIFY_READ
, old
, 1 << size
)
3646 || !access_ok(VERIFY_READ
, new, 1 << size
)) {
3647 return -TARGET_EFAULT
;
3649 /* Note that below we use host-endian loads so that the cmpxchg
3650 can be host-endian as well. */
3653 old
= *(uint8_t *)g2h(old
);
3654 new = *(uint8_t *)g2h(new);
3655 ret
= atomic_cmpxchg((uint8_t *)g2h(addr
), old
, new);
3659 old
= *(uint16_t *)g2h(old
);
3660 new = *(uint16_t *)g2h(new);
3661 ret
= atomic_cmpxchg((uint16_t *)g2h(addr
), old
, new);
3665 old
= *(uint32_t *)g2h(old
);
3666 new = *(uint32_t *)g2h(new);
3667 ret
= atomic_cmpxchg((uint32_t *)g2h(addr
), old
, new);
3672 uint64_t o64
, n64
, r64
;
3673 o64
= *(uint64_t *)g2h(old
);
3674 n64
= *(uint64_t *)g2h(new);
3675 #ifdef CONFIG_ATOMIC64
3676 r64
= atomic_cmpxchg__nocheck((uint64_t *)g2h(addr
), o64
, n64
);
3680 r64
= *(uint64_t *)g2h(addr
);
3683 *(uint64_t *)g2h(addr
) = n64
;
3698 void cpu_loop(CPUHPPAState
*env
)
3700 CPUState
*cs
= CPU(hppa_env_get_cpu(env
));
3701 target_siginfo_t info
;
3707 trapnr
= cpu_exec(cs
);
3709 process_queued_cpu_work(cs
);
3713 ret
= do_syscall(env
, env
->gr
[20],
3714 env
->gr
[26], env
->gr
[25],
3715 env
->gr
[24], env
->gr
[23],
3716 env
->gr
[22], env
->gr
[21], 0, 0);
3720 /* We arrived here by faking the gateway page. Return. */
3721 env
->iaoq_f
= env
->gr
[31];
3722 env
->iaoq_b
= env
->gr
[31] + 4;
3724 case -TARGET_ERESTARTSYS
:
3725 case -TARGET_QEMU_ESIGRETURN
:
3729 case EXCP_SYSCALL_LWS
:
3730 env
->gr
[21] = hppa_lws(env
);
3731 /* We arrived here by faking the gateway page. Return. */
3732 env
->iaoq_f
= env
->gr
[31];
3733 env
->iaoq_b
= env
->gr
[31] + 4;
3736 info
.si_signo
= TARGET_SIGSEGV
;
3738 info
.si_code
= TARGET_SEGV_ACCERR
;
3739 info
._sifields
._sigfault
._addr
= env
->ior
;
3740 queue_signal(env
, info
.si_signo
, QEMU_SI_FAULT
, &info
);
3743 info
.si_signo
= TARGET_SIGILL
;
3745 info
.si_code
= TARGET_ILL_ILLOPN
;
3746 info
._sifields
._sigfault
._addr
= env
->iaoq_f
;
3747 queue_signal(env
, info
.si_signo
, QEMU_SI_FAULT
, &info
);
3750 info
.si_signo
= TARGET_SIGFPE
;
3753 info
._sifields
._sigfault
._addr
= env
->iaoq_f
;
3754 queue_signal(env
, info
.si_signo
, QEMU_SI_FAULT
, &info
);
3757 trapnr
= gdb_handlesig(cs
, TARGET_SIGTRAP
);
3759 info
.si_signo
= trapnr
;
3761 info
.si_code
= TARGET_TRAP_BRKPT
;
3762 queue_signal(env
, trapnr
, QEMU_SI_FAULT
, &info
);
3765 case EXCP_INTERRUPT
:
3766 /* just indicate that signals should be handled asap */
3769 g_assert_not_reached();
3771 process_pending_signals(env
);
3775 #endif /* TARGET_HPPA */
3777 THREAD CPUState
*thread_cpu
;
3779 bool qemu_cpu_is_self(CPUState
*cpu
)
3781 return thread_cpu
== cpu
;
3784 void qemu_cpu_kick(CPUState
*cpu
)
3789 void task_settid(TaskState
*ts
)
3791 if (ts
->ts_tid
== 0) {
3792 ts
->ts_tid
= (pid_t
)syscall(SYS_gettid
);
3796 void stop_all_tasks(void)
3799 * We trust that when using NPTL, start_exclusive()
3800 * handles thread stopping correctly.
3805 /* Assumes contents are already zeroed. */
3806 void init_task_state(TaskState
*ts
)
3811 CPUArchState
*cpu_copy(CPUArchState
*env
)
3813 CPUState
*cpu
= ENV_GET_CPU(env
);
3814 CPUState
*new_cpu
= cpu_init(cpu_model
);
3815 CPUArchState
*new_env
= new_cpu
->env_ptr
;
3819 /* Reset non arch specific state */
3822 memcpy(new_env
, env
, sizeof(CPUArchState
));
3824 /* Clone all break/watchpoints.
3825 Note: Once we support ptrace with hw-debug register access, make sure
3826 BP_CPU break/watchpoints are handled correctly on clone. */
3827 QTAILQ_INIT(&new_cpu
->breakpoints
);
3828 QTAILQ_INIT(&new_cpu
->watchpoints
);
3829 QTAILQ_FOREACH(bp
, &cpu
->breakpoints
, entry
) {
3830 cpu_breakpoint_insert(new_cpu
, bp
->pc
, bp
->flags
, NULL
);
3832 QTAILQ_FOREACH(wp
, &cpu
->watchpoints
, entry
) {
3833 cpu_watchpoint_insert(new_cpu
, wp
->vaddr
, wp
->len
, wp
->flags
, NULL
);
3839 static void handle_arg_help(const char *arg
)
3841 usage(EXIT_SUCCESS
);
3844 static void handle_arg_log(const char *arg
)
3848 mask
= qemu_str_to_log_mask(arg
);
3850 qemu_print_log_usage(stdout
);
3853 qemu_log_needs_buffers();
3857 static void handle_arg_log_filename(const char *arg
)
3859 qemu_set_log_filename(arg
, &error_fatal
);
3862 static void handle_arg_set_env(const char *arg
)
3864 char *r
, *p
, *token
;
3865 r
= p
= strdup(arg
);
3866 while ((token
= strsep(&p
, ",")) != NULL
) {
3867 if (envlist_setenv(envlist
, token
) != 0) {
3868 usage(EXIT_FAILURE
);
3874 static void handle_arg_unset_env(const char *arg
)
3876 char *r
, *p
, *token
;
3877 r
= p
= strdup(arg
);
3878 while ((token
= strsep(&p
, ",")) != NULL
) {
3879 if (envlist_unsetenv(envlist
, token
) != 0) {
3880 usage(EXIT_FAILURE
);
3886 static void handle_arg_argv0(const char *arg
)
3888 argv0
= strdup(arg
);
3891 static void handle_arg_stack_size(const char *arg
)
3894 guest_stack_size
= strtoul(arg
, &p
, 0);
3895 if (guest_stack_size
== 0) {
3896 usage(EXIT_FAILURE
);
3900 guest_stack_size
*= 1024 * 1024;
3901 } else if (*p
== 'k' || *p
== 'K') {
3902 guest_stack_size
*= 1024;
3906 static void handle_arg_ld_prefix(const char *arg
)
3908 interp_prefix
= strdup(arg
);
3911 static void handle_arg_pagesize(const char *arg
)
3913 qemu_host_page_size
= atoi(arg
);
3914 if (qemu_host_page_size
== 0 ||
3915 (qemu_host_page_size
& (qemu_host_page_size
- 1)) != 0) {
3916 fprintf(stderr
, "page size must be a power of two\n");
3921 static void handle_arg_randseed(const char *arg
)
3923 unsigned long long seed
;
3925 if (parse_uint_full(arg
, &seed
, 0) != 0 || seed
> UINT_MAX
) {
3926 fprintf(stderr
, "Invalid seed number: %s\n", arg
);
3932 static void handle_arg_gdb(const char *arg
)
3934 gdbstub_port
= atoi(arg
);
3937 static void handle_arg_uname(const char *arg
)
3939 qemu_uname_release
= strdup(arg
);
3942 static void handle_arg_cpu(const char *arg
)
3944 cpu_model
= strdup(arg
);
3945 if (cpu_model
== NULL
|| is_help_option(cpu_model
)) {
3946 /* XXX: implement xxx_cpu_list for targets that still miss it */
3947 #if defined(cpu_list)
3948 cpu_list(stdout
, &fprintf
);
3954 static void handle_arg_guest_base(const char *arg
)
3956 guest_base
= strtol(arg
, NULL
, 0);
3957 have_guest_base
= 1;
3960 static void handle_arg_reserved_va(const char *arg
)
3964 reserved_va
= strtoul(arg
, &p
, 0);
3978 unsigned long unshifted
= reserved_va
;
3980 reserved_va
<<= shift
;
3981 if (((reserved_va
>> shift
) != unshifted
)
3982 #if HOST_LONG_BITS > TARGET_VIRT_ADDR_SPACE_BITS
3983 || (reserved_va
> (1ul << TARGET_VIRT_ADDR_SPACE_BITS
))
3986 fprintf(stderr
, "Reserved virtual address too big\n");
3991 fprintf(stderr
, "Unrecognised -R size suffix '%s'\n", p
);
3996 static void handle_arg_singlestep(const char *arg
)
4001 static void handle_arg_strace(const char *arg
)
4006 static void handle_arg_version(const char *arg
)
4008 printf("qemu-" TARGET_NAME
" version " QEMU_VERSION QEMU_PKGVERSION
4009 "\n" QEMU_COPYRIGHT
"\n");
4013 static char *trace_file
;
4014 static void handle_arg_trace(const char *arg
)
4017 trace_file
= trace_opt_parse(arg
);
4020 struct qemu_argument
{
4024 void (*handle_opt
)(const char *arg
);
4025 const char *example
;
4029 static const struct qemu_argument arg_table
[] = {
4030 {"h", "", false, handle_arg_help
,
4031 "", "print this help"},
4032 {"help", "", false, handle_arg_help
,
4034 {"g", "QEMU_GDB", true, handle_arg_gdb
,
4035 "port", "wait gdb connection to 'port'"},
4036 {"L", "QEMU_LD_PREFIX", true, handle_arg_ld_prefix
,
4037 "path", "set the elf interpreter prefix to 'path'"},
4038 {"s", "QEMU_STACK_SIZE", true, handle_arg_stack_size
,
4039 "size", "set the stack size to 'size' bytes"},
4040 {"cpu", "QEMU_CPU", true, handle_arg_cpu
,
4041 "model", "select CPU (-cpu help for list)"},
4042 {"E", "QEMU_SET_ENV", true, handle_arg_set_env
,
4043 "var=value", "sets targets environment variable (see below)"},
4044 {"U", "QEMU_UNSET_ENV", true, handle_arg_unset_env
,
4045 "var", "unsets targets environment variable (see below)"},
4046 {"0", "QEMU_ARGV0", true, handle_arg_argv0
,
4047 "argv0", "forces target process argv[0] to be 'argv0'"},
4048 {"r", "QEMU_UNAME", true, handle_arg_uname
,
4049 "uname", "set qemu uname release string to 'uname'"},
4050 {"B", "QEMU_GUEST_BASE", true, handle_arg_guest_base
,
4051 "address", "set guest_base address to 'address'"},
4052 {"R", "QEMU_RESERVED_VA", true, handle_arg_reserved_va
,
4053 "size", "reserve 'size' bytes for guest virtual address space"},
4054 {"d", "QEMU_LOG", true, handle_arg_log
,
4055 "item[,...]", "enable logging of specified items "
4056 "(use '-d help' for a list of items)"},
4057 {"D", "QEMU_LOG_FILENAME", true, handle_arg_log_filename
,
4058 "logfile", "write logs to 'logfile' (default stderr)"},
4059 {"p", "QEMU_PAGESIZE", true, handle_arg_pagesize
,
4060 "pagesize", "set the host page size to 'pagesize'"},
4061 {"singlestep", "QEMU_SINGLESTEP", false, handle_arg_singlestep
,
4062 "", "run in singlestep mode"},
4063 {"strace", "QEMU_STRACE", false, handle_arg_strace
,
4064 "", "log system calls"},
4065 {"seed", "QEMU_RAND_SEED", true, handle_arg_randseed
,
4066 "", "Seed for pseudo-random number generator"},
4067 {"trace", "QEMU_TRACE", true, handle_arg_trace
,
4068 "", "[[enable=]<pattern>][,events=<file>][,file=<file>]"},
4069 {"version", "QEMU_VERSION", false, handle_arg_version
,
4070 "", "display version information and exit"},
4071 {NULL
, NULL
, false, NULL
, NULL
, NULL
}
4074 static void usage(int exitcode
)
4076 const struct qemu_argument
*arginfo
;
4080 printf("usage: qemu-" TARGET_NAME
" [options] program [arguments...]\n"
4081 "Linux CPU emulator (compiled for " TARGET_NAME
" emulation)\n"
4083 "Options and associated environment variables:\n"
4086 /* Calculate column widths. We must always have at least enough space
4087 * for the column header.
4089 maxarglen
= strlen("Argument");
4090 maxenvlen
= strlen("Env-variable");
4092 for (arginfo
= arg_table
; arginfo
->handle_opt
!= NULL
; arginfo
++) {
4093 int arglen
= strlen(arginfo
->argv
);
4094 if (arginfo
->has_arg
) {
4095 arglen
+= strlen(arginfo
->example
) + 1;
4097 if (strlen(arginfo
->env
) > maxenvlen
) {
4098 maxenvlen
= strlen(arginfo
->env
);
4100 if (arglen
> maxarglen
) {
4105 printf("%-*s %-*s Description\n", maxarglen
+1, "Argument",
4106 maxenvlen
, "Env-variable");
4108 for (arginfo
= arg_table
; arginfo
->handle_opt
!= NULL
; arginfo
++) {
4109 if (arginfo
->has_arg
) {
4110 printf("-%s %-*s %-*s %s\n", arginfo
->argv
,
4111 (int)(maxarglen
- strlen(arginfo
->argv
) - 1),
4112 arginfo
->example
, maxenvlen
, arginfo
->env
, arginfo
->help
);
4114 printf("-%-*s %-*s %s\n", maxarglen
, arginfo
->argv
,
4115 maxenvlen
, arginfo
->env
,
4122 "QEMU_LD_PREFIX = %s\n"
4123 "QEMU_STACK_SIZE = %ld byte\n",
4128 "You can use -E and -U options or the QEMU_SET_ENV and\n"
4129 "QEMU_UNSET_ENV environment variables to set and unset\n"
4130 "environment variables for the target process.\n"
4131 "It is possible to provide several variables by separating them\n"
4132 "by commas in getsubopt(3) style. Additionally it is possible to\n"
4133 "provide the -E and -U options multiple times.\n"
4134 "The following lines are equivalent:\n"
4135 " -E var1=val2 -E var2=val2 -U LD_PRELOAD -U LD_DEBUG\n"
4136 " -E var1=val2,var2=val2 -U LD_PRELOAD,LD_DEBUG\n"
4137 " QEMU_SET_ENV=var1=val2,var2=val2 QEMU_UNSET_ENV=LD_PRELOAD,LD_DEBUG\n"
4138 "Note that if you provide several changes to a single variable\n"
4139 "the last change will stay in effect.\n"
4141 QEMU_HELP_BOTTOM
"\n");
4146 static int parse_args(int argc
, char **argv
)
4150 const struct qemu_argument
*arginfo
;
4152 for (arginfo
= arg_table
; arginfo
->handle_opt
!= NULL
; arginfo
++) {
4153 if (arginfo
->env
== NULL
) {
4157 r
= getenv(arginfo
->env
);
4159 arginfo
->handle_opt(r
);
4165 if (optind
>= argc
) {
4174 if (!strcmp(r
, "-")) {
4177 /* Treat --foo the same as -foo. */
4182 for (arginfo
= arg_table
; arginfo
->handle_opt
!= NULL
; arginfo
++) {
4183 if (!strcmp(r
, arginfo
->argv
)) {
4184 if (arginfo
->has_arg
) {
4185 if (optind
>= argc
) {
4186 (void) fprintf(stderr
,
4187 "qemu: missing argument for option '%s'\n", r
);
4190 arginfo
->handle_opt(argv
[optind
]);
4193 arginfo
->handle_opt(NULL
);
4199 /* no option matched the current argv */
4200 if (arginfo
->handle_opt
== NULL
) {
4201 (void) fprintf(stderr
, "qemu: unknown option '%s'\n", r
);
4206 if (optind
>= argc
) {
4207 (void) fprintf(stderr
, "qemu: no user program specified\n");
4211 filename
= argv
[optind
];
4212 exec_path
= argv
[optind
];
4217 int main(int argc
, char **argv
, char **envp
)
4219 struct target_pt_regs regs1
, *regs
= ®s1
;
4220 struct image_info info1
, *info
= &info1
;
4221 struct linux_binprm bprm
;
4226 char **target_environ
, **wrk
;
4233 module_call_init(MODULE_INIT_TRACE
);
4234 qemu_init_cpu_list();
4235 module_call_init(MODULE_INIT_QOM
);
4237 envlist
= envlist_create();
4239 /* add current environment into the list */
4240 for (wrk
= environ
; *wrk
!= NULL
; wrk
++) {
4241 (void) envlist_setenv(envlist
, *wrk
);
4244 /* Read the stack limit from the kernel. If it's "unlimited",
4245 then we can do little else besides use the default. */
4248 if (getrlimit(RLIMIT_STACK
, &lim
) == 0
4249 && lim
.rlim_cur
!= RLIM_INFINITY
4250 && lim
.rlim_cur
== (target_long
)lim
.rlim_cur
) {
4251 guest_stack_size
= lim
.rlim_cur
;
4259 qemu_add_opts(&qemu_trace_opts
);
4261 optind
= parse_args(argc
, argv
);
4263 if (!trace_init_backends()) {
4266 trace_init_file(trace_file
);
4269 memset(regs
, 0, sizeof(struct target_pt_regs
));
4271 /* Zero out image_info */
4272 memset(info
, 0, sizeof(struct image_info
));
4274 memset(&bprm
, 0, sizeof (bprm
));
4276 /* Scan interp_prefix dir for replacement files. */
4277 init_paths(interp_prefix
);
4279 init_qemu_uname_release();
4281 if (cpu_model
== NULL
) {
4282 #if defined(TARGET_I386)
4283 #ifdef TARGET_X86_64
4284 cpu_model
= "qemu64";
4286 cpu_model
= "qemu32";
4288 #elif defined(TARGET_ARM)
4290 #elif defined(TARGET_UNICORE32)
4292 #elif defined(TARGET_M68K)
4294 #elif defined(TARGET_SPARC)
4295 #ifdef TARGET_SPARC64
4296 cpu_model
= "TI UltraSparc II";
4298 cpu_model
= "Fujitsu MB86904";
4300 #elif defined(TARGET_MIPS)
4301 #if defined(TARGET_ABI_MIPSN32) || defined(TARGET_ABI_MIPSN64)
4306 #elif defined TARGET_OPENRISC
4307 cpu_model
= "or1200";
4308 #elif defined(TARGET_PPC)
4309 # ifdef TARGET_PPC64
4310 cpu_model
= "POWER8";
4314 #elif defined TARGET_SH4
4315 cpu_model
= TYPE_SH7785_CPU
;
4316 #elif defined TARGET_S390X
4323 /* NOTE: we need to init the CPU at this stage to get
4324 qemu_host_page_size */
4325 cpu
= cpu_init(cpu_model
);
4331 if (getenv("QEMU_STRACE")) {
4335 if (getenv("QEMU_RAND_SEED")) {
4336 handle_arg_randseed(getenv("QEMU_RAND_SEED"));
4339 target_environ
= envlist_to_environ(envlist
, NULL
);
4340 envlist_free(envlist
);
4343 * Now that page sizes are configured in cpu_init() we can do
4344 * proper page alignment for guest_base.
4346 guest_base
= HOST_PAGE_ALIGN(guest_base
);
4348 if (reserved_va
|| have_guest_base
) {
4349 guest_base
= init_guest_space(guest_base
, reserved_va
, 0,
4351 if (guest_base
== (unsigned long)-1) {
4352 fprintf(stderr
, "Unable to reserve 0x%lx bytes of virtual address "
4353 "space for use as guest address space (check your virtual "
4354 "memory ulimit setting or reserve less using -R option)\n",
4360 mmap_next_start
= reserved_va
;
4365 * Read in mmap_min_addr kernel parameter. This value is used
4366 * When loading the ELF image to determine whether guest_base
4367 * is needed. It is also used in mmap_find_vma.
4372 if ((fp
= fopen("/proc/sys/vm/mmap_min_addr", "r")) != NULL
) {
4374 if (fscanf(fp
, "%lu", &tmp
) == 1) {
4375 mmap_min_addr
= tmp
;
4376 qemu_log_mask(CPU_LOG_PAGE
, "host mmap_min_addr=0x%lx\n", mmap_min_addr
);
4383 * Prepare copy of argv vector for target.
4385 target_argc
= argc
- optind
;
4386 target_argv
= calloc(target_argc
+ 1, sizeof (char *));
4387 if (target_argv
== NULL
) {
4388 (void) fprintf(stderr
, "Unable to allocate memory for target_argv\n");
4393 * If argv0 is specified (using '-0' switch) we replace
4394 * argv[0] pointer with the given one.
4397 if (argv0
!= NULL
) {
4398 target_argv
[i
++] = strdup(argv0
);
4400 for (; i
< target_argc
; i
++) {
4401 target_argv
[i
] = strdup(argv
[optind
+ i
]);
4403 target_argv
[target_argc
] = NULL
;
4405 ts
= g_new0(TaskState
, 1);
4406 init_task_state(ts
);
4407 /* build Task State */
4413 execfd
= qemu_getauxval(AT_EXECFD
);
4415 execfd
= open(filename
, O_RDONLY
);
4417 printf("Error while loading %s: %s\n", filename
, strerror(errno
));
4418 _exit(EXIT_FAILURE
);
4422 ret
= loader_exec(execfd
, filename
, target_argv
, target_environ
, regs
,
4425 printf("Error while loading %s: %s\n", filename
, strerror(-ret
));
4426 _exit(EXIT_FAILURE
);
4429 for (wrk
= target_environ
; *wrk
; wrk
++) {
4433 g_free(target_environ
);
4435 if (qemu_loglevel_mask(CPU_LOG_PAGE
)) {
4436 qemu_log("guest_base 0x%lx\n", guest_base
);
4439 qemu_log("start_brk 0x" TARGET_ABI_FMT_lx
"\n", info
->start_brk
);
4440 qemu_log("end_code 0x" TARGET_ABI_FMT_lx
"\n", info
->end_code
);
4441 qemu_log("start_code 0x" TARGET_ABI_FMT_lx
"\n", info
->start_code
);
4442 qemu_log("start_data 0x" TARGET_ABI_FMT_lx
"\n", info
->start_data
);
4443 qemu_log("end_data 0x" TARGET_ABI_FMT_lx
"\n", info
->end_data
);
4444 qemu_log("start_stack 0x" TARGET_ABI_FMT_lx
"\n", info
->start_stack
);
4445 qemu_log("brk 0x" TARGET_ABI_FMT_lx
"\n", info
->brk
);
4446 qemu_log("entry 0x" TARGET_ABI_FMT_lx
"\n", info
->entry
);
4447 qemu_log("argv_start 0x" TARGET_ABI_FMT_lx
"\n", info
->arg_start
);
4448 qemu_log("env_start 0x" TARGET_ABI_FMT_lx
"\n",
4449 info
->arg_end
+ (abi_ulong
)sizeof(abi_ulong
));
4450 qemu_log("auxv_start 0x" TARGET_ABI_FMT_lx
"\n", info
->saved_auxv
);
4453 target_set_brk(info
->brk
);
4457 /* Now that we've loaded the binary, GUEST_BASE is fixed. Delay
4458 generating the prologue until now so that the prologue can take
4459 the real value of GUEST_BASE into account. */
4460 tcg_prologue_init(&tcg_ctx
);
4462 #if defined(TARGET_I386)
4463 env
->cr
[0] = CR0_PG_MASK
| CR0_WP_MASK
| CR0_PE_MASK
;
4464 env
->hflags
|= HF_PE_MASK
| HF_CPL_MASK
;
4465 if (env
->features
[FEAT_1_EDX
] & CPUID_SSE
) {
4466 env
->cr
[4] |= CR4_OSFXSR_MASK
;
4467 env
->hflags
|= HF_OSFXSR_MASK
;
4469 #ifndef TARGET_ABI32
4470 /* enable 64 bit mode if possible */
4471 if (!(env
->features
[FEAT_8000_0001_EDX
] & CPUID_EXT2_LM
)) {
4472 fprintf(stderr
, "The selected x86 CPU does not support 64 bit mode\n");
4475 env
->cr
[4] |= CR4_PAE_MASK
;
4476 env
->efer
|= MSR_EFER_LMA
| MSR_EFER_LME
;
4477 env
->hflags
|= HF_LMA_MASK
;
4480 /* flags setup : we activate the IRQs by default as in user mode */
4481 env
->eflags
|= IF_MASK
;
4483 /* linux register setup */
4484 #ifndef TARGET_ABI32
4485 env
->regs
[R_EAX
] = regs
->rax
;
4486 env
->regs
[R_EBX
] = regs
->rbx
;
4487 env
->regs
[R_ECX
] = regs
->rcx
;
4488 env
->regs
[R_EDX
] = regs
->rdx
;
4489 env
->regs
[R_ESI
] = regs
->rsi
;
4490 env
->regs
[R_EDI
] = regs
->rdi
;
4491 env
->regs
[R_EBP
] = regs
->rbp
;
4492 env
->regs
[R_ESP
] = regs
->rsp
;
4493 env
->eip
= regs
->rip
;
4495 env
->regs
[R_EAX
] = regs
->eax
;
4496 env
->regs
[R_EBX
] = regs
->ebx
;
4497 env
->regs
[R_ECX
] = regs
->ecx
;
4498 env
->regs
[R_EDX
] = regs
->edx
;
4499 env
->regs
[R_ESI
] = regs
->esi
;
4500 env
->regs
[R_EDI
] = regs
->edi
;
4501 env
->regs
[R_EBP
] = regs
->ebp
;
4502 env
->regs
[R_ESP
] = regs
->esp
;
4503 env
->eip
= regs
->eip
;
4506 /* linux interrupt setup */
4507 #ifndef TARGET_ABI32
4508 env
->idt
.limit
= 511;
4510 env
->idt
.limit
= 255;
4512 env
->idt
.base
= target_mmap(0, sizeof(uint64_t) * (env
->idt
.limit
+ 1),
4513 PROT_READ
|PROT_WRITE
,
4514 MAP_ANONYMOUS
|MAP_PRIVATE
, -1, 0);
4515 idt_table
= g2h(env
->idt
.base
);
4538 /* linux segment setup */
4540 uint64_t *gdt_table
;
4541 env
->gdt
.base
= target_mmap(0, sizeof(uint64_t) * TARGET_GDT_ENTRIES
,
4542 PROT_READ
|PROT_WRITE
,
4543 MAP_ANONYMOUS
|MAP_PRIVATE
, -1, 0);
4544 env
->gdt
.limit
= sizeof(uint64_t) * TARGET_GDT_ENTRIES
- 1;
4545 gdt_table
= g2h(env
->gdt
.base
);
4547 write_dt(&gdt_table
[__USER_CS
>> 3], 0, 0xfffff,
4548 DESC_G_MASK
| DESC_B_MASK
| DESC_P_MASK
| DESC_S_MASK
|
4549 (3 << DESC_DPL_SHIFT
) | (0xa << DESC_TYPE_SHIFT
));
4551 /* 64 bit code segment */
4552 write_dt(&gdt_table
[__USER_CS
>> 3], 0, 0xfffff,
4553 DESC_G_MASK
| DESC_B_MASK
| DESC_P_MASK
| DESC_S_MASK
|
4555 (3 << DESC_DPL_SHIFT
) | (0xa << DESC_TYPE_SHIFT
));
4557 write_dt(&gdt_table
[__USER_DS
>> 3], 0, 0xfffff,
4558 DESC_G_MASK
| DESC_B_MASK
| DESC_P_MASK
| DESC_S_MASK
|
4559 (3 << DESC_DPL_SHIFT
) | (0x2 << DESC_TYPE_SHIFT
));
4561 cpu_x86_load_seg(env
, R_CS
, __USER_CS
);
4562 cpu_x86_load_seg(env
, R_SS
, __USER_DS
);
4564 cpu_x86_load_seg(env
, R_DS
, __USER_DS
);
4565 cpu_x86_load_seg(env
, R_ES
, __USER_DS
);
4566 cpu_x86_load_seg(env
, R_FS
, __USER_DS
);
4567 cpu_x86_load_seg(env
, R_GS
, __USER_DS
);
4568 /* This hack makes Wine work... */
4569 env
->segs
[R_FS
].selector
= 0;
4571 cpu_x86_load_seg(env
, R_DS
, 0);
4572 cpu_x86_load_seg(env
, R_ES
, 0);
4573 cpu_x86_load_seg(env
, R_FS
, 0);
4574 cpu_x86_load_seg(env
, R_GS
, 0);
4576 #elif defined(TARGET_AARCH64)
4580 if (!(arm_feature(env
, ARM_FEATURE_AARCH64
))) {
4582 "The selected ARM CPU does not support 64 bit mode\n");
4586 for (i
= 0; i
< 31; i
++) {
4587 env
->xregs
[i
] = regs
->regs
[i
];
4590 env
->xregs
[31] = regs
->sp
;
4592 #elif defined(TARGET_ARM)
4595 cpsr_write(env
, regs
->uregs
[16], CPSR_USER
| CPSR_EXEC
,
4597 for(i
= 0; i
< 16; i
++) {
4598 env
->regs
[i
] = regs
->uregs
[i
];
4600 #ifdef TARGET_WORDS_BIGENDIAN
4602 if (EF_ARM_EABI_VERSION(info
->elf_flags
) >= EF_ARM_EABI_VER4
4603 && (info
->elf_flags
& EF_ARM_BE8
)) {
4604 env
->uncached_cpsr
|= CPSR_E
;
4605 env
->cp15
.sctlr_el
[1] |= SCTLR_E0E
;
4607 env
->cp15
.sctlr_el
[1] |= SCTLR_B
;
4611 #elif defined(TARGET_UNICORE32)
4614 cpu_asr_write(env
, regs
->uregs
[32], 0xffffffff);
4615 for (i
= 0; i
< 32; i
++) {
4616 env
->regs
[i
] = regs
->uregs
[i
];
4619 #elif defined(TARGET_SPARC)
4623 env
->npc
= regs
->npc
;
4625 for(i
= 0; i
< 8; i
++)
4626 env
->gregs
[i
] = regs
->u_regs
[i
];
4627 for(i
= 0; i
< 8; i
++)
4628 env
->regwptr
[i
] = regs
->u_regs
[i
+ 8];
4630 #elif defined(TARGET_PPC)
4634 #if defined(TARGET_PPC64)
4635 int flag
= (env
->insns_flags2
& PPC2_BOOKE206
) ? MSR_CM
: MSR_SF
;
4636 #if defined(TARGET_ABI32)
4637 env
->msr
&= ~((target_ulong
)1 << flag
);
4639 env
->msr
|= (target_ulong
)1 << flag
;
4642 env
->nip
= regs
->nip
;
4643 for(i
= 0; i
< 32; i
++) {
4644 env
->gpr
[i
] = regs
->gpr
[i
];
4647 #elif defined(TARGET_M68K)
4650 env
->dregs
[0] = regs
->d0
;
4651 env
->dregs
[1] = regs
->d1
;
4652 env
->dregs
[2] = regs
->d2
;
4653 env
->dregs
[3] = regs
->d3
;
4654 env
->dregs
[4] = regs
->d4
;
4655 env
->dregs
[5] = regs
->d5
;
4656 env
->dregs
[6] = regs
->d6
;
4657 env
->dregs
[7] = regs
->d7
;
4658 env
->aregs
[0] = regs
->a0
;
4659 env
->aregs
[1] = regs
->a1
;
4660 env
->aregs
[2] = regs
->a2
;
4661 env
->aregs
[3] = regs
->a3
;
4662 env
->aregs
[4] = regs
->a4
;
4663 env
->aregs
[5] = regs
->a5
;
4664 env
->aregs
[6] = regs
->a6
;
4665 env
->aregs
[7] = regs
->usp
;
4667 ts
->sim_syscalls
= 1;
4669 #elif defined(TARGET_MICROBLAZE)
4671 env
->regs
[0] = regs
->r0
;
4672 env
->regs
[1] = regs
->r1
;
4673 env
->regs
[2] = regs
->r2
;
4674 env
->regs
[3] = regs
->r3
;
4675 env
->regs
[4] = regs
->r4
;
4676 env
->regs
[5] = regs
->r5
;
4677 env
->regs
[6] = regs
->r6
;
4678 env
->regs
[7] = regs
->r7
;
4679 env
->regs
[8] = regs
->r8
;
4680 env
->regs
[9] = regs
->r9
;
4681 env
->regs
[10] = regs
->r10
;
4682 env
->regs
[11] = regs
->r11
;
4683 env
->regs
[12] = regs
->r12
;
4684 env
->regs
[13] = regs
->r13
;
4685 env
->regs
[14] = regs
->r14
;
4686 env
->regs
[15] = regs
->r15
;
4687 env
->regs
[16] = regs
->r16
;
4688 env
->regs
[17] = regs
->r17
;
4689 env
->regs
[18] = regs
->r18
;
4690 env
->regs
[19] = regs
->r19
;
4691 env
->regs
[20] = regs
->r20
;
4692 env
->regs
[21] = regs
->r21
;
4693 env
->regs
[22] = regs
->r22
;
4694 env
->regs
[23] = regs
->r23
;
4695 env
->regs
[24] = regs
->r24
;
4696 env
->regs
[25] = regs
->r25
;
4697 env
->regs
[26] = regs
->r26
;
4698 env
->regs
[27] = regs
->r27
;
4699 env
->regs
[28] = regs
->r28
;
4700 env
->regs
[29] = regs
->r29
;
4701 env
->regs
[30] = regs
->r30
;
4702 env
->regs
[31] = regs
->r31
;
4703 env
->sregs
[SR_PC
] = regs
->pc
;
4705 #elif defined(TARGET_MIPS)
4709 for(i
= 0; i
< 32; i
++) {
4710 env
->active_tc
.gpr
[i
] = regs
->regs
[i
];
4712 env
->active_tc
.PC
= regs
->cp0_epc
& ~(target_ulong
)1;
4713 if (regs
->cp0_epc
& 1) {
4714 env
->hflags
|= MIPS_HFLAG_M16
;
4716 if (((info
->elf_flags
& EF_MIPS_NAN2008
) != 0) !=
4717 ((env
->active_fpu
.fcr31
& (1 << FCR31_NAN2008
)) != 0)) {
4718 if ((env
->active_fpu
.fcr31_rw_bitmask
&
4719 (1 << FCR31_NAN2008
)) == 0) {
4720 fprintf(stderr
, "ELF binary's NaN mode not supported by CPU\n");
4723 if ((info
->elf_flags
& EF_MIPS_NAN2008
) != 0) {
4724 env
->active_fpu
.fcr31
|= (1 << FCR31_NAN2008
);
4726 env
->active_fpu
.fcr31
&= ~(1 << FCR31_NAN2008
);
4728 restore_snan_bit_mode(env
);
4731 #elif defined(TARGET_NIOS2)
4734 env
->regs
[1] = regs
->r1
;
4735 env
->regs
[2] = regs
->r2
;
4736 env
->regs
[3] = regs
->r3
;
4737 env
->regs
[4] = regs
->r4
;
4738 env
->regs
[5] = regs
->r5
;
4739 env
->regs
[6] = regs
->r6
;
4740 env
->regs
[7] = regs
->r7
;
4741 env
->regs
[8] = regs
->r8
;
4742 env
->regs
[9] = regs
->r9
;
4743 env
->regs
[10] = regs
->r10
;
4744 env
->regs
[11] = regs
->r11
;
4745 env
->regs
[12] = regs
->r12
;
4746 env
->regs
[13] = regs
->r13
;
4747 env
->regs
[14] = regs
->r14
;
4748 env
->regs
[15] = regs
->r15
;
4749 /* TODO: unsigned long orig_r2; */
4750 env
->regs
[R_RA
] = regs
->ra
;
4751 env
->regs
[R_FP
] = regs
->fp
;
4752 env
->regs
[R_SP
] = regs
->sp
;
4753 env
->regs
[R_GP
] = regs
->gp
;
4754 env
->regs
[CR_ESTATUS
] = regs
->estatus
;
4755 env
->regs
[R_EA
] = regs
->ea
;
4756 /* TODO: unsigned long orig_r7; */
4758 /* Emulate eret when starting thread. */
4759 env
->regs
[R_PC
] = regs
->ea
;
4761 #elif defined(TARGET_OPENRISC)
4765 for (i
= 0; i
< 32; i
++) {
4766 cpu_set_gpr(env
, i
, regs
->gpr
[i
]);
4769 cpu_set_sr(env
, regs
->sr
);
4771 #elif defined(TARGET_SH4)
4775 for(i
= 0; i
< 16; i
++) {
4776 env
->gregs
[i
] = regs
->regs
[i
];
4780 #elif defined(TARGET_ALPHA)
4784 for(i
= 0; i
< 28; i
++) {
4785 env
->ir
[i
] = ((abi_ulong
*)regs
)[i
];
4787 env
->ir
[IR_SP
] = regs
->usp
;
4790 #elif defined(TARGET_CRIS)
4792 env
->regs
[0] = regs
->r0
;
4793 env
->regs
[1] = regs
->r1
;
4794 env
->regs
[2] = regs
->r2
;
4795 env
->regs
[3] = regs
->r3
;
4796 env
->regs
[4] = regs
->r4
;
4797 env
->regs
[5] = regs
->r5
;
4798 env
->regs
[6] = regs
->r6
;
4799 env
->regs
[7] = regs
->r7
;
4800 env
->regs
[8] = regs
->r8
;
4801 env
->regs
[9] = regs
->r9
;
4802 env
->regs
[10] = regs
->r10
;
4803 env
->regs
[11] = regs
->r11
;
4804 env
->regs
[12] = regs
->r12
;
4805 env
->regs
[13] = regs
->r13
;
4806 env
->regs
[14] = info
->start_stack
;
4807 env
->regs
[15] = regs
->acr
;
4808 env
->pc
= regs
->erp
;
4810 #elif defined(TARGET_S390X)
4813 for (i
= 0; i
< 16; i
++) {
4814 env
->regs
[i
] = regs
->gprs
[i
];
4816 env
->psw
.mask
= regs
->psw
.mask
;
4817 env
->psw
.addr
= regs
->psw
.addr
;
4819 #elif defined(TARGET_TILEGX)
4822 for (i
= 0; i
< TILEGX_R_COUNT
; i
++) {
4823 env
->regs
[i
] = regs
->regs
[i
];
4825 for (i
= 0; i
< TILEGX_SPR_COUNT
; i
++) {
4830 #elif defined(TARGET_HPPA)
4833 for (i
= 1; i
< 32; i
++) {
4834 env
->gr
[i
] = regs
->gr
[i
];
4836 env
->iaoq_f
= regs
->iaoq
[0];
4837 env
->iaoq_b
= regs
->iaoq
[1];
4840 #error unsupported target CPU
4843 #if defined(TARGET_ARM) || defined(TARGET_M68K) || defined(TARGET_UNICORE32)
4844 ts
->stack_base
= info
->start_stack
;
4845 ts
->heap_base
= info
->brk
;
4846 /* This will be filled in on the first SYS_HEAPINFO call. */
4851 if (gdbserver_start(gdbstub_port
) < 0) {
4852 fprintf(stderr
, "qemu: could not open gdbserver on port %d\n",
4856 gdb_handlesig(cpu
, 0);