4 * Copyright IBM, Corp. 2008
8 * Anthony Liguori <aliguori@us.ibm.com>
9 * Glauber Costa <gcosta@redhat.com>
11 * This work is licensed under the terms of the GNU GPL, version 2 or later.
12 * See the COPYING file in the top-level directory.
16 #include <sys/types.h>
17 #include <sys/ioctl.h>
21 #include <linux/kvm.h>
23 #include "qemu-common.h"
24 #include "qemu-barrier.h"
25 #include "qemu-option.h"
26 #include "qemu-config.h"
34 #include "exec-memory.h"
35 #include "event_notifier.h"
37 /* This check must be after config-host.h is included */
39 #include <sys/eventfd.h>
42 /* KVM uses PAGE_SIZE in its definition of COALESCED_MMIO_MAX */
43 #define PAGE_SIZE TARGET_PAGE_SIZE
48 #define DPRINTF(fmt, ...) \
49 do { fprintf(stderr, fmt, ## __VA_ARGS__); } while (0)
51 #define DPRINTF(fmt, ...) \
55 #define KVM_MSI_HASHTAB_SIZE 256
57 typedef struct KVMSlot
59 target_phys_addr_t start_addr
;
60 ram_addr_t memory_size
;
66 typedef struct kvm_dirty_log KVMDirtyLog
;
74 struct kvm_coalesced_mmio_ring
*coalesced_mmio_ring
;
75 bool coalesced_flush_in_progress
;
76 int broken_set_mem_region
;
79 int robust_singlestep
;
81 #ifdef KVM_CAP_SET_GUEST_DEBUG
82 struct kvm_sw_breakpoint_head kvm_sw_breakpoints
;
87 /* The man page (and posix) say ioctl numbers are signed int, but
88 * they're not. Linux, glibc and *BSD all treat ioctl numbers as
89 * unsigned, and treating them as signed here can break things */
90 unsigned irqchip_inject_ioctl
;
91 #ifdef KVM_CAP_IRQ_ROUTING
92 struct kvm_irq_routing
*irq_routes
;
93 int nr_allocated_irq_routes
;
94 uint32_t *used_gsi_bitmap
;
95 unsigned int gsi_count
;
96 QTAILQ_HEAD(msi_hashtab
, KVMMSIRoute
) msi_hashtab
[KVM_MSI_HASHTAB_SIZE
];
102 bool kvm_kernel_irqchip
;
103 bool kvm_async_interrupts_allowed
;
104 bool kvm_irqfds_allowed
;
105 bool kvm_msi_via_irqfd_allowed
;
106 bool kvm_gsi_routing_allowed
;
108 static const KVMCapabilityInfo kvm_required_capabilites
[] = {
109 KVM_CAP_INFO(USER_MEMORY
),
110 KVM_CAP_INFO(DESTROY_MEMORY_REGION_WORKS
),
114 static KVMSlot
*kvm_alloc_slot(KVMState
*s
)
118 for (i
= 0; i
< ARRAY_SIZE(s
->slots
); i
++) {
119 if (s
->slots
[i
].memory_size
== 0) {
124 fprintf(stderr
, "%s: no free slot available\n", __func__
);
128 static KVMSlot
*kvm_lookup_matching_slot(KVMState
*s
,
129 target_phys_addr_t start_addr
,
130 target_phys_addr_t end_addr
)
134 for (i
= 0; i
< ARRAY_SIZE(s
->slots
); i
++) {
135 KVMSlot
*mem
= &s
->slots
[i
];
137 if (start_addr
== mem
->start_addr
&&
138 end_addr
== mem
->start_addr
+ mem
->memory_size
) {
147 * Find overlapping slot with lowest start address
149 static KVMSlot
*kvm_lookup_overlapping_slot(KVMState
*s
,
150 target_phys_addr_t start_addr
,
151 target_phys_addr_t end_addr
)
153 KVMSlot
*found
= NULL
;
156 for (i
= 0; i
< ARRAY_SIZE(s
->slots
); i
++) {
157 KVMSlot
*mem
= &s
->slots
[i
];
159 if (mem
->memory_size
== 0 ||
160 (found
&& found
->start_addr
< mem
->start_addr
)) {
164 if (end_addr
> mem
->start_addr
&&
165 start_addr
< mem
->start_addr
+ mem
->memory_size
) {
173 int kvm_physical_memory_addr_from_host(KVMState
*s
, void *ram
,
174 target_phys_addr_t
*phys_addr
)
178 for (i
= 0; i
< ARRAY_SIZE(s
->slots
); i
++) {
179 KVMSlot
*mem
= &s
->slots
[i
];
181 if (ram
>= mem
->ram
&& ram
< mem
->ram
+ mem
->memory_size
) {
182 *phys_addr
= mem
->start_addr
+ (ram
- mem
->ram
);
190 static int kvm_set_user_memory_region(KVMState
*s
, KVMSlot
*slot
)
192 struct kvm_userspace_memory_region mem
;
194 mem
.slot
= slot
->slot
;
195 mem
.guest_phys_addr
= slot
->start_addr
;
196 mem
.memory_size
= slot
->memory_size
;
197 mem
.userspace_addr
= (unsigned long)slot
->ram
;
198 mem
.flags
= slot
->flags
;
199 if (s
->migration_log
) {
200 mem
.flags
|= KVM_MEM_LOG_DIRTY_PAGES
;
202 return kvm_vm_ioctl(s
, KVM_SET_USER_MEMORY_REGION
, &mem
);
205 static void kvm_reset_vcpu(void *opaque
)
207 CPUArchState
*env
= opaque
;
209 kvm_arch_reset_vcpu(env
);
212 int kvm_init_vcpu(CPUArchState
*env
)
214 KVMState
*s
= kvm_state
;
218 DPRINTF("kvm_init_vcpu\n");
220 ret
= kvm_vm_ioctl(s
, KVM_CREATE_VCPU
, env
->cpu_index
);
222 DPRINTF("kvm_create_vcpu failed\n");
228 env
->kvm_vcpu_dirty
= 1;
230 mmap_size
= kvm_ioctl(s
, KVM_GET_VCPU_MMAP_SIZE
, 0);
233 DPRINTF("KVM_GET_VCPU_MMAP_SIZE failed\n");
237 env
->kvm_run
= mmap(NULL
, mmap_size
, PROT_READ
| PROT_WRITE
, MAP_SHARED
,
239 if (env
->kvm_run
== MAP_FAILED
) {
241 DPRINTF("mmap'ing vcpu state failed\n");
245 if (s
->coalesced_mmio
&& !s
->coalesced_mmio_ring
) {
246 s
->coalesced_mmio_ring
=
247 (void *)env
->kvm_run
+ s
->coalesced_mmio
* PAGE_SIZE
;
250 ret
= kvm_arch_init_vcpu(env
);
252 qemu_register_reset(kvm_reset_vcpu
, env
);
253 kvm_arch_reset_vcpu(env
);
260 * dirty pages logging control
263 static int kvm_mem_flags(KVMState
*s
, bool log_dirty
)
265 return log_dirty
? KVM_MEM_LOG_DIRTY_PAGES
: 0;
268 static int kvm_slot_dirty_pages_log_change(KVMSlot
*mem
, bool log_dirty
)
270 KVMState
*s
= kvm_state
;
271 int flags
, mask
= KVM_MEM_LOG_DIRTY_PAGES
;
274 old_flags
= mem
->flags
;
276 flags
= (mem
->flags
& ~mask
) | kvm_mem_flags(s
, log_dirty
);
279 /* If nothing changed effectively, no need to issue ioctl */
280 if (s
->migration_log
) {
281 flags
|= KVM_MEM_LOG_DIRTY_PAGES
;
284 if (flags
== old_flags
) {
288 return kvm_set_user_memory_region(s
, mem
);
291 static int kvm_dirty_pages_log_change(target_phys_addr_t phys_addr
,
292 ram_addr_t size
, bool log_dirty
)
294 KVMState
*s
= kvm_state
;
295 KVMSlot
*mem
= kvm_lookup_matching_slot(s
, phys_addr
, phys_addr
+ size
);
298 fprintf(stderr
, "BUG: %s: invalid parameters " TARGET_FMT_plx
"-"
299 TARGET_FMT_plx
"\n", __func__
, phys_addr
,
300 (target_phys_addr_t
)(phys_addr
+ size
- 1));
303 return kvm_slot_dirty_pages_log_change(mem
, log_dirty
);
306 static void kvm_log_start(MemoryListener
*listener
,
307 MemoryRegionSection
*section
)
311 r
= kvm_dirty_pages_log_change(section
->offset_within_address_space
,
312 section
->size
, true);
318 static void kvm_log_stop(MemoryListener
*listener
,
319 MemoryRegionSection
*section
)
323 r
= kvm_dirty_pages_log_change(section
->offset_within_address_space
,
324 section
->size
, false);
330 static int kvm_set_migration_log(int enable
)
332 KVMState
*s
= kvm_state
;
336 s
->migration_log
= enable
;
338 for (i
= 0; i
< ARRAY_SIZE(s
->slots
); i
++) {
341 if (!mem
->memory_size
) {
344 if (!!(mem
->flags
& KVM_MEM_LOG_DIRTY_PAGES
) == enable
) {
347 err
= kvm_set_user_memory_region(s
, mem
);
355 /* get kvm's dirty pages bitmap and update qemu's */
356 static int kvm_get_dirty_pages_log_range(MemoryRegionSection
*section
,
357 unsigned long *bitmap
)
360 unsigned long page_number
, c
;
361 target_phys_addr_t addr
, addr1
;
362 unsigned int len
= ((section
->size
/ TARGET_PAGE_SIZE
) + HOST_LONG_BITS
- 1) / HOST_LONG_BITS
;
363 unsigned long hpratio
= getpagesize() / TARGET_PAGE_SIZE
;
366 * bitmap-traveling is faster than memory-traveling (for addr...)
367 * especially when most of the memory is not dirty.
369 for (i
= 0; i
< len
; i
++) {
370 if (bitmap
[i
] != 0) {
371 c
= leul_to_cpu(bitmap
[i
]);
375 page_number
= (i
* HOST_LONG_BITS
+ j
) * hpratio
;
376 addr1
= page_number
* TARGET_PAGE_SIZE
;
377 addr
= section
->offset_within_region
+ addr1
;
378 memory_region_set_dirty(section
->mr
, addr
,
379 TARGET_PAGE_SIZE
* hpratio
);
386 #define ALIGN(x, y) (((x)+(y)-1) & ~((y)-1))
389 * kvm_physical_sync_dirty_bitmap - Grab dirty bitmap from kernel space
390 * This function updates qemu's dirty bitmap using
391 * memory_region_set_dirty(). This means all bits are set
394 * @start_add: start of logged region.
395 * @end_addr: end of logged region.
397 static int kvm_physical_sync_dirty_bitmap(MemoryRegionSection
*section
)
399 KVMState
*s
= kvm_state
;
400 unsigned long size
, allocated_size
= 0;
404 target_phys_addr_t start_addr
= section
->offset_within_address_space
;
405 target_phys_addr_t end_addr
= start_addr
+ section
->size
;
407 d
.dirty_bitmap
= NULL
;
408 while (start_addr
< end_addr
) {
409 mem
= kvm_lookup_overlapping_slot(s
, start_addr
, end_addr
);
414 /* XXX bad kernel interface alert
415 * For dirty bitmap, kernel allocates array of size aligned to
416 * bits-per-long. But for case when the kernel is 64bits and
417 * the userspace is 32bits, userspace can't align to the same
418 * bits-per-long, since sizeof(long) is different between kernel
419 * and user space. This way, userspace will provide buffer which
420 * may be 4 bytes less than the kernel will use, resulting in
421 * userspace memory corruption (which is not detectable by valgrind
422 * too, in most cases).
423 * So for now, let's align to 64 instead of HOST_LONG_BITS here, in
424 * a hope that sizeof(long) wont become >8 any time soon.
426 size
= ALIGN(((mem
->memory_size
) >> TARGET_PAGE_BITS
),
427 /*HOST_LONG_BITS*/ 64) / 8;
428 if (!d
.dirty_bitmap
) {
429 d
.dirty_bitmap
= g_malloc(size
);
430 } else if (size
> allocated_size
) {
431 d
.dirty_bitmap
= g_realloc(d
.dirty_bitmap
, size
);
433 allocated_size
= size
;
434 memset(d
.dirty_bitmap
, 0, allocated_size
);
438 if (kvm_vm_ioctl(s
, KVM_GET_DIRTY_LOG
, &d
) == -1) {
439 DPRINTF("ioctl failed %d\n", errno
);
444 kvm_get_dirty_pages_log_range(section
, d
.dirty_bitmap
);
445 start_addr
= mem
->start_addr
+ mem
->memory_size
;
447 g_free(d
.dirty_bitmap
);
452 int kvm_coalesce_mmio_region(target_phys_addr_t start
, ram_addr_t size
)
455 KVMState
*s
= kvm_state
;
457 if (s
->coalesced_mmio
) {
458 struct kvm_coalesced_mmio_zone zone
;
464 ret
= kvm_vm_ioctl(s
, KVM_REGISTER_COALESCED_MMIO
, &zone
);
470 int kvm_uncoalesce_mmio_region(target_phys_addr_t start
, ram_addr_t size
)
473 KVMState
*s
= kvm_state
;
475 if (s
->coalesced_mmio
) {
476 struct kvm_coalesced_mmio_zone zone
;
482 ret
= kvm_vm_ioctl(s
, KVM_UNREGISTER_COALESCED_MMIO
, &zone
);
488 int kvm_check_extension(KVMState
*s
, unsigned int extension
)
492 ret
= kvm_ioctl(s
, KVM_CHECK_EXTENSION
, extension
);
500 static int kvm_check_many_ioeventfds(void)
502 /* Userspace can use ioeventfd for io notification. This requires a host
503 * that supports eventfd(2) and an I/O thread; since eventfd does not
504 * support SIGIO it cannot interrupt the vcpu.
506 * Older kernels have a 6 device limit on the KVM io bus. Find out so we
507 * can avoid creating too many ioeventfds.
509 #if defined(CONFIG_EVENTFD)
512 for (i
= 0; i
< ARRAY_SIZE(ioeventfds
); i
++) {
513 ioeventfds
[i
] = eventfd(0, EFD_CLOEXEC
);
514 if (ioeventfds
[i
] < 0) {
517 ret
= kvm_set_ioeventfd_pio_word(ioeventfds
[i
], 0, i
, true);
519 close(ioeventfds
[i
]);
524 /* Decide whether many devices are supported or not */
525 ret
= i
== ARRAY_SIZE(ioeventfds
);
528 kvm_set_ioeventfd_pio_word(ioeventfds
[i
], 0, i
, false);
529 close(ioeventfds
[i
]);
537 static const KVMCapabilityInfo
*
538 kvm_check_extension_list(KVMState
*s
, const KVMCapabilityInfo
*list
)
541 if (!kvm_check_extension(s
, list
->value
)) {
549 static void kvm_set_phys_mem(MemoryRegionSection
*section
, bool add
)
551 KVMState
*s
= kvm_state
;
554 MemoryRegion
*mr
= section
->mr
;
555 bool log_dirty
= memory_region_is_logging(mr
);
556 target_phys_addr_t start_addr
= section
->offset_within_address_space
;
557 ram_addr_t size
= section
->size
;
561 /* kvm works in page size chunks, but the function may be called
562 with sub-page size and unaligned start address. */
563 delta
= TARGET_PAGE_ALIGN(size
) - size
;
569 size
&= TARGET_PAGE_MASK
;
570 if (!size
|| (start_addr
& ~TARGET_PAGE_MASK
)) {
574 if (!memory_region_is_ram(mr
)) {
578 ram
= memory_region_get_ram_ptr(mr
) + section
->offset_within_region
+ delta
;
581 mem
= kvm_lookup_overlapping_slot(s
, start_addr
, start_addr
+ size
);
586 if (add
&& start_addr
>= mem
->start_addr
&&
587 (start_addr
+ size
<= mem
->start_addr
+ mem
->memory_size
) &&
588 (ram
- start_addr
== mem
->ram
- mem
->start_addr
)) {
589 /* The new slot fits into the existing one and comes with
590 * identical parameters - update flags and done. */
591 kvm_slot_dirty_pages_log_change(mem
, log_dirty
);
597 if (mem
->flags
& KVM_MEM_LOG_DIRTY_PAGES
) {
598 kvm_physical_sync_dirty_bitmap(section
);
601 /* unregister the overlapping slot */
602 mem
->memory_size
= 0;
603 err
= kvm_set_user_memory_region(s
, mem
);
605 fprintf(stderr
, "%s: error unregistering overlapping slot: %s\n",
606 __func__
, strerror(-err
));
610 /* Workaround for older KVM versions: we can't join slots, even not by
611 * unregistering the previous ones and then registering the larger
612 * slot. We have to maintain the existing fragmentation. Sigh.
614 * This workaround assumes that the new slot starts at the same
615 * address as the first existing one. If not or if some overlapping
616 * slot comes around later, we will fail (not seen in practice so far)
617 * - and actually require a recent KVM version. */
618 if (s
->broken_set_mem_region
&&
619 old
.start_addr
== start_addr
&& old
.memory_size
< size
&& add
) {
620 mem
= kvm_alloc_slot(s
);
621 mem
->memory_size
= old
.memory_size
;
622 mem
->start_addr
= old
.start_addr
;
624 mem
->flags
= kvm_mem_flags(s
, log_dirty
);
626 err
= kvm_set_user_memory_region(s
, mem
);
628 fprintf(stderr
, "%s: error updating slot: %s\n", __func__
,
633 start_addr
+= old
.memory_size
;
634 ram
+= old
.memory_size
;
635 size
-= old
.memory_size
;
639 /* register prefix slot */
640 if (old
.start_addr
< start_addr
) {
641 mem
= kvm_alloc_slot(s
);
642 mem
->memory_size
= start_addr
- old
.start_addr
;
643 mem
->start_addr
= old
.start_addr
;
645 mem
->flags
= kvm_mem_flags(s
, log_dirty
);
647 err
= kvm_set_user_memory_region(s
, mem
);
649 fprintf(stderr
, "%s: error registering prefix slot: %s\n",
650 __func__
, strerror(-err
));
652 fprintf(stderr
, "%s: This is probably because your kernel's " \
653 "PAGE_SIZE is too big. Please try to use 4k " \
654 "PAGE_SIZE!\n", __func__
);
660 /* register suffix slot */
661 if (old
.start_addr
+ old
.memory_size
> start_addr
+ size
) {
662 ram_addr_t size_delta
;
664 mem
= kvm_alloc_slot(s
);
665 mem
->start_addr
= start_addr
+ size
;
666 size_delta
= mem
->start_addr
- old
.start_addr
;
667 mem
->memory_size
= old
.memory_size
- size_delta
;
668 mem
->ram
= old
.ram
+ size_delta
;
669 mem
->flags
= kvm_mem_flags(s
, log_dirty
);
671 err
= kvm_set_user_memory_region(s
, mem
);
673 fprintf(stderr
, "%s: error registering suffix slot: %s\n",
674 __func__
, strerror(-err
));
680 /* in case the KVM bug workaround already "consumed" the new slot */
687 mem
= kvm_alloc_slot(s
);
688 mem
->memory_size
= size
;
689 mem
->start_addr
= start_addr
;
691 mem
->flags
= kvm_mem_flags(s
, log_dirty
);
693 err
= kvm_set_user_memory_region(s
, mem
);
695 fprintf(stderr
, "%s: error registering slot: %s\n", __func__
,
701 static void kvm_begin(MemoryListener
*listener
)
705 static void kvm_commit(MemoryListener
*listener
)
709 static void kvm_region_add(MemoryListener
*listener
,
710 MemoryRegionSection
*section
)
712 kvm_set_phys_mem(section
, true);
715 static void kvm_region_del(MemoryListener
*listener
,
716 MemoryRegionSection
*section
)
718 kvm_set_phys_mem(section
, false);
721 static void kvm_region_nop(MemoryListener
*listener
,
722 MemoryRegionSection
*section
)
726 static void kvm_log_sync(MemoryListener
*listener
,
727 MemoryRegionSection
*section
)
731 r
= kvm_physical_sync_dirty_bitmap(section
);
737 static void kvm_log_global_start(struct MemoryListener
*listener
)
741 r
= kvm_set_migration_log(1);
745 static void kvm_log_global_stop(struct MemoryListener
*listener
)
749 r
= kvm_set_migration_log(0);
753 static void kvm_mem_ioeventfd_add(MemoryRegionSection
*section
,
754 bool match_data
, uint64_t data
, int fd
)
758 assert(match_data
&& section
->size
<= 8);
760 r
= kvm_set_ioeventfd_mmio(fd
, section
->offset_within_address_space
,
761 data
, true, section
->size
);
767 static void kvm_mem_ioeventfd_del(MemoryRegionSection
*section
,
768 bool match_data
, uint64_t data
, int fd
)
772 r
= kvm_set_ioeventfd_mmio(fd
, section
->offset_within_address_space
,
773 data
, false, section
->size
);
779 static void kvm_io_ioeventfd_add(MemoryRegionSection
*section
,
780 bool match_data
, uint64_t data
, int fd
)
784 assert(match_data
&& section
->size
== 2);
786 r
= kvm_set_ioeventfd_pio_word(fd
, section
->offset_within_address_space
,
793 static void kvm_io_ioeventfd_del(MemoryRegionSection
*section
,
794 bool match_data
, uint64_t data
, int fd
)
799 r
= kvm_set_ioeventfd_pio_word(fd
, section
->offset_within_address_space
,
806 static void kvm_eventfd_add(MemoryListener
*listener
,
807 MemoryRegionSection
*section
,
808 bool match_data
, uint64_t data
,
811 if (section
->address_space
== get_system_memory()) {
812 kvm_mem_ioeventfd_add(section
, match_data
, data
,
813 event_notifier_get_fd(e
));
815 kvm_io_ioeventfd_add(section
, match_data
, data
,
816 event_notifier_get_fd(e
));
820 static void kvm_eventfd_del(MemoryListener
*listener
,
821 MemoryRegionSection
*section
,
822 bool match_data
, uint64_t data
,
825 if (section
->address_space
== get_system_memory()) {
826 kvm_mem_ioeventfd_del(section
, match_data
, data
,
827 event_notifier_get_fd(e
));
829 kvm_io_ioeventfd_del(section
, match_data
, data
,
830 event_notifier_get_fd(e
));
834 static MemoryListener kvm_memory_listener
= {
836 .commit
= kvm_commit
,
837 .region_add
= kvm_region_add
,
838 .region_del
= kvm_region_del
,
839 .region_nop
= kvm_region_nop
,
840 .log_start
= kvm_log_start
,
841 .log_stop
= kvm_log_stop
,
842 .log_sync
= kvm_log_sync
,
843 .log_global_start
= kvm_log_global_start
,
844 .log_global_stop
= kvm_log_global_stop
,
845 .eventfd_add
= kvm_eventfd_add
,
846 .eventfd_del
= kvm_eventfd_del
,
850 static void kvm_handle_interrupt(CPUArchState
*env
, int mask
)
852 env
->interrupt_request
|= mask
;
854 if (!qemu_cpu_is_self(env
)) {
859 int kvm_set_irq(KVMState
*s
, int irq
, int level
)
861 struct kvm_irq_level event
;
864 assert(kvm_async_interrupts_enabled());
868 ret
= kvm_vm_ioctl(s
, s
->irqchip_inject_ioctl
, &event
);
870 perror("kvm_set_irq");
874 return (s
->irqchip_inject_ioctl
== KVM_IRQ_LINE
) ? 1 : event
.status
;
877 #ifdef KVM_CAP_IRQ_ROUTING
878 typedef struct KVMMSIRoute
{
879 struct kvm_irq_routing_entry kroute
;
880 QTAILQ_ENTRY(KVMMSIRoute
) entry
;
883 static void set_gsi(KVMState
*s
, unsigned int gsi
)
885 s
->used_gsi_bitmap
[gsi
/ 32] |= 1U << (gsi
% 32);
888 static void clear_gsi(KVMState
*s
, unsigned int gsi
)
890 s
->used_gsi_bitmap
[gsi
/ 32] &= ~(1U << (gsi
% 32));
893 static void kvm_init_irq_routing(KVMState
*s
)
897 gsi_count
= kvm_check_extension(s
, KVM_CAP_IRQ_ROUTING
);
899 unsigned int gsi_bits
, i
;
901 /* Round up so we can search ints using ffs */
902 gsi_bits
= ALIGN(gsi_count
, 32);
903 s
->used_gsi_bitmap
= g_malloc0(gsi_bits
/ 8);
904 s
->gsi_count
= gsi_count
;
906 /* Mark any over-allocated bits as already in use */
907 for (i
= gsi_count
; i
< gsi_bits
; i
++) {
912 s
->irq_routes
= g_malloc0(sizeof(*s
->irq_routes
));
913 s
->nr_allocated_irq_routes
= 0;
915 if (!s
->direct_msi
) {
916 for (i
= 0; i
< KVM_MSI_HASHTAB_SIZE
; i
++) {
917 QTAILQ_INIT(&s
->msi_hashtab
[i
]);
921 kvm_arch_init_irq_routing(s
);
924 static void kvm_irqchip_commit_routes(KVMState
*s
)
928 s
->irq_routes
->flags
= 0;
929 ret
= kvm_vm_ioctl(s
, KVM_SET_GSI_ROUTING
, s
->irq_routes
);
933 static void kvm_add_routing_entry(KVMState
*s
,
934 struct kvm_irq_routing_entry
*entry
)
936 struct kvm_irq_routing_entry
*new;
939 if (s
->irq_routes
->nr
== s
->nr_allocated_irq_routes
) {
940 n
= s
->nr_allocated_irq_routes
* 2;
944 size
= sizeof(struct kvm_irq_routing
);
945 size
+= n
* sizeof(*new);
946 s
->irq_routes
= g_realloc(s
->irq_routes
, size
);
947 s
->nr_allocated_irq_routes
= n
;
949 n
= s
->irq_routes
->nr
++;
950 new = &s
->irq_routes
->entries
[n
];
951 memset(new, 0, sizeof(*new));
952 new->gsi
= entry
->gsi
;
953 new->type
= entry
->type
;
954 new->flags
= entry
->flags
;
957 set_gsi(s
, entry
->gsi
);
959 kvm_irqchip_commit_routes(s
);
962 void kvm_irqchip_add_irq_route(KVMState
*s
, int irq
, int irqchip
, int pin
)
964 struct kvm_irq_routing_entry e
;
966 assert(pin
< s
->gsi_count
);
969 e
.type
= KVM_IRQ_ROUTING_IRQCHIP
;
971 e
.u
.irqchip
.irqchip
= irqchip
;
972 e
.u
.irqchip
.pin
= pin
;
973 kvm_add_routing_entry(s
, &e
);
976 void kvm_irqchip_release_virq(KVMState
*s
, int virq
)
978 struct kvm_irq_routing_entry
*e
;
981 for (i
= 0; i
< s
->irq_routes
->nr
; i
++) {
982 e
= &s
->irq_routes
->entries
[i
];
983 if (e
->gsi
== virq
) {
985 *e
= s
->irq_routes
->entries
[s
->irq_routes
->nr
];
990 kvm_irqchip_commit_routes(s
);
993 static unsigned int kvm_hash_msi(uint32_t data
)
995 /* This is optimized for IA32 MSI layout. However, no other arch shall
996 * repeat the mistake of not providing a direct MSI injection API. */
1000 static void kvm_flush_dynamic_msi_routes(KVMState
*s
)
1002 KVMMSIRoute
*route
, *next
;
1005 for (hash
= 0; hash
< KVM_MSI_HASHTAB_SIZE
; hash
++) {
1006 QTAILQ_FOREACH_SAFE(route
, &s
->msi_hashtab
[hash
], entry
, next
) {
1007 kvm_irqchip_release_virq(s
, route
->kroute
.gsi
);
1008 QTAILQ_REMOVE(&s
->msi_hashtab
[hash
], route
, entry
);
1014 static int kvm_irqchip_get_virq(KVMState
*s
)
1016 uint32_t *word
= s
->used_gsi_bitmap
;
1017 int max_words
= ALIGN(s
->gsi_count
, 32) / 32;
1022 /* Return the lowest unused GSI in the bitmap */
1023 for (i
= 0; i
< max_words
; i
++) {
1024 bit
= ffs(~word
[i
]);
1029 return bit
- 1 + i
* 32;
1031 if (!s
->direct_msi
&& retry
) {
1033 kvm_flush_dynamic_msi_routes(s
);
1040 static KVMMSIRoute
*kvm_lookup_msi_route(KVMState
*s
, MSIMessage msg
)
1042 unsigned int hash
= kvm_hash_msi(msg
.data
);
1045 QTAILQ_FOREACH(route
, &s
->msi_hashtab
[hash
], entry
) {
1046 if (route
->kroute
.u
.msi
.address_lo
== (uint32_t)msg
.address
&&
1047 route
->kroute
.u
.msi
.address_hi
== (msg
.address
>> 32) &&
1048 route
->kroute
.u
.msi
.data
== msg
.data
) {
1055 int kvm_irqchip_send_msi(KVMState
*s
, MSIMessage msg
)
1060 if (s
->direct_msi
) {
1061 msi
.address_lo
= (uint32_t)msg
.address
;
1062 msi
.address_hi
= msg
.address
>> 32;
1063 msi
.data
= msg
.data
;
1065 memset(msi
.pad
, 0, sizeof(msi
.pad
));
1067 return kvm_vm_ioctl(s
, KVM_SIGNAL_MSI
, &msi
);
1070 route
= kvm_lookup_msi_route(s
, msg
);
1074 virq
= kvm_irqchip_get_virq(s
);
1079 route
= g_malloc(sizeof(KVMMSIRoute
));
1080 route
->kroute
.gsi
= virq
;
1081 route
->kroute
.type
= KVM_IRQ_ROUTING_MSI
;
1082 route
->kroute
.flags
= 0;
1083 route
->kroute
.u
.msi
.address_lo
= (uint32_t)msg
.address
;
1084 route
->kroute
.u
.msi
.address_hi
= msg
.address
>> 32;
1085 route
->kroute
.u
.msi
.data
= msg
.data
;
1087 kvm_add_routing_entry(s
, &route
->kroute
);
1089 QTAILQ_INSERT_TAIL(&s
->msi_hashtab
[kvm_hash_msi(msg
.data
)], route
,
1093 assert(route
->kroute
.type
== KVM_IRQ_ROUTING_MSI
);
1095 return kvm_set_irq(s
, route
->kroute
.gsi
, 1);
1098 int kvm_irqchip_add_msi_route(KVMState
*s
, MSIMessage msg
)
1100 struct kvm_irq_routing_entry kroute
;
1103 if (!kvm_gsi_routing_enabled()) {
1107 virq
= kvm_irqchip_get_virq(s
);
1113 kroute
.type
= KVM_IRQ_ROUTING_MSI
;
1115 kroute
.u
.msi
.address_lo
= (uint32_t)msg
.address
;
1116 kroute
.u
.msi
.address_hi
= msg
.address
>> 32;
1117 kroute
.u
.msi
.data
= msg
.data
;
1119 kvm_add_routing_entry(s
, &kroute
);
1124 static int kvm_irqchip_assign_irqfd(KVMState
*s
, int fd
, int virq
, bool assign
)
1126 struct kvm_irqfd irqfd
= {
1129 .flags
= assign
? 0 : KVM_IRQFD_FLAG_DEASSIGN
,
1132 if (!kvm_irqfds_enabled()) {
1136 return kvm_vm_ioctl(s
, KVM_IRQFD
, &irqfd
);
1139 #else /* !KVM_CAP_IRQ_ROUTING */
1141 static void kvm_init_irq_routing(KVMState
*s
)
1145 void kvm_irqchip_release_virq(KVMState
*s
, int virq
)
1149 int kvm_irqchip_send_msi(KVMState
*s
, MSIMessage msg
)
1154 int kvm_irqchip_add_msi_route(KVMState
*s
, MSIMessage msg
)
1159 static int kvm_irqchip_assign_irqfd(KVMState
*s
, int fd
, int virq
, bool assign
)
1163 #endif /* !KVM_CAP_IRQ_ROUTING */
1165 int kvm_irqchip_add_irqfd(KVMState
*s
, int fd
, int virq
)
1167 return kvm_irqchip_assign_irqfd(s
, fd
, virq
, true);
1170 int kvm_irqchip_add_irq_notifier(KVMState
*s
, EventNotifier
*n
, int virq
)
1172 return kvm_irqchip_add_irqfd(s
, event_notifier_get_fd(n
), virq
);
1175 int kvm_irqchip_remove_irqfd(KVMState
*s
, int fd
, int virq
)
1177 return kvm_irqchip_assign_irqfd(s
, fd
, virq
, false);
1180 int kvm_irqchip_remove_irq_notifier(KVMState
*s
, EventNotifier
*n
, int virq
)
1182 return kvm_irqchip_remove_irqfd(s
, event_notifier_get_fd(n
), virq
);
1185 static int kvm_irqchip_create(KVMState
*s
)
1187 QemuOptsList
*list
= qemu_find_opts("machine");
1190 if (QTAILQ_EMPTY(&list
->head
) ||
1191 !qemu_opt_get_bool(QTAILQ_FIRST(&list
->head
),
1192 "kernel_irqchip", true) ||
1193 !kvm_check_extension(s
, KVM_CAP_IRQCHIP
)) {
1197 ret
= kvm_vm_ioctl(s
, KVM_CREATE_IRQCHIP
);
1199 fprintf(stderr
, "Create kernel irqchip failed\n");
1203 s
->irqchip_inject_ioctl
= KVM_IRQ_LINE
;
1204 if (kvm_check_extension(s
, KVM_CAP_IRQ_INJECT_STATUS
)) {
1205 s
->irqchip_inject_ioctl
= KVM_IRQ_LINE_STATUS
;
1207 kvm_kernel_irqchip
= true;
1208 /* If we have an in-kernel IRQ chip then we must have asynchronous
1209 * interrupt delivery (though the reverse is not necessarily true)
1211 kvm_async_interrupts_allowed
= true;
1213 kvm_init_irq_routing(s
);
1218 static int kvm_max_vcpus(KVMState
*s
)
1222 /* Find number of supported CPUs using the recommended
1223 * procedure from the kernel API documentation to cope with
1224 * older kernels that may be missing capabilities.
1226 ret
= kvm_check_extension(s
, KVM_CAP_MAX_VCPUS
);
1230 ret
= kvm_check_extension(s
, KVM_CAP_NR_VCPUS
);
1240 static const char upgrade_note
[] =
1241 "Please upgrade to at least kernel 2.6.29 or recent kvm-kmod\n"
1242 "(see http://sourceforge.net/projects/kvm).\n";
1244 const KVMCapabilityInfo
*missing_cap
;
1249 s
= g_malloc0(sizeof(KVMState
));
1252 * On systems where the kernel can support different base page
1253 * sizes, host page size may be different from TARGET_PAGE_SIZE,
1254 * even with KVM. TARGET_PAGE_SIZE is assumed to be the minimum
1255 * page size for the system though.
1257 assert(TARGET_PAGE_SIZE
<= getpagesize());
1259 #ifdef KVM_CAP_SET_GUEST_DEBUG
1260 QTAILQ_INIT(&s
->kvm_sw_breakpoints
);
1262 for (i
= 0; i
< ARRAY_SIZE(s
->slots
); i
++) {
1263 s
->slots
[i
].slot
= i
;
1266 s
->fd
= qemu_open("/dev/kvm", O_RDWR
);
1268 fprintf(stderr
, "Could not access KVM kernel module: %m\n");
1273 ret
= kvm_ioctl(s
, KVM_GET_API_VERSION
, 0);
1274 if (ret
< KVM_API_VERSION
) {
1278 fprintf(stderr
, "kvm version too old\n");
1282 if (ret
> KVM_API_VERSION
) {
1284 fprintf(stderr
, "kvm version not supported\n");
1288 max_vcpus
= kvm_max_vcpus(s
);
1289 if (smp_cpus
> max_vcpus
) {
1291 fprintf(stderr
, "Number of SMP cpus requested (%d) exceeds max cpus "
1292 "supported by KVM (%d)\n", smp_cpus
, max_vcpus
);
1296 s
->vmfd
= kvm_ioctl(s
, KVM_CREATE_VM
, 0);
1299 fprintf(stderr
, "Please add the 'switch_amode' kernel parameter to "
1300 "your host kernel command line\n");
1306 missing_cap
= kvm_check_extension_list(s
, kvm_required_capabilites
);
1309 kvm_check_extension_list(s
, kvm_arch_required_capabilities
);
1313 fprintf(stderr
, "kvm does not support %s\n%s",
1314 missing_cap
->name
, upgrade_note
);
1318 s
->coalesced_mmio
= kvm_check_extension(s
, KVM_CAP_COALESCED_MMIO
);
1320 s
->broken_set_mem_region
= 1;
1321 ret
= kvm_check_extension(s
, KVM_CAP_JOIN_MEMORY_REGIONS_WORKS
);
1323 s
->broken_set_mem_region
= 0;
1326 #ifdef KVM_CAP_VCPU_EVENTS
1327 s
->vcpu_events
= kvm_check_extension(s
, KVM_CAP_VCPU_EVENTS
);
1330 s
->robust_singlestep
=
1331 kvm_check_extension(s
, KVM_CAP_X86_ROBUST_SINGLESTEP
);
1333 #ifdef KVM_CAP_DEBUGREGS
1334 s
->debugregs
= kvm_check_extension(s
, KVM_CAP_DEBUGREGS
);
1337 #ifdef KVM_CAP_XSAVE
1338 s
->xsave
= kvm_check_extension(s
, KVM_CAP_XSAVE
);
1342 s
->xcrs
= kvm_check_extension(s
, KVM_CAP_XCRS
);
1345 #ifdef KVM_CAP_PIT_STATE2
1346 s
->pit_state2
= kvm_check_extension(s
, KVM_CAP_PIT_STATE2
);
1349 #ifdef KVM_CAP_IRQ_ROUTING
1350 s
->direct_msi
= (kvm_check_extension(s
, KVM_CAP_SIGNAL_MSI
) > 0);
1353 ret
= kvm_arch_init(s
);
1358 ret
= kvm_irqchip_create(s
);
1364 memory_listener_register(&kvm_memory_listener
, NULL
);
1366 s
->many_ioeventfds
= kvm_check_many_ioeventfds();
1368 cpu_interrupt_handler
= kvm_handle_interrupt
;
1386 static void kvm_handle_io(uint16_t port
, void *data
, int direction
, int size
,
1390 uint8_t *ptr
= data
;
1392 for (i
= 0; i
< count
; i
++) {
1393 if (direction
== KVM_EXIT_IO_IN
) {
1396 stb_p(ptr
, cpu_inb(port
));
1399 stw_p(ptr
, cpu_inw(port
));
1402 stl_p(ptr
, cpu_inl(port
));
1408 cpu_outb(port
, ldub_p(ptr
));
1411 cpu_outw(port
, lduw_p(ptr
));
1414 cpu_outl(port
, ldl_p(ptr
));
1423 static int kvm_handle_internal_error(CPUArchState
*env
, struct kvm_run
*run
)
1425 fprintf(stderr
, "KVM internal error.");
1426 if (kvm_check_extension(kvm_state
, KVM_CAP_INTERNAL_ERROR_DATA
)) {
1429 fprintf(stderr
, " Suberror: %d\n", run
->internal
.suberror
);
1430 for (i
= 0; i
< run
->internal
.ndata
; ++i
) {
1431 fprintf(stderr
, "extra data[%d]: %"PRIx64
"\n",
1432 i
, (uint64_t)run
->internal
.data
[i
]);
1435 fprintf(stderr
, "\n");
1437 if (run
->internal
.suberror
== KVM_INTERNAL_ERROR_EMULATION
) {
1438 fprintf(stderr
, "emulation failure\n");
1439 if (!kvm_arch_stop_on_emulation_error(env
)) {
1440 cpu_dump_state(env
, stderr
, fprintf
, CPU_DUMP_CODE
);
1441 return EXCP_INTERRUPT
;
1444 /* FIXME: Should trigger a qmp message to let management know
1445 * something went wrong.
1450 void kvm_flush_coalesced_mmio_buffer(void)
1452 KVMState
*s
= kvm_state
;
1454 if (s
->coalesced_flush_in_progress
) {
1458 s
->coalesced_flush_in_progress
= true;
1460 if (s
->coalesced_mmio_ring
) {
1461 struct kvm_coalesced_mmio_ring
*ring
= s
->coalesced_mmio_ring
;
1462 while (ring
->first
!= ring
->last
) {
1463 struct kvm_coalesced_mmio
*ent
;
1465 ent
= &ring
->coalesced_mmio
[ring
->first
];
1467 cpu_physical_memory_write(ent
->phys_addr
, ent
->data
, ent
->len
);
1469 ring
->first
= (ring
->first
+ 1) % KVM_COALESCED_MMIO_MAX
;
1473 s
->coalesced_flush_in_progress
= false;
1476 static void do_kvm_cpu_synchronize_state(void *_env
)
1478 CPUArchState
*env
= _env
;
1480 if (!env
->kvm_vcpu_dirty
) {
1481 kvm_arch_get_registers(env
);
1482 env
->kvm_vcpu_dirty
= 1;
1486 void kvm_cpu_synchronize_state(CPUArchState
*env
)
1488 if (!env
->kvm_vcpu_dirty
) {
1489 run_on_cpu(env
, do_kvm_cpu_synchronize_state
, env
);
1493 void kvm_cpu_synchronize_post_reset(CPUArchState
*env
)
1495 kvm_arch_put_registers(env
, KVM_PUT_RESET_STATE
);
1496 env
->kvm_vcpu_dirty
= 0;
1499 void kvm_cpu_synchronize_post_init(CPUArchState
*env
)
1501 kvm_arch_put_registers(env
, KVM_PUT_FULL_STATE
);
1502 env
->kvm_vcpu_dirty
= 0;
1505 int kvm_cpu_exec(CPUArchState
*env
)
1507 struct kvm_run
*run
= env
->kvm_run
;
1510 DPRINTF("kvm_cpu_exec()\n");
1512 if (kvm_arch_process_async_events(env
)) {
1513 env
->exit_request
= 0;
1518 if (env
->kvm_vcpu_dirty
) {
1519 kvm_arch_put_registers(env
, KVM_PUT_RUNTIME_STATE
);
1520 env
->kvm_vcpu_dirty
= 0;
1523 kvm_arch_pre_run(env
, run
);
1524 if (env
->exit_request
) {
1525 DPRINTF("interrupt exit requested\n");
1527 * KVM requires us to reenter the kernel after IO exits to complete
1528 * instruction emulation. This self-signal will ensure that we
1531 qemu_cpu_kick_self();
1533 qemu_mutex_unlock_iothread();
1535 run_ret
= kvm_vcpu_ioctl(env
, KVM_RUN
, 0);
1537 qemu_mutex_lock_iothread();
1538 kvm_arch_post_run(env
, run
);
1540 kvm_flush_coalesced_mmio_buffer();
1543 if (run_ret
== -EINTR
|| run_ret
== -EAGAIN
) {
1544 DPRINTF("io window exit\n");
1545 ret
= EXCP_INTERRUPT
;
1548 fprintf(stderr
, "error: kvm run failed %s\n",
1549 strerror(-run_ret
));
1553 switch (run
->exit_reason
) {
1555 DPRINTF("handle_io\n");
1556 kvm_handle_io(run
->io
.port
,
1557 (uint8_t *)run
+ run
->io
.data_offset
,
1564 DPRINTF("handle_mmio\n");
1565 cpu_physical_memory_rw(run
->mmio
.phys_addr
,
1568 run
->mmio
.is_write
);
1571 case KVM_EXIT_IRQ_WINDOW_OPEN
:
1572 DPRINTF("irq_window_open\n");
1573 ret
= EXCP_INTERRUPT
;
1575 case KVM_EXIT_SHUTDOWN
:
1576 DPRINTF("shutdown\n");
1577 qemu_system_reset_request();
1578 ret
= EXCP_INTERRUPT
;
1580 case KVM_EXIT_UNKNOWN
:
1581 fprintf(stderr
, "KVM: unknown exit, hardware reason %" PRIx64
"\n",
1582 (uint64_t)run
->hw
.hardware_exit_reason
);
1585 case KVM_EXIT_INTERNAL_ERROR
:
1586 ret
= kvm_handle_internal_error(env
, run
);
1589 DPRINTF("kvm_arch_handle_exit\n");
1590 ret
= kvm_arch_handle_exit(env
, run
);
1596 cpu_dump_state(env
, stderr
, fprintf
, CPU_DUMP_CODE
);
1597 vm_stop(RUN_STATE_INTERNAL_ERROR
);
1600 env
->exit_request
= 0;
1604 int kvm_ioctl(KVMState
*s
, int type
, ...)
1611 arg
= va_arg(ap
, void *);
1614 ret
= ioctl(s
->fd
, type
, arg
);
1621 int kvm_vm_ioctl(KVMState
*s
, int type
, ...)
1628 arg
= va_arg(ap
, void *);
1631 ret
= ioctl(s
->vmfd
, type
, arg
);
1638 int kvm_vcpu_ioctl(CPUArchState
*env
, int type
, ...)
1645 arg
= va_arg(ap
, void *);
1648 ret
= ioctl(env
->kvm_fd
, type
, arg
);
1655 int kvm_has_sync_mmu(void)
1657 return kvm_check_extension(kvm_state
, KVM_CAP_SYNC_MMU
);
1660 int kvm_has_vcpu_events(void)
1662 return kvm_state
->vcpu_events
;
1665 int kvm_has_robust_singlestep(void)
1667 return kvm_state
->robust_singlestep
;
1670 int kvm_has_debugregs(void)
1672 return kvm_state
->debugregs
;
1675 int kvm_has_xsave(void)
1677 return kvm_state
->xsave
;
1680 int kvm_has_xcrs(void)
1682 return kvm_state
->xcrs
;
1685 int kvm_has_pit_state2(void)
1687 return kvm_state
->pit_state2
;
1690 int kvm_has_many_ioeventfds(void)
1692 if (!kvm_enabled()) {
1695 return kvm_state
->many_ioeventfds
;
1698 int kvm_has_gsi_routing(void)
1700 #ifdef KVM_CAP_IRQ_ROUTING
1701 return kvm_check_extension(kvm_state
, KVM_CAP_IRQ_ROUTING
);
1707 void *kvm_vmalloc(ram_addr_t size
)
1712 mem
= kvm_arch_vmalloc(size
);
1717 return qemu_vmalloc(size
);
1720 void kvm_setup_guest_memory(void *start
, size_t size
)
1722 if (!kvm_has_sync_mmu()) {
1723 int ret
= qemu_madvise(start
, size
, QEMU_MADV_DONTFORK
);
1726 perror("qemu_madvise");
1728 "Need MADV_DONTFORK in absence of synchronous KVM MMU\n");
1734 #ifdef KVM_CAP_SET_GUEST_DEBUG
1735 struct kvm_sw_breakpoint
*kvm_find_sw_breakpoint(CPUArchState
*env
,
1738 struct kvm_sw_breakpoint
*bp
;
1740 QTAILQ_FOREACH(bp
, &env
->kvm_state
->kvm_sw_breakpoints
, entry
) {
1748 int kvm_sw_breakpoints_active(CPUArchState
*env
)
1750 return !QTAILQ_EMPTY(&env
->kvm_state
->kvm_sw_breakpoints
);
1753 struct kvm_set_guest_debug_data
{
1754 struct kvm_guest_debug dbg
;
1759 static void kvm_invoke_set_guest_debug(void *data
)
1761 struct kvm_set_guest_debug_data
*dbg_data
= data
;
1762 CPUArchState
*env
= dbg_data
->env
;
1764 dbg_data
->err
= kvm_vcpu_ioctl(env
, KVM_SET_GUEST_DEBUG
, &dbg_data
->dbg
);
1767 int kvm_update_guest_debug(CPUArchState
*env
, unsigned long reinject_trap
)
1769 struct kvm_set_guest_debug_data data
;
1771 data
.dbg
.control
= reinject_trap
;
1773 if (env
->singlestep_enabled
) {
1774 data
.dbg
.control
|= KVM_GUESTDBG_ENABLE
| KVM_GUESTDBG_SINGLESTEP
;
1776 kvm_arch_update_guest_debug(env
, &data
.dbg
);
1779 run_on_cpu(env
, kvm_invoke_set_guest_debug
, &data
);
1783 int kvm_insert_breakpoint(CPUArchState
*current_env
, target_ulong addr
,
1784 target_ulong len
, int type
)
1786 struct kvm_sw_breakpoint
*bp
;
1790 if (type
== GDB_BREAKPOINT_SW
) {
1791 bp
= kvm_find_sw_breakpoint(current_env
, addr
);
1797 bp
= g_malloc(sizeof(struct kvm_sw_breakpoint
));
1804 err
= kvm_arch_insert_sw_breakpoint(current_env
, bp
);
1810 QTAILQ_INSERT_HEAD(¤t_env
->kvm_state
->kvm_sw_breakpoints
,
1813 err
= kvm_arch_insert_hw_breakpoint(addr
, len
, type
);
1819 for (env
= first_cpu
; env
!= NULL
; env
= env
->next_cpu
) {
1820 err
= kvm_update_guest_debug(env
, 0);
1828 int kvm_remove_breakpoint(CPUArchState
*current_env
, target_ulong addr
,
1829 target_ulong len
, int type
)
1831 struct kvm_sw_breakpoint
*bp
;
1835 if (type
== GDB_BREAKPOINT_SW
) {
1836 bp
= kvm_find_sw_breakpoint(current_env
, addr
);
1841 if (bp
->use_count
> 1) {
1846 err
= kvm_arch_remove_sw_breakpoint(current_env
, bp
);
1851 QTAILQ_REMOVE(¤t_env
->kvm_state
->kvm_sw_breakpoints
, bp
, entry
);
1854 err
= kvm_arch_remove_hw_breakpoint(addr
, len
, type
);
1860 for (env
= first_cpu
; env
!= NULL
; env
= env
->next_cpu
) {
1861 err
= kvm_update_guest_debug(env
, 0);
1869 void kvm_remove_all_breakpoints(CPUArchState
*current_env
)
1871 struct kvm_sw_breakpoint
*bp
, *next
;
1872 KVMState
*s
= current_env
->kvm_state
;
1875 QTAILQ_FOREACH_SAFE(bp
, &s
->kvm_sw_breakpoints
, entry
, next
) {
1876 if (kvm_arch_remove_sw_breakpoint(current_env
, bp
) != 0) {
1877 /* Try harder to find a CPU that currently sees the breakpoint. */
1878 for (env
= first_cpu
; env
!= NULL
; env
= env
->next_cpu
) {
1879 if (kvm_arch_remove_sw_breakpoint(env
, bp
) == 0) {
1885 kvm_arch_remove_all_hw_breakpoints();
1887 for (env
= first_cpu
; env
!= NULL
; env
= env
->next_cpu
) {
1888 kvm_update_guest_debug(env
, 0);
1892 #else /* !KVM_CAP_SET_GUEST_DEBUG */
1894 int kvm_update_guest_debug(CPUArchState
*env
, unsigned long reinject_trap
)
1899 int kvm_insert_breakpoint(CPUArchState
*current_env
, target_ulong addr
,
1900 target_ulong len
, int type
)
1905 int kvm_remove_breakpoint(CPUArchState
*current_env
, target_ulong addr
,
1906 target_ulong len
, int type
)
1911 void kvm_remove_all_breakpoints(CPUArchState
*current_env
)
1914 #endif /* !KVM_CAP_SET_GUEST_DEBUG */
1916 int kvm_set_signal_mask(CPUArchState
*env
, const sigset_t
*sigset
)
1918 struct kvm_signal_mask
*sigmask
;
1922 return kvm_vcpu_ioctl(env
, KVM_SET_SIGNAL_MASK
, NULL
);
1925 sigmask
= g_malloc(sizeof(*sigmask
) + sizeof(*sigset
));
1928 memcpy(sigmask
->sigset
, sigset
, sizeof(*sigset
));
1929 r
= kvm_vcpu_ioctl(env
, KVM_SET_SIGNAL_MASK
, sigmask
);
1935 int kvm_set_ioeventfd_mmio(int fd
, uint32_t addr
, uint32_t val
, bool assign
,
1939 struct kvm_ioeventfd iofd
;
1941 iofd
.datamatch
= val
;
1944 iofd
.flags
= KVM_IOEVENTFD_FLAG_DATAMATCH
;
1947 if (!kvm_enabled()) {
1952 iofd
.flags
|= KVM_IOEVENTFD_FLAG_DEASSIGN
;
1955 ret
= kvm_vm_ioctl(kvm_state
, KVM_IOEVENTFD
, &iofd
);
1964 int kvm_set_ioeventfd_pio_word(int fd
, uint16_t addr
, uint16_t val
, bool assign
)
1966 struct kvm_ioeventfd kick
= {
1970 .flags
= KVM_IOEVENTFD_FLAG_DATAMATCH
| KVM_IOEVENTFD_FLAG_PIO
,
1974 if (!kvm_enabled()) {
1978 kick
.flags
|= KVM_IOEVENTFD_FLAG_DEASSIGN
;
1980 r
= kvm_vm_ioctl(kvm_state
, KVM_IOEVENTFD
, &kick
);
1987 int kvm_on_sigbus_vcpu(CPUArchState
*env
, int code
, void *addr
)
1989 return kvm_arch_on_sigbus_vcpu(env
, code
, addr
);
1992 int kvm_on_sigbus(int code
, void *addr
)
1994 return kvm_arch_on_sigbus(code
, addr
);