target/arm: *_EL12 registers should UNDEF when HCR_EL2.E2H is 0
[qemu/ar7.git] / target / arm / helper.c
blob797b7518f61c1ac9f2e9b8b84a2ac454d0203433
1 /*
2 * ARM generic helpers.
4 * This code is licensed under the GNU GPL v2 or later.
6 * SPDX-License-Identifier: GPL-2.0-or-later
7 */
9 #include "qemu/osdep.h"
10 #include "qemu/log.h"
11 #include "trace.h"
12 #include "cpu.h"
13 #include "internals.h"
14 #include "cpu-features.h"
15 #include "exec/helper-proto.h"
16 #include "qemu/main-loop.h"
17 #include "qemu/timer.h"
18 #include "qemu/bitops.h"
19 #include "qemu/crc32c.h"
20 #include "qemu/qemu-print.h"
21 #include "exec/exec-all.h"
22 #include <zlib.h> /* For crc32 */
23 #include "hw/irq.h"
24 #include "sysemu/cpu-timers.h"
25 #include "sysemu/kvm.h"
26 #include "sysemu/tcg.h"
27 #include "qapi/error.h"
28 #include "qemu/guest-random.h"
29 #ifdef CONFIG_TCG
30 #include "semihosting/common-semi.h"
31 #endif
32 #include "cpregs.h"
34 #define ARM_CPU_FREQ 1000000000 /* FIXME: 1 GHz, should be configurable */
36 static void switch_mode(CPUARMState *env, int mode);
38 static uint64_t raw_read(CPUARMState *env, const ARMCPRegInfo *ri)
40 assert(ri->fieldoffset);
41 if (cpreg_field_is_64bit(ri)) {
42 return CPREG_FIELD64(env, ri);
43 } else {
44 return CPREG_FIELD32(env, ri);
48 void raw_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value)
50 assert(ri->fieldoffset);
51 if (cpreg_field_is_64bit(ri)) {
52 CPREG_FIELD64(env, ri) = value;
53 } else {
54 CPREG_FIELD32(env, ri) = value;
58 static void *raw_ptr(CPUARMState *env, const ARMCPRegInfo *ri)
60 return (char *)env + ri->fieldoffset;
63 uint64_t read_raw_cp_reg(CPUARMState *env, const ARMCPRegInfo *ri)
65 /* Raw read of a coprocessor register (as needed for migration, etc). */
66 if (ri->type & ARM_CP_CONST) {
67 return ri->resetvalue;
68 } else if (ri->raw_readfn) {
69 return ri->raw_readfn(env, ri);
70 } else if (ri->readfn) {
71 return ri->readfn(env, ri);
72 } else {
73 return raw_read(env, ri);
77 static void write_raw_cp_reg(CPUARMState *env, const ARMCPRegInfo *ri,
78 uint64_t v)
81 * Raw write of a coprocessor register (as needed for migration, etc).
82 * Note that constant registers are treated as write-ignored; the
83 * caller should check for success by whether a readback gives the
84 * value written.
86 if (ri->type & ARM_CP_CONST) {
87 return;
88 } else if (ri->raw_writefn) {
89 ri->raw_writefn(env, ri, v);
90 } else if (ri->writefn) {
91 ri->writefn(env, ri, v);
92 } else {
93 raw_write(env, ri, v);
97 static bool raw_accessors_invalid(const ARMCPRegInfo *ri)
100 * Return true if the regdef would cause an assertion if you called
101 * read_raw_cp_reg() or write_raw_cp_reg() on it (ie if it is a
102 * program bug for it not to have the NO_RAW flag).
103 * NB that returning false here doesn't necessarily mean that calling
104 * read/write_raw_cp_reg() is safe, because we can't distinguish "has
105 * read/write access functions which are safe for raw use" from "has
106 * read/write access functions which have side effects but has forgotten
107 * to provide raw access functions".
108 * The tests here line up with the conditions in read/write_raw_cp_reg()
109 * and assertions in raw_read()/raw_write().
111 if ((ri->type & ARM_CP_CONST) ||
112 ri->fieldoffset ||
113 ((ri->raw_writefn || ri->writefn) && (ri->raw_readfn || ri->readfn))) {
114 return false;
116 return true;
119 bool write_cpustate_to_list(ARMCPU *cpu, bool kvm_sync)
121 /* Write the coprocessor state from cpu->env to the (index,value) list. */
122 int i;
123 bool ok = true;
125 for (i = 0; i < cpu->cpreg_array_len; i++) {
126 uint32_t regidx = kvm_to_cpreg_id(cpu->cpreg_indexes[i]);
127 const ARMCPRegInfo *ri;
128 uint64_t newval;
130 ri = get_arm_cp_reginfo(cpu->cp_regs, regidx);
131 if (!ri) {
132 ok = false;
133 continue;
135 if (ri->type & ARM_CP_NO_RAW) {
136 continue;
139 newval = read_raw_cp_reg(&cpu->env, ri);
140 if (kvm_sync) {
142 * Only sync if the previous list->cpustate sync succeeded.
143 * Rather than tracking the success/failure state for every
144 * item in the list, we just recheck "does the raw write we must
145 * have made in write_list_to_cpustate() read back OK" here.
147 uint64_t oldval = cpu->cpreg_values[i];
149 if (oldval == newval) {
150 continue;
153 write_raw_cp_reg(&cpu->env, ri, oldval);
154 if (read_raw_cp_reg(&cpu->env, ri) != oldval) {
155 continue;
158 write_raw_cp_reg(&cpu->env, ri, newval);
160 cpu->cpreg_values[i] = newval;
162 return ok;
165 bool write_list_to_cpustate(ARMCPU *cpu)
167 int i;
168 bool ok = true;
170 for (i = 0; i < cpu->cpreg_array_len; i++) {
171 uint32_t regidx = kvm_to_cpreg_id(cpu->cpreg_indexes[i]);
172 uint64_t v = cpu->cpreg_values[i];
173 const ARMCPRegInfo *ri;
175 ri = get_arm_cp_reginfo(cpu->cp_regs, regidx);
176 if (!ri) {
177 ok = false;
178 continue;
180 if (ri->type & ARM_CP_NO_RAW) {
181 continue;
184 * Write value and confirm it reads back as written
185 * (to catch read-only registers and partially read-only
186 * registers where the incoming migration value doesn't match)
188 write_raw_cp_reg(&cpu->env, ri, v);
189 if (read_raw_cp_reg(&cpu->env, ri) != v) {
190 ok = false;
193 return ok;
196 static void add_cpreg_to_list(gpointer key, gpointer opaque)
198 ARMCPU *cpu = opaque;
199 uint32_t regidx = (uintptr_t)key;
200 const ARMCPRegInfo *ri = get_arm_cp_reginfo(cpu->cp_regs, regidx);
202 if (!(ri->type & (ARM_CP_NO_RAW | ARM_CP_ALIAS))) {
203 cpu->cpreg_indexes[cpu->cpreg_array_len] = cpreg_to_kvm_id(regidx);
204 /* The value array need not be initialized at this point */
205 cpu->cpreg_array_len++;
209 static void count_cpreg(gpointer key, gpointer opaque)
211 ARMCPU *cpu = opaque;
212 const ARMCPRegInfo *ri;
214 ri = g_hash_table_lookup(cpu->cp_regs, key);
216 if (!(ri->type & (ARM_CP_NO_RAW | ARM_CP_ALIAS))) {
217 cpu->cpreg_array_len++;
221 static gint cpreg_key_compare(gconstpointer a, gconstpointer b)
223 uint64_t aidx = cpreg_to_kvm_id((uintptr_t)a);
224 uint64_t bidx = cpreg_to_kvm_id((uintptr_t)b);
226 if (aidx > bidx) {
227 return 1;
229 if (aidx < bidx) {
230 return -1;
232 return 0;
235 void init_cpreg_list(ARMCPU *cpu)
238 * Initialise the cpreg_tuples[] array based on the cp_regs hash.
239 * Note that we require cpreg_tuples[] to be sorted by key ID.
241 GList *keys;
242 int arraylen;
244 keys = g_hash_table_get_keys(cpu->cp_regs);
245 keys = g_list_sort(keys, cpreg_key_compare);
247 cpu->cpreg_array_len = 0;
249 g_list_foreach(keys, count_cpreg, cpu);
251 arraylen = cpu->cpreg_array_len;
252 cpu->cpreg_indexes = g_new(uint64_t, arraylen);
253 cpu->cpreg_values = g_new(uint64_t, arraylen);
254 cpu->cpreg_vmstate_indexes = g_new(uint64_t, arraylen);
255 cpu->cpreg_vmstate_values = g_new(uint64_t, arraylen);
256 cpu->cpreg_vmstate_array_len = cpu->cpreg_array_len;
257 cpu->cpreg_array_len = 0;
259 g_list_foreach(keys, add_cpreg_to_list, cpu);
261 assert(cpu->cpreg_array_len == arraylen);
263 g_list_free(keys);
267 * Some registers are not accessible from AArch32 EL3 if SCR.NS == 0.
269 static CPAccessResult access_el3_aa32ns(CPUARMState *env,
270 const ARMCPRegInfo *ri,
271 bool isread)
273 if (!is_a64(env) && arm_current_el(env) == 3 &&
274 arm_is_secure_below_el3(env)) {
275 return CP_ACCESS_TRAP_UNCATEGORIZED;
277 return CP_ACCESS_OK;
281 * Some secure-only AArch32 registers trap to EL3 if used from
282 * Secure EL1 (but are just ordinary UNDEF in other non-EL3 contexts).
283 * Note that an access from Secure EL1 can only happen if EL3 is AArch64.
284 * We assume that the .access field is set to PL1_RW.
286 static CPAccessResult access_trap_aa32s_el1(CPUARMState *env,
287 const ARMCPRegInfo *ri,
288 bool isread)
290 if (arm_current_el(env) == 3) {
291 return CP_ACCESS_OK;
293 if (arm_is_secure_below_el3(env)) {
294 if (env->cp15.scr_el3 & SCR_EEL2) {
295 return CP_ACCESS_TRAP_EL2;
297 return CP_ACCESS_TRAP_EL3;
299 /* This will be EL1 NS and EL2 NS, which just UNDEF */
300 return CP_ACCESS_TRAP_UNCATEGORIZED;
304 * Check for traps to performance monitor registers, which are controlled
305 * by MDCR_EL2.TPM for EL2 and MDCR_EL3.TPM for EL3.
307 static CPAccessResult access_tpm(CPUARMState *env, const ARMCPRegInfo *ri,
308 bool isread)
310 int el = arm_current_el(env);
311 uint64_t mdcr_el2 = arm_mdcr_el2_eff(env);
313 if (el < 2 && (mdcr_el2 & MDCR_TPM)) {
314 return CP_ACCESS_TRAP_EL2;
316 if (el < 3 && (env->cp15.mdcr_el3 & MDCR_TPM)) {
317 return CP_ACCESS_TRAP_EL3;
319 return CP_ACCESS_OK;
322 /* Check for traps from EL1 due to HCR_EL2.TVM and HCR_EL2.TRVM. */
323 CPAccessResult access_tvm_trvm(CPUARMState *env, const ARMCPRegInfo *ri,
324 bool isread)
326 if (arm_current_el(env) == 1) {
327 uint64_t trap = isread ? HCR_TRVM : HCR_TVM;
328 if (arm_hcr_el2_eff(env) & trap) {
329 return CP_ACCESS_TRAP_EL2;
332 return CP_ACCESS_OK;
335 /* Check for traps from EL1 due to HCR_EL2.TSW. */
336 static CPAccessResult access_tsw(CPUARMState *env, const ARMCPRegInfo *ri,
337 bool isread)
339 if (arm_current_el(env) == 1 && (arm_hcr_el2_eff(env) & HCR_TSW)) {
340 return CP_ACCESS_TRAP_EL2;
342 return CP_ACCESS_OK;
345 /* Check for traps from EL1 due to HCR_EL2.TACR. */
346 static CPAccessResult access_tacr(CPUARMState *env, const ARMCPRegInfo *ri,
347 bool isread)
349 if (arm_current_el(env) == 1 && (arm_hcr_el2_eff(env) & HCR_TACR)) {
350 return CP_ACCESS_TRAP_EL2;
352 return CP_ACCESS_OK;
355 /* Check for traps from EL1 due to HCR_EL2.TTLB. */
356 static CPAccessResult access_ttlb(CPUARMState *env, const ARMCPRegInfo *ri,
357 bool isread)
359 if (arm_current_el(env) == 1 && (arm_hcr_el2_eff(env) & HCR_TTLB)) {
360 return CP_ACCESS_TRAP_EL2;
362 return CP_ACCESS_OK;
365 /* Check for traps from EL1 due to HCR_EL2.TTLB or TTLBIS. */
366 static CPAccessResult access_ttlbis(CPUARMState *env, const ARMCPRegInfo *ri,
367 bool isread)
369 if (arm_current_el(env) == 1 &&
370 (arm_hcr_el2_eff(env) & (HCR_TTLB | HCR_TTLBIS))) {
371 return CP_ACCESS_TRAP_EL2;
373 return CP_ACCESS_OK;
376 #ifdef TARGET_AARCH64
377 /* Check for traps from EL1 due to HCR_EL2.TTLB or TTLBOS. */
378 static CPAccessResult access_ttlbos(CPUARMState *env, const ARMCPRegInfo *ri,
379 bool isread)
381 if (arm_current_el(env) == 1 &&
382 (arm_hcr_el2_eff(env) & (HCR_TTLB | HCR_TTLBOS))) {
383 return CP_ACCESS_TRAP_EL2;
385 return CP_ACCESS_OK;
387 #endif
389 static void dacr_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value)
391 ARMCPU *cpu = env_archcpu(env);
393 raw_write(env, ri, value);
394 tlb_flush(CPU(cpu)); /* Flush TLB as domain not tracked in TLB */
397 static void fcse_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value)
399 ARMCPU *cpu = env_archcpu(env);
401 if (raw_read(env, ri) != value) {
403 * Unlike real hardware the qemu TLB uses virtual addresses,
404 * not modified virtual addresses, so this causes a TLB flush.
406 tlb_flush(CPU(cpu));
407 raw_write(env, ri, value);
411 static void contextidr_write(CPUARMState *env, const ARMCPRegInfo *ri,
412 uint64_t value)
414 ARMCPU *cpu = env_archcpu(env);
416 if (raw_read(env, ri) != value && !arm_feature(env, ARM_FEATURE_PMSA)
417 && !extended_addresses_enabled(env)) {
419 * For VMSA (when not using the LPAE long descriptor page table
420 * format) this register includes the ASID, so do a TLB flush.
421 * For PMSA it is purely a process ID and no action is needed.
423 tlb_flush(CPU(cpu));
425 raw_write(env, ri, value);
428 static int alle1_tlbmask(CPUARMState *env)
431 * Note that the 'ALL' scope must invalidate both stage 1 and
432 * stage 2 translations, whereas most other scopes only invalidate
433 * stage 1 translations.
435 return (ARMMMUIdxBit_E10_1 |
436 ARMMMUIdxBit_E10_1_PAN |
437 ARMMMUIdxBit_E10_0 |
438 ARMMMUIdxBit_Stage2 |
439 ARMMMUIdxBit_Stage2_S);
443 /* IS variants of TLB operations must affect all cores */
444 static void tlbiall_is_write(CPUARMState *env, const ARMCPRegInfo *ri,
445 uint64_t value)
447 CPUState *cs = env_cpu(env);
449 tlb_flush_all_cpus_synced(cs);
452 static void tlbiasid_is_write(CPUARMState *env, const ARMCPRegInfo *ri,
453 uint64_t value)
455 CPUState *cs = env_cpu(env);
457 tlb_flush_all_cpus_synced(cs);
460 static void tlbimva_is_write(CPUARMState *env, const ARMCPRegInfo *ri,
461 uint64_t value)
463 CPUState *cs = env_cpu(env);
465 tlb_flush_page_all_cpus_synced(cs, value & TARGET_PAGE_MASK);
468 static void tlbimvaa_is_write(CPUARMState *env, const ARMCPRegInfo *ri,
469 uint64_t value)
471 CPUState *cs = env_cpu(env);
473 tlb_flush_page_all_cpus_synced(cs, value & TARGET_PAGE_MASK);
477 * Non-IS variants of TLB operations are upgraded to
478 * IS versions if we are at EL1 and HCR_EL2.FB is effectively set to
479 * force broadcast of these operations.
481 static bool tlb_force_broadcast(CPUARMState *env)
483 return arm_current_el(env) == 1 && (arm_hcr_el2_eff(env) & HCR_FB);
486 static void tlbiall_write(CPUARMState *env, const ARMCPRegInfo *ri,
487 uint64_t value)
489 /* Invalidate all (TLBIALL) */
490 CPUState *cs = env_cpu(env);
492 if (tlb_force_broadcast(env)) {
493 tlb_flush_all_cpus_synced(cs);
494 } else {
495 tlb_flush(cs);
499 static void tlbimva_write(CPUARMState *env, const ARMCPRegInfo *ri,
500 uint64_t value)
502 /* Invalidate single TLB entry by MVA and ASID (TLBIMVA) */
503 CPUState *cs = env_cpu(env);
505 value &= TARGET_PAGE_MASK;
506 if (tlb_force_broadcast(env)) {
507 tlb_flush_page_all_cpus_synced(cs, value);
508 } else {
509 tlb_flush_page(cs, value);
513 static void tlbiasid_write(CPUARMState *env, const ARMCPRegInfo *ri,
514 uint64_t value)
516 /* Invalidate by ASID (TLBIASID) */
517 CPUState *cs = env_cpu(env);
519 if (tlb_force_broadcast(env)) {
520 tlb_flush_all_cpus_synced(cs);
521 } else {
522 tlb_flush(cs);
526 static void tlbimvaa_write(CPUARMState *env, const ARMCPRegInfo *ri,
527 uint64_t value)
529 /* Invalidate single entry by MVA, all ASIDs (TLBIMVAA) */
530 CPUState *cs = env_cpu(env);
532 value &= TARGET_PAGE_MASK;
533 if (tlb_force_broadcast(env)) {
534 tlb_flush_page_all_cpus_synced(cs, value);
535 } else {
536 tlb_flush_page(cs, value);
540 static void tlbiall_nsnh_write(CPUARMState *env, const ARMCPRegInfo *ri,
541 uint64_t value)
543 CPUState *cs = env_cpu(env);
545 tlb_flush_by_mmuidx(cs, alle1_tlbmask(env));
548 static void tlbiall_nsnh_is_write(CPUARMState *env, const ARMCPRegInfo *ri,
549 uint64_t value)
551 CPUState *cs = env_cpu(env);
553 tlb_flush_by_mmuidx_all_cpus_synced(cs, alle1_tlbmask(env));
557 static void tlbiall_hyp_write(CPUARMState *env, const ARMCPRegInfo *ri,
558 uint64_t value)
560 CPUState *cs = env_cpu(env);
562 tlb_flush_by_mmuidx(cs, ARMMMUIdxBit_E2);
565 static void tlbiall_hyp_is_write(CPUARMState *env, const ARMCPRegInfo *ri,
566 uint64_t value)
568 CPUState *cs = env_cpu(env);
570 tlb_flush_by_mmuidx_all_cpus_synced(cs, ARMMMUIdxBit_E2);
573 static void tlbimva_hyp_write(CPUARMState *env, const ARMCPRegInfo *ri,
574 uint64_t value)
576 CPUState *cs = env_cpu(env);
577 uint64_t pageaddr = value & ~MAKE_64BIT_MASK(0, 12);
579 tlb_flush_page_by_mmuidx(cs, pageaddr, ARMMMUIdxBit_E2);
582 static void tlbimva_hyp_is_write(CPUARMState *env, const ARMCPRegInfo *ri,
583 uint64_t value)
585 CPUState *cs = env_cpu(env);
586 uint64_t pageaddr = value & ~MAKE_64BIT_MASK(0, 12);
588 tlb_flush_page_by_mmuidx_all_cpus_synced(cs, pageaddr,
589 ARMMMUIdxBit_E2);
592 static void tlbiipas2_hyp_write(CPUARMState *env, const ARMCPRegInfo *ri,
593 uint64_t value)
595 CPUState *cs = env_cpu(env);
596 uint64_t pageaddr = (value & MAKE_64BIT_MASK(0, 28)) << 12;
598 tlb_flush_page_by_mmuidx(cs, pageaddr, ARMMMUIdxBit_Stage2);
601 static void tlbiipas2is_hyp_write(CPUARMState *env, const ARMCPRegInfo *ri,
602 uint64_t value)
604 CPUState *cs = env_cpu(env);
605 uint64_t pageaddr = (value & MAKE_64BIT_MASK(0, 28)) << 12;
607 tlb_flush_page_by_mmuidx_all_cpus_synced(cs, pageaddr, ARMMMUIdxBit_Stage2);
610 static const ARMCPRegInfo cp_reginfo[] = {
612 * Define the secure and non-secure FCSE identifier CP registers
613 * separately because there is no secure bank in V8 (no _EL3). This allows
614 * the secure register to be properly reset and migrated. There is also no
615 * v8 EL1 version of the register so the non-secure instance stands alone.
617 { .name = "FCSEIDR",
618 .cp = 15, .opc1 = 0, .crn = 13, .crm = 0, .opc2 = 0,
619 .access = PL1_RW, .secure = ARM_CP_SECSTATE_NS,
620 .fieldoffset = offsetof(CPUARMState, cp15.fcseidr_ns),
621 .resetvalue = 0, .writefn = fcse_write, .raw_writefn = raw_write, },
622 { .name = "FCSEIDR_S",
623 .cp = 15, .opc1 = 0, .crn = 13, .crm = 0, .opc2 = 0,
624 .access = PL1_RW, .secure = ARM_CP_SECSTATE_S,
625 .fieldoffset = offsetof(CPUARMState, cp15.fcseidr_s),
626 .resetvalue = 0, .writefn = fcse_write, .raw_writefn = raw_write, },
628 * Define the secure and non-secure context identifier CP registers
629 * separately because there is no secure bank in V8 (no _EL3). This allows
630 * the secure register to be properly reset and migrated. In the
631 * non-secure case, the 32-bit register will have reset and migration
632 * disabled during registration as it is handled by the 64-bit instance.
634 { .name = "CONTEXTIDR_EL1", .state = ARM_CP_STATE_BOTH,
635 .opc0 = 3, .opc1 = 0, .crn = 13, .crm = 0, .opc2 = 1,
636 .access = PL1_RW, .accessfn = access_tvm_trvm,
637 .fgt = FGT_CONTEXTIDR_EL1,
638 .secure = ARM_CP_SECSTATE_NS,
639 .fieldoffset = offsetof(CPUARMState, cp15.contextidr_el[1]),
640 .resetvalue = 0, .writefn = contextidr_write, .raw_writefn = raw_write, },
641 { .name = "CONTEXTIDR_S", .state = ARM_CP_STATE_AA32,
642 .cp = 15, .opc1 = 0, .crn = 13, .crm = 0, .opc2 = 1,
643 .access = PL1_RW, .accessfn = access_tvm_trvm,
644 .secure = ARM_CP_SECSTATE_S,
645 .fieldoffset = offsetof(CPUARMState, cp15.contextidr_s),
646 .resetvalue = 0, .writefn = contextidr_write, .raw_writefn = raw_write, },
649 static const ARMCPRegInfo not_v8_cp_reginfo[] = {
651 * NB: Some of these registers exist in v8 but with more precise
652 * definitions that don't use CP_ANY wildcards (mostly in v8_cp_reginfo[]).
654 /* MMU Domain access control / MPU write buffer control */
655 { .name = "DACR",
656 .cp = 15, .opc1 = CP_ANY, .crn = 3, .crm = CP_ANY, .opc2 = CP_ANY,
657 .access = PL1_RW, .accessfn = access_tvm_trvm, .resetvalue = 0,
658 .writefn = dacr_write, .raw_writefn = raw_write,
659 .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.dacr_s),
660 offsetoflow32(CPUARMState, cp15.dacr_ns) } },
662 * ARMv7 allocates a range of implementation defined TLB LOCKDOWN regs.
663 * For v6 and v5, these mappings are overly broad.
665 { .name = "TLB_LOCKDOWN", .cp = 15, .crn = 10, .crm = 0,
666 .opc1 = CP_ANY, .opc2 = CP_ANY, .access = PL1_RW, .type = ARM_CP_NOP },
667 { .name = "TLB_LOCKDOWN", .cp = 15, .crn = 10, .crm = 1,
668 .opc1 = CP_ANY, .opc2 = CP_ANY, .access = PL1_RW, .type = ARM_CP_NOP },
669 { .name = "TLB_LOCKDOWN", .cp = 15, .crn = 10, .crm = 4,
670 .opc1 = CP_ANY, .opc2 = CP_ANY, .access = PL1_RW, .type = ARM_CP_NOP },
671 { .name = "TLB_LOCKDOWN", .cp = 15, .crn = 10, .crm = 8,
672 .opc1 = CP_ANY, .opc2 = CP_ANY, .access = PL1_RW, .type = ARM_CP_NOP },
673 /* Cache maintenance ops; some of this space may be overridden later. */
674 { .name = "CACHEMAINT", .cp = 15, .crn = 7, .crm = CP_ANY,
675 .opc1 = 0, .opc2 = CP_ANY, .access = PL1_W,
676 .type = ARM_CP_NOP | ARM_CP_OVERRIDE },
679 static const ARMCPRegInfo not_v6_cp_reginfo[] = {
681 * Not all pre-v6 cores implemented this WFI, so this is slightly
682 * over-broad.
684 { .name = "WFI_v5", .cp = 15, .crn = 7, .crm = 8, .opc1 = 0, .opc2 = 2,
685 .access = PL1_W, .type = ARM_CP_WFI },
688 static const ARMCPRegInfo not_v7_cp_reginfo[] = {
690 * Standard v6 WFI (also used in some pre-v6 cores); not in v7 (which
691 * is UNPREDICTABLE; we choose to NOP as most implementations do).
693 { .name = "WFI_v6", .cp = 15, .crn = 7, .crm = 0, .opc1 = 0, .opc2 = 4,
694 .access = PL1_W, .type = ARM_CP_WFI },
696 * L1 cache lockdown. Not architectural in v6 and earlier but in practice
697 * implemented in 926, 946, 1026, 1136, 1176 and 11MPCore. StrongARM and
698 * OMAPCP will override this space.
700 { .name = "DLOCKDOWN", .cp = 15, .crn = 9, .crm = 0, .opc1 = 0, .opc2 = 0,
701 .access = PL1_RW, .fieldoffset = offsetof(CPUARMState, cp15.c9_data),
702 .resetvalue = 0 },
703 { .name = "ILOCKDOWN", .cp = 15, .crn = 9, .crm = 0, .opc1 = 0, .opc2 = 1,
704 .access = PL1_RW, .fieldoffset = offsetof(CPUARMState, cp15.c9_insn),
705 .resetvalue = 0 },
706 /* v6 doesn't have the cache ID registers but Linux reads them anyway */
707 { .name = "DUMMY", .cp = 15, .crn = 0, .crm = 0, .opc1 = 1, .opc2 = CP_ANY,
708 .access = PL1_R, .type = ARM_CP_CONST | ARM_CP_NO_RAW,
709 .resetvalue = 0 },
711 * We don't implement pre-v7 debug but most CPUs had at least a DBGDIDR;
712 * implementing it as RAZ means the "debug architecture version" bits
713 * will read as a reserved value, which should cause Linux to not try
714 * to use the debug hardware.
716 { .name = "DBGDIDR", .cp = 14, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 0,
717 .access = PL0_R, .type = ARM_CP_CONST, .resetvalue = 0 },
719 * MMU TLB control. Note that the wildcarding means we cover not just
720 * the unified TLB ops but also the dside/iside/inner-shareable variants.
722 { .name = "TLBIALL", .cp = 15, .crn = 8, .crm = CP_ANY,
723 .opc1 = CP_ANY, .opc2 = 0, .access = PL1_W, .writefn = tlbiall_write,
724 .type = ARM_CP_NO_RAW },
725 { .name = "TLBIMVA", .cp = 15, .crn = 8, .crm = CP_ANY,
726 .opc1 = CP_ANY, .opc2 = 1, .access = PL1_W, .writefn = tlbimva_write,
727 .type = ARM_CP_NO_RAW },
728 { .name = "TLBIASID", .cp = 15, .crn = 8, .crm = CP_ANY,
729 .opc1 = CP_ANY, .opc2 = 2, .access = PL1_W, .writefn = tlbiasid_write,
730 .type = ARM_CP_NO_RAW },
731 { .name = "TLBIMVAA", .cp = 15, .crn = 8, .crm = CP_ANY,
732 .opc1 = CP_ANY, .opc2 = 3, .access = PL1_W, .writefn = tlbimvaa_write,
733 .type = ARM_CP_NO_RAW },
734 { .name = "PRRR", .cp = 15, .crn = 10, .crm = 2,
735 .opc1 = 0, .opc2 = 0, .access = PL1_RW, .type = ARM_CP_NOP },
736 { .name = "NMRR", .cp = 15, .crn = 10, .crm = 2,
737 .opc1 = 0, .opc2 = 1, .access = PL1_RW, .type = ARM_CP_NOP },
740 static void cpacr_write(CPUARMState *env, const ARMCPRegInfo *ri,
741 uint64_t value)
743 uint32_t mask = 0;
745 /* In ARMv8 most bits of CPACR_EL1 are RES0. */
746 if (!arm_feature(env, ARM_FEATURE_V8)) {
748 * ARMv7 defines bits for unimplemented coprocessors as RAZ/WI.
749 * ASEDIS [31] and D32DIS [30] are both UNK/SBZP without VFP.
750 * TRCDIS [28] is RAZ/WI since we do not implement a trace macrocell.
752 if (cpu_isar_feature(aa32_vfp_simd, env_archcpu(env))) {
753 /* VFP coprocessor: cp10 & cp11 [23:20] */
754 mask |= R_CPACR_ASEDIS_MASK |
755 R_CPACR_D32DIS_MASK |
756 R_CPACR_CP11_MASK |
757 R_CPACR_CP10_MASK;
759 if (!arm_feature(env, ARM_FEATURE_NEON)) {
760 /* ASEDIS [31] bit is RAO/WI */
761 value |= R_CPACR_ASEDIS_MASK;
765 * VFPv3 and upwards with NEON implement 32 double precision
766 * registers (D0-D31).
768 if (!cpu_isar_feature(aa32_simd_r32, env_archcpu(env))) {
769 /* D32DIS [30] is RAO/WI if D16-31 are not implemented. */
770 value |= R_CPACR_D32DIS_MASK;
773 value &= mask;
777 * For A-profile AArch32 EL3 (but not M-profile secure mode), if NSACR.CP10
778 * is 0 then CPACR.{CP11,CP10} ignore writes and read as 0b00.
780 if (arm_feature(env, ARM_FEATURE_EL3) && !arm_el_is_aa64(env, 3) &&
781 !arm_is_secure(env) && !extract32(env->cp15.nsacr, 10, 1)) {
782 mask = R_CPACR_CP11_MASK | R_CPACR_CP10_MASK;
783 value = (value & ~mask) | (env->cp15.cpacr_el1 & mask);
786 env->cp15.cpacr_el1 = value;
789 static uint64_t cpacr_read(CPUARMState *env, const ARMCPRegInfo *ri)
792 * For A-profile AArch32 EL3 (but not M-profile secure mode), if NSACR.CP10
793 * is 0 then CPACR.{CP11,CP10} ignore writes and read as 0b00.
795 uint64_t value = env->cp15.cpacr_el1;
797 if (arm_feature(env, ARM_FEATURE_EL3) && !arm_el_is_aa64(env, 3) &&
798 !arm_is_secure(env) && !extract32(env->cp15.nsacr, 10, 1)) {
799 value = ~(R_CPACR_CP11_MASK | R_CPACR_CP10_MASK);
801 return value;
805 static void cpacr_reset(CPUARMState *env, const ARMCPRegInfo *ri)
808 * Call cpacr_write() so that we reset with the correct RAO bits set
809 * for our CPU features.
811 cpacr_write(env, ri, 0);
814 static CPAccessResult cpacr_access(CPUARMState *env, const ARMCPRegInfo *ri,
815 bool isread)
817 if (arm_feature(env, ARM_FEATURE_V8)) {
818 /* Check if CPACR accesses are to be trapped to EL2 */
819 if (arm_current_el(env) == 1 && arm_is_el2_enabled(env) &&
820 FIELD_EX64(env->cp15.cptr_el[2], CPTR_EL2, TCPAC)) {
821 return CP_ACCESS_TRAP_EL2;
822 /* Check if CPACR accesses are to be trapped to EL3 */
823 } else if (arm_current_el(env) < 3 &&
824 FIELD_EX64(env->cp15.cptr_el[3], CPTR_EL3, TCPAC)) {
825 return CP_ACCESS_TRAP_EL3;
829 return CP_ACCESS_OK;
832 static CPAccessResult cptr_access(CPUARMState *env, const ARMCPRegInfo *ri,
833 bool isread)
835 /* Check if CPTR accesses are set to trap to EL3 */
836 if (arm_current_el(env) == 2 &&
837 FIELD_EX64(env->cp15.cptr_el[3], CPTR_EL3, TCPAC)) {
838 return CP_ACCESS_TRAP_EL3;
841 return CP_ACCESS_OK;
844 static const ARMCPRegInfo v6_cp_reginfo[] = {
845 /* prefetch by MVA in v6, NOP in v7 */
846 { .name = "MVA_prefetch",
847 .cp = 15, .crn = 7, .crm = 13, .opc1 = 0, .opc2 = 1,
848 .access = PL1_W, .type = ARM_CP_NOP },
850 * We need to break the TB after ISB to execute self-modifying code
851 * correctly and also to take any pending interrupts immediately.
852 * So use arm_cp_write_ignore() function instead of ARM_CP_NOP flag.
854 { .name = "ISB", .cp = 15, .crn = 7, .crm = 5, .opc1 = 0, .opc2 = 4,
855 .access = PL0_W, .type = ARM_CP_NO_RAW, .writefn = arm_cp_write_ignore },
856 { .name = "DSB", .cp = 15, .crn = 7, .crm = 10, .opc1 = 0, .opc2 = 4,
857 .access = PL0_W, .type = ARM_CP_NOP },
858 { .name = "DMB", .cp = 15, .crn = 7, .crm = 10, .opc1 = 0, .opc2 = 5,
859 .access = PL0_W, .type = ARM_CP_NOP },
860 { .name = "IFAR", .cp = 15, .crn = 6, .crm = 0, .opc1 = 0, .opc2 = 2,
861 .access = PL1_RW, .accessfn = access_tvm_trvm,
862 .bank_fieldoffsets = { offsetof(CPUARMState, cp15.ifar_s),
863 offsetof(CPUARMState, cp15.ifar_ns) },
864 .resetvalue = 0, },
866 * Watchpoint Fault Address Register : should actually only be present
867 * for 1136, 1176, 11MPCore.
869 { .name = "WFAR", .cp = 15, .crn = 6, .crm = 0, .opc1 = 0, .opc2 = 1,
870 .access = PL1_RW, .type = ARM_CP_CONST, .resetvalue = 0, },
871 { .name = "CPACR", .state = ARM_CP_STATE_BOTH, .opc0 = 3,
872 .crn = 1, .crm = 0, .opc1 = 0, .opc2 = 2, .accessfn = cpacr_access,
873 .fgt = FGT_CPACR_EL1,
874 .access = PL1_RW, .fieldoffset = offsetof(CPUARMState, cp15.cpacr_el1),
875 .resetfn = cpacr_reset, .writefn = cpacr_write, .readfn = cpacr_read },
878 typedef struct pm_event {
879 uint16_t number; /* PMEVTYPER.evtCount is 16 bits wide */
880 /* If the event is supported on this CPU (used to generate PMCEID[01]) */
881 bool (*supported)(CPUARMState *);
883 * Retrieve the current count of the underlying event. The programmed
884 * counters hold a difference from the return value from this function
886 uint64_t (*get_count)(CPUARMState *);
888 * Return how many nanoseconds it will take (at a minimum) for count events
889 * to occur. A negative value indicates the counter will never overflow, or
890 * that the counter has otherwise arranged for the overflow bit to be set
891 * and the PMU interrupt to be raised on overflow.
893 int64_t (*ns_per_count)(uint64_t);
894 } pm_event;
896 static bool event_always_supported(CPUARMState *env)
898 return true;
901 static uint64_t swinc_get_count(CPUARMState *env)
904 * SW_INCR events are written directly to the pmevcntr's by writes to
905 * PMSWINC, so there is no underlying count maintained by the PMU itself
907 return 0;
910 static int64_t swinc_ns_per(uint64_t ignored)
912 return -1;
916 * Return the underlying cycle count for the PMU cycle counters. If we're in
917 * usermode, simply return 0.
919 static uint64_t cycles_get_count(CPUARMState *env)
921 #ifndef CONFIG_USER_ONLY
922 return muldiv64(qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL),
923 ARM_CPU_FREQ, NANOSECONDS_PER_SECOND);
924 #else
925 return cpu_get_host_ticks();
926 #endif
929 #ifndef CONFIG_USER_ONLY
930 static int64_t cycles_ns_per(uint64_t cycles)
932 return (ARM_CPU_FREQ / NANOSECONDS_PER_SECOND) * cycles;
935 static bool instructions_supported(CPUARMState *env)
937 return icount_enabled() == 1; /* Precise instruction counting */
940 static uint64_t instructions_get_count(CPUARMState *env)
942 return (uint64_t)icount_get_raw();
945 static int64_t instructions_ns_per(uint64_t icount)
947 return icount_to_ns((int64_t)icount);
949 #endif
951 static bool pmuv3p1_events_supported(CPUARMState *env)
953 /* For events which are supported in any v8.1 PMU */
954 return cpu_isar_feature(any_pmuv3p1, env_archcpu(env));
957 static bool pmuv3p4_events_supported(CPUARMState *env)
959 /* For events which are supported in any v8.1 PMU */
960 return cpu_isar_feature(any_pmuv3p4, env_archcpu(env));
963 static uint64_t zero_event_get_count(CPUARMState *env)
965 /* For events which on QEMU never fire, so their count is always zero */
966 return 0;
969 static int64_t zero_event_ns_per(uint64_t cycles)
971 /* An event which never fires can never overflow */
972 return -1;
975 static const pm_event pm_events[] = {
976 { .number = 0x000, /* SW_INCR */
977 .supported = event_always_supported,
978 .get_count = swinc_get_count,
979 .ns_per_count = swinc_ns_per,
981 #ifndef CONFIG_USER_ONLY
982 { .number = 0x008, /* INST_RETIRED, Instruction architecturally executed */
983 .supported = instructions_supported,
984 .get_count = instructions_get_count,
985 .ns_per_count = instructions_ns_per,
987 { .number = 0x011, /* CPU_CYCLES, Cycle */
988 .supported = event_always_supported,
989 .get_count = cycles_get_count,
990 .ns_per_count = cycles_ns_per,
992 #endif
993 { .number = 0x023, /* STALL_FRONTEND */
994 .supported = pmuv3p1_events_supported,
995 .get_count = zero_event_get_count,
996 .ns_per_count = zero_event_ns_per,
998 { .number = 0x024, /* STALL_BACKEND */
999 .supported = pmuv3p1_events_supported,
1000 .get_count = zero_event_get_count,
1001 .ns_per_count = zero_event_ns_per,
1003 { .number = 0x03c, /* STALL */
1004 .supported = pmuv3p4_events_supported,
1005 .get_count = zero_event_get_count,
1006 .ns_per_count = zero_event_ns_per,
1011 * Note: Before increasing MAX_EVENT_ID beyond 0x3f into the 0x40xx range of
1012 * events (i.e. the statistical profiling extension), this implementation
1013 * should first be updated to something sparse instead of the current
1014 * supported_event_map[] array.
1016 #define MAX_EVENT_ID 0x3c
1017 #define UNSUPPORTED_EVENT UINT16_MAX
1018 static uint16_t supported_event_map[MAX_EVENT_ID + 1];
1021 * Called upon CPU initialization to initialize PMCEID[01]_EL0 and build a map
1022 * of ARM event numbers to indices in our pm_events array.
1024 * Note: Events in the 0x40XX range are not currently supported.
1026 void pmu_init(ARMCPU *cpu)
1028 unsigned int i;
1031 * Empty supported_event_map and cpu->pmceid[01] before adding supported
1032 * events to them
1034 for (i = 0; i < ARRAY_SIZE(supported_event_map); i++) {
1035 supported_event_map[i] = UNSUPPORTED_EVENT;
1037 cpu->pmceid0 = 0;
1038 cpu->pmceid1 = 0;
1040 for (i = 0; i < ARRAY_SIZE(pm_events); i++) {
1041 const pm_event *cnt = &pm_events[i];
1042 assert(cnt->number <= MAX_EVENT_ID);
1043 /* We do not currently support events in the 0x40xx range */
1044 assert(cnt->number <= 0x3f);
1046 if (cnt->supported(&cpu->env)) {
1047 supported_event_map[cnt->number] = i;
1048 uint64_t event_mask = 1ULL << (cnt->number & 0x1f);
1049 if (cnt->number & 0x20) {
1050 cpu->pmceid1 |= event_mask;
1051 } else {
1052 cpu->pmceid0 |= event_mask;
1059 * Check at runtime whether a PMU event is supported for the current machine
1061 static bool event_supported(uint16_t number)
1063 if (number > MAX_EVENT_ID) {
1064 return false;
1066 return supported_event_map[number] != UNSUPPORTED_EVENT;
1069 static CPAccessResult pmreg_access(CPUARMState *env, const ARMCPRegInfo *ri,
1070 bool isread)
1073 * Performance monitor registers user accessibility is controlled
1074 * by PMUSERENR. MDCR_EL2.TPM and MDCR_EL3.TPM allow configurable
1075 * trapping to EL2 or EL3 for other accesses.
1077 int el = arm_current_el(env);
1078 uint64_t mdcr_el2 = arm_mdcr_el2_eff(env);
1080 if (el == 0 && !(env->cp15.c9_pmuserenr & 1)) {
1081 return CP_ACCESS_TRAP;
1083 if (el < 2 && (mdcr_el2 & MDCR_TPM)) {
1084 return CP_ACCESS_TRAP_EL2;
1086 if (el < 3 && (env->cp15.mdcr_el3 & MDCR_TPM)) {
1087 return CP_ACCESS_TRAP_EL3;
1090 return CP_ACCESS_OK;
1093 static CPAccessResult pmreg_access_xevcntr(CPUARMState *env,
1094 const ARMCPRegInfo *ri,
1095 bool isread)
1097 /* ER: event counter read trap control */
1098 if (arm_feature(env, ARM_FEATURE_V8)
1099 && arm_current_el(env) == 0
1100 && (env->cp15.c9_pmuserenr & (1 << 3)) != 0
1101 && isread) {
1102 return CP_ACCESS_OK;
1105 return pmreg_access(env, ri, isread);
1108 static CPAccessResult pmreg_access_swinc(CPUARMState *env,
1109 const ARMCPRegInfo *ri,
1110 bool isread)
1112 /* SW: software increment write trap control */
1113 if (arm_feature(env, ARM_FEATURE_V8)
1114 && arm_current_el(env) == 0
1115 && (env->cp15.c9_pmuserenr & (1 << 1)) != 0
1116 && !isread) {
1117 return CP_ACCESS_OK;
1120 return pmreg_access(env, ri, isread);
1123 static CPAccessResult pmreg_access_selr(CPUARMState *env,
1124 const ARMCPRegInfo *ri,
1125 bool isread)
1127 /* ER: event counter read trap control */
1128 if (arm_feature(env, ARM_FEATURE_V8)
1129 && arm_current_el(env) == 0
1130 && (env->cp15.c9_pmuserenr & (1 << 3)) != 0) {
1131 return CP_ACCESS_OK;
1134 return pmreg_access(env, ri, isread);
1137 static CPAccessResult pmreg_access_ccntr(CPUARMState *env,
1138 const ARMCPRegInfo *ri,
1139 bool isread)
1141 /* CR: cycle counter read trap control */
1142 if (arm_feature(env, ARM_FEATURE_V8)
1143 && arm_current_el(env) == 0
1144 && (env->cp15.c9_pmuserenr & (1 << 2)) != 0
1145 && isread) {
1146 return CP_ACCESS_OK;
1149 return pmreg_access(env, ri, isread);
1153 * Bits in MDCR_EL2 and MDCR_EL3 which pmu_counter_enabled() looks at.
1154 * We use these to decide whether we need to wrap a write to MDCR_EL2
1155 * or MDCR_EL3 in pmu_op_start()/pmu_op_finish() calls.
1157 #define MDCR_EL2_PMU_ENABLE_BITS \
1158 (MDCR_HPME | MDCR_HPMD | MDCR_HPMN | MDCR_HCCD | MDCR_HLP)
1159 #define MDCR_EL3_PMU_ENABLE_BITS (MDCR_SPME | MDCR_SCCD)
1162 * Returns true if the counter (pass 31 for PMCCNTR) should count events using
1163 * the current EL, security state, and register configuration.
1165 static bool pmu_counter_enabled(CPUARMState *env, uint8_t counter)
1167 uint64_t filter;
1168 bool e, p, u, nsk, nsu, nsh, m;
1169 bool enabled, prohibited = false, filtered;
1170 bool secure = arm_is_secure(env);
1171 int el = arm_current_el(env);
1172 uint64_t mdcr_el2 = arm_mdcr_el2_eff(env);
1173 uint8_t hpmn = mdcr_el2 & MDCR_HPMN;
1175 if (!arm_feature(env, ARM_FEATURE_PMU)) {
1176 return false;
1179 if (!arm_feature(env, ARM_FEATURE_EL2) ||
1180 (counter < hpmn || counter == 31)) {
1181 e = env->cp15.c9_pmcr & PMCRE;
1182 } else {
1183 e = mdcr_el2 & MDCR_HPME;
1185 enabled = e && (env->cp15.c9_pmcnten & (1 << counter));
1187 /* Is event counting prohibited? */
1188 if (el == 2 && (counter < hpmn || counter == 31)) {
1189 prohibited = mdcr_el2 & MDCR_HPMD;
1191 if (secure) {
1192 prohibited = prohibited || !(env->cp15.mdcr_el3 & MDCR_SPME);
1195 if (counter == 31) {
1197 * The cycle counter defaults to running. PMCR.DP says "disable
1198 * the cycle counter when event counting is prohibited".
1199 * Some MDCR bits disable the cycle counter specifically.
1201 prohibited = prohibited && env->cp15.c9_pmcr & PMCRDP;
1202 if (cpu_isar_feature(any_pmuv3p5, env_archcpu(env))) {
1203 if (secure) {
1204 prohibited = prohibited || (env->cp15.mdcr_el3 & MDCR_SCCD);
1206 if (el == 2) {
1207 prohibited = prohibited || (mdcr_el2 & MDCR_HCCD);
1212 if (counter == 31) {
1213 filter = env->cp15.pmccfiltr_el0;
1214 } else {
1215 filter = env->cp15.c14_pmevtyper[counter];
1218 p = filter & PMXEVTYPER_P;
1219 u = filter & PMXEVTYPER_U;
1220 nsk = arm_feature(env, ARM_FEATURE_EL3) && (filter & PMXEVTYPER_NSK);
1221 nsu = arm_feature(env, ARM_FEATURE_EL3) && (filter & PMXEVTYPER_NSU);
1222 nsh = arm_feature(env, ARM_FEATURE_EL2) && (filter & PMXEVTYPER_NSH);
1223 m = arm_el_is_aa64(env, 1) &&
1224 arm_feature(env, ARM_FEATURE_EL3) && (filter & PMXEVTYPER_M);
1226 if (el == 0) {
1227 filtered = secure ? u : u != nsu;
1228 } else if (el == 1) {
1229 filtered = secure ? p : p != nsk;
1230 } else if (el == 2) {
1231 filtered = !nsh;
1232 } else { /* EL3 */
1233 filtered = m != p;
1236 if (counter != 31) {
1238 * If not checking PMCCNTR, ensure the counter is setup to an event we
1239 * support
1241 uint16_t event = filter & PMXEVTYPER_EVTCOUNT;
1242 if (!event_supported(event)) {
1243 return false;
1247 return enabled && !prohibited && !filtered;
1250 static void pmu_update_irq(CPUARMState *env)
1252 ARMCPU *cpu = env_archcpu(env);
1253 qemu_set_irq(cpu->pmu_interrupt, (env->cp15.c9_pmcr & PMCRE) &&
1254 (env->cp15.c9_pminten & env->cp15.c9_pmovsr));
1257 static bool pmccntr_clockdiv_enabled(CPUARMState *env)
1260 * Return true if the clock divider is enabled and the cycle counter
1261 * is supposed to tick only once every 64 clock cycles. This is
1262 * controlled by PMCR.D, but if PMCR.LC is set to enable the long
1263 * (64-bit) cycle counter PMCR.D has no effect.
1265 return (env->cp15.c9_pmcr & (PMCRD | PMCRLC)) == PMCRD;
1268 static bool pmevcntr_is_64_bit(CPUARMState *env, int counter)
1270 /* Return true if the specified event counter is configured to be 64 bit */
1272 /* This isn't intended to be used with the cycle counter */
1273 assert(counter < 31);
1275 if (!cpu_isar_feature(any_pmuv3p5, env_archcpu(env))) {
1276 return false;
1279 if (arm_feature(env, ARM_FEATURE_EL2)) {
1281 * MDCR_EL2.HLP still applies even when EL2 is disabled in the
1282 * current security state, so we don't use arm_mdcr_el2_eff() here.
1284 bool hlp = env->cp15.mdcr_el2 & MDCR_HLP;
1285 int hpmn = env->cp15.mdcr_el2 & MDCR_HPMN;
1287 if (counter >= hpmn) {
1288 return hlp;
1291 return env->cp15.c9_pmcr & PMCRLP;
1295 * Ensure c15_ccnt is the guest-visible count so that operations such as
1296 * enabling/disabling the counter or filtering, modifying the count itself,
1297 * etc. can be done logically. This is essentially a no-op if the counter is
1298 * not enabled at the time of the call.
1300 static void pmccntr_op_start(CPUARMState *env)
1302 uint64_t cycles = cycles_get_count(env);
1304 if (pmu_counter_enabled(env, 31)) {
1305 uint64_t eff_cycles = cycles;
1306 if (pmccntr_clockdiv_enabled(env)) {
1307 eff_cycles /= 64;
1310 uint64_t new_pmccntr = eff_cycles - env->cp15.c15_ccnt_delta;
1312 uint64_t overflow_mask = env->cp15.c9_pmcr & PMCRLC ? \
1313 1ull << 63 : 1ull << 31;
1314 if (env->cp15.c15_ccnt & ~new_pmccntr & overflow_mask) {
1315 env->cp15.c9_pmovsr |= (1ULL << 31);
1316 pmu_update_irq(env);
1319 env->cp15.c15_ccnt = new_pmccntr;
1321 env->cp15.c15_ccnt_delta = cycles;
1325 * If PMCCNTR is enabled, recalculate the delta between the clock and the
1326 * guest-visible count. A call to pmccntr_op_finish should follow every call to
1327 * pmccntr_op_start.
1329 static void pmccntr_op_finish(CPUARMState *env)
1331 if (pmu_counter_enabled(env, 31)) {
1332 #ifndef CONFIG_USER_ONLY
1333 /* Calculate when the counter will next overflow */
1334 uint64_t remaining_cycles = -env->cp15.c15_ccnt;
1335 if (!(env->cp15.c9_pmcr & PMCRLC)) {
1336 remaining_cycles = (uint32_t)remaining_cycles;
1338 int64_t overflow_in = cycles_ns_per(remaining_cycles);
1340 if (overflow_in > 0) {
1341 int64_t overflow_at;
1343 if (!sadd64_overflow(qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL),
1344 overflow_in, &overflow_at)) {
1345 ARMCPU *cpu = env_archcpu(env);
1346 timer_mod_anticipate_ns(cpu->pmu_timer, overflow_at);
1349 #endif
1351 uint64_t prev_cycles = env->cp15.c15_ccnt_delta;
1352 if (pmccntr_clockdiv_enabled(env)) {
1353 prev_cycles /= 64;
1355 env->cp15.c15_ccnt_delta = prev_cycles - env->cp15.c15_ccnt;
1359 static void pmevcntr_op_start(CPUARMState *env, uint8_t counter)
1362 uint16_t event = env->cp15.c14_pmevtyper[counter] & PMXEVTYPER_EVTCOUNT;
1363 uint64_t count = 0;
1364 if (event_supported(event)) {
1365 uint16_t event_idx = supported_event_map[event];
1366 count = pm_events[event_idx].get_count(env);
1369 if (pmu_counter_enabled(env, counter)) {
1370 uint64_t new_pmevcntr = count - env->cp15.c14_pmevcntr_delta[counter];
1371 uint64_t overflow_mask = pmevcntr_is_64_bit(env, counter) ?
1372 1ULL << 63 : 1ULL << 31;
1374 if (env->cp15.c14_pmevcntr[counter] & ~new_pmevcntr & overflow_mask) {
1375 env->cp15.c9_pmovsr |= (1 << counter);
1376 pmu_update_irq(env);
1378 env->cp15.c14_pmevcntr[counter] = new_pmevcntr;
1380 env->cp15.c14_pmevcntr_delta[counter] = count;
1383 static void pmevcntr_op_finish(CPUARMState *env, uint8_t counter)
1385 if (pmu_counter_enabled(env, counter)) {
1386 #ifndef CONFIG_USER_ONLY
1387 uint16_t event = env->cp15.c14_pmevtyper[counter] & PMXEVTYPER_EVTCOUNT;
1388 uint16_t event_idx = supported_event_map[event];
1389 uint64_t delta = -(env->cp15.c14_pmevcntr[counter] + 1);
1390 int64_t overflow_in;
1392 if (!pmevcntr_is_64_bit(env, counter)) {
1393 delta = (uint32_t)delta;
1395 overflow_in = pm_events[event_idx].ns_per_count(delta);
1397 if (overflow_in > 0) {
1398 int64_t overflow_at;
1400 if (!sadd64_overflow(qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL),
1401 overflow_in, &overflow_at)) {
1402 ARMCPU *cpu = env_archcpu(env);
1403 timer_mod_anticipate_ns(cpu->pmu_timer, overflow_at);
1406 #endif
1408 env->cp15.c14_pmevcntr_delta[counter] -=
1409 env->cp15.c14_pmevcntr[counter];
1413 void pmu_op_start(CPUARMState *env)
1415 unsigned int i;
1416 pmccntr_op_start(env);
1417 for (i = 0; i < pmu_num_counters(env); i++) {
1418 pmevcntr_op_start(env, i);
1422 void pmu_op_finish(CPUARMState *env)
1424 unsigned int i;
1425 pmccntr_op_finish(env);
1426 for (i = 0; i < pmu_num_counters(env); i++) {
1427 pmevcntr_op_finish(env, i);
1431 void pmu_pre_el_change(ARMCPU *cpu, void *ignored)
1433 pmu_op_start(&cpu->env);
1436 void pmu_post_el_change(ARMCPU *cpu, void *ignored)
1438 pmu_op_finish(&cpu->env);
1441 void arm_pmu_timer_cb(void *opaque)
1443 ARMCPU *cpu = opaque;
1446 * Update all the counter values based on the current underlying counts,
1447 * triggering interrupts to be raised, if necessary. pmu_op_finish() also
1448 * has the effect of setting the cpu->pmu_timer to the next earliest time a
1449 * counter may expire.
1451 pmu_op_start(&cpu->env);
1452 pmu_op_finish(&cpu->env);
1455 static void pmcr_write(CPUARMState *env, const ARMCPRegInfo *ri,
1456 uint64_t value)
1458 pmu_op_start(env);
1460 if (value & PMCRC) {
1461 /* The counter has been reset */
1462 env->cp15.c15_ccnt = 0;
1465 if (value & PMCRP) {
1466 unsigned int i;
1467 for (i = 0; i < pmu_num_counters(env); i++) {
1468 env->cp15.c14_pmevcntr[i] = 0;
1472 env->cp15.c9_pmcr &= ~PMCR_WRITABLE_MASK;
1473 env->cp15.c9_pmcr |= (value & PMCR_WRITABLE_MASK);
1475 pmu_op_finish(env);
1478 static uint64_t pmcr_read(CPUARMState *env, const ARMCPRegInfo *ri)
1480 uint64_t pmcr = env->cp15.c9_pmcr;
1483 * If EL2 is implemented and enabled for the current security state, reads
1484 * of PMCR.N from EL1 or EL0 return the value of MDCR_EL2.HPMN or HDCR.HPMN.
1486 if (arm_current_el(env) <= 1 && arm_is_el2_enabled(env)) {
1487 pmcr &= ~PMCRN_MASK;
1488 pmcr |= (env->cp15.mdcr_el2 & MDCR_HPMN) << PMCRN_SHIFT;
1491 return pmcr;
1494 static void pmswinc_write(CPUARMState *env, const ARMCPRegInfo *ri,
1495 uint64_t value)
1497 unsigned int i;
1498 uint64_t overflow_mask, new_pmswinc;
1500 for (i = 0; i < pmu_num_counters(env); i++) {
1501 /* Increment a counter's count iff: */
1502 if ((value & (1 << i)) && /* counter's bit is set */
1503 /* counter is enabled and not filtered */
1504 pmu_counter_enabled(env, i) &&
1505 /* counter is SW_INCR */
1506 (env->cp15.c14_pmevtyper[i] & PMXEVTYPER_EVTCOUNT) == 0x0) {
1507 pmevcntr_op_start(env, i);
1510 * Detect if this write causes an overflow since we can't predict
1511 * PMSWINC overflows like we can for other events
1513 new_pmswinc = env->cp15.c14_pmevcntr[i] + 1;
1515 overflow_mask = pmevcntr_is_64_bit(env, i) ?
1516 1ULL << 63 : 1ULL << 31;
1518 if (env->cp15.c14_pmevcntr[i] & ~new_pmswinc & overflow_mask) {
1519 env->cp15.c9_pmovsr |= (1 << i);
1520 pmu_update_irq(env);
1523 env->cp15.c14_pmevcntr[i] = new_pmswinc;
1525 pmevcntr_op_finish(env, i);
1530 static uint64_t pmccntr_read(CPUARMState *env, const ARMCPRegInfo *ri)
1532 uint64_t ret;
1533 pmccntr_op_start(env);
1534 ret = env->cp15.c15_ccnt;
1535 pmccntr_op_finish(env);
1536 return ret;
1539 static void pmselr_write(CPUARMState *env, const ARMCPRegInfo *ri,
1540 uint64_t value)
1543 * The value of PMSELR.SEL affects the behavior of PMXEVTYPER and
1544 * PMXEVCNTR. We allow [0..31] to be written to PMSELR here; in the
1545 * meanwhile, we check PMSELR.SEL when PMXEVTYPER and PMXEVCNTR are
1546 * accessed.
1548 env->cp15.c9_pmselr = value & 0x1f;
1551 static void pmccntr_write(CPUARMState *env, const ARMCPRegInfo *ri,
1552 uint64_t value)
1554 pmccntr_op_start(env);
1555 env->cp15.c15_ccnt = value;
1556 pmccntr_op_finish(env);
1559 static void pmccntr_write32(CPUARMState *env, const ARMCPRegInfo *ri,
1560 uint64_t value)
1562 uint64_t cur_val = pmccntr_read(env, NULL);
1564 pmccntr_write(env, ri, deposit64(cur_val, 0, 32, value));
1567 static void pmccfiltr_write(CPUARMState *env, const ARMCPRegInfo *ri,
1568 uint64_t value)
1570 pmccntr_op_start(env);
1571 env->cp15.pmccfiltr_el0 = value & PMCCFILTR_EL0;
1572 pmccntr_op_finish(env);
1575 static void pmccfiltr_write_a32(CPUARMState *env, const ARMCPRegInfo *ri,
1576 uint64_t value)
1578 pmccntr_op_start(env);
1579 /* M is not accessible from AArch32 */
1580 env->cp15.pmccfiltr_el0 = (env->cp15.pmccfiltr_el0 & PMCCFILTR_M) |
1581 (value & PMCCFILTR);
1582 pmccntr_op_finish(env);
1585 static uint64_t pmccfiltr_read_a32(CPUARMState *env, const ARMCPRegInfo *ri)
1587 /* M is not visible in AArch32 */
1588 return env->cp15.pmccfiltr_el0 & PMCCFILTR;
1591 static void pmcntenset_write(CPUARMState *env, const ARMCPRegInfo *ri,
1592 uint64_t value)
1594 pmu_op_start(env);
1595 value &= pmu_counter_mask(env);
1596 env->cp15.c9_pmcnten |= value;
1597 pmu_op_finish(env);
1600 static void pmcntenclr_write(CPUARMState *env, const ARMCPRegInfo *ri,
1601 uint64_t value)
1603 pmu_op_start(env);
1604 value &= pmu_counter_mask(env);
1605 env->cp15.c9_pmcnten &= ~value;
1606 pmu_op_finish(env);
1609 static void pmovsr_write(CPUARMState *env, const ARMCPRegInfo *ri,
1610 uint64_t value)
1612 value &= pmu_counter_mask(env);
1613 env->cp15.c9_pmovsr &= ~value;
1614 pmu_update_irq(env);
1617 static void pmovsset_write(CPUARMState *env, const ARMCPRegInfo *ri,
1618 uint64_t value)
1620 value &= pmu_counter_mask(env);
1621 env->cp15.c9_pmovsr |= value;
1622 pmu_update_irq(env);
1625 static void pmevtyper_write(CPUARMState *env, const ARMCPRegInfo *ri,
1626 uint64_t value, const uint8_t counter)
1628 if (counter == 31) {
1629 pmccfiltr_write(env, ri, value);
1630 } else if (counter < pmu_num_counters(env)) {
1631 pmevcntr_op_start(env, counter);
1634 * If this counter's event type is changing, store the current
1635 * underlying count for the new type in c14_pmevcntr_delta[counter] so
1636 * pmevcntr_op_finish has the correct baseline when it converts back to
1637 * a delta.
1639 uint16_t old_event = env->cp15.c14_pmevtyper[counter] &
1640 PMXEVTYPER_EVTCOUNT;
1641 uint16_t new_event = value & PMXEVTYPER_EVTCOUNT;
1642 if (old_event != new_event) {
1643 uint64_t count = 0;
1644 if (event_supported(new_event)) {
1645 uint16_t event_idx = supported_event_map[new_event];
1646 count = pm_events[event_idx].get_count(env);
1648 env->cp15.c14_pmevcntr_delta[counter] = count;
1651 env->cp15.c14_pmevtyper[counter] = value & PMXEVTYPER_MASK;
1652 pmevcntr_op_finish(env, counter);
1655 * Attempts to access PMXEVTYPER are CONSTRAINED UNPREDICTABLE when
1656 * PMSELR value is equal to or greater than the number of implemented
1657 * counters, but not equal to 0x1f. We opt to behave as a RAZ/WI.
1661 static uint64_t pmevtyper_read(CPUARMState *env, const ARMCPRegInfo *ri,
1662 const uint8_t counter)
1664 if (counter == 31) {
1665 return env->cp15.pmccfiltr_el0;
1666 } else if (counter < pmu_num_counters(env)) {
1667 return env->cp15.c14_pmevtyper[counter];
1668 } else {
1670 * We opt to behave as a RAZ/WI when attempts to access PMXEVTYPER
1671 * are CONSTRAINED UNPREDICTABLE. See comments in pmevtyper_write().
1673 return 0;
1677 static void pmevtyper_writefn(CPUARMState *env, const ARMCPRegInfo *ri,
1678 uint64_t value)
1680 uint8_t counter = ((ri->crm & 3) << 3) | (ri->opc2 & 7);
1681 pmevtyper_write(env, ri, value, counter);
1684 static void pmevtyper_rawwrite(CPUARMState *env, const ARMCPRegInfo *ri,
1685 uint64_t value)
1687 uint8_t counter = ((ri->crm & 3) << 3) | (ri->opc2 & 7);
1688 env->cp15.c14_pmevtyper[counter] = value;
1691 * pmevtyper_rawwrite is called between a pair of pmu_op_start and
1692 * pmu_op_finish calls when loading saved state for a migration. Because
1693 * we're potentially updating the type of event here, the value written to
1694 * c14_pmevcntr_delta by the preceding pmu_op_start call may be for a
1695 * different counter type. Therefore, we need to set this value to the
1696 * current count for the counter type we're writing so that pmu_op_finish
1697 * has the correct count for its calculation.
1699 uint16_t event = value & PMXEVTYPER_EVTCOUNT;
1700 if (event_supported(event)) {
1701 uint16_t event_idx = supported_event_map[event];
1702 env->cp15.c14_pmevcntr_delta[counter] =
1703 pm_events[event_idx].get_count(env);
1707 static uint64_t pmevtyper_readfn(CPUARMState *env, const ARMCPRegInfo *ri)
1709 uint8_t counter = ((ri->crm & 3) << 3) | (ri->opc2 & 7);
1710 return pmevtyper_read(env, ri, counter);
1713 static void pmxevtyper_write(CPUARMState *env, const ARMCPRegInfo *ri,
1714 uint64_t value)
1716 pmevtyper_write(env, ri, value, env->cp15.c9_pmselr & 31);
1719 static uint64_t pmxevtyper_read(CPUARMState *env, const ARMCPRegInfo *ri)
1721 return pmevtyper_read(env, ri, env->cp15.c9_pmselr & 31);
1724 static void pmevcntr_write(CPUARMState *env, const ARMCPRegInfo *ri,
1725 uint64_t value, uint8_t counter)
1727 if (!cpu_isar_feature(any_pmuv3p5, env_archcpu(env))) {
1728 /* Before FEAT_PMUv3p5, top 32 bits of event counters are RES0 */
1729 value &= MAKE_64BIT_MASK(0, 32);
1731 if (counter < pmu_num_counters(env)) {
1732 pmevcntr_op_start(env, counter);
1733 env->cp15.c14_pmevcntr[counter] = value;
1734 pmevcntr_op_finish(env, counter);
1737 * We opt to behave as a RAZ/WI when attempts to access PM[X]EVCNTR
1738 * are CONSTRAINED UNPREDICTABLE.
1742 static uint64_t pmevcntr_read(CPUARMState *env, const ARMCPRegInfo *ri,
1743 uint8_t counter)
1745 if (counter < pmu_num_counters(env)) {
1746 uint64_t ret;
1747 pmevcntr_op_start(env, counter);
1748 ret = env->cp15.c14_pmevcntr[counter];
1749 pmevcntr_op_finish(env, counter);
1750 if (!cpu_isar_feature(any_pmuv3p5, env_archcpu(env))) {
1751 /* Before FEAT_PMUv3p5, top 32 bits of event counters are RES0 */
1752 ret &= MAKE_64BIT_MASK(0, 32);
1754 return ret;
1755 } else {
1757 * We opt to behave as a RAZ/WI when attempts to access PM[X]EVCNTR
1758 * are CONSTRAINED UNPREDICTABLE.
1760 return 0;
1764 static void pmevcntr_writefn(CPUARMState *env, const ARMCPRegInfo *ri,
1765 uint64_t value)
1767 uint8_t counter = ((ri->crm & 3) << 3) | (ri->opc2 & 7);
1768 pmevcntr_write(env, ri, value, counter);
1771 static uint64_t pmevcntr_readfn(CPUARMState *env, const ARMCPRegInfo *ri)
1773 uint8_t counter = ((ri->crm & 3) << 3) | (ri->opc2 & 7);
1774 return pmevcntr_read(env, ri, counter);
1777 static void pmevcntr_rawwrite(CPUARMState *env, const ARMCPRegInfo *ri,
1778 uint64_t value)
1780 uint8_t counter = ((ri->crm & 3) << 3) | (ri->opc2 & 7);
1781 assert(counter < pmu_num_counters(env));
1782 env->cp15.c14_pmevcntr[counter] = value;
1783 pmevcntr_write(env, ri, value, counter);
1786 static uint64_t pmevcntr_rawread(CPUARMState *env, const ARMCPRegInfo *ri)
1788 uint8_t counter = ((ri->crm & 3) << 3) | (ri->opc2 & 7);
1789 assert(counter < pmu_num_counters(env));
1790 return env->cp15.c14_pmevcntr[counter];
1793 static void pmxevcntr_write(CPUARMState *env, const ARMCPRegInfo *ri,
1794 uint64_t value)
1796 pmevcntr_write(env, ri, value, env->cp15.c9_pmselr & 31);
1799 static uint64_t pmxevcntr_read(CPUARMState *env, const ARMCPRegInfo *ri)
1801 return pmevcntr_read(env, ri, env->cp15.c9_pmselr & 31);
1804 static void pmuserenr_write(CPUARMState *env, const ARMCPRegInfo *ri,
1805 uint64_t value)
1807 if (arm_feature(env, ARM_FEATURE_V8)) {
1808 env->cp15.c9_pmuserenr = value & 0xf;
1809 } else {
1810 env->cp15.c9_pmuserenr = value & 1;
1814 static void pmintenset_write(CPUARMState *env, const ARMCPRegInfo *ri,
1815 uint64_t value)
1817 /* We have no event counters so only the C bit can be changed */
1818 value &= pmu_counter_mask(env);
1819 env->cp15.c9_pminten |= value;
1820 pmu_update_irq(env);
1823 static void pmintenclr_write(CPUARMState *env, const ARMCPRegInfo *ri,
1824 uint64_t value)
1826 value &= pmu_counter_mask(env);
1827 env->cp15.c9_pminten &= ~value;
1828 pmu_update_irq(env);
1831 static void vbar_write(CPUARMState *env, const ARMCPRegInfo *ri,
1832 uint64_t value)
1835 * Note that even though the AArch64 view of this register has bits
1836 * [10:0] all RES0 we can only mask the bottom 5, to comply with the
1837 * architectural requirements for bits which are RES0 only in some
1838 * contexts. (ARMv8 would permit us to do no masking at all, but ARMv7
1839 * requires the bottom five bits to be RAZ/WI because they're UNK/SBZP.)
1841 raw_write(env, ri, value & ~0x1FULL);
1844 static void scr_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value)
1846 /* Begin with base v8.0 state. */
1847 uint64_t valid_mask = 0x3fff;
1848 ARMCPU *cpu = env_archcpu(env);
1849 uint64_t changed;
1852 * Because SCR_EL3 is the "real" cpreg and SCR is the alias, reset always
1853 * passes the reginfo for SCR_EL3, which has type ARM_CP_STATE_AA64.
1854 * Instead, choose the format based on the mode of EL3.
1856 if (arm_el_is_aa64(env, 3)) {
1857 value |= SCR_FW | SCR_AW; /* RES1 */
1858 valid_mask &= ~SCR_NET; /* RES0 */
1860 if (!cpu_isar_feature(aa64_aa32_el1, cpu) &&
1861 !cpu_isar_feature(aa64_aa32_el2, cpu)) {
1862 value |= SCR_RW; /* RAO/WI */
1864 if (cpu_isar_feature(aa64_ras, cpu)) {
1865 valid_mask |= SCR_TERR;
1867 if (cpu_isar_feature(aa64_lor, cpu)) {
1868 valid_mask |= SCR_TLOR;
1870 if (cpu_isar_feature(aa64_pauth, cpu)) {
1871 valid_mask |= SCR_API | SCR_APK;
1873 if (cpu_isar_feature(aa64_sel2, cpu)) {
1874 valid_mask |= SCR_EEL2;
1875 } else if (cpu_isar_feature(aa64_rme, cpu)) {
1876 /* With RME and without SEL2, NS is RES1 (R_GSWWH, I_DJJQJ). */
1877 value |= SCR_NS;
1879 if (cpu_isar_feature(aa64_mte, cpu)) {
1880 valid_mask |= SCR_ATA;
1882 if (cpu_isar_feature(aa64_scxtnum, cpu)) {
1883 valid_mask |= SCR_ENSCXT;
1885 if (cpu_isar_feature(aa64_doublefault, cpu)) {
1886 valid_mask |= SCR_EASE | SCR_NMEA;
1888 if (cpu_isar_feature(aa64_sme, cpu)) {
1889 valid_mask |= SCR_ENTP2;
1891 if (cpu_isar_feature(aa64_hcx, cpu)) {
1892 valid_mask |= SCR_HXEN;
1894 if (cpu_isar_feature(aa64_fgt, cpu)) {
1895 valid_mask |= SCR_FGTEN;
1897 if (cpu_isar_feature(aa64_rme, cpu)) {
1898 valid_mask |= SCR_NSE | SCR_GPF;
1900 } else {
1901 valid_mask &= ~(SCR_RW | SCR_ST);
1902 if (cpu_isar_feature(aa32_ras, cpu)) {
1903 valid_mask |= SCR_TERR;
1907 if (!arm_feature(env, ARM_FEATURE_EL2)) {
1908 valid_mask &= ~SCR_HCE;
1911 * On ARMv7, SMD (or SCD as it is called in v7) is only
1912 * supported if EL2 exists. The bit is UNK/SBZP when
1913 * EL2 is unavailable. In QEMU ARMv7, we force it to always zero
1914 * when EL2 is unavailable.
1915 * On ARMv8, this bit is always available.
1917 if (arm_feature(env, ARM_FEATURE_V7) &&
1918 !arm_feature(env, ARM_FEATURE_V8)) {
1919 valid_mask &= ~SCR_SMD;
1923 /* Clear all-context RES0 bits. */
1924 value &= valid_mask;
1925 changed = env->cp15.scr_el3 ^ value;
1926 env->cp15.scr_el3 = value;
1929 * If SCR_EL3.{NS,NSE} changes, i.e. change of security state,
1930 * we must invalidate all TLBs below EL3.
1932 if (changed & (SCR_NS | SCR_NSE)) {
1933 tlb_flush_by_mmuidx(env_cpu(env), (ARMMMUIdxBit_E10_0 |
1934 ARMMMUIdxBit_E20_0 |
1935 ARMMMUIdxBit_E10_1 |
1936 ARMMMUIdxBit_E20_2 |
1937 ARMMMUIdxBit_E10_1_PAN |
1938 ARMMMUIdxBit_E20_2_PAN |
1939 ARMMMUIdxBit_E2));
1943 static void scr_reset(CPUARMState *env, const ARMCPRegInfo *ri)
1946 * scr_write will set the RES1 bits on an AArch64-only CPU.
1947 * The reset value will be 0x30 on an AArch64-only CPU and 0 otherwise.
1949 scr_write(env, ri, 0);
1952 static CPAccessResult access_tid4(CPUARMState *env,
1953 const ARMCPRegInfo *ri,
1954 bool isread)
1956 if (arm_current_el(env) == 1 &&
1957 (arm_hcr_el2_eff(env) & (HCR_TID2 | HCR_TID4))) {
1958 return CP_ACCESS_TRAP_EL2;
1961 return CP_ACCESS_OK;
1964 static uint64_t ccsidr_read(CPUARMState *env, const ARMCPRegInfo *ri)
1966 ARMCPU *cpu = env_archcpu(env);
1969 * Acquire the CSSELR index from the bank corresponding to the CCSIDR
1970 * bank
1972 uint32_t index = A32_BANKED_REG_GET(env, csselr,
1973 ri->secure & ARM_CP_SECSTATE_S);
1975 return cpu->ccsidr[index];
1978 static void csselr_write(CPUARMState *env, const ARMCPRegInfo *ri,
1979 uint64_t value)
1981 raw_write(env, ri, value & 0xf);
1984 static uint64_t isr_read(CPUARMState *env, const ARMCPRegInfo *ri)
1986 CPUState *cs = env_cpu(env);
1987 bool el1 = arm_current_el(env) == 1;
1988 uint64_t hcr_el2 = el1 ? arm_hcr_el2_eff(env) : 0;
1989 uint64_t ret = 0;
1991 if (hcr_el2 & HCR_IMO) {
1992 if (cs->interrupt_request & CPU_INTERRUPT_VIRQ) {
1993 ret |= CPSR_I;
1995 } else {
1996 if (cs->interrupt_request & CPU_INTERRUPT_HARD) {
1997 ret |= CPSR_I;
2001 if (hcr_el2 & HCR_FMO) {
2002 if (cs->interrupt_request & CPU_INTERRUPT_VFIQ) {
2003 ret |= CPSR_F;
2005 } else {
2006 if (cs->interrupt_request & CPU_INTERRUPT_FIQ) {
2007 ret |= CPSR_F;
2011 if (hcr_el2 & HCR_AMO) {
2012 if (cs->interrupt_request & CPU_INTERRUPT_VSERR) {
2013 ret |= CPSR_A;
2017 return ret;
2020 static CPAccessResult access_aa64_tid1(CPUARMState *env, const ARMCPRegInfo *ri,
2021 bool isread)
2023 if (arm_current_el(env) == 1 && (arm_hcr_el2_eff(env) & HCR_TID1)) {
2024 return CP_ACCESS_TRAP_EL2;
2027 return CP_ACCESS_OK;
2030 static CPAccessResult access_aa32_tid1(CPUARMState *env, const ARMCPRegInfo *ri,
2031 bool isread)
2033 if (arm_feature(env, ARM_FEATURE_V8)) {
2034 return access_aa64_tid1(env, ri, isread);
2037 return CP_ACCESS_OK;
2040 static const ARMCPRegInfo v7_cp_reginfo[] = {
2041 /* the old v6 WFI, UNPREDICTABLE in v7 but we choose to NOP */
2042 { .name = "NOP", .cp = 15, .crn = 7, .crm = 0, .opc1 = 0, .opc2 = 4,
2043 .access = PL1_W, .type = ARM_CP_NOP },
2045 * Performance monitors are implementation defined in v7,
2046 * but with an ARM recommended set of registers, which we
2047 * follow.
2049 * Performance registers fall into three categories:
2050 * (a) always UNDEF in PL0, RW in PL1 (PMINTENSET, PMINTENCLR)
2051 * (b) RO in PL0 (ie UNDEF on write), RW in PL1 (PMUSERENR)
2052 * (c) UNDEF in PL0 if PMUSERENR.EN==0, otherwise accessible (all others)
2053 * For the cases controlled by PMUSERENR we must set .access to PL0_RW
2054 * or PL0_RO as appropriate and then check PMUSERENR in the helper fn.
2056 { .name = "PMCNTENSET", .cp = 15, .crn = 9, .crm = 12, .opc1 = 0, .opc2 = 1,
2057 .access = PL0_RW, .type = ARM_CP_ALIAS | ARM_CP_IO,
2058 .fieldoffset = offsetoflow32(CPUARMState, cp15.c9_pmcnten),
2059 .writefn = pmcntenset_write,
2060 .accessfn = pmreg_access,
2061 .fgt = FGT_PMCNTEN,
2062 .raw_writefn = raw_write },
2063 { .name = "PMCNTENSET_EL0", .state = ARM_CP_STATE_AA64, .type = ARM_CP_IO,
2064 .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 12, .opc2 = 1,
2065 .access = PL0_RW, .accessfn = pmreg_access,
2066 .fgt = FGT_PMCNTEN,
2067 .fieldoffset = offsetof(CPUARMState, cp15.c9_pmcnten), .resetvalue = 0,
2068 .writefn = pmcntenset_write, .raw_writefn = raw_write },
2069 { .name = "PMCNTENCLR", .cp = 15, .crn = 9, .crm = 12, .opc1 = 0, .opc2 = 2,
2070 .access = PL0_RW,
2071 .fieldoffset = offsetoflow32(CPUARMState, cp15.c9_pmcnten),
2072 .accessfn = pmreg_access,
2073 .fgt = FGT_PMCNTEN,
2074 .writefn = pmcntenclr_write,
2075 .type = ARM_CP_ALIAS | ARM_CP_IO },
2076 { .name = "PMCNTENCLR_EL0", .state = ARM_CP_STATE_AA64,
2077 .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 12, .opc2 = 2,
2078 .access = PL0_RW, .accessfn = pmreg_access,
2079 .fgt = FGT_PMCNTEN,
2080 .type = ARM_CP_ALIAS | ARM_CP_IO,
2081 .fieldoffset = offsetof(CPUARMState, cp15.c9_pmcnten),
2082 .writefn = pmcntenclr_write },
2083 { .name = "PMOVSR", .cp = 15, .crn = 9, .crm = 12, .opc1 = 0, .opc2 = 3,
2084 .access = PL0_RW, .type = ARM_CP_IO,
2085 .fieldoffset = offsetoflow32(CPUARMState, cp15.c9_pmovsr),
2086 .accessfn = pmreg_access,
2087 .fgt = FGT_PMOVS,
2088 .writefn = pmovsr_write,
2089 .raw_writefn = raw_write },
2090 { .name = "PMOVSCLR_EL0", .state = ARM_CP_STATE_AA64,
2091 .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 12, .opc2 = 3,
2092 .access = PL0_RW, .accessfn = pmreg_access,
2093 .fgt = FGT_PMOVS,
2094 .type = ARM_CP_ALIAS | ARM_CP_IO,
2095 .fieldoffset = offsetof(CPUARMState, cp15.c9_pmovsr),
2096 .writefn = pmovsr_write,
2097 .raw_writefn = raw_write },
2098 { .name = "PMSWINC", .cp = 15, .crn = 9, .crm = 12, .opc1 = 0, .opc2 = 4,
2099 .access = PL0_W, .accessfn = pmreg_access_swinc,
2100 .fgt = FGT_PMSWINC_EL0,
2101 .type = ARM_CP_NO_RAW | ARM_CP_IO,
2102 .writefn = pmswinc_write },
2103 { .name = "PMSWINC_EL0", .state = ARM_CP_STATE_AA64,
2104 .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 12, .opc2 = 4,
2105 .access = PL0_W, .accessfn = pmreg_access_swinc,
2106 .fgt = FGT_PMSWINC_EL0,
2107 .type = ARM_CP_NO_RAW | ARM_CP_IO,
2108 .writefn = pmswinc_write },
2109 { .name = "PMSELR", .cp = 15, .crn = 9, .crm = 12, .opc1 = 0, .opc2 = 5,
2110 .access = PL0_RW, .type = ARM_CP_ALIAS,
2111 .fgt = FGT_PMSELR_EL0,
2112 .fieldoffset = offsetoflow32(CPUARMState, cp15.c9_pmselr),
2113 .accessfn = pmreg_access_selr, .writefn = pmselr_write,
2114 .raw_writefn = raw_write},
2115 { .name = "PMSELR_EL0", .state = ARM_CP_STATE_AA64,
2116 .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 12, .opc2 = 5,
2117 .access = PL0_RW, .accessfn = pmreg_access_selr,
2118 .fgt = FGT_PMSELR_EL0,
2119 .fieldoffset = offsetof(CPUARMState, cp15.c9_pmselr),
2120 .writefn = pmselr_write, .raw_writefn = raw_write, },
2121 { .name = "PMCCNTR", .cp = 15, .crn = 9, .crm = 13, .opc1 = 0, .opc2 = 0,
2122 .access = PL0_RW, .resetvalue = 0, .type = ARM_CP_ALIAS | ARM_CP_IO,
2123 .fgt = FGT_PMCCNTR_EL0,
2124 .readfn = pmccntr_read, .writefn = pmccntr_write32,
2125 .accessfn = pmreg_access_ccntr },
2126 { .name = "PMCCNTR_EL0", .state = ARM_CP_STATE_AA64,
2127 .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 13, .opc2 = 0,
2128 .access = PL0_RW, .accessfn = pmreg_access_ccntr,
2129 .fgt = FGT_PMCCNTR_EL0,
2130 .type = ARM_CP_IO,
2131 .fieldoffset = offsetof(CPUARMState, cp15.c15_ccnt),
2132 .readfn = pmccntr_read, .writefn = pmccntr_write,
2133 .raw_readfn = raw_read, .raw_writefn = raw_write, },
2134 { .name = "PMCCFILTR", .cp = 15, .opc1 = 0, .crn = 14, .crm = 15, .opc2 = 7,
2135 .writefn = pmccfiltr_write_a32, .readfn = pmccfiltr_read_a32,
2136 .access = PL0_RW, .accessfn = pmreg_access,
2137 .fgt = FGT_PMCCFILTR_EL0,
2138 .type = ARM_CP_ALIAS | ARM_CP_IO,
2139 .resetvalue = 0, },
2140 { .name = "PMCCFILTR_EL0", .state = ARM_CP_STATE_AA64,
2141 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 15, .opc2 = 7,
2142 .writefn = pmccfiltr_write, .raw_writefn = raw_write,
2143 .access = PL0_RW, .accessfn = pmreg_access,
2144 .fgt = FGT_PMCCFILTR_EL0,
2145 .type = ARM_CP_IO,
2146 .fieldoffset = offsetof(CPUARMState, cp15.pmccfiltr_el0),
2147 .resetvalue = 0, },
2148 { .name = "PMXEVTYPER", .cp = 15, .crn = 9, .crm = 13, .opc1 = 0, .opc2 = 1,
2149 .access = PL0_RW, .type = ARM_CP_NO_RAW | ARM_CP_IO,
2150 .accessfn = pmreg_access,
2151 .fgt = FGT_PMEVTYPERN_EL0,
2152 .writefn = pmxevtyper_write, .readfn = pmxevtyper_read },
2153 { .name = "PMXEVTYPER_EL0", .state = ARM_CP_STATE_AA64,
2154 .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 13, .opc2 = 1,
2155 .access = PL0_RW, .type = ARM_CP_NO_RAW | ARM_CP_IO,
2156 .accessfn = pmreg_access,
2157 .fgt = FGT_PMEVTYPERN_EL0,
2158 .writefn = pmxevtyper_write, .readfn = pmxevtyper_read },
2159 { .name = "PMXEVCNTR", .cp = 15, .crn = 9, .crm = 13, .opc1 = 0, .opc2 = 2,
2160 .access = PL0_RW, .type = ARM_CP_NO_RAW | ARM_CP_IO,
2161 .accessfn = pmreg_access_xevcntr,
2162 .fgt = FGT_PMEVCNTRN_EL0,
2163 .writefn = pmxevcntr_write, .readfn = pmxevcntr_read },
2164 { .name = "PMXEVCNTR_EL0", .state = ARM_CP_STATE_AA64,
2165 .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 13, .opc2 = 2,
2166 .access = PL0_RW, .type = ARM_CP_NO_RAW | ARM_CP_IO,
2167 .accessfn = pmreg_access_xevcntr,
2168 .fgt = FGT_PMEVCNTRN_EL0,
2169 .writefn = pmxevcntr_write, .readfn = pmxevcntr_read },
2170 { .name = "PMUSERENR", .cp = 15, .crn = 9, .crm = 14, .opc1 = 0, .opc2 = 0,
2171 .access = PL0_R | PL1_RW, .accessfn = access_tpm,
2172 .fieldoffset = offsetoflow32(CPUARMState, cp15.c9_pmuserenr),
2173 .resetvalue = 0,
2174 .writefn = pmuserenr_write, .raw_writefn = raw_write },
2175 { .name = "PMUSERENR_EL0", .state = ARM_CP_STATE_AA64,
2176 .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 14, .opc2 = 0,
2177 .access = PL0_R | PL1_RW, .accessfn = access_tpm, .type = ARM_CP_ALIAS,
2178 .fieldoffset = offsetof(CPUARMState, cp15.c9_pmuserenr),
2179 .resetvalue = 0,
2180 .writefn = pmuserenr_write, .raw_writefn = raw_write },
2181 { .name = "PMINTENSET", .cp = 15, .crn = 9, .crm = 14, .opc1 = 0, .opc2 = 1,
2182 .access = PL1_RW, .accessfn = access_tpm,
2183 .fgt = FGT_PMINTEN,
2184 .type = ARM_CP_ALIAS | ARM_CP_IO,
2185 .fieldoffset = offsetoflow32(CPUARMState, cp15.c9_pminten),
2186 .resetvalue = 0,
2187 .writefn = pmintenset_write, .raw_writefn = raw_write },
2188 { .name = "PMINTENSET_EL1", .state = ARM_CP_STATE_AA64,
2189 .opc0 = 3, .opc1 = 0, .crn = 9, .crm = 14, .opc2 = 1,
2190 .access = PL1_RW, .accessfn = access_tpm,
2191 .fgt = FGT_PMINTEN,
2192 .type = ARM_CP_IO,
2193 .fieldoffset = offsetof(CPUARMState, cp15.c9_pminten),
2194 .writefn = pmintenset_write, .raw_writefn = raw_write,
2195 .resetvalue = 0x0 },
2196 { .name = "PMINTENCLR", .cp = 15, .crn = 9, .crm = 14, .opc1 = 0, .opc2 = 2,
2197 .access = PL1_RW, .accessfn = access_tpm,
2198 .fgt = FGT_PMINTEN,
2199 .type = ARM_CP_ALIAS | ARM_CP_IO | ARM_CP_NO_RAW,
2200 .fieldoffset = offsetof(CPUARMState, cp15.c9_pminten),
2201 .writefn = pmintenclr_write, },
2202 { .name = "PMINTENCLR_EL1", .state = ARM_CP_STATE_AA64,
2203 .opc0 = 3, .opc1 = 0, .crn = 9, .crm = 14, .opc2 = 2,
2204 .access = PL1_RW, .accessfn = access_tpm,
2205 .fgt = FGT_PMINTEN,
2206 .type = ARM_CP_ALIAS | ARM_CP_IO | ARM_CP_NO_RAW,
2207 .fieldoffset = offsetof(CPUARMState, cp15.c9_pminten),
2208 .writefn = pmintenclr_write },
2209 { .name = "CCSIDR", .state = ARM_CP_STATE_BOTH,
2210 .opc0 = 3, .crn = 0, .crm = 0, .opc1 = 1, .opc2 = 0,
2211 .access = PL1_R,
2212 .accessfn = access_tid4,
2213 .fgt = FGT_CCSIDR_EL1,
2214 .readfn = ccsidr_read, .type = ARM_CP_NO_RAW },
2215 { .name = "CSSELR", .state = ARM_CP_STATE_BOTH,
2216 .opc0 = 3, .crn = 0, .crm = 0, .opc1 = 2, .opc2 = 0,
2217 .access = PL1_RW,
2218 .accessfn = access_tid4,
2219 .fgt = FGT_CSSELR_EL1,
2220 .writefn = csselr_write, .resetvalue = 0,
2221 .bank_fieldoffsets = { offsetof(CPUARMState, cp15.csselr_s),
2222 offsetof(CPUARMState, cp15.csselr_ns) } },
2224 * Auxiliary ID register: this actually has an IMPDEF value but for now
2225 * just RAZ for all cores:
2227 { .name = "AIDR", .state = ARM_CP_STATE_BOTH,
2228 .opc0 = 3, .opc1 = 1, .crn = 0, .crm = 0, .opc2 = 7,
2229 .access = PL1_R, .type = ARM_CP_CONST,
2230 .accessfn = access_aa64_tid1,
2231 .fgt = FGT_AIDR_EL1,
2232 .resetvalue = 0 },
2234 * Auxiliary fault status registers: these also are IMPDEF, and we
2235 * choose to RAZ/WI for all cores.
2237 { .name = "AFSR0_EL1", .state = ARM_CP_STATE_BOTH,
2238 .opc0 = 3, .opc1 = 0, .crn = 5, .crm = 1, .opc2 = 0,
2239 .access = PL1_RW, .accessfn = access_tvm_trvm,
2240 .fgt = FGT_AFSR0_EL1,
2241 .type = ARM_CP_CONST, .resetvalue = 0 },
2242 { .name = "AFSR1_EL1", .state = ARM_CP_STATE_BOTH,
2243 .opc0 = 3, .opc1 = 0, .crn = 5, .crm = 1, .opc2 = 1,
2244 .access = PL1_RW, .accessfn = access_tvm_trvm,
2245 .fgt = FGT_AFSR1_EL1,
2246 .type = ARM_CP_CONST, .resetvalue = 0 },
2248 * MAIR can just read-as-written because we don't implement caches
2249 * and so don't need to care about memory attributes.
2251 { .name = "MAIR_EL1", .state = ARM_CP_STATE_AA64,
2252 .opc0 = 3, .opc1 = 0, .crn = 10, .crm = 2, .opc2 = 0,
2253 .access = PL1_RW, .accessfn = access_tvm_trvm,
2254 .fgt = FGT_MAIR_EL1,
2255 .fieldoffset = offsetof(CPUARMState, cp15.mair_el[1]),
2256 .resetvalue = 0 },
2257 { .name = "MAIR_EL3", .state = ARM_CP_STATE_AA64,
2258 .opc0 = 3, .opc1 = 6, .crn = 10, .crm = 2, .opc2 = 0,
2259 .access = PL3_RW, .fieldoffset = offsetof(CPUARMState, cp15.mair_el[3]),
2260 .resetvalue = 0 },
2262 * For non-long-descriptor page tables these are PRRR and NMRR;
2263 * regardless they still act as reads-as-written for QEMU.
2266 * MAIR0/1 are defined separately from their 64-bit counterpart which
2267 * allows them to assign the correct fieldoffset based on the endianness
2268 * handled in the field definitions.
2270 { .name = "MAIR0", .state = ARM_CP_STATE_AA32,
2271 .cp = 15, .opc1 = 0, .crn = 10, .crm = 2, .opc2 = 0,
2272 .access = PL1_RW, .accessfn = access_tvm_trvm,
2273 .bank_fieldoffsets = { offsetof(CPUARMState, cp15.mair0_s),
2274 offsetof(CPUARMState, cp15.mair0_ns) },
2275 .resetfn = arm_cp_reset_ignore },
2276 { .name = "MAIR1", .state = ARM_CP_STATE_AA32,
2277 .cp = 15, .opc1 = 0, .crn = 10, .crm = 2, .opc2 = 1,
2278 .access = PL1_RW, .accessfn = access_tvm_trvm,
2279 .bank_fieldoffsets = { offsetof(CPUARMState, cp15.mair1_s),
2280 offsetof(CPUARMState, cp15.mair1_ns) },
2281 .resetfn = arm_cp_reset_ignore },
2282 { .name = "ISR_EL1", .state = ARM_CP_STATE_BOTH,
2283 .opc0 = 3, .opc1 = 0, .crn = 12, .crm = 1, .opc2 = 0,
2284 .fgt = FGT_ISR_EL1,
2285 .type = ARM_CP_NO_RAW, .access = PL1_R, .readfn = isr_read },
2286 /* 32 bit ITLB invalidates */
2287 { .name = "ITLBIALL", .cp = 15, .opc1 = 0, .crn = 8, .crm = 5, .opc2 = 0,
2288 .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlb,
2289 .writefn = tlbiall_write },
2290 { .name = "ITLBIMVA", .cp = 15, .opc1 = 0, .crn = 8, .crm = 5, .opc2 = 1,
2291 .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlb,
2292 .writefn = tlbimva_write },
2293 { .name = "ITLBIASID", .cp = 15, .opc1 = 0, .crn = 8, .crm = 5, .opc2 = 2,
2294 .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlb,
2295 .writefn = tlbiasid_write },
2296 /* 32 bit DTLB invalidates */
2297 { .name = "DTLBIALL", .cp = 15, .opc1 = 0, .crn = 8, .crm = 6, .opc2 = 0,
2298 .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlb,
2299 .writefn = tlbiall_write },
2300 { .name = "DTLBIMVA", .cp = 15, .opc1 = 0, .crn = 8, .crm = 6, .opc2 = 1,
2301 .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlb,
2302 .writefn = tlbimva_write },
2303 { .name = "DTLBIASID", .cp = 15, .opc1 = 0, .crn = 8, .crm = 6, .opc2 = 2,
2304 .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlb,
2305 .writefn = tlbiasid_write },
2306 /* 32 bit TLB invalidates */
2307 { .name = "TLBIALL", .cp = 15, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 0,
2308 .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlb,
2309 .writefn = tlbiall_write },
2310 { .name = "TLBIMVA", .cp = 15, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 1,
2311 .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlb,
2312 .writefn = tlbimva_write },
2313 { .name = "TLBIASID", .cp = 15, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 2,
2314 .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlb,
2315 .writefn = tlbiasid_write },
2316 { .name = "TLBIMVAA", .cp = 15, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 3,
2317 .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlb,
2318 .writefn = tlbimvaa_write },
2321 static const ARMCPRegInfo v7mp_cp_reginfo[] = {
2322 /* 32 bit TLB invalidates, Inner Shareable */
2323 { .name = "TLBIALLIS", .cp = 15, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 0,
2324 .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlbis,
2325 .writefn = tlbiall_is_write },
2326 { .name = "TLBIMVAIS", .cp = 15, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 1,
2327 .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlbis,
2328 .writefn = tlbimva_is_write },
2329 { .name = "TLBIASIDIS", .cp = 15, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 2,
2330 .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlbis,
2331 .writefn = tlbiasid_is_write },
2332 { .name = "TLBIMVAAIS", .cp = 15, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 3,
2333 .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlbis,
2334 .writefn = tlbimvaa_is_write },
2337 static const ARMCPRegInfo pmovsset_cp_reginfo[] = {
2338 /* PMOVSSET is not implemented in v7 before v7ve */
2339 { .name = "PMOVSSET", .cp = 15, .opc1 = 0, .crn = 9, .crm = 14, .opc2 = 3,
2340 .access = PL0_RW, .accessfn = pmreg_access,
2341 .fgt = FGT_PMOVS,
2342 .type = ARM_CP_ALIAS | ARM_CP_IO,
2343 .fieldoffset = offsetoflow32(CPUARMState, cp15.c9_pmovsr),
2344 .writefn = pmovsset_write,
2345 .raw_writefn = raw_write },
2346 { .name = "PMOVSSET_EL0", .state = ARM_CP_STATE_AA64,
2347 .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 14, .opc2 = 3,
2348 .access = PL0_RW, .accessfn = pmreg_access,
2349 .fgt = FGT_PMOVS,
2350 .type = ARM_CP_ALIAS | ARM_CP_IO,
2351 .fieldoffset = offsetof(CPUARMState, cp15.c9_pmovsr),
2352 .writefn = pmovsset_write,
2353 .raw_writefn = raw_write },
2356 static void teecr_write(CPUARMState *env, const ARMCPRegInfo *ri,
2357 uint64_t value)
2359 value &= 1;
2360 env->teecr = value;
2363 static CPAccessResult teecr_access(CPUARMState *env, const ARMCPRegInfo *ri,
2364 bool isread)
2367 * HSTR.TTEE only exists in v7A, not v8A, but v8A doesn't have T2EE
2368 * at all, so we don't need to check whether we're v8A.
2370 if (arm_current_el(env) < 2 && !arm_is_secure_below_el3(env) &&
2371 (env->cp15.hstr_el2 & HSTR_TTEE)) {
2372 return CP_ACCESS_TRAP_EL2;
2374 return CP_ACCESS_OK;
2377 static CPAccessResult teehbr_access(CPUARMState *env, const ARMCPRegInfo *ri,
2378 bool isread)
2380 if (arm_current_el(env) == 0 && (env->teecr & 1)) {
2381 return CP_ACCESS_TRAP;
2383 return teecr_access(env, ri, isread);
2386 static const ARMCPRegInfo t2ee_cp_reginfo[] = {
2387 { .name = "TEECR", .cp = 14, .crn = 0, .crm = 0, .opc1 = 6, .opc2 = 0,
2388 .access = PL1_RW, .fieldoffset = offsetof(CPUARMState, teecr),
2389 .resetvalue = 0,
2390 .writefn = teecr_write, .accessfn = teecr_access },
2391 { .name = "TEEHBR", .cp = 14, .crn = 1, .crm = 0, .opc1 = 6, .opc2 = 0,
2392 .access = PL0_RW, .fieldoffset = offsetof(CPUARMState, teehbr),
2393 .accessfn = teehbr_access, .resetvalue = 0 },
2396 static const ARMCPRegInfo v6k_cp_reginfo[] = {
2397 { .name = "TPIDR_EL0", .state = ARM_CP_STATE_AA64,
2398 .opc0 = 3, .opc1 = 3, .opc2 = 2, .crn = 13, .crm = 0,
2399 .access = PL0_RW,
2400 .fgt = FGT_TPIDR_EL0,
2401 .fieldoffset = offsetof(CPUARMState, cp15.tpidr_el[0]), .resetvalue = 0 },
2402 { .name = "TPIDRURW", .cp = 15, .crn = 13, .crm = 0, .opc1 = 0, .opc2 = 2,
2403 .access = PL0_RW,
2404 .fgt = FGT_TPIDR_EL0,
2405 .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.tpidrurw_s),
2406 offsetoflow32(CPUARMState, cp15.tpidrurw_ns) },
2407 .resetfn = arm_cp_reset_ignore },
2408 { .name = "TPIDRRO_EL0", .state = ARM_CP_STATE_AA64,
2409 .opc0 = 3, .opc1 = 3, .opc2 = 3, .crn = 13, .crm = 0,
2410 .access = PL0_R | PL1_W,
2411 .fgt = FGT_TPIDRRO_EL0,
2412 .fieldoffset = offsetof(CPUARMState, cp15.tpidrro_el[0]),
2413 .resetvalue = 0},
2414 { .name = "TPIDRURO", .cp = 15, .crn = 13, .crm = 0, .opc1 = 0, .opc2 = 3,
2415 .access = PL0_R | PL1_W,
2416 .fgt = FGT_TPIDRRO_EL0,
2417 .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.tpidruro_s),
2418 offsetoflow32(CPUARMState, cp15.tpidruro_ns) },
2419 .resetfn = arm_cp_reset_ignore },
2420 { .name = "TPIDR_EL1", .state = ARM_CP_STATE_AA64,
2421 .opc0 = 3, .opc1 = 0, .opc2 = 4, .crn = 13, .crm = 0,
2422 .access = PL1_RW,
2423 .fgt = FGT_TPIDR_EL1,
2424 .fieldoffset = offsetof(CPUARMState, cp15.tpidr_el[1]), .resetvalue = 0 },
2425 { .name = "TPIDRPRW", .opc1 = 0, .cp = 15, .crn = 13, .crm = 0, .opc2 = 4,
2426 .access = PL1_RW,
2427 .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.tpidrprw_s),
2428 offsetoflow32(CPUARMState, cp15.tpidrprw_ns) },
2429 .resetvalue = 0 },
2432 #ifndef CONFIG_USER_ONLY
2434 static CPAccessResult gt_cntfrq_access(CPUARMState *env, const ARMCPRegInfo *ri,
2435 bool isread)
2438 * CNTFRQ: not visible from PL0 if both PL0PCTEN and PL0VCTEN are zero.
2439 * Writable only at the highest implemented exception level.
2441 int el = arm_current_el(env);
2442 uint64_t hcr;
2443 uint32_t cntkctl;
2445 switch (el) {
2446 case 0:
2447 hcr = arm_hcr_el2_eff(env);
2448 if ((hcr & (HCR_E2H | HCR_TGE)) == (HCR_E2H | HCR_TGE)) {
2449 cntkctl = env->cp15.cnthctl_el2;
2450 } else {
2451 cntkctl = env->cp15.c14_cntkctl;
2453 if (!extract32(cntkctl, 0, 2)) {
2454 return CP_ACCESS_TRAP;
2456 break;
2457 case 1:
2458 if (!isread && ri->state == ARM_CP_STATE_AA32 &&
2459 arm_is_secure_below_el3(env)) {
2460 /* Accesses from 32-bit Secure EL1 UNDEF (*not* trap to EL3!) */
2461 return CP_ACCESS_TRAP_UNCATEGORIZED;
2463 break;
2464 case 2:
2465 case 3:
2466 break;
2469 if (!isread && el < arm_highest_el(env)) {
2470 return CP_ACCESS_TRAP_UNCATEGORIZED;
2473 return CP_ACCESS_OK;
2476 static CPAccessResult gt_counter_access(CPUARMState *env, int timeridx,
2477 bool isread)
2479 unsigned int cur_el = arm_current_el(env);
2480 bool has_el2 = arm_is_el2_enabled(env);
2481 uint64_t hcr = arm_hcr_el2_eff(env);
2483 switch (cur_el) {
2484 case 0:
2485 /* If HCR_EL2.<E2H,TGE> == '11': check CNTHCTL_EL2.EL0[PV]CTEN. */
2486 if ((hcr & (HCR_E2H | HCR_TGE)) == (HCR_E2H | HCR_TGE)) {
2487 return (extract32(env->cp15.cnthctl_el2, timeridx, 1)
2488 ? CP_ACCESS_OK : CP_ACCESS_TRAP_EL2);
2491 /* CNT[PV]CT: not visible from PL0 if EL0[PV]CTEN is zero */
2492 if (!extract32(env->cp15.c14_cntkctl, timeridx, 1)) {
2493 return CP_ACCESS_TRAP;
2495 /* fall through */
2496 case 1:
2497 /* Check CNTHCTL_EL2.EL1PCTEN, which changes location based on E2H. */
2498 if (has_el2 && timeridx == GTIMER_PHYS &&
2499 (hcr & HCR_E2H
2500 ? !extract32(env->cp15.cnthctl_el2, 10, 1)
2501 : !extract32(env->cp15.cnthctl_el2, 0, 1))) {
2502 return CP_ACCESS_TRAP_EL2;
2504 break;
2506 return CP_ACCESS_OK;
2509 static CPAccessResult gt_timer_access(CPUARMState *env, int timeridx,
2510 bool isread)
2512 unsigned int cur_el = arm_current_el(env);
2513 bool has_el2 = arm_is_el2_enabled(env);
2514 uint64_t hcr = arm_hcr_el2_eff(env);
2516 switch (cur_el) {
2517 case 0:
2518 if ((hcr & (HCR_E2H | HCR_TGE)) == (HCR_E2H | HCR_TGE)) {
2519 /* If HCR_EL2.<E2H,TGE> == '11': check CNTHCTL_EL2.EL0[PV]TEN. */
2520 return (extract32(env->cp15.cnthctl_el2, 9 - timeridx, 1)
2521 ? CP_ACCESS_OK : CP_ACCESS_TRAP_EL2);
2525 * CNT[PV]_CVAL, CNT[PV]_CTL, CNT[PV]_TVAL: not visible from
2526 * EL0 if EL0[PV]TEN is zero.
2528 if (!extract32(env->cp15.c14_cntkctl, 9 - timeridx, 1)) {
2529 return CP_ACCESS_TRAP;
2531 /* fall through */
2533 case 1:
2534 if (has_el2 && timeridx == GTIMER_PHYS) {
2535 if (hcr & HCR_E2H) {
2536 /* If HCR_EL2.<E2H,TGE> == '10': check CNTHCTL_EL2.EL1PTEN. */
2537 if (!extract32(env->cp15.cnthctl_el2, 11, 1)) {
2538 return CP_ACCESS_TRAP_EL2;
2540 } else {
2541 /* If HCR_EL2.<E2H> == 0: check CNTHCTL_EL2.EL1PCEN. */
2542 if (!extract32(env->cp15.cnthctl_el2, 1, 1)) {
2543 return CP_ACCESS_TRAP_EL2;
2547 break;
2549 return CP_ACCESS_OK;
2552 static CPAccessResult gt_pct_access(CPUARMState *env,
2553 const ARMCPRegInfo *ri,
2554 bool isread)
2556 return gt_counter_access(env, GTIMER_PHYS, isread);
2559 static CPAccessResult gt_vct_access(CPUARMState *env,
2560 const ARMCPRegInfo *ri,
2561 bool isread)
2563 return gt_counter_access(env, GTIMER_VIRT, isread);
2566 static CPAccessResult gt_ptimer_access(CPUARMState *env, const ARMCPRegInfo *ri,
2567 bool isread)
2569 return gt_timer_access(env, GTIMER_PHYS, isread);
2572 static CPAccessResult gt_vtimer_access(CPUARMState *env, const ARMCPRegInfo *ri,
2573 bool isread)
2575 return gt_timer_access(env, GTIMER_VIRT, isread);
2578 static CPAccessResult gt_stimer_access(CPUARMState *env,
2579 const ARMCPRegInfo *ri,
2580 bool isread)
2583 * The AArch64 register view of the secure physical timer is
2584 * always accessible from EL3, and configurably accessible from
2585 * Secure EL1.
2587 switch (arm_current_el(env)) {
2588 case 1:
2589 if (!arm_is_secure(env)) {
2590 return CP_ACCESS_TRAP;
2592 if (!(env->cp15.scr_el3 & SCR_ST)) {
2593 return CP_ACCESS_TRAP_EL3;
2595 return CP_ACCESS_OK;
2596 case 0:
2597 case 2:
2598 return CP_ACCESS_TRAP;
2599 case 3:
2600 return CP_ACCESS_OK;
2601 default:
2602 g_assert_not_reached();
2606 static uint64_t gt_get_countervalue(CPUARMState *env)
2608 ARMCPU *cpu = env_archcpu(env);
2610 return qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL) / gt_cntfrq_period_ns(cpu);
2613 static void gt_update_irq(ARMCPU *cpu, int timeridx)
2615 CPUARMState *env = &cpu->env;
2616 uint64_t cnthctl = env->cp15.cnthctl_el2;
2617 ARMSecuritySpace ss = arm_security_space(env);
2618 /* ISTATUS && !IMASK */
2619 int irqstate = (env->cp15.c14_timer[timeridx].ctl & 6) == 4;
2622 * If bit CNTHCTL_EL2.CNT[VP]MASK is set, it overrides IMASK.
2623 * It is RES0 in Secure and NonSecure state.
2625 if ((ss == ARMSS_Root || ss == ARMSS_Realm) &&
2626 ((timeridx == GTIMER_VIRT && (cnthctl & CNTHCTL_CNTVMASK)) ||
2627 (timeridx == GTIMER_PHYS && (cnthctl & CNTHCTL_CNTPMASK)))) {
2628 irqstate = 0;
2631 qemu_set_irq(cpu->gt_timer_outputs[timeridx], irqstate);
2632 trace_arm_gt_update_irq(timeridx, irqstate);
2635 void gt_rme_post_el_change(ARMCPU *cpu, void *ignored)
2638 * Changing security state between Root and Secure/NonSecure, which may
2639 * happen when switching EL, can change the effective value of CNTHCTL_EL2
2640 * mask bits. Update the IRQ state accordingly.
2642 gt_update_irq(cpu, GTIMER_VIRT);
2643 gt_update_irq(cpu, GTIMER_PHYS);
2646 static void gt_recalc_timer(ARMCPU *cpu, int timeridx)
2648 ARMGenericTimer *gt = &cpu->env.cp15.c14_timer[timeridx];
2650 if (gt->ctl & 1) {
2652 * Timer enabled: calculate and set current ISTATUS, irq, and
2653 * reset timer to when ISTATUS next has to change
2655 uint64_t offset = timeridx == GTIMER_VIRT ?
2656 cpu->env.cp15.cntvoff_el2 : 0;
2657 uint64_t count = gt_get_countervalue(&cpu->env);
2658 /* Note that this must be unsigned 64 bit arithmetic: */
2659 int istatus = count - offset >= gt->cval;
2660 uint64_t nexttick;
2662 gt->ctl = deposit32(gt->ctl, 2, 1, istatus);
2664 if (istatus) {
2666 * Next transition is when (count - offset) rolls back over to 0.
2667 * If offset > count then this is when count == offset;
2668 * if offset <= count then this is when count == offset + 2^64
2669 * For the latter case we set nexttick to an "as far in future
2670 * as possible" value and let the code below handle it.
2672 if (offset > count) {
2673 nexttick = offset;
2674 } else {
2675 nexttick = UINT64_MAX;
2677 } else {
2679 * Next transition is when (count - offset) == cval, i.e.
2680 * when count == (cval + offset).
2681 * If that would overflow, then again we set up the next interrupt
2682 * for "as far in the future as possible" for the code below.
2684 if (uadd64_overflow(gt->cval, offset, &nexttick)) {
2685 nexttick = UINT64_MAX;
2689 * Note that the desired next expiry time might be beyond the
2690 * signed-64-bit range of a QEMUTimer -- in this case we just
2691 * set the timer for as far in the future as possible. When the
2692 * timer expires we will reset the timer for any remaining period.
2694 if (nexttick > INT64_MAX / gt_cntfrq_period_ns(cpu)) {
2695 timer_mod_ns(cpu->gt_timer[timeridx], INT64_MAX);
2696 } else {
2697 timer_mod(cpu->gt_timer[timeridx], nexttick);
2699 trace_arm_gt_recalc(timeridx, nexttick);
2700 } else {
2701 /* Timer disabled: ISTATUS and timer output always clear */
2702 gt->ctl &= ~4;
2703 timer_del(cpu->gt_timer[timeridx]);
2704 trace_arm_gt_recalc_disabled(timeridx);
2706 gt_update_irq(cpu, timeridx);
2709 static void gt_timer_reset(CPUARMState *env, const ARMCPRegInfo *ri,
2710 int timeridx)
2712 ARMCPU *cpu = env_archcpu(env);
2714 timer_del(cpu->gt_timer[timeridx]);
2717 static uint64_t gt_cnt_read(CPUARMState *env, const ARMCPRegInfo *ri)
2719 return gt_get_countervalue(env);
2722 static uint64_t gt_virt_cnt_offset(CPUARMState *env)
2724 uint64_t hcr;
2726 switch (arm_current_el(env)) {
2727 case 2:
2728 hcr = arm_hcr_el2_eff(env);
2729 if (hcr & HCR_E2H) {
2730 return 0;
2732 break;
2733 case 0:
2734 hcr = arm_hcr_el2_eff(env);
2735 if ((hcr & (HCR_E2H | HCR_TGE)) == (HCR_E2H | HCR_TGE)) {
2736 return 0;
2738 break;
2741 return env->cp15.cntvoff_el2;
2744 static uint64_t gt_virt_cnt_read(CPUARMState *env, const ARMCPRegInfo *ri)
2746 return gt_get_countervalue(env) - gt_virt_cnt_offset(env);
2749 static void gt_cval_write(CPUARMState *env, const ARMCPRegInfo *ri,
2750 int timeridx,
2751 uint64_t value)
2753 trace_arm_gt_cval_write(timeridx, value);
2754 env->cp15.c14_timer[timeridx].cval = value;
2755 gt_recalc_timer(env_archcpu(env), timeridx);
2758 static uint64_t gt_tval_read(CPUARMState *env, const ARMCPRegInfo *ri,
2759 int timeridx)
2761 uint64_t offset = 0;
2763 switch (timeridx) {
2764 case GTIMER_VIRT:
2765 case GTIMER_HYPVIRT:
2766 offset = gt_virt_cnt_offset(env);
2767 break;
2770 return (uint32_t)(env->cp15.c14_timer[timeridx].cval -
2771 (gt_get_countervalue(env) - offset));
2774 static void gt_tval_write(CPUARMState *env, const ARMCPRegInfo *ri,
2775 int timeridx,
2776 uint64_t value)
2778 uint64_t offset = 0;
2780 switch (timeridx) {
2781 case GTIMER_VIRT:
2782 case GTIMER_HYPVIRT:
2783 offset = gt_virt_cnt_offset(env);
2784 break;
2787 trace_arm_gt_tval_write(timeridx, value);
2788 env->cp15.c14_timer[timeridx].cval = gt_get_countervalue(env) - offset +
2789 sextract64(value, 0, 32);
2790 gt_recalc_timer(env_archcpu(env), timeridx);
2793 static void gt_ctl_write(CPUARMState *env, const ARMCPRegInfo *ri,
2794 int timeridx,
2795 uint64_t value)
2797 ARMCPU *cpu = env_archcpu(env);
2798 uint32_t oldval = env->cp15.c14_timer[timeridx].ctl;
2800 trace_arm_gt_ctl_write(timeridx, value);
2801 env->cp15.c14_timer[timeridx].ctl = deposit64(oldval, 0, 2, value);
2802 if ((oldval ^ value) & 1) {
2803 /* Enable toggled */
2804 gt_recalc_timer(cpu, timeridx);
2805 } else if ((oldval ^ value) & 2) {
2807 * IMASK toggled: don't need to recalculate,
2808 * just set the interrupt line based on ISTATUS
2810 trace_arm_gt_imask_toggle(timeridx);
2811 gt_update_irq(cpu, timeridx);
2815 static void gt_phys_timer_reset(CPUARMState *env, const ARMCPRegInfo *ri)
2817 gt_timer_reset(env, ri, GTIMER_PHYS);
2820 static void gt_phys_cval_write(CPUARMState *env, const ARMCPRegInfo *ri,
2821 uint64_t value)
2823 gt_cval_write(env, ri, GTIMER_PHYS, value);
2826 static uint64_t gt_phys_tval_read(CPUARMState *env, const ARMCPRegInfo *ri)
2828 return gt_tval_read(env, ri, GTIMER_PHYS);
2831 static void gt_phys_tval_write(CPUARMState *env, const ARMCPRegInfo *ri,
2832 uint64_t value)
2834 gt_tval_write(env, ri, GTIMER_PHYS, value);
2837 static void gt_phys_ctl_write(CPUARMState *env, const ARMCPRegInfo *ri,
2838 uint64_t value)
2840 gt_ctl_write(env, ri, GTIMER_PHYS, value);
2843 static int gt_phys_redir_timeridx(CPUARMState *env)
2845 switch (arm_mmu_idx(env)) {
2846 case ARMMMUIdx_E20_0:
2847 case ARMMMUIdx_E20_2:
2848 case ARMMMUIdx_E20_2_PAN:
2849 return GTIMER_HYP;
2850 default:
2851 return GTIMER_PHYS;
2855 static int gt_virt_redir_timeridx(CPUARMState *env)
2857 switch (arm_mmu_idx(env)) {
2858 case ARMMMUIdx_E20_0:
2859 case ARMMMUIdx_E20_2:
2860 case ARMMMUIdx_E20_2_PAN:
2861 return GTIMER_HYPVIRT;
2862 default:
2863 return GTIMER_VIRT;
2867 static uint64_t gt_phys_redir_cval_read(CPUARMState *env,
2868 const ARMCPRegInfo *ri)
2870 int timeridx = gt_phys_redir_timeridx(env);
2871 return env->cp15.c14_timer[timeridx].cval;
2874 static void gt_phys_redir_cval_write(CPUARMState *env, const ARMCPRegInfo *ri,
2875 uint64_t value)
2877 int timeridx = gt_phys_redir_timeridx(env);
2878 gt_cval_write(env, ri, timeridx, value);
2881 static uint64_t gt_phys_redir_tval_read(CPUARMState *env,
2882 const ARMCPRegInfo *ri)
2884 int timeridx = gt_phys_redir_timeridx(env);
2885 return gt_tval_read(env, ri, timeridx);
2888 static void gt_phys_redir_tval_write(CPUARMState *env, const ARMCPRegInfo *ri,
2889 uint64_t value)
2891 int timeridx = gt_phys_redir_timeridx(env);
2892 gt_tval_write(env, ri, timeridx, value);
2895 static uint64_t gt_phys_redir_ctl_read(CPUARMState *env,
2896 const ARMCPRegInfo *ri)
2898 int timeridx = gt_phys_redir_timeridx(env);
2899 return env->cp15.c14_timer[timeridx].ctl;
2902 static void gt_phys_redir_ctl_write(CPUARMState *env, const ARMCPRegInfo *ri,
2903 uint64_t value)
2905 int timeridx = gt_phys_redir_timeridx(env);
2906 gt_ctl_write(env, ri, timeridx, value);
2909 static void gt_virt_timer_reset(CPUARMState *env, const ARMCPRegInfo *ri)
2911 gt_timer_reset(env, ri, GTIMER_VIRT);
2914 static void gt_virt_cval_write(CPUARMState *env, const ARMCPRegInfo *ri,
2915 uint64_t value)
2917 gt_cval_write(env, ri, GTIMER_VIRT, value);
2920 static uint64_t gt_virt_tval_read(CPUARMState *env, const ARMCPRegInfo *ri)
2922 return gt_tval_read(env, ri, GTIMER_VIRT);
2925 static void gt_virt_tval_write(CPUARMState *env, const ARMCPRegInfo *ri,
2926 uint64_t value)
2928 gt_tval_write(env, ri, GTIMER_VIRT, value);
2931 static void gt_virt_ctl_write(CPUARMState *env, const ARMCPRegInfo *ri,
2932 uint64_t value)
2934 gt_ctl_write(env, ri, GTIMER_VIRT, value);
2937 static void gt_cnthctl_write(CPUARMState *env, const ARMCPRegInfo *ri,
2938 uint64_t value)
2940 ARMCPU *cpu = env_archcpu(env);
2941 uint32_t oldval = env->cp15.cnthctl_el2;
2943 raw_write(env, ri, value);
2945 if ((oldval ^ value) & CNTHCTL_CNTVMASK) {
2946 gt_update_irq(cpu, GTIMER_VIRT);
2947 } else if ((oldval ^ value) & CNTHCTL_CNTPMASK) {
2948 gt_update_irq(cpu, GTIMER_PHYS);
2952 static void gt_cntvoff_write(CPUARMState *env, const ARMCPRegInfo *ri,
2953 uint64_t value)
2955 ARMCPU *cpu = env_archcpu(env);
2957 trace_arm_gt_cntvoff_write(value);
2958 raw_write(env, ri, value);
2959 gt_recalc_timer(cpu, GTIMER_VIRT);
2962 static uint64_t gt_virt_redir_cval_read(CPUARMState *env,
2963 const ARMCPRegInfo *ri)
2965 int timeridx = gt_virt_redir_timeridx(env);
2966 return env->cp15.c14_timer[timeridx].cval;
2969 static void gt_virt_redir_cval_write(CPUARMState *env, const ARMCPRegInfo *ri,
2970 uint64_t value)
2972 int timeridx = gt_virt_redir_timeridx(env);
2973 gt_cval_write(env, ri, timeridx, value);
2976 static uint64_t gt_virt_redir_tval_read(CPUARMState *env,
2977 const ARMCPRegInfo *ri)
2979 int timeridx = gt_virt_redir_timeridx(env);
2980 return gt_tval_read(env, ri, timeridx);
2983 static void gt_virt_redir_tval_write(CPUARMState *env, const ARMCPRegInfo *ri,
2984 uint64_t value)
2986 int timeridx = gt_virt_redir_timeridx(env);
2987 gt_tval_write(env, ri, timeridx, value);
2990 static uint64_t gt_virt_redir_ctl_read(CPUARMState *env,
2991 const ARMCPRegInfo *ri)
2993 int timeridx = gt_virt_redir_timeridx(env);
2994 return env->cp15.c14_timer[timeridx].ctl;
2997 static void gt_virt_redir_ctl_write(CPUARMState *env, const ARMCPRegInfo *ri,
2998 uint64_t value)
3000 int timeridx = gt_virt_redir_timeridx(env);
3001 gt_ctl_write(env, ri, timeridx, value);
3004 static void gt_hyp_timer_reset(CPUARMState *env, const ARMCPRegInfo *ri)
3006 gt_timer_reset(env, ri, GTIMER_HYP);
3009 static void gt_hyp_cval_write(CPUARMState *env, const ARMCPRegInfo *ri,
3010 uint64_t value)
3012 gt_cval_write(env, ri, GTIMER_HYP, value);
3015 static uint64_t gt_hyp_tval_read(CPUARMState *env, const ARMCPRegInfo *ri)
3017 return gt_tval_read(env, ri, GTIMER_HYP);
3020 static void gt_hyp_tval_write(CPUARMState *env, const ARMCPRegInfo *ri,
3021 uint64_t value)
3023 gt_tval_write(env, ri, GTIMER_HYP, value);
3026 static void gt_hyp_ctl_write(CPUARMState *env, const ARMCPRegInfo *ri,
3027 uint64_t value)
3029 gt_ctl_write(env, ri, GTIMER_HYP, value);
3032 static void gt_sec_timer_reset(CPUARMState *env, const ARMCPRegInfo *ri)
3034 gt_timer_reset(env, ri, GTIMER_SEC);
3037 static void gt_sec_cval_write(CPUARMState *env, const ARMCPRegInfo *ri,
3038 uint64_t value)
3040 gt_cval_write(env, ri, GTIMER_SEC, value);
3043 static uint64_t gt_sec_tval_read(CPUARMState *env, const ARMCPRegInfo *ri)
3045 return gt_tval_read(env, ri, GTIMER_SEC);
3048 static void gt_sec_tval_write(CPUARMState *env, const ARMCPRegInfo *ri,
3049 uint64_t value)
3051 gt_tval_write(env, ri, GTIMER_SEC, value);
3054 static void gt_sec_ctl_write(CPUARMState *env, const ARMCPRegInfo *ri,
3055 uint64_t value)
3057 gt_ctl_write(env, ri, GTIMER_SEC, value);
3060 static void gt_hv_timer_reset(CPUARMState *env, const ARMCPRegInfo *ri)
3062 gt_timer_reset(env, ri, GTIMER_HYPVIRT);
3065 static void gt_hv_cval_write(CPUARMState *env, const ARMCPRegInfo *ri,
3066 uint64_t value)
3068 gt_cval_write(env, ri, GTIMER_HYPVIRT, value);
3071 static uint64_t gt_hv_tval_read(CPUARMState *env, const ARMCPRegInfo *ri)
3073 return gt_tval_read(env, ri, GTIMER_HYPVIRT);
3076 static void gt_hv_tval_write(CPUARMState *env, const ARMCPRegInfo *ri,
3077 uint64_t value)
3079 gt_tval_write(env, ri, GTIMER_HYPVIRT, value);
3082 static void gt_hv_ctl_write(CPUARMState *env, const ARMCPRegInfo *ri,
3083 uint64_t value)
3085 gt_ctl_write(env, ri, GTIMER_HYPVIRT, value);
3088 void arm_gt_ptimer_cb(void *opaque)
3090 ARMCPU *cpu = opaque;
3092 gt_recalc_timer(cpu, GTIMER_PHYS);
3095 void arm_gt_vtimer_cb(void *opaque)
3097 ARMCPU *cpu = opaque;
3099 gt_recalc_timer(cpu, GTIMER_VIRT);
3102 void arm_gt_htimer_cb(void *opaque)
3104 ARMCPU *cpu = opaque;
3106 gt_recalc_timer(cpu, GTIMER_HYP);
3109 void arm_gt_stimer_cb(void *opaque)
3111 ARMCPU *cpu = opaque;
3113 gt_recalc_timer(cpu, GTIMER_SEC);
3116 void arm_gt_hvtimer_cb(void *opaque)
3118 ARMCPU *cpu = opaque;
3120 gt_recalc_timer(cpu, GTIMER_HYPVIRT);
3123 static void arm_gt_cntfrq_reset(CPUARMState *env, const ARMCPRegInfo *opaque)
3125 ARMCPU *cpu = env_archcpu(env);
3127 cpu->env.cp15.c14_cntfrq = cpu->gt_cntfrq_hz;
3130 static const ARMCPRegInfo generic_timer_cp_reginfo[] = {
3132 * Note that CNTFRQ is purely reads-as-written for the benefit
3133 * of software; writing it doesn't actually change the timer frequency.
3134 * Our reset value matches the fixed frequency we implement the timer at.
3136 { .name = "CNTFRQ", .cp = 15, .crn = 14, .crm = 0, .opc1 = 0, .opc2 = 0,
3137 .type = ARM_CP_ALIAS,
3138 .access = PL1_RW | PL0_R, .accessfn = gt_cntfrq_access,
3139 .fieldoffset = offsetoflow32(CPUARMState, cp15.c14_cntfrq),
3141 { .name = "CNTFRQ_EL0", .state = ARM_CP_STATE_AA64,
3142 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 0, .opc2 = 0,
3143 .access = PL1_RW | PL0_R, .accessfn = gt_cntfrq_access,
3144 .fieldoffset = offsetof(CPUARMState, cp15.c14_cntfrq),
3145 .resetfn = arm_gt_cntfrq_reset,
3147 /* overall control: mostly access permissions */
3148 { .name = "CNTKCTL", .state = ARM_CP_STATE_BOTH,
3149 .opc0 = 3, .opc1 = 0, .crn = 14, .crm = 1, .opc2 = 0,
3150 .access = PL1_RW,
3151 .fieldoffset = offsetof(CPUARMState, cp15.c14_cntkctl),
3152 .resetvalue = 0,
3154 /* per-timer control */
3155 { .name = "CNTP_CTL", .cp = 15, .crn = 14, .crm = 2, .opc1 = 0, .opc2 = 1,
3156 .secure = ARM_CP_SECSTATE_NS,
3157 .type = ARM_CP_IO | ARM_CP_ALIAS, .access = PL0_RW,
3158 .accessfn = gt_ptimer_access,
3159 .fieldoffset = offsetoflow32(CPUARMState,
3160 cp15.c14_timer[GTIMER_PHYS].ctl),
3161 .readfn = gt_phys_redir_ctl_read, .raw_readfn = raw_read,
3162 .writefn = gt_phys_redir_ctl_write, .raw_writefn = raw_write,
3164 { .name = "CNTP_CTL_S",
3165 .cp = 15, .crn = 14, .crm = 2, .opc1 = 0, .opc2 = 1,
3166 .secure = ARM_CP_SECSTATE_S,
3167 .type = ARM_CP_IO | ARM_CP_ALIAS, .access = PL0_RW,
3168 .accessfn = gt_ptimer_access,
3169 .fieldoffset = offsetoflow32(CPUARMState,
3170 cp15.c14_timer[GTIMER_SEC].ctl),
3171 .writefn = gt_sec_ctl_write, .raw_writefn = raw_write,
3173 { .name = "CNTP_CTL_EL0", .state = ARM_CP_STATE_AA64,
3174 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 2, .opc2 = 1,
3175 .type = ARM_CP_IO, .access = PL0_RW,
3176 .accessfn = gt_ptimer_access,
3177 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_PHYS].ctl),
3178 .resetvalue = 0,
3179 .readfn = gt_phys_redir_ctl_read, .raw_readfn = raw_read,
3180 .writefn = gt_phys_redir_ctl_write, .raw_writefn = raw_write,
3182 { .name = "CNTV_CTL", .cp = 15, .crn = 14, .crm = 3, .opc1 = 0, .opc2 = 1,
3183 .type = ARM_CP_IO | ARM_CP_ALIAS, .access = PL0_RW,
3184 .accessfn = gt_vtimer_access,
3185 .fieldoffset = offsetoflow32(CPUARMState,
3186 cp15.c14_timer[GTIMER_VIRT].ctl),
3187 .readfn = gt_virt_redir_ctl_read, .raw_readfn = raw_read,
3188 .writefn = gt_virt_redir_ctl_write, .raw_writefn = raw_write,
3190 { .name = "CNTV_CTL_EL0", .state = ARM_CP_STATE_AA64,
3191 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 3, .opc2 = 1,
3192 .type = ARM_CP_IO, .access = PL0_RW,
3193 .accessfn = gt_vtimer_access,
3194 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_VIRT].ctl),
3195 .resetvalue = 0,
3196 .readfn = gt_virt_redir_ctl_read, .raw_readfn = raw_read,
3197 .writefn = gt_virt_redir_ctl_write, .raw_writefn = raw_write,
3199 /* TimerValue views: a 32 bit downcounting view of the underlying state */
3200 { .name = "CNTP_TVAL", .cp = 15, .crn = 14, .crm = 2, .opc1 = 0, .opc2 = 0,
3201 .secure = ARM_CP_SECSTATE_NS,
3202 .type = ARM_CP_NO_RAW | ARM_CP_IO, .access = PL0_RW,
3203 .accessfn = gt_ptimer_access,
3204 .readfn = gt_phys_redir_tval_read, .writefn = gt_phys_redir_tval_write,
3206 { .name = "CNTP_TVAL_S",
3207 .cp = 15, .crn = 14, .crm = 2, .opc1 = 0, .opc2 = 0,
3208 .secure = ARM_CP_SECSTATE_S,
3209 .type = ARM_CP_NO_RAW | ARM_CP_IO, .access = PL0_RW,
3210 .accessfn = gt_ptimer_access,
3211 .readfn = gt_sec_tval_read, .writefn = gt_sec_tval_write,
3213 { .name = "CNTP_TVAL_EL0", .state = ARM_CP_STATE_AA64,
3214 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 2, .opc2 = 0,
3215 .type = ARM_CP_NO_RAW | ARM_CP_IO, .access = PL0_RW,
3216 .accessfn = gt_ptimer_access, .resetfn = gt_phys_timer_reset,
3217 .readfn = gt_phys_redir_tval_read, .writefn = gt_phys_redir_tval_write,
3219 { .name = "CNTV_TVAL", .cp = 15, .crn = 14, .crm = 3, .opc1 = 0, .opc2 = 0,
3220 .type = ARM_CP_NO_RAW | ARM_CP_IO, .access = PL0_RW,
3221 .accessfn = gt_vtimer_access,
3222 .readfn = gt_virt_redir_tval_read, .writefn = gt_virt_redir_tval_write,
3224 { .name = "CNTV_TVAL_EL0", .state = ARM_CP_STATE_AA64,
3225 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 3, .opc2 = 0,
3226 .type = ARM_CP_NO_RAW | ARM_CP_IO, .access = PL0_RW,
3227 .accessfn = gt_vtimer_access, .resetfn = gt_virt_timer_reset,
3228 .readfn = gt_virt_redir_tval_read, .writefn = gt_virt_redir_tval_write,
3230 /* The counter itself */
3231 { .name = "CNTPCT", .cp = 15, .crm = 14, .opc1 = 0,
3232 .access = PL0_R, .type = ARM_CP_64BIT | ARM_CP_NO_RAW | ARM_CP_IO,
3233 .accessfn = gt_pct_access,
3234 .readfn = gt_cnt_read, .resetfn = arm_cp_reset_ignore,
3236 { .name = "CNTPCT_EL0", .state = ARM_CP_STATE_AA64,
3237 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 0, .opc2 = 1,
3238 .access = PL0_R, .type = ARM_CP_NO_RAW | ARM_CP_IO,
3239 .accessfn = gt_pct_access, .readfn = gt_cnt_read,
3241 { .name = "CNTVCT", .cp = 15, .crm = 14, .opc1 = 1,
3242 .access = PL0_R, .type = ARM_CP_64BIT | ARM_CP_NO_RAW | ARM_CP_IO,
3243 .accessfn = gt_vct_access,
3244 .readfn = gt_virt_cnt_read, .resetfn = arm_cp_reset_ignore,
3246 { .name = "CNTVCT_EL0", .state = ARM_CP_STATE_AA64,
3247 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 0, .opc2 = 2,
3248 .access = PL0_R, .type = ARM_CP_NO_RAW | ARM_CP_IO,
3249 .accessfn = gt_vct_access, .readfn = gt_virt_cnt_read,
3251 /* Comparison value, indicating when the timer goes off */
3252 { .name = "CNTP_CVAL", .cp = 15, .crm = 14, .opc1 = 2,
3253 .secure = ARM_CP_SECSTATE_NS,
3254 .access = PL0_RW,
3255 .type = ARM_CP_64BIT | ARM_CP_IO | ARM_CP_ALIAS,
3256 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_PHYS].cval),
3257 .accessfn = gt_ptimer_access,
3258 .readfn = gt_phys_redir_cval_read, .raw_readfn = raw_read,
3259 .writefn = gt_phys_redir_cval_write, .raw_writefn = raw_write,
3261 { .name = "CNTP_CVAL_S", .cp = 15, .crm = 14, .opc1 = 2,
3262 .secure = ARM_CP_SECSTATE_S,
3263 .access = PL0_RW,
3264 .type = ARM_CP_64BIT | ARM_CP_IO | ARM_CP_ALIAS,
3265 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_SEC].cval),
3266 .accessfn = gt_ptimer_access,
3267 .writefn = gt_sec_cval_write, .raw_writefn = raw_write,
3269 { .name = "CNTP_CVAL_EL0", .state = ARM_CP_STATE_AA64,
3270 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 2, .opc2 = 2,
3271 .access = PL0_RW,
3272 .type = ARM_CP_IO,
3273 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_PHYS].cval),
3274 .resetvalue = 0, .accessfn = gt_ptimer_access,
3275 .readfn = gt_phys_redir_cval_read, .raw_readfn = raw_read,
3276 .writefn = gt_phys_redir_cval_write, .raw_writefn = raw_write,
3278 { .name = "CNTV_CVAL", .cp = 15, .crm = 14, .opc1 = 3,
3279 .access = PL0_RW,
3280 .type = ARM_CP_64BIT | ARM_CP_IO | ARM_CP_ALIAS,
3281 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_VIRT].cval),
3282 .accessfn = gt_vtimer_access,
3283 .readfn = gt_virt_redir_cval_read, .raw_readfn = raw_read,
3284 .writefn = gt_virt_redir_cval_write, .raw_writefn = raw_write,
3286 { .name = "CNTV_CVAL_EL0", .state = ARM_CP_STATE_AA64,
3287 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 3, .opc2 = 2,
3288 .access = PL0_RW,
3289 .type = ARM_CP_IO,
3290 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_VIRT].cval),
3291 .resetvalue = 0, .accessfn = gt_vtimer_access,
3292 .readfn = gt_virt_redir_cval_read, .raw_readfn = raw_read,
3293 .writefn = gt_virt_redir_cval_write, .raw_writefn = raw_write,
3296 * Secure timer -- this is actually restricted to only EL3
3297 * and configurably Secure-EL1 via the accessfn.
3299 { .name = "CNTPS_TVAL_EL1", .state = ARM_CP_STATE_AA64,
3300 .opc0 = 3, .opc1 = 7, .crn = 14, .crm = 2, .opc2 = 0,
3301 .type = ARM_CP_NO_RAW | ARM_CP_IO, .access = PL1_RW,
3302 .accessfn = gt_stimer_access,
3303 .readfn = gt_sec_tval_read,
3304 .writefn = gt_sec_tval_write,
3305 .resetfn = gt_sec_timer_reset,
3307 { .name = "CNTPS_CTL_EL1", .state = ARM_CP_STATE_AA64,
3308 .opc0 = 3, .opc1 = 7, .crn = 14, .crm = 2, .opc2 = 1,
3309 .type = ARM_CP_IO, .access = PL1_RW,
3310 .accessfn = gt_stimer_access,
3311 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_SEC].ctl),
3312 .resetvalue = 0,
3313 .writefn = gt_sec_ctl_write, .raw_writefn = raw_write,
3315 { .name = "CNTPS_CVAL_EL1", .state = ARM_CP_STATE_AA64,
3316 .opc0 = 3, .opc1 = 7, .crn = 14, .crm = 2, .opc2 = 2,
3317 .type = ARM_CP_IO, .access = PL1_RW,
3318 .accessfn = gt_stimer_access,
3319 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_SEC].cval),
3320 .writefn = gt_sec_cval_write, .raw_writefn = raw_write,
3324 static CPAccessResult e2h_access(CPUARMState *env, const ARMCPRegInfo *ri,
3325 bool isread)
3327 if (!(arm_hcr_el2_eff(env) & HCR_E2H)) {
3328 return CP_ACCESS_TRAP;
3330 return CP_ACCESS_OK;
3333 #else
3336 * In user-mode most of the generic timer registers are inaccessible
3337 * however modern kernels (4.12+) allow access to cntvct_el0
3340 static uint64_t gt_virt_cnt_read(CPUARMState *env, const ARMCPRegInfo *ri)
3342 ARMCPU *cpu = env_archcpu(env);
3345 * Currently we have no support for QEMUTimer in linux-user so we
3346 * can't call gt_get_countervalue(env), instead we directly
3347 * call the lower level functions.
3349 return cpu_get_clock() / gt_cntfrq_period_ns(cpu);
3352 static const ARMCPRegInfo generic_timer_cp_reginfo[] = {
3353 { .name = "CNTFRQ_EL0", .state = ARM_CP_STATE_AA64,
3354 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 0, .opc2 = 0,
3355 .type = ARM_CP_CONST, .access = PL0_R /* no PL1_RW in linux-user */,
3356 .fieldoffset = offsetof(CPUARMState, cp15.c14_cntfrq),
3357 .resetvalue = NANOSECONDS_PER_SECOND / GTIMER_SCALE,
3359 { .name = "CNTVCT_EL0", .state = ARM_CP_STATE_AA64,
3360 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 0, .opc2 = 2,
3361 .access = PL0_R, .type = ARM_CP_NO_RAW | ARM_CP_IO,
3362 .readfn = gt_virt_cnt_read,
3366 #endif
3368 static void par_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value)
3370 if (arm_feature(env, ARM_FEATURE_LPAE)) {
3371 raw_write(env, ri, value);
3372 } else if (arm_feature(env, ARM_FEATURE_V7)) {
3373 raw_write(env, ri, value & 0xfffff6ff);
3374 } else {
3375 raw_write(env, ri, value & 0xfffff1ff);
3379 #ifndef CONFIG_USER_ONLY
3380 /* get_phys_addr() isn't present for user-mode-only targets */
3382 static CPAccessResult ats_access(CPUARMState *env, const ARMCPRegInfo *ri,
3383 bool isread)
3385 if (ri->opc2 & 4) {
3387 * The ATS12NSO* operations must trap to EL3 or EL2 if executed in
3388 * Secure EL1 (which can only happen if EL3 is AArch64).
3389 * They are simply UNDEF if executed from NS EL1.
3390 * They function normally from EL2 or EL3.
3392 if (arm_current_el(env) == 1) {
3393 if (arm_is_secure_below_el3(env)) {
3394 if (env->cp15.scr_el3 & SCR_EEL2) {
3395 return CP_ACCESS_TRAP_EL2;
3397 return CP_ACCESS_TRAP_EL3;
3399 return CP_ACCESS_TRAP_UNCATEGORIZED;
3402 return CP_ACCESS_OK;
3405 #ifdef CONFIG_TCG
3406 static int par_el1_shareability(GetPhysAddrResult *res)
3409 * The PAR_EL1.SH field must be 0b10 for Device or Normal-NC
3410 * memory -- see pseudocode PAREncodeShareability().
3412 if (((res->cacheattrs.attrs & 0xf0) == 0) ||
3413 res->cacheattrs.attrs == 0x44 || res->cacheattrs.attrs == 0x40) {
3414 return 2;
3416 return res->cacheattrs.shareability;
3419 static uint64_t do_ats_write(CPUARMState *env, uint64_t value,
3420 MMUAccessType access_type, ARMMMUIdx mmu_idx,
3421 ARMSecuritySpace ss)
3423 bool ret;
3424 uint64_t par64;
3425 bool format64 = false;
3426 ARMMMUFaultInfo fi = {};
3427 GetPhysAddrResult res = {};
3430 * I_MXTJT: Granule protection checks are not performed on the final address
3431 * of a successful translation.
3433 ret = get_phys_addr_with_space_nogpc(env, value, access_type, mmu_idx, ss,
3434 &res, &fi);
3437 * ATS operations only do S1 or S1+S2 translations, so we never
3438 * have to deal with the ARMCacheAttrs format for S2 only.
3440 assert(!res.cacheattrs.is_s2_format);
3442 if (ret) {
3444 * Some kinds of translation fault must cause exceptions rather
3445 * than being reported in the PAR.
3447 int current_el = arm_current_el(env);
3448 int target_el;
3449 uint32_t syn, fsr, fsc;
3450 bool take_exc = false;
3452 if (fi.s1ptw && current_el == 1
3453 && arm_mmu_idx_is_stage1_of_2(mmu_idx)) {
3455 * Synchronous stage 2 fault on an access made as part of the
3456 * translation table walk for AT S1E0* or AT S1E1* insn
3457 * executed from NS EL1. If this is a synchronous external abort
3458 * and SCR_EL3.EA == 1, then we take a synchronous external abort
3459 * to EL3. Otherwise the fault is taken as an exception to EL2,
3460 * and HPFAR_EL2 holds the faulting IPA.
3462 if (fi.type == ARMFault_SyncExternalOnWalk &&
3463 (env->cp15.scr_el3 & SCR_EA)) {
3464 target_el = 3;
3465 } else {
3466 env->cp15.hpfar_el2 = extract64(fi.s2addr, 12, 47) << 4;
3467 if (arm_is_secure_below_el3(env) && fi.s1ns) {
3468 env->cp15.hpfar_el2 |= HPFAR_NS;
3470 target_el = 2;
3472 take_exc = true;
3473 } else if (fi.type == ARMFault_SyncExternalOnWalk) {
3475 * Synchronous external aborts during a translation table walk
3476 * are taken as Data Abort exceptions.
3478 if (fi.stage2) {
3479 if (current_el == 3) {
3480 target_el = 3;
3481 } else {
3482 target_el = 2;
3484 } else {
3485 target_el = exception_target_el(env);
3487 take_exc = true;
3490 if (take_exc) {
3491 /* Construct FSR and FSC using same logic as arm_deliver_fault() */
3492 if (target_el == 2 || arm_el_is_aa64(env, target_el) ||
3493 arm_s1_regime_using_lpae_format(env, mmu_idx)) {
3494 fsr = arm_fi_to_lfsc(&fi);
3495 fsc = extract32(fsr, 0, 6);
3496 } else {
3497 fsr = arm_fi_to_sfsc(&fi);
3498 fsc = 0x3f;
3501 * Report exception with ESR indicating a fault due to a
3502 * translation table walk for a cache maintenance instruction.
3504 syn = syn_data_abort_no_iss(current_el == target_el, 0,
3505 fi.ea, 1, fi.s1ptw, 1, fsc);
3506 env->exception.vaddress = value;
3507 env->exception.fsr = fsr;
3508 raise_exception(env, EXCP_DATA_ABORT, syn, target_el);
3512 if (is_a64(env)) {
3513 format64 = true;
3514 } else if (arm_feature(env, ARM_FEATURE_LPAE)) {
3516 * ATS1Cxx:
3517 * * TTBCR.EAE determines whether the result is returned using the
3518 * 32-bit or the 64-bit PAR format
3519 * * Instructions executed in Hyp mode always use the 64bit format
3521 * ATS1S2NSOxx uses the 64bit format if any of the following is true:
3522 * * The Non-secure TTBCR.EAE bit is set to 1
3523 * * The implementation includes EL2, and the value of HCR.VM is 1
3525 * (Note that HCR.DC makes HCR.VM behave as if it is 1.)
3527 * ATS1Hx always uses the 64bit format.
3529 format64 = arm_s1_regime_using_lpae_format(env, mmu_idx);
3531 if (arm_feature(env, ARM_FEATURE_EL2)) {
3532 if (mmu_idx == ARMMMUIdx_E10_0 ||
3533 mmu_idx == ARMMMUIdx_E10_1 ||
3534 mmu_idx == ARMMMUIdx_E10_1_PAN) {
3535 format64 |= env->cp15.hcr_el2 & (HCR_VM | HCR_DC);
3536 } else {
3537 format64 |= arm_current_el(env) == 2;
3542 if (format64) {
3543 /* Create a 64-bit PAR */
3544 par64 = (1 << 11); /* LPAE bit always set */
3545 if (!ret) {
3546 par64 |= res.f.phys_addr & ~0xfffULL;
3547 if (!res.f.attrs.secure) {
3548 par64 |= (1 << 9); /* NS */
3550 par64 |= (uint64_t)res.cacheattrs.attrs << 56; /* ATTR */
3551 par64 |= par_el1_shareability(&res) << 7; /* SH */
3552 } else {
3553 uint32_t fsr = arm_fi_to_lfsc(&fi);
3555 par64 |= 1; /* F */
3556 par64 |= (fsr & 0x3f) << 1; /* FS */
3557 if (fi.stage2) {
3558 par64 |= (1 << 9); /* S */
3560 if (fi.s1ptw) {
3561 par64 |= (1 << 8); /* PTW */
3564 } else {
3566 * fsr is a DFSR/IFSR value for the short descriptor
3567 * translation table format (with WnR always clear).
3568 * Convert it to a 32-bit PAR.
3570 if (!ret) {
3571 /* We do not set any attribute bits in the PAR */
3572 if (res.f.lg_page_size == 24
3573 && arm_feature(env, ARM_FEATURE_V7)) {
3574 par64 = (res.f.phys_addr & 0xff000000) | (1 << 1);
3575 } else {
3576 par64 = res.f.phys_addr & 0xfffff000;
3578 if (!res.f.attrs.secure) {
3579 par64 |= (1 << 9); /* NS */
3581 } else {
3582 uint32_t fsr = arm_fi_to_sfsc(&fi);
3584 par64 = ((fsr & (1 << 10)) >> 5) | ((fsr & (1 << 12)) >> 6) |
3585 ((fsr & 0xf) << 1) | 1;
3588 return par64;
3590 #endif /* CONFIG_TCG */
3592 static void ats_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value)
3594 #ifdef CONFIG_TCG
3595 MMUAccessType access_type = ri->opc2 & 1 ? MMU_DATA_STORE : MMU_DATA_LOAD;
3596 uint64_t par64;
3597 ARMMMUIdx mmu_idx;
3598 int el = arm_current_el(env);
3599 ARMSecuritySpace ss = arm_security_space(env);
3601 switch (ri->opc2 & 6) {
3602 case 0:
3603 /* stage 1 current state PL1: ATS1CPR, ATS1CPW, ATS1CPRP, ATS1CPWP */
3604 switch (el) {
3605 case 3:
3606 mmu_idx = ARMMMUIdx_E3;
3607 break;
3608 case 2:
3609 g_assert(ss != ARMSS_Secure); /* ARMv8.4-SecEL2 is 64-bit only */
3610 /* fall through */
3611 case 1:
3612 if (ri->crm == 9 && (env->uncached_cpsr & CPSR_PAN)) {
3613 mmu_idx = ARMMMUIdx_Stage1_E1_PAN;
3614 } else {
3615 mmu_idx = ARMMMUIdx_Stage1_E1;
3617 break;
3618 default:
3619 g_assert_not_reached();
3621 break;
3622 case 2:
3623 /* stage 1 current state PL0: ATS1CUR, ATS1CUW */
3624 switch (el) {
3625 case 3:
3626 mmu_idx = ARMMMUIdx_E10_0;
3627 break;
3628 case 2:
3629 g_assert(ss != ARMSS_Secure); /* ARMv8.4-SecEL2 is 64-bit only */
3630 mmu_idx = ARMMMUIdx_Stage1_E0;
3631 break;
3632 case 1:
3633 mmu_idx = ARMMMUIdx_Stage1_E0;
3634 break;
3635 default:
3636 g_assert_not_reached();
3638 break;
3639 case 4:
3640 /* stage 1+2 NonSecure PL1: ATS12NSOPR, ATS12NSOPW */
3641 mmu_idx = ARMMMUIdx_E10_1;
3642 ss = ARMSS_NonSecure;
3643 break;
3644 case 6:
3645 /* stage 1+2 NonSecure PL0: ATS12NSOUR, ATS12NSOUW */
3646 mmu_idx = ARMMMUIdx_E10_0;
3647 ss = ARMSS_NonSecure;
3648 break;
3649 default:
3650 g_assert_not_reached();
3653 par64 = do_ats_write(env, value, access_type, mmu_idx, ss);
3655 A32_BANKED_CURRENT_REG_SET(env, par, par64);
3656 #else
3657 /* Handled by hardware accelerator. */
3658 g_assert_not_reached();
3659 #endif /* CONFIG_TCG */
3662 static void ats1h_write(CPUARMState *env, const ARMCPRegInfo *ri,
3663 uint64_t value)
3665 #ifdef CONFIG_TCG
3666 MMUAccessType access_type = ri->opc2 & 1 ? MMU_DATA_STORE : MMU_DATA_LOAD;
3667 uint64_t par64;
3669 /* There is no SecureEL2 for AArch32. */
3670 par64 = do_ats_write(env, value, access_type, ARMMMUIdx_E2,
3671 ARMSS_NonSecure);
3673 A32_BANKED_CURRENT_REG_SET(env, par, par64);
3674 #else
3675 /* Handled by hardware accelerator. */
3676 g_assert_not_reached();
3677 #endif /* CONFIG_TCG */
3680 static CPAccessResult at_e012_access(CPUARMState *env, const ARMCPRegInfo *ri,
3681 bool isread)
3684 * R_NYXTL: instruction is UNDEFINED if it applies to an Exception level
3685 * lower than EL3 and the combination SCR_EL3.{NSE,NS} is reserved. This can
3686 * only happen when executing at EL3 because that combination also causes an
3687 * illegal exception return. We don't need to check FEAT_RME either, because
3688 * scr_write() ensures that the NSE bit is not set otherwise.
3690 if ((env->cp15.scr_el3 & (SCR_NSE | SCR_NS)) == SCR_NSE) {
3691 return CP_ACCESS_TRAP;
3693 return CP_ACCESS_OK;
3696 static CPAccessResult at_s1e2_access(CPUARMState *env, const ARMCPRegInfo *ri,
3697 bool isread)
3699 if (arm_current_el(env) == 3 &&
3700 !(env->cp15.scr_el3 & (SCR_NS | SCR_EEL2))) {
3701 return CP_ACCESS_TRAP;
3703 return at_e012_access(env, ri, isread);
3706 static CPAccessResult at_s1e01_access(CPUARMState *env, const ARMCPRegInfo *ri,
3707 bool isread)
3709 if (arm_current_el(env) == 1 && (arm_hcr_el2_eff(env) & HCR_AT)) {
3710 return CP_ACCESS_TRAP_EL2;
3712 return at_e012_access(env, ri, isread);
3715 static void ats_write64(CPUARMState *env, const ARMCPRegInfo *ri,
3716 uint64_t value)
3718 #ifdef CONFIG_TCG
3719 MMUAccessType access_type = ri->opc2 & 1 ? MMU_DATA_STORE : MMU_DATA_LOAD;
3720 ARMMMUIdx mmu_idx;
3721 uint64_t hcr_el2 = arm_hcr_el2_eff(env);
3722 bool regime_e20 = (hcr_el2 & (HCR_E2H | HCR_TGE)) == (HCR_E2H | HCR_TGE);
3724 switch (ri->opc2 & 6) {
3725 case 0:
3726 switch (ri->opc1) {
3727 case 0: /* AT S1E1R, AT S1E1W, AT S1E1RP, AT S1E1WP */
3728 if (ri->crm == 9 && (env->pstate & PSTATE_PAN)) {
3729 mmu_idx = regime_e20 ?
3730 ARMMMUIdx_E20_2_PAN : ARMMMUIdx_Stage1_E1_PAN;
3731 } else {
3732 mmu_idx = regime_e20 ? ARMMMUIdx_E20_2 : ARMMMUIdx_Stage1_E1;
3734 break;
3735 case 4: /* AT S1E2R, AT S1E2W */
3736 mmu_idx = hcr_el2 & HCR_E2H ? ARMMMUIdx_E20_2 : ARMMMUIdx_E2;
3737 break;
3738 case 6: /* AT S1E3R, AT S1E3W */
3739 mmu_idx = ARMMMUIdx_E3;
3740 break;
3741 default:
3742 g_assert_not_reached();
3744 break;
3745 case 2: /* AT S1E0R, AT S1E0W */
3746 mmu_idx = regime_e20 ? ARMMMUIdx_E20_0 : ARMMMUIdx_Stage1_E0;
3747 break;
3748 case 4: /* AT S12E1R, AT S12E1W */
3749 mmu_idx = regime_e20 ? ARMMMUIdx_E20_2 : ARMMMUIdx_E10_1;
3750 break;
3751 case 6: /* AT S12E0R, AT S12E0W */
3752 mmu_idx = regime_e20 ? ARMMMUIdx_E20_0 : ARMMMUIdx_E10_0;
3753 break;
3754 default:
3755 g_assert_not_reached();
3758 env->cp15.par_el[1] = do_ats_write(env, value, access_type,
3759 mmu_idx, arm_security_space(env));
3760 #else
3761 /* Handled by hardware accelerator. */
3762 g_assert_not_reached();
3763 #endif /* CONFIG_TCG */
3765 #endif
3767 /* Return basic MPU access permission bits. */
3768 static uint32_t simple_mpu_ap_bits(uint32_t val)
3770 uint32_t ret;
3771 uint32_t mask;
3772 int i;
3773 ret = 0;
3774 mask = 3;
3775 for (i = 0; i < 16; i += 2) {
3776 ret |= (val >> i) & mask;
3777 mask <<= 2;
3779 return ret;
3782 /* Pad basic MPU access permission bits to extended format. */
3783 static uint32_t extended_mpu_ap_bits(uint32_t val)
3785 uint32_t ret;
3786 uint32_t mask;
3787 int i;
3788 ret = 0;
3789 mask = 3;
3790 for (i = 0; i < 16; i += 2) {
3791 ret |= (val & mask) << i;
3792 mask <<= 2;
3794 return ret;
3797 static void pmsav5_data_ap_write(CPUARMState *env, const ARMCPRegInfo *ri,
3798 uint64_t value)
3800 env->cp15.pmsav5_data_ap = extended_mpu_ap_bits(value);
3803 static uint64_t pmsav5_data_ap_read(CPUARMState *env, const ARMCPRegInfo *ri)
3805 return simple_mpu_ap_bits(env->cp15.pmsav5_data_ap);
3808 static void pmsav5_insn_ap_write(CPUARMState *env, const ARMCPRegInfo *ri,
3809 uint64_t value)
3811 env->cp15.pmsav5_insn_ap = extended_mpu_ap_bits(value);
3814 static uint64_t pmsav5_insn_ap_read(CPUARMState *env, const ARMCPRegInfo *ri)
3816 return simple_mpu_ap_bits(env->cp15.pmsav5_insn_ap);
3819 static uint64_t pmsav7_read(CPUARMState *env, const ARMCPRegInfo *ri)
3821 uint32_t *u32p = *(uint32_t **)raw_ptr(env, ri);
3823 if (!u32p) {
3824 return 0;
3827 u32p += env->pmsav7.rnr[M_REG_NS];
3828 return *u32p;
3831 static void pmsav7_write(CPUARMState *env, const ARMCPRegInfo *ri,
3832 uint64_t value)
3834 ARMCPU *cpu = env_archcpu(env);
3835 uint32_t *u32p = *(uint32_t **)raw_ptr(env, ri);
3837 if (!u32p) {
3838 return;
3841 u32p += env->pmsav7.rnr[M_REG_NS];
3842 tlb_flush(CPU(cpu)); /* Mappings may have changed - purge! */
3843 *u32p = value;
3846 static void pmsav7_rgnr_write(CPUARMState *env, const ARMCPRegInfo *ri,
3847 uint64_t value)
3849 ARMCPU *cpu = env_archcpu(env);
3850 uint32_t nrgs = cpu->pmsav7_dregion;
3852 if (value >= nrgs) {
3853 qemu_log_mask(LOG_GUEST_ERROR,
3854 "PMSAv7 RGNR write >= # supported regions, %" PRIu32
3855 " > %" PRIu32 "\n", (uint32_t)value, nrgs);
3856 return;
3859 raw_write(env, ri, value);
3862 static void prbar_write(CPUARMState *env, const ARMCPRegInfo *ri,
3863 uint64_t value)
3865 ARMCPU *cpu = env_archcpu(env);
3867 tlb_flush(CPU(cpu)); /* Mappings may have changed - purge! */
3868 env->pmsav8.rbar[M_REG_NS][env->pmsav7.rnr[M_REG_NS]] = value;
3871 static uint64_t prbar_read(CPUARMState *env, const ARMCPRegInfo *ri)
3873 return env->pmsav8.rbar[M_REG_NS][env->pmsav7.rnr[M_REG_NS]];
3876 static void prlar_write(CPUARMState *env, const ARMCPRegInfo *ri,
3877 uint64_t value)
3879 ARMCPU *cpu = env_archcpu(env);
3881 tlb_flush(CPU(cpu)); /* Mappings may have changed - purge! */
3882 env->pmsav8.rlar[M_REG_NS][env->pmsav7.rnr[M_REG_NS]] = value;
3885 static uint64_t prlar_read(CPUARMState *env, const ARMCPRegInfo *ri)
3887 return env->pmsav8.rlar[M_REG_NS][env->pmsav7.rnr[M_REG_NS]];
3890 static void prselr_write(CPUARMState *env, const ARMCPRegInfo *ri,
3891 uint64_t value)
3893 ARMCPU *cpu = env_archcpu(env);
3896 * Ignore writes that would select not implemented region.
3897 * This is architecturally UNPREDICTABLE.
3899 if (value >= cpu->pmsav7_dregion) {
3900 return;
3903 env->pmsav7.rnr[M_REG_NS] = value;
3906 static void hprbar_write(CPUARMState *env, const ARMCPRegInfo *ri,
3907 uint64_t value)
3909 ARMCPU *cpu = env_archcpu(env);
3911 tlb_flush(CPU(cpu)); /* Mappings may have changed - purge! */
3912 env->pmsav8.hprbar[env->pmsav8.hprselr] = value;
3915 static uint64_t hprbar_read(CPUARMState *env, const ARMCPRegInfo *ri)
3917 return env->pmsav8.hprbar[env->pmsav8.hprselr];
3920 static void hprlar_write(CPUARMState *env, const ARMCPRegInfo *ri,
3921 uint64_t value)
3923 ARMCPU *cpu = env_archcpu(env);
3925 tlb_flush(CPU(cpu)); /* Mappings may have changed - purge! */
3926 env->pmsav8.hprlar[env->pmsav8.hprselr] = value;
3929 static uint64_t hprlar_read(CPUARMState *env, const ARMCPRegInfo *ri)
3931 return env->pmsav8.hprlar[env->pmsav8.hprselr];
3934 static void hprenr_write(CPUARMState *env, const ARMCPRegInfo *ri,
3935 uint64_t value)
3937 uint32_t n;
3938 uint32_t bit;
3939 ARMCPU *cpu = env_archcpu(env);
3941 /* Ignore writes to unimplemented regions */
3942 int rmax = MIN(cpu->pmsav8r_hdregion, 32);
3943 value &= MAKE_64BIT_MASK(0, rmax);
3945 tlb_flush(CPU(cpu)); /* Mappings may have changed - purge! */
3947 /* Register alias is only valid for first 32 indexes */
3948 for (n = 0; n < rmax; ++n) {
3949 bit = extract32(value, n, 1);
3950 env->pmsav8.hprlar[n] = deposit32(
3951 env->pmsav8.hprlar[n], 0, 1, bit);
3955 static uint64_t hprenr_read(CPUARMState *env, const ARMCPRegInfo *ri)
3957 uint32_t n;
3958 uint32_t result = 0x0;
3959 ARMCPU *cpu = env_archcpu(env);
3961 /* Register alias is only valid for first 32 indexes */
3962 for (n = 0; n < MIN(cpu->pmsav8r_hdregion, 32); ++n) {
3963 if (env->pmsav8.hprlar[n] & 0x1) {
3964 result |= (0x1 << n);
3967 return result;
3970 static void hprselr_write(CPUARMState *env, const ARMCPRegInfo *ri,
3971 uint64_t value)
3973 ARMCPU *cpu = env_archcpu(env);
3976 * Ignore writes that would select not implemented region.
3977 * This is architecturally UNPREDICTABLE.
3979 if (value >= cpu->pmsav8r_hdregion) {
3980 return;
3983 env->pmsav8.hprselr = value;
3986 static void pmsav8r_regn_write(CPUARMState *env, const ARMCPRegInfo *ri,
3987 uint64_t value)
3989 ARMCPU *cpu = env_archcpu(env);
3990 uint8_t index = (extract32(ri->opc0, 0, 1) << 4) |
3991 (extract32(ri->crm, 0, 3) << 1) | extract32(ri->opc2, 2, 1);
3993 tlb_flush(CPU(cpu)); /* Mappings may have changed - purge! */
3995 if (ri->opc1 & 4) {
3996 if (index >= cpu->pmsav8r_hdregion) {
3997 return;
3999 if (ri->opc2 & 0x1) {
4000 env->pmsav8.hprlar[index] = value;
4001 } else {
4002 env->pmsav8.hprbar[index] = value;
4004 } else {
4005 if (index >= cpu->pmsav7_dregion) {
4006 return;
4008 if (ri->opc2 & 0x1) {
4009 env->pmsav8.rlar[M_REG_NS][index] = value;
4010 } else {
4011 env->pmsav8.rbar[M_REG_NS][index] = value;
4016 static uint64_t pmsav8r_regn_read(CPUARMState *env, const ARMCPRegInfo *ri)
4018 ARMCPU *cpu = env_archcpu(env);
4019 uint8_t index = (extract32(ri->opc0, 0, 1) << 4) |
4020 (extract32(ri->crm, 0, 3) << 1) | extract32(ri->opc2, 2, 1);
4022 if (ri->opc1 & 4) {
4023 if (index >= cpu->pmsav8r_hdregion) {
4024 return 0x0;
4026 if (ri->opc2 & 0x1) {
4027 return env->pmsav8.hprlar[index];
4028 } else {
4029 return env->pmsav8.hprbar[index];
4031 } else {
4032 if (index >= cpu->pmsav7_dregion) {
4033 return 0x0;
4035 if (ri->opc2 & 0x1) {
4036 return env->pmsav8.rlar[M_REG_NS][index];
4037 } else {
4038 return env->pmsav8.rbar[M_REG_NS][index];
4043 static const ARMCPRegInfo pmsav8r_cp_reginfo[] = {
4044 { .name = "PRBAR",
4045 .cp = 15, .opc1 = 0, .crn = 6, .crm = 3, .opc2 = 0,
4046 .access = PL1_RW, .type = ARM_CP_NO_RAW,
4047 .accessfn = access_tvm_trvm,
4048 .readfn = prbar_read, .writefn = prbar_write },
4049 { .name = "PRLAR",
4050 .cp = 15, .opc1 = 0, .crn = 6, .crm = 3, .opc2 = 1,
4051 .access = PL1_RW, .type = ARM_CP_NO_RAW,
4052 .accessfn = access_tvm_trvm,
4053 .readfn = prlar_read, .writefn = prlar_write },
4054 { .name = "PRSELR", .resetvalue = 0,
4055 .cp = 15, .opc1 = 0, .crn = 6, .crm = 2, .opc2 = 1,
4056 .access = PL1_RW, .accessfn = access_tvm_trvm,
4057 .writefn = prselr_write,
4058 .fieldoffset = offsetof(CPUARMState, pmsav7.rnr[M_REG_NS]) },
4059 { .name = "HPRBAR", .resetvalue = 0,
4060 .cp = 15, .opc1 = 4, .crn = 6, .crm = 3, .opc2 = 0,
4061 .access = PL2_RW, .type = ARM_CP_NO_RAW,
4062 .readfn = hprbar_read, .writefn = hprbar_write },
4063 { .name = "HPRLAR",
4064 .cp = 15, .opc1 = 4, .crn = 6, .crm = 3, .opc2 = 1,
4065 .access = PL2_RW, .type = ARM_CP_NO_RAW,
4066 .readfn = hprlar_read, .writefn = hprlar_write },
4067 { .name = "HPRSELR", .resetvalue = 0,
4068 .cp = 15, .opc1 = 4, .crn = 6, .crm = 2, .opc2 = 1,
4069 .access = PL2_RW,
4070 .writefn = hprselr_write,
4071 .fieldoffset = offsetof(CPUARMState, pmsav8.hprselr) },
4072 { .name = "HPRENR",
4073 .cp = 15, .opc1 = 4, .crn = 6, .crm = 1, .opc2 = 1,
4074 .access = PL2_RW, .type = ARM_CP_NO_RAW,
4075 .readfn = hprenr_read, .writefn = hprenr_write },
4078 static const ARMCPRegInfo pmsav7_cp_reginfo[] = {
4080 * Reset for all these registers is handled in arm_cpu_reset(),
4081 * because the PMSAv7 is also used by M-profile CPUs, which do
4082 * not register cpregs but still need the state to be reset.
4084 { .name = "DRBAR", .cp = 15, .crn = 6, .opc1 = 0, .crm = 1, .opc2 = 0,
4085 .access = PL1_RW, .type = ARM_CP_NO_RAW,
4086 .fieldoffset = offsetof(CPUARMState, pmsav7.drbar),
4087 .readfn = pmsav7_read, .writefn = pmsav7_write,
4088 .resetfn = arm_cp_reset_ignore },
4089 { .name = "DRSR", .cp = 15, .crn = 6, .opc1 = 0, .crm = 1, .opc2 = 2,
4090 .access = PL1_RW, .type = ARM_CP_NO_RAW,
4091 .fieldoffset = offsetof(CPUARMState, pmsav7.drsr),
4092 .readfn = pmsav7_read, .writefn = pmsav7_write,
4093 .resetfn = arm_cp_reset_ignore },
4094 { .name = "DRACR", .cp = 15, .crn = 6, .opc1 = 0, .crm = 1, .opc2 = 4,
4095 .access = PL1_RW, .type = ARM_CP_NO_RAW,
4096 .fieldoffset = offsetof(CPUARMState, pmsav7.dracr),
4097 .readfn = pmsav7_read, .writefn = pmsav7_write,
4098 .resetfn = arm_cp_reset_ignore },
4099 { .name = "RGNR", .cp = 15, .crn = 6, .opc1 = 0, .crm = 2, .opc2 = 0,
4100 .access = PL1_RW,
4101 .fieldoffset = offsetof(CPUARMState, pmsav7.rnr[M_REG_NS]),
4102 .writefn = pmsav7_rgnr_write,
4103 .resetfn = arm_cp_reset_ignore },
4106 static const ARMCPRegInfo pmsav5_cp_reginfo[] = {
4107 { .name = "DATA_AP", .cp = 15, .crn = 5, .crm = 0, .opc1 = 0, .opc2 = 0,
4108 .access = PL1_RW, .type = ARM_CP_ALIAS,
4109 .fieldoffset = offsetof(CPUARMState, cp15.pmsav5_data_ap),
4110 .readfn = pmsav5_data_ap_read, .writefn = pmsav5_data_ap_write, },
4111 { .name = "INSN_AP", .cp = 15, .crn = 5, .crm = 0, .opc1 = 0, .opc2 = 1,
4112 .access = PL1_RW, .type = ARM_CP_ALIAS,
4113 .fieldoffset = offsetof(CPUARMState, cp15.pmsav5_insn_ap),
4114 .readfn = pmsav5_insn_ap_read, .writefn = pmsav5_insn_ap_write, },
4115 { .name = "DATA_EXT_AP", .cp = 15, .crn = 5, .crm = 0, .opc1 = 0, .opc2 = 2,
4116 .access = PL1_RW,
4117 .fieldoffset = offsetof(CPUARMState, cp15.pmsav5_data_ap),
4118 .resetvalue = 0, },
4119 { .name = "INSN_EXT_AP", .cp = 15, .crn = 5, .crm = 0, .opc1 = 0, .opc2 = 3,
4120 .access = PL1_RW,
4121 .fieldoffset = offsetof(CPUARMState, cp15.pmsav5_insn_ap),
4122 .resetvalue = 0, },
4123 { .name = "DCACHE_CFG", .cp = 15, .crn = 2, .crm = 0, .opc1 = 0, .opc2 = 0,
4124 .access = PL1_RW,
4125 .fieldoffset = offsetof(CPUARMState, cp15.c2_data), .resetvalue = 0, },
4126 { .name = "ICACHE_CFG", .cp = 15, .crn = 2, .crm = 0, .opc1 = 0, .opc2 = 1,
4127 .access = PL1_RW,
4128 .fieldoffset = offsetof(CPUARMState, cp15.c2_insn), .resetvalue = 0, },
4129 /* Protection region base and size registers */
4130 { .name = "946_PRBS0", .cp = 15, .crn = 6, .crm = 0, .opc1 = 0,
4131 .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0,
4132 .fieldoffset = offsetof(CPUARMState, cp15.c6_region[0]) },
4133 { .name = "946_PRBS1", .cp = 15, .crn = 6, .crm = 1, .opc1 = 0,
4134 .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0,
4135 .fieldoffset = offsetof(CPUARMState, cp15.c6_region[1]) },
4136 { .name = "946_PRBS2", .cp = 15, .crn = 6, .crm = 2, .opc1 = 0,
4137 .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0,
4138 .fieldoffset = offsetof(CPUARMState, cp15.c6_region[2]) },
4139 { .name = "946_PRBS3", .cp = 15, .crn = 6, .crm = 3, .opc1 = 0,
4140 .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0,
4141 .fieldoffset = offsetof(CPUARMState, cp15.c6_region[3]) },
4142 { .name = "946_PRBS4", .cp = 15, .crn = 6, .crm = 4, .opc1 = 0,
4143 .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0,
4144 .fieldoffset = offsetof(CPUARMState, cp15.c6_region[4]) },
4145 { .name = "946_PRBS5", .cp = 15, .crn = 6, .crm = 5, .opc1 = 0,
4146 .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0,
4147 .fieldoffset = offsetof(CPUARMState, cp15.c6_region[5]) },
4148 { .name = "946_PRBS6", .cp = 15, .crn = 6, .crm = 6, .opc1 = 0,
4149 .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0,
4150 .fieldoffset = offsetof(CPUARMState, cp15.c6_region[6]) },
4151 { .name = "946_PRBS7", .cp = 15, .crn = 6, .crm = 7, .opc1 = 0,
4152 .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0,
4153 .fieldoffset = offsetof(CPUARMState, cp15.c6_region[7]) },
4156 static void vmsa_ttbcr_write(CPUARMState *env, const ARMCPRegInfo *ri,
4157 uint64_t value)
4159 ARMCPU *cpu = env_archcpu(env);
4161 if (!arm_feature(env, ARM_FEATURE_V8)) {
4162 if (arm_feature(env, ARM_FEATURE_LPAE) && (value & TTBCR_EAE)) {
4164 * Pre ARMv8 bits [21:19], [15:14] and [6:3] are UNK/SBZP when
4165 * using Long-descriptor translation table format
4167 value &= ~((7 << 19) | (3 << 14) | (0xf << 3));
4168 } else if (arm_feature(env, ARM_FEATURE_EL3)) {
4170 * In an implementation that includes the Security Extensions
4171 * TTBCR has additional fields PD0 [4] and PD1 [5] for
4172 * Short-descriptor translation table format.
4174 value &= TTBCR_PD1 | TTBCR_PD0 | TTBCR_N;
4175 } else {
4176 value &= TTBCR_N;
4180 if (arm_feature(env, ARM_FEATURE_LPAE)) {
4182 * With LPAE the TTBCR could result in a change of ASID
4183 * via the TTBCR.A1 bit, so do a TLB flush.
4185 tlb_flush(CPU(cpu));
4187 raw_write(env, ri, value);
4190 static void vmsa_tcr_el12_write(CPUARMState *env, const ARMCPRegInfo *ri,
4191 uint64_t value)
4193 ARMCPU *cpu = env_archcpu(env);
4195 /* For AArch64 the A1 bit could result in a change of ASID, so TLB flush. */
4196 tlb_flush(CPU(cpu));
4197 raw_write(env, ri, value);
4200 static void vmsa_ttbr_write(CPUARMState *env, const ARMCPRegInfo *ri,
4201 uint64_t value)
4203 /* If the ASID changes (with a 64-bit write), we must flush the TLB. */
4204 if (cpreg_field_is_64bit(ri) &&
4205 extract64(raw_read(env, ri) ^ value, 48, 16) != 0) {
4206 ARMCPU *cpu = env_archcpu(env);
4207 tlb_flush(CPU(cpu));
4209 raw_write(env, ri, value);
4212 static void vmsa_tcr_ttbr_el2_write(CPUARMState *env, const ARMCPRegInfo *ri,
4213 uint64_t value)
4216 * If we are running with E2&0 regime, then an ASID is active.
4217 * Flush if that might be changing. Note we're not checking
4218 * TCR_EL2.A1 to know if this is really the TTBRx_EL2 that
4219 * holds the active ASID, only checking the field that might.
4221 if (extract64(raw_read(env, ri) ^ value, 48, 16) &&
4222 (arm_hcr_el2_eff(env) & HCR_E2H)) {
4223 uint16_t mask = ARMMMUIdxBit_E20_2 |
4224 ARMMMUIdxBit_E20_2_PAN |
4225 ARMMMUIdxBit_E20_0;
4226 tlb_flush_by_mmuidx(env_cpu(env), mask);
4228 raw_write(env, ri, value);
4231 static void vttbr_write(CPUARMState *env, const ARMCPRegInfo *ri,
4232 uint64_t value)
4234 ARMCPU *cpu = env_archcpu(env);
4235 CPUState *cs = CPU(cpu);
4238 * A change in VMID to the stage2 page table (Stage2) invalidates
4239 * the stage2 and combined stage 1&2 tlbs (EL10_1 and EL10_0).
4241 if (extract64(raw_read(env, ri) ^ value, 48, 16) != 0) {
4242 tlb_flush_by_mmuidx(cs, alle1_tlbmask(env));
4244 raw_write(env, ri, value);
4247 static const ARMCPRegInfo vmsa_pmsa_cp_reginfo[] = {
4248 { .name = "DFSR", .cp = 15, .crn = 5, .crm = 0, .opc1 = 0, .opc2 = 0,
4249 .access = PL1_RW, .accessfn = access_tvm_trvm, .type = ARM_CP_ALIAS,
4250 .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.dfsr_s),
4251 offsetoflow32(CPUARMState, cp15.dfsr_ns) }, },
4252 { .name = "IFSR", .cp = 15, .crn = 5, .crm = 0, .opc1 = 0, .opc2 = 1,
4253 .access = PL1_RW, .accessfn = access_tvm_trvm, .resetvalue = 0,
4254 .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.ifsr_s),
4255 offsetoflow32(CPUARMState, cp15.ifsr_ns) } },
4256 { .name = "DFAR", .cp = 15, .opc1 = 0, .crn = 6, .crm = 0, .opc2 = 0,
4257 .access = PL1_RW, .accessfn = access_tvm_trvm, .resetvalue = 0,
4258 .bank_fieldoffsets = { offsetof(CPUARMState, cp15.dfar_s),
4259 offsetof(CPUARMState, cp15.dfar_ns) } },
4260 { .name = "FAR_EL1", .state = ARM_CP_STATE_AA64,
4261 .opc0 = 3, .crn = 6, .crm = 0, .opc1 = 0, .opc2 = 0,
4262 .access = PL1_RW, .accessfn = access_tvm_trvm,
4263 .fgt = FGT_FAR_EL1,
4264 .fieldoffset = offsetof(CPUARMState, cp15.far_el[1]),
4265 .resetvalue = 0, },
4268 static const ARMCPRegInfo vmsa_cp_reginfo[] = {
4269 { .name = "ESR_EL1", .state = ARM_CP_STATE_AA64,
4270 .opc0 = 3, .crn = 5, .crm = 2, .opc1 = 0, .opc2 = 0,
4271 .access = PL1_RW, .accessfn = access_tvm_trvm,
4272 .fgt = FGT_ESR_EL1,
4273 .fieldoffset = offsetof(CPUARMState, cp15.esr_el[1]), .resetvalue = 0, },
4274 { .name = "TTBR0_EL1", .state = ARM_CP_STATE_BOTH,
4275 .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 0, .opc2 = 0,
4276 .access = PL1_RW, .accessfn = access_tvm_trvm,
4277 .fgt = FGT_TTBR0_EL1,
4278 .writefn = vmsa_ttbr_write, .resetvalue = 0, .raw_writefn = raw_write,
4279 .bank_fieldoffsets = { offsetof(CPUARMState, cp15.ttbr0_s),
4280 offsetof(CPUARMState, cp15.ttbr0_ns) } },
4281 { .name = "TTBR1_EL1", .state = ARM_CP_STATE_BOTH,
4282 .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 0, .opc2 = 1,
4283 .access = PL1_RW, .accessfn = access_tvm_trvm,
4284 .fgt = FGT_TTBR1_EL1,
4285 .writefn = vmsa_ttbr_write, .resetvalue = 0, .raw_writefn = raw_write,
4286 .bank_fieldoffsets = { offsetof(CPUARMState, cp15.ttbr1_s),
4287 offsetof(CPUARMState, cp15.ttbr1_ns) } },
4288 { .name = "TCR_EL1", .state = ARM_CP_STATE_AA64,
4289 .opc0 = 3, .crn = 2, .crm = 0, .opc1 = 0, .opc2 = 2,
4290 .access = PL1_RW, .accessfn = access_tvm_trvm,
4291 .fgt = FGT_TCR_EL1,
4292 .writefn = vmsa_tcr_el12_write,
4293 .raw_writefn = raw_write,
4294 .resetvalue = 0,
4295 .fieldoffset = offsetof(CPUARMState, cp15.tcr_el[1]) },
4296 { .name = "TTBCR", .cp = 15, .crn = 2, .crm = 0, .opc1 = 0, .opc2 = 2,
4297 .access = PL1_RW, .accessfn = access_tvm_trvm,
4298 .type = ARM_CP_ALIAS, .writefn = vmsa_ttbcr_write,
4299 .raw_writefn = raw_write,
4300 .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.tcr_el[3]),
4301 offsetoflow32(CPUARMState, cp15.tcr_el[1])} },
4305 * Note that unlike TTBCR, writing to TTBCR2 does not require flushing
4306 * qemu tlbs nor adjusting cached masks.
4308 static const ARMCPRegInfo ttbcr2_reginfo = {
4309 .name = "TTBCR2", .cp = 15, .opc1 = 0, .crn = 2, .crm = 0, .opc2 = 3,
4310 .access = PL1_RW, .accessfn = access_tvm_trvm,
4311 .type = ARM_CP_ALIAS,
4312 .bank_fieldoffsets = {
4313 offsetofhigh32(CPUARMState, cp15.tcr_el[3]),
4314 offsetofhigh32(CPUARMState, cp15.tcr_el[1]),
4318 static void omap_ticonfig_write(CPUARMState *env, const ARMCPRegInfo *ri,
4319 uint64_t value)
4321 env->cp15.c15_ticonfig = value & 0xe7;
4322 /* The OS_TYPE bit in this register changes the reported CPUID! */
4323 env->cp15.c0_cpuid = (value & (1 << 5)) ?
4324 ARM_CPUID_TI915T : ARM_CPUID_TI925T;
4327 static void omap_threadid_write(CPUARMState *env, const ARMCPRegInfo *ri,
4328 uint64_t value)
4330 env->cp15.c15_threadid = value & 0xffff;
4333 static void omap_wfi_write(CPUARMState *env, const ARMCPRegInfo *ri,
4334 uint64_t value)
4336 /* Wait-for-interrupt (deprecated) */
4337 cpu_interrupt(env_cpu(env), CPU_INTERRUPT_HALT);
4340 static void omap_cachemaint_write(CPUARMState *env, const ARMCPRegInfo *ri,
4341 uint64_t value)
4344 * On OMAP there are registers indicating the max/min index of dcache lines
4345 * containing a dirty line; cache flush operations have to reset these.
4347 env->cp15.c15_i_max = 0x000;
4348 env->cp15.c15_i_min = 0xff0;
4351 static const ARMCPRegInfo omap_cp_reginfo[] = {
4352 { .name = "DFSR", .cp = 15, .crn = 5, .crm = CP_ANY,
4353 .opc1 = CP_ANY, .opc2 = CP_ANY, .access = PL1_RW, .type = ARM_CP_OVERRIDE,
4354 .fieldoffset = offsetoflow32(CPUARMState, cp15.esr_el[1]),
4355 .resetvalue = 0, },
4356 { .name = "", .cp = 15, .crn = 15, .crm = 0, .opc1 = 0, .opc2 = 0,
4357 .access = PL1_RW, .type = ARM_CP_NOP },
4358 { .name = "TICONFIG", .cp = 15, .crn = 15, .crm = 1, .opc1 = 0, .opc2 = 0,
4359 .access = PL1_RW,
4360 .fieldoffset = offsetof(CPUARMState, cp15.c15_ticonfig), .resetvalue = 0,
4361 .writefn = omap_ticonfig_write },
4362 { .name = "IMAX", .cp = 15, .crn = 15, .crm = 2, .opc1 = 0, .opc2 = 0,
4363 .access = PL1_RW,
4364 .fieldoffset = offsetof(CPUARMState, cp15.c15_i_max), .resetvalue = 0, },
4365 { .name = "IMIN", .cp = 15, .crn = 15, .crm = 3, .opc1 = 0, .opc2 = 0,
4366 .access = PL1_RW, .resetvalue = 0xff0,
4367 .fieldoffset = offsetof(CPUARMState, cp15.c15_i_min) },
4368 { .name = "THREADID", .cp = 15, .crn = 15, .crm = 4, .opc1 = 0, .opc2 = 0,
4369 .access = PL1_RW,
4370 .fieldoffset = offsetof(CPUARMState, cp15.c15_threadid), .resetvalue = 0,
4371 .writefn = omap_threadid_write },
4372 { .name = "TI925T_STATUS", .cp = 15, .crn = 15,
4373 .crm = 8, .opc1 = 0, .opc2 = 0, .access = PL1_RW,
4374 .type = ARM_CP_NO_RAW,
4375 .readfn = arm_cp_read_zero, .writefn = omap_wfi_write, },
4377 * TODO: Peripheral port remap register:
4378 * On OMAP2 mcr p15, 0, rn, c15, c2, 4 sets up the interrupt controller
4379 * base address at $rn & ~0xfff and map size of 0x200 << ($rn & 0xfff),
4380 * when MMU is off.
4382 { .name = "OMAP_CACHEMAINT", .cp = 15, .crn = 7, .crm = CP_ANY,
4383 .opc1 = 0, .opc2 = CP_ANY, .access = PL1_W,
4384 .type = ARM_CP_OVERRIDE | ARM_CP_NO_RAW,
4385 .writefn = omap_cachemaint_write },
4386 { .name = "C9", .cp = 15, .crn = 9,
4387 .crm = CP_ANY, .opc1 = CP_ANY, .opc2 = CP_ANY, .access = PL1_RW,
4388 .type = ARM_CP_CONST | ARM_CP_OVERRIDE, .resetvalue = 0 },
4391 static void xscale_cpar_write(CPUARMState *env, const ARMCPRegInfo *ri,
4392 uint64_t value)
4394 env->cp15.c15_cpar = value & 0x3fff;
4397 static const ARMCPRegInfo xscale_cp_reginfo[] = {
4398 { .name = "XSCALE_CPAR",
4399 .cp = 15, .crn = 15, .crm = 1, .opc1 = 0, .opc2 = 0, .access = PL1_RW,
4400 .fieldoffset = offsetof(CPUARMState, cp15.c15_cpar), .resetvalue = 0,
4401 .writefn = xscale_cpar_write, },
4402 { .name = "XSCALE_AUXCR",
4403 .cp = 15, .crn = 1, .crm = 0, .opc1 = 0, .opc2 = 1, .access = PL1_RW,
4404 .fieldoffset = offsetof(CPUARMState, cp15.c1_xscaleauxcr),
4405 .resetvalue = 0, },
4407 * XScale specific cache-lockdown: since we have no cache we NOP these
4408 * and hope the guest does not really rely on cache behaviour.
4410 { .name = "XSCALE_LOCK_ICACHE_LINE",
4411 .cp = 15, .opc1 = 0, .crn = 9, .crm = 1, .opc2 = 0,
4412 .access = PL1_W, .type = ARM_CP_NOP },
4413 { .name = "XSCALE_UNLOCK_ICACHE",
4414 .cp = 15, .opc1 = 0, .crn = 9, .crm = 1, .opc2 = 1,
4415 .access = PL1_W, .type = ARM_CP_NOP },
4416 { .name = "XSCALE_DCACHE_LOCK",
4417 .cp = 15, .opc1 = 0, .crn = 9, .crm = 2, .opc2 = 0,
4418 .access = PL1_RW, .type = ARM_CP_NOP },
4419 { .name = "XSCALE_UNLOCK_DCACHE",
4420 .cp = 15, .opc1 = 0, .crn = 9, .crm = 2, .opc2 = 1,
4421 .access = PL1_W, .type = ARM_CP_NOP },
4424 static const ARMCPRegInfo dummy_c15_cp_reginfo[] = {
4426 * RAZ/WI the whole crn=15 space, when we don't have a more specific
4427 * implementation of this implementation-defined space.
4428 * Ideally this should eventually disappear in favour of actually
4429 * implementing the correct behaviour for all cores.
4431 { .name = "C15_IMPDEF", .cp = 15, .crn = 15,
4432 .crm = CP_ANY, .opc1 = CP_ANY, .opc2 = CP_ANY,
4433 .access = PL1_RW,
4434 .type = ARM_CP_CONST | ARM_CP_NO_RAW | ARM_CP_OVERRIDE,
4435 .resetvalue = 0 },
4438 static const ARMCPRegInfo cache_dirty_status_cp_reginfo[] = {
4439 /* Cache status: RAZ because we have no cache so it's always clean */
4440 { .name = "CDSR", .cp = 15, .crn = 7, .crm = 10, .opc1 = 0, .opc2 = 6,
4441 .access = PL1_R, .type = ARM_CP_CONST | ARM_CP_NO_RAW,
4442 .resetvalue = 0 },
4445 static const ARMCPRegInfo cache_block_ops_cp_reginfo[] = {
4446 /* We never have a block transfer operation in progress */
4447 { .name = "BXSR", .cp = 15, .crn = 7, .crm = 12, .opc1 = 0, .opc2 = 4,
4448 .access = PL0_R, .type = ARM_CP_CONST | ARM_CP_NO_RAW,
4449 .resetvalue = 0 },
4450 /* The cache ops themselves: these all NOP for QEMU */
4451 { .name = "IICR", .cp = 15, .crm = 5, .opc1 = 0,
4452 .access = PL1_W, .type = ARM_CP_NOP | ARM_CP_64BIT },
4453 { .name = "IDCR", .cp = 15, .crm = 6, .opc1 = 0,
4454 .access = PL1_W, .type = ARM_CP_NOP | ARM_CP_64BIT },
4455 { .name = "CDCR", .cp = 15, .crm = 12, .opc1 = 0,
4456 .access = PL0_W, .type = ARM_CP_NOP | ARM_CP_64BIT },
4457 { .name = "PIR", .cp = 15, .crm = 12, .opc1 = 1,
4458 .access = PL0_W, .type = ARM_CP_NOP | ARM_CP_64BIT },
4459 { .name = "PDR", .cp = 15, .crm = 12, .opc1 = 2,
4460 .access = PL0_W, .type = ARM_CP_NOP | ARM_CP_64BIT },
4461 { .name = "CIDCR", .cp = 15, .crm = 14, .opc1 = 0,
4462 .access = PL1_W, .type = ARM_CP_NOP | ARM_CP_64BIT },
4465 static const ARMCPRegInfo cache_test_clean_cp_reginfo[] = {
4467 * The cache test-and-clean instructions always return (1 << 30)
4468 * to indicate that there are no dirty cache lines.
4470 { .name = "TC_DCACHE", .cp = 15, .crn = 7, .crm = 10, .opc1 = 0, .opc2 = 3,
4471 .access = PL0_R, .type = ARM_CP_CONST | ARM_CP_NO_RAW,
4472 .resetvalue = (1 << 30) },
4473 { .name = "TCI_DCACHE", .cp = 15, .crn = 7, .crm = 14, .opc1 = 0, .opc2 = 3,
4474 .access = PL0_R, .type = ARM_CP_CONST | ARM_CP_NO_RAW,
4475 .resetvalue = (1 << 30) },
4478 static const ARMCPRegInfo strongarm_cp_reginfo[] = {
4479 /* Ignore ReadBuffer accesses */
4480 { .name = "C9_READBUFFER", .cp = 15, .crn = 9,
4481 .crm = CP_ANY, .opc1 = CP_ANY, .opc2 = CP_ANY,
4482 .access = PL1_RW, .resetvalue = 0,
4483 .type = ARM_CP_CONST | ARM_CP_OVERRIDE | ARM_CP_NO_RAW },
4486 static uint64_t midr_read(CPUARMState *env, const ARMCPRegInfo *ri)
4488 unsigned int cur_el = arm_current_el(env);
4490 if (arm_is_el2_enabled(env) && cur_el == 1) {
4491 return env->cp15.vpidr_el2;
4493 return raw_read(env, ri);
4496 static uint64_t mpidr_read_val(CPUARMState *env)
4498 ARMCPU *cpu = env_archcpu(env);
4499 uint64_t mpidr = cpu->mp_affinity;
4501 if (arm_feature(env, ARM_FEATURE_V7MP)) {
4502 mpidr |= (1U << 31);
4504 * Cores which are uniprocessor (non-coherent)
4505 * but still implement the MP extensions set
4506 * bit 30. (For instance, Cortex-R5).
4508 if (cpu->mp_is_up) {
4509 mpidr |= (1u << 30);
4512 return mpidr;
4515 static uint64_t mpidr_read(CPUARMState *env, const ARMCPRegInfo *ri)
4517 unsigned int cur_el = arm_current_el(env);
4519 if (arm_is_el2_enabled(env) && cur_el == 1) {
4520 return env->cp15.vmpidr_el2;
4522 return mpidr_read_val(env);
4525 static const ARMCPRegInfo lpae_cp_reginfo[] = {
4526 /* NOP AMAIR0/1 */
4527 { .name = "AMAIR0", .state = ARM_CP_STATE_BOTH,
4528 .opc0 = 3, .crn = 10, .crm = 3, .opc1 = 0, .opc2 = 0,
4529 .access = PL1_RW, .accessfn = access_tvm_trvm,
4530 .fgt = FGT_AMAIR_EL1,
4531 .type = ARM_CP_CONST, .resetvalue = 0 },
4532 /* AMAIR1 is mapped to AMAIR_EL1[63:32] */
4533 { .name = "AMAIR1", .cp = 15, .crn = 10, .crm = 3, .opc1 = 0, .opc2 = 1,
4534 .access = PL1_RW, .accessfn = access_tvm_trvm,
4535 .type = ARM_CP_CONST, .resetvalue = 0 },
4536 { .name = "PAR", .cp = 15, .crm = 7, .opc1 = 0,
4537 .access = PL1_RW, .type = ARM_CP_64BIT, .resetvalue = 0,
4538 .bank_fieldoffsets = { offsetof(CPUARMState, cp15.par_s),
4539 offsetof(CPUARMState, cp15.par_ns)} },
4540 { .name = "TTBR0", .cp = 15, .crm = 2, .opc1 = 0,
4541 .access = PL1_RW, .accessfn = access_tvm_trvm,
4542 .type = ARM_CP_64BIT | ARM_CP_ALIAS,
4543 .bank_fieldoffsets = { offsetof(CPUARMState, cp15.ttbr0_s),
4544 offsetof(CPUARMState, cp15.ttbr0_ns) },
4545 .writefn = vmsa_ttbr_write, .raw_writefn = raw_write },
4546 { .name = "TTBR1", .cp = 15, .crm = 2, .opc1 = 1,
4547 .access = PL1_RW, .accessfn = access_tvm_trvm,
4548 .type = ARM_CP_64BIT | ARM_CP_ALIAS,
4549 .bank_fieldoffsets = { offsetof(CPUARMState, cp15.ttbr1_s),
4550 offsetof(CPUARMState, cp15.ttbr1_ns) },
4551 .writefn = vmsa_ttbr_write, .raw_writefn = raw_write },
4554 static uint64_t aa64_fpcr_read(CPUARMState *env, const ARMCPRegInfo *ri)
4556 return vfp_get_fpcr(env);
4559 static void aa64_fpcr_write(CPUARMState *env, const ARMCPRegInfo *ri,
4560 uint64_t value)
4562 vfp_set_fpcr(env, value);
4565 static uint64_t aa64_fpsr_read(CPUARMState *env, const ARMCPRegInfo *ri)
4567 return vfp_get_fpsr(env);
4570 static void aa64_fpsr_write(CPUARMState *env, const ARMCPRegInfo *ri,
4571 uint64_t value)
4573 vfp_set_fpsr(env, value);
4576 static CPAccessResult aa64_daif_access(CPUARMState *env, const ARMCPRegInfo *ri,
4577 bool isread)
4579 if (arm_current_el(env) == 0 && !(arm_sctlr(env, 0) & SCTLR_UMA)) {
4580 return CP_ACCESS_TRAP;
4582 return CP_ACCESS_OK;
4585 static void aa64_daif_write(CPUARMState *env, const ARMCPRegInfo *ri,
4586 uint64_t value)
4588 env->daif = value & PSTATE_DAIF;
4591 static uint64_t aa64_pan_read(CPUARMState *env, const ARMCPRegInfo *ri)
4593 return env->pstate & PSTATE_PAN;
4596 static void aa64_pan_write(CPUARMState *env, const ARMCPRegInfo *ri,
4597 uint64_t value)
4599 env->pstate = (env->pstate & ~PSTATE_PAN) | (value & PSTATE_PAN);
4602 static const ARMCPRegInfo pan_reginfo = {
4603 .name = "PAN", .state = ARM_CP_STATE_AA64,
4604 .opc0 = 3, .opc1 = 0, .crn = 4, .crm = 2, .opc2 = 3,
4605 .type = ARM_CP_NO_RAW, .access = PL1_RW,
4606 .readfn = aa64_pan_read, .writefn = aa64_pan_write
4609 static uint64_t aa64_uao_read(CPUARMState *env, const ARMCPRegInfo *ri)
4611 return env->pstate & PSTATE_UAO;
4614 static void aa64_uao_write(CPUARMState *env, const ARMCPRegInfo *ri,
4615 uint64_t value)
4617 env->pstate = (env->pstate & ~PSTATE_UAO) | (value & PSTATE_UAO);
4620 static const ARMCPRegInfo uao_reginfo = {
4621 .name = "UAO", .state = ARM_CP_STATE_AA64,
4622 .opc0 = 3, .opc1 = 0, .crn = 4, .crm = 2, .opc2 = 4,
4623 .type = ARM_CP_NO_RAW, .access = PL1_RW,
4624 .readfn = aa64_uao_read, .writefn = aa64_uao_write
4627 static uint64_t aa64_dit_read(CPUARMState *env, const ARMCPRegInfo *ri)
4629 return env->pstate & PSTATE_DIT;
4632 static void aa64_dit_write(CPUARMState *env, const ARMCPRegInfo *ri,
4633 uint64_t value)
4635 env->pstate = (env->pstate & ~PSTATE_DIT) | (value & PSTATE_DIT);
4638 static const ARMCPRegInfo dit_reginfo = {
4639 .name = "DIT", .state = ARM_CP_STATE_AA64,
4640 .opc0 = 3, .opc1 = 3, .crn = 4, .crm = 2, .opc2 = 5,
4641 .type = ARM_CP_NO_RAW, .access = PL0_RW,
4642 .readfn = aa64_dit_read, .writefn = aa64_dit_write
4645 static uint64_t aa64_ssbs_read(CPUARMState *env, const ARMCPRegInfo *ri)
4647 return env->pstate & PSTATE_SSBS;
4650 static void aa64_ssbs_write(CPUARMState *env, const ARMCPRegInfo *ri,
4651 uint64_t value)
4653 env->pstate = (env->pstate & ~PSTATE_SSBS) | (value & PSTATE_SSBS);
4656 static const ARMCPRegInfo ssbs_reginfo = {
4657 .name = "SSBS", .state = ARM_CP_STATE_AA64,
4658 .opc0 = 3, .opc1 = 3, .crn = 4, .crm = 2, .opc2 = 6,
4659 .type = ARM_CP_NO_RAW, .access = PL0_RW,
4660 .readfn = aa64_ssbs_read, .writefn = aa64_ssbs_write
4663 static CPAccessResult aa64_cacheop_poc_access(CPUARMState *env,
4664 const ARMCPRegInfo *ri,
4665 bool isread)
4667 /* Cache invalidate/clean to Point of Coherency or Persistence... */
4668 switch (arm_current_el(env)) {
4669 case 0:
4670 /* ... EL0 must UNDEF unless SCTLR_EL1.UCI is set. */
4671 if (!(arm_sctlr(env, 0) & SCTLR_UCI)) {
4672 return CP_ACCESS_TRAP;
4674 /* fall through */
4675 case 1:
4676 /* ... EL1 must trap to EL2 if HCR_EL2.TPCP is set. */
4677 if (arm_hcr_el2_eff(env) & HCR_TPCP) {
4678 return CP_ACCESS_TRAP_EL2;
4680 break;
4682 return CP_ACCESS_OK;
4685 static CPAccessResult do_cacheop_pou_access(CPUARMState *env, uint64_t hcrflags)
4687 /* Cache invalidate/clean to Point of Unification... */
4688 switch (arm_current_el(env)) {
4689 case 0:
4690 /* ... EL0 must UNDEF unless SCTLR_EL1.UCI is set. */
4691 if (!(arm_sctlr(env, 0) & SCTLR_UCI)) {
4692 return CP_ACCESS_TRAP;
4694 /* fall through */
4695 case 1:
4696 /* ... EL1 must trap to EL2 if relevant HCR_EL2 flags are set. */
4697 if (arm_hcr_el2_eff(env) & hcrflags) {
4698 return CP_ACCESS_TRAP_EL2;
4700 break;
4702 return CP_ACCESS_OK;
4705 static CPAccessResult access_ticab(CPUARMState *env, const ARMCPRegInfo *ri,
4706 bool isread)
4708 return do_cacheop_pou_access(env, HCR_TICAB | HCR_TPU);
4711 static CPAccessResult access_tocu(CPUARMState *env, const ARMCPRegInfo *ri,
4712 bool isread)
4714 return do_cacheop_pou_access(env, HCR_TOCU | HCR_TPU);
4718 * See: D4.7.2 TLB maintenance requirements and the TLB maintenance instructions
4719 * Page D4-1736 (DDI0487A.b)
4722 static int vae1_tlbmask(CPUARMState *env)
4724 uint64_t hcr = arm_hcr_el2_eff(env);
4725 uint16_t mask;
4727 if ((hcr & (HCR_E2H | HCR_TGE)) == (HCR_E2H | HCR_TGE)) {
4728 mask = ARMMMUIdxBit_E20_2 |
4729 ARMMMUIdxBit_E20_2_PAN |
4730 ARMMMUIdxBit_E20_0;
4731 } else {
4732 mask = ARMMMUIdxBit_E10_1 |
4733 ARMMMUIdxBit_E10_1_PAN |
4734 ARMMMUIdxBit_E10_0;
4736 return mask;
4739 static int vae2_tlbmask(CPUARMState *env)
4741 uint64_t hcr = arm_hcr_el2_eff(env);
4742 uint16_t mask;
4744 if (hcr & HCR_E2H) {
4745 mask = ARMMMUIdxBit_E20_2 |
4746 ARMMMUIdxBit_E20_2_PAN |
4747 ARMMMUIdxBit_E20_0;
4748 } else {
4749 mask = ARMMMUIdxBit_E2;
4751 return mask;
4754 /* Return 56 if TBI is enabled, 64 otherwise. */
4755 static int tlbbits_for_regime(CPUARMState *env, ARMMMUIdx mmu_idx,
4756 uint64_t addr)
4758 uint64_t tcr = regime_tcr(env, mmu_idx);
4759 int tbi = aa64_va_parameter_tbi(tcr, mmu_idx);
4760 int select = extract64(addr, 55, 1);
4762 return (tbi >> select) & 1 ? 56 : 64;
4765 static int vae1_tlbbits(CPUARMState *env, uint64_t addr)
4767 uint64_t hcr = arm_hcr_el2_eff(env);
4768 ARMMMUIdx mmu_idx;
4770 /* Only the regime of the mmu_idx below is significant. */
4771 if ((hcr & (HCR_E2H | HCR_TGE)) == (HCR_E2H | HCR_TGE)) {
4772 mmu_idx = ARMMMUIdx_E20_0;
4773 } else {
4774 mmu_idx = ARMMMUIdx_E10_0;
4777 return tlbbits_for_regime(env, mmu_idx, addr);
4780 static int vae2_tlbbits(CPUARMState *env, uint64_t addr)
4782 uint64_t hcr = arm_hcr_el2_eff(env);
4783 ARMMMUIdx mmu_idx;
4786 * Only the regime of the mmu_idx below is significant.
4787 * Regime EL2&0 has two ranges with separate TBI configuration, while EL2
4788 * only has one.
4790 if (hcr & HCR_E2H) {
4791 mmu_idx = ARMMMUIdx_E20_2;
4792 } else {
4793 mmu_idx = ARMMMUIdx_E2;
4796 return tlbbits_for_regime(env, mmu_idx, addr);
4799 static void tlbi_aa64_vmalle1is_write(CPUARMState *env, const ARMCPRegInfo *ri,
4800 uint64_t value)
4802 CPUState *cs = env_cpu(env);
4803 int mask = vae1_tlbmask(env);
4805 tlb_flush_by_mmuidx_all_cpus_synced(cs, mask);
4808 static void tlbi_aa64_vmalle1_write(CPUARMState *env, const ARMCPRegInfo *ri,
4809 uint64_t value)
4811 CPUState *cs = env_cpu(env);
4812 int mask = vae1_tlbmask(env);
4814 if (tlb_force_broadcast(env)) {
4815 tlb_flush_by_mmuidx_all_cpus_synced(cs, mask);
4816 } else {
4817 tlb_flush_by_mmuidx(cs, mask);
4821 static int e2_tlbmask(CPUARMState *env)
4823 return (ARMMMUIdxBit_E20_0 |
4824 ARMMMUIdxBit_E20_2 |
4825 ARMMMUIdxBit_E20_2_PAN |
4826 ARMMMUIdxBit_E2);
4829 static void tlbi_aa64_alle1_write(CPUARMState *env, const ARMCPRegInfo *ri,
4830 uint64_t value)
4832 CPUState *cs = env_cpu(env);
4833 int mask = alle1_tlbmask(env);
4835 tlb_flush_by_mmuidx(cs, mask);
4838 static void tlbi_aa64_alle2_write(CPUARMState *env, const ARMCPRegInfo *ri,
4839 uint64_t value)
4841 CPUState *cs = env_cpu(env);
4842 int mask = e2_tlbmask(env);
4844 tlb_flush_by_mmuidx(cs, mask);
4847 static void tlbi_aa64_alle3_write(CPUARMState *env, const ARMCPRegInfo *ri,
4848 uint64_t value)
4850 ARMCPU *cpu = env_archcpu(env);
4851 CPUState *cs = CPU(cpu);
4853 tlb_flush_by_mmuidx(cs, ARMMMUIdxBit_E3);
4856 static void tlbi_aa64_alle1is_write(CPUARMState *env, const ARMCPRegInfo *ri,
4857 uint64_t value)
4859 CPUState *cs = env_cpu(env);
4860 int mask = alle1_tlbmask(env);
4862 tlb_flush_by_mmuidx_all_cpus_synced(cs, mask);
4865 static void tlbi_aa64_alle2is_write(CPUARMState *env, const ARMCPRegInfo *ri,
4866 uint64_t value)
4868 CPUState *cs = env_cpu(env);
4869 int mask = e2_tlbmask(env);
4871 tlb_flush_by_mmuidx_all_cpus_synced(cs, mask);
4874 static void tlbi_aa64_alle3is_write(CPUARMState *env, const ARMCPRegInfo *ri,
4875 uint64_t value)
4877 CPUState *cs = env_cpu(env);
4879 tlb_flush_by_mmuidx_all_cpus_synced(cs, ARMMMUIdxBit_E3);
4882 static void tlbi_aa64_vae2_write(CPUARMState *env, const ARMCPRegInfo *ri,
4883 uint64_t value)
4886 * Invalidate by VA, EL2
4887 * Currently handles both VAE2 and VALE2, since we don't support
4888 * flush-last-level-only.
4890 CPUState *cs = env_cpu(env);
4891 int mask = vae2_tlbmask(env);
4892 uint64_t pageaddr = sextract64(value << 12, 0, 56);
4893 int bits = vae2_tlbbits(env, pageaddr);
4895 tlb_flush_page_bits_by_mmuidx(cs, pageaddr, mask, bits);
4898 static void tlbi_aa64_vae3_write(CPUARMState *env, const ARMCPRegInfo *ri,
4899 uint64_t value)
4902 * Invalidate by VA, EL3
4903 * Currently handles both VAE3 and VALE3, since we don't support
4904 * flush-last-level-only.
4906 ARMCPU *cpu = env_archcpu(env);
4907 CPUState *cs = CPU(cpu);
4908 uint64_t pageaddr = sextract64(value << 12, 0, 56);
4910 tlb_flush_page_by_mmuidx(cs, pageaddr, ARMMMUIdxBit_E3);
4913 static void tlbi_aa64_vae1is_write(CPUARMState *env, const ARMCPRegInfo *ri,
4914 uint64_t value)
4916 CPUState *cs = env_cpu(env);
4917 int mask = vae1_tlbmask(env);
4918 uint64_t pageaddr = sextract64(value << 12, 0, 56);
4919 int bits = vae1_tlbbits(env, pageaddr);
4921 tlb_flush_page_bits_by_mmuidx_all_cpus_synced(cs, pageaddr, mask, bits);
4924 static void tlbi_aa64_vae1_write(CPUARMState *env, const ARMCPRegInfo *ri,
4925 uint64_t value)
4928 * Invalidate by VA, EL1&0 (AArch64 version).
4929 * Currently handles all of VAE1, VAAE1, VAALE1 and VALE1,
4930 * since we don't support flush-for-specific-ASID-only or
4931 * flush-last-level-only.
4933 CPUState *cs = env_cpu(env);
4934 int mask = vae1_tlbmask(env);
4935 uint64_t pageaddr = sextract64(value << 12, 0, 56);
4936 int bits = vae1_tlbbits(env, pageaddr);
4938 if (tlb_force_broadcast(env)) {
4939 tlb_flush_page_bits_by_mmuidx_all_cpus_synced(cs, pageaddr, mask, bits);
4940 } else {
4941 tlb_flush_page_bits_by_mmuidx(cs, pageaddr, mask, bits);
4945 static void tlbi_aa64_vae2is_write(CPUARMState *env, const ARMCPRegInfo *ri,
4946 uint64_t value)
4948 CPUState *cs = env_cpu(env);
4949 int mask = vae2_tlbmask(env);
4950 uint64_t pageaddr = sextract64(value << 12, 0, 56);
4951 int bits = vae2_tlbbits(env, pageaddr);
4953 tlb_flush_page_bits_by_mmuidx_all_cpus_synced(cs, pageaddr, mask, bits);
4956 static void tlbi_aa64_vae3is_write(CPUARMState *env, const ARMCPRegInfo *ri,
4957 uint64_t value)
4959 CPUState *cs = env_cpu(env);
4960 uint64_t pageaddr = sextract64(value << 12, 0, 56);
4961 int bits = tlbbits_for_regime(env, ARMMMUIdx_E3, pageaddr);
4963 tlb_flush_page_bits_by_mmuidx_all_cpus_synced(cs, pageaddr,
4964 ARMMMUIdxBit_E3, bits);
4967 static int ipas2e1_tlbmask(CPUARMState *env, int64_t value)
4970 * The MSB of value is the NS field, which only applies if SEL2
4971 * is implemented and SCR_EL3.NS is not set (i.e. in secure mode).
4973 return (value >= 0
4974 && cpu_isar_feature(aa64_sel2, env_archcpu(env))
4975 && arm_is_secure_below_el3(env)
4976 ? ARMMMUIdxBit_Stage2_S
4977 : ARMMMUIdxBit_Stage2);
4980 static void tlbi_aa64_ipas2e1_write(CPUARMState *env, const ARMCPRegInfo *ri,
4981 uint64_t value)
4983 CPUState *cs = env_cpu(env);
4984 int mask = ipas2e1_tlbmask(env, value);
4985 uint64_t pageaddr = sextract64(value << 12, 0, 56);
4987 if (tlb_force_broadcast(env)) {
4988 tlb_flush_page_by_mmuidx_all_cpus_synced(cs, pageaddr, mask);
4989 } else {
4990 tlb_flush_page_by_mmuidx(cs, pageaddr, mask);
4994 static void tlbi_aa64_ipas2e1is_write(CPUARMState *env, const ARMCPRegInfo *ri,
4995 uint64_t value)
4997 CPUState *cs = env_cpu(env);
4998 int mask = ipas2e1_tlbmask(env, value);
4999 uint64_t pageaddr = sextract64(value << 12, 0, 56);
5001 tlb_flush_page_by_mmuidx_all_cpus_synced(cs, pageaddr, mask);
5004 #ifdef TARGET_AARCH64
5005 typedef struct {
5006 uint64_t base;
5007 uint64_t length;
5008 } TLBIRange;
5010 static ARMGranuleSize tlbi_range_tg_to_gran_size(int tg)
5013 * Note that the TLBI range TG field encoding differs from both
5014 * TG0 and TG1 encodings.
5016 switch (tg) {
5017 case 1:
5018 return Gran4K;
5019 case 2:
5020 return Gran16K;
5021 case 3:
5022 return Gran64K;
5023 default:
5024 return GranInvalid;
5028 static TLBIRange tlbi_aa64_get_range(CPUARMState *env, ARMMMUIdx mmuidx,
5029 uint64_t value)
5031 unsigned int page_size_granule, page_shift, num, scale, exponent;
5032 /* Extract one bit to represent the va selector in use. */
5033 uint64_t select = sextract64(value, 36, 1);
5034 ARMVAParameters param = aa64_va_parameters(env, select, mmuidx, true, false);
5035 TLBIRange ret = { };
5036 ARMGranuleSize gran;
5038 page_size_granule = extract64(value, 46, 2);
5039 gran = tlbi_range_tg_to_gran_size(page_size_granule);
5041 /* The granule encoded in value must match the granule in use. */
5042 if (gran != param.gran) {
5043 qemu_log_mask(LOG_GUEST_ERROR, "Invalid tlbi page size granule %d\n",
5044 page_size_granule);
5045 return ret;
5048 page_shift = arm_granule_bits(gran);
5049 num = extract64(value, 39, 5);
5050 scale = extract64(value, 44, 2);
5051 exponent = (5 * scale) + 1;
5053 ret.length = (num + 1) << (exponent + page_shift);
5055 if (param.select) {
5056 ret.base = sextract64(value, 0, 37);
5057 } else {
5058 ret.base = extract64(value, 0, 37);
5060 if (param.ds) {
5062 * With DS=1, BaseADDR is always shifted 16 so that it is able
5063 * to address all 52 va bits. The input address is perforce
5064 * aligned on a 64k boundary regardless of translation granule.
5066 page_shift = 16;
5068 ret.base <<= page_shift;
5070 return ret;
5073 static void do_rvae_write(CPUARMState *env, uint64_t value,
5074 int idxmap, bool synced)
5076 ARMMMUIdx one_idx = ARM_MMU_IDX_A | ctz32(idxmap);
5077 TLBIRange range;
5078 int bits;
5080 range = tlbi_aa64_get_range(env, one_idx, value);
5081 bits = tlbbits_for_regime(env, one_idx, range.base);
5083 if (synced) {
5084 tlb_flush_range_by_mmuidx_all_cpus_synced(env_cpu(env),
5085 range.base,
5086 range.length,
5087 idxmap,
5088 bits);
5089 } else {
5090 tlb_flush_range_by_mmuidx(env_cpu(env), range.base,
5091 range.length, idxmap, bits);
5095 static void tlbi_aa64_rvae1_write(CPUARMState *env,
5096 const ARMCPRegInfo *ri,
5097 uint64_t value)
5100 * Invalidate by VA range, EL1&0.
5101 * Currently handles all of RVAE1, RVAAE1, RVAALE1 and RVALE1,
5102 * since we don't support flush-for-specific-ASID-only or
5103 * flush-last-level-only.
5106 do_rvae_write(env, value, vae1_tlbmask(env),
5107 tlb_force_broadcast(env));
5110 static void tlbi_aa64_rvae1is_write(CPUARMState *env,
5111 const ARMCPRegInfo *ri,
5112 uint64_t value)
5115 * Invalidate by VA range, Inner/Outer Shareable EL1&0.
5116 * Currently handles all of RVAE1IS, RVAE1OS, RVAAE1IS, RVAAE1OS,
5117 * RVAALE1IS, RVAALE1OS, RVALE1IS and RVALE1OS, since we don't support
5118 * flush-for-specific-ASID-only, flush-last-level-only or inner/outer
5119 * shareable specific flushes.
5122 do_rvae_write(env, value, vae1_tlbmask(env), true);
5125 static void tlbi_aa64_rvae2_write(CPUARMState *env,
5126 const ARMCPRegInfo *ri,
5127 uint64_t value)
5130 * Invalidate by VA range, EL2.
5131 * Currently handles all of RVAE2 and RVALE2,
5132 * since we don't support flush-for-specific-ASID-only or
5133 * flush-last-level-only.
5136 do_rvae_write(env, value, vae2_tlbmask(env),
5137 tlb_force_broadcast(env));
5142 static void tlbi_aa64_rvae2is_write(CPUARMState *env,
5143 const ARMCPRegInfo *ri,
5144 uint64_t value)
5147 * Invalidate by VA range, Inner/Outer Shareable, EL2.
5148 * Currently handles all of RVAE2IS, RVAE2OS, RVALE2IS and RVALE2OS,
5149 * since we don't support flush-for-specific-ASID-only,
5150 * flush-last-level-only or inner/outer shareable specific flushes.
5153 do_rvae_write(env, value, vae2_tlbmask(env), true);
5157 static void tlbi_aa64_rvae3_write(CPUARMState *env,
5158 const ARMCPRegInfo *ri,
5159 uint64_t value)
5162 * Invalidate by VA range, EL3.
5163 * Currently handles all of RVAE3 and RVALE3,
5164 * since we don't support flush-for-specific-ASID-only or
5165 * flush-last-level-only.
5168 do_rvae_write(env, value, ARMMMUIdxBit_E3, tlb_force_broadcast(env));
5171 static void tlbi_aa64_rvae3is_write(CPUARMState *env,
5172 const ARMCPRegInfo *ri,
5173 uint64_t value)
5176 * Invalidate by VA range, EL3, Inner/Outer Shareable.
5177 * Currently handles all of RVAE3IS, RVAE3OS, RVALE3IS and RVALE3OS,
5178 * since we don't support flush-for-specific-ASID-only,
5179 * flush-last-level-only or inner/outer specific flushes.
5182 do_rvae_write(env, value, ARMMMUIdxBit_E3, true);
5185 static void tlbi_aa64_ripas2e1_write(CPUARMState *env, const ARMCPRegInfo *ri,
5186 uint64_t value)
5188 do_rvae_write(env, value, ipas2e1_tlbmask(env, value),
5189 tlb_force_broadcast(env));
5192 static void tlbi_aa64_ripas2e1is_write(CPUARMState *env,
5193 const ARMCPRegInfo *ri,
5194 uint64_t value)
5196 do_rvae_write(env, value, ipas2e1_tlbmask(env, value), true);
5198 #endif
5200 static CPAccessResult aa64_zva_access(CPUARMState *env, const ARMCPRegInfo *ri,
5201 bool isread)
5203 int cur_el = arm_current_el(env);
5205 if (cur_el < 2) {
5206 uint64_t hcr = arm_hcr_el2_eff(env);
5208 if (cur_el == 0) {
5209 if ((hcr & (HCR_E2H | HCR_TGE)) == (HCR_E2H | HCR_TGE)) {
5210 if (!(env->cp15.sctlr_el[2] & SCTLR_DZE)) {
5211 return CP_ACCESS_TRAP_EL2;
5213 } else {
5214 if (!(env->cp15.sctlr_el[1] & SCTLR_DZE)) {
5215 return CP_ACCESS_TRAP;
5217 if (hcr & HCR_TDZ) {
5218 return CP_ACCESS_TRAP_EL2;
5221 } else if (hcr & HCR_TDZ) {
5222 return CP_ACCESS_TRAP_EL2;
5225 return CP_ACCESS_OK;
5228 static uint64_t aa64_dczid_read(CPUARMState *env, const ARMCPRegInfo *ri)
5230 ARMCPU *cpu = env_archcpu(env);
5231 int dzp_bit = 1 << 4;
5233 /* DZP indicates whether DC ZVA access is allowed */
5234 if (aa64_zva_access(env, NULL, false) == CP_ACCESS_OK) {
5235 dzp_bit = 0;
5237 return cpu->dcz_blocksize | dzp_bit;
5240 static CPAccessResult sp_el0_access(CPUARMState *env, const ARMCPRegInfo *ri,
5241 bool isread)
5243 if (!(env->pstate & PSTATE_SP)) {
5245 * Access to SP_EL0 is undefined if it's being used as
5246 * the stack pointer.
5248 return CP_ACCESS_TRAP_UNCATEGORIZED;
5250 return CP_ACCESS_OK;
5253 static uint64_t spsel_read(CPUARMState *env, const ARMCPRegInfo *ri)
5255 return env->pstate & PSTATE_SP;
5258 static void spsel_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t val)
5260 update_spsel(env, val);
5263 static void sctlr_write(CPUARMState *env, const ARMCPRegInfo *ri,
5264 uint64_t value)
5266 ARMCPU *cpu = env_archcpu(env);
5268 if (arm_feature(env, ARM_FEATURE_PMSA) && !cpu->has_mpu) {
5269 /* M bit is RAZ/WI for PMSA with no MPU implemented */
5270 value &= ~SCTLR_M;
5273 /* ??? Lots of these bits are not implemented. */
5275 if (ri->state == ARM_CP_STATE_AA64 && !cpu_isar_feature(aa64_mte, cpu)) {
5276 if (ri->opc1 == 6) { /* SCTLR_EL3 */
5277 value &= ~(SCTLR_ITFSB | SCTLR_TCF | SCTLR_ATA);
5278 } else {
5279 value &= ~(SCTLR_ITFSB | SCTLR_TCF0 | SCTLR_TCF |
5280 SCTLR_ATA0 | SCTLR_ATA);
5284 if (raw_read(env, ri) == value) {
5286 * Skip the TLB flush if nothing actually changed; Linux likes
5287 * to do a lot of pointless SCTLR writes.
5289 return;
5292 raw_write(env, ri, value);
5294 /* This may enable/disable the MMU, so do a TLB flush. */
5295 tlb_flush(CPU(cpu));
5297 if (tcg_enabled() && ri->type & ARM_CP_SUPPRESS_TB_END) {
5299 * Normally we would always end the TB on an SCTLR write; see the
5300 * comment in ARMCPRegInfo sctlr initialization below for why Xscale
5301 * is special. Setting ARM_CP_SUPPRESS_TB_END also stops the rebuild
5302 * of hflags from the translator, so do it here.
5304 arm_rebuild_hflags(env);
5308 static void mdcr_el3_write(CPUARMState *env, const ARMCPRegInfo *ri,
5309 uint64_t value)
5312 * Some MDCR_EL3 bits affect whether PMU counters are running:
5313 * if we are trying to change any of those then we must
5314 * bracket this update with PMU start/finish calls.
5316 bool pmu_op = (env->cp15.mdcr_el3 ^ value) & MDCR_EL3_PMU_ENABLE_BITS;
5318 if (pmu_op) {
5319 pmu_op_start(env);
5321 env->cp15.mdcr_el3 = value;
5322 if (pmu_op) {
5323 pmu_op_finish(env);
5327 static void sdcr_write(CPUARMState *env, const ARMCPRegInfo *ri,
5328 uint64_t value)
5330 /* Not all bits defined for MDCR_EL3 exist in the AArch32 SDCR */
5331 mdcr_el3_write(env, ri, value & SDCR_VALID_MASK);
5334 static void mdcr_el2_write(CPUARMState *env, const ARMCPRegInfo *ri,
5335 uint64_t value)
5338 * Some MDCR_EL2 bits affect whether PMU counters are running:
5339 * if we are trying to change any of those then we must
5340 * bracket this update with PMU start/finish calls.
5342 bool pmu_op = (env->cp15.mdcr_el2 ^ value) & MDCR_EL2_PMU_ENABLE_BITS;
5344 if (pmu_op) {
5345 pmu_op_start(env);
5347 env->cp15.mdcr_el2 = value;
5348 if (pmu_op) {
5349 pmu_op_finish(env);
5353 #ifdef CONFIG_USER_ONLY
5355 * `IC IVAU` is handled to improve compatibility with JITs that dual-map their
5356 * code to get around W^X restrictions, where one region is writable and the
5357 * other is executable.
5359 * Since the executable region is never written to we cannot detect code
5360 * changes when running in user mode, and rely on the emulated JIT telling us
5361 * that the code has changed by executing this instruction.
5363 static void ic_ivau_write(CPUARMState *env, const ARMCPRegInfo *ri,
5364 uint64_t value)
5366 uint64_t icache_line_mask, start_address, end_address;
5367 const ARMCPU *cpu;
5369 cpu = env_archcpu(env);
5371 icache_line_mask = (4 << extract32(cpu->ctr, 0, 4)) - 1;
5372 start_address = value & ~icache_line_mask;
5373 end_address = value | icache_line_mask;
5375 mmap_lock();
5377 tb_invalidate_phys_range(start_address, end_address);
5379 mmap_unlock();
5381 #endif
5383 static const ARMCPRegInfo v8_cp_reginfo[] = {
5385 * Minimal set of EL0-visible registers. This will need to be expanded
5386 * significantly for system emulation of AArch64 CPUs.
5388 { .name = "NZCV", .state = ARM_CP_STATE_AA64,
5389 .opc0 = 3, .opc1 = 3, .opc2 = 0, .crn = 4, .crm = 2,
5390 .access = PL0_RW, .type = ARM_CP_NZCV },
5391 { .name = "DAIF", .state = ARM_CP_STATE_AA64,
5392 .opc0 = 3, .opc1 = 3, .opc2 = 1, .crn = 4, .crm = 2,
5393 .type = ARM_CP_NO_RAW,
5394 .access = PL0_RW, .accessfn = aa64_daif_access,
5395 .fieldoffset = offsetof(CPUARMState, daif),
5396 .writefn = aa64_daif_write, .resetfn = arm_cp_reset_ignore },
5397 { .name = "FPCR", .state = ARM_CP_STATE_AA64,
5398 .opc0 = 3, .opc1 = 3, .opc2 = 0, .crn = 4, .crm = 4,
5399 .access = PL0_RW, .type = ARM_CP_FPU | ARM_CP_SUPPRESS_TB_END,
5400 .readfn = aa64_fpcr_read, .writefn = aa64_fpcr_write },
5401 { .name = "FPSR", .state = ARM_CP_STATE_AA64,
5402 .opc0 = 3, .opc1 = 3, .opc2 = 1, .crn = 4, .crm = 4,
5403 .access = PL0_RW, .type = ARM_CP_FPU | ARM_CP_SUPPRESS_TB_END,
5404 .readfn = aa64_fpsr_read, .writefn = aa64_fpsr_write },
5405 { .name = "DCZID_EL0", .state = ARM_CP_STATE_AA64,
5406 .opc0 = 3, .opc1 = 3, .opc2 = 7, .crn = 0, .crm = 0,
5407 .access = PL0_R, .type = ARM_CP_NO_RAW,
5408 .fgt = FGT_DCZID_EL0,
5409 .readfn = aa64_dczid_read },
5410 { .name = "DC_ZVA", .state = ARM_CP_STATE_AA64,
5411 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 4, .opc2 = 1,
5412 .access = PL0_W, .type = ARM_CP_DC_ZVA,
5413 #ifndef CONFIG_USER_ONLY
5414 /* Avoid overhead of an access check that always passes in user-mode */
5415 .accessfn = aa64_zva_access,
5416 .fgt = FGT_DCZVA,
5417 #endif
5419 { .name = "CURRENTEL", .state = ARM_CP_STATE_AA64,
5420 .opc0 = 3, .opc1 = 0, .opc2 = 2, .crn = 4, .crm = 2,
5421 .access = PL1_R, .type = ARM_CP_CURRENTEL },
5423 * Instruction cache ops. All of these except `IC IVAU` NOP because we
5424 * don't emulate caches.
5426 { .name = "IC_IALLUIS", .state = ARM_CP_STATE_AA64,
5427 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 1, .opc2 = 0,
5428 .access = PL1_W, .type = ARM_CP_NOP,
5429 .fgt = FGT_ICIALLUIS,
5430 .accessfn = access_ticab },
5431 { .name = "IC_IALLU", .state = ARM_CP_STATE_AA64,
5432 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 5, .opc2 = 0,
5433 .access = PL1_W, .type = ARM_CP_NOP,
5434 .fgt = FGT_ICIALLU,
5435 .accessfn = access_tocu },
5436 { .name = "IC_IVAU", .state = ARM_CP_STATE_AA64,
5437 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 5, .opc2 = 1,
5438 .access = PL0_W,
5439 .fgt = FGT_ICIVAU,
5440 .accessfn = access_tocu,
5441 #ifdef CONFIG_USER_ONLY
5442 .type = ARM_CP_NO_RAW,
5443 .writefn = ic_ivau_write
5444 #else
5445 .type = ARM_CP_NOP
5446 #endif
5448 /* Cache ops: all NOPs since we don't emulate caches */
5449 { .name = "DC_IVAC", .state = ARM_CP_STATE_AA64,
5450 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 6, .opc2 = 1,
5451 .access = PL1_W, .accessfn = aa64_cacheop_poc_access,
5452 .fgt = FGT_DCIVAC,
5453 .type = ARM_CP_NOP },
5454 { .name = "DC_ISW", .state = ARM_CP_STATE_AA64,
5455 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 6, .opc2 = 2,
5456 .fgt = FGT_DCISW,
5457 .access = PL1_W, .accessfn = access_tsw, .type = ARM_CP_NOP },
5458 { .name = "DC_CVAC", .state = ARM_CP_STATE_AA64,
5459 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 10, .opc2 = 1,
5460 .access = PL0_W, .type = ARM_CP_NOP,
5461 .fgt = FGT_DCCVAC,
5462 .accessfn = aa64_cacheop_poc_access },
5463 { .name = "DC_CSW", .state = ARM_CP_STATE_AA64,
5464 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 10, .opc2 = 2,
5465 .fgt = FGT_DCCSW,
5466 .access = PL1_W, .accessfn = access_tsw, .type = ARM_CP_NOP },
5467 { .name = "DC_CVAU", .state = ARM_CP_STATE_AA64,
5468 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 11, .opc2 = 1,
5469 .access = PL0_W, .type = ARM_CP_NOP,
5470 .fgt = FGT_DCCVAU,
5471 .accessfn = access_tocu },
5472 { .name = "DC_CIVAC", .state = ARM_CP_STATE_AA64,
5473 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 14, .opc2 = 1,
5474 .access = PL0_W, .type = ARM_CP_NOP,
5475 .fgt = FGT_DCCIVAC,
5476 .accessfn = aa64_cacheop_poc_access },
5477 { .name = "DC_CISW", .state = ARM_CP_STATE_AA64,
5478 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 14, .opc2 = 2,
5479 .fgt = FGT_DCCISW,
5480 .access = PL1_W, .accessfn = access_tsw, .type = ARM_CP_NOP },
5481 /* TLBI operations */
5482 { .name = "TLBI_VMALLE1IS", .state = ARM_CP_STATE_AA64,
5483 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 0,
5484 .access = PL1_W, .accessfn = access_ttlbis, .type = ARM_CP_NO_RAW,
5485 .fgt = FGT_TLBIVMALLE1IS,
5486 .writefn = tlbi_aa64_vmalle1is_write },
5487 { .name = "TLBI_VAE1IS", .state = ARM_CP_STATE_AA64,
5488 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 1,
5489 .access = PL1_W, .accessfn = access_ttlbis, .type = ARM_CP_NO_RAW,
5490 .fgt = FGT_TLBIVAE1IS,
5491 .writefn = tlbi_aa64_vae1is_write },
5492 { .name = "TLBI_ASIDE1IS", .state = ARM_CP_STATE_AA64,
5493 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 2,
5494 .access = PL1_W, .accessfn = access_ttlbis, .type = ARM_CP_NO_RAW,
5495 .fgt = FGT_TLBIASIDE1IS,
5496 .writefn = tlbi_aa64_vmalle1is_write },
5497 { .name = "TLBI_VAAE1IS", .state = ARM_CP_STATE_AA64,
5498 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 3,
5499 .access = PL1_W, .accessfn = access_ttlbis, .type = ARM_CP_NO_RAW,
5500 .fgt = FGT_TLBIVAAE1IS,
5501 .writefn = tlbi_aa64_vae1is_write },
5502 { .name = "TLBI_VALE1IS", .state = ARM_CP_STATE_AA64,
5503 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 5,
5504 .access = PL1_W, .accessfn = access_ttlbis, .type = ARM_CP_NO_RAW,
5505 .fgt = FGT_TLBIVALE1IS,
5506 .writefn = tlbi_aa64_vae1is_write },
5507 { .name = "TLBI_VAALE1IS", .state = ARM_CP_STATE_AA64,
5508 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 7,
5509 .access = PL1_W, .accessfn = access_ttlbis, .type = ARM_CP_NO_RAW,
5510 .fgt = FGT_TLBIVAALE1IS,
5511 .writefn = tlbi_aa64_vae1is_write },
5512 { .name = "TLBI_VMALLE1", .state = ARM_CP_STATE_AA64,
5513 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 0,
5514 .access = PL1_W, .accessfn = access_ttlb, .type = ARM_CP_NO_RAW,
5515 .fgt = FGT_TLBIVMALLE1,
5516 .writefn = tlbi_aa64_vmalle1_write },
5517 { .name = "TLBI_VAE1", .state = ARM_CP_STATE_AA64,
5518 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 1,
5519 .access = PL1_W, .accessfn = access_ttlb, .type = ARM_CP_NO_RAW,
5520 .fgt = FGT_TLBIVAE1,
5521 .writefn = tlbi_aa64_vae1_write },
5522 { .name = "TLBI_ASIDE1", .state = ARM_CP_STATE_AA64,
5523 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 2,
5524 .access = PL1_W, .accessfn = access_ttlb, .type = ARM_CP_NO_RAW,
5525 .fgt = FGT_TLBIASIDE1,
5526 .writefn = tlbi_aa64_vmalle1_write },
5527 { .name = "TLBI_VAAE1", .state = ARM_CP_STATE_AA64,
5528 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 3,
5529 .access = PL1_W, .accessfn = access_ttlb, .type = ARM_CP_NO_RAW,
5530 .fgt = FGT_TLBIVAAE1,
5531 .writefn = tlbi_aa64_vae1_write },
5532 { .name = "TLBI_VALE1", .state = ARM_CP_STATE_AA64,
5533 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 5,
5534 .access = PL1_W, .accessfn = access_ttlb, .type = ARM_CP_NO_RAW,
5535 .fgt = FGT_TLBIVALE1,
5536 .writefn = tlbi_aa64_vae1_write },
5537 { .name = "TLBI_VAALE1", .state = ARM_CP_STATE_AA64,
5538 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 7,
5539 .access = PL1_W, .accessfn = access_ttlb, .type = ARM_CP_NO_RAW,
5540 .fgt = FGT_TLBIVAALE1,
5541 .writefn = tlbi_aa64_vae1_write },
5542 { .name = "TLBI_IPAS2E1IS", .state = ARM_CP_STATE_AA64,
5543 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 0, .opc2 = 1,
5544 .access = PL2_W, .type = ARM_CP_NO_RAW,
5545 .writefn = tlbi_aa64_ipas2e1is_write },
5546 { .name = "TLBI_IPAS2LE1IS", .state = ARM_CP_STATE_AA64,
5547 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 0, .opc2 = 5,
5548 .access = PL2_W, .type = ARM_CP_NO_RAW,
5549 .writefn = tlbi_aa64_ipas2e1is_write },
5550 { .name = "TLBI_ALLE1IS", .state = ARM_CP_STATE_AA64,
5551 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 3, .opc2 = 4,
5552 .access = PL2_W, .type = ARM_CP_NO_RAW,
5553 .writefn = tlbi_aa64_alle1is_write },
5554 { .name = "TLBI_VMALLS12E1IS", .state = ARM_CP_STATE_AA64,
5555 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 3, .opc2 = 6,
5556 .access = PL2_W, .type = ARM_CP_NO_RAW,
5557 .writefn = tlbi_aa64_alle1is_write },
5558 { .name = "TLBI_IPAS2E1", .state = ARM_CP_STATE_AA64,
5559 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 4, .opc2 = 1,
5560 .access = PL2_W, .type = ARM_CP_NO_RAW,
5561 .writefn = tlbi_aa64_ipas2e1_write },
5562 { .name = "TLBI_IPAS2LE1", .state = ARM_CP_STATE_AA64,
5563 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 4, .opc2 = 5,
5564 .access = PL2_W, .type = ARM_CP_NO_RAW,
5565 .writefn = tlbi_aa64_ipas2e1_write },
5566 { .name = "TLBI_ALLE1", .state = ARM_CP_STATE_AA64,
5567 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 7, .opc2 = 4,
5568 .access = PL2_W, .type = ARM_CP_NO_RAW,
5569 .writefn = tlbi_aa64_alle1_write },
5570 { .name = "TLBI_VMALLS12E1", .state = ARM_CP_STATE_AA64,
5571 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 7, .opc2 = 6,
5572 .access = PL2_W, .type = ARM_CP_NO_RAW,
5573 .writefn = tlbi_aa64_alle1is_write },
5574 #ifndef CONFIG_USER_ONLY
5575 /* 64 bit address translation operations */
5576 { .name = "AT_S1E1R", .state = ARM_CP_STATE_AA64,
5577 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 8, .opc2 = 0,
5578 .access = PL1_W, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC,
5579 .fgt = FGT_ATS1E1R,
5580 .accessfn = at_s1e01_access, .writefn = ats_write64 },
5581 { .name = "AT_S1E1W", .state = ARM_CP_STATE_AA64,
5582 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 8, .opc2 = 1,
5583 .access = PL1_W, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC,
5584 .fgt = FGT_ATS1E1W,
5585 .accessfn = at_s1e01_access, .writefn = ats_write64 },
5586 { .name = "AT_S1E0R", .state = ARM_CP_STATE_AA64,
5587 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 8, .opc2 = 2,
5588 .access = PL1_W, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC,
5589 .fgt = FGT_ATS1E0R,
5590 .accessfn = at_s1e01_access, .writefn = ats_write64 },
5591 { .name = "AT_S1E0W", .state = ARM_CP_STATE_AA64,
5592 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 8, .opc2 = 3,
5593 .access = PL1_W, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC,
5594 .fgt = FGT_ATS1E0W,
5595 .accessfn = at_s1e01_access, .writefn = ats_write64 },
5596 { .name = "AT_S12E1R", .state = ARM_CP_STATE_AA64,
5597 .opc0 = 1, .opc1 = 4, .crn = 7, .crm = 8, .opc2 = 4,
5598 .access = PL2_W, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC,
5599 .accessfn = at_e012_access, .writefn = ats_write64 },
5600 { .name = "AT_S12E1W", .state = ARM_CP_STATE_AA64,
5601 .opc0 = 1, .opc1 = 4, .crn = 7, .crm = 8, .opc2 = 5,
5602 .access = PL2_W, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC,
5603 .accessfn = at_e012_access, .writefn = ats_write64 },
5604 { .name = "AT_S12E0R", .state = ARM_CP_STATE_AA64,
5605 .opc0 = 1, .opc1 = 4, .crn = 7, .crm = 8, .opc2 = 6,
5606 .access = PL2_W, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC,
5607 .accessfn = at_e012_access, .writefn = ats_write64 },
5608 { .name = "AT_S12E0W", .state = ARM_CP_STATE_AA64,
5609 .opc0 = 1, .opc1 = 4, .crn = 7, .crm = 8, .opc2 = 7,
5610 .access = PL2_W, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC,
5611 .accessfn = at_e012_access, .writefn = ats_write64 },
5612 /* AT S1E2* are elsewhere as they UNDEF from EL3 if EL2 is not present */
5613 { .name = "AT_S1E3R", .state = ARM_CP_STATE_AA64,
5614 .opc0 = 1, .opc1 = 6, .crn = 7, .crm = 8, .opc2 = 0,
5615 .access = PL3_W, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC,
5616 .writefn = ats_write64 },
5617 { .name = "AT_S1E3W", .state = ARM_CP_STATE_AA64,
5618 .opc0 = 1, .opc1 = 6, .crn = 7, .crm = 8, .opc2 = 1,
5619 .access = PL3_W, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC,
5620 .writefn = ats_write64 },
5621 { .name = "PAR_EL1", .state = ARM_CP_STATE_AA64,
5622 .type = ARM_CP_ALIAS,
5623 .opc0 = 3, .opc1 = 0, .crn = 7, .crm = 4, .opc2 = 0,
5624 .access = PL1_RW, .resetvalue = 0,
5625 .fgt = FGT_PAR_EL1,
5626 .fieldoffset = offsetof(CPUARMState, cp15.par_el[1]),
5627 .writefn = par_write },
5628 #endif
5629 /* TLB invalidate last level of translation table walk */
5630 { .name = "TLBIMVALIS", .cp = 15, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 5,
5631 .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlbis,
5632 .writefn = tlbimva_is_write },
5633 { .name = "TLBIMVAALIS", .cp = 15, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 7,
5634 .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlbis,
5635 .writefn = tlbimvaa_is_write },
5636 { .name = "TLBIMVAL", .cp = 15, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 5,
5637 .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlb,
5638 .writefn = tlbimva_write },
5639 { .name = "TLBIMVAAL", .cp = 15, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 7,
5640 .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlb,
5641 .writefn = tlbimvaa_write },
5642 { .name = "TLBIMVALH", .cp = 15, .opc1 = 4, .crn = 8, .crm = 7, .opc2 = 5,
5643 .type = ARM_CP_NO_RAW, .access = PL2_W,
5644 .writefn = tlbimva_hyp_write },
5645 { .name = "TLBIMVALHIS",
5646 .cp = 15, .opc1 = 4, .crn = 8, .crm = 3, .opc2 = 5,
5647 .type = ARM_CP_NO_RAW, .access = PL2_W,
5648 .writefn = tlbimva_hyp_is_write },
5649 { .name = "TLBIIPAS2",
5650 .cp = 15, .opc1 = 4, .crn = 8, .crm = 4, .opc2 = 1,
5651 .type = ARM_CP_NO_RAW, .access = PL2_W,
5652 .writefn = tlbiipas2_hyp_write },
5653 { .name = "TLBIIPAS2IS",
5654 .cp = 15, .opc1 = 4, .crn = 8, .crm = 0, .opc2 = 1,
5655 .type = ARM_CP_NO_RAW, .access = PL2_W,
5656 .writefn = tlbiipas2is_hyp_write },
5657 { .name = "TLBIIPAS2L",
5658 .cp = 15, .opc1 = 4, .crn = 8, .crm = 4, .opc2 = 5,
5659 .type = ARM_CP_NO_RAW, .access = PL2_W,
5660 .writefn = tlbiipas2_hyp_write },
5661 { .name = "TLBIIPAS2LIS",
5662 .cp = 15, .opc1 = 4, .crn = 8, .crm = 0, .opc2 = 5,
5663 .type = ARM_CP_NO_RAW, .access = PL2_W,
5664 .writefn = tlbiipas2is_hyp_write },
5665 /* 32 bit cache operations */
5666 { .name = "ICIALLUIS", .cp = 15, .opc1 = 0, .crn = 7, .crm = 1, .opc2 = 0,
5667 .type = ARM_CP_NOP, .access = PL1_W, .accessfn = access_ticab },
5668 { .name = "BPIALLUIS", .cp = 15, .opc1 = 0, .crn = 7, .crm = 1, .opc2 = 6,
5669 .type = ARM_CP_NOP, .access = PL1_W },
5670 { .name = "ICIALLU", .cp = 15, .opc1 = 0, .crn = 7, .crm = 5, .opc2 = 0,
5671 .type = ARM_CP_NOP, .access = PL1_W, .accessfn = access_tocu },
5672 { .name = "ICIMVAU", .cp = 15, .opc1 = 0, .crn = 7, .crm = 5, .opc2 = 1,
5673 .type = ARM_CP_NOP, .access = PL1_W, .accessfn = access_tocu },
5674 { .name = "BPIALL", .cp = 15, .opc1 = 0, .crn = 7, .crm = 5, .opc2 = 6,
5675 .type = ARM_CP_NOP, .access = PL1_W },
5676 { .name = "BPIMVA", .cp = 15, .opc1 = 0, .crn = 7, .crm = 5, .opc2 = 7,
5677 .type = ARM_CP_NOP, .access = PL1_W },
5678 { .name = "DCIMVAC", .cp = 15, .opc1 = 0, .crn = 7, .crm = 6, .opc2 = 1,
5679 .type = ARM_CP_NOP, .access = PL1_W, .accessfn = aa64_cacheop_poc_access },
5680 { .name = "DCISW", .cp = 15, .opc1 = 0, .crn = 7, .crm = 6, .opc2 = 2,
5681 .type = ARM_CP_NOP, .access = PL1_W, .accessfn = access_tsw },
5682 { .name = "DCCMVAC", .cp = 15, .opc1 = 0, .crn = 7, .crm = 10, .opc2 = 1,
5683 .type = ARM_CP_NOP, .access = PL1_W, .accessfn = aa64_cacheop_poc_access },
5684 { .name = "DCCSW", .cp = 15, .opc1 = 0, .crn = 7, .crm = 10, .opc2 = 2,
5685 .type = ARM_CP_NOP, .access = PL1_W, .accessfn = access_tsw },
5686 { .name = "DCCMVAU", .cp = 15, .opc1 = 0, .crn = 7, .crm = 11, .opc2 = 1,
5687 .type = ARM_CP_NOP, .access = PL1_W, .accessfn = access_tocu },
5688 { .name = "DCCIMVAC", .cp = 15, .opc1 = 0, .crn = 7, .crm = 14, .opc2 = 1,
5689 .type = ARM_CP_NOP, .access = PL1_W, .accessfn = aa64_cacheop_poc_access },
5690 { .name = "DCCISW", .cp = 15, .opc1 = 0, .crn = 7, .crm = 14, .opc2 = 2,
5691 .type = ARM_CP_NOP, .access = PL1_W, .accessfn = access_tsw },
5692 /* MMU Domain access control / MPU write buffer control */
5693 { .name = "DACR", .cp = 15, .opc1 = 0, .crn = 3, .crm = 0, .opc2 = 0,
5694 .access = PL1_RW, .accessfn = access_tvm_trvm, .resetvalue = 0,
5695 .writefn = dacr_write, .raw_writefn = raw_write,
5696 .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.dacr_s),
5697 offsetoflow32(CPUARMState, cp15.dacr_ns) } },
5698 { .name = "ELR_EL1", .state = ARM_CP_STATE_AA64,
5699 .type = ARM_CP_ALIAS,
5700 .opc0 = 3, .opc1 = 0, .crn = 4, .crm = 0, .opc2 = 1,
5701 .access = PL1_RW,
5702 .fieldoffset = offsetof(CPUARMState, elr_el[1]) },
5703 { .name = "SPSR_EL1", .state = ARM_CP_STATE_AA64,
5704 .type = ARM_CP_ALIAS,
5705 .opc0 = 3, .opc1 = 0, .crn = 4, .crm = 0, .opc2 = 0,
5706 .access = PL1_RW,
5707 .fieldoffset = offsetof(CPUARMState, banked_spsr[BANK_SVC]) },
5709 * We rely on the access checks not allowing the guest to write to the
5710 * state field when SPSel indicates that it's being used as the stack
5711 * pointer.
5713 { .name = "SP_EL0", .state = ARM_CP_STATE_AA64,
5714 .opc0 = 3, .opc1 = 0, .crn = 4, .crm = 1, .opc2 = 0,
5715 .access = PL1_RW, .accessfn = sp_el0_access,
5716 .type = ARM_CP_ALIAS,
5717 .fieldoffset = offsetof(CPUARMState, sp_el[0]) },
5718 { .name = "SP_EL1", .state = ARM_CP_STATE_AA64,
5719 .opc0 = 3, .opc1 = 4, .crn = 4, .crm = 1, .opc2 = 0,
5720 .access = PL2_RW, .type = ARM_CP_ALIAS | ARM_CP_EL3_NO_EL2_KEEP,
5721 .fieldoffset = offsetof(CPUARMState, sp_el[1]) },
5722 { .name = "SPSel", .state = ARM_CP_STATE_AA64,
5723 .opc0 = 3, .opc1 = 0, .crn = 4, .crm = 2, .opc2 = 0,
5724 .type = ARM_CP_NO_RAW,
5725 .access = PL1_RW, .readfn = spsel_read, .writefn = spsel_write },
5726 { .name = "SPSR_IRQ", .state = ARM_CP_STATE_AA64,
5727 .type = ARM_CP_ALIAS,
5728 .opc0 = 3, .opc1 = 4, .crn = 4, .crm = 3, .opc2 = 0,
5729 .access = PL2_RW,
5730 .fieldoffset = offsetof(CPUARMState, banked_spsr[BANK_IRQ]) },
5731 { .name = "SPSR_ABT", .state = ARM_CP_STATE_AA64,
5732 .type = ARM_CP_ALIAS,
5733 .opc0 = 3, .opc1 = 4, .crn = 4, .crm = 3, .opc2 = 1,
5734 .access = PL2_RW,
5735 .fieldoffset = offsetof(CPUARMState, banked_spsr[BANK_ABT]) },
5736 { .name = "SPSR_UND", .state = ARM_CP_STATE_AA64,
5737 .type = ARM_CP_ALIAS,
5738 .opc0 = 3, .opc1 = 4, .crn = 4, .crm = 3, .opc2 = 2,
5739 .access = PL2_RW,
5740 .fieldoffset = offsetof(CPUARMState, banked_spsr[BANK_UND]) },
5741 { .name = "SPSR_FIQ", .state = ARM_CP_STATE_AA64,
5742 .type = ARM_CP_ALIAS,
5743 .opc0 = 3, .opc1 = 4, .crn = 4, .crm = 3, .opc2 = 3,
5744 .access = PL2_RW,
5745 .fieldoffset = offsetof(CPUARMState, banked_spsr[BANK_FIQ]) },
5746 { .name = "MDCR_EL3", .state = ARM_CP_STATE_AA64,
5747 .type = ARM_CP_IO,
5748 .opc0 = 3, .opc1 = 6, .crn = 1, .crm = 3, .opc2 = 1,
5749 .resetvalue = 0,
5750 .access = PL3_RW,
5751 .writefn = mdcr_el3_write,
5752 .fieldoffset = offsetof(CPUARMState, cp15.mdcr_el3) },
5753 { .name = "SDCR", .type = ARM_CP_ALIAS | ARM_CP_IO,
5754 .cp = 15, .opc1 = 0, .crn = 1, .crm = 3, .opc2 = 1,
5755 .access = PL1_RW, .accessfn = access_trap_aa32s_el1,
5756 .writefn = sdcr_write,
5757 .fieldoffset = offsetoflow32(CPUARMState, cp15.mdcr_el3) },
5760 /* These are present only when EL1 supports AArch32 */
5761 static const ARMCPRegInfo v8_aa32_el1_reginfo[] = {
5762 { .name = "FPEXC32_EL2", .state = ARM_CP_STATE_AA64,
5763 .opc0 = 3, .opc1 = 4, .crn = 5, .crm = 3, .opc2 = 0,
5764 .access = PL2_RW,
5765 .type = ARM_CP_ALIAS | ARM_CP_FPU | ARM_CP_EL3_NO_EL2_KEEP,
5766 .fieldoffset = offsetof(CPUARMState, vfp.xregs[ARM_VFP_FPEXC]) },
5767 { .name = "DACR32_EL2", .state = ARM_CP_STATE_AA64,
5768 .opc0 = 3, .opc1 = 4, .crn = 3, .crm = 0, .opc2 = 0,
5769 .access = PL2_RW, .resetvalue = 0, .type = ARM_CP_EL3_NO_EL2_KEEP,
5770 .writefn = dacr_write, .raw_writefn = raw_write,
5771 .fieldoffset = offsetof(CPUARMState, cp15.dacr32_el2) },
5772 { .name = "IFSR32_EL2", .state = ARM_CP_STATE_AA64,
5773 .opc0 = 3, .opc1 = 4, .crn = 5, .crm = 0, .opc2 = 1,
5774 .access = PL2_RW, .resetvalue = 0, .type = ARM_CP_EL3_NO_EL2_KEEP,
5775 .fieldoffset = offsetof(CPUARMState, cp15.ifsr32_el2) },
5778 static void do_hcr_write(CPUARMState *env, uint64_t value, uint64_t valid_mask)
5780 ARMCPU *cpu = env_archcpu(env);
5782 if (arm_feature(env, ARM_FEATURE_V8)) {
5783 valid_mask |= MAKE_64BIT_MASK(0, 34); /* ARMv8.0 */
5784 } else {
5785 valid_mask |= MAKE_64BIT_MASK(0, 28); /* ARMv7VE */
5788 if (arm_feature(env, ARM_FEATURE_EL3)) {
5789 valid_mask &= ~HCR_HCD;
5790 } else if (cpu->psci_conduit != QEMU_PSCI_CONDUIT_SMC) {
5792 * Architecturally HCR.TSC is RES0 if EL3 is not implemented.
5793 * However, if we're using the SMC PSCI conduit then QEMU is
5794 * effectively acting like EL3 firmware and so the guest at
5795 * EL2 should retain the ability to prevent EL1 from being
5796 * able to make SMC calls into the ersatz firmware, so in
5797 * that case HCR.TSC should be read/write.
5799 valid_mask &= ~HCR_TSC;
5802 if (arm_feature(env, ARM_FEATURE_AARCH64)) {
5803 if (cpu_isar_feature(aa64_vh, cpu)) {
5804 valid_mask |= HCR_E2H;
5806 if (cpu_isar_feature(aa64_ras, cpu)) {
5807 valid_mask |= HCR_TERR | HCR_TEA;
5809 if (cpu_isar_feature(aa64_lor, cpu)) {
5810 valid_mask |= HCR_TLOR;
5812 if (cpu_isar_feature(aa64_pauth, cpu)) {
5813 valid_mask |= HCR_API | HCR_APK;
5815 if (cpu_isar_feature(aa64_mte, cpu)) {
5816 valid_mask |= HCR_ATA | HCR_DCT | HCR_TID5;
5818 if (cpu_isar_feature(aa64_scxtnum, cpu)) {
5819 valid_mask |= HCR_ENSCXT;
5821 if (cpu_isar_feature(aa64_fwb, cpu)) {
5822 valid_mask |= HCR_FWB;
5824 if (cpu_isar_feature(aa64_rme, cpu)) {
5825 valid_mask |= HCR_GPF;
5827 if (cpu_isar_feature(aa64_nv, cpu)) {
5828 valid_mask |= HCR_NV | HCR_NV1 | HCR_AT;
5832 if (cpu_isar_feature(any_evt, cpu)) {
5833 valid_mask |= HCR_TTLBIS | HCR_TTLBOS | HCR_TICAB | HCR_TOCU | HCR_TID4;
5834 } else if (cpu_isar_feature(any_half_evt, cpu)) {
5835 valid_mask |= HCR_TICAB | HCR_TOCU | HCR_TID4;
5838 /* Clear RES0 bits. */
5839 value &= valid_mask;
5842 * These bits change the MMU setup:
5843 * HCR_VM enables stage 2 translation
5844 * HCR_PTW forbids certain page-table setups
5845 * HCR_DC disables stage1 and enables stage2 translation
5846 * HCR_DCT enables tagging on (disabled) stage1 translation
5847 * HCR_FWB changes the interpretation of stage2 descriptor bits
5848 * HCR_NV and HCR_NV1 affect interpretation of descriptor bits
5850 if ((env->cp15.hcr_el2 ^ value) &
5851 (HCR_VM | HCR_PTW | HCR_DC | HCR_DCT | HCR_FWB | HCR_NV | HCR_NV1)) {
5852 tlb_flush(CPU(cpu));
5854 env->cp15.hcr_el2 = value;
5857 * Updates to VI and VF require us to update the status of
5858 * virtual interrupts, which are the logical OR of these bits
5859 * and the state of the input lines from the GIC. (This requires
5860 * that we have the BQL, which is done by marking the
5861 * reginfo structs as ARM_CP_IO.)
5862 * Note that if a write to HCR pends a VIRQ or VFIQ it is never
5863 * possible for it to be taken immediately, because VIRQ and
5864 * VFIQ are masked unless running at EL0 or EL1, and HCR
5865 * can only be written at EL2.
5867 g_assert(bql_locked());
5868 arm_cpu_update_virq(cpu);
5869 arm_cpu_update_vfiq(cpu);
5870 arm_cpu_update_vserr(cpu);
5873 static void hcr_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value)
5875 do_hcr_write(env, value, 0);
5878 static void hcr_writehigh(CPUARMState *env, const ARMCPRegInfo *ri,
5879 uint64_t value)
5881 /* Handle HCR2 write, i.e. write to high half of HCR_EL2 */
5882 value = deposit64(env->cp15.hcr_el2, 32, 32, value);
5883 do_hcr_write(env, value, MAKE_64BIT_MASK(0, 32));
5886 static void hcr_writelow(CPUARMState *env, const ARMCPRegInfo *ri,
5887 uint64_t value)
5889 /* Handle HCR write, i.e. write to low half of HCR_EL2 */
5890 value = deposit64(env->cp15.hcr_el2, 0, 32, value);
5891 do_hcr_write(env, value, MAKE_64BIT_MASK(32, 32));
5895 * Return the effective value of HCR_EL2, at the given security state.
5896 * Bits that are not included here:
5897 * RW (read from SCR_EL3.RW as needed)
5899 uint64_t arm_hcr_el2_eff_secstate(CPUARMState *env, ARMSecuritySpace space)
5901 uint64_t ret = env->cp15.hcr_el2;
5903 assert(space != ARMSS_Root);
5905 if (!arm_is_el2_enabled_secstate(env, space)) {
5907 * "This register has no effect if EL2 is not enabled in the
5908 * current Security state". This is ARMv8.4-SecEL2 speak for
5909 * !(SCR_EL3.NS==1 || SCR_EL3.EEL2==1).
5911 * Prior to that, the language was "In an implementation that
5912 * includes EL3, when the value of SCR_EL3.NS is 0 the PE behaves
5913 * as if this field is 0 for all purposes other than a direct
5914 * read or write access of HCR_EL2". With lots of enumeration
5915 * on a per-field basis. In current QEMU, this is condition
5916 * is arm_is_secure_below_el3.
5918 * Since the v8.4 language applies to the entire register, and
5919 * appears to be backward compatible, use that.
5921 return 0;
5925 * For a cpu that supports both aarch64 and aarch32, we can set bits
5926 * in HCR_EL2 (e.g. via EL3) that are RES0 when we enter EL2 as aa32.
5927 * Ignore all of the bits in HCR+HCR2 that are not valid for aarch32.
5929 if (!arm_el_is_aa64(env, 2)) {
5930 uint64_t aa32_valid;
5933 * These bits are up-to-date as of ARMv8.6.
5934 * For HCR, it's easiest to list just the 2 bits that are invalid.
5935 * For HCR2, list those that are valid.
5937 aa32_valid = MAKE_64BIT_MASK(0, 32) & ~(HCR_RW | HCR_TDZ);
5938 aa32_valid |= (HCR_CD | HCR_ID | HCR_TERR | HCR_TEA | HCR_MIOCNCE |
5939 HCR_TID4 | HCR_TICAB | HCR_TOCU | HCR_TTLBIS);
5940 ret &= aa32_valid;
5943 if (ret & HCR_TGE) {
5944 /* These bits are up-to-date as of ARMv8.6. */
5945 if (ret & HCR_E2H) {
5946 ret &= ~(HCR_VM | HCR_FMO | HCR_IMO | HCR_AMO |
5947 HCR_BSU_MASK | HCR_DC | HCR_TWI | HCR_TWE |
5948 HCR_TID0 | HCR_TID2 | HCR_TPCP | HCR_TPU |
5949 HCR_TDZ | HCR_CD | HCR_ID | HCR_MIOCNCE |
5950 HCR_TID4 | HCR_TICAB | HCR_TOCU | HCR_ENSCXT |
5951 HCR_TTLBIS | HCR_TTLBOS | HCR_TID5);
5952 } else {
5953 ret |= HCR_FMO | HCR_IMO | HCR_AMO;
5955 ret &= ~(HCR_SWIO | HCR_PTW | HCR_VF | HCR_VI | HCR_VSE |
5956 HCR_FB | HCR_TID1 | HCR_TID3 | HCR_TSC | HCR_TACR |
5957 HCR_TSW | HCR_TTLB | HCR_TVM | HCR_HCD | HCR_TRVM |
5958 HCR_TLOR);
5961 return ret;
5964 uint64_t arm_hcr_el2_eff(CPUARMState *env)
5966 if (arm_feature(env, ARM_FEATURE_M)) {
5967 return 0;
5969 return arm_hcr_el2_eff_secstate(env, arm_security_space_below_el3(env));
5973 * Corresponds to ARM pseudocode function ELIsInHost().
5975 bool el_is_in_host(CPUARMState *env, int el)
5977 uint64_t mask;
5980 * Since we only care about E2H and TGE, we can skip arm_hcr_el2_eff().
5981 * Perform the simplest bit tests first, and validate EL2 afterward.
5983 if (el & 1) {
5984 return false; /* EL1 or EL3 */
5988 * Note that hcr_write() checks isar_feature_aa64_vh(),
5989 * aka HaveVirtHostExt(), in allowing HCR_E2H to be set.
5991 mask = el ? HCR_E2H : HCR_E2H | HCR_TGE;
5992 if ((env->cp15.hcr_el2 & mask) != mask) {
5993 return false;
5996 /* TGE and/or E2H set: double check those bits are currently legal. */
5997 return arm_is_el2_enabled(env) && arm_el_is_aa64(env, 2);
6000 static void hcrx_write(CPUARMState *env, const ARMCPRegInfo *ri,
6001 uint64_t value)
6003 uint64_t valid_mask = 0;
6005 /* FEAT_MOPS adds MSCEn and MCE2 */
6006 if (cpu_isar_feature(aa64_mops, env_archcpu(env))) {
6007 valid_mask |= HCRX_MSCEN | HCRX_MCE2;
6010 /* Clear RES0 bits. */
6011 env->cp15.hcrx_el2 = value & valid_mask;
6014 static CPAccessResult access_hxen(CPUARMState *env, const ARMCPRegInfo *ri,
6015 bool isread)
6017 if (arm_current_el(env) < 3
6018 && arm_feature(env, ARM_FEATURE_EL3)
6019 && !(env->cp15.scr_el3 & SCR_HXEN)) {
6020 return CP_ACCESS_TRAP_EL3;
6022 return CP_ACCESS_OK;
6025 static const ARMCPRegInfo hcrx_el2_reginfo = {
6026 .name = "HCRX_EL2", .state = ARM_CP_STATE_AA64,
6027 .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 2, .opc2 = 2,
6028 .access = PL2_RW, .writefn = hcrx_write, .accessfn = access_hxen,
6029 .fieldoffset = offsetof(CPUARMState, cp15.hcrx_el2),
6032 /* Return the effective value of HCRX_EL2. */
6033 uint64_t arm_hcrx_el2_eff(CPUARMState *env)
6036 * The bits in this register behave as 0 for all purposes other than
6037 * direct reads of the register if SCR_EL3.HXEn is 0.
6038 * If EL2 is not enabled in the current security state, then the
6039 * bit may behave as if 0, or as if 1, depending on the bit.
6040 * For the moment, we treat the EL2-disabled case as taking
6041 * priority over the HXEn-disabled case. This is true for the only
6042 * bit for a feature which we implement where the answer is different
6043 * for the two cases (MSCEn for FEAT_MOPS).
6044 * This may need to be revisited for future bits.
6046 if (!arm_is_el2_enabled(env)) {
6047 uint64_t hcrx = 0;
6048 if (cpu_isar_feature(aa64_mops, env_archcpu(env))) {
6049 /* MSCEn behaves as 1 if EL2 is not enabled */
6050 hcrx |= HCRX_MSCEN;
6052 return hcrx;
6054 if (arm_feature(env, ARM_FEATURE_EL3) && !(env->cp15.scr_el3 & SCR_HXEN)) {
6055 return 0;
6057 return env->cp15.hcrx_el2;
6060 static void cptr_el2_write(CPUARMState *env, const ARMCPRegInfo *ri,
6061 uint64_t value)
6064 * For A-profile AArch32 EL3, if NSACR.CP10
6065 * is 0 then HCPTR.{TCP11,TCP10} ignore writes and read as 1.
6067 if (arm_feature(env, ARM_FEATURE_EL3) && !arm_el_is_aa64(env, 3) &&
6068 !arm_is_secure(env) && !extract32(env->cp15.nsacr, 10, 1)) {
6069 uint64_t mask = R_HCPTR_TCP11_MASK | R_HCPTR_TCP10_MASK;
6070 value = (value & ~mask) | (env->cp15.cptr_el[2] & mask);
6072 env->cp15.cptr_el[2] = value;
6075 static uint64_t cptr_el2_read(CPUARMState *env, const ARMCPRegInfo *ri)
6078 * For A-profile AArch32 EL3, if NSACR.CP10
6079 * is 0 then HCPTR.{TCP11,TCP10} ignore writes and read as 1.
6081 uint64_t value = env->cp15.cptr_el[2];
6083 if (arm_feature(env, ARM_FEATURE_EL3) && !arm_el_is_aa64(env, 3) &&
6084 !arm_is_secure(env) && !extract32(env->cp15.nsacr, 10, 1)) {
6085 value |= R_HCPTR_TCP11_MASK | R_HCPTR_TCP10_MASK;
6087 return value;
6090 static const ARMCPRegInfo el2_cp_reginfo[] = {
6091 { .name = "HCR_EL2", .state = ARM_CP_STATE_AA64,
6092 .type = ARM_CP_IO,
6093 .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 0,
6094 .access = PL2_RW, .fieldoffset = offsetof(CPUARMState, cp15.hcr_el2),
6095 .writefn = hcr_write, .raw_writefn = raw_write },
6096 { .name = "HCR", .state = ARM_CP_STATE_AA32,
6097 .type = ARM_CP_ALIAS | ARM_CP_IO,
6098 .cp = 15, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 0,
6099 .access = PL2_RW, .fieldoffset = offsetof(CPUARMState, cp15.hcr_el2),
6100 .writefn = hcr_writelow },
6101 { .name = "HACR_EL2", .state = ARM_CP_STATE_BOTH,
6102 .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 7,
6103 .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
6104 { .name = "ELR_EL2", .state = ARM_CP_STATE_AA64,
6105 .type = ARM_CP_ALIAS,
6106 .opc0 = 3, .opc1 = 4, .crn = 4, .crm = 0, .opc2 = 1,
6107 .access = PL2_RW,
6108 .fieldoffset = offsetof(CPUARMState, elr_el[2]) },
6109 { .name = "ESR_EL2", .state = ARM_CP_STATE_BOTH,
6110 .opc0 = 3, .opc1 = 4, .crn = 5, .crm = 2, .opc2 = 0,
6111 .access = PL2_RW, .fieldoffset = offsetof(CPUARMState, cp15.esr_el[2]) },
6112 { .name = "FAR_EL2", .state = ARM_CP_STATE_BOTH,
6113 .opc0 = 3, .opc1 = 4, .crn = 6, .crm = 0, .opc2 = 0,
6114 .access = PL2_RW, .fieldoffset = offsetof(CPUARMState, cp15.far_el[2]) },
6115 { .name = "HIFAR", .state = ARM_CP_STATE_AA32,
6116 .type = ARM_CP_ALIAS,
6117 .cp = 15, .opc1 = 4, .crn = 6, .crm = 0, .opc2 = 2,
6118 .access = PL2_RW,
6119 .fieldoffset = offsetofhigh32(CPUARMState, cp15.far_el[2]) },
6120 { .name = "SPSR_EL2", .state = ARM_CP_STATE_AA64,
6121 .type = ARM_CP_ALIAS,
6122 .opc0 = 3, .opc1 = 4, .crn = 4, .crm = 0, .opc2 = 0,
6123 .access = PL2_RW,
6124 .fieldoffset = offsetof(CPUARMState, banked_spsr[BANK_HYP]) },
6125 { .name = "VBAR_EL2", .state = ARM_CP_STATE_BOTH,
6126 .opc0 = 3, .opc1 = 4, .crn = 12, .crm = 0, .opc2 = 0,
6127 .access = PL2_RW, .writefn = vbar_write,
6128 .fieldoffset = offsetof(CPUARMState, cp15.vbar_el[2]),
6129 .resetvalue = 0 },
6130 { .name = "SP_EL2", .state = ARM_CP_STATE_AA64,
6131 .opc0 = 3, .opc1 = 6, .crn = 4, .crm = 1, .opc2 = 0,
6132 .access = PL3_RW, .type = ARM_CP_ALIAS,
6133 .fieldoffset = offsetof(CPUARMState, sp_el[2]) },
6134 { .name = "CPTR_EL2", .state = ARM_CP_STATE_BOTH,
6135 .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 2,
6136 .access = PL2_RW, .accessfn = cptr_access, .resetvalue = 0,
6137 .fieldoffset = offsetof(CPUARMState, cp15.cptr_el[2]),
6138 .readfn = cptr_el2_read, .writefn = cptr_el2_write },
6139 { .name = "MAIR_EL2", .state = ARM_CP_STATE_BOTH,
6140 .opc0 = 3, .opc1 = 4, .crn = 10, .crm = 2, .opc2 = 0,
6141 .access = PL2_RW, .fieldoffset = offsetof(CPUARMState, cp15.mair_el[2]),
6142 .resetvalue = 0 },
6143 { .name = "HMAIR1", .state = ARM_CP_STATE_AA32,
6144 .cp = 15, .opc1 = 4, .crn = 10, .crm = 2, .opc2 = 1,
6145 .access = PL2_RW, .type = ARM_CP_ALIAS,
6146 .fieldoffset = offsetofhigh32(CPUARMState, cp15.mair_el[2]) },
6147 { .name = "AMAIR_EL2", .state = ARM_CP_STATE_BOTH,
6148 .opc0 = 3, .opc1 = 4, .crn = 10, .crm = 3, .opc2 = 0,
6149 .access = PL2_RW, .type = ARM_CP_CONST,
6150 .resetvalue = 0 },
6151 /* HAMAIR1 is mapped to AMAIR_EL2[63:32] */
6152 { .name = "HAMAIR1", .state = ARM_CP_STATE_AA32,
6153 .cp = 15, .opc1 = 4, .crn = 10, .crm = 3, .opc2 = 1,
6154 .access = PL2_RW, .type = ARM_CP_CONST,
6155 .resetvalue = 0 },
6156 { .name = "AFSR0_EL2", .state = ARM_CP_STATE_BOTH,
6157 .opc0 = 3, .opc1 = 4, .crn = 5, .crm = 1, .opc2 = 0,
6158 .access = PL2_RW, .type = ARM_CP_CONST,
6159 .resetvalue = 0 },
6160 { .name = "AFSR1_EL2", .state = ARM_CP_STATE_BOTH,
6161 .opc0 = 3, .opc1 = 4, .crn = 5, .crm = 1, .opc2 = 1,
6162 .access = PL2_RW, .type = ARM_CP_CONST,
6163 .resetvalue = 0 },
6164 { .name = "TCR_EL2", .state = ARM_CP_STATE_BOTH,
6165 .opc0 = 3, .opc1 = 4, .crn = 2, .crm = 0, .opc2 = 2,
6166 .access = PL2_RW, .writefn = vmsa_tcr_el12_write,
6167 .raw_writefn = raw_write,
6168 .fieldoffset = offsetof(CPUARMState, cp15.tcr_el[2]) },
6169 { .name = "VTCR", .state = ARM_CP_STATE_AA32,
6170 .cp = 15, .opc1 = 4, .crn = 2, .crm = 1, .opc2 = 2,
6171 .type = ARM_CP_ALIAS,
6172 .access = PL2_RW, .accessfn = access_el3_aa32ns,
6173 .fieldoffset = offsetoflow32(CPUARMState, cp15.vtcr_el2) },
6174 { .name = "VTCR_EL2", .state = ARM_CP_STATE_AA64,
6175 .opc0 = 3, .opc1 = 4, .crn = 2, .crm = 1, .opc2 = 2,
6176 .access = PL2_RW,
6177 /* no .writefn needed as this can't cause an ASID change */
6178 .fieldoffset = offsetof(CPUARMState, cp15.vtcr_el2) },
6179 { .name = "VTTBR", .state = ARM_CP_STATE_AA32,
6180 .cp = 15, .opc1 = 6, .crm = 2,
6181 .type = ARM_CP_64BIT | ARM_CP_ALIAS,
6182 .access = PL2_RW, .accessfn = access_el3_aa32ns,
6183 .fieldoffset = offsetof(CPUARMState, cp15.vttbr_el2),
6184 .writefn = vttbr_write, .raw_writefn = raw_write },
6185 { .name = "VTTBR_EL2", .state = ARM_CP_STATE_AA64,
6186 .opc0 = 3, .opc1 = 4, .crn = 2, .crm = 1, .opc2 = 0,
6187 .access = PL2_RW, .writefn = vttbr_write, .raw_writefn = raw_write,
6188 .fieldoffset = offsetof(CPUARMState, cp15.vttbr_el2) },
6189 { .name = "SCTLR_EL2", .state = ARM_CP_STATE_BOTH,
6190 .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 0, .opc2 = 0,
6191 .access = PL2_RW, .raw_writefn = raw_write, .writefn = sctlr_write,
6192 .fieldoffset = offsetof(CPUARMState, cp15.sctlr_el[2]) },
6193 { .name = "TPIDR_EL2", .state = ARM_CP_STATE_BOTH,
6194 .opc0 = 3, .opc1 = 4, .crn = 13, .crm = 0, .opc2 = 2,
6195 .access = PL2_RW, .resetvalue = 0,
6196 .fieldoffset = offsetof(CPUARMState, cp15.tpidr_el[2]) },
6197 { .name = "TTBR0_EL2", .state = ARM_CP_STATE_AA64,
6198 .opc0 = 3, .opc1 = 4, .crn = 2, .crm = 0, .opc2 = 0,
6199 .access = PL2_RW, .resetvalue = 0,
6200 .writefn = vmsa_tcr_ttbr_el2_write, .raw_writefn = raw_write,
6201 .fieldoffset = offsetof(CPUARMState, cp15.ttbr0_el[2]) },
6202 { .name = "HTTBR", .cp = 15, .opc1 = 4, .crm = 2,
6203 .access = PL2_RW, .type = ARM_CP_64BIT | ARM_CP_ALIAS,
6204 .fieldoffset = offsetof(CPUARMState, cp15.ttbr0_el[2]) },
6205 { .name = "TLBIALLNSNH",
6206 .cp = 15, .opc1 = 4, .crn = 8, .crm = 7, .opc2 = 4,
6207 .type = ARM_CP_NO_RAW, .access = PL2_W,
6208 .writefn = tlbiall_nsnh_write },
6209 { .name = "TLBIALLNSNHIS",
6210 .cp = 15, .opc1 = 4, .crn = 8, .crm = 3, .opc2 = 4,
6211 .type = ARM_CP_NO_RAW, .access = PL2_W,
6212 .writefn = tlbiall_nsnh_is_write },
6213 { .name = "TLBIALLH", .cp = 15, .opc1 = 4, .crn = 8, .crm = 7, .opc2 = 0,
6214 .type = ARM_CP_NO_RAW, .access = PL2_W,
6215 .writefn = tlbiall_hyp_write },
6216 { .name = "TLBIALLHIS", .cp = 15, .opc1 = 4, .crn = 8, .crm = 3, .opc2 = 0,
6217 .type = ARM_CP_NO_RAW, .access = PL2_W,
6218 .writefn = tlbiall_hyp_is_write },
6219 { .name = "TLBIMVAH", .cp = 15, .opc1 = 4, .crn = 8, .crm = 7, .opc2 = 1,
6220 .type = ARM_CP_NO_RAW, .access = PL2_W,
6221 .writefn = tlbimva_hyp_write },
6222 { .name = "TLBIMVAHIS", .cp = 15, .opc1 = 4, .crn = 8, .crm = 3, .opc2 = 1,
6223 .type = ARM_CP_NO_RAW, .access = PL2_W,
6224 .writefn = tlbimva_hyp_is_write },
6225 { .name = "TLBI_ALLE2", .state = ARM_CP_STATE_AA64,
6226 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 7, .opc2 = 0,
6227 .access = PL2_W, .type = ARM_CP_NO_RAW | ARM_CP_EL3_NO_EL2_UNDEF,
6228 .writefn = tlbi_aa64_alle2_write },
6229 { .name = "TLBI_VAE2", .state = ARM_CP_STATE_AA64,
6230 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 7, .opc2 = 1,
6231 .access = PL2_W, .type = ARM_CP_NO_RAW | ARM_CP_EL3_NO_EL2_UNDEF,
6232 .writefn = tlbi_aa64_vae2_write },
6233 { .name = "TLBI_VALE2", .state = ARM_CP_STATE_AA64,
6234 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 7, .opc2 = 5,
6235 .access = PL2_W, .type = ARM_CP_NO_RAW | ARM_CP_EL3_NO_EL2_UNDEF,
6236 .writefn = tlbi_aa64_vae2_write },
6237 { .name = "TLBI_ALLE2IS", .state = ARM_CP_STATE_AA64,
6238 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 3, .opc2 = 0,
6239 .access = PL2_W, .type = ARM_CP_NO_RAW | ARM_CP_EL3_NO_EL2_UNDEF,
6240 .writefn = tlbi_aa64_alle2is_write },
6241 { .name = "TLBI_VAE2IS", .state = ARM_CP_STATE_AA64,
6242 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 3, .opc2 = 1,
6243 .access = PL2_W, .type = ARM_CP_NO_RAW | ARM_CP_EL3_NO_EL2_UNDEF,
6244 .writefn = tlbi_aa64_vae2is_write },
6245 { .name = "TLBI_VALE2IS", .state = ARM_CP_STATE_AA64,
6246 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 3, .opc2 = 5,
6247 .access = PL2_W, .type = ARM_CP_NO_RAW | ARM_CP_EL3_NO_EL2_UNDEF,
6248 .writefn = tlbi_aa64_vae2is_write },
6249 #ifndef CONFIG_USER_ONLY
6251 * Unlike the other EL2-related AT operations, these must
6252 * UNDEF from EL3 if EL2 is not implemented, which is why we
6253 * define them here rather than with the rest of the AT ops.
6255 { .name = "AT_S1E2R", .state = ARM_CP_STATE_AA64,
6256 .opc0 = 1, .opc1 = 4, .crn = 7, .crm = 8, .opc2 = 0,
6257 .access = PL2_W, .accessfn = at_s1e2_access,
6258 .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC | ARM_CP_EL3_NO_EL2_UNDEF,
6259 .writefn = ats_write64 },
6260 { .name = "AT_S1E2W", .state = ARM_CP_STATE_AA64,
6261 .opc0 = 1, .opc1 = 4, .crn = 7, .crm = 8, .opc2 = 1,
6262 .access = PL2_W, .accessfn = at_s1e2_access,
6263 .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC | ARM_CP_EL3_NO_EL2_UNDEF,
6264 .writefn = ats_write64 },
6266 * The AArch32 ATS1H* operations are CONSTRAINED UNPREDICTABLE
6267 * if EL2 is not implemented; we choose to UNDEF. Behaviour at EL3
6268 * with SCR.NS == 0 outside Monitor mode is UNPREDICTABLE; we choose
6269 * to behave as if SCR.NS was 1.
6271 { .name = "ATS1HR", .cp = 15, .opc1 = 4, .crn = 7, .crm = 8, .opc2 = 0,
6272 .access = PL2_W,
6273 .writefn = ats1h_write, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC },
6274 { .name = "ATS1HW", .cp = 15, .opc1 = 4, .crn = 7, .crm = 8, .opc2 = 1,
6275 .access = PL2_W,
6276 .writefn = ats1h_write, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC },
6277 { .name = "CNTHCTL_EL2", .state = ARM_CP_STATE_BOTH,
6278 .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 1, .opc2 = 0,
6280 * ARMv7 requires bit 0 and 1 to reset to 1. ARMv8 defines the
6281 * reset values as IMPDEF. We choose to reset to 3 to comply with
6282 * both ARMv7 and ARMv8.
6284 .access = PL2_RW, .type = ARM_CP_IO, .resetvalue = 3,
6285 .writefn = gt_cnthctl_write, .raw_writefn = raw_write,
6286 .fieldoffset = offsetof(CPUARMState, cp15.cnthctl_el2) },
6287 { .name = "CNTVOFF_EL2", .state = ARM_CP_STATE_AA64,
6288 .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 0, .opc2 = 3,
6289 .access = PL2_RW, .type = ARM_CP_IO, .resetvalue = 0,
6290 .writefn = gt_cntvoff_write,
6291 .fieldoffset = offsetof(CPUARMState, cp15.cntvoff_el2) },
6292 { .name = "CNTVOFF", .cp = 15, .opc1 = 4, .crm = 14,
6293 .access = PL2_RW, .type = ARM_CP_64BIT | ARM_CP_ALIAS | ARM_CP_IO,
6294 .writefn = gt_cntvoff_write,
6295 .fieldoffset = offsetof(CPUARMState, cp15.cntvoff_el2) },
6296 { .name = "CNTHP_CVAL_EL2", .state = ARM_CP_STATE_AA64,
6297 .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 2, .opc2 = 2,
6298 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_HYP].cval),
6299 .type = ARM_CP_IO, .access = PL2_RW,
6300 .writefn = gt_hyp_cval_write, .raw_writefn = raw_write },
6301 { .name = "CNTHP_CVAL", .cp = 15, .opc1 = 6, .crm = 14,
6302 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_HYP].cval),
6303 .access = PL2_RW, .type = ARM_CP_64BIT | ARM_CP_IO,
6304 .writefn = gt_hyp_cval_write, .raw_writefn = raw_write },
6305 { .name = "CNTHP_TVAL_EL2", .state = ARM_CP_STATE_BOTH,
6306 .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 2, .opc2 = 0,
6307 .type = ARM_CP_NO_RAW | ARM_CP_IO, .access = PL2_RW,
6308 .resetfn = gt_hyp_timer_reset,
6309 .readfn = gt_hyp_tval_read, .writefn = gt_hyp_tval_write },
6310 { .name = "CNTHP_CTL_EL2", .state = ARM_CP_STATE_BOTH,
6311 .type = ARM_CP_IO,
6312 .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 2, .opc2 = 1,
6313 .access = PL2_RW,
6314 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_HYP].ctl),
6315 .resetvalue = 0,
6316 .writefn = gt_hyp_ctl_write, .raw_writefn = raw_write },
6317 #endif
6318 { .name = "HPFAR", .state = ARM_CP_STATE_AA32,
6319 .cp = 15, .opc1 = 4, .crn = 6, .crm = 0, .opc2 = 4,
6320 .access = PL2_RW, .accessfn = access_el3_aa32ns,
6321 .fieldoffset = offsetof(CPUARMState, cp15.hpfar_el2) },
6322 { .name = "HPFAR_EL2", .state = ARM_CP_STATE_AA64,
6323 .opc0 = 3, .opc1 = 4, .crn = 6, .crm = 0, .opc2 = 4,
6324 .access = PL2_RW,
6325 .fieldoffset = offsetof(CPUARMState, cp15.hpfar_el2) },
6326 { .name = "HSTR_EL2", .state = ARM_CP_STATE_BOTH,
6327 .cp = 15, .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 3,
6328 .access = PL2_RW,
6329 .fieldoffset = offsetof(CPUARMState, cp15.hstr_el2) },
6332 static const ARMCPRegInfo el2_v8_cp_reginfo[] = {
6333 { .name = "HCR2", .state = ARM_CP_STATE_AA32,
6334 .type = ARM_CP_ALIAS | ARM_CP_IO,
6335 .cp = 15, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 4,
6336 .access = PL2_RW,
6337 .fieldoffset = offsetofhigh32(CPUARMState, cp15.hcr_el2),
6338 .writefn = hcr_writehigh },
6341 static CPAccessResult sel2_access(CPUARMState *env, const ARMCPRegInfo *ri,
6342 bool isread)
6344 if (arm_current_el(env) == 3 || arm_is_secure_below_el3(env)) {
6345 return CP_ACCESS_OK;
6347 return CP_ACCESS_TRAP_UNCATEGORIZED;
6350 static const ARMCPRegInfo el2_sec_cp_reginfo[] = {
6351 { .name = "VSTTBR_EL2", .state = ARM_CP_STATE_AA64,
6352 .opc0 = 3, .opc1 = 4, .crn = 2, .crm = 6, .opc2 = 0,
6353 .access = PL2_RW, .accessfn = sel2_access,
6354 .fieldoffset = offsetof(CPUARMState, cp15.vsttbr_el2) },
6355 { .name = "VSTCR_EL2", .state = ARM_CP_STATE_AA64,
6356 .opc0 = 3, .opc1 = 4, .crn = 2, .crm = 6, .opc2 = 2,
6357 .access = PL2_RW, .accessfn = sel2_access,
6358 .fieldoffset = offsetof(CPUARMState, cp15.vstcr_el2) },
6361 static CPAccessResult nsacr_access(CPUARMState *env, const ARMCPRegInfo *ri,
6362 bool isread)
6365 * The NSACR is RW at EL3, and RO for NS EL1 and NS EL2.
6366 * At Secure EL1 it traps to EL3 or EL2.
6368 if (arm_current_el(env) == 3) {
6369 return CP_ACCESS_OK;
6371 if (arm_is_secure_below_el3(env)) {
6372 if (env->cp15.scr_el3 & SCR_EEL2) {
6373 return CP_ACCESS_TRAP_EL2;
6375 return CP_ACCESS_TRAP_EL3;
6377 /* Accesses from EL1 NS and EL2 NS are UNDEF for write but allow reads. */
6378 if (isread) {
6379 return CP_ACCESS_OK;
6381 return CP_ACCESS_TRAP_UNCATEGORIZED;
6384 static const ARMCPRegInfo el3_cp_reginfo[] = {
6385 { .name = "SCR_EL3", .state = ARM_CP_STATE_AA64,
6386 .opc0 = 3, .opc1 = 6, .crn = 1, .crm = 1, .opc2 = 0,
6387 .access = PL3_RW, .fieldoffset = offsetof(CPUARMState, cp15.scr_el3),
6388 .resetfn = scr_reset, .writefn = scr_write, .raw_writefn = raw_write },
6389 { .name = "SCR", .type = ARM_CP_ALIAS | ARM_CP_NEWEL,
6390 .cp = 15, .opc1 = 0, .crn = 1, .crm = 1, .opc2 = 0,
6391 .access = PL1_RW, .accessfn = access_trap_aa32s_el1,
6392 .fieldoffset = offsetoflow32(CPUARMState, cp15.scr_el3),
6393 .writefn = scr_write, .raw_writefn = raw_write },
6394 { .name = "SDER32_EL3", .state = ARM_CP_STATE_AA64,
6395 .opc0 = 3, .opc1 = 6, .crn = 1, .crm = 1, .opc2 = 1,
6396 .access = PL3_RW, .resetvalue = 0,
6397 .fieldoffset = offsetof(CPUARMState, cp15.sder) },
6398 { .name = "SDER",
6399 .cp = 15, .opc1 = 0, .crn = 1, .crm = 1, .opc2 = 1,
6400 .access = PL3_RW, .resetvalue = 0,
6401 .fieldoffset = offsetoflow32(CPUARMState, cp15.sder) },
6402 { .name = "MVBAR", .cp = 15, .opc1 = 0, .crn = 12, .crm = 0, .opc2 = 1,
6403 .access = PL1_RW, .accessfn = access_trap_aa32s_el1,
6404 .writefn = vbar_write, .resetvalue = 0,
6405 .fieldoffset = offsetof(CPUARMState, cp15.mvbar) },
6406 { .name = "TTBR0_EL3", .state = ARM_CP_STATE_AA64,
6407 .opc0 = 3, .opc1 = 6, .crn = 2, .crm = 0, .opc2 = 0,
6408 .access = PL3_RW, .resetvalue = 0,
6409 .fieldoffset = offsetof(CPUARMState, cp15.ttbr0_el[3]) },
6410 { .name = "TCR_EL3", .state = ARM_CP_STATE_AA64,
6411 .opc0 = 3, .opc1 = 6, .crn = 2, .crm = 0, .opc2 = 2,
6412 .access = PL3_RW,
6413 /* no .writefn needed as this can't cause an ASID change */
6414 .resetvalue = 0,
6415 .fieldoffset = offsetof(CPUARMState, cp15.tcr_el[3]) },
6416 { .name = "ELR_EL3", .state = ARM_CP_STATE_AA64,
6417 .type = ARM_CP_ALIAS,
6418 .opc0 = 3, .opc1 = 6, .crn = 4, .crm = 0, .opc2 = 1,
6419 .access = PL3_RW,
6420 .fieldoffset = offsetof(CPUARMState, elr_el[3]) },
6421 { .name = "ESR_EL3", .state = ARM_CP_STATE_AA64,
6422 .opc0 = 3, .opc1 = 6, .crn = 5, .crm = 2, .opc2 = 0,
6423 .access = PL3_RW, .fieldoffset = offsetof(CPUARMState, cp15.esr_el[3]) },
6424 { .name = "FAR_EL3", .state = ARM_CP_STATE_AA64,
6425 .opc0 = 3, .opc1 = 6, .crn = 6, .crm = 0, .opc2 = 0,
6426 .access = PL3_RW, .fieldoffset = offsetof(CPUARMState, cp15.far_el[3]) },
6427 { .name = "SPSR_EL3", .state = ARM_CP_STATE_AA64,
6428 .type = ARM_CP_ALIAS,
6429 .opc0 = 3, .opc1 = 6, .crn = 4, .crm = 0, .opc2 = 0,
6430 .access = PL3_RW,
6431 .fieldoffset = offsetof(CPUARMState, banked_spsr[BANK_MON]) },
6432 { .name = "VBAR_EL3", .state = ARM_CP_STATE_AA64,
6433 .opc0 = 3, .opc1 = 6, .crn = 12, .crm = 0, .opc2 = 0,
6434 .access = PL3_RW, .writefn = vbar_write,
6435 .fieldoffset = offsetof(CPUARMState, cp15.vbar_el[3]),
6436 .resetvalue = 0 },
6437 { .name = "CPTR_EL3", .state = ARM_CP_STATE_AA64,
6438 .opc0 = 3, .opc1 = 6, .crn = 1, .crm = 1, .opc2 = 2,
6439 .access = PL3_RW, .accessfn = cptr_access, .resetvalue = 0,
6440 .fieldoffset = offsetof(CPUARMState, cp15.cptr_el[3]) },
6441 { .name = "TPIDR_EL3", .state = ARM_CP_STATE_AA64,
6442 .opc0 = 3, .opc1 = 6, .crn = 13, .crm = 0, .opc2 = 2,
6443 .access = PL3_RW, .resetvalue = 0,
6444 .fieldoffset = offsetof(CPUARMState, cp15.tpidr_el[3]) },
6445 { .name = "AMAIR_EL3", .state = ARM_CP_STATE_AA64,
6446 .opc0 = 3, .opc1 = 6, .crn = 10, .crm = 3, .opc2 = 0,
6447 .access = PL3_RW, .type = ARM_CP_CONST,
6448 .resetvalue = 0 },
6449 { .name = "AFSR0_EL3", .state = ARM_CP_STATE_BOTH,
6450 .opc0 = 3, .opc1 = 6, .crn = 5, .crm = 1, .opc2 = 0,
6451 .access = PL3_RW, .type = ARM_CP_CONST,
6452 .resetvalue = 0 },
6453 { .name = "AFSR1_EL3", .state = ARM_CP_STATE_BOTH,
6454 .opc0 = 3, .opc1 = 6, .crn = 5, .crm = 1, .opc2 = 1,
6455 .access = PL3_RW, .type = ARM_CP_CONST,
6456 .resetvalue = 0 },
6457 { .name = "TLBI_ALLE3IS", .state = ARM_CP_STATE_AA64,
6458 .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 3, .opc2 = 0,
6459 .access = PL3_W, .type = ARM_CP_NO_RAW,
6460 .writefn = tlbi_aa64_alle3is_write },
6461 { .name = "TLBI_VAE3IS", .state = ARM_CP_STATE_AA64,
6462 .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 3, .opc2 = 1,
6463 .access = PL3_W, .type = ARM_CP_NO_RAW,
6464 .writefn = tlbi_aa64_vae3is_write },
6465 { .name = "TLBI_VALE3IS", .state = ARM_CP_STATE_AA64,
6466 .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 3, .opc2 = 5,
6467 .access = PL3_W, .type = ARM_CP_NO_RAW,
6468 .writefn = tlbi_aa64_vae3is_write },
6469 { .name = "TLBI_ALLE3", .state = ARM_CP_STATE_AA64,
6470 .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 7, .opc2 = 0,
6471 .access = PL3_W, .type = ARM_CP_NO_RAW,
6472 .writefn = tlbi_aa64_alle3_write },
6473 { .name = "TLBI_VAE3", .state = ARM_CP_STATE_AA64,
6474 .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 7, .opc2 = 1,
6475 .access = PL3_W, .type = ARM_CP_NO_RAW,
6476 .writefn = tlbi_aa64_vae3_write },
6477 { .name = "TLBI_VALE3", .state = ARM_CP_STATE_AA64,
6478 .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 7, .opc2 = 5,
6479 .access = PL3_W, .type = ARM_CP_NO_RAW,
6480 .writefn = tlbi_aa64_vae3_write },
6483 #ifndef CONFIG_USER_ONLY
6484 /* Test if system register redirection is to occur in the current state. */
6485 static bool redirect_for_e2h(CPUARMState *env)
6487 return arm_current_el(env) == 2 && (arm_hcr_el2_eff(env) & HCR_E2H);
6490 static uint64_t el2_e2h_read(CPUARMState *env, const ARMCPRegInfo *ri)
6492 CPReadFn *readfn;
6494 if (redirect_for_e2h(env)) {
6495 /* Switch to the saved EL2 version of the register. */
6496 ri = ri->opaque;
6497 readfn = ri->readfn;
6498 } else {
6499 readfn = ri->orig_readfn;
6501 if (readfn == NULL) {
6502 readfn = raw_read;
6504 return readfn(env, ri);
6507 static void el2_e2h_write(CPUARMState *env, const ARMCPRegInfo *ri,
6508 uint64_t value)
6510 CPWriteFn *writefn;
6512 if (redirect_for_e2h(env)) {
6513 /* Switch to the saved EL2 version of the register. */
6514 ri = ri->opaque;
6515 writefn = ri->writefn;
6516 } else {
6517 writefn = ri->orig_writefn;
6519 if (writefn == NULL) {
6520 writefn = raw_write;
6522 writefn(env, ri, value);
6525 static uint64_t el2_e2h_e12_read(CPUARMState *env, const ARMCPRegInfo *ri)
6527 /* Pass the EL1 register accessor its ri, not the EL12 alias ri */
6528 return ri->orig_readfn(env, ri->opaque);
6531 static void el2_e2h_e12_write(CPUARMState *env, const ARMCPRegInfo *ri,
6532 uint64_t value)
6534 /* Pass the EL1 register accessor its ri, not the EL12 alias ri */
6535 return ri->orig_writefn(env, ri->opaque, value);
6538 static CPAccessResult el2_e2h_e12_access(CPUARMState *env,
6539 const ARMCPRegInfo *ri,
6540 bool isread)
6542 /* FOO_EL12 aliases only exist when E2H is 1; otherwise they UNDEF */
6543 if (!(arm_hcr_el2_eff(env) & HCR_E2H)) {
6544 return CP_ACCESS_TRAP_UNCATEGORIZED;
6546 if (ri->orig_accessfn) {
6547 return ri->orig_accessfn(env, ri->opaque, isread);
6549 return CP_ACCESS_OK;
6552 static void define_arm_vh_e2h_redirects_aliases(ARMCPU *cpu)
6554 struct E2HAlias {
6555 uint32_t src_key, dst_key, new_key;
6556 const char *src_name, *dst_name, *new_name;
6557 bool (*feature)(const ARMISARegisters *id);
6560 #define K(op0, op1, crn, crm, op2) \
6561 ENCODE_AA64_CP_REG(CP_REG_ARM64_SYSREG_CP, crn, crm, op0, op1, op2)
6563 static const struct E2HAlias aliases[] = {
6564 { K(3, 0, 1, 0, 0), K(3, 4, 1, 0, 0), K(3, 5, 1, 0, 0),
6565 "SCTLR", "SCTLR_EL2", "SCTLR_EL12" },
6566 { K(3, 0, 1, 0, 2), K(3, 4, 1, 1, 2), K(3, 5, 1, 0, 2),
6567 "CPACR", "CPTR_EL2", "CPACR_EL12" },
6568 { K(3, 0, 2, 0, 0), K(3, 4, 2, 0, 0), K(3, 5, 2, 0, 0),
6569 "TTBR0_EL1", "TTBR0_EL2", "TTBR0_EL12" },
6570 { K(3, 0, 2, 0, 1), K(3, 4, 2, 0, 1), K(3, 5, 2, 0, 1),
6571 "TTBR1_EL1", "TTBR1_EL2", "TTBR1_EL12" },
6572 { K(3, 0, 2, 0, 2), K(3, 4, 2, 0, 2), K(3, 5, 2, 0, 2),
6573 "TCR_EL1", "TCR_EL2", "TCR_EL12" },
6574 { K(3, 0, 4, 0, 0), K(3, 4, 4, 0, 0), K(3, 5, 4, 0, 0),
6575 "SPSR_EL1", "SPSR_EL2", "SPSR_EL12" },
6576 { K(3, 0, 4, 0, 1), K(3, 4, 4, 0, 1), K(3, 5, 4, 0, 1),
6577 "ELR_EL1", "ELR_EL2", "ELR_EL12" },
6578 { K(3, 0, 5, 1, 0), K(3, 4, 5, 1, 0), K(3, 5, 5, 1, 0),
6579 "AFSR0_EL1", "AFSR0_EL2", "AFSR0_EL12" },
6580 { K(3, 0, 5, 1, 1), K(3, 4, 5, 1, 1), K(3, 5, 5, 1, 1),
6581 "AFSR1_EL1", "AFSR1_EL2", "AFSR1_EL12" },
6582 { K(3, 0, 5, 2, 0), K(3, 4, 5, 2, 0), K(3, 5, 5, 2, 0),
6583 "ESR_EL1", "ESR_EL2", "ESR_EL12" },
6584 { K(3, 0, 6, 0, 0), K(3, 4, 6, 0, 0), K(3, 5, 6, 0, 0),
6585 "FAR_EL1", "FAR_EL2", "FAR_EL12" },
6586 { K(3, 0, 10, 2, 0), K(3, 4, 10, 2, 0), K(3, 5, 10, 2, 0),
6587 "MAIR_EL1", "MAIR_EL2", "MAIR_EL12" },
6588 { K(3, 0, 10, 3, 0), K(3, 4, 10, 3, 0), K(3, 5, 10, 3, 0),
6589 "AMAIR0", "AMAIR_EL2", "AMAIR_EL12" },
6590 { K(3, 0, 12, 0, 0), K(3, 4, 12, 0, 0), K(3, 5, 12, 0, 0),
6591 "VBAR", "VBAR_EL2", "VBAR_EL12" },
6592 { K(3, 0, 13, 0, 1), K(3, 4, 13, 0, 1), K(3, 5, 13, 0, 1),
6593 "CONTEXTIDR_EL1", "CONTEXTIDR_EL2", "CONTEXTIDR_EL12" },
6594 { K(3, 0, 14, 1, 0), K(3, 4, 14, 1, 0), K(3, 5, 14, 1, 0),
6595 "CNTKCTL", "CNTHCTL_EL2", "CNTKCTL_EL12" },
6598 * Note that redirection of ZCR is mentioned in the description
6599 * of ZCR_EL2, and aliasing in the description of ZCR_EL1, but
6600 * not in the summary table.
6602 { K(3, 0, 1, 2, 0), K(3, 4, 1, 2, 0), K(3, 5, 1, 2, 0),
6603 "ZCR_EL1", "ZCR_EL2", "ZCR_EL12", isar_feature_aa64_sve },
6604 { K(3, 0, 1, 2, 6), K(3, 4, 1, 2, 6), K(3, 5, 1, 2, 6),
6605 "SMCR_EL1", "SMCR_EL2", "SMCR_EL12", isar_feature_aa64_sme },
6607 { K(3, 0, 5, 6, 0), K(3, 4, 5, 6, 0), K(3, 5, 5, 6, 0),
6608 "TFSR_EL1", "TFSR_EL2", "TFSR_EL12", isar_feature_aa64_mte },
6610 { K(3, 0, 13, 0, 7), K(3, 4, 13, 0, 7), K(3, 5, 13, 0, 7),
6611 "SCXTNUM_EL1", "SCXTNUM_EL2", "SCXTNUM_EL12",
6612 isar_feature_aa64_scxtnum },
6614 /* TODO: ARMv8.2-SPE -- PMSCR_EL2 */
6615 /* TODO: ARMv8.4-Trace -- TRFCR_EL2 */
6617 #undef K
6619 size_t i;
6621 for (i = 0; i < ARRAY_SIZE(aliases); i++) {
6622 const struct E2HAlias *a = &aliases[i];
6623 ARMCPRegInfo *src_reg, *dst_reg, *new_reg;
6624 bool ok;
6626 if (a->feature && !a->feature(&cpu->isar)) {
6627 continue;
6630 src_reg = g_hash_table_lookup(cpu->cp_regs,
6631 (gpointer)(uintptr_t)a->src_key);
6632 dst_reg = g_hash_table_lookup(cpu->cp_regs,
6633 (gpointer)(uintptr_t)a->dst_key);
6634 g_assert(src_reg != NULL);
6635 g_assert(dst_reg != NULL);
6637 /* Cross-compare names to detect typos in the keys. */
6638 g_assert(strcmp(src_reg->name, a->src_name) == 0);
6639 g_assert(strcmp(dst_reg->name, a->dst_name) == 0);
6641 /* None of the core system registers use opaque; we will. */
6642 g_assert(src_reg->opaque == NULL);
6644 /* Create alias before redirection so we dup the right data. */
6645 new_reg = g_memdup(src_reg, sizeof(ARMCPRegInfo));
6647 new_reg->name = a->new_name;
6648 new_reg->type |= ARM_CP_ALIAS;
6649 /* Remove PL1/PL0 access, leaving PL2/PL3 R/W in place. */
6650 new_reg->access &= PL2_RW | PL3_RW;
6651 /* The new_reg op fields are as per new_key, not the target reg */
6652 new_reg->crn = (a->new_key & CP_REG_ARM64_SYSREG_CRN_MASK)
6653 >> CP_REG_ARM64_SYSREG_CRN_SHIFT;
6654 new_reg->crm = (a->new_key & CP_REG_ARM64_SYSREG_CRM_MASK)
6655 >> CP_REG_ARM64_SYSREG_CRM_SHIFT;
6656 new_reg->opc0 = (a->new_key & CP_REG_ARM64_SYSREG_OP0_MASK)
6657 >> CP_REG_ARM64_SYSREG_OP0_SHIFT;
6658 new_reg->opc1 = (a->new_key & CP_REG_ARM64_SYSREG_OP1_MASK)
6659 >> CP_REG_ARM64_SYSREG_OP1_SHIFT;
6660 new_reg->opc2 = (a->new_key & CP_REG_ARM64_SYSREG_OP2_MASK)
6661 >> CP_REG_ARM64_SYSREG_OP2_SHIFT;
6662 new_reg->opaque = src_reg;
6663 new_reg->orig_readfn = src_reg->readfn ?: raw_read;
6664 new_reg->orig_writefn = src_reg->writefn ?: raw_write;
6665 new_reg->orig_accessfn = src_reg->accessfn;
6666 if (!new_reg->raw_readfn) {
6667 new_reg->raw_readfn = raw_read;
6669 if (!new_reg->raw_writefn) {
6670 new_reg->raw_writefn = raw_write;
6672 new_reg->readfn = el2_e2h_e12_read;
6673 new_reg->writefn = el2_e2h_e12_write;
6674 new_reg->accessfn = el2_e2h_e12_access;
6676 ok = g_hash_table_insert(cpu->cp_regs,
6677 (gpointer)(uintptr_t)a->new_key, new_reg);
6678 g_assert(ok);
6680 src_reg->opaque = dst_reg;
6681 src_reg->orig_readfn = src_reg->readfn ?: raw_read;
6682 src_reg->orig_writefn = src_reg->writefn ?: raw_write;
6683 if (!src_reg->raw_readfn) {
6684 src_reg->raw_readfn = raw_read;
6686 if (!src_reg->raw_writefn) {
6687 src_reg->raw_writefn = raw_write;
6689 src_reg->readfn = el2_e2h_read;
6690 src_reg->writefn = el2_e2h_write;
6693 #endif
6695 static CPAccessResult ctr_el0_access(CPUARMState *env, const ARMCPRegInfo *ri,
6696 bool isread)
6698 int cur_el = arm_current_el(env);
6700 if (cur_el < 2) {
6701 uint64_t hcr = arm_hcr_el2_eff(env);
6703 if (cur_el == 0) {
6704 if ((hcr & (HCR_E2H | HCR_TGE)) == (HCR_E2H | HCR_TGE)) {
6705 if (!(env->cp15.sctlr_el[2] & SCTLR_UCT)) {
6706 return CP_ACCESS_TRAP_EL2;
6708 } else {
6709 if (!(env->cp15.sctlr_el[1] & SCTLR_UCT)) {
6710 return CP_ACCESS_TRAP;
6712 if (hcr & HCR_TID2) {
6713 return CP_ACCESS_TRAP_EL2;
6716 } else if (hcr & HCR_TID2) {
6717 return CP_ACCESS_TRAP_EL2;
6721 if (arm_current_el(env) < 2 && arm_hcr_el2_eff(env) & HCR_TID2) {
6722 return CP_ACCESS_TRAP_EL2;
6725 return CP_ACCESS_OK;
6729 * Check for traps to RAS registers, which are controlled
6730 * by HCR_EL2.TERR and SCR_EL3.TERR.
6732 static CPAccessResult access_terr(CPUARMState *env, const ARMCPRegInfo *ri,
6733 bool isread)
6735 int el = arm_current_el(env);
6737 if (el < 2 && (arm_hcr_el2_eff(env) & HCR_TERR)) {
6738 return CP_ACCESS_TRAP_EL2;
6740 if (el < 3 && (env->cp15.scr_el3 & SCR_TERR)) {
6741 return CP_ACCESS_TRAP_EL3;
6743 return CP_ACCESS_OK;
6746 static uint64_t disr_read(CPUARMState *env, const ARMCPRegInfo *ri)
6748 int el = arm_current_el(env);
6750 if (el < 2 && (arm_hcr_el2_eff(env) & HCR_AMO)) {
6751 return env->cp15.vdisr_el2;
6753 if (el < 3 && (env->cp15.scr_el3 & SCR_EA)) {
6754 return 0; /* RAZ/WI */
6756 return env->cp15.disr_el1;
6759 static void disr_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t val)
6761 int el = arm_current_el(env);
6763 if (el < 2 && (arm_hcr_el2_eff(env) & HCR_AMO)) {
6764 env->cp15.vdisr_el2 = val;
6765 return;
6767 if (el < 3 && (env->cp15.scr_el3 & SCR_EA)) {
6768 return; /* RAZ/WI */
6770 env->cp15.disr_el1 = val;
6774 * Minimal RAS implementation with no Error Records.
6775 * Which means that all of the Error Record registers:
6776 * ERXADDR_EL1
6777 * ERXCTLR_EL1
6778 * ERXFR_EL1
6779 * ERXMISC0_EL1
6780 * ERXMISC1_EL1
6781 * ERXMISC2_EL1
6782 * ERXMISC3_EL1
6783 * ERXPFGCDN_EL1 (RASv1p1)
6784 * ERXPFGCTL_EL1 (RASv1p1)
6785 * ERXPFGF_EL1 (RASv1p1)
6786 * ERXSTATUS_EL1
6787 * and
6788 * ERRSELR_EL1
6789 * may generate UNDEFINED, which is the effect we get by not
6790 * listing them at all.
6792 * These registers have fine-grained trap bits, but UNDEF-to-EL1
6793 * is higher priority than FGT-to-EL2 so we do not need to list them
6794 * in order to check for an FGT.
6796 static const ARMCPRegInfo minimal_ras_reginfo[] = {
6797 { .name = "DISR_EL1", .state = ARM_CP_STATE_BOTH,
6798 .opc0 = 3, .opc1 = 0, .crn = 12, .crm = 1, .opc2 = 1,
6799 .access = PL1_RW, .fieldoffset = offsetof(CPUARMState, cp15.disr_el1),
6800 .readfn = disr_read, .writefn = disr_write, .raw_writefn = raw_write },
6801 { .name = "ERRIDR_EL1", .state = ARM_CP_STATE_BOTH,
6802 .opc0 = 3, .opc1 = 0, .crn = 5, .crm = 3, .opc2 = 0,
6803 .access = PL1_R, .accessfn = access_terr,
6804 .fgt = FGT_ERRIDR_EL1,
6805 .type = ARM_CP_CONST, .resetvalue = 0 },
6806 { .name = "VDISR_EL2", .state = ARM_CP_STATE_BOTH,
6807 .opc0 = 3, .opc1 = 4, .crn = 12, .crm = 1, .opc2 = 1,
6808 .access = PL2_RW, .fieldoffset = offsetof(CPUARMState, cp15.vdisr_el2) },
6809 { .name = "VSESR_EL2", .state = ARM_CP_STATE_BOTH,
6810 .opc0 = 3, .opc1 = 4, .crn = 5, .crm = 2, .opc2 = 3,
6811 .access = PL2_RW, .fieldoffset = offsetof(CPUARMState, cp15.vsesr_el2) },
6815 * Return the exception level to which exceptions should be taken
6816 * via SVEAccessTrap. This excludes the check for whether the exception
6817 * should be routed through AArch64.AdvSIMDFPAccessTrap. That can easily
6818 * be found by testing 0 < fp_exception_el < sve_exception_el.
6820 * C.f. the ARM pseudocode function CheckSVEEnabled. Note that the
6821 * pseudocode does *not* separate out the FP trap checks, but has them
6822 * all in one function.
6824 int sve_exception_el(CPUARMState *env, int el)
6826 #ifndef CONFIG_USER_ONLY
6827 if (el <= 1 && !el_is_in_host(env, el)) {
6828 switch (FIELD_EX64(env->cp15.cpacr_el1, CPACR_EL1, ZEN)) {
6829 case 1:
6830 if (el != 0) {
6831 break;
6833 /* fall through */
6834 case 0:
6835 case 2:
6836 return 1;
6840 if (el <= 2 && arm_is_el2_enabled(env)) {
6841 /* CPTR_EL2 changes format with HCR_EL2.E2H (regardless of TGE). */
6842 if (env->cp15.hcr_el2 & HCR_E2H) {
6843 switch (FIELD_EX64(env->cp15.cptr_el[2], CPTR_EL2, ZEN)) {
6844 case 1:
6845 if (el != 0 || !(env->cp15.hcr_el2 & HCR_TGE)) {
6846 break;
6848 /* fall through */
6849 case 0:
6850 case 2:
6851 return 2;
6853 } else {
6854 if (FIELD_EX64(env->cp15.cptr_el[2], CPTR_EL2, TZ)) {
6855 return 2;
6860 /* CPTR_EL3. Since EZ is negative we must check for EL3. */
6861 if (arm_feature(env, ARM_FEATURE_EL3)
6862 && !FIELD_EX64(env->cp15.cptr_el[3], CPTR_EL3, EZ)) {
6863 return 3;
6865 #endif
6866 return 0;
6870 * Return the exception level to which exceptions should be taken for SME.
6871 * C.f. the ARM pseudocode function CheckSMEAccess.
6873 int sme_exception_el(CPUARMState *env, int el)
6875 #ifndef CONFIG_USER_ONLY
6876 if (el <= 1 && !el_is_in_host(env, el)) {
6877 switch (FIELD_EX64(env->cp15.cpacr_el1, CPACR_EL1, SMEN)) {
6878 case 1:
6879 if (el != 0) {
6880 break;
6882 /* fall through */
6883 case 0:
6884 case 2:
6885 return 1;
6889 if (el <= 2 && arm_is_el2_enabled(env)) {
6890 /* CPTR_EL2 changes format with HCR_EL2.E2H (regardless of TGE). */
6891 if (env->cp15.hcr_el2 & HCR_E2H) {
6892 switch (FIELD_EX64(env->cp15.cptr_el[2], CPTR_EL2, SMEN)) {
6893 case 1:
6894 if (el != 0 || !(env->cp15.hcr_el2 & HCR_TGE)) {
6895 break;
6897 /* fall through */
6898 case 0:
6899 case 2:
6900 return 2;
6902 } else {
6903 if (FIELD_EX64(env->cp15.cptr_el[2], CPTR_EL2, TSM)) {
6904 return 2;
6909 /* CPTR_EL3. Since ESM is negative we must check for EL3. */
6910 if (arm_feature(env, ARM_FEATURE_EL3)
6911 && !FIELD_EX64(env->cp15.cptr_el[3], CPTR_EL3, ESM)) {
6912 return 3;
6914 #endif
6915 return 0;
6919 * Given that SVE is enabled, return the vector length for EL.
6921 uint32_t sve_vqm1_for_el_sm(CPUARMState *env, int el, bool sm)
6923 ARMCPU *cpu = env_archcpu(env);
6924 uint64_t *cr = env->vfp.zcr_el;
6925 uint32_t map = cpu->sve_vq.map;
6926 uint32_t len = ARM_MAX_VQ - 1;
6928 if (sm) {
6929 cr = env->vfp.smcr_el;
6930 map = cpu->sme_vq.map;
6933 if (el <= 1 && !el_is_in_host(env, el)) {
6934 len = MIN(len, 0xf & (uint32_t)cr[1]);
6936 if (el <= 2 && arm_feature(env, ARM_FEATURE_EL2)) {
6937 len = MIN(len, 0xf & (uint32_t)cr[2]);
6939 if (arm_feature(env, ARM_FEATURE_EL3)) {
6940 len = MIN(len, 0xf & (uint32_t)cr[3]);
6943 map &= MAKE_64BIT_MASK(0, len + 1);
6944 if (map != 0) {
6945 return 31 - clz32(map);
6948 /* Bit 0 is always set for Normal SVE -- not so for Streaming SVE. */
6949 assert(sm);
6950 return ctz32(cpu->sme_vq.map);
6953 uint32_t sve_vqm1_for_el(CPUARMState *env, int el)
6955 return sve_vqm1_for_el_sm(env, el, FIELD_EX64(env->svcr, SVCR, SM));
6958 static void zcr_write(CPUARMState *env, const ARMCPRegInfo *ri,
6959 uint64_t value)
6961 int cur_el = arm_current_el(env);
6962 int old_len = sve_vqm1_for_el(env, cur_el);
6963 int new_len;
6965 /* Bits other than [3:0] are RAZ/WI. */
6966 QEMU_BUILD_BUG_ON(ARM_MAX_VQ > 16);
6967 raw_write(env, ri, value & 0xf);
6970 * Because we arrived here, we know both FP and SVE are enabled;
6971 * otherwise we would have trapped access to the ZCR_ELn register.
6973 new_len = sve_vqm1_for_el(env, cur_el);
6974 if (new_len < old_len) {
6975 aarch64_sve_narrow_vq(env, new_len + 1);
6979 static const ARMCPRegInfo zcr_reginfo[] = {
6980 { .name = "ZCR_EL1", .state = ARM_CP_STATE_AA64,
6981 .opc0 = 3, .opc1 = 0, .crn = 1, .crm = 2, .opc2 = 0,
6982 .access = PL1_RW, .type = ARM_CP_SVE,
6983 .fieldoffset = offsetof(CPUARMState, vfp.zcr_el[1]),
6984 .writefn = zcr_write, .raw_writefn = raw_write },
6985 { .name = "ZCR_EL2", .state = ARM_CP_STATE_AA64,
6986 .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 2, .opc2 = 0,
6987 .access = PL2_RW, .type = ARM_CP_SVE,
6988 .fieldoffset = offsetof(CPUARMState, vfp.zcr_el[2]),
6989 .writefn = zcr_write, .raw_writefn = raw_write },
6990 { .name = "ZCR_EL3", .state = ARM_CP_STATE_AA64,
6991 .opc0 = 3, .opc1 = 6, .crn = 1, .crm = 2, .opc2 = 0,
6992 .access = PL3_RW, .type = ARM_CP_SVE,
6993 .fieldoffset = offsetof(CPUARMState, vfp.zcr_el[3]),
6994 .writefn = zcr_write, .raw_writefn = raw_write },
6997 #ifdef TARGET_AARCH64
6998 static CPAccessResult access_tpidr2(CPUARMState *env, const ARMCPRegInfo *ri,
6999 bool isread)
7001 int el = arm_current_el(env);
7003 if (el == 0) {
7004 uint64_t sctlr = arm_sctlr(env, el);
7005 if (!(sctlr & SCTLR_EnTP2)) {
7006 return CP_ACCESS_TRAP;
7009 /* TODO: FEAT_FGT */
7010 if (el < 3
7011 && arm_feature(env, ARM_FEATURE_EL3)
7012 && !(env->cp15.scr_el3 & SCR_ENTP2)) {
7013 return CP_ACCESS_TRAP_EL3;
7015 return CP_ACCESS_OK;
7018 static CPAccessResult access_esm(CPUARMState *env, const ARMCPRegInfo *ri,
7019 bool isread)
7021 /* TODO: FEAT_FGT for SMPRI_EL1 but not SMPRIMAP_EL2 */
7022 if (arm_current_el(env) < 3
7023 && arm_feature(env, ARM_FEATURE_EL3)
7024 && !FIELD_EX64(env->cp15.cptr_el[3], CPTR_EL3, ESM)) {
7025 return CP_ACCESS_TRAP_EL3;
7027 return CP_ACCESS_OK;
7030 /* ResetSVEState */
7031 static void arm_reset_sve_state(CPUARMState *env)
7033 memset(env->vfp.zregs, 0, sizeof(env->vfp.zregs));
7034 /* Recall that FFR is stored as pregs[16]. */
7035 memset(env->vfp.pregs, 0, sizeof(env->vfp.pregs));
7036 vfp_set_fpcr(env, 0x0800009f);
7039 void aarch64_set_svcr(CPUARMState *env, uint64_t new, uint64_t mask)
7041 uint64_t change = (env->svcr ^ new) & mask;
7043 if (change == 0) {
7044 return;
7046 env->svcr ^= change;
7048 if (change & R_SVCR_SM_MASK) {
7049 arm_reset_sve_state(env);
7053 * ResetSMEState.
7055 * SetPSTATE_ZA zeros on enable and disable. We can zero this only
7056 * on enable: while disabled, the storage is inaccessible and the
7057 * value does not matter. We're not saving the storage in vmstate
7058 * when disabled either.
7060 if (change & new & R_SVCR_ZA_MASK) {
7061 memset(env->zarray, 0, sizeof(env->zarray));
7064 if (tcg_enabled()) {
7065 arm_rebuild_hflags(env);
7069 static void svcr_write(CPUARMState *env, const ARMCPRegInfo *ri,
7070 uint64_t value)
7072 aarch64_set_svcr(env, value, -1);
7075 static void smcr_write(CPUARMState *env, const ARMCPRegInfo *ri,
7076 uint64_t value)
7078 int cur_el = arm_current_el(env);
7079 int old_len = sve_vqm1_for_el(env, cur_el);
7080 int new_len;
7082 QEMU_BUILD_BUG_ON(ARM_MAX_VQ > R_SMCR_LEN_MASK + 1);
7083 value &= R_SMCR_LEN_MASK | R_SMCR_FA64_MASK;
7084 raw_write(env, ri, value);
7087 * Note that it is CONSTRAINED UNPREDICTABLE what happens to ZA storage
7088 * when SVL is widened (old values kept, or zeros). Choose to keep the
7089 * current values for simplicity. But for QEMU internals, we must still
7090 * apply the narrower SVL to the Zregs and Pregs -- see the comment
7091 * above aarch64_sve_narrow_vq.
7093 new_len = sve_vqm1_for_el(env, cur_el);
7094 if (new_len < old_len) {
7095 aarch64_sve_narrow_vq(env, new_len + 1);
7099 static const ARMCPRegInfo sme_reginfo[] = {
7100 { .name = "TPIDR2_EL0", .state = ARM_CP_STATE_AA64,
7101 .opc0 = 3, .opc1 = 3, .crn = 13, .crm = 0, .opc2 = 5,
7102 .access = PL0_RW, .accessfn = access_tpidr2,
7103 .fgt = FGT_NTPIDR2_EL0,
7104 .fieldoffset = offsetof(CPUARMState, cp15.tpidr2_el0) },
7105 { .name = "SVCR", .state = ARM_CP_STATE_AA64,
7106 .opc0 = 3, .opc1 = 3, .crn = 4, .crm = 2, .opc2 = 2,
7107 .access = PL0_RW, .type = ARM_CP_SME,
7108 .fieldoffset = offsetof(CPUARMState, svcr),
7109 .writefn = svcr_write, .raw_writefn = raw_write },
7110 { .name = "SMCR_EL1", .state = ARM_CP_STATE_AA64,
7111 .opc0 = 3, .opc1 = 0, .crn = 1, .crm = 2, .opc2 = 6,
7112 .access = PL1_RW, .type = ARM_CP_SME,
7113 .fieldoffset = offsetof(CPUARMState, vfp.smcr_el[1]),
7114 .writefn = smcr_write, .raw_writefn = raw_write },
7115 { .name = "SMCR_EL2", .state = ARM_CP_STATE_AA64,
7116 .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 2, .opc2 = 6,
7117 .access = PL2_RW, .type = ARM_CP_SME,
7118 .fieldoffset = offsetof(CPUARMState, vfp.smcr_el[2]),
7119 .writefn = smcr_write, .raw_writefn = raw_write },
7120 { .name = "SMCR_EL3", .state = ARM_CP_STATE_AA64,
7121 .opc0 = 3, .opc1 = 6, .crn = 1, .crm = 2, .opc2 = 6,
7122 .access = PL3_RW, .type = ARM_CP_SME,
7123 .fieldoffset = offsetof(CPUARMState, vfp.smcr_el[3]),
7124 .writefn = smcr_write, .raw_writefn = raw_write },
7125 { .name = "SMIDR_EL1", .state = ARM_CP_STATE_AA64,
7126 .opc0 = 3, .opc1 = 1, .crn = 0, .crm = 0, .opc2 = 6,
7127 .access = PL1_R, .accessfn = access_aa64_tid1,
7129 * IMPLEMENTOR = 0 (software)
7130 * REVISION = 0 (implementation defined)
7131 * SMPS = 0 (no streaming execution priority in QEMU)
7132 * AFFINITY = 0 (streaming sve mode not shared with other PEs)
7134 .type = ARM_CP_CONST, .resetvalue = 0, },
7136 * Because SMIDR_EL1.SMPS is 0, SMPRI_EL1 and SMPRIMAP_EL2 are RES 0.
7138 { .name = "SMPRI_EL1", .state = ARM_CP_STATE_AA64,
7139 .opc0 = 3, .opc1 = 0, .crn = 1, .crm = 2, .opc2 = 4,
7140 .access = PL1_RW, .accessfn = access_esm,
7141 .fgt = FGT_NSMPRI_EL1,
7142 .type = ARM_CP_CONST, .resetvalue = 0 },
7143 { .name = "SMPRIMAP_EL2", .state = ARM_CP_STATE_AA64,
7144 .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 2, .opc2 = 5,
7145 .access = PL2_RW, .accessfn = access_esm,
7146 .type = ARM_CP_CONST, .resetvalue = 0 },
7149 static void tlbi_aa64_paall_write(CPUARMState *env, const ARMCPRegInfo *ri,
7150 uint64_t value)
7152 CPUState *cs = env_cpu(env);
7154 tlb_flush(cs);
7157 static void gpccr_write(CPUARMState *env, const ARMCPRegInfo *ri,
7158 uint64_t value)
7160 /* L0GPTSZ is RO; other bits not mentioned are RES0. */
7161 uint64_t rw_mask = R_GPCCR_PPS_MASK | R_GPCCR_IRGN_MASK |
7162 R_GPCCR_ORGN_MASK | R_GPCCR_SH_MASK | R_GPCCR_PGS_MASK |
7163 R_GPCCR_GPC_MASK | R_GPCCR_GPCP_MASK;
7165 env->cp15.gpccr_el3 = (value & rw_mask) | (env->cp15.gpccr_el3 & ~rw_mask);
7168 static void gpccr_reset(CPUARMState *env, const ARMCPRegInfo *ri)
7170 env->cp15.gpccr_el3 = FIELD_DP64(0, GPCCR, L0GPTSZ,
7171 env_archcpu(env)->reset_l0gptsz);
7174 static void tlbi_aa64_paallos_write(CPUARMState *env, const ARMCPRegInfo *ri,
7175 uint64_t value)
7177 CPUState *cs = env_cpu(env);
7179 tlb_flush_all_cpus_synced(cs);
7182 static const ARMCPRegInfo rme_reginfo[] = {
7183 { .name = "GPCCR_EL3", .state = ARM_CP_STATE_AA64,
7184 .opc0 = 3, .opc1 = 6, .crn = 2, .crm = 1, .opc2 = 6,
7185 .access = PL3_RW, .writefn = gpccr_write, .resetfn = gpccr_reset,
7186 .fieldoffset = offsetof(CPUARMState, cp15.gpccr_el3) },
7187 { .name = "GPTBR_EL3", .state = ARM_CP_STATE_AA64,
7188 .opc0 = 3, .opc1 = 6, .crn = 2, .crm = 1, .opc2 = 4,
7189 .access = PL3_RW, .fieldoffset = offsetof(CPUARMState, cp15.gptbr_el3) },
7190 { .name = "MFAR_EL3", .state = ARM_CP_STATE_AA64,
7191 .opc0 = 3, .opc1 = 6, .crn = 6, .crm = 0, .opc2 = 5,
7192 .access = PL3_RW, .fieldoffset = offsetof(CPUARMState, cp15.mfar_el3) },
7193 { .name = "TLBI_PAALL", .state = ARM_CP_STATE_AA64,
7194 .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 7, .opc2 = 4,
7195 .access = PL3_W, .type = ARM_CP_NO_RAW,
7196 .writefn = tlbi_aa64_paall_write },
7197 { .name = "TLBI_PAALLOS", .state = ARM_CP_STATE_AA64,
7198 .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 1, .opc2 = 4,
7199 .access = PL3_W, .type = ARM_CP_NO_RAW,
7200 .writefn = tlbi_aa64_paallos_write },
7202 * QEMU does not have a way to invalidate by physical address, thus
7203 * invalidating a range of physical addresses is accomplished by
7204 * flushing all tlb entries in the outer shareable domain,
7205 * just like PAALLOS.
7207 { .name = "TLBI_RPALOS", .state = ARM_CP_STATE_AA64,
7208 .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 4, .opc2 = 7,
7209 .access = PL3_W, .type = ARM_CP_NO_RAW,
7210 .writefn = tlbi_aa64_paallos_write },
7211 { .name = "TLBI_RPAOS", .state = ARM_CP_STATE_AA64,
7212 .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 4, .opc2 = 3,
7213 .access = PL3_W, .type = ARM_CP_NO_RAW,
7214 .writefn = tlbi_aa64_paallos_write },
7215 { .name = "DC_CIPAPA", .state = ARM_CP_STATE_AA64,
7216 .opc0 = 1, .opc1 = 6, .crn = 7, .crm = 14, .opc2 = 1,
7217 .access = PL3_W, .type = ARM_CP_NOP },
7220 static const ARMCPRegInfo rme_mte_reginfo[] = {
7221 { .name = "DC_CIGDPAPA", .state = ARM_CP_STATE_AA64,
7222 .opc0 = 1, .opc1 = 6, .crn = 7, .crm = 14, .opc2 = 5,
7223 .access = PL3_W, .type = ARM_CP_NOP },
7225 #endif /* TARGET_AARCH64 */
7227 static void define_pmu_regs(ARMCPU *cpu)
7230 * v7 performance monitor control register: same implementor
7231 * field as main ID register, and we implement four counters in
7232 * addition to the cycle count register.
7234 unsigned int i, pmcrn = pmu_num_counters(&cpu->env);
7235 ARMCPRegInfo pmcr = {
7236 .name = "PMCR", .cp = 15, .crn = 9, .crm = 12, .opc1 = 0, .opc2 = 0,
7237 .access = PL0_RW,
7238 .fgt = FGT_PMCR_EL0,
7239 .type = ARM_CP_IO | ARM_CP_ALIAS,
7240 .fieldoffset = offsetoflow32(CPUARMState, cp15.c9_pmcr),
7241 .accessfn = pmreg_access,
7242 .readfn = pmcr_read, .raw_readfn = raw_read,
7243 .writefn = pmcr_write, .raw_writefn = raw_write,
7245 ARMCPRegInfo pmcr64 = {
7246 .name = "PMCR_EL0", .state = ARM_CP_STATE_AA64,
7247 .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 12, .opc2 = 0,
7248 .access = PL0_RW, .accessfn = pmreg_access,
7249 .fgt = FGT_PMCR_EL0,
7250 .type = ARM_CP_IO,
7251 .fieldoffset = offsetof(CPUARMState, cp15.c9_pmcr),
7252 .resetvalue = cpu->isar.reset_pmcr_el0,
7253 .readfn = pmcr_read, .raw_readfn = raw_read,
7254 .writefn = pmcr_write, .raw_writefn = raw_write,
7257 define_one_arm_cp_reg(cpu, &pmcr);
7258 define_one_arm_cp_reg(cpu, &pmcr64);
7259 for (i = 0; i < pmcrn; i++) {
7260 char *pmevcntr_name = g_strdup_printf("PMEVCNTR%d", i);
7261 char *pmevcntr_el0_name = g_strdup_printf("PMEVCNTR%d_EL0", i);
7262 char *pmevtyper_name = g_strdup_printf("PMEVTYPER%d", i);
7263 char *pmevtyper_el0_name = g_strdup_printf("PMEVTYPER%d_EL0", i);
7264 ARMCPRegInfo pmev_regs[] = {
7265 { .name = pmevcntr_name, .cp = 15, .crn = 14,
7266 .crm = 8 | (3 & (i >> 3)), .opc1 = 0, .opc2 = i & 7,
7267 .access = PL0_RW, .type = ARM_CP_IO | ARM_CP_ALIAS,
7268 .fgt = FGT_PMEVCNTRN_EL0,
7269 .readfn = pmevcntr_readfn, .writefn = pmevcntr_writefn,
7270 .accessfn = pmreg_access_xevcntr },
7271 { .name = pmevcntr_el0_name, .state = ARM_CP_STATE_AA64,
7272 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 8 | (3 & (i >> 3)),
7273 .opc2 = i & 7, .access = PL0_RW, .accessfn = pmreg_access_xevcntr,
7274 .type = ARM_CP_IO,
7275 .fgt = FGT_PMEVCNTRN_EL0,
7276 .readfn = pmevcntr_readfn, .writefn = pmevcntr_writefn,
7277 .raw_readfn = pmevcntr_rawread,
7278 .raw_writefn = pmevcntr_rawwrite },
7279 { .name = pmevtyper_name, .cp = 15, .crn = 14,
7280 .crm = 12 | (3 & (i >> 3)), .opc1 = 0, .opc2 = i & 7,
7281 .access = PL0_RW, .type = ARM_CP_IO | ARM_CP_ALIAS,
7282 .fgt = FGT_PMEVTYPERN_EL0,
7283 .readfn = pmevtyper_readfn, .writefn = pmevtyper_writefn,
7284 .accessfn = pmreg_access },
7285 { .name = pmevtyper_el0_name, .state = ARM_CP_STATE_AA64,
7286 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 12 | (3 & (i >> 3)),
7287 .opc2 = i & 7, .access = PL0_RW, .accessfn = pmreg_access,
7288 .fgt = FGT_PMEVTYPERN_EL0,
7289 .type = ARM_CP_IO,
7290 .readfn = pmevtyper_readfn, .writefn = pmevtyper_writefn,
7291 .raw_writefn = pmevtyper_rawwrite },
7293 define_arm_cp_regs(cpu, pmev_regs);
7294 g_free(pmevcntr_name);
7295 g_free(pmevcntr_el0_name);
7296 g_free(pmevtyper_name);
7297 g_free(pmevtyper_el0_name);
7299 if (cpu_isar_feature(aa32_pmuv3p1, cpu)) {
7300 ARMCPRegInfo v81_pmu_regs[] = {
7301 { .name = "PMCEID2", .state = ARM_CP_STATE_AA32,
7302 .cp = 15, .opc1 = 0, .crn = 9, .crm = 14, .opc2 = 4,
7303 .access = PL0_R, .accessfn = pmreg_access, .type = ARM_CP_CONST,
7304 .fgt = FGT_PMCEIDN_EL0,
7305 .resetvalue = extract64(cpu->pmceid0, 32, 32) },
7306 { .name = "PMCEID3", .state = ARM_CP_STATE_AA32,
7307 .cp = 15, .opc1 = 0, .crn = 9, .crm = 14, .opc2 = 5,
7308 .access = PL0_R, .accessfn = pmreg_access, .type = ARM_CP_CONST,
7309 .fgt = FGT_PMCEIDN_EL0,
7310 .resetvalue = extract64(cpu->pmceid1, 32, 32) },
7312 define_arm_cp_regs(cpu, v81_pmu_regs);
7314 if (cpu_isar_feature(any_pmuv3p4, cpu)) {
7315 static const ARMCPRegInfo v84_pmmir = {
7316 .name = "PMMIR_EL1", .state = ARM_CP_STATE_BOTH,
7317 .opc0 = 3, .opc1 = 0, .crn = 9, .crm = 14, .opc2 = 6,
7318 .access = PL1_R, .accessfn = pmreg_access, .type = ARM_CP_CONST,
7319 .fgt = FGT_PMMIR_EL1,
7320 .resetvalue = 0
7322 define_one_arm_cp_reg(cpu, &v84_pmmir);
7326 #ifndef CONFIG_USER_ONLY
7328 * We don't know until after realize whether there's a GICv3
7329 * attached, and that is what registers the gicv3 sysregs.
7330 * So we have to fill in the GIC fields in ID_PFR/ID_PFR1_EL1/ID_AA64PFR0_EL1
7331 * at runtime.
7333 static uint64_t id_pfr1_read(CPUARMState *env, const ARMCPRegInfo *ri)
7335 ARMCPU *cpu = env_archcpu(env);
7336 uint64_t pfr1 = cpu->isar.id_pfr1;
7338 if (env->gicv3state) {
7339 pfr1 |= 1 << 28;
7341 return pfr1;
7344 static uint64_t id_aa64pfr0_read(CPUARMState *env, const ARMCPRegInfo *ri)
7346 ARMCPU *cpu = env_archcpu(env);
7347 uint64_t pfr0 = cpu->isar.id_aa64pfr0;
7349 if (env->gicv3state) {
7350 pfr0 |= 1 << 24;
7352 return pfr0;
7354 #endif
7357 * Shared logic between LORID and the rest of the LOR* registers.
7358 * Secure state exclusion has already been dealt with.
7360 static CPAccessResult access_lor_ns(CPUARMState *env,
7361 const ARMCPRegInfo *ri, bool isread)
7363 int el = arm_current_el(env);
7365 if (el < 2 && (arm_hcr_el2_eff(env) & HCR_TLOR)) {
7366 return CP_ACCESS_TRAP_EL2;
7368 if (el < 3 && (env->cp15.scr_el3 & SCR_TLOR)) {
7369 return CP_ACCESS_TRAP_EL3;
7371 return CP_ACCESS_OK;
7374 static CPAccessResult access_lor_other(CPUARMState *env,
7375 const ARMCPRegInfo *ri, bool isread)
7377 if (arm_is_secure_below_el3(env)) {
7378 /* Access denied in secure mode. */
7379 return CP_ACCESS_TRAP;
7381 return access_lor_ns(env, ri, isread);
7385 * A trivial implementation of ARMv8.1-LOR leaves all of these
7386 * registers fixed at 0, which indicates that there are zero
7387 * supported Limited Ordering regions.
7389 static const ARMCPRegInfo lor_reginfo[] = {
7390 { .name = "LORSA_EL1", .state = ARM_CP_STATE_AA64,
7391 .opc0 = 3, .opc1 = 0, .crn = 10, .crm = 4, .opc2 = 0,
7392 .access = PL1_RW, .accessfn = access_lor_other,
7393 .fgt = FGT_LORSA_EL1,
7394 .type = ARM_CP_CONST, .resetvalue = 0 },
7395 { .name = "LOREA_EL1", .state = ARM_CP_STATE_AA64,
7396 .opc0 = 3, .opc1 = 0, .crn = 10, .crm = 4, .opc2 = 1,
7397 .access = PL1_RW, .accessfn = access_lor_other,
7398 .fgt = FGT_LOREA_EL1,
7399 .type = ARM_CP_CONST, .resetvalue = 0 },
7400 { .name = "LORN_EL1", .state = ARM_CP_STATE_AA64,
7401 .opc0 = 3, .opc1 = 0, .crn = 10, .crm = 4, .opc2 = 2,
7402 .access = PL1_RW, .accessfn = access_lor_other,
7403 .fgt = FGT_LORN_EL1,
7404 .type = ARM_CP_CONST, .resetvalue = 0 },
7405 { .name = "LORC_EL1", .state = ARM_CP_STATE_AA64,
7406 .opc0 = 3, .opc1 = 0, .crn = 10, .crm = 4, .opc2 = 3,
7407 .access = PL1_RW, .accessfn = access_lor_other,
7408 .fgt = FGT_LORC_EL1,
7409 .type = ARM_CP_CONST, .resetvalue = 0 },
7410 { .name = "LORID_EL1", .state = ARM_CP_STATE_AA64,
7411 .opc0 = 3, .opc1 = 0, .crn = 10, .crm = 4, .opc2 = 7,
7412 .access = PL1_R, .accessfn = access_lor_ns,
7413 .fgt = FGT_LORID_EL1,
7414 .type = ARM_CP_CONST, .resetvalue = 0 },
7417 #ifdef TARGET_AARCH64
7418 static CPAccessResult access_pauth(CPUARMState *env, const ARMCPRegInfo *ri,
7419 bool isread)
7421 int el = arm_current_el(env);
7423 if (el < 2 &&
7424 arm_is_el2_enabled(env) &&
7425 !(arm_hcr_el2_eff(env) & HCR_APK)) {
7426 return CP_ACCESS_TRAP_EL2;
7428 if (el < 3 &&
7429 arm_feature(env, ARM_FEATURE_EL3) &&
7430 !(env->cp15.scr_el3 & SCR_APK)) {
7431 return CP_ACCESS_TRAP_EL3;
7433 return CP_ACCESS_OK;
7436 static const ARMCPRegInfo pauth_reginfo[] = {
7437 { .name = "APDAKEYLO_EL1", .state = ARM_CP_STATE_AA64,
7438 .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 2, .opc2 = 0,
7439 .access = PL1_RW, .accessfn = access_pauth,
7440 .fgt = FGT_APDAKEY,
7441 .fieldoffset = offsetof(CPUARMState, keys.apda.lo) },
7442 { .name = "APDAKEYHI_EL1", .state = ARM_CP_STATE_AA64,
7443 .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 2, .opc2 = 1,
7444 .access = PL1_RW, .accessfn = access_pauth,
7445 .fgt = FGT_APDAKEY,
7446 .fieldoffset = offsetof(CPUARMState, keys.apda.hi) },
7447 { .name = "APDBKEYLO_EL1", .state = ARM_CP_STATE_AA64,
7448 .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 2, .opc2 = 2,
7449 .access = PL1_RW, .accessfn = access_pauth,
7450 .fgt = FGT_APDBKEY,
7451 .fieldoffset = offsetof(CPUARMState, keys.apdb.lo) },
7452 { .name = "APDBKEYHI_EL1", .state = ARM_CP_STATE_AA64,
7453 .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 2, .opc2 = 3,
7454 .access = PL1_RW, .accessfn = access_pauth,
7455 .fgt = FGT_APDBKEY,
7456 .fieldoffset = offsetof(CPUARMState, keys.apdb.hi) },
7457 { .name = "APGAKEYLO_EL1", .state = ARM_CP_STATE_AA64,
7458 .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 3, .opc2 = 0,
7459 .access = PL1_RW, .accessfn = access_pauth,
7460 .fgt = FGT_APGAKEY,
7461 .fieldoffset = offsetof(CPUARMState, keys.apga.lo) },
7462 { .name = "APGAKEYHI_EL1", .state = ARM_CP_STATE_AA64,
7463 .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 3, .opc2 = 1,
7464 .access = PL1_RW, .accessfn = access_pauth,
7465 .fgt = FGT_APGAKEY,
7466 .fieldoffset = offsetof(CPUARMState, keys.apga.hi) },
7467 { .name = "APIAKEYLO_EL1", .state = ARM_CP_STATE_AA64,
7468 .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 1, .opc2 = 0,
7469 .access = PL1_RW, .accessfn = access_pauth,
7470 .fgt = FGT_APIAKEY,
7471 .fieldoffset = offsetof(CPUARMState, keys.apia.lo) },
7472 { .name = "APIAKEYHI_EL1", .state = ARM_CP_STATE_AA64,
7473 .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 1, .opc2 = 1,
7474 .access = PL1_RW, .accessfn = access_pauth,
7475 .fgt = FGT_APIAKEY,
7476 .fieldoffset = offsetof(CPUARMState, keys.apia.hi) },
7477 { .name = "APIBKEYLO_EL1", .state = ARM_CP_STATE_AA64,
7478 .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 1, .opc2 = 2,
7479 .access = PL1_RW, .accessfn = access_pauth,
7480 .fgt = FGT_APIBKEY,
7481 .fieldoffset = offsetof(CPUARMState, keys.apib.lo) },
7482 { .name = "APIBKEYHI_EL1", .state = ARM_CP_STATE_AA64,
7483 .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 1, .opc2 = 3,
7484 .access = PL1_RW, .accessfn = access_pauth,
7485 .fgt = FGT_APIBKEY,
7486 .fieldoffset = offsetof(CPUARMState, keys.apib.hi) },
7489 static const ARMCPRegInfo tlbirange_reginfo[] = {
7490 { .name = "TLBI_RVAE1IS", .state = ARM_CP_STATE_AA64,
7491 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 2, .opc2 = 1,
7492 .access = PL1_W, .accessfn = access_ttlbis, .type = ARM_CP_NO_RAW,
7493 .fgt = FGT_TLBIRVAE1IS,
7494 .writefn = tlbi_aa64_rvae1is_write },
7495 { .name = "TLBI_RVAAE1IS", .state = ARM_CP_STATE_AA64,
7496 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 2, .opc2 = 3,
7497 .access = PL1_W, .accessfn = access_ttlbis, .type = ARM_CP_NO_RAW,
7498 .fgt = FGT_TLBIRVAAE1IS,
7499 .writefn = tlbi_aa64_rvae1is_write },
7500 { .name = "TLBI_RVALE1IS", .state = ARM_CP_STATE_AA64,
7501 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 2, .opc2 = 5,
7502 .access = PL1_W, .accessfn = access_ttlbis, .type = ARM_CP_NO_RAW,
7503 .fgt = FGT_TLBIRVALE1IS,
7504 .writefn = tlbi_aa64_rvae1is_write },
7505 { .name = "TLBI_RVAALE1IS", .state = ARM_CP_STATE_AA64,
7506 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 2, .opc2 = 7,
7507 .access = PL1_W, .accessfn = access_ttlbis, .type = ARM_CP_NO_RAW,
7508 .fgt = FGT_TLBIRVAALE1IS,
7509 .writefn = tlbi_aa64_rvae1is_write },
7510 { .name = "TLBI_RVAE1OS", .state = ARM_CP_STATE_AA64,
7511 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 5, .opc2 = 1,
7512 .access = PL1_W, .accessfn = access_ttlbos, .type = ARM_CP_NO_RAW,
7513 .fgt = FGT_TLBIRVAE1OS,
7514 .writefn = tlbi_aa64_rvae1is_write },
7515 { .name = "TLBI_RVAAE1OS", .state = ARM_CP_STATE_AA64,
7516 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 5, .opc2 = 3,
7517 .access = PL1_W, .accessfn = access_ttlbos, .type = ARM_CP_NO_RAW,
7518 .fgt = FGT_TLBIRVAAE1OS,
7519 .writefn = tlbi_aa64_rvae1is_write },
7520 { .name = "TLBI_RVALE1OS", .state = ARM_CP_STATE_AA64,
7521 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 5, .opc2 = 5,
7522 .access = PL1_W, .accessfn = access_ttlbos, .type = ARM_CP_NO_RAW,
7523 .fgt = FGT_TLBIRVALE1OS,
7524 .writefn = tlbi_aa64_rvae1is_write },
7525 { .name = "TLBI_RVAALE1OS", .state = ARM_CP_STATE_AA64,
7526 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 5, .opc2 = 7,
7527 .access = PL1_W, .accessfn = access_ttlbos, .type = ARM_CP_NO_RAW,
7528 .fgt = FGT_TLBIRVAALE1OS,
7529 .writefn = tlbi_aa64_rvae1is_write },
7530 { .name = "TLBI_RVAE1", .state = ARM_CP_STATE_AA64,
7531 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 6, .opc2 = 1,
7532 .access = PL1_W, .accessfn = access_ttlb, .type = ARM_CP_NO_RAW,
7533 .fgt = FGT_TLBIRVAE1,
7534 .writefn = tlbi_aa64_rvae1_write },
7535 { .name = "TLBI_RVAAE1", .state = ARM_CP_STATE_AA64,
7536 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 6, .opc2 = 3,
7537 .access = PL1_W, .accessfn = access_ttlb, .type = ARM_CP_NO_RAW,
7538 .fgt = FGT_TLBIRVAAE1,
7539 .writefn = tlbi_aa64_rvae1_write },
7540 { .name = "TLBI_RVALE1", .state = ARM_CP_STATE_AA64,
7541 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 6, .opc2 = 5,
7542 .access = PL1_W, .accessfn = access_ttlb, .type = ARM_CP_NO_RAW,
7543 .fgt = FGT_TLBIRVALE1,
7544 .writefn = tlbi_aa64_rvae1_write },
7545 { .name = "TLBI_RVAALE1", .state = ARM_CP_STATE_AA64,
7546 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 6, .opc2 = 7,
7547 .access = PL1_W, .accessfn = access_ttlb, .type = ARM_CP_NO_RAW,
7548 .fgt = FGT_TLBIRVAALE1,
7549 .writefn = tlbi_aa64_rvae1_write },
7550 { .name = "TLBI_RIPAS2E1IS", .state = ARM_CP_STATE_AA64,
7551 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 0, .opc2 = 2,
7552 .access = PL2_W, .type = ARM_CP_NO_RAW,
7553 .writefn = tlbi_aa64_ripas2e1is_write },
7554 { .name = "TLBI_RIPAS2LE1IS", .state = ARM_CP_STATE_AA64,
7555 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 0, .opc2 = 6,
7556 .access = PL2_W, .type = ARM_CP_NO_RAW,
7557 .writefn = tlbi_aa64_ripas2e1is_write },
7558 { .name = "TLBI_RVAE2IS", .state = ARM_CP_STATE_AA64,
7559 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 2, .opc2 = 1,
7560 .access = PL2_W, .type = ARM_CP_NO_RAW | ARM_CP_EL3_NO_EL2_UNDEF,
7561 .writefn = tlbi_aa64_rvae2is_write },
7562 { .name = "TLBI_RVALE2IS", .state = ARM_CP_STATE_AA64,
7563 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 2, .opc2 = 5,
7564 .access = PL2_W, .type = ARM_CP_NO_RAW | ARM_CP_EL3_NO_EL2_UNDEF,
7565 .writefn = tlbi_aa64_rvae2is_write },
7566 { .name = "TLBI_RIPAS2E1", .state = ARM_CP_STATE_AA64,
7567 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 4, .opc2 = 2,
7568 .access = PL2_W, .type = ARM_CP_NO_RAW,
7569 .writefn = tlbi_aa64_ripas2e1_write },
7570 { .name = "TLBI_RIPAS2LE1", .state = ARM_CP_STATE_AA64,
7571 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 4, .opc2 = 6,
7572 .access = PL2_W, .type = ARM_CP_NO_RAW,
7573 .writefn = tlbi_aa64_ripas2e1_write },
7574 { .name = "TLBI_RVAE2OS", .state = ARM_CP_STATE_AA64,
7575 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 5, .opc2 = 1,
7576 .access = PL2_W, .type = ARM_CP_NO_RAW | ARM_CP_EL3_NO_EL2_UNDEF,
7577 .writefn = tlbi_aa64_rvae2is_write },
7578 { .name = "TLBI_RVALE2OS", .state = ARM_CP_STATE_AA64,
7579 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 5, .opc2 = 5,
7580 .access = PL2_W, .type = ARM_CP_NO_RAW | ARM_CP_EL3_NO_EL2_UNDEF,
7581 .writefn = tlbi_aa64_rvae2is_write },
7582 { .name = "TLBI_RVAE2", .state = ARM_CP_STATE_AA64,
7583 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 6, .opc2 = 1,
7584 .access = PL2_W, .type = ARM_CP_NO_RAW | ARM_CP_EL3_NO_EL2_UNDEF,
7585 .writefn = tlbi_aa64_rvae2_write },
7586 { .name = "TLBI_RVALE2", .state = ARM_CP_STATE_AA64,
7587 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 6, .opc2 = 5,
7588 .access = PL2_W, .type = ARM_CP_NO_RAW | ARM_CP_EL3_NO_EL2_UNDEF,
7589 .writefn = tlbi_aa64_rvae2_write },
7590 { .name = "TLBI_RVAE3IS", .state = ARM_CP_STATE_AA64,
7591 .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 2, .opc2 = 1,
7592 .access = PL3_W, .type = ARM_CP_NO_RAW,
7593 .writefn = tlbi_aa64_rvae3is_write },
7594 { .name = "TLBI_RVALE3IS", .state = ARM_CP_STATE_AA64,
7595 .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 2, .opc2 = 5,
7596 .access = PL3_W, .type = ARM_CP_NO_RAW,
7597 .writefn = tlbi_aa64_rvae3is_write },
7598 { .name = "TLBI_RVAE3OS", .state = ARM_CP_STATE_AA64,
7599 .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 5, .opc2 = 1,
7600 .access = PL3_W, .type = ARM_CP_NO_RAW,
7601 .writefn = tlbi_aa64_rvae3is_write },
7602 { .name = "TLBI_RVALE3OS", .state = ARM_CP_STATE_AA64,
7603 .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 5, .opc2 = 5,
7604 .access = PL3_W, .type = ARM_CP_NO_RAW,
7605 .writefn = tlbi_aa64_rvae3is_write },
7606 { .name = "TLBI_RVAE3", .state = ARM_CP_STATE_AA64,
7607 .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 6, .opc2 = 1,
7608 .access = PL3_W, .type = ARM_CP_NO_RAW,
7609 .writefn = tlbi_aa64_rvae3_write },
7610 { .name = "TLBI_RVALE3", .state = ARM_CP_STATE_AA64,
7611 .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 6, .opc2 = 5,
7612 .access = PL3_W, .type = ARM_CP_NO_RAW,
7613 .writefn = tlbi_aa64_rvae3_write },
7616 static const ARMCPRegInfo tlbios_reginfo[] = {
7617 { .name = "TLBI_VMALLE1OS", .state = ARM_CP_STATE_AA64,
7618 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 1, .opc2 = 0,
7619 .access = PL1_W, .accessfn = access_ttlbos, .type = ARM_CP_NO_RAW,
7620 .fgt = FGT_TLBIVMALLE1OS,
7621 .writefn = tlbi_aa64_vmalle1is_write },
7622 { .name = "TLBI_VAE1OS", .state = ARM_CP_STATE_AA64,
7623 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 1, .opc2 = 1,
7624 .fgt = FGT_TLBIVAE1OS,
7625 .access = PL1_W, .accessfn = access_ttlbos, .type = ARM_CP_NO_RAW,
7626 .writefn = tlbi_aa64_vae1is_write },
7627 { .name = "TLBI_ASIDE1OS", .state = ARM_CP_STATE_AA64,
7628 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 1, .opc2 = 2,
7629 .access = PL1_W, .accessfn = access_ttlbos, .type = ARM_CP_NO_RAW,
7630 .fgt = FGT_TLBIASIDE1OS,
7631 .writefn = tlbi_aa64_vmalle1is_write },
7632 { .name = "TLBI_VAAE1OS", .state = ARM_CP_STATE_AA64,
7633 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 1, .opc2 = 3,
7634 .access = PL1_W, .accessfn = access_ttlbos, .type = ARM_CP_NO_RAW,
7635 .fgt = FGT_TLBIVAAE1OS,
7636 .writefn = tlbi_aa64_vae1is_write },
7637 { .name = "TLBI_VALE1OS", .state = ARM_CP_STATE_AA64,
7638 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 1, .opc2 = 5,
7639 .access = PL1_W, .accessfn = access_ttlbos, .type = ARM_CP_NO_RAW,
7640 .fgt = FGT_TLBIVALE1OS,
7641 .writefn = tlbi_aa64_vae1is_write },
7642 { .name = "TLBI_VAALE1OS", .state = ARM_CP_STATE_AA64,
7643 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 1, .opc2 = 7,
7644 .access = PL1_W, .accessfn = access_ttlbos, .type = ARM_CP_NO_RAW,
7645 .fgt = FGT_TLBIVAALE1OS,
7646 .writefn = tlbi_aa64_vae1is_write },
7647 { .name = "TLBI_ALLE2OS", .state = ARM_CP_STATE_AA64,
7648 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 1, .opc2 = 0,
7649 .access = PL2_W, .type = ARM_CP_NO_RAW | ARM_CP_EL3_NO_EL2_UNDEF,
7650 .writefn = tlbi_aa64_alle2is_write },
7651 { .name = "TLBI_VAE2OS", .state = ARM_CP_STATE_AA64,
7652 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 1, .opc2 = 1,
7653 .access = PL2_W, .type = ARM_CP_NO_RAW | ARM_CP_EL3_NO_EL2_UNDEF,
7654 .writefn = tlbi_aa64_vae2is_write },
7655 { .name = "TLBI_ALLE1OS", .state = ARM_CP_STATE_AA64,
7656 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 1, .opc2 = 4,
7657 .access = PL2_W, .type = ARM_CP_NO_RAW,
7658 .writefn = tlbi_aa64_alle1is_write },
7659 { .name = "TLBI_VALE2OS", .state = ARM_CP_STATE_AA64,
7660 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 1, .opc2 = 5,
7661 .access = PL2_W, .type = ARM_CP_NO_RAW | ARM_CP_EL3_NO_EL2_UNDEF,
7662 .writefn = tlbi_aa64_vae2is_write },
7663 { .name = "TLBI_VMALLS12E1OS", .state = ARM_CP_STATE_AA64,
7664 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 1, .opc2 = 6,
7665 .access = PL2_W, .type = ARM_CP_NO_RAW,
7666 .writefn = tlbi_aa64_alle1is_write },
7667 { .name = "TLBI_IPAS2E1OS", .state = ARM_CP_STATE_AA64,
7668 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 4, .opc2 = 0,
7669 .access = PL2_W, .type = ARM_CP_NOP },
7670 { .name = "TLBI_RIPAS2E1OS", .state = ARM_CP_STATE_AA64,
7671 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 4, .opc2 = 3,
7672 .access = PL2_W, .type = ARM_CP_NOP },
7673 { .name = "TLBI_IPAS2LE1OS", .state = ARM_CP_STATE_AA64,
7674 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 4, .opc2 = 4,
7675 .access = PL2_W, .type = ARM_CP_NOP },
7676 { .name = "TLBI_RIPAS2LE1OS", .state = ARM_CP_STATE_AA64,
7677 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 4, .opc2 = 7,
7678 .access = PL2_W, .type = ARM_CP_NOP },
7679 { .name = "TLBI_ALLE3OS", .state = ARM_CP_STATE_AA64,
7680 .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 1, .opc2 = 0,
7681 .access = PL3_W, .type = ARM_CP_NO_RAW,
7682 .writefn = tlbi_aa64_alle3is_write },
7683 { .name = "TLBI_VAE3OS", .state = ARM_CP_STATE_AA64,
7684 .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 1, .opc2 = 1,
7685 .access = PL3_W, .type = ARM_CP_NO_RAW,
7686 .writefn = tlbi_aa64_vae3is_write },
7687 { .name = "TLBI_VALE3OS", .state = ARM_CP_STATE_AA64,
7688 .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 1, .opc2 = 5,
7689 .access = PL3_W, .type = ARM_CP_NO_RAW,
7690 .writefn = tlbi_aa64_vae3is_write },
7693 static uint64_t rndr_readfn(CPUARMState *env, const ARMCPRegInfo *ri)
7695 Error *err = NULL;
7696 uint64_t ret;
7698 /* Success sets NZCV = 0000. */
7699 env->NF = env->CF = env->VF = 0, env->ZF = 1;
7701 if (qemu_guest_getrandom(&ret, sizeof(ret), &err) < 0) {
7703 * ??? Failed, for unknown reasons in the crypto subsystem.
7704 * The best we can do is log the reason and return the
7705 * timed-out indication to the guest. There is no reason
7706 * we know to expect this failure to be transitory, so the
7707 * guest may well hang retrying the operation.
7709 qemu_log_mask(LOG_UNIMP, "%s: Crypto failure: %s",
7710 ri->name, error_get_pretty(err));
7711 error_free(err);
7713 env->ZF = 0; /* NZCF = 0100 */
7714 return 0;
7716 return ret;
7719 /* We do not support re-seeding, so the two registers operate the same. */
7720 static const ARMCPRegInfo rndr_reginfo[] = {
7721 { .name = "RNDR", .state = ARM_CP_STATE_AA64,
7722 .type = ARM_CP_NO_RAW | ARM_CP_SUPPRESS_TB_END | ARM_CP_IO,
7723 .opc0 = 3, .opc1 = 3, .crn = 2, .crm = 4, .opc2 = 0,
7724 .access = PL0_R, .readfn = rndr_readfn },
7725 { .name = "RNDRRS", .state = ARM_CP_STATE_AA64,
7726 .type = ARM_CP_NO_RAW | ARM_CP_SUPPRESS_TB_END | ARM_CP_IO,
7727 .opc0 = 3, .opc1 = 3, .crn = 2, .crm = 4, .opc2 = 1,
7728 .access = PL0_R, .readfn = rndr_readfn },
7731 static void dccvap_writefn(CPUARMState *env, const ARMCPRegInfo *opaque,
7732 uint64_t value)
7734 #ifdef CONFIG_TCG
7735 ARMCPU *cpu = env_archcpu(env);
7736 /* CTR_EL0 System register -> DminLine, bits [19:16] */
7737 uint64_t dline_size = 4 << ((cpu->ctr >> 16) & 0xF);
7738 uint64_t vaddr_in = (uint64_t) value;
7739 uint64_t vaddr = vaddr_in & ~(dline_size - 1);
7740 void *haddr;
7741 int mem_idx = cpu_mmu_index(env, false);
7743 /* This won't be crossing page boundaries */
7744 haddr = probe_read(env, vaddr, dline_size, mem_idx, GETPC());
7745 if (haddr) {
7746 #ifndef CONFIG_USER_ONLY
7748 ram_addr_t offset;
7749 MemoryRegion *mr;
7751 /* RCU lock is already being held */
7752 mr = memory_region_from_host(haddr, &offset);
7754 if (mr) {
7755 memory_region_writeback(mr, offset, dline_size);
7757 #endif /*CONFIG_USER_ONLY*/
7759 #else
7760 /* Handled by hardware accelerator. */
7761 g_assert_not_reached();
7762 #endif /* CONFIG_TCG */
7765 static const ARMCPRegInfo dcpop_reg[] = {
7766 { .name = "DC_CVAP", .state = ARM_CP_STATE_AA64,
7767 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 12, .opc2 = 1,
7768 .access = PL0_W, .type = ARM_CP_NO_RAW | ARM_CP_SUPPRESS_TB_END,
7769 .fgt = FGT_DCCVAP,
7770 .accessfn = aa64_cacheop_poc_access, .writefn = dccvap_writefn },
7773 static const ARMCPRegInfo dcpodp_reg[] = {
7774 { .name = "DC_CVADP", .state = ARM_CP_STATE_AA64,
7775 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 13, .opc2 = 1,
7776 .access = PL0_W, .type = ARM_CP_NO_RAW | ARM_CP_SUPPRESS_TB_END,
7777 .fgt = FGT_DCCVADP,
7778 .accessfn = aa64_cacheop_poc_access, .writefn = dccvap_writefn },
7781 static CPAccessResult access_aa64_tid5(CPUARMState *env, const ARMCPRegInfo *ri,
7782 bool isread)
7784 if ((arm_current_el(env) < 2) && (arm_hcr_el2_eff(env) & HCR_TID5)) {
7785 return CP_ACCESS_TRAP_EL2;
7788 return CP_ACCESS_OK;
7791 static CPAccessResult access_mte(CPUARMState *env, const ARMCPRegInfo *ri,
7792 bool isread)
7794 int el = arm_current_el(env);
7796 if (el < 2 && arm_is_el2_enabled(env)) {
7797 uint64_t hcr = arm_hcr_el2_eff(env);
7798 if (!(hcr & HCR_ATA) && (!(hcr & HCR_E2H) || !(hcr & HCR_TGE))) {
7799 return CP_ACCESS_TRAP_EL2;
7802 if (el < 3 &&
7803 arm_feature(env, ARM_FEATURE_EL3) &&
7804 !(env->cp15.scr_el3 & SCR_ATA)) {
7805 return CP_ACCESS_TRAP_EL3;
7807 return CP_ACCESS_OK;
7810 static uint64_t tco_read(CPUARMState *env, const ARMCPRegInfo *ri)
7812 return env->pstate & PSTATE_TCO;
7815 static void tco_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t val)
7817 env->pstate = (env->pstate & ~PSTATE_TCO) | (val & PSTATE_TCO);
7820 static const ARMCPRegInfo mte_reginfo[] = {
7821 { .name = "TFSRE0_EL1", .state = ARM_CP_STATE_AA64,
7822 .opc0 = 3, .opc1 = 0, .crn = 5, .crm = 6, .opc2 = 1,
7823 .access = PL1_RW, .accessfn = access_mte,
7824 .fieldoffset = offsetof(CPUARMState, cp15.tfsr_el[0]) },
7825 { .name = "TFSR_EL1", .state = ARM_CP_STATE_AA64,
7826 .opc0 = 3, .opc1 = 0, .crn = 5, .crm = 6, .opc2 = 0,
7827 .access = PL1_RW, .accessfn = access_mte,
7828 .fieldoffset = offsetof(CPUARMState, cp15.tfsr_el[1]) },
7829 { .name = "TFSR_EL2", .state = ARM_CP_STATE_AA64,
7830 .opc0 = 3, .opc1 = 4, .crn = 5, .crm = 6, .opc2 = 0,
7831 .access = PL2_RW, .accessfn = access_mte,
7832 .fieldoffset = offsetof(CPUARMState, cp15.tfsr_el[2]) },
7833 { .name = "TFSR_EL3", .state = ARM_CP_STATE_AA64,
7834 .opc0 = 3, .opc1 = 6, .crn = 5, .crm = 6, .opc2 = 0,
7835 .access = PL3_RW,
7836 .fieldoffset = offsetof(CPUARMState, cp15.tfsr_el[3]) },
7837 { .name = "RGSR_EL1", .state = ARM_CP_STATE_AA64,
7838 .opc0 = 3, .opc1 = 0, .crn = 1, .crm = 0, .opc2 = 5,
7839 .access = PL1_RW, .accessfn = access_mte,
7840 .fieldoffset = offsetof(CPUARMState, cp15.rgsr_el1) },
7841 { .name = "GCR_EL1", .state = ARM_CP_STATE_AA64,
7842 .opc0 = 3, .opc1 = 0, .crn = 1, .crm = 0, .opc2 = 6,
7843 .access = PL1_RW, .accessfn = access_mte,
7844 .fieldoffset = offsetof(CPUARMState, cp15.gcr_el1) },
7845 { .name = "TCO", .state = ARM_CP_STATE_AA64,
7846 .opc0 = 3, .opc1 = 3, .crn = 4, .crm = 2, .opc2 = 7,
7847 .type = ARM_CP_NO_RAW,
7848 .access = PL0_RW, .readfn = tco_read, .writefn = tco_write },
7849 { .name = "DC_IGVAC", .state = ARM_CP_STATE_AA64,
7850 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 6, .opc2 = 3,
7851 .type = ARM_CP_NOP, .access = PL1_W,
7852 .fgt = FGT_DCIVAC,
7853 .accessfn = aa64_cacheop_poc_access },
7854 { .name = "DC_IGSW", .state = ARM_CP_STATE_AA64,
7855 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 6, .opc2 = 4,
7856 .fgt = FGT_DCISW,
7857 .type = ARM_CP_NOP, .access = PL1_W, .accessfn = access_tsw },
7858 { .name = "DC_IGDVAC", .state = ARM_CP_STATE_AA64,
7859 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 6, .opc2 = 5,
7860 .type = ARM_CP_NOP, .access = PL1_W,
7861 .fgt = FGT_DCIVAC,
7862 .accessfn = aa64_cacheop_poc_access },
7863 { .name = "DC_IGDSW", .state = ARM_CP_STATE_AA64,
7864 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 6, .opc2 = 6,
7865 .fgt = FGT_DCISW,
7866 .type = ARM_CP_NOP, .access = PL1_W, .accessfn = access_tsw },
7867 { .name = "DC_CGSW", .state = ARM_CP_STATE_AA64,
7868 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 10, .opc2 = 4,
7869 .fgt = FGT_DCCSW,
7870 .type = ARM_CP_NOP, .access = PL1_W, .accessfn = access_tsw },
7871 { .name = "DC_CGDSW", .state = ARM_CP_STATE_AA64,
7872 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 10, .opc2 = 6,
7873 .fgt = FGT_DCCSW,
7874 .type = ARM_CP_NOP, .access = PL1_W, .accessfn = access_tsw },
7875 { .name = "DC_CIGSW", .state = ARM_CP_STATE_AA64,
7876 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 14, .opc2 = 4,
7877 .fgt = FGT_DCCISW,
7878 .type = ARM_CP_NOP, .access = PL1_W, .accessfn = access_tsw },
7879 { .name = "DC_CIGDSW", .state = ARM_CP_STATE_AA64,
7880 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 14, .opc2 = 6,
7881 .fgt = FGT_DCCISW,
7882 .type = ARM_CP_NOP, .access = PL1_W, .accessfn = access_tsw },
7885 static const ARMCPRegInfo mte_tco_ro_reginfo[] = {
7886 { .name = "TCO", .state = ARM_CP_STATE_AA64,
7887 .opc0 = 3, .opc1 = 3, .crn = 4, .crm = 2, .opc2 = 7,
7888 .type = ARM_CP_CONST, .access = PL0_RW, },
7891 static const ARMCPRegInfo mte_el0_cacheop_reginfo[] = {
7892 { .name = "DC_CGVAC", .state = ARM_CP_STATE_AA64,
7893 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 10, .opc2 = 3,
7894 .type = ARM_CP_NOP, .access = PL0_W,
7895 .fgt = FGT_DCCVAC,
7896 .accessfn = aa64_cacheop_poc_access },
7897 { .name = "DC_CGDVAC", .state = ARM_CP_STATE_AA64,
7898 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 10, .opc2 = 5,
7899 .type = ARM_CP_NOP, .access = PL0_W,
7900 .fgt = FGT_DCCVAC,
7901 .accessfn = aa64_cacheop_poc_access },
7902 { .name = "DC_CGVAP", .state = ARM_CP_STATE_AA64,
7903 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 12, .opc2 = 3,
7904 .type = ARM_CP_NOP, .access = PL0_W,
7905 .fgt = FGT_DCCVAP,
7906 .accessfn = aa64_cacheop_poc_access },
7907 { .name = "DC_CGDVAP", .state = ARM_CP_STATE_AA64,
7908 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 12, .opc2 = 5,
7909 .type = ARM_CP_NOP, .access = PL0_W,
7910 .fgt = FGT_DCCVAP,
7911 .accessfn = aa64_cacheop_poc_access },
7912 { .name = "DC_CGVADP", .state = ARM_CP_STATE_AA64,
7913 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 13, .opc2 = 3,
7914 .type = ARM_CP_NOP, .access = PL0_W,
7915 .fgt = FGT_DCCVADP,
7916 .accessfn = aa64_cacheop_poc_access },
7917 { .name = "DC_CGDVADP", .state = ARM_CP_STATE_AA64,
7918 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 13, .opc2 = 5,
7919 .type = ARM_CP_NOP, .access = PL0_W,
7920 .fgt = FGT_DCCVADP,
7921 .accessfn = aa64_cacheop_poc_access },
7922 { .name = "DC_CIGVAC", .state = ARM_CP_STATE_AA64,
7923 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 14, .opc2 = 3,
7924 .type = ARM_CP_NOP, .access = PL0_W,
7925 .fgt = FGT_DCCIVAC,
7926 .accessfn = aa64_cacheop_poc_access },
7927 { .name = "DC_CIGDVAC", .state = ARM_CP_STATE_AA64,
7928 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 14, .opc2 = 5,
7929 .type = ARM_CP_NOP, .access = PL0_W,
7930 .fgt = FGT_DCCIVAC,
7931 .accessfn = aa64_cacheop_poc_access },
7932 { .name = "DC_GVA", .state = ARM_CP_STATE_AA64,
7933 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 4, .opc2 = 3,
7934 .access = PL0_W, .type = ARM_CP_DC_GVA,
7935 #ifndef CONFIG_USER_ONLY
7936 /* Avoid overhead of an access check that always passes in user-mode */
7937 .accessfn = aa64_zva_access,
7938 .fgt = FGT_DCZVA,
7939 #endif
7941 { .name = "DC_GZVA", .state = ARM_CP_STATE_AA64,
7942 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 4, .opc2 = 4,
7943 .access = PL0_W, .type = ARM_CP_DC_GZVA,
7944 #ifndef CONFIG_USER_ONLY
7945 /* Avoid overhead of an access check that always passes in user-mode */
7946 .accessfn = aa64_zva_access,
7947 .fgt = FGT_DCZVA,
7948 #endif
7952 static CPAccessResult access_scxtnum(CPUARMState *env, const ARMCPRegInfo *ri,
7953 bool isread)
7955 uint64_t hcr = arm_hcr_el2_eff(env);
7956 int el = arm_current_el(env);
7958 if (el == 0 && !((hcr & HCR_E2H) && (hcr & HCR_TGE))) {
7959 if (env->cp15.sctlr_el[1] & SCTLR_TSCXT) {
7960 if (hcr & HCR_TGE) {
7961 return CP_ACCESS_TRAP_EL2;
7963 return CP_ACCESS_TRAP;
7965 } else if (el < 2 && (env->cp15.sctlr_el[2] & SCTLR_TSCXT)) {
7966 return CP_ACCESS_TRAP_EL2;
7968 if (el < 2 && arm_is_el2_enabled(env) && !(hcr & HCR_ENSCXT)) {
7969 return CP_ACCESS_TRAP_EL2;
7971 if (el < 3
7972 && arm_feature(env, ARM_FEATURE_EL3)
7973 && !(env->cp15.scr_el3 & SCR_ENSCXT)) {
7974 return CP_ACCESS_TRAP_EL3;
7976 return CP_ACCESS_OK;
7979 static const ARMCPRegInfo scxtnum_reginfo[] = {
7980 { .name = "SCXTNUM_EL0", .state = ARM_CP_STATE_AA64,
7981 .opc0 = 3, .opc1 = 3, .crn = 13, .crm = 0, .opc2 = 7,
7982 .access = PL0_RW, .accessfn = access_scxtnum,
7983 .fgt = FGT_SCXTNUM_EL0,
7984 .fieldoffset = offsetof(CPUARMState, scxtnum_el[0]) },
7985 { .name = "SCXTNUM_EL1", .state = ARM_CP_STATE_AA64,
7986 .opc0 = 3, .opc1 = 0, .crn = 13, .crm = 0, .opc2 = 7,
7987 .access = PL1_RW, .accessfn = access_scxtnum,
7988 .fgt = FGT_SCXTNUM_EL1,
7989 .fieldoffset = offsetof(CPUARMState, scxtnum_el[1]) },
7990 { .name = "SCXTNUM_EL2", .state = ARM_CP_STATE_AA64,
7991 .opc0 = 3, .opc1 = 4, .crn = 13, .crm = 0, .opc2 = 7,
7992 .access = PL2_RW, .accessfn = access_scxtnum,
7993 .fieldoffset = offsetof(CPUARMState, scxtnum_el[2]) },
7994 { .name = "SCXTNUM_EL3", .state = ARM_CP_STATE_AA64,
7995 .opc0 = 3, .opc1 = 6, .crn = 13, .crm = 0, .opc2 = 7,
7996 .access = PL3_RW,
7997 .fieldoffset = offsetof(CPUARMState, scxtnum_el[3]) },
8000 static CPAccessResult access_fgt(CPUARMState *env, const ARMCPRegInfo *ri,
8001 bool isread)
8003 if (arm_current_el(env) == 2 &&
8004 arm_feature(env, ARM_FEATURE_EL3) && !(env->cp15.scr_el3 & SCR_FGTEN)) {
8005 return CP_ACCESS_TRAP_EL3;
8007 return CP_ACCESS_OK;
8010 static const ARMCPRegInfo fgt_reginfo[] = {
8011 { .name = "HFGRTR_EL2", .state = ARM_CP_STATE_AA64,
8012 .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 4,
8013 .access = PL2_RW, .accessfn = access_fgt,
8014 .fieldoffset = offsetof(CPUARMState, cp15.fgt_read[FGTREG_HFGRTR]) },
8015 { .name = "HFGWTR_EL2", .state = ARM_CP_STATE_AA64,
8016 .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 5,
8017 .access = PL2_RW, .accessfn = access_fgt,
8018 .fieldoffset = offsetof(CPUARMState, cp15.fgt_write[FGTREG_HFGWTR]) },
8019 { .name = "HDFGRTR_EL2", .state = ARM_CP_STATE_AA64,
8020 .opc0 = 3, .opc1 = 4, .crn = 3, .crm = 1, .opc2 = 4,
8021 .access = PL2_RW, .accessfn = access_fgt,
8022 .fieldoffset = offsetof(CPUARMState, cp15.fgt_read[FGTREG_HDFGRTR]) },
8023 { .name = "HDFGWTR_EL2", .state = ARM_CP_STATE_AA64,
8024 .opc0 = 3, .opc1 = 4, .crn = 3, .crm = 1, .opc2 = 5,
8025 .access = PL2_RW, .accessfn = access_fgt,
8026 .fieldoffset = offsetof(CPUARMState, cp15.fgt_write[FGTREG_HDFGWTR]) },
8027 { .name = "HFGITR_EL2", .state = ARM_CP_STATE_AA64,
8028 .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 6,
8029 .access = PL2_RW, .accessfn = access_fgt,
8030 .fieldoffset = offsetof(CPUARMState, cp15.fgt_exec[FGTREG_HFGITR]) },
8032 #endif /* TARGET_AARCH64 */
8034 static CPAccessResult access_predinv(CPUARMState *env, const ARMCPRegInfo *ri,
8035 bool isread)
8037 int el = arm_current_el(env);
8039 if (el == 0) {
8040 uint64_t sctlr = arm_sctlr(env, el);
8041 if (!(sctlr & SCTLR_EnRCTX)) {
8042 return CP_ACCESS_TRAP;
8044 } else if (el == 1) {
8045 uint64_t hcr = arm_hcr_el2_eff(env);
8046 if (hcr & HCR_NV) {
8047 return CP_ACCESS_TRAP_EL2;
8050 return CP_ACCESS_OK;
8053 static const ARMCPRegInfo predinv_reginfo[] = {
8054 { .name = "CFP_RCTX", .state = ARM_CP_STATE_AA64,
8055 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 3, .opc2 = 4,
8056 .fgt = FGT_CFPRCTX,
8057 .type = ARM_CP_NOP, .access = PL0_W, .accessfn = access_predinv },
8058 { .name = "DVP_RCTX", .state = ARM_CP_STATE_AA64,
8059 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 3, .opc2 = 5,
8060 .fgt = FGT_DVPRCTX,
8061 .type = ARM_CP_NOP, .access = PL0_W, .accessfn = access_predinv },
8062 { .name = "CPP_RCTX", .state = ARM_CP_STATE_AA64,
8063 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 3, .opc2 = 7,
8064 .fgt = FGT_CPPRCTX,
8065 .type = ARM_CP_NOP, .access = PL0_W, .accessfn = access_predinv },
8067 * Note the AArch32 opcodes have a different OPC1.
8069 { .name = "CFPRCTX", .state = ARM_CP_STATE_AA32,
8070 .cp = 15, .opc1 = 0, .crn = 7, .crm = 3, .opc2 = 4,
8071 .fgt = FGT_CFPRCTX,
8072 .type = ARM_CP_NOP, .access = PL0_W, .accessfn = access_predinv },
8073 { .name = "DVPRCTX", .state = ARM_CP_STATE_AA32,
8074 .cp = 15, .opc1 = 0, .crn = 7, .crm = 3, .opc2 = 5,
8075 .fgt = FGT_DVPRCTX,
8076 .type = ARM_CP_NOP, .access = PL0_W, .accessfn = access_predinv },
8077 { .name = "CPPRCTX", .state = ARM_CP_STATE_AA32,
8078 .cp = 15, .opc1 = 0, .crn = 7, .crm = 3, .opc2 = 7,
8079 .fgt = FGT_CPPRCTX,
8080 .type = ARM_CP_NOP, .access = PL0_W, .accessfn = access_predinv },
8083 static uint64_t ccsidr2_read(CPUARMState *env, const ARMCPRegInfo *ri)
8085 /* Read the high 32 bits of the current CCSIDR */
8086 return extract64(ccsidr_read(env, ri), 32, 32);
8089 static const ARMCPRegInfo ccsidr2_reginfo[] = {
8090 { .name = "CCSIDR2", .state = ARM_CP_STATE_BOTH,
8091 .opc0 = 3, .opc1 = 1, .crn = 0, .crm = 0, .opc2 = 2,
8092 .access = PL1_R,
8093 .accessfn = access_tid4,
8094 .readfn = ccsidr2_read, .type = ARM_CP_NO_RAW },
8097 static CPAccessResult access_aa64_tid3(CPUARMState *env, const ARMCPRegInfo *ri,
8098 bool isread)
8100 if ((arm_current_el(env) < 2) && (arm_hcr_el2_eff(env) & HCR_TID3)) {
8101 return CP_ACCESS_TRAP_EL2;
8104 return CP_ACCESS_OK;
8107 static CPAccessResult access_aa32_tid3(CPUARMState *env, const ARMCPRegInfo *ri,
8108 bool isread)
8110 if (arm_feature(env, ARM_FEATURE_V8)) {
8111 return access_aa64_tid3(env, ri, isread);
8114 return CP_ACCESS_OK;
8117 static CPAccessResult access_jazelle(CPUARMState *env, const ARMCPRegInfo *ri,
8118 bool isread)
8120 if (arm_current_el(env) == 1 && (arm_hcr_el2_eff(env) & HCR_TID0)) {
8121 return CP_ACCESS_TRAP_EL2;
8124 return CP_ACCESS_OK;
8127 static CPAccessResult access_joscr_jmcr(CPUARMState *env,
8128 const ARMCPRegInfo *ri, bool isread)
8131 * HSTR.TJDBX traps JOSCR and JMCR accesses, but it exists only
8132 * in v7A, not in v8A.
8134 if (!arm_feature(env, ARM_FEATURE_V8) &&
8135 arm_current_el(env) < 2 && !arm_is_secure_below_el3(env) &&
8136 (env->cp15.hstr_el2 & HSTR_TJDBX)) {
8137 return CP_ACCESS_TRAP_EL2;
8139 return CP_ACCESS_OK;
8142 static const ARMCPRegInfo jazelle_regs[] = {
8143 { .name = "JIDR",
8144 .cp = 14, .crn = 0, .crm = 0, .opc1 = 7, .opc2 = 0,
8145 .access = PL1_R, .accessfn = access_jazelle,
8146 .type = ARM_CP_CONST, .resetvalue = 0 },
8147 { .name = "JOSCR",
8148 .cp = 14, .crn = 1, .crm = 0, .opc1 = 7, .opc2 = 0,
8149 .accessfn = access_joscr_jmcr,
8150 .access = PL1_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
8151 { .name = "JMCR",
8152 .cp = 14, .crn = 2, .crm = 0, .opc1 = 7, .opc2 = 0,
8153 .accessfn = access_joscr_jmcr,
8154 .access = PL1_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
8157 static const ARMCPRegInfo contextidr_el2 = {
8158 .name = "CONTEXTIDR_EL2", .state = ARM_CP_STATE_AA64,
8159 .opc0 = 3, .opc1 = 4, .crn = 13, .crm = 0, .opc2 = 1,
8160 .access = PL2_RW,
8161 .fieldoffset = offsetof(CPUARMState, cp15.contextidr_el[2])
8164 static const ARMCPRegInfo vhe_reginfo[] = {
8165 { .name = "TTBR1_EL2", .state = ARM_CP_STATE_AA64,
8166 .opc0 = 3, .opc1 = 4, .crn = 2, .crm = 0, .opc2 = 1,
8167 .access = PL2_RW, .writefn = vmsa_tcr_ttbr_el2_write,
8168 .raw_writefn = raw_write,
8169 .fieldoffset = offsetof(CPUARMState, cp15.ttbr1_el[2]) },
8170 #ifndef CONFIG_USER_ONLY
8171 { .name = "CNTHV_CVAL_EL2", .state = ARM_CP_STATE_AA64,
8172 .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 3, .opc2 = 2,
8173 .fieldoffset =
8174 offsetof(CPUARMState, cp15.c14_timer[GTIMER_HYPVIRT].cval),
8175 .type = ARM_CP_IO, .access = PL2_RW,
8176 .writefn = gt_hv_cval_write, .raw_writefn = raw_write },
8177 { .name = "CNTHV_TVAL_EL2", .state = ARM_CP_STATE_BOTH,
8178 .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 3, .opc2 = 0,
8179 .type = ARM_CP_NO_RAW | ARM_CP_IO, .access = PL2_RW,
8180 .resetfn = gt_hv_timer_reset,
8181 .readfn = gt_hv_tval_read, .writefn = gt_hv_tval_write },
8182 { .name = "CNTHV_CTL_EL2", .state = ARM_CP_STATE_BOTH,
8183 .type = ARM_CP_IO,
8184 .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 3, .opc2 = 1,
8185 .access = PL2_RW,
8186 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_HYPVIRT].ctl),
8187 .writefn = gt_hv_ctl_write, .raw_writefn = raw_write },
8188 { .name = "CNTP_CTL_EL02", .state = ARM_CP_STATE_AA64,
8189 .opc0 = 3, .opc1 = 5, .crn = 14, .crm = 2, .opc2 = 1,
8190 .type = ARM_CP_IO | ARM_CP_ALIAS,
8191 .access = PL2_RW, .accessfn = e2h_access,
8192 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_PHYS].ctl),
8193 .writefn = gt_phys_ctl_write, .raw_writefn = raw_write },
8194 { .name = "CNTV_CTL_EL02", .state = ARM_CP_STATE_AA64,
8195 .opc0 = 3, .opc1 = 5, .crn = 14, .crm = 3, .opc2 = 1,
8196 .type = ARM_CP_IO | ARM_CP_ALIAS,
8197 .access = PL2_RW, .accessfn = e2h_access,
8198 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_VIRT].ctl),
8199 .writefn = gt_virt_ctl_write, .raw_writefn = raw_write },
8200 { .name = "CNTP_TVAL_EL02", .state = ARM_CP_STATE_AA64,
8201 .opc0 = 3, .opc1 = 5, .crn = 14, .crm = 2, .opc2 = 0,
8202 .type = ARM_CP_NO_RAW | ARM_CP_IO | ARM_CP_ALIAS,
8203 .access = PL2_RW, .accessfn = e2h_access,
8204 .readfn = gt_phys_tval_read, .writefn = gt_phys_tval_write },
8205 { .name = "CNTV_TVAL_EL02", .state = ARM_CP_STATE_AA64,
8206 .opc0 = 3, .opc1 = 5, .crn = 14, .crm = 3, .opc2 = 0,
8207 .type = ARM_CP_NO_RAW | ARM_CP_IO | ARM_CP_ALIAS,
8208 .access = PL2_RW, .accessfn = e2h_access,
8209 .readfn = gt_virt_tval_read, .writefn = gt_virt_tval_write },
8210 { .name = "CNTP_CVAL_EL02", .state = ARM_CP_STATE_AA64,
8211 .opc0 = 3, .opc1 = 5, .crn = 14, .crm = 2, .opc2 = 2,
8212 .type = ARM_CP_IO | ARM_CP_ALIAS,
8213 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_PHYS].cval),
8214 .access = PL2_RW, .accessfn = e2h_access,
8215 .writefn = gt_phys_cval_write, .raw_writefn = raw_write },
8216 { .name = "CNTV_CVAL_EL02", .state = ARM_CP_STATE_AA64,
8217 .opc0 = 3, .opc1 = 5, .crn = 14, .crm = 3, .opc2 = 2,
8218 .type = ARM_CP_IO | ARM_CP_ALIAS,
8219 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_VIRT].cval),
8220 .access = PL2_RW, .accessfn = e2h_access,
8221 .writefn = gt_virt_cval_write, .raw_writefn = raw_write },
8222 #endif
8225 #ifndef CONFIG_USER_ONLY
8226 static const ARMCPRegInfo ats1e1_reginfo[] = {
8227 { .name = "AT_S1E1RP", .state = ARM_CP_STATE_AA64,
8228 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 9, .opc2 = 0,
8229 .access = PL1_W, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC,
8230 .fgt = FGT_ATS1E1RP,
8231 .accessfn = at_s1e01_access, .writefn = ats_write64 },
8232 { .name = "AT_S1E1WP", .state = ARM_CP_STATE_AA64,
8233 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 9, .opc2 = 1,
8234 .access = PL1_W, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC,
8235 .fgt = FGT_ATS1E1WP,
8236 .accessfn = at_s1e01_access, .writefn = ats_write64 },
8239 static const ARMCPRegInfo ats1cp_reginfo[] = {
8240 { .name = "ATS1CPRP",
8241 .cp = 15, .opc1 = 0, .crn = 7, .crm = 9, .opc2 = 0,
8242 .access = PL1_W, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC,
8243 .writefn = ats_write },
8244 { .name = "ATS1CPWP",
8245 .cp = 15, .opc1 = 0, .crn = 7, .crm = 9, .opc2 = 1,
8246 .access = PL1_W, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC,
8247 .writefn = ats_write },
8249 #endif
8252 * ACTLR2 and HACTLR2 map to ACTLR_EL1[63:32] and
8253 * ACTLR_EL2[63:32]. They exist only if the ID_MMFR4.AC2 field
8254 * is non-zero, which is never for ARMv7, optionally in ARMv8
8255 * and mandatorily for ARMv8.2 and up.
8256 * ACTLR2 is banked for S and NS if EL3 is AArch32. Since QEMU's
8257 * implementation is RAZ/WI we can ignore this detail, as we
8258 * do for ACTLR.
8260 static const ARMCPRegInfo actlr2_hactlr2_reginfo[] = {
8261 { .name = "ACTLR2", .state = ARM_CP_STATE_AA32,
8262 .cp = 15, .opc1 = 0, .crn = 1, .crm = 0, .opc2 = 3,
8263 .access = PL1_RW, .accessfn = access_tacr,
8264 .type = ARM_CP_CONST, .resetvalue = 0 },
8265 { .name = "HACTLR2", .state = ARM_CP_STATE_AA32,
8266 .cp = 15, .opc1 = 4, .crn = 1, .crm = 0, .opc2 = 3,
8267 .access = PL2_RW, .type = ARM_CP_CONST,
8268 .resetvalue = 0 },
8271 void register_cp_regs_for_features(ARMCPU *cpu)
8273 /* Register all the coprocessor registers based on feature bits */
8274 CPUARMState *env = &cpu->env;
8275 if (arm_feature(env, ARM_FEATURE_M)) {
8276 /* M profile has no coprocessor registers */
8277 return;
8280 define_arm_cp_regs(cpu, cp_reginfo);
8281 if (!arm_feature(env, ARM_FEATURE_V8)) {
8283 * Must go early as it is full of wildcards that may be
8284 * overridden by later definitions.
8286 define_arm_cp_regs(cpu, not_v8_cp_reginfo);
8289 if (arm_feature(env, ARM_FEATURE_V6)) {
8290 /* The ID registers all have impdef reset values */
8291 ARMCPRegInfo v6_idregs[] = {
8292 { .name = "ID_PFR0", .state = ARM_CP_STATE_BOTH,
8293 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 0,
8294 .access = PL1_R, .type = ARM_CP_CONST,
8295 .accessfn = access_aa32_tid3,
8296 .resetvalue = cpu->isar.id_pfr0 },
8298 * ID_PFR1 is not a plain ARM_CP_CONST because we don't know
8299 * the value of the GIC field until after we define these regs.
8301 { .name = "ID_PFR1", .state = ARM_CP_STATE_BOTH,
8302 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 1,
8303 .access = PL1_R, .type = ARM_CP_NO_RAW,
8304 .accessfn = access_aa32_tid3,
8305 #ifdef CONFIG_USER_ONLY
8306 .type = ARM_CP_CONST,
8307 .resetvalue = cpu->isar.id_pfr1,
8308 #else
8309 .type = ARM_CP_NO_RAW,
8310 .accessfn = access_aa32_tid3,
8311 .readfn = id_pfr1_read,
8312 .writefn = arm_cp_write_ignore
8313 #endif
8315 { .name = "ID_DFR0", .state = ARM_CP_STATE_BOTH,
8316 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 2,
8317 .access = PL1_R, .type = ARM_CP_CONST,
8318 .accessfn = access_aa32_tid3,
8319 .resetvalue = cpu->isar.id_dfr0 },
8320 { .name = "ID_AFR0", .state = ARM_CP_STATE_BOTH,
8321 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 3,
8322 .access = PL1_R, .type = ARM_CP_CONST,
8323 .accessfn = access_aa32_tid3,
8324 .resetvalue = cpu->id_afr0 },
8325 { .name = "ID_MMFR0", .state = ARM_CP_STATE_BOTH,
8326 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 4,
8327 .access = PL1_R, .type = ARM_CP_CONST,
8328 .accessfn = access_aa32_tid3,
8329 .resetvalue = cpu->isar.id_mmfr0 },
8330 { .name = "ID_MMFR1", .state = ARM_CP_STATE_BOTH,
8331 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 5,
8332 .access = PL1_R, .type = ARM_CP_CONST,
8333 .accessfn = access_aa32_tid3,
8334 .resetvalue = cpu->isar.id_mmfr1 },
8335 { .name = "ID_MMFR2", .state = ARM_CP_STATE_BOTH,
8336 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 6,
8337 .access = PL1_R, .type = ARM_CP_CONST,
8338 .accessfn = access_aa32_tid3,
8339 .resetvalue = cpu->isar.id_mmfr2 },
8340 { .name = "ID_MMFR3", .state = ARM_CP_STATE_BOTH,
8341 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 7,
8342 .access = PL1_R, .type = ARM_CP_CONST,
8343 .accessfn = access_aa32_tid3,
8344 .resetvalue = cpu->isar.id_mmfr3 },
8345 { .name = "ID_ISAR0", .state = ARM_CP_STATE_BOTH,
8346 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 0,
8347 .access = PL1_R, .type = ARM_CP_CONST,
8348 .accessfn = access_aa32_tid3,
8349 .resetvalue = cpu->isar.id_isar0 },
8350 { .name = "ID_ISAR1", .state = ARM_CP_STATE_BOTH,
8351 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 1,
8352 .access = PL1_R, .type = ARM_CP_CONST,
8353 .accessfn = access_aa32_tid3,
8354 .resetvalue = cpu->isar.id_isar1 },
8355 { .name = "ID_ISAR2", .state = ARM_CP_STATE_BOTH,
8356 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 2,
8357 .access = PL1_R, .type = ARM_CP_CONST,
8358 .accessfn = access_aa32_tid3,
8359 .resetvalue = cpu->isar.id_isar2 },
8360 { .name = "ID_ISAR3", .state = ARM_CP_STATE_BOTH,
8361 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 3,
8362 .access = PL1_R, .type = ARM_CP_CONST,
8363 .accessfn = access_aa32_tid3,
8364 .resetvalue = cpu->isar.id_isar3 },
8365 { .name = "ID_ISAR4", .state = ARM_CP_STATE_BOTH,
8366 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 4,
8367 .access = PL1_R, .type = ARM_CP_CONST,
8368 .accessfn = access_aa32_tid3,
8369 .resetvalue = cpu->isar.id_isar4 },
8370 { .name = "ID_ISAR5", .state = ARM_CP_STATE_BOTH,
8371 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 5,
8372 .access = PL1_R, .type = ARM_CP_CONST,
8373 .accessfn = access_aa32_tid3,
8374 .resetvalue = cpu->isar.id_isar5 },
8375 { .name = "ID_MMFR4", .state = ARM_CP_STATE_BOTH,
8376 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 6,
8377 .access = PL1_R, .type = ARM_CP_CONST,
8378 .accessfn = access_aa32_tid3,
8379 .resetvalue = cpu->isar.id_mmfr4 },
8380 { .name = "ID_ISAR6", .state = ARM_CP_STATE_BOTH,
8381 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 7,
8382 .access = PL1_R, .type = ARM_CP_CONST,
8383 .accessfn = access_aa32_tid3,
8384 .resetvalue = cpu->isar.id_isar6 },
8386 define_arm_cp_regs(cpu, v6_idregs);
8387 define_arm_cp_regs(cpu, v6_cp_reginfo);
8388 } else {
8389 define_arm_cp_regs(cpu, not_v6_cp_reginfo);
8391 if (arm_feature(env, ARM_FEATURE_V6K)) {
8392 define_arm_cp_regs(cpu, v6k_cp_reginfo);
8394 if (arm_feature(env, ARM_FEATURE_V7MP) &&
8395 !arm_feature(env, ARM_FEATURE_PMSA)) {
8396 define_arm_cp_regs(cpu, v7mp_cp_reginfo);
8398 if (arm_feature(env, ARM_FEATURE_V7VE)) {
8399 define_arm_cp_regs(cpu, pmovsset_cp_reginfo);
8401 if (arm_feature(env, ARM_FEATURE_V7)) {
8402 ARMCPRegInfo clidr = {
8403 .name = "CLIDR", .state = ARM_CP_STATE_BOTH,
8404 .opc0 = 3, .crn = 0, .crm = 0, .opc1 = 1, .opc2 = 1,
8405 .access = PL1_R, .type = ARM_CP_CONST,
8406 .accessfn = access_tid4,
8407 .fgt = FGT_CLIDR_EL1,
8408 .resetvalue = cpu->clidr
8410 define_one_arm_cp_reg(cpu, &clidr);
8411 define_arm_cp_regs(cpu, v7_cp_reginfo);
8412 define_debug_regs(cpu);
8413 define_pmu_regs(cpu);
8414 } else {
8415 define_arm_cp_regs(cpu, not_v7_cp_reginfo);
8417 if (arm_feature(env, ARM_FEATURE_V8)) {
8419 * v8 ID registers, which all have impdef reset values.
8420 * Note that within the ID register ranges the unused slots
8421 * must all RAZ, not UNDEF; future architecture versions may
8422 * define new registers here.
8423 * ID registers which are AArch64 views of the AArch32 ID registers
8424 * which already existed in v6 and v7 are handled elsewhere,
8425 * in v6_idregs[].
8427 int i;
8428 ARMCPRegInfo v8_idregs[] = {
8430 * ID_AA64PFR0_EL1 is not a plain ARM_CP_CONST in system
8431 * emulation because we don't know the right value for the
8432 * GIC field until after we define these regs.
8434 { .name = "ID_AA64PFR0_EL1", .state = ARM_CP_STATE_AA64,
8435 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 4, .opc2 = 0,
8436 .access = PL1_R,
8437 #ifdef CONFIG_USER_ONLY
8438 .type = ARM_CP_CONST,
8439 .resetvalue = cpu->isar.id_aa64pfr0
8440 #else
8441 .type = ARM_CP_NO_RAW,
8442 .accessfn = access_aa64_tid3,
8443 .readfn = id_aa64pfr0_read,
8444 .writefn = arm_cp_write_ignore
8445 #endif
8447 { .name = "ID_AA64PFR1_EL1", .state = ARM_CP_STATE_AA64,
8448 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 4, .opc2 = 1,
8449 .access = PL1_R, .type = ARM_CP_CONST,
8450 .accessfn = access_aa64_tid3,
8451 .resetvalue = cpu->isar.id_aa64pfr1},
8452 { .name = "ID_AA64PFR2_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
8453 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 4, .opc2 = 2,
8454 .access = PL1_R, .type = ARM_CP_CONST,
8455 .accessfn = access_aa64_tid3,
8456 .resetvalue = 0 },
8457 { .name = "ID_AA64PFR3_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
8458 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 4, .opc2 = 3,
8459 .access = PL1_R, .type = ARM_CP_CONST,
8460 .accessfn = access_aa64_tid3,
8461 .resetvalue = 0 },
8462 { .name = "ID_AA64ZFR0_EL1", .state = ARM_CP_STATE_AA64,
8463 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 4, .opc2 = 4,
8464 .access = PL1_R, .type = ARM_CP_CONST,
8465 .accessfn = access_aa64_tid3,
8466 .resetvalue = cpu->isar.id_aa64zfr0 },
8467 { .name = "ID_AA64SMFR0_EL1", .state = ARM_CP_STATE_AA64,
8468 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 4, .opc2 = 5,
8469 .access = PL1_R, .type = ARM_CP_CONST,
8470 .accessfn = access_aa64_tid3,
8471 .resetvalue = cpu->isar.id_aa64smfr0 },
8472 { .name = "ID_AA64PFR6_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
8473 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 4, .opc2 = 6,
8474 .access = PL1_R, .type = ARM_CP_CONST,
8475 .accessfn = access_aa64_tid3,
8476 .resetvalue = 0 },
8477 { .name = "ID_AA64PFR7_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
8478 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 4, .opc2 = 7,
8479 .access = PL1_R, .type = ARM_CP_CONST,
8480 .accessfn = access_aa64_tid3,
8481 .resetvalue = 0 },
8482 { .name = "ID_AA64DFR0_EL1", .state = ARM_CP_STATE_AA64,
8483 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 5, .opc2 = 0,
8484 .access = PL1_R, .type = ARM_CP_CONST,
8485 .accessfn = access_aa64_tid3,
8486 .resetvalue = cpu->isar.id_aa64dfr0 },
8487 { .name = "ID_AA64DFR1_EL1", .state = ARM_CP_STATE_AA64,
8488 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 5, .opc2 = 1,
8489 .access = PL1_R, .type = ARM_CP_CONST,
8490 .accessfn = access_aa64_tid3,
8491 .resetvalue = cpu->isar.id_aa64dfr1 },
8492 { .name = "ID_AA64DFR2_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
8493 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 5, .opc2 = 2,
8494 .access = PL1_R, .type = ARM_CP_CONST,
8495 .accessfn = access_aa64_tid3,
8496 .resetvalue = 0 },
8497 { .name = "ID_AA64DFR3_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
8498 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 5, .opc2 = 3,
8499 .access = PL1_R, .type = ARM_CP_CONST,
8500 .accessfn = access_aa64_tid3,
8501 .resetvalue = 0 },
8502 { .name = "ID_AA64AFR0_EL1", .state = ARM_CP_STATE_AA64,
8503 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 5, .opc2 = 4,
8504 .access = PL1_R, .type = ARM_CP_CONST,
8505 .accessfn = access_aa64_tid3,
8506 .resetvalue = cpu->id_aa64afr0 },
8507 { .name = "ID_AA64AFR1_EL1", .state = ARM_CP_STATE_AA64,
8508 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 5, .opc2 = 5,
8509 .access = PL1_R, .type = ARM_CP_CONST,
8510 .accessfn = access_aa64_tid3,
8511 .resetvalue = cpu->id_aa64afr1 },
8512 { .name = "ID_AA64AFR2_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
8513 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 5, .opc2 = 6,
8514 .access = PL1_R, .type = ARM_CP_CONST,
8515 .accessfn = access_aa64_tid3,
8516 .resetvalue = 0 },
8517 { .name = "ID_AA64AFR3_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
8518 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 5, .opc2 = 7,
8519 .access = PL1_R, .type = ARM_CP_CONST,
8520 .accessfn = access_aa64_tid3,
8521 .resetvalue = 0 },
8522 { .name = "ID_AA64ISAR0_EL1", .state = ARM_CP_STATE_AA64,
8523 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 6, .opc2 = 0,
8524 .access = PL1_R, .type = ARM_CP_CONST,
8525 .accessfn = access_aa64_tid3,
8526 .resetvalue = cpu->isar.id_aa64isar0 },
8527 { .name = "ID_AA64ISAR1_EL1", .state = ARM_CP_STATE_AA64,
8528 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 6, .opc2 = 1,
8529 .access = PL1_R, .type = ARM_CP_CONST,
8530 .accessfn = access_aa64_tid3,
8531 .resetvalue = cpu->isar.id_aa64isar1 },
8532 { .name = "ID_AA64ISAR2_EL1", .state = ARM_CP_STATE_AA64,
8533 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 6, .opc2 = 2,
8534 .access = PL1_R, .type = ARM_CP_CONST,
8535 .accessfn = access_aa64_tid3,
8536 .resetvalue = cpu->isar.id_aa64isar2 },
8537 { .name = "ID_AA64ISAR3_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
8538 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 6, .opc2 = 3,
8539 .access = PL1_R, .type = ARM_CP_CONST,
8540 .accessfn = access_aa64_tid3,
8541 .resetvalue = 0 },
8542 { .name = "ID_AA64ISAR4_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
8543 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 6, .opc2 = 4,
8544 .access = PL1_R, .type = ARM_CP_CONST,
8545 .accessfn = access_aa64_tid3,
8546 .resetvalue = 0 },
8547 { .name = "ID_AA64ISAR5_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
8548 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 6, .opc2 = 5,
8549 .access = PL1_R, .type = ARM_CP_CONST,
8550 .accessfn = access_aa64_tid3,
8551 .resetvalue = 0 },
8552 { .name = "ID_AA64ISAR6_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
8553 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 6, .opc2 = 6,
8554 .access = PL1_R, .type = ARM_CP_CONST,
8555 .accessfn = access_aa64_tid3,
8556 .resetvalue = 0 },
8557 { .name = "ID_AA64ISAR7_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
8558 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 6, .opc2 = 7,
8559 .access = PL1_R, .type = ARM_CP_CONST,
8560 .accessfn = access_aa64_tid3,
8561 .resetvalue = 0 },
8562 { .name = "ID_AA64MMFR0_EL1", .state = ARM_CP_STATE_AA64,
8563 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 0,
8564 .access = PL1_R, .type = ARM_CP_CONST,
8565 .accessfn = access_aa64_tid3,
8566 .resetvalue = cpu->isar.id_aa64mmfr0 },
8567 { .name = "ID_AA64MMFR1_EL1", .state = ARM_CP_STATE_AA64,
8568 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 1,
8569 .access = PL1_R, .type = ARM_CP_CONST,
8570 .accessfn = access_aa64_tid3,
8571 .resetvalue = cpu->isar.id_aa64mmfr1 },
8572 { .name = "ID_AA64MMFR2_EL1", .state = ARM_CP_STATE_AA64,
8573 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 2,
8574 .access = PL1_R, .type = ARM_CP_CONST,
8575 .accessfn = access_aa64_tid3,
8576 .resetvalue = cpu->isar.id_aa64mmfr2 },
8577 { .name = "ID_AA64MMFR3_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
8578 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 3,
8579 .access = PL1_R, .type = ARM_CP_CONST,
8580 .accessfn = access_aa64_tid3,
8581 .resetvalue = 0 },
8582 { .name = "ID_AA64MMFR4_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
8583 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 4,
8584 .access = PL1_R, .type = ARM_CP_CONST,
8585 .accessfn = access_aa64_tid3,
8586 .resetvalue = 0 },
8587 { .name = "ID_AA64MMFR5_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
8588 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 5,
8589 .access = PL1_R, .type = ARM_CP_CONST,
8590 .accessfn = access_aa64_tid3,
8591 .resetvalue = 0 },
8592 { .name = "ID_AA64MMFR6_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
8593 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 6,
8594 .access = PL1_R, .type = ARM_CP_CONST,
8595 .accessfn = access_aa64_tid3,
8596 .resetvalue = 0 },
8597 { .name = "ID_AA64MMFR7_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
8598 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 7,
8599 .access = PL1_R, .type = ARM_CP_CONST,
8600 .accessfn = access_aa64_tid3,
8601 .resetvalue = 0 },
8602 { .name = "MVFR0_EL1", .state = ARM_CP_STATE_AA64,
8603 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 0,
8604 .access = PL1_R, .type = ARM_CP_CONST,
8605 .accessfn = access_aa64_tid3,
8606 .resetvalue = cpu->isar.mvfr0 },
8607 { .name = "MVFR1_EL1", .state = ARM_CP_STATE_AA64,
8608 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 1,
8609 .access = PL1_R, .type = ARM_CP_CONST,
8610 .accessfn = access_aa64_tid3,
8611 .resetvalue = cpu->isar.mvfr1 },
8612 { .name = "MVFR2_EL1", .state = ARM_CP_STATE_AA64,
8613 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 2,
8614 .access = PL1_R, .type = ARM_CP_CONST,
8615 .accessfn = access_aa64_tid3,
8616 .resetvalue = cpu->isar.mvfr2 },
8618 * "0, c0, c3, {0,1,2}" are the encodings corresponding to
8619 * AArch64 MVFR[012]_EL1. Define the STATE_AA32 encoding
8620 * as RAZ, since it is in the "reserved for future ID
8621 * registers, RAZ" part of the AArch32 encoding space.
8623 { .name = "RES_0_C0_C3_0", .state = ARM_CP_STATE_AA32,
8624 .cp = 15, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 0,
8625 .access = PL1_R, .type = ARM_CP_CONST,
8626 .accessfn = access_aa64_tid3,
8627 .resetvalue = 0 },
8628 { .name = "RES_0_C0_C3_1", .state = ARM_CP_STATE_AA32,
8629 .cp = 15, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 1,
8630 .access = PL1_R, .type = ARM_CP_CONST,
8631 .accessfn = access_aa64_tid3,
8632 .resetvalue = 0 },
8633 { .name = "RES_0_C0_C3_2", .state = ARM_CP_STATE_AA32,
8634 .cp = 15, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 2,
8635 .access = PL1_R, .type = ARM_CP_CONST,
8636 .accessfn = access_aa64_tid3,
8637 .resetvalue = 0 },
8639 * Other encodings in "0, c0, c3, ..." are STATE_BOTH because
8640 * they're also RAZ for AArch64, and in v8 are gradually
8641 * being filled with AArch64-view-of-AArch32-ID-register
8642 * for new ID registers.
8644 { .name = "RES_0_C0_C3_3", .state = ARM_CP_STATE_BOTH,
8645 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 3,
8646 .access = PL1_R, .type = ARM_CP_CONST,
8647 .accessfn = access_aa64_tid3,
8648 .resetvalue = 0 },
8649 { .name = "ID_PFR2", .state = ARM_CP_STATE_BOTH,
8650 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 4,
8651 .access = PL1_R, .type = ARM_CP_CONST,
8652 .accessfn = access_aa64_tid3,
8653 .resetvalue = cpu->isar.id_pfr2 },
8654 { .name = "ID_DFR1", .state = ARM_CP_STATE_BOTH,
8655 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 5,
8656 .access = PL1_R, .type = ARM_CP_CONST,
8657 .accessfn = access_aa64_tid3,
8658 .resetvalue = cpu->isar.id_dfr1 },
8659 { .name = "ID_MMFR5", .state = ARM_CP_STATE_BOTH,
8660 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 6,
8661 .access = PL1_R, .type = ARM_CP_CONST,
8662 .accessfn = access_aa64_tid3,
8663 .resetvalue = cpu->isar.id_mmfr5 },
8664 { .name = "RES_0_C0_C3_7", .state = ARM_CP_STATE_BOTH,
8665 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 7,
8666 .access = PL1_R, .type = ARM_CP_CONST,
8667 .accessfn = access_aa64_tid3,
8668 .resetvalue = 0 },
8669 { .name = "PMCEID0", .state = ARM_CP_STATE_AA32,
8670 .cp = 15, .opc1 = 0, .crn = 9, .crm = 12, .opc2 = 6,
8671 .access = PL0_R, .accessfn = pmreg_access, .type = ARM_CP_CONST,
8672 .fgt = FGT_PMCEIDN_EL0,
8673 .resetvalue = extract64(cpu->pmceid0, 0, 32) },
8674 { .name = "PMCEID0_EL0", .state = ARM_CP_STATE_AA64,
8675 .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 12, .opc2 = 6,
8676 .access = PL0_R, .accessfn = pmreg_access, .type = ARM_CP_CONST,
8677 .fgt = FGT_PMCEIDN_EL0,
8678 .resetvalue = cpu->pmceid0 },
8679 { .name = "PMCEID1", .state = ARM_CP_STATE_AA32,
8680 .cp = 15, .opc1 = 0, .crn = 9, .crm = 12, .opc2 = 7,
8681 .access = PL0_R, .accessfn = pmreg_access, .type = ARM_CP_CONST,
8682 .fgt = FGT_PMCEIDN_EL0,
8683 .resetvalue = extract64(cpu->pmceid1, 0, 32) },
8684 { .name = "PMCEID1_EL0", .state = ARM_CP_STATE_AA64,
8685 .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 12, .opc2 = 7,
8686 .access = PL0_R, .accessfn = pmreg_access, .type = ARM_CP_CONST,
8687 .fgt = FGT_PMCEIDN_EL0,
8688 .resetvalue = cpu->pmceid1 },
8690 #ifdef CONFIG_USER_ONLY
8691 static const ARMCPRegUserSpaceInfo v8_user_idregs[] = {
8692 { .name = "ID_AA64PFR0_EL1",
8693 .exported_bits = R_ID_AA64PFR0_FP_MASK |
8694 R_ID_AA64PFR0_ADVSIMD_MASK |
8695 R_ID_AA64PFR0_SVE_MASK |
8696 R_ID_AA64PFR0_DIT_MASK,
8697 .fixed_bits = (0x1u << R_ID_AA64PFR0_EL0_SHIFT) |
8698 (0x1u << R_ID_AA64PFR0_EL1_SHIFT) },
8699 { .name = "ID_AA64PFR1_EL1",
8700 .exported_bits = R_ID_AA64PFR1_BT_MASK |
8701 R_ID_AA64PFR1_SSBS_MASK |
8702 R_ID_AA64PFR1_MTE_MASK |
8703 R_ID_AA64PFR1_SME_MASK },
8704 { .name = "ID_AA64PFR*_EL1_RESERVED",
8705 .is_glob = true },
8706 { .name = "ID_AA64ZFR0_EL1",
8707 .exported_bits = R_ID_AA64ZFR0_SVEVER_MASK |
8708 R_ID_AA64ZFR0_AES_MASK |
8709 R_ID_AA64ZFR0_BITPERM_MASK |
8710 R_ID_AA64ZFR0_BFLOAT16_MASK |
8711 R_ID_AA64ZFR0_SHA3_MASK |
8712 R_ID_AA64ZFR0_SM4_MASK |
8713 R_ID_AA64ZFR0_I8MM_MASK |
8714 R_ID_AA64ZFR0_F32MM_MASK |
8715 R_ID_AA64ZFR0_F64MM_MASK },
8716 { .name = "ID_AA64SMFR0_EL1",
8717 .exported_bits = R_ID_AA64SMFR0_F32F32_MASK |
8718 R_ID_AA64SMFR0_BI32I32_MASK |
8719 R_ID_AA64SMFR0_B16F32_MASK |
8720 R_ID_AA64SMFR0_F16F32_MASK |
8721 R_ID_AA64SMFR0_I8I32_MASK |
8722 R_ID_AA64SMFR0_F16F16_MASK |
8723 R_ID_AA64SMFR0_B16B16_MASK |
8724 R_ID_AA64SMFR0_I16I32_MASK |
8725 R_ID_AA64SMFR0_F64F64_MASK |
8726 R_ID_AA64SMFR0_I16I64_MASK |
8727 R_ID_AA64SMFR0_SMEVER_MASK |
8728 R_ID_AA64SMFR0_FA64_MASK },
8729 { .name = "ID_AA64MMFR0_EL1",
8730 .exported_bits = R_ID_AA64MMFR0_ECV_MASK,
8731 .fixed_bits = (0xfu << R_ID_AA64MMFR0_TGRAN64_SHIFT) |
8732 (0xfu << R_ID_AA64MMFR0_TGRAN4_SHIFT) },
8733 { .name = "ID_AA64MMFR1_EL1",
8734 .exported_bits = R_ID_AA64MMFR1_AFP_MASK },
8735 { .name = "ID_AA64MMFR2_EL1",
8736 .exported_bits = R_ID_AA64MMFR2_AT_MASK },
8737 { .name = "ID_AA64MMFR*_EL1_RESERVED",
8738 .is_glob = true },
8739 { .name = "ID_AA64DFR0_EL1",
8740 .fixed_bits = (0x6u << R_ID_AA64DFR0_DEBUGVER_SHIFT) },
8741 { .name = "ID_AA64DFR1_EL1" },
8742 { .name = "ID_AA64DFR*_EL1_RESERVED",
8743 .is_glob = true },
8744 { .name = "ID_AA64AFR*",
8745 .is_glob = true },
8746 { .name = "ID_AA64ISAR0_EL1",
8747 .exported_bits = R_ID_AA64ISAR0_AES_MASK |
8748 R_ID_AA64ISAR0_SHA1_MASK |
8749 R_ID_AA64ISAR0_SHA2_MASK |
8750 R_ID_AA64ISAR0_CRC32_MASK |
8751 R_ID_AA64ISAR0_ATOMIC_MASK |
8752 R_ID_AA64ISAR0_RDM_MASK |
8753 R_ID_AA64ISAR0_SHA3_MASK |
8754 R_ID_AA64ISAR0_SM3_MASK |
8755 R_ID_AA64ISAR0_SM4_MASK |
8756 R_ID_AA64ISAR0_DP_MASK |
8757 R_ID_AA64ISAR0_FHM_MASK |
8758 R_ID_AA64ISAR0_TS_MASK |
8759 R_ID_AA64ISAR0_RNDR_MASK },
8760 { .name = "ID_AA64ISAR1_EL1",
8761 .exported_bits = R_ID_AA64ISAR1_DPB_MASK |
8762 R_ID_AA64ISAR1_APA_MASK |
8763 R_ID_AA64ISAR1_API_MASK |
8764 R_ID_AA64ISAR1_JSCVT_MASK |
8765 R_ID_AA64ISAR1_FCMA_MASK |
8766 R_ID_AA64ISAR1_LRCPC_MASK |
8767 R_ID_AA64ISAR1_GPA_MASK |
8768 R_ID_AA64ISAR1_GPI_MASK |
8769 R_ID_AA64ISAR1_FRINTTS_MASK |
8770 R_ID_AA64ISAR1_SB_MASK |
8771 R_ID_AA64ISAR1_BF16_MASK |
8772 R_ID_AA64ISAR1_DGH_MASK |
8773 R_ID_AA64ISAR1_I8MM_MASK },
8774 { .name = "ID_AA64ISAR2_EL1",
8775 .exported_bits = R_ID_AA64ISAR2_WFXT_MASK |
8776 R_ID_AA64ISAR2_RPRES_MASK |
8777 R_ID_AA64ISAR2_GPA3_MASK |
8778 R_ID_AA64ISAR2_APA3_MASK |
8779 R_ID_AA64ISAR2_MOPS_MASK |
8780 R_ID_AA64ISAR2_BC_MASK |
8781 R_ID_AA64ISAR2_RPRFM_MASK |
8782 R_ID_AA64ISAR2_CSSC_MASK },
8783 { .name = "ID_AA64ISAR*_EL1_RESERVED",
8784 .is_glob = true },
8786 modify_arm_cp_regs(v8_idregs, v8_user_idregs);
8787 #endif
8789 * RVBAR_EL1 and RMR_EL1 only implemented if EL1 is the highest EL.
8790 * TODO: For RMR, a write with bit 1 set should do something with
8791 * cpu_reset(). In the meantime, "the bit is strictly a request",
8792 * so we are in spec just ignoring writes.
8794 if (!arm_feature(env, ARM_FEATURE_EL3) &&
8795 !arm_feature(env, ARM_FEATURE_EL2)) {
8796 ARMCPRegInfo el1_reset_regs[] = {
8797 { .name = "RVBAR_EL1", .state = ARM_CP_STATE_BOTH,
8798 .opc0 = 3, .opc1 = 0, .crn = 12, .crm = 0, .opc2 = 1,
8799 .access = PL1_R,
8800 .fieldoffset = offsetof(CPUARMState, cp15.rvbar) },
8801 { .name = "RMR_EL1", .state = ARM_CP_STATE_BOTH,
8802 .opc0 = 3, .opc1 = 0, .crn = 12, .crm = 0, .opc2 = 2,
8803 .access = PL1_RW, .type = ARM_CP_CONST,
8804 .resetvalue = arm_feature(env, ARM_FEATURE_AARCH64) }
8806 define_arm_cp_regs(cpu, el1_reset_regs);
8808 define_arm_cp_regs(cpu, v8_idregs);
8809 define_arm_cp_regs(cpu, v8_cp_reginfo);
8810 if (cpu_isar_feature(aa64_aa32_el1, cpu)) {
8811 define_arm_cp_regs(cpu, v8_aa32_el1_reginfo);
8814 for (i = 4; i < 16; i++) {
8816 * Encodings in "0, c0, {c4-c7}, {0-7}" are RAZ for AArch32.
8817 * For pre-v8 cores there are RAZ patterns for these in
8818 * id_pre_v8_midr_cp_reginfo[]; for v8 we do that here.
8819 * v8 extends the "must RAZ" part of the ID register space
8820 * to also cover c0, 0, c{8-15}, {0-7}.
8821 * These are STATE_AA32 because in the AArch64 sysreg space
8822 * c4-c7 is where the AArch64 ID registers live (and we've
8823 * already defined those in v8_idregs[]), and c8-c15 are not
8824 * "must RAZ" for AArch64.
8826 g_autofree char *name = g_strdup_printf("RES_0_C0_C%d_X", i);
8827 ARMCPRegInfo v8_aa32_raz_idregs = {
8828 .name = name,
8829 .state = ARM_CP_STATE_AA32,
8830 .cp = 15, .opc1 = 0, .crn = 0, .crm = i, .opc2 = CP_ANY,
8831 .access = PL1_R, .type = ARM_CP_CONST,
8832 .accessfn = access_aa64_tid3,
8833 .resetvalue = 0 };
8834 define_one_arm_cp_reg(cpu, &v8_aa32_raz_idregs);
8839 * Register the base EL2 cpregs.
8840 * Pre v8, these registers are implemented only as part of the
8841 * Virtualization Extensions (EL2 present). Beginning with v8,
8842 * if EL2 is missing but EL3 is enabled, mostly these become
8843 * RES0 from EL3, with some specific exceptions.
8845 if (arm_feature(env, ARM_FEATURE_EL2)
8846 || (arm_feature(env, ARM_FEATURE_EL3)
8847 && arm_feature(env, ARM_FEATURE_V8))) {
8848 uint64_t vmpidr_def = mpidr_read_val(env);
8849 ARMCPRegInfo vpidr_regs[] = {
8850 { .name = "VPIDR", .state = ARM_CP_STATE_AA32,
8851 .cp = 15, .opc1 = 4, .crn = 0, .crm = 0, .opc2 = 0,
8852 .access = PL2_RW, .accessfn = access_el3_aa32ns,
8853 .resetvalue = cpu->midr,
8854 .type = ARM_CP_ALIAS | ARM_CP_EL3_NO_EL2_C_NZ,
8855 .fieldoffset = offsetoflow32(CPUARMState, cp15.vpidr_el2) },
8856 { .name = "VPIDR_EL2", .state = ARM_CP_STATE_AA64,
8857 .opc0 = 3, .opc1 = 4, .crn = 0, .crm = 0, .opc2 = 0,
8858 .access = PL2_RW, .resetvalue = cpu->midr,
8859 .type = ARM_CP_EL3_NO_EL2_C_NZ,
8860 .fieldoffset = offsetof(CPUARMState, cp15.vpidr_el2) },
8861 { .name = "VMPIDR", .state = ARM_CP_STATE_AA32,
8862 .cp = 15, .opc1 = 4, .crn = 0, .crm = 0, .opc2 = 5,
8863 .access = PL2_RW, .accessfn = access_el3_aa32ns,
8864 .resetvalue = vmpidr_def,
8865 .type = ARM_CP_ALIAS | ARM_CP_EL3_NO_EL2_C_NZ,
8866 .fieldoffset = offsetoflow32(CPUARMState, cp15.vmpidr_el2) },
8867 { .name = "VMPIDR_EL2", .state = ARM_CP_STATE_AA64,
8868 .opc0 = 3, .opc1 = 4, .crn = 0, .crm = 0, .opc2 = 5,
8869 .access = PL2_RW, .resetvalue = vmpidr_def,
8870 .type = ARM_CP_EL3_NO_EL2_C_NZ,
8871 .fieldoffset = offsetof(CPUARMState, cp15.vmpidr_el2) },
8874 * The only field of MDCR_EL2 that has a defined architectural reset
8875 * value is MDCR_EL2.HPMN which should reset to the value of PMCR_EL0.N.
8877 ARMCPRegInfo mdcr_el2 = {
8878 .name = "MDCR_EL2", .state = ARM_CP_STATE_BOTH, .type = ARM_CP_IO,
8879 .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 1,
8880 .writefn = mdcr_el2_write,
8881 .access = PL2_RW, .resetvalue = pmu_num_counters(env),
8882 .fieldoffset = offsetof(CPUARMState, cp15.mdcr_el2),
8884 define_one_arm_cp_reg(cpu, &mdcr_el2);
8885 define_arm_cp_regs(cpu, vpidr_regs);
8886 define_arm_cp_regs(cpu, el2_cp_reginfo);
8887 if (arm_feature(env, ARM_FEATURE_V8)) {
8888 define_arm_cp_regs(cpu, el2_v8_cp_reginfo);
8890 if (cpu_isar_feature(aa64_sel2, cpu)) {
8891 define_arm_cp_regs(cpu, el2_sec_cp_reginfo);
8894 * RVBAR_EL2 and RMR_EL2 only implemented if EL2 is the highest EL.
8895 * See commentary near RMR_EL1.
8897 if (!arm_feature(env, ARM_FEATURE_EL3)) {
8898 static const ARMCPRegInfo el2_reset_regs[] = {
8899 { .name = "RVBAR_EL2", .state = ARM_CP_STATE_AA64,
8900 .opc0 = 3, .opc1 = 4, .crn = 12, .crm = 0, .opc2 = 1,
8901 .access = PL2_R,
8902 .fieldoffset = offsetof(CPUARMState, cp15.rvbar) },
8903 { .name = "RVBAR", .type = ARM_CP_ALIAS,
8904 .cp = 15, .opc1 = 0, .crn = 12, .crm = 0, .opc2 = 1,
8905 .access = PL2_R,
8906 .fieldoffset = offsetof(CPUARMState, cp15.rvbar) },
8907 { .name = "RMR_EL2", .state = ARM_CP_STATE_AA64,
8908 .opc0 = 3, .opc1 = 4, .crn = 12, .crm = 0, .opc2 = 2,
8909 .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 1 },
8911 define_arm_cp_regs(cpu, el2_reset_regs);
8915 /* Register the base EL3 cpregs. */
8916 if (arm_feature(env, ARM_FEATURE_EL3)) {
8917 define_arm_cp_regs(cpu, el3_cp_reginfo);
8918 ARMCPRegInfo el3_regs[] = {
8919 { .name = "RVBAR_EL3", .state = ARM_CP_STATE_AA64,
8920 .opc0 = 3, .opc1 = 6, .crn = 12, .crm = 0, .opc2 = 1,
8921 .access = PL3_R,
8922 .fieldoffset = offsetof(CPUARMState, cp15.rvbar), },
8923 { .name = "RMR_EL3", .state = ARM_CP_STATE_AA64,
8924 .opc0 = 3, .opc1 = 6, .crn = 12, .crm = 0, .opc2 = 2,
8925 .access = PL3_RW, .type = ARM_CP_CONST, .resetvalue = 1 },
8926 { .name = "RMR", .state = ARM_CP_STATE_AA32,
8927 .cp = 15, .opc1 = 0, .crn = 12, .crm = 0, .opc2 = 2,
8928 .access = PL3_RW, .type = ARM_CP_CONST,
8929 .resetvalue = arm_feature(env, ARM_FEATURE_AARCH64) },
8930 { .name = "SCTLR_EL3", .state = ARM_CP_STATE_AA64,
8931 .opc0 = 3, .opc1 = 6, .crn = 1, .crm = 0, .opc2 = 0,
8932 .access = PL3_RW,
8933 .raw_writefn = raw_write, .writefn = sctlr_write,
8934 .fieldoffset = offsetof(CPUARMState, cp15.sctlr_el[3]),
8935 .resetvalue = cpu->reset_sctlr },
8938 define_arm_cp_regs(cpu, el3_regs);
8941 * The behaviour of NSACR is sufficiently various that we don't
8942 * try to describe it in a single reginfo:
8943 * if EL3 is 64 bit, then trap to EL3 from S EL1,
8944 * reads as constant 0xc00 from NS EL1 and NS EL2
8945 * if EL3 is 32 bit, then RW at EL3, RO at NS EL1 and NS EL2
8946 * if v7 without EL3, register doesn't exist
8947 * if v8 without EL3, reads as constant 0xc00 from NS EL1 and NS EL2
8949 if (arm_feature(env, ARM_FEATURE_EL3)) {
8950 if (arm_feature(env, ARM_FEATURE_AARCH64)) {
8951 static const ARMCPRegInfo nsacr = {
8952 .name = "NSACR", .type = ARM_CP_CONST,
8953 .cp = 15, .opc1 = 0, .crn = 1, .crm = 1, .opc2 = 2,
8954 .access = PL1_RW, .accessfn = nsacr_access,
8955 .resetvalue = 0xc00
8957 define_one_arm_cp_reg(cpu, &nsacr);
8958 } else {
8959 static const ARMCPRegInfo nsacr = {
8960 .name = "NSACR",
8961 .cp = 15, .opc1 = 0, .crn = 1, .crm = 1, .opc2 = 2,
8962 .access = PL3_RW | PL1_R,
8963 .resetvalue = 0,
8964 .fieldoffset = offsetof(CPUARMState, cp15.nsacr)
8966 define_one_arm_cp_reg(cpu, &nsacr);
8968 } else {
8969 if (arm_feature(env, ARM_FEATURE_V8)) {
8970 static const ARMCPRegInfo nsacr = {
8971 .name = "NSACR", .type = ARM_CP_CONST,
8972 .cp = 15, .opc1 = 0, .crn = 1, .crm = 1, .opc2 = 2,
8973 .access = PL1_R,
8974 .resetvalue = 0xc00
8976 define_one_arm_cp_reg(cpu, &nsacr);
8980 if (arm_feature(env, ARM_FEATURE_PMSA)) {
8981 if (arm_feature(env, ARM_FEATURE_V6)) {
8982 /* PMSAv6 not implemented */
8983 assert(arm_feature(env, ARM_FEATURE_V7));
8984 define_arm_cp_regs(cpu, vmsa_pmsa_cp_reginfo);
8985 define_arm_cp_regs(cpu, pmsav7_cp_reginfo);
8986 } else {
8987 define_arm_cp_regs(cpu, pmsav5_cp_reginfo);
8989 } else {
8990 define_arm_cp_regs(cpu, vmsa_pmsa_cp_reginfo);
8991 define_arm_cp_regs(cpu, vmsa_cp_reginfo);
8992 /* TTCBR2 is introduced with ARMv8.2-AA32HPD. */
8993 if (cpu_isar_feature(aa32_hpd, cpu)) {
8994 define_one_arm_cp_reg(cpu, &ttbcr2_reginfo);
8997 if (arm_feature(env, ARM_FEATURE_THUMB2EE)) {
8998 define_arm_cp_regs(cpu, t2ee_cp_reginfo);
9000 if (arm_feature(env, ARM_FEATURE_GENERIC_TIMER)) {
9001 define_arm_cp_regs(cpu, generic_timer_cp_reginfo);
9003 if (arm_feature(env, ARM_FEATURE_VAPA)) {
9004 ARMCPRegInfo vapa_cp_reginfo[] = {
9005 { .name = "PAR", .cp = 15, .crn = 7, .crm = 4, .opc1 = 0, .opc2 = 0,
9006 .access = PL1_RW, .resetvalue = 0,
9007 .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.par_s),
9008 offsetoflow32(CPUARMState, cp15.par_ns) },
9009 .writefn = par_write},
9010 #ifndef CONFIG_USER_ONLY
9011 /* This underdecoding is safe because the reginfo is NO_RAW. */
9012 { .name = "ATS", .cp = 15, .crn = 7, .crm = 8, .opc1 = 0, .opc2 = CP_ANY,
9013 .access = PL1_W, .accessfn = ats_access,
9014 .writefn = ats_write, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC },
9015 #endif
9019 * When LPAE exists this 32-bit PAR register is an alias of the
9020 * 64-bit AArch32 PAR register defined in lpae_cp_reginfo[]
9022 if (arm_feature(env, ARM_FEATURE_LPAE)) {
9023 vapa_cp_reginfo[0].type = ARM_CP_ALIAS | ARM_CP_NO_GDB;
9025 define_arm_cp_regs(cpu, vapa_cp_reginfo);
9027 if (arm_feature(env, ARM_FEATURE_CACHE_TEST_CLEAN)) {
9028 define_arm_cp_regs(cpu, cache_test_clean_cp_reginfo);
9030 if (arm_feature(env, ARM_FEATURE_CACHE_DIRTY_REG)) {
9031 define_arm_cp_regs(cpu, cache_dirty_status_cp_reginfo);
9033 if (arm_feature(env, ARM_FEATURE_CACHE_BLOCK_OPS)) {
9034 define_arm_cp_regs(cpu, cache_block_ops_cp_reginfo);
9036 if (arm_feature(env, ARM_FEATURE_OMAPCP)) {
9037 define_arm_cp_regs(cpu, omap_cp_reginfo);
9039 if (arm_feature(env, ARM_FEATURE_STRONGARM)) {
9040 define_arm_cp_regs(cpu, strongarm_cp_reginfo);
9042 if (arm_feature(env, ARM_FEATURE_XSCALE)) {
9043 define_arm_cp_regs(cpu, xscale_cp_reginfo);
9045 if (arm_feature(env, ARM_FEATURE_DUMMY_C15_REGS)) {
9046 define_arm_cp_regs(cpu, dummy_c15_cp_reginfo);
9048 if (arm_feature(env, ARM_FEATURE_LPAE)) {
9049 define_arm_cp_regs(cpu, lpae_cp_reginfo);
9051 if (cpu_isar_feature(aa32_jazelle, cpu)) {
9052 define_arm_cp_regs(cpu, jazelle_regs);
9055 * Slightly awkwardly, the OMAP and StrongARM cores need all of
9056 * cp15 crn=0 to be writes-ignored, whereas for other cores they should
9057 * be read-only (ie write causes UNDEF exception).
9060 ARMCPRegInfo id_pre_v8_midr_cp_reginfo[] = {
9062 * Pre-v8 MIDR space.
9063 * Note that the MIDR isn't a simple constant register because
9064 * of the TI925 behaviour where writes to another register can
9065 * cause the MIDR value to change.
9067 * Unimplemented registers in the c15 0 0 0 space default to
9068 * MIDR. Define MIDR first as this entire space, then CTR, TCMTR
9069 * and friends override accordingly.
9071 { .name = "MIDR",
9072 .cp = 15, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = CP_ANY,
9073 .access = PL1_R, .resetvalue = cpu->midr,
9074 .writefn = arm_cp_write_ignore, .raw_writefn = raw_write,
9075 .readfn = midr_read,
9076 .fieldoffset = offsetof(CPUARMState, cp15.c0_cpuid),
9077 .type = ARM_CP_OVERRIDE },
9078 /* crn = 0 op1 = 0 crm = 3..7 : currently unassigned; we RAZ. */
9079 { .name = "DUMMY",
9080 .cp = 15, .crn = 0, .crm = 3, .opc1 = 0, .opc2 = CP_ANY,
9081 .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = 0 },
9082 { .name = "DUMMY",
9083 .cp = 15, .crn = 0, .crm = 4, .opc1 = 0, .opc2 = CP_ANY,
9084 .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = 0 },
9085 { .name = "DUMMY",
9086 .cp = 15, .crn = 0, .crm = 5, .opc1 = 0, .opc2 = CP_ANY,
9087 .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = 0 },
9088 { .name = "DUMMY",
9089 .cp = 15, .crn = 0, .crm = 6, .opc1 = 0, .opc2 = CP_ANY,
9090 .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = 0 },
9091 { .name = "DUMMY",
9092 .cp = 15, .crn = 0, .crm = 7, .opc1 = 0, .opc2 = CP_ANY,
9093 .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = 0 },
9095 ARMCPRegInfo id_v8_midr_cp_reginfo[] = {
9096 { .name = "MIDR_EL1", .state = ARM_CP_STATE_BOTH,
9097 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 0, .opc2 = 0,
9098 .access = PL1_R, .type = ARM_CP_NO_RAW, .resetvalue = cpu->midr,
9099 .fgt = FGT_MIDR_EL1,
9100 .fieldoffset = offsetof(CPUARMState, cp15.c0_cpuid),
9101 .readfn = midr_read },
9102 /* crn = 0 op1 = 0 crm = 0 op2 = 7 : AArch32 aliases of MIDR */
9103 { .name = "MIDR", .type = ARM_CP_ALIAS | ARM_CP_CONST,
9104 .cp = 15, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 7,
9105 .access = PL1_R, .resetvalue = cpu->midr },
9106 { .name = "REVIDR_EL1", .state = ARM_CP_STATE_BOTH,
9107 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 0, .opc2 = 6,
9108 .access = PL1_R,
9109 .accessfn = access_aa64_tid1,
9110 .fgt = FGT_REVIDR_EL1,
9111 .type = ARM_CP_CONST, .resetvalue = cpu->revidr },
9113 ARMCPRegInfo id_v8_midr_alias_cp_reginfo = {
9114 .name = "MIDR", .type = ARM_CP_ALIAS | ARM_CP_CONST | ARM_CP_NO_GDB,
9115 .cp = 15, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 4,
9116 .access = PL1_R, .resetvalue = cpu->midr
9118 ARMCPRegInfo id_cp_reginfo[] = {
9119 /* These are common to v8 and pre-v8 */
9120 { .name = "CTR",
9121 .cp = 15, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 1,
9122 .access = PL1_R, .accessfn = ctr_el0_access,
9123 .type = ARM_CP_CONST, .resetvalue = cpu->ctr },
9124 { .name = "CTR_EL0", .state = ARM_CP_STATE_AA64,
9125 .opc0 = 3, .opc1 = 3, .opc2 = 1, .crn = 0, .crm = 0,
9126 .access = PL0_R, .accessfn = ctr_el0_access,
9127 .fgt = FGT_CTR_EL0,
9128 .type = ARM_CP_CONST, .resetvalue = cpu->ctr },
9129 /* TCMTR and TLBTR exist in v8 but have no 64-bit versions */
9130 { .name = "TCMTR",
9131 .cp = 15, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 2,
9132 .access = PL1_R,
9133 .accessfn = access_aa32_tid1,
9134 .type = ARM_CP_CONST, .resetvalue = 0 },
9136 /* TLBTR is specific to VMSA */
9137 ARMCPRegInfo id_tlbtr_reginfo = {
9138 .name = "TLBTR",
9139 .cp = 15, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 3,
9140 .access = PL1_R,
9141 .accessfn = access_aa32_tid1,
9142 .type = ARM_CP_CONST, .resetvalue = 0,
9144 /* MPUIR is specific to PMSA V6+ */
9145 ARMCPRegInfo id_mpuir_reginfo = {
9146 .name = "MPUIR",
9147 .cp = 15, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 4,
9148 .access = PL1_R, .type = ARM_CP_CONST,
9149 .resetvalue = cpu->pmsav7_dregion << 8
9151 /* HMPUIR is specific to PMSA V8 */
9152 ARMCPRegInfo id_hmpuir_reginfo = {
9153 .name = "HMPUIR",
9154 .cp = 15, .opc1 = 4, .crn = 0, .crm = 0, .opc2 = 4,
9155 .access = PL2_R, .type = ARM_CP_CONST,
9156 .resetvalue = cpu->pmsav8r_hdregion
9158 static const ARMCPRegInfo crn0_wi_reginfo = {
9159 .name = "CRN0_WI", .cp = 15, .crn = 0, .crm = CP_ANY,
9160 .opc1 = CP_ANY, .opc2 = CP_ANY, .access = PL1_W,
9161 .type = ARM_CP_NOP | ARM_CP_OVERRIDE
9163 #ifdef CONFIG_USER_ONLY
9164 static const ARMCPRegUserSpaceInfo id_v8_user_midr_cp_reginfo[] = {
9165 { .name = "MIDR_EL1",
9166 .exported_bits = R_MIDR_EL1_REVISION_MASK |
9167 R_MIDR_EL1_PARTNUM_MASK |
9168 R_MIDR_EL1_ARCHITECTURE_MASK |
9169 R_MIDR_EL1_VARIANT_MASK |
9170 R_MIDR_EL1_IMPLEMENTER_MASK },
9171 { .name = "REVIDR_EL1" },
9173 modify_arm_cp_regs(id_v8_midr_cp_reginfo, id_v8_user_midr_cp_reginfo);
9174 #endif
9175 if (arm_feature(env, ARM_FEATURE_OMAPCP) ||
9176 arm_feature(env, ARM_FEATURE_STRONGARM)) {
9177 size_t i;
9179 * Register the blanket "writes ignored" value first to cover the
9180 * whole space. Then update the specific ID registers to allow write
9181 * access, so that they ignore writes rather than causing them to
9182 * UNDEF.
9184 define_one_arm_cp_reg(cpu, &crn0_wi_reginfo);
9185 for (i = 0; i < ARRAY_SIZE(id_pre_v8_midr_cp_reginfo); ++i) {
9186 id_pre_v8_midr_cp_reginfo[i].access = PL1_RW;
9188 for (i = 0; i < ARRAY_SIZE(id_cp_reginfo); ++i) {
9189 id_cp_reginfo[i].access = PL1_RW;
9191 id_mpuir_reginfo.access = PL1_RW;
9192 id_tlbtr_reginfo.access = PL1_RW;
9194 if (arm_feature(env, ARM_FEATURE_V8)) {
9195 define_arm_cp_regs(cpu, id_v8_midr_cp_reginfo);
9196 if (!arm_feature(env, ARM_FEATURE_PMSA)) {
9197 define_one_arm_cp_reg(cpu, &id_v8_midr_alias_cp_reginfo);
9199 } else {
9200 define_arm_cp_regs(cpu, id_pre_v8_midr_cp_reginfo);
9202 define_arm_cp_regs(cpu, id_cp_reginfo);
9203 if (!arm_feature(env, ARM_FEATURE_PMSA)) {
9204 define_one_arm_cp_reg(cpu, &id_tlbtr_reginfo);
9205 } else if (arm_feature(env, ARM_FEATURE_PMSA) &&
9206 arm_feature(env, ARM_FEATURE_V8)) {
9207 uint32_t i = 0;
9208 char *tmp_string;
9210 define_one_arm_cp_reg(cpu, &id_mpuir_reginfo);
9211 define_one_arm_cp_reg(cpu, &id_hmpuir_reginfo);
9212 define_arm_cp_regs(cpu, pmsav8r_cp_reginfo);
9214 /* Register alias is only valid for first 32 indexes */
9215 for (i = 0; i < MIN(cpu->pmsav7_dregion, 32); ++i) {
9216 uint8_t crm = 0b1000 | extract32(i, 1, 3);
9217 uint8_t opc1 = extract32(i, 4, 1);
9218 uint8_t opc2 = extract32(i, 0, 1) << 2;
9220 tmp_string = g_strdup_printf("PRBAR%u", i);
9221 ARMCPRegInfo tmp_prbarn_reginfo = {
9222 .name = tmp_string, .type = ARM_CP_ALIAS | ARM_CP_NO_RAW,
9223 .cp = 15, .opc1 = opc1, .crn = 6, .crm = crm, .opc2 = opc2,
9224 .access = PL1_RW, .resetvalue = 0,
9225 .accessfn = access_tvm_trvm,
9226 .writefn = pmsav8r_regn_write, .readfn = pmsav8r_regn_read
9228 define_one_arm_cp_reg(cpu, &tmp_prbarn_reginfo);
9229 g_free(tmp_string);
9231 opc2 = extract32(i, 0, 1) << 2 | 0x1;
9232 tmp_string = g_strdup_printf("PRLAR%u", i);
9233 ARMCPRegInfo tmp_prlarn_reginfo = {
9234 .name = tmp_string, .type = ARM_CP_ALIAS | ARM_CP_NO_RAW,
9235 .cp = 15, .opc1 = opc1, .crn = 6, .crm = crm, .opc2 = opc2,
9236 .access = PL1_RW, .resetvalue = 0,
9237 .accessfn = access_tvm_trvm,
9238 .writefn = pmsav8r_regn_write, .readfn = pmsav8r_regn_read
9240 define_one_arm_cp_reg(cpu, &tmp_prlarn_reginfo);
9241 g_free(tmp_string);
9244 /* Register alias is only valid for first 32 indexes */
9245 for (i = 0; i < MIN(cpu->pmsav8r_hdregion, 32); ++i) {
9246 uint8_t crm = 0b1000 | extract32(i, 1, 3);
9247 uint8_t opc1 = 0b100 | extract32(i, 4, 1);
9248 uint8_t opc2 = extract32(i, 0, 1) << 2;
9250 tmp_string = g_strdup_printf("HPRBAR%u", i);
9251 ARMCPRegInfo tmp_hprbarn_reginfo = {
9252 .name = tmp_string,
9253 .type = ARM_CP_NO_RAW,
9254 .cp = 15, .opc1 = opc1, .crn = 6, .crm = crm, .opc2 = opc2,
9255 .access = PL2_RW, .resetvalue = 0,
9256 .writefn = pmsav8r_regn_write, .readfn = pmsav8r_regn_read
9258 define_one_arm_cp_reg(cpu, &tmp_hprbarn_reginfo);
9259 g_free(tmp_string);
9261 opc2 = extract32(i, 0, 1) << 2 | 0x1;
9262 tmp_string = g_strdup_printf("HPRLAR%u", i);
9263 ARMCPRegInfo tmp_hprlarn_reginfo = {
9264 .name = tmp_string,
9265 .type = ARM_CP_NO_RAW,
9266 .cp = 15, .opc1 = opc1, .crn = 6, .crm = crm, .opc2 = opc2,
9267 .access = PL2_RW, .resetvalue = 0,
9268 .writefn = pmsav8r_regn_write, .readfn = pmsav8r_regn_read
9270 define_one_arm_cp_reg(cpu, &tmp_hprlarn_reginfo);
9271 g_free(tmp_string);
9273 } else if (arm_feature(env, ARM_FEATURE_V7)) {
9274 define_one_arm_cp_reg(cpu, &id_mpuir_reginfo);
9278 if (arm_feature(env, ARM_FEATURE_MPIDR)) {
9279 ARMCPRegInfo mpidr_cp_reginfo[] = {
9280 { .name = "MPIDR_EL1", .state = ARM_CP_STATE_BOTH,
9281 .opc0 = 3, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 5,
9282 .fgt = FGT_MPIDR_EL1,
9283 .access = PL1_R, .readfn = mpidr_read, .type = ARM_CP_NO_RAW },
9285 #ifdef CONFIG_USER_ONLY
9286 static const ARMCPRegUserSpaceInfo mpidr_user_cp_reginfo[] = {
9287 { .name = "MPIDR_EL1",
9288 .fixed_bits = 0x0000000080000000 },
9290 modify_arm_cp_regs(mpidr_cp_reginfo, mpidr_user_cp_reginfo);
9291 #endif
9292 define_arm_cp_regs(cpu, mpidr_cp_reginfo);
9295 if (arm_feature(env, ARM_FEATURE_AUXCR)) {
9296 ARMCPRegInfo auxcr_reginfo[] = {
9297 { .name = "ACTLR_EL1", .state = ARM_CP_STATE_BOTH,
9298 .opc0 = 3, .opc1 = 0, .crn = 1, .crm = 0, .opc2 = 1,
9299 .access = PL1_RW, .accessfn = access_tacr,
9300 .type = ARM_CP_CONST, .resetvalue = cpu->reset_auxcr },
9301 { .name = "ACTLR_EL2", .state = ARM_CP_STATE_BOTH,
9302 .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 0, .opc2 = 1,
9303 .access = PL2_RW, .type = ARM_CP_CONST,
9304 .resetvalue = 0 },
9305 { .name = "ACTLR_EL3", .state = ARM_CP_STATE_AA64,
9306 .opc0 = 3, .opc1 = 6, .crn = 1, .crm = 0, .opc2 = 1,
9307 .access = PL3_RW, .type = ARM_CP_CONST,
9308 .resetvalue = 0 },
9310 define_arm_cp_regs(cpu, auxcr_reginfo);
9311 if (cpu_isar_feature(aa32_ac2, cpu)) {
9312 define_arm_cp_regs(cpu, actlr2_hactlr2_reginfo);
9316 if (arm_feature(env, ARM_FEATURE_CBAR)) {
9318 * CBAR is IMPDEF, but common on Arm Cortex-A implementations.
9319 * There are two flavours:
9320 * (1) older 32-bit only cores have a simple 32-bit CBAR
9321 * (2) 64-bit cores have a 64-bit CBAR visible to AArch64, plus a
9322 * 32-bit register visible to AArch32 at a different encoding
9323 * to the "flavour 1" register and with the bits rearranged to
9324 * be able to squash a 64-bit address into the 32-bit view.
9325 * We distinguish the two via the ARM_FEATURE_AARCH64 flag, but
9326 * in future if we support AArch32-only configs of some of the
9327 * AArch64 cores we might need to add a specific feature flag
9328 * to indicate cores with "flavour 2" CBAR.
9330 if (arm_feature(env, ARM_FEATURE_AARCH64)) {
9331 /* 32 bit view is [31:18] 0...0 [43:32]. */
9332 uint32_t cbar32 = (extract64(cpu->reset_cbar, 18, 14) << 18)
9333 | extract64(cpu->reset_cbar, 32, 12);
9334 ARMCPRegInfo cbar_reginfo[] = {
9335 { .name = "CBAR",
9336 .type = ARM_CP_CONST,
9337 .cp = 15, .crn = 15, .crm = 3, .opc1 = 1, .opc2 = 0,
9338 .access = PL1_R, .resetvalue = cbar32 },
9339 { .name = "CBAR_EL1", .state = ARM_CP_STATE_AA64,
9340 .type = ARM_CP_CONST,
9341 .opc0 = 3, .opc1 = 1, .crn = 15, .crm = 3, .opc2 = 0,
9342 .access = PL1_R, .resetvalue = cpu->reset_cbar },
9344 /* We don't implement a r/w 64 bit CBAR currently */
9345 assert(arm_feature(env, ARM_FEATURE_CBAR_RO));
9346 define_arm_cp_regs(cpu, cbar_reginfo);
9347 } else {
9348 ARMCPRegInfo cbar = {
9349 .name = "CBAR",
9350 .cp = 15, .crn = 15, .crm = 0, .opc1 = 4, .opc2 = 0,
9351 .access = PL1_R | PL3_W, .resetvalue = cpu->reset_cbar,
9352 .fieldoffset = offsetof(CPUARMState,
9353 cp15.c15_config_base_address)
9355 if (arm_feature(env, ARM_FEATURE_CBAR_RO)) {
9356 cbar.access = PL1_R;
9357 cbar.fieldoffset = 0;
9358 cbar.type = ARM_CP_CONST;
9360 define_one_arm_cp_reg(cpu, &cbar);
9364 if (arm_feature(env, ARM_FEATURE_VBAR)) {
9365 static const ARMCPRegInfo vbar_cp_reginfo[] = {
9366 { .name = "VBAR", .state = ARM_CP_STATE_BOTH,
9367 .opc0 = 3, .crn = 12, .crm = 0, .opc1 = 0, .opc2 = 0,
9368 .access = PL1_RW, .writefn = vbar_write,
9369 .fgt = FGT_VBAR_EL1,
9370 .bank_fieldoffsets = { offsetof(CPUARMState, cp15.vbar_s),
9371 offsetof(CPUARMState, cp15.vbar_ns) },
9372 .resetvalue = 0 },
9374 define_arm_cp_regs(cpu, vbar_cp_reginfo);
9377 /* Generic registers whose values depend on the implementation */
9379 ARMCPRegInfo sctlr = {
9380 .name = "SCTLR", .state = ARM_CP_STATE_BOTH,
9381 .opc0 = 3, .opc1 = 0, .crn = 1, .crm = 0, .opc2 = 0,
9382 .access = PL1_RW, .accessfn = access_tvm_trvm,
9383 .fgt = FGT_SCTLR_EL1,
9384 .bank_fieldoffsets = { offsetof(CPUARMState, cp15.sctlr_s),
9385 offsetof(CPUARMState, cp15.sctlr_ns) },
9386 .writefn = sctlr_write, .resetvalue = cpu->reset_sctlr,
9387 .raw_writefn = raw_write,
9389 if (arm_feature(env, ARM_FEATURE_XSCALE)) {
9391 * Normally we would always end the TB on an SCTLR write, but Linux
9392 * arch/arm/mach-pxa/sleep.S expects two instructions following
9393 * an MMU enable to execute from cache. Imitate this behaviour.
9395 sctlr.type |= ARM_CP_SUPPRESS_TB_END;
9397 define_one_arm_cp_reg(cpu, &sctlr);
9399 if (arm_feature(env, ARM_FEATURE_PMSA) &&
9400 arm_feature(env, ARM_FEATURE_V8)) {
9401 ARMCPRegInfo vsctlr = {
9402 .name = "VSCTLR", .state = ARM_CP_STATE_AA32,
9403 .cp = 15, .opc1 = 4, .crn = 2, .crm = 0, .opc2 = 0,
9404 .access = PL2_RW, .resetvalue = 0x0,
9405 .fieldoffset = offsetoflow32(CPUARMState, cp15.vsctlr),
9407 define_one_arm_cp_reg(cpu, &vsctlr);
9411 if (cpu_isar_feature(aa64_lor, cpu)) {
9412 define_arm_cp_regs(cpu, lor_reginfo);
9414 if (cpu_isar_feature(aa64_pan, cpu)) {
9415 define_one_arm_cp_reg(cpu, &pan_reginfo);
9417 #ifndef CONFIG_USER_ONLY
9418 if (cpu_isar_feature(aa64_ats1e1, cpu)) {
9419 define_arm_cp_regs(cpu, ats1e1_reginfo);
9421 if (cpu_isar_feature(aa32_ats1e1, cpu)) {
9422 define_arm_cp_regs(cpu, ats1cp_reginfo);
9424 #endif
9425 if (cpu_isar_feature(aa64_uao, cpu)) {
9426 define_one_arm_cp_reg(cpu, &uao_reginfo);
9429 if (cpu_isar_feature(aa64_dit, cpu)) {
9430 define_one_arm_cp_reg(cpu, &dit_reginfo);
9432 if (cpu_isar_feature(aa64_ssbs, cpu)) {
9433 define_one_arm_cp_reg(cpu, &ssbs_reginfo);
9435 if (cpu_isar_feature(any_ras, cpu)) {
9436 define_arm_cp_regs(cpu, minimal_ras_reginfo);
9439 if (cpu_isar_feature(aa64_vh, cpu) ||
9440 cpu_isar_feature(aa64_debugv8p2, cpu)) {
9441 define_one_arm_cp_reg(cpu, &contextidr_el2);
9443 if (arm_feature(env, ARM_FEATURE_EL2) && cpu_isar_feature(aa64_vh, cpu)) {
9444 define_arm_cp_regs(cpu, vhe_reginfo);
9447 if (cpu_isar_feature(aa64_sve, cpu)) {
9448 define_arm_cp_regs(cpu, zcr_reginfo);
9451 if (cpu_isar_feature(aa64_hcx, cpu)) {
9452 define_one_arm_cp_reg(cpu, &hcrx_el2_reginfo);
9455 #ifdef TARGET_AARCH64
9456 if (cpu_isar_feature(aa64_sme, cpu)) {
9457 define_arm_cp_regs(cpu, sme_reginfo);
9459 if (cpu_isar_feature(aa64_pauth, cpu)) {
9460 define_arm_cp_regs(cpu, pauth_reginfo);
9462 if (cpu_isar_feature(aa64_rndr, cpu)) {
9463 define_arm_cp_regs(cpu, rndr_reginfo);
9465 if (cpu_isar_feature(aa64_tlbirange, cpu)) {
9466 define_arm_cp_regs(cpu, tlbirange_reginfo);
9468 if (cpu_isar_feature(aa64_tlbios, cpu)) {
9469 define_arm_cp_regs(cpu, tlbios_reginfo);
9471 /* Data Cache clean instructions up to PoP */
9472 if (cpu_isar_feature(aa64_dcpop, cpu)) {
9473 define_one_arm_cp_reg(cpu, dcpop_reg);
9475 if (cpu_isar_feature(aa64_dcpodp, cpu)) {
9476 define_one_arm_cp_reg(cpu, dcpodp_reg);
9481 * If full MTE is enabled, add all of the system registers.
9482 * If only "instructions available at EL0" are enabled,
9483 * then define only a RAZ/WI version of PSTATE.TCO.
9485 if (cpu_isar_feature(aa64_mte, cpu)) {
9486 ARMCPRegInfo gmid_reginfo = {
9487 .name = "GMID_EL1", .state = ARM_CP_STATE_AA64,
9488 .opc0 = 3, .opc1 = 1, .crn = 0, .crm = 0, .opc2 = 4,
9489 .access = PL1_R, .accessfn = access_aa64_tid5,
9490 .type = ARM_CP_CONST, .resetvalue = cpu->gm_blocksize,
9492 define_one_arm_cp_reg(cpu, &gmid_reginfo);
9493 define_arm_cp_regs(cpu, mte_reginfo);
9494 define_arm_cp_regs(cpu, mte_el0_cacheop_reginfo);
9495 } else if (cpu_isar_feature(aa64_mte_insn_reg, cpu)) {
9496 define_arm_cp_regs(cpu, mte_tco_ro_reginfo);
9497 define_arm_cp_regs(cpu, mte_el0_cacheop_reginfo);
9500 if (cpu_isar_feature(aa64_scxtnum, cpu)) {
9501 define_arm_cp_regs(cpu, scxtnum_reginfo);
9504 if (cpu_isar_feature(aa64_fgt, cpu)) {
9505 define_arm_cp_regs(cpu, fgt_reginfo);
9508 if (cpu_isar_feature(aa64_rme, cpu)) {
9509 define_arm_cp_regs(cpu, rme_reginfo);
9510 if (cpu_isar_feature(aa64_mte, cpu)) {
9511 define_arm_cp_regs(cpu, rme_mte_reginfo);
9514 #endif
9516 if (cpu_isar_feature(any_predinv, cpu)) {
9517 define_arm_cp_regs(cpu, predinv_reginfo);
9520 if (cpu_isar_feature(any_ccidx, cpu)) {
9521 define_arm_cp_regs(cpu, ccsidr2_reginfo);
9524 #ifndef CONFIG_USER_ONLY
9526 * Register redirections and aliases must be done last,
9527 * after the registers from the other extensions have been defined.
9529 if (arm_feature(env, ARM_FEATURE_EL2) && cpu_isar_feature(aa64_vh, cpu)) {
9530 define_arm_vh_e2h_redirects_aliases(cpu);
9532 #endif
9536 * Private utility function for define_one_arm_cp_reg_with_opaque():
9537 * add a single reginfo struct to the hash table.
9539 static void add_cpreg_to_hashtable(ARMCPU *cpu, const ARMCPRegInfo *r,
9540 void *opaque, CPState state,
9541 CPSecureState secstate,
9542 int crm, int opc1, int opc2,
9543 const char *name)
9545 CPUARMState *env = &cpu->env;
9546 uint32_t key;
9547 ARMCPRegInfo *r2;
9548 bool is64 = r->type & ARM_CP_64BIT;
9549 bool ns = secstate & ARM_CP_SECSTATE_NS;
9550 int cp = r->cp;
9551 size_t name_len;
9552 bool make_const;
9554 switch (state) {
9555 case ARM_CP_STATE_AA32:
9556 /* We assume it is a cp15 register if the .cp field is left unset. */
9557 if (cp == 0 && r->state == ARM_CP_STATE_BOTH) {
9558 cp = 15;
9560 key = ENCODE_CP_REG(cp, is64, ns, r->crn, crm, opc1, opc2);
9561 break;
9562 case ARM_CP_STATE_AA64:
9564 * To allow abbreviation of ARMCPRegInfo definitions, we treat
9565 * cp == 0 as equivalent to the value for "standard guest-visible
9566 * sysreg". STATE_BOTH definitions are also always "standard sysreg"
9567 * in their AArch64 view (the .cp value may be non-zero for the
9568 * benefit of the AArch32 view).
9570 if (cp == 0 || r->state == ARM_CP_STATE_BOTH) {
9571 cp = CP_REG_ARM64_SYSREG_CP;
9573 key = ENCODE_AA64_CP_REG(cp, r->crn, crm, r->opc0, opc1, opc2);
9574 break;
9575 default:
9576 g_assert_not_reached();
9579 /* Overriding of an existing definition must be explicitly requested. */
9580 if (!(r->type & ARM_CP_OVERRIDE)) {
9581 const ARMCPRegInfo *oldreg = get_arm_cp_reginfo(cpu->cp_regs, key);
9582 if (oldreg) {
9583 assert(oldreg->type & ARM_CP_OVERRIDE);
9588 * Eliminate registers that are not present because the EL is missing.
9589 * Doing this here makes it easier to put all registers for a given
9590 * feature into the same ARMCPRegInfo array and define them all at once.
9592 make_const = false;
9593 if (arm_feature(env, ARM_FEATURE_EL3)) {
9595 * An EL2 register without EL2 but with EL3 is (usually) RES0.
9596 * See rule RJFFP in section D1.1.3 of DDI0487H.a.
9598 int min_el = ctz32(r->access) / 2;
9599 if (min_el == 2 && !arm_feature(env, ARM_FEATURE_EL2)) {
9600 if (r->type & ARM_CP_EL3_NO_EL2_UNDEF) {
9601 return;
9603 make_const = !(r->type & ARM_CP_EL3_NO_EL2_KEEP);
9605 } else {
9606 CPAccessRights max_el = (arm_feature(env, ARM_FEATURE_EL2)
9607 ? PL2_RW : PL1_RW);
9608 if ((r->access & max_el) == 0) {
9609 return;
9613 /* Combine cpreg and name into one allocation. */
9614 name_len = strlen(name) + 1;
9615 r2 = g_malloc(sizeof(*r2) + name_len);
9616 *r2 = *r;
9617 r2->name = memcpy(r2 + 1, name, name_len);
9620 * Update fields to match the instantiation, overwiting wildcards
9621 * such as CP_ANY, ARM_CP_STATE_BOTH, or ARM_CP_SECSTATE_BOTH.
9623 r2->cp = cp;
9624 r2->crm = crm;
9625 r2->opc1 = opc1;
9626 r2->opc2 = opc2;
9627 r2->state = state;
9628 r2->secure = secstate;
9629 if (opaque) {
9630 r2->opaque = opaque;
9633 if (make_const) {
9634 /* This should not have been a very special register to begin. */
9635 int old_special = r2->type & ARM_CP_SPECIAL_MASK;
9636 assert(old_special == 0 || old_special == ARM_CP_NOP);
9638 * Set the special function to CONST, retaining the other flags.
9639 * This is important for e.g. ARM_CP_SVE so that we still
9640 * take the SVE trap if CPTR_EL3.EZ == 0.
9642 r2->type = (r2->type & ~ARM_CP_SPECIAL_MASK) | ARM_CP_CONST;
9644 * Usually, these registers become RES0, but there are a few
9645 * special cases like VPIDR_EL2 which have a constant non-zero
9646 * value with writes ignored.
9648 if (!(r->type & ARM_CP_EL3_NO_EL2_C_NZ)) {
9649 r2->resetvalue = 0;
9652 * ARM_CP_CONST has precedence, so removing the callbacks and
9653 * offsets are not strictly necessary, but it is potentially
9654 * less confusing to debug later.
9656 r2->readfn = NULL;
9657 r2->writefn = NULL;
9658 r2->raw_readfn = NULL;
9659 r2->raw_writefn = NULL;
9660 r2->resetfn = NULL;
9661 r2->fieldoffset = 0;
9662 r2->bank_fieldoffsets[0] = 0;
9663 r2->bank_fieldoffsets[1] = 0;
9664 } else {
9665 bool isbanked = r->bank_fieldoffsets[0] && r->bank_fieldoffsets[1];
9667 if (isbanked) {
9669 * Register is banked (using both entries in array).
9670 * Overwriting fieldoffset as the array is only used to define
9671 * banked registers but later only fieldoffset is used.
9673 r2->fieldoffset = r->bank_fieldoffsets[ns];
9675 if (state == ARM_CP_STATE_AA32) {
9676 if (isbanked) {
9678 * If the register is banked then we don't need to migrate or
9679 * reset the 32-bit instance in certain cases:
9681 * 1) If the register has both 32-bit and 64-bit instances
9682 * then we can count on the 64-bit instance taking care
9683 * of the non-secure bank.
9684 * 2) If ARMv8 is enabled then we can count on a 64-bit
9685 * version taking care of the secure bank. This requires
9686 * that separate 32 and 64-bit definitions are provided.
9688 if ((r->state == ARM_CP_STATE_BOTH && ns) ||
9689 (arm_feature(env, ARM_FEATURE_V8) && !ns)) {
9690 r2->type |= ARM_CP_ALIAS;
9692 } else if ((secstate != r->secure) && !ns) {
9694 * The register is not banked so we only want to allow
9695 * migration of the non-secure instance.
9697 r2->type |= ARM_CP_ALIAS;
9700 if (HOST_BIG_ENDIAN &&
9701 r->state == ARM_CP_STATE_BOTH && r2->fieldoffset) {
9702 r2->fieldoffset += sizeof(uint32_t);
9708 * By convention, for wildcarded registers only the first
9709 * entry is used for migration; the others are marked as
9710 * ALIAS so we don't try to transfer the register
9711 * multiple times. Special registers (ie NOP/WFI) are
9712 * never migratable and not even raw-accessible.
9714 if (r2->type & ARM_CP_SPECIAL_MASK) {
9715 r2->type |= ARM_CP_NO_RAW;
9717 if (((r->crm == CP_ANY) && crm != 0) ||
9718 ((r->opc1 == CP_ANY) && opc1 != 0) ||
9719 ((r->opc2 == CP_ANY) && opc2 != 0)) {
9720 r2->type |= ARM_CP_ALIAS | ARM_CP_NO_GDB;
9724 * Check that raw accesses are either forbidden or handled. Note that
9725 * we can't assert this earlier because the setup of fieldoffset for
9726 * banked registers has to be done first.
9728 if (!(r2->type & ARM_CP_NO_RAW)) {
9729 assert(!raw_accessors_invalid(r2));
9732 g_hash_table_insert(cpu->cp_regs, (gpointer)(uintptr_t)key, r2);
9736 void define_one_arm_cp_reg_with_opaque(ARMCPU *cpu,
9737 const ARMCPRegInfo *r, void *opaque)
9740 * Define implementations of coprocessor registers.
9741 * We store these in a hashtable because typically
9742 * there are less than 150 registers in a space which
9743 * is 16*16*16*8*8 = 262144 in size.
9744 * Wildcarding is supported for the crm, opc1 and opc2 fields.
9745 * If a register is defined twice then the second definition is
9746 * used, so this can be used to define some generic registers and
9747 * then override them with implementation specific variations.
9748 * At least one of the original and the second definition should
9749 * include ARM_CP_OVERRIDE in its type bits -- this is just a guard
9750 * against accidental use.
9752 * The state field defines whether the register is to be
9753 * visible in the AArch32 or AArch64 execution state. If the
9754 * state is set to ARM_CP_STATE_BOTH then we synthesise a
9755 * reginfo structure for the AArch32 view, which sees the lower
9756 * 32 bits of the 64 bit register.
9758 * Only registers visible in AArch64 may set r->opc0; opc0 cannot
9759 * be wildcarded. AArch64 registers are always considered to be 64
9760 * bits; the ARM_CP_64BIT* flag applies only to the AArch32 view of
9761 * the register, if any.
9763 int crm, opc1, opc2;
9764 int crmmin = (r->crm == CP_ANY) ? 0 : r->crm;
9765 int crmmax = (r->crm == CP_ANY) ? 15 : r->crm;
9766 int opc1min = (r->opc1 == CP_ANY) ? 0 : r->opc1;
9767 int opc1max = (r->opc1 == CP_ANY) ? 7 : r->opc1;
9768 int opc2min = (r->opc2 == CP_ANY) ? 0 : r->opc2;
9769 int opc2max = (r->opc2 == CP_ANY) ? 7 : r->opc2;
9770 CPState state;
9772 /* 64 bit registers have only CRm and Opc1 fields */
9773 assert(!((r->type & ARM_CP_64BIT) && (r->opc2 || r->crn)));
9774 /* op0 only exists in the AArch64 encodings */
9775 assert((r->state != ARM_CP_STATE_AA32) || (r->opc0 == 0));
9776 /* AArch64 regs are all 64 bit so ARM_CP_64BIT is meaningless */
9777 assert((r->state != ARM_CP_STATE_AA64) || !(r->type & ARM_CP_64BIT));
9779 * This API is only for Arm's system coprocessors (14 and 15) or
9780 * (M-profile or v7A-and-earlier only) for implementation defined
9781 * coprocessors in the range 0..7. Our decode assumes this, since
9782 * 8..13 can be used for other insns including VFP and Neon. See
9783 * valid_cp() in translate.c. Assert here that we haven't tried
9784 * to use an invalid coprocessor number.
9786 switch (r->state) {
9787 case ARM_CP_STATE_BOTH:
9788 /* 0 has a special meaning, but otherwise the same rules as AA32. */
9789 if (r->cp == 0) {
9790 break;
9792 /* fall through */
9793 case ARM_CP_STATE_AA32:
9794 if (arm_feature(&cpu->env, ARM_FEATURE_V8) &&
9795 !arm_feature(&cpu->env, ARM_FEATURE_M)) {
9796 assert(r->cp >= 14 && r->cp <= 15);
9797 } else {
9798 assert(r->cp < 8 || (r->cp >= 14 && r->cp <= 15));
9800 break;
9801 case ARM_CP_STATE_AA64:
9802 assert(r->cp == 0 || r->cp == CP_REG_ARM64_SYSREG_CP);
9803 break;
9804 default:
9805 g_assert_not_reached();
9808 * The AArch64 pseudocode CheckSystemAccess() specifies that op1
9809 * encodes a minimum access level for the register. We roll this
9810 * runtime check into our general permission check code, so check
9811 * here that the reginfo's specified permissions are strict enough
9812 * to encompass the generic architectural permission check.
9814 if (r->state != ARM_CP_STATE_AA32) {
9815 CPAccessRights mask;
9816 switch (r->opc1) {
9817 case 0:
9818 /* min_EL EL1, but some accessible to EL0 via kernel ABI */
9819 mask = PL0U_R | PL1_RW;
9820 break;
9821 case 1: case 2:
9822 /* min_EL EL1 */
9823 mask = PL1_RW;
9824 break;
9825 case 3:
9826 /* min_EL EL0 */
9827 mask = PL0_RW;
9828 break;
9829 case 4:
9830 case 5:
9831 /* min_EL EL2 */
9832 mask = PL2_RW;
9833 break;
9834 case 6:
9835 /* min_EL EL3 */
9836 mask = PL3_RW;
9837 break;
9838 case 7:
9839 /* min_EL EL1, secure mode only (we don't check the latter) */
9840 mask = PL1_RW;
9841 break;
9842 default:
9843 /* broken reginfo with out-of-range opc1 */
9844 g_assert_not_reached();
9846 /* assert our permissions are not too lax (stricter is fine) */
9847 assert((r->access & ~mask) == 0);
9851 * Check that the register definition has enough info to handle
9852 * reads and writes if they are permitted.
9854 if (!(r->type & (ARM_CP_SPECIAL_MASK | ARM_CP_CONST))) {
9855 if (r->access & PL3_R) {
9856 assert((r->fieldoffset ||
9857 (r->bank_fieldoffsets[0] && r->bank_fieldoffsets[1])) ||
9858 r->readfn);
9860 if (r->access & PL3_W) {
9861 assert((r->fieldoffset ||
9862 (r->bank_fieldoffsets[0] && r->bank_fieldoffsets[1])) ||
9863 r->writefn);
9867 for (crm = crmmin; crm <= crmmax; crm++) {
9868 for (opc1 = opc1min; opc1 <= opc1max; opc1++) {
9869 for (opc2 = opc2min; opc2 <= opc2max; opc2++) {
9870 for (state = ARM_CP_STATE_AA32;
9871 state <= ARM_CP_STATE_AA64; state++) {
9872 if (r->state != state && r->state != ARM_CP_STATE_BOTH) {
9873 continue;
9875 if (state == ARM_CP_STATE_AA32) {
9877 * Under AArch32 CP registers can be common
9878 * (same for secure and non-secure world) or banked.
9880 char *name;
9882 switch (r->secure) {
9883 case ARM_CP_SECSTATE_S:
9884 case ARM_CP_SECSTATE_NS:
9885 add_cpreg_to_hashtable(cpu, r, opaque, state,
9886 r->secure, crm, opc1, opc2,
9887 r->name);
9888 break;
9889 case ARM_CP_SECSTATE_BOTH:
9890 name = g_strdup_printf("%s_S", r->name);
9891 add_cpreg_to_hashtable(cpu, r, opaque, state,
9892 ARM_CP_SECSTATE_S,
9893 crm, opc1, opc2, name);
9894 g_free(name);
9895 add_cpreg_to_hashtable(cpu, r, opaque, state,
9896 ARM_CP_SECSTATE_NS,
9897 crm, opc1, opc2, r->name);
9898 break;
9899 default:
9900 g_assert_not_reached();
9902 } else {
9904 * AArch64 registers get mapped to non-secure instance
9905 * of AArch32
9907 add_cpreg_to_hashtable(cpu, r, opaque, state,
9908 ARM_CP_SECSTATE_NS,
9909 crm, opc1, opc2, r->name);
9917 /* Define a whole list of registers */
9918 void define_arm_cp_regs_with_opaque_len(ARMCPU *cpu, const ARMCPRegInfo *regs,
9919 void *opaque, size_t len)
9921 size_t i;
9922 for (i = 0; i < len; ++i) {
9923 define_one_arm_cp_reg_with_opaque(cpu, regs + i, opaque);
9928 * Modify ARMCPRegInfo for access from userspace.
9930 * This is a data driven modification directed by
9931 * ARMCPRegUserSpaceInfo. All registers become ARM_CP_CONST as
9932 * user-space cannot alter any values and dynamic values pertaining to
9933 * execution state are hidden from user space view anyway.
9935 void modify_arm_cp_regs_with_len(ARMCPRegInfo *regs, size_t regs_len,
9936 const ARMCPRegUserSpaceInfo *mods,
9937 size_t mods_len)
9939 for (size_t mi = 0; mi < mods_len; ++mi) {
9940 const ARMCPRegUserSpaceInfo *m = mods + mi;
9941 GPatternSpec *pat = NULL;
9943 if (m->is_glob) {
9944 pat = g_pattern_spec_new(m->name);
9946 for (size_t ri = 0; ri < regs_len; ++ri) {
9947 ARMCPRegInfo *r = regs + ri;
9949 if (pat && g_pattern_match_string(pat, r->name)) {
9950 r->type = ARM_CP_CONST;
9951 r->access = PL0U_R;
9952 r->resetvalue = 0;
9953 /* continue */
9954 } else if (strcmp(r->name, m->name) == 0) {
9955 r->type = ARM_CP_CONST;
9956 r->access = PL0U_R;
9957 r->resetvalue &= m->exported_bits;
9958 r->resetvalue |= m->fixed_bits;
9959 break;
9962 if (pat) {
9963 g_pattern_spec_free(pat);
9968 const ARMCPRegInfo *get_arm_cp_reginfo(GHashTable *cpregs, uint32_t encoded_cp)
9970 return g_hash_table_lookup(cpregs, (gpointer)(uintptr_t)encoded_cp);
9973 void arm_cp_write_ignore(CPUARMState *env, const ARMCPRegInfo *ri,
9974 uint64_t value)
9976 /* Helper coprocessor write function for write-ignore registers */
9979 uint64_t arm_cp_read_zero(CPUARMState *env, const ARMCPRegInfo *ri)
9981 /* Helper coprocessor write function for read-as-zero registers */
9982 return 0;
9985 void arm_cp_reset_ignore(CPUARMState *env, const ARMCPRegInfo *opaque)
9987 /* Helper coprocessor reset function for do-nothing-on-reset registers */
9990 static int bad_mode_switch(CPUARMState *env, int mode, CPSRWriteType write_type)
9993 * Return true if it is not valid for us to switch to
9994 * this CPU mode (ie all the UNPREDICTABLE cases in
9995 * the ARM ARM CPSRWriteByInstr pseudocode).
9998 /* Changes to or from Hyp via MSR and CPS are illegal. */
9999 if (write_type == CPSRWriteByInstr &&
10000 ((env->uncached_cpsr & CPSR_M) == ARM_CPU_MODE_HYP ||
10001 mode == ARM_CPU_MODE_HYP)) {
10002 return 1;
10005 switch (mode) {
10006 case ARM_CPU_MODE_USR:
10007 return 0;
10008 case ARM_CPU_MODE_SYS:
10009 case ARM_CPU_MODE_SVC:
10010 case ARM_CPU_MODE_ABT:
10011 case ARM_CPU_MODE_UND:
10012 case ARM_CPU_MODE_IRQ:
10013 case ARM_CPU_MODE_FIQ:
10015 * Note that we don't implement the IMPDEF NSACR.RFR which in v7
10016 * allows FIQ mode to be Secure-only. (In v8 this doesn't exist.)
10019 * If HCR.TGE is set then changes from Monitor to NS PL1 via MSR
10020 * and CPS are treated as illegal mode changes.
10022 if (write_type == CPSRWriteByInstr &&
10023 (env->uncached_cpsr & CPSR_M) == ARM_CPU_MODE_MON &&
10024 (arm_hcr_el2_eff(env) & HCR_TGE)) {
10025 return 1;
10027 return 0;
10028 case ARM_CPU_MODE_HYP:
10029 return !arm_is_el2_enabled(env) || arm_current_el(env) < 2;
10030 case ARM_CPU_MODE_MON:
10031 return arm_current_el(env) < 3;
10032 default:
10033 return 1;
10037 uint32_t cpsr_read(CPUARMState *env)
10039 int ZF;
10040 ZF = (env->ZF == 0);
10041 return env->uncached_cpsr | (env->NF & 0x80000000) | (ZF << 30) |
10042 (env->CF << 29) | ((env->VF & 0x80000000) >> 3) | (env->QF << 27)
10043 | (env->thumb << 5) | ((env->condexec_bits & 3) << 25)
10044 | ((env->condexec_bits & 0xfc) << 8)
10045 | (env->GE << 16) | (env->daif & CPSR_AIF);
10048 void cpsr_write(CPUARMState *env, uint32_t val, uint32_t mask,
10049 CPSRWriteType write_type)
10051 uint32_t changed_daif;
10052 bool rebuild_hflags = (write_type != CPSRWriteRaw) &&
10053 (mask & (CPSR_M | CPSR_E | CPSR_IL));
10055 if (mask & CPSR_NZCV) {
10056 env->ZF = (~val) & CPSR_Z;
10057 env->NF = val;
10058 env->CF = (val >> 29) & 1;
10059 env->VF = (val << 3) & 0x80000000;
10061 if (mask & CPSR_Q) {
10062 env->QF = ((val & CPSR_Q) != 0);
10064 if (mask & CPSR_T) {
10065 env->thumb = ((val & CPSR_T) != 0);
10067 if (mask & CPSR_IT_0_1) {
10068 env->condexec_bits &= ~3;
10069 env->condexec_bits |= (val >> 25) & 3;
10071 if (mask & CPSR_IT_2_7) {
10072 env->condexec_bits &= 3;
10073 env->condexec_bits |= (val >> 8) & 0xfc;
10075 if (mask & CPSR_GE) {
10076 env->GE = (val >> 16) & 0xf;
10080 * In a V7 implementation that includes the security extensions but does
10081 * not include Virtualization Extensions the SCR.FW and SCR.AW bits control
10082 * whether non-secure software is allowed to change the CPSR_F and CPSR_A
10083 * bits respectively.
10085 * In a V8 implementation, it is permitted for privileged software to
10086 * change the CPSR A/F bits regardless of the SCR.AW/FW bits.
10088 if (write_type != CPSRWriteRaw && !arm_feature(env, ARM_FEATURE_V8) &&
10089 arm_feature(env, ARM_FEATURE_EL3) &&
10090 !arm_feature(env, ARM_FEATURE_EL2) &&
10091 !arm_is_secure(env)) {
10093 changed_daif = (env->daif ^ val) & mask;
10095 if (changed_daif & CPSR_A) {
10097 * Check to see if we are allowed to change the masking of async
10098 * abort exceptions from a non-secure state.
10100 if (!(env->cp15.scr_el3 & SCR_AW)) {
10101 qemu_log_mask(LOG_GUEST_ERROR,
10102 "Ignoring attempt to switch CPSR_A flag from "
10103 "non-secure world with SCR.AW bit clear\n");
10104 mask &= ~CPSR_A;
10108 if (changed_daif & CPSR_F) {
10110 * Check to see if we are allowed to change the masking of FIQ
10111 * exceptions from a non-secure state.
10113 if (!(env->cp15.scr_el3 & SCR_FW)) {
10114 qemu_log_mask(LOG_GUEST_ERROR,
10115 "Ignoring attempt to switch CPSR_F flag from "
10116 "non-secure world with SCR.FW bit clear\n");
10117 mask &= ~CPSR_F;
10121 * Check whether non-maskable FIQ (NMFI) support is enabled.
10122 * If this bit is set software is not allowed to mask
10123 * FIQs, but is allowed to set CPSR_F to 0.
10125 if ((A32_BANKED_CURRENT_REG_GET(env, sctlr) & SCTLR_NMFI) &&
10126 (val & CPSR_F)) {
10127 qemu_log_mask(LOG_GUEST_ERROR,
10128 "Ignoring attempt to enable CPSR_F flag "
10129 "(non-maskable FIQ [NMFI] support enabled)\n");
10130 mask &= ~CPSR_F;
10135 env->daif &= ~(CPSR_AIF & mask);
10136 env->daif |= val & CPSR_AIF & mask;
10138 if (write_type != CPSRWriteRaw &&
10139 ((env->uncached_cpsr ^ val) & mask & CPSR_M)) {
10140 if ((env->uncached_cpsr & CPSR_M) == ARM_CPU_MODE_USR) {
10142 * Note that we can only get here in USR mode if this is a
10143 * gdb stub write; for this case we follow the architectural
10144 * behaviour for guest writes in USR mode of ignoring an attempt
10145 * to switch mode. (Those are caught by translate.c for writes
10146 * triggered by guest instructions.)
10148 mask &= ~CPSR_M;
10149 } else if (bad_mode_switch(env, val & CPSR_M, write_type)) {
10151 * Attempt to switch to an invalid mode: this is UNPREDICTABLE in
10152 * v7, and has defined behaviour in v8:
10153 * + leave CPSR.M untouched
10154 * + allow changes to the other CPSR fields
10155 * + set PSTATE.IL
10156 * For user changes via the GDB stub, we don't set PSTATE.IL,
10157 * as this would be unnecessarily harsh for a user error.
10159 mask &= ~CPSR_M;
10160 if (write_type != CPSRWriteByGDBStub &&
10161 arm_feature(env, ARM_FEATURE_V8)) {
10162 mask |= CPSR_IL;
10163 val |= CPSR_IL;
10165 qemu_log_mask(LOG_GUEST_ERROR,
10166 "Illegal AArch32 mode switch attempt from %s to %s\n",
10167 aarch32_mode_name(env->uncached_cpsr),
10168 aarch32_mode_name(val));
10169 } else {
10170 qemu_log_mask(CPU_LOG_INT, "%s %s to %s PC 0x%" PRIx32 "\n",
10171 write_type == CPSRWriteExceptionReturn ?
10172 "Exception return from AArch32" :
10173 "AArch32 mode switch from",
10174 aarch32_mode_name(env->uncached_cpsr),
10175 aarch32_mode_name(val), env->regs[15]);
10176 switch_mode(env, val & CPSR_M);
10179 mask &= ~CACHED_CPSR_BITS;
10180 env->uncached_cpsr = (env->uncached_cpsr & ~mask) | (val & mask);
10181 if (tcg_enabled() && rebuild_hflags) {
10182 arm_rebuild_hflags(env);
10186 #ifdef CONFIG_USER_ONLY
10188 static void switch_mode(CPUARMState *env, int mode)
10190 ARMCPU *cpu = env_archcpu(env);
10192 if (mode != ARM_CPU_MODE_USR) {
10193 cpu_abort(CPU(cpu), "Tried to switch out of user mode\n");
10197 uint32_t arm_phys_excp_target_el(CPUState *cs, uint32_t excp_idx,
10198 uint32_t cur_el, bool secure)
10200 return 1;
10203 void aarch64_sync_64_to_32(CPUARMState *env)
10205 g_assert_not_reached();
10208 #else
10210 static void switch_mode(CPUARMState *env, int mode)
10212 int old_mode;
10213 int i;
10215 old_mode = env->uncached_cpsr & CPSR_M;
10216 if (mode == old_mode) {
10217 return;
10220 if (old_mode == ARM_CPU_MODE_FIQ) {
10221 memcpy(env->fiq_regs, env->regs + 8, 5 * sizeof(uint32_t));
10222 memcpy(env->regs + 8, env->usr_regs, 5 * sizeof(uint32_t));
10223 } else if (mode == ARM_CPU_MODE_FIQ) {
10224 memcpy(env->usr_regs, env->regs + 8, 5 * sizeof(uint32_t));
10225 memcpy(env->regs + 8, env->fiq_regs, 5 * sizeof(uint32_t));
10228 i = bank_number(old_mode);
10229 env->banked_r13[i] = env->regs[13];
10230 env->banked_spsr[i] = env->spsr;
10232 i = bank_number(mode);
10233 env->regs[13] = env->banked_r13[i];
10234 env->spsr = env->banked_spsr[i];
10236 env->banked_r14[r14_bank_number(old_mode)] = env->regs[14];
10237 env->regs[14] = env->banked_r14[r14_bank_number(mode)];
10241 * Physical Interrupt Target EL Lookup Table
10243 * [ From ARM ARM section G1.13.4 (Table G1-15) ]
10245 * The below multi-dimensional table is used for looking up the target
10246 * exception level given numerous condition criteria. Specifically, the
10247 * target EL is based on SCR and HCR routing controls as well as the
10248 * currently executing EL and secure state.
10250 * Dimensions:
10251 * target_el_table[2][2][2][2][2][4]
10252 * | | | | | +--- Current EL
10253 * | | | | +------ Non-secure(0)/Secure(1)
10254 * | | | +--------- HCR mask override
10255 * | | +------------ SCR exec state control
10256 * | +--------------- SCR mask override
10257 * +------------------ 32-bit(0)/64-bit(1) EL3
10259 * The table values are as such:
10260 * 0-3 = EL0-EL3
10261 * -1 = Cannot occur
10263 * The ARM ARM target EL table includes entries indicating that an "exception
10264 * is not taken". The two cases where this is applicable are:
10265 * 1) An exception is taken from EL3 but the SCR does not have the exception
10266 * routed to EL3.
10267 * 2) An exception is taken from EL2 but the HCR does not have the exception
10268 * routed to EL2.
10269 * In these two cases, the below table contain a target of EL1. This value is
10270 * returned as it is expected that the consumer of the table data will check
10271 * for "target EL >= current EL" to ensure the exception is not taken.
10273 * SCR HCR
10274 * 64 EA AMO From
10275 * BIT IRQ IMO Non-secure Secure
10276 * EL3 FIQ RW FMO EL0 EL1 EL2 EL3 EL0 EL1 EL2 EL3
10278 static const int8_t target_el_table[2][2][2][2][2][4] = {
10279 {{{{/* 0 0 0 0 */{ 1, 1, 2, -1 },{ 3, -1, -1, 3 },},
10280 {/* 0 0 0 1 */{ 2, 2, 2, -1 },{ 3, -1, -1, 3 },},},
10281 {{/* 0 0 1 0 */{ 1, 1, 2, -1 },{ 3, -1, -1, 3 },},
10282 {/* 0 0 1 1 */{ 2, 2, 2, -1 },{ 3, -1, -1, 3 },},},},
10283 {{{/* 0 1 0 0 */{ 3, 3, 3, -1 },{ 3, -1, -1, 3 },},
10284 {/* 0 1 0 1 */{ 3, 3, 3, -1 },{ 3, -1, -1, 3 },},},
10285 {{/* 0 1 1 0 */{ 3, 3, 3, -1 },{ 3, -1, -1, 3 },},
10286 {/* 0 1 1 1 */{ 3, 3, 3, -1 },{ 3, -1, -1, 3 },},},},},
10287 {{{{/* 1 0 0 0 */{ 1, 1, 2, -1 },{ 1, 1, -1, 1 },},
10288 {/* 1 0 0 1 */{ 2, 2, 2, -1 },{ 2, 2, -1, 1 },},},
10289 {{/* 1 0 1 0 */{ 1, 1, 1, -1 },{ 1, 1, 1, 1 },},
10290 {/* 1 0 1 1 */{ 2, 2, 2, -1 },{ 2, 2, 2, 1 },},},},
10291 {{{/* 1 1 0 0 */{ 3, 3, 3, -1 },{ 3, 3, -1, 3 },},
10292 {/* 1 1 0 1 */{ 3, 3, 3, -1 },{ 3, 3, -1, 3 },},},
10293 {{/* 1 1 1 0 */{ 3, 3, 3, -1 },{ 3, 3, 3, 3 },},
10294 {/* 1 1 1 1 */{ 3, 3, 3, -1 },{ 3, 3, 3, 3 },},},},},
10298 * Determine the target EL for physical exceptions
10300 uint32_t arm_phys_excp_target_el(CPUState *cs, uint32_t excp_idx,
10301 uint32_t cur_el, bool secure)
10303 CPUARMState *env = cpu_env(cs);
10304 bool rw;
10305 bool scr;
10306 bool hcr;
10307 int target_el;
10308 /* Is the highest EL AArch64? */
10309 bool is64 = arm_feature(env, ARM_FEATURE_AARCH64);
10310 uint64_t hcr_el2;
10312 if (arm_feature(env, ARM_FEATURE_EL3)) {
10313 rw = ((env->cp15.scr_el3 & SCR_RW) == SCR_RW);
10314 } else {
10316 * Either EL2 is the highest EL (and so the EL2 register width
10317 * is given by is64); or there is no EL2 or EL3, in which case
10318 * the value of 'rw' does not affect the table lookup anyway.
10320 rw = is64;
10323 hcr_el2 = arm_hcr_el2_eff(env);
10324 switch (excp_idx) {
10325 case EXCP_IRQ:
10326 scr = ((env->cp15.scr_el3 & SCR_IRQ) == SCR_IRQ);
10327 hcr = hcr_el2 & HCR_IMO;
10328 break;
10329 case EXCP_FIQ:
10330 scr = ((env->cp15.scr_el3 & SCR_FIQ) == SCR_FIQ);
10331 hcr = hcr_el2 & HCR_FMO;
10332 break;
10333 default:
10334 scr = ((env->cp15.scr_el3 & SCR_EA) == SCR_EA);
10335 hcr = hcr_el2 & HCR_AMO;
10336 break;
10340 * For these purposes, TGE and AMO/IMO/FMO both force the
10341 * interrupt to EL2. Fold TGE into the bit extracted above.
10343 hcr |= (hcr_el2 & HCR_TGE) != 0;
10345 /* Perform a table-lookup for the target EL given the current state */
10346 target_el = target_el_table[is64][scr][rw][hcr][secure][cur_el];
10348 assert(target_el > 0);
10350 return target_el;
10353 void arm_log_exception(CPUState *cs)
10355 int idx = cs->exception_index;
10357 if (qemu_loglevel_mask(CPU_LOG_INT)) {
10358 const char *exc = NULL;
10359 static const char * const excnames[] = {
10360 [EXCP_UDEF] = "Undefined Instruction",
10361 [EXCP_SWI] = "SVC",
10362 [EXCP_PREFETCH_ABORT] = "Prefetch Abort",
10363 [EXCP_DATA_ABORT] = "Data Abort",
10364 [EXCP_IRQ] = "IRQ",
10365 [EXCP_FIQ] = "FIQ",
10366 [EXCP_BKPT] = "Breakpoint",
10367 [EXCP_EXCEPTION_EXIT] = "QEMU v7M exception exit",
10368 [EXCP_KERNEL_TRAP] = "QEMU intercept of kernel commpage",
10369 [EXCP_HVC] = "Hypervisor Call",
10370 [EXCP_HYP_TRAP] = "Hypervisor Trap",
10371 [EXCP_SMC] = "Secure Monitor Call",
10372 [EXCP_VIRQ] = "Virtual IRQ",
10373 [EXCP_VFIQ] = "Virtual FIQ",
10374 [EXCP_SEMIHOST] = "Semihosting call",
10375 [EXCP_NOCP] = "v7M NOCP UsageFault",
10376 [EXCP_INVSTATE] = "v7M INVSTATE UsageFault",
10377 [EXCP_STKOF] = "v8M STKOF UsageFault",
10378 [EXCP_LAZYFP] = "v7M exception during lazy FP stacking",
10379 [EXCP_LSERR] = "v8M LSERR UsageFault",
10380 [EXCP_UNALIGNED] = "v7M UNALIGNED UsageFault",
10381 [EXCP_DIVBYZERO] = "v7M DIVBYZERO UsageFault",
10382 [EXCP_VSERR] = "Virtual SERR",
10383 [EXCP_GPC] = "Granule Protection Check",
10386 if (idx >= 0 && idx < ARRAY_SIZE(excnames)) {
10387 exc = excnames[idx];
10389 if (!exc) {
10390 exc = "unknown";
10392 qemu_log_mask(CPU_LOG_INT, "Taking exception %d [%s] on CPU %d\n",
10393 idx, exc, cs->cpu_index);
10398 * Function used to synchronize QEMU's AArch64 register set with AArch32
10399 * register set. This is necessary when switching between AArch32 and AArch64
10400 * execution state.
10402 void aarch64_sync_32_to_64(CPUARMState *env)
10404 int i;
10405 uint32_t mode = env->uncached_cpsr & CPSR_M;
10407 /* We can blanket copy R[0:7] to X[0:7] */
10408 for (i = 0; i < 8; i++) {
10409 env->xregs[i] = env->regs[i];
10413 * Unless we are in FIQ mode, x8-x12 come from the user registers r8-r12.
10414 * Otherwise, they come from the banked user regs.
10416 if (mode == ARM_CPU_MODE_FIQ) {
10417 for (i = 8; i < 13; i++) {
10418 env->xregs[i] = env->usr_regs[i - 8];
10420 } else {
10421 for (i = 8; i < 13; i++) {
10422 env->xregs[i] = env->regs[i];
10427 * Registers x13-x23 are the various mode SP and FP registers. Registers
10428 * r13 and r14 are only copied if we are in that mode, otherwise we copy
10429 * from the mode banked register.
10431 if (mode == ARM_CPU_MODE_USR || mode == ARM_CPU_MODE_SYS) {
10432 env->xregs[13] = env->regs[13];
10433 env->xregs[14] = env->regs[14];
10434 } else {
10435 env->xregs[13] = env->banked_r13[bank_number(ARM_CPU_MODE_USR)];
10436 /* HYP is an exception in that it is copied from r14 */
10437 if (mode == ARM_CPU_MODE_HYP) {
10438 env->xregs[14] = env->regs[14];
10439 } else {
10440 env->xregs[14] = env->banked_r14[r14_bank_number(ARM_CPU_MODE_USR)];
10444 if (mode == ARM_CPU_MODE_HYP) {
10445 env->xregs[15] = env->regs[13];
10446 } else {
10447 env->xregs[15] = env->banked_r13[bank_number(ARM_CPU_MODE_HYP)];
10450 if (mode == ARM_CPU_MODE_IRQ) {
10451 env->xregs[16] = env->regs[14];
10452 env->xregs[17] = env->regs[13];
10453 } else {
10454 env->xregs[16] = env->banked_r14[r14_bank_number(ARM_CPU_MODE_IRQ)];
10455 env->xregs[17] = env->banked_r13[bank_number(ARM_CPU_MODE_IRQ)];
10458 if (mode == ARM_CPU_MODE_SVC) {
10459 env->xregs[18] = env->regs[14];
10460 env->xregs[19] = env->regs[13];
10461 } else {
10462 env->xregs[18] = env->banked_r14[r14_bank_number(ARM_CPU_MODE_SVC)];
10463 env->xregs[19] = env->banked_r13[bank_number(ARM_CPU_MODE_SVC)];
10466 if (mode == ARM_CPU_MODE_ABT) {
10467 env->xregs[20] = env->regs[14];
10468 env->xregs[21] = env->regs[13];
10469 } else {
10470 env->xregs[20] = env->banked_r14[r14_bank_number(ARM_CPU_MODE_ABT)];
10471 env->xregs[21] = env->banked_r13[bank_number(ARM_CPU_MODE_ABT)];
10474 if (mode == ARM_CPU_MODE_UND) {
10475 env->xregs[22] = env->regs[14];
10476 env->xregs[23] = env->regs[13];
10477 } else {
10478 env->xregs[22] = env->banked_r14[r14_bank_number(ARM_CPU_MODE_UND)];
10479 env->xregs[23] = env->banked_r13[bank_number(ARM_CPU_MODE_UND)];
10483 * Registers x24-x30 are mapped to r8-r14 in FIQ mode. If we are in FIQ
10484 * mode, then we can copy from r8-r14. Otherwise, we copy from the
10485 * FIQ bank for r8-r14.
10487 if (mode == ARM_CPU_MODE_FIQ) {
10488 for (i = 24; i < 31; i++) {
10489 env->xregs[i] = env->regs[i - 16]; /* X[24:30] <- R[8:14] */
10491 } else {
10492 for (i = 24; i < 29; i++) {
10493 env->xregs[i] = env->fiq_regs[i - 24];
10495 env->xregs[29] = env->banked_r13[bank_number(ARM_CPU_MODE_FIQ)];
10496 env->xregs[30] = env->banked_r14[r14_bank_number(ARM_CPU_MODE_FIQ)];
10499 env->pc = env->regs[15];
10503 * Function used to synchronize QEMU's AArch32 register set with AArch64
10504 * register set. This is necessary when switching between AArch32 and AArch64
10505 * execution state.
10507 void aarch64_sync_64_to_32(CPUARMState *env)
10509 int i;
10510 uint32_t mode = env->uncached_cpsr & CPSR_M;
10512 /* We can blanket copy X[0:7] to R[0:7] */
10513 for (i = 0; i < 8; i++) {
10514 env->regs[i] = env->xregs[i];
10518 * Unless we are in FIQ mode, r8-r12 come from the user registers x8-x12.
10519 * Otherwise, we copy x8-x12 into the banked user regs.
10521 if (mode == ARM_CPU_MODE_FIQ) {
10522 for (i = 8; i < 13; i++) {
10523 env->usr_regs[i - 8] = env->xregs[i];
10525 } else {
10526 for (i = 8; i < 13; i++) {
10527 env->regs[i] = env->xregs[i];
10532 * Registers r13 & r14 depend on the current mode.
10533 * If we are in a given mode, we copy the corresponding x registers to r13
10534 * and r14. Otherwise, we copy the x register to the banked r13 and r14
10535 * for the mode.
10537 if (mode == ARM_CPU_MODE_USR || mode == ARM_CPU_MODE_SYS) {
10538 env->regs[13] = env->xregs[13];
10539 env->regs[14] = env->xregs[14];
10540 } else {
10541 env->banked_r13[bank_number(ARM_CPU_MODE_USR)] = env->xregs[13];
10544 * HYP is an exception in that it does not have its own banked r14 but
10545 * shares the USR r14
10547 if (mode == ARM_CPU_MODE_HYP) {
10548 env->regs[14] = env->xregs[14];
10549 } else {
10550 env->banked_r14[r14_bank_number(ARM_CPU_MODE_USR)] = env->xregs[14];
10554 if (mode == ARM_CPU_MODE_HYP) {
10555 env->regs[13] = env->xregs[15];
10556 } else {
10557 env->banked_r13[bank_number(ARM_CPU_MODE_HYP)] = env->xregs[15];
10560 if (mode == ARM_CPU_MODE_IRQ) {
10561 env->regs[14] = env->xregs[16];
10562 env->regs[13] = env->xregs[17];
10563 } else {
10564 env->banked_r14[r14_bank_number(ARM_CPU_MODE_IRQ)] = env->xregs[16];
10565 env->banked_r13[bank_number(ARM_CPU_MODE_IRQ)] = env->xregs[17];
10568 if (mode == ARM_CPU_MODE_SVC) {
10569 env->regs[14] = env->xregs[18];
10570 env->regs[13] = env->xregs[19];
10571 } else {
10572 env->banked_r14[r14_bank_number(ARM_CPU_MODE_SVC)] = env->xregs[18];
10573 env->banked_r13[bank_number(ARM_CPU_MODE_SVC)] = env->xregs[19];
10576 if (mode == ARM_CPU_MODE_ABT) {
10577 env->regs[14] = env->xregs[20];
10578 env->regs[13] = env->xregs[21];
10579 } else {
10580 env->banked_r14[r14_bank_number(ARM_CPU_MODE_ABT)] = env->xregs[20];
10581 env->banked_r13[bank_number(ARM_CPU_MODE_ABT)] = env->xregs[21];
10584 if (mode == ARM_CPU_MODE_UND) {
10585 env->regs[14] = env->xregs[22];
10586 env->regs[13] = env->xregs[23];
10587 } else {
10588 env->banked_r14[r14_bank_number(ARM_CPU_MODE_UND)] = env->xregs[22];
10589 env->banked_r13[bank_number(ARM_CPU_MODE_UND)] = env->xregs[23];
10593 * Registers x24-x30 are mapped to r8-r14 in FIQ mode. If we are in FIQ
10594 * mode, then we can copy to r8-r14. Otherwise, we copy to the
10595 * FIQ bank for r8-r14.
10597 if (mode == ARM_CPU_MODE_FIQ) {
10598 for (i = 24; i < 31; i++) {
10599 env->regs[i - 16] = env->xregs[i]; /* X[24:30] -> R[8:14] */
10601 } else {
10602 for (i = 24; i < 29; i++) {
10603 env->fiq_regs[i - 24] = env->xregs[i];
10605 env->banked_r13[bank_number(ARM_CPU_MODE_FIQ)] = env->xregs[29];
10606 env->banked_r14[r14_bank_number(ARM_CPU_MODE_FIQ)] = env->xregs[30];
10609 env->regs[15] = env->pc;
10612 static void take_aarch32_exception(CPUARMState *env, int new_mode,
10613 uint32_t mask, uint32_t offset,
10614 uint32_t newpc)
10616 int new_el;
10618 /* Change the CPU state so as to actually take the exception. */
10619 switch_mode(env, new_mode);
10622 * For exceptions taken to AArch32 we must clear the SS bit in both
10623 * PSTATE and in the old-state value we save to SPSR_<mode>, so zero it now.
10625 env->pstate &= ~PSTATE_SS;
10626 env->spsr = cpsr_read(env);
10627 /* Clear IT bits. */
10628 env->condexec_bits = 0;
10629 /* Switch to the new mode, and to the correct instruction set. */
10630 env->uncached_cpsr = (env->uncached_cpsr & ~CPSR_M) | new_mode;
10632 /* This must be after mode switching. */
10633 new_el = arm_current_el(env);
10635 /* Set new mode endianness */
10636 env->uncached_cpsr &= ~CPSR_E;
10637 if (env->cp15.sctlr_el[new_el] & SCTLR_EE) {
10638 env->uncached_cpsr |= CPSR_E;
10640 /* J and IL must always be cleared for exception entry */
10641 env->uncached_cpsr &= ~(CPSR_IL | CPSR_J);
10642 env->daif |= mask;
10644 if (cpu_isar_feature(aa32_ssbs, env_archcpu(env))) {
10645 if (env->cp15.sctlr_el[new_el] & SCTLR_DSSBS_32) {
10646 env->uncached_cpsr |= CPSR_SSBS;
10647 } else {
10648 env->uncached_cpsr &= ~CPSR_SSBS;
10652 if (new_mode == ARM_CPU_MODE_HYP) {
10653 env->thumb = (env->cp15.sctlr_el[2] & SCTLR_TE) != 0;
10654 env->elr_el[2] = env->regs[15];
10655 } else {
10656 /* CPSR.PAN is normally preserved preserved unless... */
10657 if (cpu_isar_feature(aa32_pan, env_archcpu(env))) {
10658 switch (new_el) {
10659 case 3:
10660 if (!arm_is_secure_below_el3(env)) {
10661 /* ... the target is EL3, from non-secure state. */
10662 env->uncached_cpsr &= ~CPSR_PAN;
10663 break;
10665 /* ... the target is EL3, from secure state ... */
10666 /* fall through */
10667 case 1:
10668 /* ... the target is EL1 and SCTLR.SPAN is 0. */
10669 if (!(env->cp15.sctlr_el[new_el] & SCTLR_SPAN)) {
10670 env->uncached_cpsr |= CPSR_PAN;
10672 break;
10676 * this is a lie, as there was no c1_sys on V4T/V5, but who cares
10677 * and we should just guard the thumb mode on V4
10679 if (arm_feature(env, ARM_FEATURE_V4T)) {
10680 env->thumb =
10681 (A32_BANKED_CURRENT_REG_GET(env, sctlr) & SCTLR_TE) != 0;
10683 env->regs[14] = env->regs[15] + offset;
10685 env->regs[15] = newpc;
10687 if (tcg_enabled()) {
10688 arm_rebuild_hflags(env);
10692 static void arm_cpu_do_interrupt_aarch32_hyp(CPUState *cs)
10695 * Handle exception entry to Hyp mode; this is sufficiently
10696 * different to entry to other AArch32 modes that we handle it
10697 * separately here.
10699 * The vector table entry used is always the 0x14 Hyp mode entry point,
10700 * unless this is an UNDEF/SVC/HVC/abort taken from Hyp to Hyp.
10701 * The offset applied to the preferred return address is always zero
10702 * (see DDI0487C.a section G1.12.3).
10703 * PSTATE A/I/F masks are set based only on the SCR.EA/IRQ/FIQ values.
10705 uint32_t addr, mask;
10706 ARMCPU *cpu = ARM_CPU(cs);
10707 CPUARMState *env = &cpu->env;
10709 switch (cs->exception_index) {
10710 case EXCP_UDEF:
10711 addr = 0x04;
10712 break;
10713 case EXCP_SWI:
10714 addr = 0x08;
10715 break;
10716 case EXCP_BKPT:
10717 /* Fall through to prefetch abort. */
10718 case EXCP_PREFETCH_ABORT:
10719 env->cp15.ifar_s = env->exception.vaddress;
10720 qemu_log_mask(CPU_LOG_INT, "...with HIFAR 0x%x\n",
10721 (uint32_t)env->exception.vaddress);
10722 addr = 0x0c;
10723 break;
10724 case EXCP_DATA_ABORT:
10725 env->cp15.dfar_s = env->exception.vaddress;
10726 qemu_log_mask(CPU_LOG_INT, "...with HDFAR 0x%x\n",
10727 (uint32_t)env->exception.vaddress);
10728 addr = 0x10;
10729 break;
10730 case EXCP_IRQ:
10731 addr = 0x18;
10732 break;
10733 case EXCP_FIQ:
10734 addr = 0x1c;
10735 break;
10736 case EXCP_HVC:
10737 addr = 0x08;
10738 break;
10739 case EXCP_HYP_TRAP:
10740 addr = 0x14;
10741 break;
10742 default:
10743 cpu_abort(cs, "Unhandled exception 0x%x\n", cs->exception_index);
10746 if (cs->exception_index != EXCP_IRQ && cs->exception_index != EXCP_FIQ) {
10747 if (!arm_feature(env, ARM_FEATURE_V8)) {
10749 * QEMU syndrome values are v8-style. v7 has the IL bit
10750 * UNK/SBZP for "field not valid" cases, where v8 uses RES1.
10751 * If this is a v7 CPU, squash the IL bit in those cases.
10753 if (cs->exception_index == EXCP_PREFETCH_ABORT ||
10754 (cs->exception_index == EXCP_DATA_ABORT &&
10755 !(env->exception.syndrome & ARM_EL_ISV)) ||
10756 syn_get_ec(env->exception.syndrome) == EC_UNCATEGORIZED) {
10757 env->exception.syndrome &= ~ARM_EL_IL;
10760 env->cp15.esr_el[2] = env->exception.syndrome;
10763 if (arm_current_el(env) != 2 && addr < 0x14) {
10764 addr = 0x14;
10767 mask = 0;
10768 if (!(env->cp15.scr_el3 & SCR_EA)) {
10769 mask |= CPSR_A;
10771 if (!(env->cp15.scr_el3 & SCR_IRQ)) {
10772 mask |= CPSR_I;
10774 if (!(env->cp15.scr_el3 & SCR_FIQ)) {
10775 mask |= CPSR_F;
10778 addr += env->cp15.hvbar;
10780 take_aarch32_exception(env, ARM_CPU_MODE_HYP, mask, 0, addr);
10783 static void arm_cpu_do_interrupt_aarch32(CPUState *cs)
10785 ARMCPU *cpu = ARM_CPU(cs);
10786 CPUARMState *env = &cpu->env;
10787 uint32_t addr;
10788 uint32_t mask;
10789 int new_mode;
10790 uint32_t offset;
10791 uint32_t moe;
10793 /* If this is a debug exception we must update the DBGDSCR.MOE bits */
10794 switch (syn_get_ec(env->exception.syndrome)) {
10795 case EC_BREAKPOINT:
10796 case EC_BREAKPOINT_SAME_EL:
10797 moe = 1;
10798 break;
10799 case EC_WATCHPOINT:
10800 case EC_WATCHPOINT_SAME_EL:
10801 moe = 10;
10802 break;
10803 case EC_AA32_BKPT:
10804 moe = 3;
10805 break;
10806 case EC_VECTORCATCH:
10807 moe = 5;
10808 break;
10809 default:
10810 moe = 0;
10811 break;
10814 if (moe) {
10815 env->cp15.mdscr_el1 = deposit64(env->cp15.mdscr_el1, 2, 4, moe);
10818 if (env->exception.target_el == 2) {
10819 arm_cpu_do_interrupt_aarch32_hyp(cs);
10820 return;
10823 switch (cs->exception_index) {
10824 case EXCP_UDEF:
10825 new_mode = ARM_CPU_MODE_UND;
10826 addr = 0x04;
10827 mask = CPSR_I;
10828 if (env->thumb) {
10829 offset = 2;
10830 } else {
10831 offset = 4;
10833 break;
10834 case EXCP_SWI:
10835 new_mode = ARM_CPU_MODE_SVC;
10836 addr = 0x08;
10837 mask = CPSR_I;
10838 /* The PC already points to the next instruction. */
10839 offset = 0;
10840 break;
10841 case EXCP_BKPT:
10842 /* Fall through to prefetch abort. */
10843 case EXCP_PREFETCH_ABORT:
10844 A32_BANKED_CURRENT_REG_SET(env, ifsr, env->exception.fsr);
10845 A32_BANKED_CURRENT_REG_SET(env, ifar, env->exception.vaddress);
10846 qemu_log_mask(CPU_LOG_INT, "...with IFSR 0x%x IFAR 0x%x\n",
10847 env->exception.fsr, (uint32_t)env->exception.vaddress);
10848 new_mode = ARM_CPU_MODE_ABT;
10849 addr = 0x0c;
10850 mask = CPSR_A | CPSR_I;
10851 offset = 4;
10852 break;
10853 case EXCP_DATA_ABORT:
10854 A32_BANKED_CURRENT_REG_SET(env, dfsr, env->exception.fsr);
10855 A32_BANKED_CURRENT_REG_SET(env, dfar, env->exception.vaddress);
10856 qemu_log_mask(CPU_LOG_INT, "...with DFSR 0x%x DFAR 0x%x\n",
10857 env->exception.fsr,
10858 (uint32_t)env->exception.vaddress);
10859 new_mode = ARM_CPU_MODE_ABT;
10860 addr = 0x10;
10861 mask = CPSR_A | CPSR_I;
10862 offset = 8;
10863 break;
10864 case EXCP_IRQ:
10865 new_mode = ARM_CPU_MODE_IRQ;
10866 addr = 0x18;
10867 /* Disable IRQ and imprecise data aborts. */
10868 mask = CPSR_A | CPSR_I;
10869 offset = 4;
10870 if (env->cp15.scr_el3 & SCR_IRQ) {
10871 /* IRQ routed to monitor mode */
10872 new_mode = ARM_CPU_MODE_MON;
10873 mask |= CPSR_F;
10875 break;
10876 case EXCP_FIQ:
10877 new_mode = ARM_CPU_MODE_FIQ;
10878 addr = 0x1c;
10879 /* Disable FIQ, IRQ and imprecise data aborts. */
10880 mask = CPSR_A | CPSR_I | CPSR_F;
10881 if (env->cp15.scr_el3 & SCR_FIQ) {
10882 /* FIQ routed to monitor mode */
10883 new_mode = ARM_CPU_MODE_MON;
10885 offset = 4;
10886 break;
10887 case EXCP_VIRQ:
10888 new_mode = ARM_CPU_MODE_IRQ;
10889 addr = 0x18;
10890 /* Disable IRQ and imprecise data aborts. */
10891 mask = CPSR_A | CPSR_I;
10892 offset = 4;
10893 break;
10894 case EXCP_VFIQ:
10895 new_mode = ARM_CPU_MODE_FIQ;
10896 addr = 0x1c;
10897 /* Disable FIQ, IRQ and imprecise data aborts. */
10898 mask = CPSR_A | CPSR_I | CPSR_F;
10899 offset = 4;
10900 break;
10901 case EXCP_VSERR:
10904 * Note that this is reported as a data abort, but the DFAR
10905 * has an UNKNOWN value. Construct the SError syndrome from
10906 * AET and ExT fields.
10908 ARMMMUFaultInfo fi = { .type = ARMFault_AsyncExternal, };
10910 if (extended_addresses_enabled(env)) {
10911 env->exception.fsr = arm_fi_to_lfsc(&fi);
10912 } else {
10913 env->exception.fsr = arm_fi_to_sfsc(&fi);
10915 env->exception.fsr |= env->cp15.vsesr_el2 & 0xd000;
10916 A32_BANKED_CURRENT_REG_SET(env, dfsr, env->exception.fsr);
10917 qemu_log_mask(CPU_LOG_INT, "...with IFSR 0x%x\n",
10918 env->exception.fsr);
10920 new_mode = ARM_CPU_MODE_ABT;
10921 addr = 0x10;
10922 mask = CPSR_A | CPSR_I;
10923 offset = 8;
10925 break;
10926 case EXCP_SMC:
10927 new_mode = ARM_CPU_MODE_MON;
10928 addr = 0x08;
10929 mask = CPSR_A | CPSR_I | CPSR_F;
10930 offset = 0;
10931 break;
10932 default:
10933 cpu_abort(cs, "Unhandled exception 0x%x\n", cs->exception_index);
10934 return; /* Never happens. Keep compiler happy. */
10937 if (new_mode == ARM_CPU_MODE_MON) {
10938 addr += env->cp15.mvbar;
10939 } else if (A32_BANKED_CURRENT_REG_GET(env, sctlr) & SCTLR_V) {
10940 /* High vectors. When enabled, base address cannot be remapped. */
10941 addr += 0xffff0000;
10942 } else {
10944 * ARM v7 architectures provide a vector base address register to remap
10945 * the interrupt vector table.
10946 * This register is only followed in non-monitor mode, and is banked.
10947 * Note: only bits 31:5 are valid.
10949 addr += A32_BANKED_CURRENT_REG_GET(env, vbar);
10952 if ((env->uncached_cpsr & CPSR_M) == ARM_CPU_MODE_MON) {
10953 env->cp15.scr_el3 &= ~SCR_NS;
10956 take_aarch32_exception(env, new_mode, mask, offset, addr);
10959 static int aarch64_regnum(CPUARMState *env, int aarch32_reg)
10962 * Return the register number of the AArch64 view of the AArch32
10963 * register @aarch32_reg. The CPUARMState CPSR is assumed to still
10964 * be that of the AArch32 mode the exception came from.
10966 int mode = env->uncached_cpsr & CPSR_M;
10968 switch (aarch32_reg) {
10969 case 0 ... 7:
10970 return aarch32_reg;
10971 case 8 ... 12:
10972 return mode == ARM_CPU_MODE_FIQ ? aarch32_reg + 16 : aarch32_reg;
10973 case 13:
10974 switch (mode) {
10975 case ARM_CPU_MODE_USR:
10976 case ARM_CPU_MODE_SYS:
10977 return 13;
10978 case ARM_CPU_MODE_HYP:
10979 return 15;
10980 case ARM_CPU_MODE_IRQ:
10981 return 17;
10982 case ARM_CPU_MODE_SVC:
10983 return 19;
10984 case ARM_CPU_MODE_ABT:
10985 return 21;
10986 case ARM_CPU_MODE_UND:
10987 return 23;
10988 case ARM_CPU_MODE_FIQ:
10989 return 29;
10990 default:
10991 g_assert_not_reached();
10993 case 14:
10994 switch (mode) {
10995 case ARM_CPU_MODE_USR:
10996 case ARM_CPU_MODE_SYS:
10997 case ARM_CPU_MODE_HYP:
10998 return 14;
10999 case ARM_CPU_MODE_IRQ:
11000 return 16;
11001 case ARM_CPU_MODE_SVC:
11002 return 18;
11003 case ARM_CPU_MODE_ABT:
11004 return 20;
11005 case ARM_CPU_MODE_UND:
11006 return 22;
11007 case ARM_CPU_MODE_FIQ:
11008 return 30;
11009 default:
11010 g_assert_not_reached();
11012 case 15:
11013 return 31;
11014 default:
11015 g_assert_not_reached();
11019 static uint32_t cpsr_read_for_spsr_elx(CPUARMState *env)
11021 uint32_t ret = cpsr_read(env);
11023 /* Move DIT to the correct location for SPSR_ELx */
11024 if (ret & CPSR_DIT) {
11025 ret &= ~CPSR_DIT;
11026 ret |= PSTATE_DIT;
11028 /* Merge PSTATE.SS into SPSR_ELx */
11029 ret |= env->pstate & PSTATE_SS;
11031 return ret;
11034 static bool syndrome_is_sync_extabt(uint32_t syndrome)
11036 /* Return true if this syndrome value is a synchronous external abort */
11037 switch (syn_get_ec(syndrome)) {
11038 case EC_INSNABORT:
11039 case EC_INSNABORT_SAME_EL:
11040 case EC_DATAABORT:
11041 case EC_DATAABORT_SAME_EL:
11042 /* Look at fault status code for all the synchronous ext abort cases */
11043 switch (syndrome & 0x3f) {
11044 case 0x10:
11045 case 0x13:
11046 case 0x14:
11047 case 0x15:
11048 case 0x16:
11049 case 0x17:
11050 return true;
11051 default:
11052 return false;
11054 default:
11055 return false;
11059 /* Handle exception entry to a target EL which is using AArch64 */
11060 static void arm_cpu_do_interrupt_aarch64(CPUState *cs)
11062 ARMCPU *cpu = ARM_CPU(cs);
11063 CPUARMState *env = &cpu->env;
11064 unsigned int new_el = env->exception.target_el;
11065 target_ulong addr = env->cp15.vbar_el[new_el];
11066 unsigned int new_mode = aarch64_pstate_mode(new_el, true);
11067 unsigned int old_mode;
11068 unsigned int cur_el = arm_current_el(env);
11069 int rt;
11071 if (tcg_enabled()) {
11073 * Note that new_el can never be 0. If cur_el is 0, then
11074 * el0_a64 is is_a64(), else el0_a64 is ignored.
11076 aarch64_sve_change_el(env, cur_el, new_el, is_a64(env));
11079 if (cur_el < new_el) {
11081 * Entry vector offset depends on whether the implemented EL
11082 * immediately lower than the target level is using AArch32 or AArch64
11084 bool is_aa64;
11085 uint64_t hcr;
11087 switch (new_el) {
11088 case 3:
11089 is_aa64 = (env->cp15.scr_el3 & SCR_RW) != 0;
11090 break;
11091 case 2:
11092 hcr = arm_hcr_el2_eff(env);
11093 if ((hcr & (HCR_E2H | HCR_TGE)) != (HCR_E2H | HCR_TGE)) {
11094 is_aa64 = (hcr & HCR_RW) != 0;
11095 break;
11097 /* fall through */
11098 case 1:
11099 is_aa64 = is_a64(env);
11100 break;
11101 default:
11102 g_assert_not_reached();
11105 if (is_aa64) {
11106 addr += 0x400;
11107 } else {
11108 addr += 0x600;
11110 } else if (pstate_read(env) & PSTATE_SP) {
11111 addr += 0x200;
11114 switch (cs->exception_index) {
11115 case EXCP_GPC:
11116 qemu_log_mask(CPU_LOG_INT, "...with MFAR 0x%" PRIx64 "\n",
11117 env->cp15.mfar_el3);
11118 /* fall through */
11119 case EXCP_PREFETCH_ABORT:
11120 case EXCP_DATA_ABORT:
11122 * FEAT_DoubleFault allows synchronous external aborts taken to EL3
11123 * to be taken to the SError vector entrypoint.
11125 if (new_el == 3 && (env->cp15.scr_el3 & SCR_EASE) &&
11126 syndrome_is_sync_extabt(env->exception.syndrome)) {
11127 addr += 0x180;
11129 env->cp15.far_el[new_el] = env->exception.vaddress;
11130 qemu_log_mask(CPU_LOG_INT, "...with FAR 0x%" PRIx64 "\n",
11131 env->cp15.far_el[new_el]);
11132 /* fall through */
11133 case EXCP_BKPT:
11134 case EXCP_UDEF:
11135 case EXCP_SWI:
11136 case EXCP_HVC:
11137 case EXCP_HYP_TRAP:
11138 case EXCP_SMC:
11139 switch (syn_get_ec(env->exception.syndrome)) {
11140 case EC_ADVSIMDFPACCESSTRAP:
11142 * QEMU internal FP/SIMD syndromes from AArch32 include the
11143 * TA and coproc fields which are only exposed if the exception
11144 * is taken to AArch32 Hyp mode. Mask them out to get a valid
11145 * AArch64 format syndrome.
11147 env->exception.syndrome &= ~MAKE_64BIT_MASK(0, 20);
11148 break;
11149 case EC_CP14RTTRAP:
11150 case EC_CP15RTTRAP:
11151 case EC_CP14DTTRAP:
11153 * For a trap on AArch32 MRC/MCR/LDC/STC the Rt field is currently
11154 * the raw register field from the insn; when taking this to
11155 * AArch64 we must convert it to the AArch64 view of the register
11156 * number. Notice that we read a 4-bit AArch32 register number and
11157 * write back a 5-bit AArch64 one.
11159 rt = extract32(env->exception.syndrome, 5, 4);
11160 rt = aarch64_regnum(env, rt);
11161 env->exception.syndrome = deposit32(env->exception.syndrome,
11162 5, 5, rt);
11163 break;
11164 case EC_CP15RRTTRAP:
11165 case EC_CP14RRTTRAP:
11166 /* Similarly for MRRC/MCRR traps for Rt and Rt2 fields */
11167 rt = extract32(env->exception.syndrome, 5, 4);
11168 rt = aarch64_regnum(env, rt);
11169 env->exception.syndrome = deposit32(env->exception.syndrome,
11170 5, 5, rt);
11171 rt = extract32(env->exception.syndrome, 10, 4);
11172 rt = aarch64_regnum(env, rt);
11173 env->exception.syndrome = deposit32(env->exception.syndrome,
11174 10, 5, rt);
11175 break;
11177 env->cp15.esr_el[new_el] = env->exception.syndrome;
11178 break;
11179 case EXCP_IRQ:
11180 case EXCP_VIRQ:
11181 addr += 0x80;
11182 break;
11183 case EXCP_FIQ:
11184 case EXCP_VFIQ:
11185 addr += 0x100;
11186 break;
11187 case EXCP_VSERR:
11188 addr += 0x180;
11189 /* Construct the SError syndrome from IDS and ISS fields. */
11190 env->exception.syndrome = syn_serror(env->cp15.vsesr_el2 & 0x1ffffff);
11191 env->cp15.esr_el[new_el] = env->exception.syndrome;
11192 break;
11193 default:
11194 cpu_abort(cs, "Unhandled exception 0x%x\n", cs->exception_index);
11197 if (is_a64(env)) {
11198 old_mode = pstate_read(env);
11199 aarch64_save_sp(env, arm_current_el(env));
11200 env->elr_el[new_el] = env->pc;
11201 } else {
11202 old_mode = cpsr_read_for_spsr_elx(env);
11203 env->elr_el[new_el] = env->regs[15];
11205 aarch64_sync_32_to_64(env);
11207 env->condexec_bits = 0;
11209 env->banked_spsr[aarch64_banked_spsr_index(new_el)] = old_mode;
11211 qemu_log_mask(CPU_LOG_INT, "...with ELR 0x%" PRIx64 "\n",
11212 env->elr_el[new_el]);
11214 if (cpu_isar_feature(aa64_pan, cpu)) {
11215 /* The value of PSTATE.PAN is normally preserved, except when ... */
11216 new_mode |= old_mode & PSTATE_PAN;
11217 switch (new_el) {
11218 case 2:
11219 /* ... the target is EL2 with HCR_EL2.{E2H,TGE} == '11' ... */
11220 if ((arm_hcr_el2_eff(env) & (HCR_E2H | HCR_TGE))
11221 != (HCR_E2H | HCR_TGE)) {
11222 break;
11224 /* fall through */
11225 case 1:
11226 /* ... the target is EL1 ... */
11227 /* ... and SCTLR_ELx.SPAN == 0, then set to 1. */
11228 if ((env->cp15.sctlr_el[new_el] & SCTLR_SPAN) == 0) {
11229 new_mode |= PSTATE_PAN;
11231 break;
11234 if (cpu_isar_feature(aa64_mte, cpu)) {
11235 new_mode |= PSTATE_TCO;
11238 if (cpu_isar_feature(aa64_ssbs, cpu)) {
11239 if (env->cp15.sctlr_el[new_el] & SCTLR_DSSBS_64) {
11240 new_mode |= PSTATE_SSBS;
11241 } else {
11242 new_mode &= ~PSTATE_SSBS;
11246 pstate_write(env, PSTATE_DAIF | new_mode);
11247 env->aarch64 = true;
11248 aarch64_restore_sp(env, new_el);
11250 if (tcg_enabled()) {
11251 helper_rebuild_hflags_a64(env, new_el);
11254 env->pc = addr;
11256 qemu_log_mask(CPU_LOG_INT, "...to EL%d PC 0x%" PRIx64 " PSTATE 0x%x\n",
11257 new_el, env->pc, pstate_read(env));
11261 * Do semihosting call and set the appropriate return value. All the
11262 * permission and validity checks have been done at translate time.
11264 * We only see semihosting exceptions in TCG only as they are not
11265 * trapped to the hypervisor in KVM.
11267 #ifdef CONFIG_TCG
11268 static void tcg_handle_semihosting(CPUState *cs)
11270 ARMCPU *cpu = ARM_CPU(cs);
11271 CPUARMState *env = &cpu->env;
11273 if (is_a64(env)) {
11274 qemu_log_mask(CPU_LOG_INT,
11275 "...handling as semihosting call 0x%" PRIx64 "\n",
11276 env->xregs[0]);
11277 do_common_semihosting(cs);
11278 env->pc += 4;
11279 } else {
11280 qemu_log_mask(CPU_LOG_INT,
11281 "...handling as semihosting call 0x%x\n",
11282 env->regs[0]);
11283 do_common_semihosting(cs);
11284 env->regs[15] += env->thumb ? 2 : 4;
11287 #endif
11290 * Handle a CPU exception for A and R profile CPUs.
11291 * Do any appropriate logging, handle PSCI calls, and then hand off
11292 * to the AArch64-entry or AArch32-entry function depending on the
11293 * target exception level's register width.
11295 * Note: this is used for both TCG (as the do_interrupt tcg op),
11296 * and KVM to re-inject guest debug exceptions, and to
11297 * inject a Synchronous-External-Abort.
11299 void arm_cpu_do_interrupt(CPUState *cs)
11301 ARMCPU *cpu = ARM_CPU(cs);
11302 CPUARMState *env = &cpu->env;
11303 unsigned int new_el = env->exception.target_el;
11305 assert(!arm_feature(env, ARM_FEATURE_M));
11307 arm_log_exception(cs);
11308 qemu_log_mask(CPU_LOG_INT, "...from EL%d to EL%d\n", arm_current_el(env),
11309 new_el);
11310 if (qemu_loglevel_mask(CPU_LOG_INT)
11311 && !excp_is_internal(cs->exception_index)) {
11312 qemu_log_mask(CPU_LOG_INT, "...with ESR 0x%x/0x%" PRIx32 "\n",
11313 syn_get_ec(env->exception.syndrome),
11314 env->exception.syndrome);
11317 if (tcg_enabled() && arm_is_psci_call(cpu, cs->exception_index)) {
11318 arm_handle_psci_call(cpu);
11319 qemu_log_mask(CPU_LOG_INT, "...handled as PSCI call\n");
11320 return;
11324 * Semihosting semantics depend on the register width of the code
11325 * that caused the exception, not the target exception level, so
11326 * must be handled here.
11328 #ifdef CONFIG_TCG
11329 if (cs->exception_index == EXCP_SEMIHOST) {
11330 tcg_handle_semihosting(cs);
11331 return;
11333 #endif
11336 * Hooks may change global state so BQL should be held, also the
11337 * BQL needs to be held for any modification of
11338 * cs->interrupt_request.
11340 g_assert(bql_locked());
11342 arm_call_pre_el_change_hook(cpu);
11344 assert(!excp_is_internal(cs->exception_index));
11345 if (arm_el_is_aa64(env, new_el)) {
11346 arm_cpu_do_interrupt_aarch64(cs);
11347 } else {
11348 arm_cpu_do_interrupt_aarch32(cs);
11351 arm_call_el_change_hook(cpu);
11353 if (!kvm_enabled()) {
11354 cs->interrupt_request |= CPU_INTERRUPT_EXITTB;
11357 #endif /* !CONFIG_USER_ONLY */
11359 uint64_t arm_sctlr(CPUARMState *env, int el)
11361 /* Only EL0 needs to be adjusted for EL1&0 or EL2&0. */
11362 if (el == 0) {
11363 ARMMMUIdx mmu_idx = arm_mmu_idx_el(env, 0);
11364 el = mmu_idx == ARMMMUIdx_E20_0 ? 2 : 1;
11366 return env->cp15.sctlr_el[el];
11369 int aa64_va_parameter_tbi(uint64_t tcr, ARMMMUIdx mmu_idx)
11371 if (regime_has_2_ranges(mmu_idx)) {
11372 return extract64(tcr, 37, 2);
11373 } else if (regime_is_stage2(mmu_idx)) {
11374 return 0; /* VTCR_EL2 */
11375 } else {
11376 /* Replicate the single TBI bit so we always have 2 bits. */
11377 return extract32(tcr, 20, 1) * 3;
11381 int aa64_va_parameter_tbid(uint64_t tcr, ARMMMUIdx mmu_idx)
11383 if (regime_has_2_ranges(mmu_idx)) {
11384 return extract64(tcr, 51, 2);
11385 } else if (regime_is_stage2(mmu_idx)) {
11386 return 0; /* VTCR_EL2 */
11387 } else {
11388 /* Replicate the single TBID bit so we always have 2 bits. */
11389 return extract32(tcr, 29, 1) * 3;
11393 int aa64_va_parameter_tcma(uint64_t tcr, ARMMMUIdx mmu_idx)
11395 if (regime_has_2_ranges(mmu_idx)) {
11396 return extract64(tcr, 57, 2);
11397 } else {
11398 /* Replicate the single TCMA bit so we always have 2 bits. */
11399 return extract32(tcr, 30, 1) * 3;
11403 static ARMGranuleSize tg0_to_gran_size(int tg)
11405 switch (tg) {
11406 case 0:
11407 return Gran4K;
11408 case 1:
11409 return Gran64K;
11410 case 2:
11411 return Gran16K;
11412 default:
11413 return GranInvalid;
11417 static ARMGranuleSize tg1_to_gran_size(int tg)
11419 switch (tg) {
11420 case 1:
11421 return Gran16K;
11422 case 2:
11423 return Gran4K;
11424 case 3:
11425 return Gran64K;
11426 default:
11427 return GranInvalid;
11431 static inline bool have4k(ARMCPU *cpu, bool stage2)
11433 return stage2 ? cpu_isar_feature(aa64_tgran4_2, cpu)
11434 : cpu_isar_feature(aa64_tgran4, cpu);
11437 static inline bool have16k(ARMCPU *cpu, bool stage2)
11439 return stage2 ? cpu_isar_feature(aa64_tgran16_2, cpu)
11440 : cpu_isar_feature(aa64_tgran16, cpu);
11443 static inline bool have64k(ARMCPU *cpu, bool stage2)
11445 return stage2 ? cpu_isar_feature(aa64_tgran64_2, cpu)
11446 : cpu_isar_feature(aa64_tgran64, cpu);
11449 static ARMGranuleSize sanitize_gran_size(ARMCPU *cpu, ARMGranuleSize gran,
11450 bool stage2)
11452 switch (gran) {
11453 case Gran4K:
11454 if (have4k(cpu, stage2)) {
11455 return gran;
11457 break;
11458 case Gran16K:
11459 if (have16k(cpu, stage2)) {
11460 return gran;
11462 break;
11463 case Gran64K:
11464 if (have64k(cpu, stage2)) {
11465 return gran;
11467 break;
11468 case GranInvalid:
11469 break;
11472 * If the guest selects a granule size that isn't implemented,
11473 * the architecture requires that we behave as if it selected one
11474 * that is (with an IMPDEF choice of which one to pick). We choose
11475 * to implement the smallest supported granule size.
11477 if (have4k(cpu, stage2)) {
11478 return Gran4K;
11480 if (have16k(cpu, stage2)) {
11481 return Gran16K;
11483 assert(have64k(cpu, stage2));
11484 return Gran64K;
11487 ARMVAParameters aa64_va_parameters(CPUARMState *env, uint64_t va,
11488 ARMMMUIdx mmu_idx, bool data,
11489 bool el1_is_aa32)
11491 uint64_t tcr = regime_tcr(env, mmu_idx);
11492 bool epd, hpd, tsz_oob, ds, ha, hd;
11493 int select, tsz, tbi, max_tsz, min_tsz, ps, sh;
11494 ARMGranuleSize gran;
11495 ARMCPU *cpu = env_archcpu(env);
11496 bool stage2 = regime_is_stage2(mmu_idx);
11498 if (!regime_has_2_ranges(mmu_idx)) {
11499 select = 0;
11500 tsz = extract32(tcr, 0, 6);
11501 gran = tg0_to_gran_size(extract32(tcr, 14, 2));
11502 if (stage2) {
11503 /* VTCR_EL2 */
11504 hpd = false;
11505 } else {
11506 hpd = extract32(tcr, 24, 1);
11508 epd = false;
11509 sh = extract32(tcr, 12, 2);
11510 ps = extract32(tcr, 16, 3);
11511 ha = extract32(tcr, 21, 1) && cpu_isar_feature(aa64_hafs, cpu);
11512 hd = extract32(tcr, 22, 1) && cpu_isar_feature(aa64_hdbs, cpu);
11513 ds = extract64(tcr, 32, 1);
11514 } else {
11515 bool e0pd;
11518 * Bit 55 is always between the two regions, and is canonical for
11519 * determining if address tagging is enabled.
11521 select = extract64(va, 55, 1);
11522 if (!select) {
11523 tsz = extract32(tcr, 0, 6);
11524 gran = tg0_to_gran_size(extract32(tcr, 14, 2));
11525 epd = extract32(tcr, 7, 1);
11526 sh = extract32(tcr, 12, 2);
11527 hpd = extract64(tcr, 41, 1);
11528 e0pd = extract64(tcr, 55, 1);
11529 } else {
11530 tsz = extract32(tcr, 16, 6);
11531 gran = tg1_to_gran_size(extract32(tcr, 30, 2));
11532 epd = extract32(tcr, 23, 1);
11533 sh = extract32(tcr, 28, 2);
11534 hpd = extract64(tcr, 42, 1);
11535 e0pd = extract64(tcr, 56, 1);
11537 ps = extract64(tcr, 32, 3);
11538 ha = extract64(tcr, 39, 1) && cpu_isar_feature(aa64_hafs, cpu);
11539 hd = extract64(tcr, 40, 1) && cpu_isar_feature(aa64_hdbs, cpu);
11540 ds = extract64(tcr, 59, 1);
11542 if (e0pd && cpu_isar_feature(aa64_e0pd, cpu) &&
11543 regime_is_user(env, mmu_idx)) {
11544 epd = true;
11548 gran = sanitize_gran_size(cpu, gran, stage2);
11550 if (cpu_isar_feature(aa64_st, cpu)) {
11551 max_tsz = 48 - (gran == Gran64K);
11552 } else {
11553 max_tsz = 39;
11557 * DS is RES0 unless FEAT_LPA2 is supported for the given page size;
11558 * adjust the effective value of DS, as documented.
11560 min_tsz = 16;
11561 if (gran == Gran64K) {
11562 if (cpu_isar_feature(aa64_lva, cpu)) {
11563 min_tsz = 12;
11565 ds = false;
11566 } else if (ds) {
11567 if (regime_is_stage2(mmu_idx)) {
11568 if (gran == Gran16K) {
11569 ds = cpu_isar_feature(aa64_tgran16_2_lpa2, cpu);
11570 } else {
11571 ds = cpu_isar_feature(aa64_tgran4_2_lpa2, cpu);
11573 } else {
11574 if (gran == Gran16K) {
11575 ds = cpu_isar_feature(aa64_tgran16_lpa2, cpu);
11576 } else {
11577 ds = cpu_isar_feature(aa64_tgran4_lpa2, cpu);
11580 if (ds) {
11581 min_tsz = 12;
11585 if (stage2 && el1_is_aa32) {
11587 * For AArch32 EL1 the min txsz (and thus max IPA size) requirements
11588 * are loosened: a configured IPA of 40 bits is permitted even if
11589 * the implemented PA is less than that (and so a 40 bit IPA would
11590 * fault for an AArch64 EL1). See R_DTLMN.
11592 min_tsz = MIN(min_tsz, 24);
11595 if (tsz > max_tsz) {
11596 tsz = max_tsz;
11597 tsz_oob = true;
11598 } else if (tsz < min_tsz) {
11599 tsz = min_tsz;
11600 tsz_oob = true;
11601 } else {
11602 tsz_oob = false;
11605 /* Present TBI as a composite with TBID. */
11606 tbi = aa64_va_parameter_tbi(tcr, mmu_idx);
11607 if (!data) {
11608 tbi &= ~aa64_va_parameter_tbid(tcr, mmu_idx);
11610 tbi = (tbi >> select) & 1;
11612 return (ARMVAParameters) {
11613 .tsz = tsz,
11614 .ps = ps,
11615 .sh = sh,
11616 .select = select,
11617 .tbi = tbi,
11618 .epd = epd,
11619 .hpd = hpd,
11620 .tsz_oob = tsz_oob,
11621 .ds = ds,
11622 .ha = ha,
11623 .hd = ha && hd,
11624 .gran = gran,
11629 * Note that signed overflow is undefined in C. The following routines are
11630 * careful to use unsigned types where modulo arithmetic is required.
11631 * Failure to do so _will_ break on newer gcc.
11634 /* Signed saturating arithmetic. */
11636 /* Perform 16-bit signed saturating addition. */
11637 static inline uint16_t add16_sat(uint16_t a, uint16_t b)
11639 uint16_t res;
11641 res = a + b;
11642 if (((res ^ a) & 0x8000) && !((a ^ b) & 0x8000)) {
11643 if (a & 0x8000) {
11644 res = 0x8000;
11645 } else {
11646 res = 0x7fff;
11649 return res;
11652 /* Perform 8-bit signed saturating addition. */
11653 static inline uint8_t add8_sat(uint8_t a, uint8_t b)
11655 uint8_t res;
11657 res = a + b;
11658 if (((res ^ a) & 0x80) && !((a ^ b) & 0x80)) {
11659 if (a & 0x80) {
11660 res = 0x80;
11661 } else {
11662 res = 0x7f;
11665 return res;
11668 /* Perform 16-bit signed saturating subtraction. */
11669 static inline uint16_t sub16_sat(uint16_t a, uint16_t b)
11671 uint16_t res;
11673 res = a - b;
11674 if (((res ^ a) & 0x8000) && ((a ^ b) & 0x8000)) {
11675 if (a & 0x8000) {
11676 res = 0x8000;
11677 } else {
11678 res = 0x7fff;
11681 return res;
11684 /* Perform 8-bit signed saturating subtraction. */
11685 static inline uint8_t sub8_sat(uint8_t a, uint8_t b)
11687 uint8_t res;
11689 res = a - b;
11690 if (((res ^ a) & 0x80) && ((a ^ b) & 0x80)) {
11691 if (a & 0x80) {
11692 res = 0x80;
11693 } else {
11694 res = 0x7f;
11697 return res;
11700 #define ADD16(a, b, n) RESULT(add16_sat(a, b), n, 16);
11701 #define SUB16(a, b, n) RESULT(sub16_sat(a, b), n, 16);
11702 #define ADD8(a, b, n) RESULT(add8_sat(a, b), n, 8);
11703 #define SUB8(a, b, n) RESULT(sub8_sat(a, b), n, 8);
11704 #define PFX q
11706 #include "op_addsub.h"
11708 /* Unsigned saturating arithmetic. */
11709 static inline uint16_t add16_usat(uint16_t a, uint16_t b)
11711 uint16_t res;
11712 res = a + b;
11713 if (res < a) {
11714 res = 0xffff;
11716 return res;
11719 static inline uint16_t sub16_usat(uint16_t a, uint16_t b)
11721 if (a > b) {
11722 return a - b;
11723 } else {
11724 return 0;
11728 static inline uint8_t add8_usat(uint8_t a, uint8_t b)
11730 uint8_t res;
11731 res = a + b;
11732 if (res < a) {
11733 res = 0xff;
11735 return res;
11738 static inline uint8_t sub8_usat(uint8_t a, uint8_t b)
11740 if (a > b) {
11741 return a - b;
11742 } else {
11743 return 0;
11747 #define ADD16(a, b, n) RESULT(add16_usat(a, b), n, 16);
11748 #define SUB16(a, b, n) RESULT(sub16_usat(a, b), n, 16);
11749 #define ADD8(a, b, n) RESULT(add8_usat(a, b), n, 8);
11750 #define SUB8(a, b, n) RESULT(sub8_usat(a, b), n, 8);
11751 #define PFX uq
11753 #include "op_addsub.h"
11755 /* Signed modulo arithmetic. */
11756 #define SARITH16(a, b, n, op) do { \
11757 int32_t sum; \
11758 sum = (int32_t)(int16_t)(a) op (int32_t)(int16_t)(b); \
11759 RESULT(sum, n, 16); \
11760 if (sum >= 0) \
11761 ge |= 3 << (n * 2); \
11762 } while (0)
11764 #define SARITH8(a, b, n, op) do { \
11765 int32_t sum; \
11766 sum = (int32_t)(int8_t)(a) op (int32_t)(int8_t)(b); \
11767 RESULT(sum, n, 8); \
11768 if (sum >= 0) \
11769 ge |= 1 << n; \
11770 } while (0)
11773 #define ADD16(a, b, n) SARITH16(a, b, n, +)
11774 #define SUB16(a, b, n) SARITH16(a, b, n, -)
11775 #define ADD8(a, b, n) SARITH8(a, b, n, +)
11776 #define SUB8(a, b, n) SARITH8(a, b, n, -)
11777 #define PFX s
11778 #define ARITH_GE
11780 #include "op_addsub.h"
11782 /* Unsigned modulo arithmetic. */
11783 #define ADD16(a, b, n) do { \
11784 uint32_t sum; \
11785 sum = (uint32_t)(uint16_t)(a) + (uint32_t)(uint16_t)(b); \
11786 RESULT(sum, n, 16); \
11787 if ((sum >> 16) == 1) \
11788 ge |= 3 << (n * 2); \
11789 } while (0)
11791 #define ADD8(a, b, n) do { \
11792 uint32_t sum; \
11793 sum = (uint32_t)(uint8_t)(a) + (uint32_t)(uint8_t)(b); \
11794 RESULT(sum, n, 8); \
11795 if ((sum >> 8) == 1) \
11796 ge |= 1 << n; \
11797 } while (0)
11799 #define SUB16(a, b, n) do { \
11800 uint32_t sum; \
11801 sum = (uint32_t)(uint16_t)(a) - (uint32_t)(uint16_t)(b); \
11802 RESULT(sum, n, 16); \
11803 if ((sum >> 16) == 0) \
11804 ge |= 3 << (n * 2); \
11805 } while (0)
11807 #define SUB8(a, b, n) do { \
11808 uint32_t sum; \
11809 sum = (uint32_t)(uint8_t)(a) - (uint32_t)(uint8_t)(b); \
11810 RESULT(sum, n, 8); \
11811 if ((sum >> 8) == 0) \
11812 ge |= 1 << n; \
11813 } while (0)
11815 #define PFX u
11816 #define ARITH_GE
11818 #include "op_addsub.h"
11820 /* Halved signed arithmetic. */
11821 #define ADD16(a, b, n) \
11822 RESULT(((int32_t)(int16_t)(a) + (int32_t)(int16_t)(b)) >> 1, n, 16)
11823 #define SUB16(a, b, n) \
11824 RESULT(((int32_t)(int16_t)(a) - (int32_t)(int16_t)(b)) >> 1, n, 16)
11825 #define ADD8(a, b, n) \
11826 RESULT(((int32_t)(int8_t)(a) + (int32_t)(int8_t)(b)) >> 1, n, 8)
11827 #define SUB8(a, b, n) \
11828 RESULT(((int32_t)(int8_t)(a) - (int32_t)(int8_t)(b)) >> 1, n, 8)
11829 #define PFX sh
11831 #include "op_addsub.h"
11833 /* Halved unsigned arithmetic. */
11834 #define ADD16(a, b, n) \
11835 RESULT(((uint32_t)(uint16_t)(a) + (uint32_t)(uint16_t)(b)) >> 1, n, 16)
11836 #define SUB16(a, b, n) \
11837 RESULT(((uint32_t)(uint16_t)(a) - (uint32_t)(uint16_t)(b)) >> 1, n, 16)
11838 #define ADD8(a, b, n) \
11839 RESULT(((uint32_t)(uint8_t)(a) + (uint32_t)(uint8_t)(b)) >> 1, n, 8)
11840 #define SUB8(a, b, n) \
11841 RESULT(((uint32_t)(uint8_t)(a) - (uint32_t)(uint8_t)(b)) >> 1, n, 8)
11842 #define PFX uh
11844 #include "op_addsub.h"
11846 static inline uint8_t do_usad(uint8_t a, uint8_t b)
11848 if (a > b) {
11849 return a - b;
11850 } else {
11851 return b - a;
11855 /* Unsigned sum of absolute byte differences. */
11856 uint32_t HELPER(usad8)(uint32_t a, uint32_t b)
11858 uint32_t sum;
11859 sum = do_usad(a, b);
11860 sum += do_usad(a >> 8, b >> 8);
11861 sum += do_usad(a >> 16, b >> 16);
11862 sum += do_usad(a >> 24, b >> 24);
11863 return sum;
11866 /* For ARMv6 SEL instruction. */
11867 uint32_t HELPER(sel_flags)(uint32_t flags, uint32_t a, uint32_t b)
11869 uint32_t mask;
11871 mask = 0;
11872 if (flags & 1) {
11873 mask |= 0xff;
11875 if (flags & 2) {
11876 mask |= 0xff00;
11878 if (flags & 4) {
11879 mask |= 0xff0000;
11881 if (flags & 8) {
11882 mask |= 0xff000000;
11884 return (a & mask) | (b & ~mask);
11888 * CRC helpers.
11889 * The upper bytes of val (above the number specified by 'bytes') must have
11890 * been zeroed out by the caller.
11892 uint32_t HELPER(crc32)(uint32_t acc, uint32_t val, uint32_t bytes)
11894 uint8_t buf[4];
11896 stl_le_p(buf, val);
11898 /* zlib crc32 converts the accumulator and output to one's complement. */
11899 return crc32(acc ^ 0xffffffff, buf, bytes) ^ 0xffffffff;
11902 uint32_t HELPER(crc32c)(uint32_t acc, uint32_t val, uint32_t bytes)
11904 uint8_t buf[4];
11906 stl_le_p(buf, val);
11908 /* Linux crc32c converts the output to one's complement. */
11909 return crc32c(acc, buf, bytes) ^ 0xffffffff;
11913 * Return the exception level to which FP-disabled exceptions should
11914 * be taken, or 0 if FP is enabled.
11916 int fp_exception_el(CPUARMState *env, int cur_el)
11918 #ifndef CONFIG_USER_ONLY
11919 uint64_t hcr_el2;
11922 * CPACR and the CPTR registers don't exist before v6, so FP is
11923 * always accessible
11925 if (!arm_feature(env, ARM_FEATURE_V6)) {
11926 return 0;
11929 if (arm_feature(env, ARM_FEATURE_M)) {
11930 /* CPACR can cause a NOCP UsageFault taken to current security state */
11931 if (!v7m_cpacr_pass(env, env->v7m.secure, cur_el != 0)) {
11932 return 1;
11935 if (arm_feature(env, ARM_FEATURE_M_SECURITY) && !env->v7m.secure) {
11936 if (!extract32(env->v7m.nsacr, 10, 1)) {
11937 /* FP insns cause a NOCP UsageFault taken to Secure */
11938 return 3;
11942 return 0;
11945 hcr_el2 = arm_hcr_el2_eff(env);
11948 * The CPACR controls traps to EL1, or PL1 if we're 32 bit:
11949 * 0, 2 : trap EL0 and EL1/PL1 accesses
11950 * 1 : trap only EL0 accesses
11951 * 3 : trap no accesses
11952 * This register is ignored if E2H+TGE are both set.
11954 if ((hcr_el2 & (HCR_E2H | HCR_TGE)) != (HCR_E2H | HCR_TGE)) {
11955 int fpen = FIELD_EX64(env->cp15.cpacr_el1, CPACR_EL1, FPEN);
11957 switch (fpen) {
11958 case 1:
11959 if (cur_el != 0) {
11960 break;
11962 /* fall through */
11963 case 0:
11964 case 2:
11965 /* Trap from Secure PL0 or PL1 to Secure PL1. */
11966 if (!arm_el_is_aa64(env, 3)
11967 && (cur_el == 3 || arm_is_secure_below_el3(env))) {
11968 return 3;
11970 if (cur_el <= 1) {
11971 return 1;
11973 break;
11978 * The NSACR allows A-profile AArch32 EL3 and M-profile secure mode
11979 * to control non-secure access to the FPU. It doesn't have any
11980 * effect if EL3 is AArch64 or if EL3 doesn't exist at all.
11982 if ((arm_feature(env, ARM_FEATURE_EL3) && !arm_el_is_aa64(env, 3) &&
11983 cur_el <= 2 && !arm_is_secure_below_el3(env))) {
11984 if (!extract32(env->cp15.nsacr, 10, 1)) {
11985 /* FP insns act as UNDEF */
11986 return cur_el == 2 ? 2 : 1;
11991 * CPTR_EL2 is present in v7VE or v8, and changes format
11992 * with HCR_EL2.E2H (regardless of TGE).
11994 if (cur_el <= 2) {
11995 if (hcr_el2 & HCR_E2H) {
11996 switch (FIELD_EX64(env->cp15.cptr_el[2], CPTR_EL2, FPEN)) {
11997 case 1:
11998 if (cur_el != 0 || !(hcr_el2 & HCR_TGE)) {
11999 break;
12001 /* fall through */
12002 case 0:
12003 case 2:
12004 return 2;
12006 } else if (arm_is_el2_enabled(env)) {
12007 if (FIELD_EX64(env->cp15.cptr_el[2], CPTR_EL2, TFP)) {
12008 return 2;
12013 /* CPTR_EL3 : present in v8 */
12014 if (FIELD_EX64(env->cp15.cptr_el[3], CPTR_EL3, TFP)) {
12015 /* Trap all FP ops to EL3 */
12016 return 3;
12018 #endif
12019 return 0;
12022 /* Return the exception level we're running at if this is our mmu_idx */
12023 int arm_mmu_idx_to_el(ARMMMUIdx mmu_idx)
12025 if (mmu_idx & ARM_MMU_IDX_M) {
12026 return mmu_idx & ARM_MMU_IDX_M_PRIV;
12029 switch (mmu_idx) {
12030 case ARMMMUIdx_E10_0:
12031 case ARMMMUIdx_E20_0:
12032 return 0;
12033 case ARMMMUIdx_E10_1:
12034 case ARMMMUIdx_E10_1_PAN:
12035 return 1;
12036 case ARMMMUIdx_E2:
12037 case ARMMMUIdx_E20_2:
12038 case ARMMMUIdx_E20_2_PAN:
12039 return 2;
12040 case ARMMMUIdx_E3:
12041 return 3;
12042 default:
12043 g_assert_not_reached();
12047 #ifndef CONFIG_TCG
12048 ARMMMUIdx arm_v7m_mmu_idx_for_secstate(CPUARMState *env, bool secstate)
12050 g_assert_not_reached();
12052 #endif
12054 static bool arm_pan_enabled(CPUARMState *env)
12056 if (is_a64(env)) {
12057 return env->pstate & PSTATE_PAN;
12058 } else {
12059 return env->uncached_cpsr & CPSR_PAN;
12063 ARMMMUIdx arm_mmu_idx_el(CPUARMState *env, int el)
12065 ARMMMUIdx idx;
12066 uint64_t hcr;
12068 if (arm_feature(env, ARM_FEATURE_M)) {
12069 return arm_v7m_mmu_idx_for_secstate(env, env->v7m.secure);
12072 /* See ARM pseudo-function ELIsInHost. */
12073 switch (el) {
12074 case 0:
12075 hcr = arm_hcr_el2_eff(env);
12076 if ((hcr & (HCR_E2H | HCR_TGE)) == (HCR_E2H | HCR_TGE)) {
12077 idx = ARMMMUIdx_E20_0;
12078 } else {
12079 idx = ARMMMUIdx_E10_0;
12081 break;
12082 case 1:
12083 if (arm_pan_enabled(env)) {
12084 idx = ARMMMUIdx_E10_1_PAN;
12085 } else {
12086 idx = ARMMMUIdx_E10_1;
12088 break;
12089 case 2:
12090 /* Note that TGE does not apply at EL2. */
12091 if (arm_hcr_el2_eff(env) & HCR_E2H) {
12092 if (arm_pan_enabled(env)) {
12093 idx = ARMMMUIdx_E20_2_PAN;
12094 } else {
12095 idx = ARMMMUIdx_E20_2;
12097 } else {
12098 idx = ARMMMUIdx_E2;
12100 break;
12101 case 3:
12102 return ARMMMUIdx_E3;
12103 default:
12104 g_assert_not_reached();
12107 return idx;
12110 ARMMMUIdx arm_mmu_idx(CPUARMState *env)
12112 return arm_mmu_idx_el(env, arm_current_el(env));
12115 static bool mve_no_pred(CPUARMState *env)
12118 * Return true if there is definitely no predication of MVE
12119 * instructions by VPR or LTPSIZE. (Returning false even if there
12120 * isn't any predication is OK; generated code will just be
12121 * a little worse.)
12122 * If the CPU does not implement MVE then this TB flag is always 0.
12124 * NOTE: if you change this logic, the "recalculate s->mve_no_pred"
12125 * logic in gen_update_fp_context() needs to be updated to match.
12127 * We do not include the effect of the ECI bits here -- they are
12128 * tracked in other TB flags. This simplifies the logic for
12129 * "when did we emit code that changes the MVE_NO_PRED TB flag
12130 * and thus need to end the TB?".
12132 if (cpu_isar_feature(aa32_mve, env_archcpu(env))) {
12133 return false;
12135 if (env->v7m.vpr) {
12136 return false;
12138 if (env->v7m.ltpsize < 4) {
12139 return false;
12141 return true;
12144 void cpu_get_tb_cpu_state(CPUARMState *env, vaddr *pc,
12145 uint64_t *cs_base, uint32_t *pflags)
12147 CPUARMTBFlags flags;
12149 assert_hflags_rebuild_correctly(env);
12150 flags = env->hflags;
12152 if (EX_TBFLAG_ANY(flags, AARCH64_STATE)) {
12153 *pc = env->pc;
12154 if (cpu_isar_feature(aa64_bti, env_archcpu(env))) {
12155 DP_TBFLAG_A64(flags, BTYPE, env->btype);
12157 } else {
12158 *pc = env->regs[15];
12160 if (arm_feature(env, ARM_FEATURE_M)) {
12161 if (arm_feature(env, ARM_FEATURE_M_SECURITY) &&
12162 FIELD_EX32(env->v7m.fpccr[M_REG_S], V7M_FPCCR, S)
12163 != env->v7m.secure) {
12164 DP_TBFLAG_M32(flags, FPCCR_S_WRONG, 1);
12167 if ((env->v7m.fpccr[env->v7m.secure] & R_V7M_FPCCR_ASPEN_MASK) &&
12168 (!(env->v7m.control[M_REG_S] & R_V7M_CONTROL_FPCA_MASK) ||
12169 (env->v7m.secure &&
12170 !(env->v7m.control[M_REG_S] & R_V7M_CONTROL_SFPA_MASK)))) {
12172 * ASPEN is set, but FPCA/SFPA indicate that there is no
12173 * active FP context; we must create a new FP context before
12174 * executing any FP insn.
12176 DP_TBFLAG_M32(flags, NEW_FP_CTXT_NEEDED, 1);
12179 bool is_secure = env->v7m.fpccr[M_REG_S] & R_V7M_FPCCR_S_MASK;
12180 if (env->v7m.fpccr[is_secure] & R_V7M_FPCCR_LSPACT_MASK) {
12181 DP_TBFLAG_M32(flags, LSPACT, 1);
12184 if (mve_no_pred(env)) {
12185 DP_TBFLAG_M32(flags, MVE_NO_PRED, 1);
12187 } else {
12189 * Note that XSCALE_CPAR shares bits with VECSTRIDE.
12190 * Note that VECLEN+VECSTRIDE are RES0 for M-profile.
12192 if (arm_feature(env, ARM_FEATURE_XSCALE)) {
12193 DP_TBFLAG_A32(flags, XSCALE_CPAR, env->cp15.c15_cpar);
12194 } else {
12195 DP_TBFLAG_A32(flags, VECLEN, env->vfp.vec_len);
12196 DP_TBFLAG_A32(flags, VECSTRIDE, env->vfp.vec_stride);
12198 if (env->vfp.xregs[ARM_VFP_FPEXC] & (1 << 30)) {
12199 DP_TBFLAG_A32(flags, VFPEN, 1);
12203 DP_TBFLAG_AM32(flags, THUMB, env->thumb);
12204 DP_TBFLAG_AM32(flags, CONDEXEC, env->condexec_bits);
12208 * The SS_ACTIVE and PSTATE_SS bits correspond to the state machine
12209 * states defined in the ARM ARM for software singlestep:
12210 * SS_ACTIVE PSTATE.SS State
12211 * 0 x Inactive (the TB flag for SS is always 0)
12212 * 1 0 Active-pending
12213 * 1 1 Active-not-pending
12214 * SS_ACTIVE is set in hflags; PSTATE__SS is computed every TB.
12216 if (EX_TBFLAG_ANY(flags, SS_ACTIVE) && (env->pstate & PSTATE_SS)) {
12217 DP_TBFLAG_ANY(flags, PSTATE__SS, 1);
12220 *pflags = flags.flags;
12221 *cs_base = flags.flags2;
12224 #ifdef TARGET_AARCH64
12226 * The manual says that when SVE is enabled and VQ is widened the
12227 * implementation is allowed to zero the previously inaccessible
12228 * portion of the registers. The corollary to that is that when
12229 * SVE is enabled and VQ is narrowed we are also allowed to zero
12230 * the now inaccessible portion of the registers.
12232 * The intent of this is that no predicate bit beyond VQ is ever set.
12233 * Which means that some operations on predicate registers themselves
12234 * may operate on full uint64_t or even unrolled across the maximum
12235 * uint64_t[4]. Performing 4 bits of host arithmetic unconditionally
12236 * may well be cheaper than conditionals to restrict the operation
12237 * to the relevant portion of a uint16_t[16].
12239 void aarch64_sve_narrow_vq(CPUARMState *env, unsigned vq)
12241 int i, j;
12242 uint64_t pmask;
12244 assert(vq >= 1 && vq <= ARM_MAX_VQ);
12245 assert(vq <= env_archcpu(env)->sve_max_vq);
12247 /* Zap the high bits of the zregs. */
12248 for (i = 0; i < 32; i++) {
12249 memset(&env->vfp.zregs[i].d[2 * vq], 0, 16 * (ARM_MAX_VQ - vq));
12252 /* Zap the high bits of the pregs and ffr. */
12253 pmask = 0;
12254 if (vq & 3) {
12255 pmask = ~(-1ULL << (16 * (vq & 3)));
12257 for (j = vq / 4; j < ARM_MAX_VQ / 4; j++) {
12258 for (i = 0; i < 17; ++i) {
12259 env->vfp.pregs[i].p[j] &= pmask;
12261 pmask = 0;
12265 static uint32_t sve_vqm1_for_el_sm_ena(CPUARMState *env, int el, bool sm)
12267 int exc_el;
12269 if (sm) {
12270 exc_el = sme_exception_el(env, el);
12271 } else {
12272 exc_el = sve_exception_el(env, el);
12274 if (exc_el) {
12275 return 0; /* disabled */
12277 return sve_vqm1_for_el_sm(env, el, sm);
12281 * Notice a change in SVE vector size when changing EL.
12283 void aarch64_sve_change_el(CPUARMState *env, int old_el,
12284 int new_el, bool el0_a64)
12286 ARMCPU *cpu = env_archcpu(env);
12287 int old_len, new_len;
12288 bool old_a64, new_a64, sm;
12290 /* Nothing to do if no SVE. */
12291 if (!cpu_isar_feature(aa64_sve, cpu)) {
12292 return;
12295 /* Nothing to do if FP is disabled in either EL. */
12296 if (fp_exception_el(env, old_el) || fp_exception_el(env, new_el)) {
12297 return;
12300 old_a64 = old_el ? arm_el_is_aa64(env, old_el) : el0_a64;
12301 new_a64 = new_el ? arm_el_is_aa64(env, new_el) : el0_a64;
12304 * Both AArch64.TakeException and AArch64.ExceptionReturn
12305 * invoke ResetSVEState when taking an exception from, or
12306 * returning to, AArch32 state when PSTATE.SM is enabled.
12308 sm = FIELD_EX64(env->svcr, SVCR, SM);
12309 if (old_a64 != new_a64 && sm) {
12310 arm_reset_sve_state(env);
12311 return;
12315 * DDI0584A.d sec 3.2: "If SVE instructions are disabled or trapped
12316 * at ELx, or not available because the EL is in AArch32 state, then
12317 * for all purposes other than a direct read, the ZCR_ELx.LEN field
12318 * has an effective value of 0".
12320 * Consider EL2 (aa64, vq=4) -> EL0 (aa32) -> EL1 (aa64, vq=0).
12321 * If we ignore aa32 state, we would fail to see the vq4->vq0 transition
12322 * from EL2->EL1. Thus we go ahead and narrow when entering aa32 so that
12323 * we already have the correct register contents when encountering the
12324 * vq0->vq0 transition between EL0->EL1.
12326 old_len = new_len = 0;
12327 if (old_a64) {
12328 old_len = sve_vqm1_for_el_sm_ena(env, old_el, sm);
12330 if (new_a64) {
12331 new_len = sve_vqm1_for_el_sm_ena(env, new_el, sm);
12334 /* When changing vector length, clear inaccessible state. */
12335 if (new_len < old_len) {
12336 aarch64_sve_narrow_vq(env, new_len + 1);
12339 #endif
12341 #ifndef CONFIG_USER_ONLY
12342 ARMSecuritySpace arm_security_space(CPUARMState *env)
12344 if (arm_feature(env, ARM_FEATURE_M)) {
12345 return arm_secure_to_space(env->v7m.secure);
12349 * If EL3 is not supported then the secure state is implementation
12350 * defined, in which case QEMU defaults to non-secure.
12352 if (!arm_feature(env, ARM_FEATURE_EL3)) {
12353 return ARMSS_NonSecure;
12356 /* Check for AArch64 EL3 or AArch32 Mon. */
12357 if (is_a64(env)) {
12358 if (extract32(env->pstate, 2, 2) == 3) {
12359 if (cpu_isar_feature(aa64_rme, env_archcpu(env))) {
12360 return ARMSS_Root;
12361 } else {
12362 return ARMSS_Secure;
12365 } else {
12366 if ((env->uncached_cpsr & CPSR_M) == ARM_CPU_MODE_MON) {
12367 return ARMSS_Secure;
12371 return arm_security_space_below_el3(env);
12374 ARMSecuritySpace arm_security_space_below_el3(CPUARMState *env)
12376 assert(!arm_feature(env, ARM_FEATURE_M));
12379 * If EL3 is not supported then the secure state is implementation
12380 * defined, in which case QEMU defaults to non-secure.
12382 if (!arm_feature(env, ARM_FEATURE_EL3)) {
12383 return ARMSS_NonSecure;
12387 * Note NSE cannot be set without RME, and NSE & !NS is Reserved.
12388 * Ignoring NSE when !NS retains consistency without having to
12389 * modify other predicates.
12391 if (!(env->cp15.scr_el3 & SCR_NS)) {
12392 return ARMSS_Secure;
12393 } else if (env->cp15.scr_el3 & SCR_NSE) {
12394 return ARMSS_Realm;
12395 } else {
12396 return ARMSS_NonSecure;
12399 #endif /* !CONFIG_USER_ONLY */