qemu-ga: fix bsd build, and re-org linux-specific implementations
[qemu/ar7.git] / target-xtensa / helper.c
blobdab135c4a96809dc04fe3cc48ef9a770adccb48e
1 /*
2 * Copyright (c) 2011, Max Filippov, Open Source and Linux Lab.
3 * All rights reserved.
5 * Redistribution and use in source and binary forms, with or without
6 * modification, are permitted provided that the following conditions are met:
7 * * Redistributions of source code must retain the above copyright
8 * notice, this list of conditions and the following disclaimer.
9 * * Redistributions in binary form must reproduce the above copyright
10 * notice, this list of conditions and the following disclaimer in the
11 * documentation and/or other materials provided with the distribution.
12 * * Neither the name of the Open Source and Linux Lab nor the
13 * names of its contributors may be used to endorse or promote products
14 * derived from this software without specific prior written permission.
16 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
17 * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
18 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
19 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY
20 * DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
21 * (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
22 * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND
23 * ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
24 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
25 * SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
28 #include "cpu.h"
29 #include "exec-all.h"
30 #include "gdbstub.h"
31 #include "host-utils.h"
32 #if !defined(CONFIG_USER_ONLY)
33 #include "hw/loader.h"
34 #endif
36 static void reset_mmu(CPUXtensaState *env);
38 void cpu_state_reset(CPUXtensaState *env)
40 env->exception_taken = 0;
41 env->pc = env->config->exception_vector[EXC_RESET];
42 env->sregs[LITBASE] &= ~1;
43 env->sregs[PS] = xtensa_option_enabled(env->config,
44 XTENSA_OPTION_INTERRUPT) ? 0x1f : 0x10;
45 env->sregs[VECBASE] = env->config->vecbase;
46 env->sregs[IBREAKENABLE] = 0;
48 env->pending_irq_level = 0;
49 reset_mmu(env);
52 static struct XtensaConfigList *xtensa_cores;
54 void xtensa_register_core(XtensaConfigList *node)
56 node->next = xtensa_cores;
57 xtensa_cores = node;
60 static uint32_t check_hw_breakpoints(CPUXtensaState *env)
62 unsigned i;
64 for (i = 0; i < env->config->ndbreak; ++i) {
65 if (env->cpu_watchpoint[i] &&
66 env->cpu_watchpoint[i]->flags & BP_WATCHPOINT_HIT) {
67 return DEBUGCAUSE_DB | (i << DEBUGCAUSE_DBNUM_SHIFT);
70 return 0;
73 static CPUDebugExcpHandler *prev_debug_excp_handler;
75 static void breakpoint_handler(CPUXtensaState *env)
77 if (env->watchpoint_hit) {
78 if (env->watchpoint_hit->flags & BP_CPU) {
79 uint32_t cause;
81 env->watchpoint_hit = NULL;
82 cause = check_hw_breakpoints(env);
83 if (cause) {
84 debug_exception_env(env, cause);
86 cpu_resume_from_signal(env, NULL);
89 if (prev_debug_excp_handler) {
90 prev_debug_excp_handler(env);
94 CPUXtensaState *cpu_xtensa_init(const char *cpu_model)
96 static int tcg_inited;
97 static int debug_handler_inited;
98 CPUXtensaState *env;
99 const XtensaConfig *config = NULL;
100 XtensaConfigList *core = xtensa_cores;
102 for (; core; core = core->next)
103 if (strcmp(core->config->name, cpu_model) == 0) {
104 config = core->config;
105 break;
108 if (config == NULL) {
109 return NULL;
112 env = g_malloc0(sizeof(*env));
113 env->config = config;
114 cpu_exec_init(env);
116 if (!tcg_inited) {
117 tcg_inited = 1;
118 xtensa_translate_init();
121 if (!debug_handler_inited && tcg_enabled()) {
122 debug_handler_inited = 1;
123 prev_debug_excp_handler =
124 cpu_set_debug_excp_handler(breakpoint_handler);
127 xtensa_irq_init(env);
128 qemu_init_vcpu(env);
129 return env;
133 void xtensa_cpu_list(FILE *f, fprintf_function cpu_fprintf)
135 XtensaConfigList *core = xtensa_cores;
136 cpu_fprintf(f, "Available CPUs:\n");
137 for (; core; core = core->next) {
138 cpu_fprintf(f, " %s\n", core->config->name);
142 target_phys_addr_t cpu_get_phys_page_debug(CPUXtensaState *env, target_ulong addr)
144 uint32_t paddr;
145 uint32_t page_size;
146 unsigned access;
148 if (xtensa_get_physical_addr(env, addr, 0, 0,
149 &paddr, &page_size, &access) == 0) {
150 return paddr;
152 if (xtensa_get_physical_addr(env, addr, 2, 0,
153 &paddr, &page_size, &access) == 0) {
154 return paddr;
156 return ~0;
159 static uint32_t relocated_vector(CPUXtensaState *env, uint32_t vector)
161 if (xtensa_option_enabled(env->config,
162 XTENSA_OPTION_RELOCATABLE_VECTOR)) {
163 return vector - env->config->vecbase + env->sregs[VECBASE];
164 } else {
165 return vector;
170 * Handle penging IRQ.
171 * For the high priority interrupt jump to the corresponding interrupt vector.
172 * For the level-1 interrupt convert it to either user, kernel or double
173 * exception with the 'level-1 interrupt' exception cause.
175 static void handle_interrupt(CPUXtensaState *env)
177 int level = env->pending_irq_level;
179 if (level > xtensa_get_cintlevel(env) &&
180 level <= env->config->nlevel &&
181 (env->config->level_mask[level] &
182 env->sregs[INTSET] &
183 env->sregs[INTENABLE])) {
184 if (level > 1) {
185 env->sregs[EPC1 + level - 1] = env->pc;
186 env->sregs[EPS2 + level - 2] = env->sregs[PS];
187 env->sregs[PS] =
188 (env->sregs[PS] & ~PS_INTLEVEL) | level | PS_EXCM;
189 env->pc = relocated_vector(env,
190 env->config->interrupt_vector[level]);
191 } else {
192 env->sregs[EXCCAUSE] = LEVEL1_INTERRUPT_CAUSE;
194 if (env->sregs[PS] & PS_EXCM) {
195 if (env->config->ndepc) {
196 env->sregs[DEPC] = env->pc;
197 } else {
198 env->sregs[EPC1] = env->pc;
200 env->exception_index = EXC_DOUBLE;
201 } else {
202 env->sregs[EPC1] = env->pc;
203 env->exception_index =
204 (env->sregs[PS] & PS_UM) ? EXC_USER : EXC_KERNEL;
206 env->sregs[PS] |= PS_EXCM;
208 env->exception_taken = 1;
212 void do_interrupt(CPUXtensaState *env)
214 if (env->exception_index == EXC_IRQ) {
215 qemu_log_mask(CPU_LOG_INT,
216 "%s(EXC_IRQ) level = %d, cintlevel = %d, "
217 "pc = %08x, a0 = %08x, ps = %08x, "
218 "intset = %08x, intenable = %08x, "
219 "ccount = %08x\n",
220 __func__, env->pending_irq_level, xtensa_get_cintlevel(env),
221 env->pc, env->regs[0], env->sregs[PS],
222 env->sregs[INTSET], env->sregs[INTENABLE],
223 env->sregs[CCOUNT]);
224 handle_interrupt(env);
227 switch (env->exception_index) {
228 case EXC_WINDOW_OVERFLOW4:
229 case EXC_WINDOW_UNDERFLOW4:
230 case EXC_WINDOW_OVERFLOW8:
231 case EXC_WINDOW_UNDERFLOW8:
232 case EXC_WINDOW_OVERFLOW12:
233 case EXC_WINDOW_UNDERFLOW12:
234 case EXC_KERNEL:
235 case EXC_USER:
236 case EXC_DOUBLE:
237 case EXC_DEBUG:
238 qemu_log_mask(CPU_LOG_INT, "%s(%d) "
239 "pc = %08x, a0 = %08x, ps = %08x, ccount = %08x\n",
240 __func__, env->exception_index,
241 env->pc, env->regs[0], env->sregs[PS], env->sregs[CCOUNT]);
242 if (env->config->exception_vector[env->exception_index]) {
243 env->pc = relocated_vector(env,
244 env->config->exception_vector[env->exception_index]);
245 env->exception_taken = 1;
246 } else {
247 qemu_log("%s(pc = %08x) bad exception_index: %d\n",
248 __func__, env->pc, env->exception_index);
250 break;
252 case EXC_IRQ:
253 break;
255 default:
256 qemu_log("%s(pc = %08x) unknown exception_index: %d\n",
257 __func__, env->pc, env->exception_index);
258 break;
260 check_interrupts(env);
263 static void reset_tlb_mmu_all_ways(CPUXtensaState *env,
264 const xtensa_tlb *tlb, xtensa_tlb_entry entry[][MAX_TLB_WAY_SIZE])
266 unsigned wi, ei;
268 for (wi = 0; wi < tlb->nways; ++wi) {
269 for (ei = 0; ei < tlb->way_size[wi]; ++ei) {
270 entry[wi][ei].asid = 0;
271 entry[wi][ei].variable = true;
276 static void reset_tlb_mmu_ways56(CPUXtensaState *env,
277 const xtensa_tlb *tlb, xtensa_tlb_entry entry[][MAX_TLB_WAY_SIZE])
279 if (!tlb->varway56) {
280 static const xtensa_tlb_entry way5[] = {
282 .vaddr = 0xd0000000,
283 .paddr = 0,
284 .asid = 1,
285 .attr = 7,
286 .variable = false,
287 }, {
288 .vaddr = 0xd8000000,
289 .paddr = 0,
290 .asid = 1,
291 .attr = 3,
292 .variable = false,
295 static const xtensa_tlb_entry way6[] = {
297 .vaddr = 0xe0000000,
298 .paddr = 0xf0000000,
299 .asid = 1,
300 .attr = 7,
301 .variable = false,
302 }, {
303 .vaddr = 0xf0000000,
304 .paddr = 0xf0000000,
305 .asid = 1,
306 .attr = 3,
307 .variable = false,
310 memcpy(entry[5], way5, sizeof(way5));
311 memcpy(entry[6], way6, sizeof(way6));
312 } else {
313 uint32_t ei;
314 for (ei = 0; ei < 8; ++ei) {
315 entry[6][ei].vaddr = ei << 29;
316 entry[6][ei].paddr = ei << 29;
317 entry[6][ei].asid = 1;
318 entry[6][ei].attr = 3;
323 static void reset_tlb_region_way0(CPUXtensaState *env,
324 xtensa_tlb_entry entry[][MAX_TLB_WAY_SIZE])
326 unsigned ei;
328 for (ei = 0; ei < 8; ++ei) {
329 entry[0][ei].vaddr = ei << 29;
330 entry[0][ei].paddr = ei << 29;
331 entry[0][ei].asid = 1;
332 entry[0][ei].attr = 2;
333 entry[0][ei].variable = true;
337 static void reset_mmu(CPUXtensaState *env)
339 if (xtensa_option_enabled(env->config, XTENSA_OPTION_MMU)) {
340 env->sregs[RASID] = 0x04030201;
341 env->sregs[ITLBCFG] = 0;
342 env->sregs[DTLBCFG] = 0;
343 env->autorefill_idx = 0;
344 reset_tlb_mmu_all_ways(env, &env->config->itlb, env->itlb);
345 reset_tlb_mmu_all_ways(env, &env->config->dtlb, env->dtlb);
346 reset_tlb_mmu_ways56(env, &env->config->itlb, env->itlb);
347 reset_tlb_mmu_ways56(env, &env->config->dtlb, env->dtlb);
348 } else {
349 reset_tlb_region_way0(env, env->itlb);
350 reset_tlb_region_way0(env, env->dtlb);
354 static unsigned get_ring(const CPUXtensaState *env, uint8_t asid)
356 unsigned i;
357 for (i = 0; i < 4; ++i) {
358 if (((env->sregs[RASID] >> i * 8) & 0xff) == asid) {
359 return i;
362 return 0xff;
366 * Lookup xtensa TLB for the given virtual address.
367 * See ISA, 4.6.2.2
369 * \param pwi: [out] way index
370 * \param pei: [out] entry index
371 * \param pring: [out] access ring
372 * \return 0 if ok, exception cause code otherwise
374 int xtensa_tlb_lookup(const CPUXtensaState *env, uint32_t addr, bool dtlb,
375 uint32_t *pwi, uint32_t *pei, uint8_t *pring)
377 const xtensa_tlb *tlb = dtlb ?
378 &env->config->dtlb : &env->config->itlb;
379 const xtensa_tlb_entry (*entry)[MAX_TLB_WAY_SIZE] = dtlb ?
380 env->dtlb : env->itlb;
382 int nhits = 0;
383 unsigned wi;
385 for (wi = 0; wi < tlb->nways; ++wi) {
386 uint32_t vpn;
387 uint32_t ei;
388 split_tlb_entry_spec_way(env, addr, dtlb, &vpn, wi, &ei);
389 if (entry[wi][ei].vaddr == vpn && entry[wi][ei].asid) {
390 unsigned ring = get_ring(env, entry[wi][ei].asid);
391 if (ring < 4) {
392 if (++nhits > 1) {
393 return dtlb ?
394 LOAD_STORE_TLB_MULTI_HIT_CAUSE :
395 INST_TLB_MULTI_HIT_CAUSE;
397 *pwi = wi;
398 *pei = ei;
399 *pring = ring;
403 return nhits ? 0 :
404 (dtlb ? LOAD_STORE_TLB_MISS_CAUSE : INST_TLB_MISS_CAUSE);
408 * Convert MMU ATTR to PAGE_{READ,WRITE,EXEC} mask.
409 * See ISA, 4.6.5.10
411 static unsigned mmu_attr_to_access(uint32_t attr)
413 unsigned access = 0;
414 if (attr < 12) {
415 access |= PAGE_READ;
416 if (attr & 0x1) {
417 access |= PAGE_EXEC;
419 if (attr & 0x2) {
420 access |= PAGE_WRITE;
422 } else if (attr == 13) {
423 access |= PAGE_READ | PAGE_WRITE;
425 return access;
429 * Convert region protection ATTR to PAGE_{READ,WRITE,EXEC} mask.
430 * See ISA, 4.6.3.3
432 static unsigned region_attr_to_access(uint32_t attr)
434 unsigned access = 0;
435 if ((attr < 6 && attr != 3) || attr == 14) {
436 access |= PAGE_READ | PAGE_WRITE;
438 if (attr > 0 && attr < 6) {
439 access |= PAGE_EXEC;
441 return access;
444 static bool is_access_granted(unsigned access, int is_write)
446 switch (is_write) {
447 case 0:
448 return access & PAGE_READ;
450 case 1:
451 return access & PAGE_WRITE;
453 case 2:
454 return access & PAGE_EXEC;
456 default:
457 return 0;
461 static int autorefill_mmu(CPUXtensaState *env, uint32_t vaddr, bool dtlb,
462 uint32_t *wi, uint32_t *ei, uint8_t *ring);
464 static int get_physical_addr_mmu(CPUXtensaState *env,
465 uint32_t vaddr, int is_write, int mmu_idx,
466 uint32_t *paddr, uint32_t *page_size, unsigned *access)
468 bool dtlb = is_write != 2;
469 uint32_t wi;
470 uint32_t ei;
471 uint8_t ring;
472 int ret = xtensa_tlb_lookup(env, vaddr, dtlb, &wi, &ei, &ring);
474 if ((ret == INST_TLB_MISS_CAUSE || ret == LOAD_STORE_TLB_MISS_CAUSE) &&
475 (mmu_idx != 0 || ((vaddr ^ env->sregs[PTEVADDR]) & 0xffc00000)) &&
476 autorefill_mmu(env, vaddr, dtlb, &wi, &ei, &ring) == 0) {
477 ret = 0;
479 if (ret != 0) {
480 return ret;
483 const xtensa_tlb_entry *entry =
484 xtensa_tlb_get_entry(env, dtlb, wi, ei);
486 if (ring < mmu_idx) {
487 return dtlb ?
488 LOAD_STORE_PRIVILEGE_CAUSE :
489 INST_FETCH_PRIVILEGE_CAUSE;
492 *access = mmu_attr_to_access(entry->attr);
493 if (!is_access_granted(*access, is_write)) {
494 return dtlb ?
495 (is_write ?
496 STORE_PROHIBITED_CAUSE :
497 LOAD_PROHIBITED_CAUSE) :
498 INST_FETCH_PROHIBITED_CAUSE;
501 *paddr = entry->paddr | (vaddr & ~xtensa_tlb_get_addr_mask(env, dtlb, wi));
502 *page_size = ~xtensa_tlb_get_addr_mask(env, dtlb, wi) + 1;
504 return 0;
507 static int autorefill_mmu(CPUXtensaState *env, uint32_t vaddr, bool dtlb,
508 uint32_t *wi, uint32_t *ei, uint8_t *ring)
510 uint32_t paddr;
511 uint32_t page_size;
512 unsigned access;
513 uint32_t pt_vaddr =
514 (env->sregs[PTEVADDR] | (vaddr >> 10)) & 0xfffffffc;
515 int ret = get_physical_addr_mmu(env, pt_vaddr, 0, 0,
516 &paddr, &page_size, &access);
518 qemu_log("%s: trying autorefill(%08x) -> %08x\n", __func__,
519 vaddr, ret ? ~0 : paddr);
521 if (ret == 0) {
522 uint32_t vpn;
523 uint32_t pte = ldl_phys(paddr);
525 *ring = (pte >> 4) & 0x3;
526 *wi = (++env->autorefill_idx) & 0x3;
527 split_tlb_entry_spec_way(env, vaddr, dtlb, &vpn, *wi, ei);
528 xtensa_tlb_set_entry(env, dtlb, *wi, *ei, vpn, pte);
529 qemu_log("%s: autorefill(%08x): %08x -> %08x\n",
530 __func__, vaddr, vpn, pte);
532 return ret;
535 static int get_physical_addr_region(CPUXtensaState *env,
536 uint32_t vaddr, int is_write, int mmu_idx,
537 uint32_t *paddr, uint32_t *page_size, unsigned *access)
539 bool dtlb = is_write != 2;
540 uint32_t wi = 0;
541 uint32_t ei = (vaddr >> 29) & 0x7;
542 const xtensa_tlb_entry *entry =
543 xtensa_tlb_get_entry(env, dtlb, wi, ei);
545 *access = region_attr_to_access(entry->attr);
546 if (!is_access_granted(*access, is_write)) {
547 return dtlb ?
548 (is_write ?
549 STORE_PROHIBITED_CAUSE :
550 LOAD_PROHIBITED_CAUSE) :
551 INST_FETCH_PROHIBITED_CAUSE;
554 *paddr = entry->paddr | (vaddr & ~REGION_PAGE_MASK);
555 *page_size = ~REGION_PAGE_MASK + 1;
557 return 0;
561 * Convert virtual address to physical addr.
562 * MMU may issue pagewalk and change xtensa autorefill TLB way entry.
564 * \return 0 if ok, exception cause code otherwise
566 int xtensa_get_physical_addr(CPUXtensaState *env,
567 uint32_t vaddr, int is_write, int mmu_idx,
568 uint32_t *paddr, uint32_t *page_size, unsigned *access)
570 if (xtensa_option_enabled(env->config, XTENSA_OPTION_MMU)) {
571 return get_physical_addr_mmu(env, vaddr, is_write, mmu_idx,
572 paddr, page_size, access);
573 } else if (xtensa_option_bits_enabled(env->config,
574 XTENSA_OPTION_BIT(XTENSA_OPTION_REGION_PROTECTION) |
575 XTENSA_OPTION_BIT(XTENSA_OPTION_REGION_TRANSLATION))) {
576 return get_physical_addr_region(env, vaddr, is_write, mmu_idx,
577 paddr, page_size, access);
578 } else {
579 *paddr = vaddr;
580 *page_size = TARGET_PAGE_SIZE;
581 *access = PAGE_READ | PAGE_WRITE | PAGE_EXEC;
582 return 0;
586 static void dump_tlb(FILE *f, fprintf_function cpu_fprintf,
587 CPUXtensaState *env, bool dtlb)
589 unsigned wi, ei;
590 const xtensa_tlb *conf =
591 dtlb ? &env->config->dtlb : &env->config->itlb;
592 unsigned (*attr_to_access)(uint32_t) =
593 xtensa_option_enabled(env->config, XTENSA_OPTION_MMU) ?
594 mmu_attr_to_access : region_attr_to_access;
596 for (wi = 0; wi < conf->nways; ++wi) {
597 uint32_t sz = ~xtensa_tlb_get_addr_mask(env, dtlb, wi) + 1;
598 const char *sz_text;
599 bool print_header = true;
601 if (sz >= 0x100000) {
602 sz >>= 20;
603 sz_text = "MB";
604 } else {
605 sz >>= 10;
606 sz_text = "KB";
609 for (ei = 0; ei < conf->way_size[wi]; ++ei) {
610 const xtensa_tlb_entry *entry =
611 xtensa_tlb_get_entry(env, dtlb, wi, ei);
613 if (entry->asid) {
614 unsigned access = attr_to_access(entry->attr);
616 if (print_header) {
617 print_header = false;
618 cpu_fprintf(f, "Way %u (%d %s)\n", wi, sz, sz_text);
619 cpu_fprintf(f,
620 "\tVaddr Paddr ASID Attr RWX\n"
621 "\t---------- ---------- ---- ---- ---\n");
623 cpu_fprintf(f,
624 "\t0x%08x 0x%08x 0x%02x 0x%02x %c%c%c\n",
625 entry->vaddr,
626 entry->paddr,
627 entry->asid,
628 entry->attr,
629 (access & PAGE_READ) ? 'R' : '-',
630 (access & PAGE_WRITE) ? 'W' : '-',
631 (access & PAGE_EXEC) ? 'X' : '-');
637 void dump_mmu(FILE *f, fprintf_function cpu_fprintf, CPUXtensaState *env)
639 if (xtensa_option_bits_enabled(env->config,
640 XTENSA_OPTION_BIT(XTENSA_OPTION_REGION_PROTECTION) |
641 XTENSA_OPTION_BIT(XTENSA_OPTION_REGION_TRANSLATION) |
642 XTENSA_OPTION_BIT(XTENSA_OPTION_MMU))) {
644 cpu_fprintf(f, "ITLB:\n");
645 dump_tlb(f, cpu_fprintf, env, false);
646 cpu_fprintf(f, "\nDTLB:\n");
647 dump_tlb(f, cpu_fprintf, env, true);
648 } else {
649 cpu_fprintf(f, "No TLB for this CPU core\n");