hw/arm/boot: Don't assume RAM starts at address zero
[qemu/ar7.git] / hw / arm / boot.c
blobbb37a9383f36a873ac2991cd56380c054e6ec2c7
1 /*
2 * ARM kernel loader.
4 * Copyright (c) 2006-2007 CodeSourcery.
5 * Written by Paul Brook
7 * This code is licensed under the GPL.
8 */
10 #include "qemu/osdep.h"
11 #include "qemu-common.h"
12 #include "qemu/error-report.h"
13 #include "qapi/error.h"
14 #include <libfdt.h>
15 #include "hw/hw.h"
16 #include "hw/arm/boot.h"
17 #include "hw/arm/linux-boot-if.h"
18 #include "sysemu/kvm.h"
19 #include "sysemu/sysemu.h"
20 #include "sysemu/numa.h"
21 #include "hw/boards.h"
22 #include "hw/loader.h"
23 #include "elf.h"
24 #include "sysemu/device_tree.h"
25 #include "qemu/config-file.h"
26 #include "qemu/option.h"
27 #include "exec/address-spaces.h"
28 #include "qemu/units.h"
30 /* Kernel boot protocol is specified in the kernel docs
31 * Documentation/arm/Booting and Documentation/arm64/booting.txt
32 * They have different preferred image load offsets from system RAM base.
34 #define KERNEL_ARGS_ADDR 0x100
35 #define KERNEL_NOLOAD_ADDR 0x02000000
36 #define KERNEL_LOAD_ADDR 0x00010000
37 #define KERNEL64_LOAD_ADDR 0x00080000
39 #define ARM64_TEXT_OFFSET_OFFSET 8
40 #define ARM64_MAGIC_OFFSET 56
42 #define BOOTLOADER_MAX_SIZE (4 * KiB)
44 AddressSpace *arm_boot_address_space(ARMCPU *cpu,
45 const struct arm_boot_info *info)
47 /* Return the address space to use for bootloader reads and writes.
48 * We prefer the secure address space if the CPU has it and we're
49 * going to boot the guest into it.
51 int asidx;
52 CPUState *cs = CPU(cpu);
54 if (arm_feature(&cpu->env, ARM_FEATURE_EL3) && info->secure_boot) {
55 asidx = ARMASIdx_S;
56 } else {
57 asidx = ARMASIdx_NS;
60 return cpu_get_address_space(cs, asidx);
63 typedef enum {
64 FIXUP_NONE = 0, /* do nothing */
65 FIXUP_TERMINATOR, /* end of insns */
66 FIXUP_BOARDID, /* overwrite with board ID number */
67 FIXUP_BOARD_SETUP, /* overwrite with board specific setup code address */
68 FIXUP_ARGPTR_LO, /* overwrite with pointer to kernel args */
69 FIXUP_ARGPTR_HI, /* overwrite with pointer to kernel args (high half) */
70 FIXUP_ENTRYPOINT_LO, /* overwrite with kernel entry point */
71 FIXUP_ENTRYPOINT_HI, /* overwrite with kernel entry point (high half) */
72 FIXUP_GIC_CPU_IF, /* overwrite with GIC CPU interface address */
73 FIXUP_BOOTREG, /* overwrite with boot register address */
74 FIXUP_DSB, /* overwrite with correct DSB insn for cpu */
75 FIXUP_MAX,
76 } FixupType;
78 typedef struct ARMInsnFixup {
79 uint32_t insn;
80 FixupType fixup;
81 } ARMInsnFixup;
83 static const ARMInsnFixup bootloader_aarch64[] = {
84 { 0x580000c0 }, /* ldr x0, arg ; Load the lower 32-bits of DTB */
85 { 0xaa1f03e1 }, /* mov x1, xzr */
86 { 0xaa1f03e2 }, /* mov x2, xzr */
87 { 0xaa1f03e3 }, /* mov x3, xzr */
88 { 0x58000084 }, /* ldr x4, entry ; Load the lower 32-bits of kernel entry */
89 { 0xd61f0080 }, /* br x4 ; Jump to the kernel entry point */
90 { 0, FIXUP_ARGPTR_LO }, /* arg: .word @DTB Lower 32-bits */
91 { 0, FIXUP_ARGPTR_HI}, /* .word @DTB Higher 32-bits */
92 { 0, FIXUP_ENTRYPOINT_LO }, /* entry: .word @Kernel Entry Lower 32-bits */
93 { 0, FIXUP_ENTRYPOINT_HI }, /* .word @Kernel Entry Higher 32-bits */
94 { 0, FIXUP_TERMINATOR }
97 /* A very small bootloader: call the board-setup code (if needed),
98 * set r0-r2, then jump to the kernel.
99 * If we're not calling boot setup code then we don't copy across
100 * the first BOOTLOADER_NO_BOARD_SETUP_OFFSET insns in this array.
103 static const ARMInsnFixup bootloader[] = {
104 { 0xe28fe004 }, /* add lr, pc, #4 */
105 { 0xe51ff004 }, /* ldr pc, [pc, #-4] */
106 { 0, FIXUP_BOARD_SETUP },
107 #define BOOTLOADER_NO_BOARD_SETUP_OFFSET 3
108 { 0xe3a00000 }, /* mov r0, #0 */
109 { 0xe59f1004 }, /* ldr r1, [pc, #4] */
110 { 0xe59f2004 }, /* ldr r2, [pc, #4] */
111 { 0xe59ff004 }, /* ldr pc, [pc, #4] */
112 { 0, FIXUP_BOARDID },
113 { 0, FIXUP_ARGPTR_LO },
114 { 0, FIXUP_ENTRYPOINT_LO },
115 { 0, FIXUP_TERMINATOR }
118 /* Handling for secondary CPU boot in a multicore system.
119 * Unlike the uniprocessor/primary CPU boot, this is platform
120 * dependent. The default code here is based on the secondary
121 * CPU boot protocol used on realview/vexpress boards, with
122 * some parameterisation to increase its flexibility.
123 * QEMU platform models for which this code is not appropriate
124 * should override write_secondary_boot and secondary_cpu_reset_hook
125 * instead.
127 * This code enables the interrupt controllers for the secondary
128 * CPUs and then puts all the secondary CPUs into a loop waiting
129 * for an interprocessor interrupt and polling a configurable
130 * location for the kernel secondary CPU entry point.
132 #define DSB_INSN 0xf57ff04f
133 #define CP15_DSB_INSN 0xee070f9a /* mcr cp15, 0, r0, c7, c10, 4 */
135 static const ARMInsnFixup smpboot[] = {
136 { 0xe59f2028 }, /* ldr r2, gic_cpu_if */
137 { 0xe59f0028 }, /* ldr r0, bootreg_addr */
138 { 0xe3a01001 }, /* mov r1, #1 */
139 { 0xe5821000 }, /* str r1, [r2] - set GICC_CTLR.Enable */
140 { 0xe3a010ff }, /* mov r1, #0xff */
141 { 0xe5821004 }, /* str r1, [r2, 4] - set GIC_PMR.Priority to 0xff */
142 { 0, FIXUP_DSB }, /* dsb */
143 { 0xe320f003 }, /* wfi */
144 { 0xe5901000 }, /* ldr r1, [r0] */
145 { 0xe1110001 }, /* tst r1, r1 */
146 { 0x0afffffb }, /* beq <wfi> */
147 { 0xe12fff11 }, /* bx r1 */
148 { 0, FIXUP_GIC_CPU_IF }, /* gic_cpu_if: .word 0x.... */
149 { 0, FIXUP_BOOTREG }, /* bootreg_addr: .word 0x.... */
150 { 0, FIXUP_TERMINATOR }
153 static void write_bootloader(const char *name, hwaddr addr,
154 const ARMInsnFixup *insns, uint32_t *fixupcontext,
155 AddressSpace *as)
157 /* Fix up the specified bootloader fragment and write it into
158 * guest memory using rom_add_blob_fixed(). fixupcontext is
159 * an array giving the values to write in for the fixup types
160 * which write a value into the code array.
162 int i, len;
163 uint32_t *code;
165 len = 0;
166 while (insns[len].fixup != FIXUP_TERMINATOR) {
167 len++;
170 code = g_new0(uint32_t, len);
172 for (i = 0; i < len; i++) {
173 uint32_t insn = insns[i].insn;
174 FixupType fixup = insns[i].fixup;
176 switch (fixup) {
177 case FIXUP_NONE:
178 break;
179 case FIXUP_BOARDID:
180 case FIXUP_BOARD_SETUP:
181 case FIXUP_ARGPTR_LO:
182 case FIXUP_ARGPTR_HI:
183 case FIXUP_ENTRYPOINT_LO:
184 case FIXUP_ENTRYPOINT_HI:
185 case FIXUP_GIC_CPU_IF:
186 case FIXUP_BOOTREG:
187 case FIXUP_DSB:
188 insn = fixupcontext[fixup];
189 break;
190 default:
191 abort();
193 code[i] = tswap32(insn);
196 assert((len * sizeof(uint32_t)) < BOOTLOADER_MAX_SIZE);
198 rom_add_blob_fixed_as(name, code, len * sizeof(uint32_t), addr, as);
200 g_free(code);
203 static void default_write_secondary(ARMCPU *cpu,
204 const struct arm_boot_info *info)
206 uint32_t fixupcontext[FIXUP_MAX];
207 AddressSpace *as = arm_boot_address_space(cpu, info);
209 fixupcontext[FIXUP_GIC_CPU_IF] = info->gic_cpu_if_addr;
210 fixupcontext[FIXUP_BOOTREG] = info->smp_bootreg_addr;
211 if (arm_feature(&cpu->env, ARM_FEATURE_V7)) {
212 fixupcontext[FIXUP_DSB] = DSB_INSN;
213 } else {
214 fixupcontext[FIXUP_DSB] = CP15_DSB_INSN;
217 write_bootloader("smpboot", info->smp_loader_start,
218 smpboot, fixupcontext, as);
221 void arm_write_secure_board_setup_dummy_smc(ARMCPU *cpu,
222 const struct arm_boot_info *info,
223 hwaddr mvbar_addr)
225 AddressSpace *as = arm_boot_address_space(cpu, info);
226 int n;
227 uint32_t mvbar_blob[] = {
228 /* mvbar_addr: secure monitor vectors
229 * Default unimplemented and unused vectors to spin. Makes it
230 * easier to debug (as opposed to the CPU running away).
232 0xeafffffe, /* (spin) */
233 0xeafffffe, /* (spin) */
234 0xe1b0f00e, /* movs pc, lr ;SMC exception return */
235 0xeafffffe, /* (spin) */
236 0xeafffffe, /* (spin) */
237 0xeafffffe, /* (spin) */
238 0xeafffffe, /* (spin) */
239 0xeafffffe, /* (spin) */
241 uint32_t board_setup_blob[] = {
242 /* board setup addr */
243 0xe3a00e00 + (mvbar_addr >> 4), /* mov r0, #mvbar_addr */
244 0xee0c0f30, /* mcr p15, 0, r0, c12, c0, 1 ;set MVBAR */
245 0xee110f11, /* mrc p15, 0, r0, c1 , c1, 0 ;read SCR */
246 0xe3800031, /* orr r0, #0x31 ;enable AW, FW, NS */
247 0xee010f11, /* mcr p15, 0, r0, c1, c1, 0 ;write SCR */
248 0xe1a0100e, /* mov r1, lr ;save LR across SMC */
249 0xe1600070, /* smc #0 ;call monitor to flush SCR */
250 0xe1a0f001, /* mov pc, r1 ;return */
253 /* check that mvbar_addr is correctly aligned and relocatable (using MOV) */
254 assert((mvbar_addr & 0x1f) == 0 && (mvbar_addr >> 4) < 0x100);
256 /* check that these blobs don't overlap */
257 assert((mvbar_addr + sizeof(mvbar_blob) <= info->board_setup_addr)
258 || (info->board_setup_addr + sizeof(board_setup_blob) <= mvbar_addr));
260 for (n = 0; n < ARRAY_SIZE(mvbar_blob); n++) {
261 mvbar_blob[n] = tswap32(mvbar_blob[n]);
263 rom_add_blob_fixed_as("board-setup-mvbar", mvbar_blob, sizeof(mvbar_blob),
264 mvbar_addr, as);
266 for (n = 0; n < ARRAY_SIZE(board_setup_blob); n++) {
267 board_setup_blob[n] = tswap32(board_setup_blob[n]);
269 rom_add_blob_fixed_as("board-setup", board_setup_blob,
270 sizeof(board_setup_blob), info->board_setup_addr, as);
273 static void default_reset_secondary(ARMCPU *cpu,
274 const struct arm_boot_info *info)
276 AddressSpace *as = arm_boot_address_space(cpu, info);
277 CPUState *cs = CPU(cpu);
279 address_space_stl_notdirty(as, info->smp_bootreg_addr,
280 0, MEMTXATTRS_UNSPECIFIED, NULL);
281 cpu_set_pc(cs, info->smp_loader_start);
284 static inline bool have_dtb(const struct arm_boot_info *info)
286 return info->dtb_filename || info->get_dtb;
289 #define WRITE_WORD(p, value) do { \
290 address_space_stl_notdirty(as, p, value, \
291 MEMTXATTRS_UNSPECIFIED, NULL); \
292 p += 4; \
293 } while (0)
295 static void set_kernel_args(const struct arm_boot_info *info, AddressSpace *as)
297 int initrd_size = info->initrd_size;
298 hwaddr base = info->loader_start;
299 hwaddr p;
301 p = base + KERNEL_ARGS_ADDR;
302 /* ATAG_CORE */
303 WRITE_WORD(p, 5);
304 WRITE_WORD(p, 0x54410001);
305 WRITE_WORD(p, 1);
306 WRITE_WORD(p, 0x1000);
307 WRITE_WORD(p, 0);
308 /* ATAG_MEM */
309 /* TODO: handle multiple chips on one ATAG list */
310 WRITE_WORD(p, 4);
311 WRITE_WORD(p, 0x54410002);
312 WRITE_WORD(p, info->ram_size);
313 WRITE_WORD(p, info->loader_start);
314 if (initrd_size) {
315 /* ATAG_INITRD2 */
316 WRITE_WORD(p, 4);
317 WRITE_WORD(p, 0x54420005);
318 WRITE_WORD(p, info->initrd_start);
319 WRITE_WORD(p, initrd_size);
321 if (info->kernel_cmdline && *info->kernel_cmdline) {
322 /* ATAG_CMDLINE */
323 int cmdline_size;
325 cmdline_size = strlen(info->kernel_cmdline);
326 address_space_write(as, p + 8, MEMTXATTRS_UNSPECIFIED,
327 (const uint8_t *)info->kernel_cmdline,
328 cmdline_size + 1);
329 cmdline_size = (cmdline_size >> 2) + 1;
330 WRITE_WORD(p, cmdline_size + 2);
331 WRITE_WORD(p, 0x54410009);
332 p += cmdline_size * 4;
334 if (info->atag_board) {
335 /* ATAG_BOARD */
336 int atag_board_len;
337 uint8_t atag_board_buf[0x1000];
339 atag_board_len = (info->atag_board(info, atag_board_buf) + 3) & ~3;
340 WRITE_WORD(p, (atag_board_len + 8) >> 2);
341 WRITE_WORD(p, 0x414f4d50);
342 address_space_write(as, p, MEMTXATTRS_UNSPECIFIED,
343 atag_board_buf, atag_board_len);
344 p += atag_board_len;
346 /* ATAG_END */
347 WRITE_WORD(p, 0);
348 WRITE_WORD(p, 0);
351 static void set_kernel_args_old(const struct arm_boot_info *info,
352 AddressSpace *as)
354 hwaddr p;
355 const char *s;
356 int initrd_size = info->initrd_size;
357 hwaddr base = info->loader_start;
359 /* see linux/include/asm-arm/setup.h */
360 p = base + KERNEL_ARGS_ADDR;
361 /* page_size */
362 WRITE_WORD(p, 4096);
363 /* nr_pages */
364 WRITE_WORD(p, info->ram_size / 4096);
365 /* ramdisk_size */
366 WRITE_WORD(p, 0);
367 #define FLAG_READONLY 1
368 #define FLAG_RDLOAD 4
369 #define FLAG_RDPROMPT 8
370 /* flags */
371 WRITE_WORD(p, FLAG_READONLY | FLAG_RDLOAD | FLAG_RDPROMPT);
372 /* rootdev */
373 WRITE_WORD(p, (31 << 8) | 0); /* /dev/mtdblock0 */
374 /* video_num_cols */
375 WRITE_WORD(p, 0);
376 /* video_num_rows */
377 WRITE_WORD(p, 0);
378 /* video_x */
379 WRITE_WORD(p, 0);
380 /* video_y */
381 WRITE_WORD(p, 0);
382 /* memc_control_reg */
383 WRITE_WORD(p, 0);
384 /* unsigned char sounddefault */
385 /* unsigned char adfsdrives */
386 /* unsigned char bytes_per_char_h */
387 /* unsigned char bytes_per_char_v */
388 WRITE_WORD(p, 0);
389 /* pages_in_bank[4] */
390 WRITE_WORD(p, 0);
391 WRITE_WORD(p, 0);
392 WRITE_WORD(p, 0);
393 WRITE_WORD(p, 0);
394 /* pages_in_vram */
395 WRITE_WORD(p, 0);
396 /* initrd_start */
397 if (initrd_size) {
398 WRITE_WORD(p, info->initrd_start);
399 } else {
400 WRITE_WORD(p, 0);
402 /* initrd_size */
403 WRITE_WORD(p, initrd_size);
404 /* rd_start */
405 WRITE_WORD(p, 0);
406 /* system_rev */
407 WRITE_WORD(p, 0);
408 /* system_serial_low */
409 WRITE_WORD(p, 0);
410 /* system_serial_high */
411 WRITE_WORD(p, 0);
412 /* mem_fclk_21285 */
413 WRITE_WORD(p, 0);
414 /* zero unused fields */
415 while (p < base + KERNEL_ARGS_ADDR + 256 + 1024) {
416 WRITE_WORD(p, 0);
418 s = info->kernel_cmdline;
419 if (s) {
420 address_space_write(as, p, MEMTXATTRS_UNSPECIFIED,
421 (const uint8_t *)s, strlen(s) + 1);
422 } else {
423 WRITE_WORD(p, 0);
427 static int fdt_add_memory_node(void *fdt, uint32_t acells, hwaddr mem_base,
428 uint32_t scells, hwaddr mem_len,
429 int numa_node_id)
431 char *nodename;
432 int ret;
434 nodename = g_strdup_printf("/memory@%" PRIx64, mem_base);
435 qemu_fdt_add_subnode(fdt, nodename);
436 qemu_fdt_setprop_string(fdt, nodename, "device_type", "memory");
437 ret = qemu_fdt_setprop_sized_cells(fdt, nodename, "reg", acells, mem_base,
438 scells, mem_len);
439 if (ret < 0) {
440 goto out;
443 /* only set the NUMA ID if it is specified */
444 if (numa_node_id >= 0) {
445 ret = qemu_fdt_setprop_cell(fdt, nodename,
446 "numa-node-id", numa_node_id);
448 out:
449 g_free(nodename);
450 return ret;
453 static void fdt_add_psci_node(void *fdt)
455 uint32_t cpu_suspend_fn;
456 uint32_t cpu_off_fn;
457 uint32_t cpu_on_fn;
458 uint32_t migrate_fn;
459 ARMCPU *armcpu = ARM_CPU(qemu_get_cpu(0));
460 const char *psci_method;
461 int64_t psci_conduit;
462 int rc;
464 psci_conduit = object_property_get_int(OBJECT(armcpu),
465 "psci-conduit",
466 &error_abort);
467 switch (psci_conduit) {
468 case QEMU_PSCI_CONDUIT_DISABLED:
469 return;
470 case QEMU_PSCI_CONDUIT_HVC:
471 psci_method = "hvc";
472 break;
473 case QEMU_PSCI_CONDUIT_SMC:
474 psci_method = "smc";
475 break;
476 default:
477 g_assert_not_reached();
481 * If /psci node is present in provided DTB, assume that no fixup
482 * is necessary and all PSCI configuration should be taken as-is
484 rc = fdt_path_offset(fdt, "/psci");
485 if (rc >= 0) {
486 return;
489 qemu_fdt_add_subnode(fdt, "/psci");
490 if (armcpu->psci_version == 2) {
491 const char comp[] = "arm,psci-0.2\0arm,psci";
492 qemu_fdt_setprop(fdt, "/psci", "compatible", comp, sizeof(comp));
494 cpu_off_fn = QEMU_PSCI_0_2_FN_CPU_OFF;
495 if (arm_feature(&armcpu->env, ARM_FEATURE_AARCH64)) {
496 cpu_suspend_fn = QEMU_PSCI_0_2_FN64_CPU_SUSPEND;
497 cpu_on_fn = QEMU_PSCI_0_2_FN64_CPU_ON;
498 migrate_fn = QEMU_PSCI_0_2_FN64_MIGRATE;
499 } else {
500 cpu_suspend_fn = QEMU_PSCI_0_2_FN_CPU_SUSPEND;
501 cpu_on_fn = QEMU_PSCI_0_2_FN_CPU_ON;
502 migrate_fn = QEMU_PSCI_0_2_FN_MIGRATE;
504 } else {
505 qemu_fdt_setprop_string(fdt, "/psci", "compatible", "arm,psci");
507 cpu_suspend_fn = QEMU_PSCI_0_1_FN_CPU_SUSPEND;
508 cpu_off_fn = QEMU_PSCI_0_1_FN_CPU_OFF;
509 cpu_on_fn = QEMU_PSCI_0_1_FN_CPU_ON;
510 migrate_fn = QEMU_PSCI_0_1_FN_MIGRATE;
513 /* We adopt the PSCI spec's nomenclature, and use 'conduit' to refer
514 * to the instruction that should be used to invoke PSCI functions.
515 * However, the device tree binding uses 'method' instead, so that is
516 * what we should use here.
518 qemu_fdt_setprop_string(fdt, "/psci", "method", psci_method);
520 qemu_fdt_setprop_cell(fdt, "/psci", "cpu_suspend", cpu_suspend_fn);
521 qemu_fdt_setprop_cell(fdt, "/psci", "cpu_off", cpu_off_fn);
522 qemu_fdt_setprop_cell(fdt, "/psci", "cpu_on", cpu_on_fn);
523 qemu_fdt_setprop_cell(fdt, "/psci", "migrate", migrate_fn);
526 int arm_load_dtb(hwaddr addr, const struct arm_boot_info *binfo,
527 hwaddr addr_limit, AddressSpace *as)
529 void *fdt = NULL;
530 int size, rc, n = 0;
531 uint32_t acells, scells;
532 unsigned int i;
533 hwaddr mem_base, mem_len;
534 char **node_path;
535 Error *err = NULL;
537 if (binfo->dtb_filename) {
538 char *filename;
539 filename = qemu_find_file(QEMU_FILE_TYPE_BIOS, binfo->dtb_filename);
540 if (!filename) {
541 fprintf(stderr, "Couldn't open dtb file %s\n", binfo->dtb_filename);
542 goto fail;
545 fdt = load_device_tree(filename, &size);
546 if (!fdt) {
547 fprintf(stderr, "Couldn't open dtb file %s\n", filename);
548 g_free(filename);
549 goto fail;
551 g_free(filename);
552 } else {
553 fdt = binfo->get_dtb(binfo, &size);
554 if (!fdt) {
555 fprintf(stderr, "Board was unable to create a dtb blob\n");
556 goto fail;
560 if (addr_limit > addr && size > (addr_limit - addr)) {
561 /* Installing the device tree blob at addr would exceed addr_limit.
562 * Whether this constitutes failure is up to the caller to decide,
563 * so just return 0 as size, i.e., no error.
565 g_free(fdt);
566 return 0;
569 acells = qemu_fdt_getprop_cell(fdt, "/", "#address-cells",
570 NULL, &error_fatal);
571 scells = qemu_fdt_getprop_cell(fdt, "/", "#size-cells",
572 NULL, &error_fatal);
573 if (acells == 0 || scells == 0) {
574 fprintf(stderr, "dtb file invalid (#address-cells or #size-cells 0)\n");
575 goto fail;
578 if (scells < 2 && binfo->ram_size >= (1ULL << 32)) {
579 /* This is user error so deserves a friendlier error message
580 * than the failure of setprop_sized_cells would provide
582 fprintf(stderr, "qemu: dtb file not compatible with "
583 "RAM size > 4GB\n");
584 goto fail;
587 /* nop all root nodes matching /memory or /memory@unit-address */
588 node_path = qemu_fdt_node_unit_path(fdt, "memory", &err);
589 if (err) {
590 error_report_err(err);
591 goto fail;
593 while (node_path[n]) {
594 if (g_str_has_prefix(node_path[n], "/memory")) {
595 qemu_fdt_nop_node(fdt, node_path[n]);
597 n++;
599 g_strfreev(node_path);
601 if (nb_numa_nodes > 0) {
602 mem_base = binfo->loader_start;
603 for (i = 0; i < nb_numa_nodes; i++) {
604 mem_len = numa_info[i].node_mem;
605 rc = fdt_add_memory_node(fdt, acells, mem_base,
606 scells, mem_len, i);
607 if (rc < 0) {
608 fprintf(stderr, "couldn't add /memory@%"PRIx64" node\n",
609 mem_base);
610 goto fail;
613 mem_base += mem_len;
615 } else {
616 rc = fdt_add_memory_node(fdt, acells, binfo->loader_start,
617 scells, binfo->ram_size, -1);
618 if (rc < 0) {
619 fprintf(stderr, "couldn't add /memory@%"PRIx64" node\n",
620 binfo->loader_start);
621 goto fail;
625 rc = fdt_path_offset(fdt, "/chosen");
626 if (rc < 0) {
627 qemu_fdt_add_subnode(fdt, "/chosen");
630 if (binfo->kernel_cmdline && *binfo->kernel_cmdline) {
631 rc = qemu_fdt_setprop_string(fdt, "/chosen", "bootargs",
632 binfo->kernel_cmdline);
633 if (rc < 0) {
634 fprintf(stderr, "couldn't set /chosen/bootargs\n");
635 goto fail;
639 if (binfo->initrd_size) {
640 rc = qemu_fdt_setprop_cell(fdt, "/chosen", "linux,initrd-start",
641 binfo->initrd_start);
642 if (rc < 0) {
643 fprintf(stderr, "couldn't set /chosen/linux,initrd-start\n");
644 goto fail;
647 rc = qemu_fdt_setprop_cell(fdt, "/chosen", "linux,initrd-end",
648 binfo->initrd_start + binfo->initrd_size);
649 if (rc < 0) {
650 fprintf(stderr, "couldn't set /chosen/linux,initrd-end\n");
651 goto fail;
655 fdt_add_psci_node(fdt);
657 if (binfo->modify_dtb) {
658 binfo->modify_dtb(binfo, fdt);
661 qemu_fdt_dumpdtb(fdt, size);
663 /* Put the DTB into the memory map as a ROM image: this will ensure
664 * the DTB is copied again upon reset, even if addr points into RAM.
666 rom_add_blob_fixed_as("dtb", fdt, size, addr, as);
668 g_free(fdt);
670 return size;
672 fail:
673 g_free(fdt);
674 return -1;
677 static void do_cpu_reset(void *opaque)
679 ARMCPU *cpu = opaque;
680 CPUState *cs = CPU(cpu);
681 CPUARMState *env = &cpu->env;
682 const struct arm_boot_info *info = env->boot_info;
684 cpu_reset(cs);
685 if (info) {
686 if (!info->is_linux) {
687 int i;
688 /* Jump to the entry point. */
689 uint64_t entry = info->entry;
691 switch (info->endianness) {
692 case ARM_ENDIANNESS_LE:
693 env->cp15.sctlr_el[1] &= ~SCTLR_E0E;
694 for (i = 1; i < 4; ++i) {
695 env->cp15.sctlr_el[i] &= ~SCTLR_EE;
697 env->uncached_cpsr &= ~CPSR_E;
698 break;
699 case ARM_ENDIANNESS_BE8:
700 env->cp15.sctlr_el[1] |= SCTLR_E0E;
701 for (i = 1; i < 4; ++i) {
702 env->cp15.sctlr_el[i] |= SCTLR_EE;
704 env->uncached_cpsr |= CPSR_E;
705 break;
706 case ARM_ENDIANNESS_BE32:
707 env->cp15.sctlr_el[1] |= SCTLR_B;
708 break;
709 case ARM_ENDIANNESS_UNKNOWN:
710 break; /* Board's decision */
711 default:
712 g_assert_not_reached();
715 cpu_set_pc(cs, entry);
716 } else {
717 /* If we are booting Linux then we need to check whether we are
718 * booting into secure or non-secure state and adjust the state
719 * accordingly. Out of reset, ARM is defined to be in secure state
720 * (SCR.NS = 0), we change that here if non-secure boot has been
721 * requested.
723 if (arm_feature(env, ARM_FEATURE_EL3)) {
724 /* AArch64 is defined to come out of reset into EL3 if enabled.
725 * If we are booting Linux then we need to adjust our EL as
726 * Linux expects us to be in EL2 or EL1. AArch32 resets into
727 * SVC, which Linux expects, so no privilege/exception level to
728 * adjust.
730 if (env->aarch64) {
731 env->cp15.scr_el3 |= SCR_RW;
732 if (arm_feature(env, ARM_FEATURE_EL2)) {
733 env->cp15.hcr_el2 |= HCR_RW;
734 env->pstate = PSTATE_MODE_EL2h;
735 } else {
736 env->pstate = PSTATE_MODE_EL1h;
738 /* AArch64 kernels never boot in secure mode */
739 assert(!info->secure_boot);
740 /* This hook is only supported for AArch32 currently:
741 * bootloader_aarch64[] will not call the hook, and
742 * the code above has already dropped us into EL2 or EL1.
744 assert(!info->secure_board_setup);
747 if (arm_feature(env, ARM_FEATURE_EL2)) {
748 /* If we have EL2 then Linux expects the HVC insn to work */
749 env->cp15.scr_el3 |= SCR_HCE;
752 /* Set to non-secure if not a secure boot */
753 if (!info->secure_boot &&
754 (cs != first_cpu || !info->secure_board_setup)) {
755 /* Linux expects non-secure state */
756 env->cp15.scr_el3 |= SCR_NS;
760 if (!env->aarch64 && !info->secure_boot &&
761 arm_feature(env, ARM_FEATURE_EL2)) {
763 * This is an AArch32 boot not to Secure state, and
764 * we have Hyp mode available, so boot the kernel into
765 * Hyp mode. This is not how the CPU comes out of reset,
766 * so we need to manually put it there.
768 cpsr_write(env, ARM_CPU_MODE_HYP, CPSR_M, CPSRWriteRaw);
771 if (cs == first_cpu) {
772 AddressSpace *as = arm_boot_address_space(cpu, info);
774 cpu_set_pc(cs, info->loader_start);
776 if (!have_dtb(info)) {
777 if (old_param) {
778 set_kernel_args_old(info, as);
779 } else {
780 set_kernel_args(info, as);
783 } else {
784 info->secondary_cpu_reset_hook(cpu, info);
791 * load_image_to_fw_cfg() - Load an image file into an fw_cfg entry identified
792 * by key.
793 * @fw_cfg: The firmware config instance to store the data in.
794 * @size_key: The firmware config key to store the size of the loaded
795 * data under, with fw_cfg_add_i32().
796 * @data_key: The firmware config key to store the loaded data under,
797 * with fw_cfg_add_bytes().
798 * @image_name: The name of the image file to load. If it is NULL, the
799 * function returns without doing anything.
800 * @try_decompress: Whether the image should be decompressed (gunzipped) before
801 * adding it to fw_cfg. If decompression fails, the image is
802 * loaded as-is.
804 * In case of failure, the function prints an error message to stderr and the
805 * process exits with status 1.
807 static void load_image_to_fw_cfg(FWCfgState *fw_cfg, uint16_t size_key,
808 uint16_t data_key, const char *image_name,
809 bool try_decompress)
811 size_t size = -1;
812 uint8_t *data;
814 if (image_name == NULL) {
815 return;
818 if (try_decompress) {
819 size = load_image_gzipped_buffer(image_name,
820 LOAD_IMAGE_MAX_GUNZIP_BYTES, &data);
823 if (size == (size_t)-1) {
824 gchar *contents;
825 gsize length;
827 if (!g_file_get_contents(image_name, &contents, &length, NULL)) {
828 error_report("failed to load \"%s\"", image_name);
829 exit(1);
831 size = length;
832 data = (uint8_t *)contents;
835 fw_cfg_add_i32(fw_cfg, size_key, size);
836 fw_cfg_add_bytes(fw_cfg, data_key, data, size);
839 static int do_arm_linux_init(Object *obj, void *opaque)
841 if (object_dynamic_cast(obj, TYPE_ARM_LINUX_BOOT_IF)) {
842 ARMLinuxBootIf *albif = ARM_LINUX_BOOT_IF(obj);
843 ARMLinuxBootIfClass *albifc = ARM_LINUX_BOOT_IF_GET_CLASS(obj);
844 struct arm_boot_info *info = opaque;
846 if (albifc->arm_linux_init) {
847 albifc->arm_linux_init(albif, info->secure_boot);
850 return 0;
853 static int64_t arm_load_elf(struct arm_boot_info *info, uint64_t *pentry,
854 uint64_t *lowaddr, uint64_t *highaddr,
855 int elf_machine, AddressSpace *as)
857 bool elf_is64;
858 union {
859 Elf32_Ehdr h32;
860 Elf64_Ehdr h64;
861 } elf_header;
862 int data_swab = 0;
863 bool big_endian;
864 int64_t ret = -1;
865 Error *err = NULL;
868 load_elf_hdr(info->kernel_filename, &elf_header, &elf_is64, &err);
869 if (err) {
870 error_free(err);
871 return ret;
874 if (elf_is64) {
875 big_endian = elf_header.h64.e_ident[EI_DATA] == ELFDATA2MSB;
876 info->endianness = big_endian ? ARM_ENDIANNESS_BE8
877 : ARM_ENDIANNESS_LE;
878 } else {
879 big_endian = elf_header.h32.e_ident[EI_DATA] == ELFDATA2MSB;
880 if (big_endian) {
881 if (bswap32(elf_header.h32.e_flags) & EF_ARM_BE8) {
882 info->endianness = ARM_ENDIANNESS_BE8;
883 } else {
884 info->endianness = ARM_ENDIANNESS_BE32;
885 /* In BE32, the CPU has a different view of the per-byte
886 * address map than the rest of the system. BE32 ELF files
887 * are organised such that they can be programmed through
888 * the CPU's per-word byte-reversed view of the world. QEMU
889 * however loads ELF files independently of the CPU. So
890 * tell the ELF loader to byte reverse the data for us.
892 data_swab = 2;
894 } else {
895 info->endianness = ARM_ENDIANNESS_LE;
899 ret = load_elf_as(info->kernel_filename, NULL, NULL, NULL,
900 pentry, lowaddr, highaddr, big_endian, elf_machine,
901 1, data_swab, as);
902 if (ret <= 0) {
903 /* The header loaded but the image didn't */
904 exit(1);
907 return ret;
910 static uint64_t load_aarch64_image(const char *filename, hwaddr mem_base,
911 hwaddr *entry, AddressSpace *as)
913 hwaddr kernel_load_offset = KERNEL64_LOAD_ADDR;
914 uint8_t *buffer;
915 int size;
917 /* On aarch64, it's the bootloader's job to uncompress the kernel. */
918 size = load_image_gzipped_buffer(filename, LOAD_IMAGE_MAX_GUNZIP_BYTES,
919 &buffer);
921 if (size < 0) {
922 gsize len;
924 /* Load as raw file otherwise */
925 if (!g_file_get_contents(filename, (char **)&buffer, &len, NULL)) {
926 return -1;
928 size = len;
931 /* check the arm64 magic header value -- very old kernels may not have it */
932 if (size > ARM64_MAGIC_OFFSET + 4 &&
933 memcmp(buffer + ARM64_MAGIC_OFFSET, "ARM\x64", 4) == 0) {
934 uint64_t hdrvals[2];
936 /* The arm64 Image header has text_offset and image_size fields at 8 and
937 * 16 bytes into the Image header, respectively. The text_offset field
938 * is only valid if the image_size is non-zero.
940 memcpy(&hdrvals, buffer + ARM64_TEXT_OFFSET_OFFSET, sizeof(hdrvals));
941 if (hdrvals[1] != 0) {
942 kernel_load_offset = le64_to_cpu(hdrvals[0]);
945 * We write our startup "bootloader" at the very bottom of RAM,
946 * so that bit can't be used for the image. Luckily the Image
947 * format specification is that the image requests only an offset
948 * from a 2MB boundary, not an absolute load address. So if the
949 * image requests an offset that might mean it overlaps with the
950 * bootloader, we can just load it starting at 2MB+offset rather
951 * than 0MB + offset.
953 if (kernel_load_offset < BOOTLOADER_MAX_SIZE) {
954 kernel_load_offset += 2 * MiB;
959 *entry = mem_base + kernel_load_offset;
960 rom_add_blob_fixed_as(filename, buffer, size, *entry, as);
962 g_free(buffer);
964 return size;
967 static void arm_setup_direct_kernel_boot(ARMCPU *cpu,
968 struct arm_boot_info *info)
970 /* Set up for a direct boot of a kernel image file. */
971 CPUState *cs;
972 AddressSpace *as = arm_boot_address_space(cpu, info);
973 int kernel_size;
974 int initrd_size;
975 int is_linux = 0;
976 uint64_t elf_entry, elf_low_addr, elf_high_addr;
977 int elf_machine;
978 hwaddr entry;
979 static const ARMInsnFixup *primary_loader;
980 uint64_t ram_end = info->loader_start + info->ram_size;
982 if (arm_feature(&cpu->env, ARM_FEATURE_AARCH64)) {
983 primary_loader = bootloader_aarch64;
984 elf_machine = EM_AARCH64;
985 } else {
986 primary_loader = bootloader;
987 if (!info->write_board_setup) {
988 primary_loader += BOOTLOADER_NO_BOARD_SETUP_OFFSET;
990 elf_machine = EM_ARM;
993 if (!info->secondary_cpu_reset_hook) {
994 info->secondary_cpu_reset_hook = default_reset_secondary;
996 if (!info->write_secondary_boot) {
997 info->write_secondary_boot = default_write_secondary;
1000 if (info->nb_cpus == 0)
1001 info->nb_cpus = 1;
1004 * We want to put the initrd far enough into RAM that when the
1005 * kernel is uncompressed it will not clobber the initrd. However
1006 * on boards without much RAM we must ensure that we still leave
1007 * enough room for a decent sized initrd, and on boards with large
1008 * amounts of RAM we must avoid the initrd being so far up in RAM
1009 * that it is outside lowmem and inaccessible to the kernel.
1010 * So for boards with less than 256MB of RAM we put the initrd
1011 * halfway into RAM, and for boards with 256MB of RAM or more we put
1012 * the initrd at 128MB.
1014 info->initrd_start = info->loader_start +
1015 MIN(info->ram_size / 2, 128 * 1024 * 1024);
1017 /* Assume that raw images are linux kernels, and ELF images are not. */
1018 kernel_size = arm_load_elf(info, &elf_entry, &elf_low_addr,
1019 &elf_high_addr, elf_machine, as);
1020 if (kernel_size > 0 && have_dtb(info)) {
1022 * If there is still some room left at the base of RAM, try and put
1023 * the DTB there like we do for images loaded with -bios or -pflash.
1025 if (elf_low_addr > info->loader_start
1026 || elf_high_addr < info->loader_start) {
1028 * Set elf_low_addr as address limit for arm_load_dtb if it may be
1029 * pointing into RAM, otherwise pass '0' (no limit)
1031 if (elf_low_addr < info->loader_start) {
1032 elf_low_addr = 0;
1034 info->dtb_start = info->loader_start;
1035 info->dtb_limit = elf_low_addr;
1038 entry = elf_entry;
1039 if (kernel_size < 0) {
1040 uint64_t loadaddr = info->loader_start + KERNEL_NOLOAD_ADDR;
1041 kernel_size = load_uimage_as(info->kernel_filename, &entry, &loadaddr,
1042 &is_linux, NULL, NULL, as);
1044 if (arm_feature(&cpu->env, ARM_FEATURE_AARCH64) && kernel_size < 0) {
1045 kernel_size = load_aarch64_image(info->kernel_filename,
1046 info->loader_start, &entry, as);
1047 is_linux = 1;
1048 } else if (kernel_size < 0) {
1049 /* 32-bit ARM */
1050 entry = info->loader_start + KERNEL_LOAD_ADDR;
1051 kernel_size = load_image_targphys_as(info->kernel_filename, entry,
1052 ram_end - KERNEL_LOAD_ADDR, as);
1053 is_linux = 1;
1055 if (kernel_size < 0) {
1056 error_report("could not load kernel '%s'", info->kernel_filename);
1057 exit(1);
1059 info->entry = entry;
1060 if (is_linux) {
1061 uint32_t fixupcontext[FIXUP_MAX];
1063 if (info->initrd_filename) {
1064 initrd_size = load_ramdisk_as(info->initrd_filename,
1065 info->initrd_start,
1066 ram_end - info->initrd_start, as);
1067 if (initrd_size < 0) {
1068 initrd_size = load_image_targphys_as(info->initrd_filename,
1069 info->initrd_start,
1070 ram_end -
1071 info->initrd_start,
1072 as);
1074 if (initrd_size < 0) {
1075 error_report("could not load initrd '%s'",
1076 info->initrd_filename);
1077 exit(1);
1079 } else {
1080 initrd_size = 0;
1082 info->initrd_size = initrd_size;
1084 fixupcontext[FIXUP_BOARDID] = info->board_id;
1085 fixupcontext[FIXUP_BOARD_SETUP] = info->board_setup_addr;
1088 * for device tree boot, we pass the DTB directly in r2. Otherwise
1089 * we point to the kernel args.
1091 if (have_dtb(info)) {
1092 hwaddr align;
1094 if (elf_machine == EM_AARCH64) {
1096 * Some AArch64 kernels on early bootup map the fdt region as
1098 * [ ALIGN_DOWN(fdt, 2MB) ... ALIGN_DOWN(fdt, 2MB) + 2MB ]
1100 * Let's play safe and prealign it to 2MB to give us some space.
1102 align = 2 * 1024 * 1024;
1103 } else {
1105 * Some 32bit kernels will trash anything in the 4K page the
1106 * initrd ends in, so make sure the DTB isn't caught up in that.
1108 align = 4096;
1111 /* Place the DTB after the initrd in memory with alignment. */
1112 info->dtb_start = QEMU_ALIGN_UP(info->initrd_start + initrd_size,
1113 align);
1114 fixupcontext[FIXUP_ARGPTR_LO] = info->dtb_start;
1115 fixupcontext[FIXUP_ARGPTR_HI] = info->dtb_start >> 32;
1116 } else {
1117 fixupcontext[FIXUP_ARGPTR_LO] =
1118 info->loader_start + KERNEL_ARGS_ADDR;
1119 fixupcontext[FIXUP_ARGPTR_HI] =
1120 (info->loader_start + KERNEL_ARGS_ADDR) >> 32;
1121 if (info->ram_size >= (1ULL << 32)) {
1122 error_report("RAM size must be less than 4GB to boot"
1123 " Linux kernel using ATAGS (try passing a device tree"
1124 " using -dtb)");
1125 exit(1);
1128 fixupcontext[FIXUP_ENTRYPOINT_LO] = entry;
1129 fixupcontext[FIXUP_ENTRYPOINT_HI] = entry >> 32;
1131 write_bootloader("bootloader", info->loader_start,
1132 primary_loader, fixupcontext, as);
1134 if (info->nb_cpus > 1) {
1135 info->write_secondary_boot(cpu, info);
1137 if (info->write_board_setup) {
1138 info->write_board_setup(cpu, info);
1142 * Notify devices which need to fake up firmware initialization
1143 * that we're doing a direct kernel boot.
1145 object_child_foreach_recursive(object_get_root(),
1146 do_arm_linux_init, info);
1148 info->is_linux = is_linux;
1150 for (cs = first_cpu; cs; cs = CPU_NEXT(cs)) {
1151 ARM_CPU(cs)->env.boot_info = info;
1155 static void arm_setup_firmware_boot(ARMCPU *cpu, struct arm_boot_info *info)
1157 /* Set up for booting firmware (which might load a kernel via fw_cfg) */
1159 if (have_dtb(info)) {
1161 * If we have a device tree blob, but no kernel to supply it to (or
1162 * the kernel is supposed to be loaded by the bootloader), copy the
1163 * DTB to the base of RAM for the bootloader to pick up.
1165 info->dtb_start = info->loader_start;
1168 if (info->kernel_filename) {
1169 FWCfgState *fw_cfg;
1170 bool try_decompressing_kernel;
1172 fw_cfg = fw_cfg_find();
1173 try_decompressing_kernel = arm_feature(&cpu->env,
1174 ARM_FEATURE_AARCH64);
1177 * Expose the kernel, the command line, and the initrd in fw_cfg.
1178 * We don't process them here at all, it's all left to the
1179 * firmware.
1181 load_image_to_fw_cfg(fw_cfg,
1182 FW_CFG_KERNEL_SIZE, FW_CFG_KERNEL_DATA,
1183 info->kernel_filename,
1184 try_decompressing_kernel);
1185 load_image_to_fw_cfg(fw_cfg,
1186 FW_CFG_INITRD_SIZE, FW_CFG_INITRD_DATA,
1187 info->initrd_filename, false);
1189 if (info->kernel_cmdline) {
1190 fw_cfg_add_i32(fw_cfg, FW_CFG_CMDLINE_SIZE,
1191 strlen(info->kernel_cmdline) + 1);
1192 fw_cfg_add_string(fw_cfg, FW_CFG_CMDLINE_DATA,
1193 info->kernel_cmdline);
1198 * We will start from address 0 (typically a boot ROM image) in the
1199 * same way as hardware. Leave env->boot_info NULL, so that
1200 * do_cpu_reset() knows it does not need to alter the PC on reset.
1204 void arm_load_kernel(ARMCPU *cpu, struct arm_boot_info *info)
1206 CPUState *cs;
1207 AddressSpace *as = arm_boot_address_space(cpu, info);
1210 * CPU objects (unlike devices) are not automatically reset on system
1211 * reset, so we must always register a handler to do so. If we're
1212 * actually loading a kernel, the handler is also responsible for
1213 * arranging that we start it correctly.
1215 for (cs = first_cpu; cs; cs = CPU_NEXT(cs)) {
1216 qemu_register_reset(do_cpu_reset, ARM_CPU(cs));
1220 * The board code is not supposed to set secure_board_setup unless
1221 * running its code in secure mode is actually possible, and KVM
1222 * doesn't support secure.
1224 assert(!(info->secure_board_setup && kvm_enabled()));
1226 info->dtb_filename = qemu_opt_get(qemu_get_machine_opts(), "dtb");
1227 info->dtb_limit = 0;
1229 /* Load the kernel. */
1230 if (!info->kernel_filename || info->firmware_loaded) {
1231 arm_setup_firmware_boot(cpu, info);
1232 } else {
1233 arm_setup_direct_kernel_boot(cpu, info);
1236 if (!info->skip_dtb_autoload && have_dtb(info)) {
1237 if (arm_load_dtb(info->dtb_start, info, info->dtb_limit, as) < 0) {
1238 exit(1);
1243 static const TypeInfo arm_linux_boot_if_info = {
1244 .name = TYPE_ARM_LINUX_BOOT_IF,
1245 .parent = TYPE_INTERFACE,
1246 .class_size = sizeof(ARMLinuxBootIfClass),
1249 static void arm_linux_boot_register_types(void)
1251 type_register_static(&arm_linux_boot_if_info);
1254 type_init(arm_linux_boot_register_types)