hw/arm/virt: Disable pl011 clock migration if needed
[qemu/ar7.git] / target / riscv / vector_helper.c
bloba156573d28122d58672e516f4c95b08fcc46deb4
1 /*
2 * RISC-V Vector Extension Helpers for QEMU.
4 * Copyright (c) 2020 T-Head Semiconductor Co., Ltd. All rights reserved.
6 * This program is free software; you can redistribute it and/or modify it
7 * under the terms and conditions of the GNU General Public License,
8 * version 2 or later, as published by the Free Software Foundation.
10 * This program is distributed in the hope it will be useful, but WITHOUT
11 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
12 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
13 * more details.
15 * You should have received a copy of the GNU General Public License along with
16 * this program. If not, see <http://www.gnu.org/licenses/>.
19 #include "qemu/osdep.h"
20 #include "cpu.h"
21 #include "exec/memop.h"
22 #include "exec/exec-all.h"
23 #include "exec/helper-proto.h"
24 #include "fpu/softfloat.h"
25 #include "tcg/tcg-gvec-desc.h"
26 #include "internals.h"
27 #include <math.h>
29 target_ulong HELPER(vsetvl)(CPURISCVState *env, target_ulong s1,
30 target_ulong s2)
32 int vlmax, vl;
33 RISCVCPU *cpu = env_archcpu(env);
34 uint16_t sew = 8 << FIELD_EX64(s2, VTYPE, VSEW);
35 uint8_t ediv = FIELD_EX64(s2, VTYPE, VEDIV);
36 bool vill = FIELD_EX64(s2, VTYPE, VILL);
37 target_ulong reserved = FIELD_EX64(s2, VTYPE, RESERVED);
39 if ((sew > cpu->cfg.elen) || vill || (ediv != 0) || (reserved != 0)) {
40 /* only set vill bit. */
41 env->vtype = FIELD_DP64(0, VTYPE, VILL, 1);
42 env->vl = 0;
43 env->vstart = 0;
44 return 0;
47 vlmax = vext_get_vlmax(cpu, s2);
48 if (s1 <= vlmax) {
49 vl = s1;
50 } else {
51 vl = vlmax;
53 env->vl = vl;
54 env->vtype = s2;
55 env->vstart = 0;
56 return vl;
60 * Note that vector data is stored in host-endian 64-bit chunks,
61 * so addressing units smaller than that needs a host-endian fixup.
63 #ifdef HOST_WORDS_BIGENDIAN
64 #define H1(x) ((x) ^ 7)
65 #define H1_2(x) ((x) ^ 6)
66 #define H1_4(x) ((x) ^ 4)
67 #define H2(x) ((x) ^ 3)
68 #define H4(x) ((x) ^ 1)
69 #define H8(x) ((x))
70 #else
71 #define H1(x) (x)
72 #define H1_2(x) (x)
73 #define H1_4(x) (x)
74 #define H2(x) (x)
75 #define H4(x) (x)
76 #define H8(x) (x)
77 #endif
79 static inline uint32_t vext_nf(uint32_t desc)
81 return FIELD_EX32(simd_data(desc), VDATA, NF);
84 static inline uint32_t vext_mlen(uint32_t desc)
86 return FIELD_EX32(simd_data(desc), VDATA, MLEN);
89 static inline uint32_t vext_vm(uint32_t desc)
91 return FIELD_EX32(simd_data(desc), VDATA, VM);
94 static inline uint32_t vext_lmul(uint32_t desc)
96 return FIELD_EX32(simd_data(desc), VDATA, LMUL);
99 static uint32_t vext_wd(uint32_t desc)
101 return (simd_data(desc) >> 11) & 0x1;
105 * Get vector group length in bytes. Its range is [64, 2048].
107 * As simd_desc support at most 256, the max vlen is 512 bits.
108 * So vlen in bytes is encoded as maxsz.
110 static inline uint32_t vext_maxsz(uint32_t desc)
112 return simd_maxsz(desc) << vext_lmul(desc);
116 * This function checks watchpoint before real load operation.
118 * In softmmu mode, the TLB API probe_access is enough for watchpoint check.
119 * In user mode, there is no watchpoint support now.
121 * It will trigger an exception if there is no mapping in TLB
122 * and page table walk can't fill the TLB entry. Then the guest
123 * software can return here after process the exception or never return.
125 static void probe_pages(CPURISCVState *env, target_ulong addr,
126 target_ulong len, uintptr_t ra,
127 MMUAccessType access_type)
129 target_ulong pagelen = -(addr | TARGET_PAGE_MASK);
130 target_ulong curlen = MIN(pagelen, len);
132 probe_access(env, addr, curlen, access_type,
133 cpu_mmu_index(env, false), ra);
134 if (len > curlen) {
135 addr += curlen;
136 curlen = len - curlen;
137 probe_access(env, addr, curlen, access_type,
138 cpu_mmu_index(env, false), ra);
142 #ifdef HOST_WORDS_BIGENDIAN
143 static void vext_clear(void *tail, uint32_t cnt, uint32_t tot)
146 * Split the remaining range to two parts.
147 * The first part is in the last uint64_t unit.
148 * The second part start from the next uint64_t unit.
150 int part1 = 0, part2 = tot - cnt;
151 if (cnt % 8) {
152 part1 = 8 - (cnt % 8);
153 part2 = tot - cnt - part1;
154 memset(QEMU_ALIGN_PTR_DOWN(tail, 8), 0, part1);
155 memset(QEMU_ALIGN_PTR_UP(tail, 8), 0, part2);
156 } else {
157 memset(tail, 0, part2);
160 #else
161 static void vext_clear(void *tail, uint32_t cnt, uint32_t tot)
163 memset(tail, 0, tot - cnt);
165 #endif
167 static void clearb(void *vd, uint32_t idx, uint32_t cnt, uint32_t tot)
169 int8_t *cur = ((int8_t *)vd + H1(idx));
170 vext_clear(cur, cnt, tot);
173 static void clearh(void *vd, uint32_t idx, uint32_t cnt, uint32_t tot)
175 int16_t *cur = ((int16_t *)vd + H2(idx));
176 vext_clear(cur, cnt, tot);
179 static void clearl(void *vd, uint32_t idx, uint32_t cnt, uint32_t tot)
181 int32_t *cur = ((int32_t *)vd + H4(idx));
182 vext_clear(cur, cnt, tot);
185 static void clearq(void *vd, uint32_t idx, uint32_t cnt, uint32_t tot)
187 int64_t *cur = (int64_t *)vd + idx;
188 vext_clear(cur, cnt, tot);
191 static inline void vext_set_elem_mask(void *v0, int mlen, int index,
192 uint8_t value)
194 int idx = (index * mlen) / 64;
195 int pos = (index * mlen) % 64;
196 uint64_t old = ((uint64_t *)v0)[idx];
197 ((uint64_t *)v0)[idx] = deposit64(old, pos, mlen, value);
200 static inline int vext_elem_mask(void *v0, int mlen, int index)
202 int idx = (index * mlen) / 64;
203 int pos = (index * mlen) % 64;
204 return (((uint64_t *)v0)[idx] >> pos) & 1;
207 /* elements operations for load and store */
208 typedef void vext_ldst_elem_fn(CPURISCVState *env, target_ulong addr,
209 uint32_t idx, void *vd, uintptr_t retaddr);
210 typedef void clear_fn(void *vd, uint32_t idx, uint32_t cnt, uint32_t tot);
212 #define GEN_VEXT_LD_ELEM(NAME, MTYPE, ETYPE, H, LDSUF) \
213 static void NAME(CPURISCVState *env, abi_ptr addr, \
214 uint32_t idx, void *vd, uintptr_t retaddr)\
216 MTYPE data; \
217 ETYPE *cur = ((ETYPE *)vd + H(idx)); \
218 data = cpu_##LDSUF##_data_ra(env, addr, retaddr); \
219 *cur = data; \
222 GEN_VEXT_LD_ELEM(ldb_b, int8_t, int8_t, H1, ldsb)
223 GEN_VEXT_LD_ELEM(ldb_h, int8_t, int16_t, H2, ldsb)
224 GEN_VEXT_LD_ELEM(ldb_w, int8_t, int32_t, H4, ldsb)
225 GEN_VEXT_LD_ELEM(ldb_d, int8_t, int64_t, H8, ldsb)
226 GEN_VEXT_LD_ELEM(ldh_h, int16_t, int16_t, H2, ldsw)
227 GEN_VEXT_LD_ELEM(ldh_w, int16_t, int32_t, H4, ldsw)
228 GEN_VEXT_LD_ELEM(ldh_d, int16_t, int64_t, H8, ldsw)
229 GEN_VEXT_LD_ELEM(ldw_w, int32_t, int32_t, H4, ldl)
230 GEN_VEXT_LD_ELEM(ldw_d, int32_t, int64_t, H8, ldl)
231 GEN_VEXT_LD_ELEM(lde_b, int8_t, int8_t, H1, ldsb)
232 GEN_VEXT_LD_ELEM(lde_h, int16_t, int16_t, H2, ldsw)
233 GEN_VEXT_LD_ELEM(lde_w, int32_t, int32_t, H4, ldl)
234 GEN_VEXT_LD_ELEM(lde_d, int64_t, int64_t, H8, ldq)
235 GEN_VEXT_LD_ELEM(ldbu_b, uint8_t, uint8_t, H1, ldub)
236 GEN_VEXT_LD_ELEM(ldbu_h, uint8_t, uint16_t, H2, ldub)
237 GEN_VEXT_LD_ELEM(ldbu_w, uint8_t, uint32_t, H4, ldub)
238 GEN_VEXT_LD_ELEM(ldbu_d, uint8_t, uint64_t, H8, ldub)
239 GEN_VEXT_LD_ELEM(ldhu_h, uint16_t, uint16_t, H2, lduw)
240 GEN_VEXT_LD_ELEM(ldhu_w, uint16_t, uint32_t, H4, lduw)
241 GEN_VEXT_LD_ELEM(ldhu_d, uint16_t, uint64_t, H8, lduw)
242 GEN_VEXT_LD_ELEM(ldwu_w, uint32_t, uint32_t, H4, ldl)
243 GEN_VEXT_LD_ELEM(ldwu_d, uint32_t, uint64_t, H8, ldl)
245 #define GEN_VEXT_ST_ELEM(NAME, ETYPE, H, STSUF) \
246 static void NAME(CPURISCVState *env, abi_ptr addr, \
247 uint32_t idx, void *vd, uintptr_t retaddr)\
249 ETYPE data = *((ETYPE *)vd + H(idx)); \
250 cpu_##STSUF##_data_ra(env, addr, data, retaddr); \
253 GEN_VEXT_ST_ELEM(stb_b, int8_t, H1, stb)
254 GEN_VEXT_ST_ELEM(stb_h, int16_t, H2, stb)
255 GEN_VEXT_ST_ELEM(stb_w, int32_t, H4, stb)
256 GEN_VEXT_ST_ELEM(stb_d, int64_t, H8, stb)
257 GEN_VEXT_ST_ELEM(sth_h, int16_t, H2, stw)
258 GEN_VEXT_ST_ELEM(sth_w, int32_t, H4, stw)
259 GEN_VEXT_ST_ELEM(sth_d, int64_t, H8, stw)
260 GEN_VEXT_ST_ELEM(stw_w, int32_t, H4, stl)
261 GEN_VEXT_ST_ELEM(stw_d, int64_t, H8, stl)
262 GEN_VEXT_ST_ELEM(ste_b, int8_t, H1, stb)
263 GEN_VEXT_ST_ELEM(ste_h, int16_t, H2, stw)
264 GEN_VEXT_ST_ELEM(ste_w, int32_t, H4, stl)
265 GEN_VEXT_ST_ELEM(ste_d, int64_t, H8, stq)
268 *** stride: access vector element from strided memory
270 static void
271 vext_ldst_stride(void *vd, void *v0, target_ulong base,
272 target_ulong stride, CPURISCVState *env,
273 uint32_t desc, uint32_t vm,
274 vext_ldst_elem_fn *ldst_elem, clear_fn *clear_elem,
275 uint32_t esz, uint32_t msz, uintptr_t ra,
276 MMUAccessType access_type)
278 uint32_t i, k;
279 uint32_t nf = vext_nf(desc);
280 uint32_t mlen = vext_mlen(desc);
281 uint32_t vlmax = vext_maxsz(desc) / esz;
283 /* probe every access*/
284 for (i = 0; i < env->vl; i++) {
285 if (!vm && !vext_elem_mask(v0, mlen, i)) {
286 continue;
288 probe_pages(env, base + stride * i, nf * msz, ra, access_type);
290 /* do real access */
291 for (i = 0; i < env->vl; i++) {
292 k = 0;
293 if (!vm && !vext_elem_mask(v0, mlen, i)) {
294 continue;
296 while (k < nf) {
297 target_ulong addr = base + stride * i + k * msz;
298 ldst_elem(env, addr, i + k * vlmax, vd, ra);
299 k++;
302 /* clear tail elements */
303 if (clear_elem) {
304 for (k = 0; k < nf; k++) {
305 clear_elem(vd, env->vl + k * vlmax, env->vl * esz, vlmax * esz);
310 #define GEN_VEXT_LD_STRIDE(NAME, MTYPE, ETYPE, LOAD_FN, CLEAR_FN) \
311 void HELPER(NAME)(void *vd, void * v0, target_ulong base, \
312 target_ulong stride, CPURISCVState *env, \
313 uint32_t desc) \
315 uint32_t vm = vext_vm(desc); \
316 vext_ldst_stride(vd, v0, base, stride, env, desc, vm, LOAD_FN, \
317 CLEAR_FN, sizeof(ETYPE), sizeof(MTYPE), \
318 GETPC(), MMU_DATA_LOAD); \
321 GEN_VEXT_LD_STRIDE(vlsb_v_b, int8_t, int8_t, ldb_b, clearb)
322 GEN_VEXT_LD_STRIDE(vlsb_v_h, int8_t, int16_t, ldb_h, clearh)
323 GEN_VEXT_LD_STRIDE(vlsb_v_w, int8_t, int32_t, ldb_w, clearl)
324 GEN_VEXT_LD_STRIDE(vlsb_v_d, int8_t, int64_t, ldb_d, clearq)
325 GEN_VEXT_LD_STRIDE(vlsh_v_h, int16_t, int16_t, ldh_h, clearh)
326 GEN_VEXT_LD_STRIDE(vlsh_v_w, int16_t, int32_t, ldh_w, clearl)
327 GEN_VEXT_LD_STRIDE(vlsh_v_d, int16_t, int64_t, ldh_d, clearq)
328 GEN_VEXT_LD_STRIDE(vlsw_v_w, int32_t, int32_t, ldw_w, clearl)
329 GEN_VEXT_LD_STRIDE(vlsw_v_d, int32_t, int64_t, ldw_d, clearq)
330 GEN_VEXT_LD_STRIDE(vlse_v_b, int8_t, int8_t, lde_b, clearb)
331 GEN_VEXT_LD_STRIDE(vlse_v_h, int16_t, int16_t, lde_h, clearh)
332 GEN_VEXT_LD_STRIDE(vlse_v_w, int32_t, int32_t, lde_w, clearl)
333 GEN_VEXT_LD_STRIDE(vlse_v_d, int64_t, int64_t, lde_d, clearq)
334 GEN_VEXT_LD_STRIDE(vlsbu_v_b, uint8_t, uint8_t, ldbu_b, clearb)
335 GEN_VEXT_LD_STRIDE(vlsbu_v_h, uint8_t, uint16_t, ldbu_h, clearh)
336 GEN_VEXT_LD_STRIDE(vlsbu_v_w, uint8_t, uint32_t, ldbu_w, clearl)
337 GEN_VEXT_LD_STRIDE(vlsbu_v_d, uint8_t, uint64_t, ldbu_d, clearq)
338 GEN_VEXT_LD_STRIDE(vlshu_v_h, uint16_t, uint16_t, ldhu_h, clearh)
339 GEN_VEXT_LD_STRIDE(vlshu_v_w, uint16_t, uint32_t, ldhu_w, clearl)
340 GEN_VEXT_LD_STRIDE(vlshu_v_d, uint16_t, uint64_t, ldhu_d, clearq)
341 GEN_VEXT_LD_STRIDE(vlswu_v_w, uint32_t, uint32_t, ldwu_w, clearl)
342 GEN_VEXT_LD_STRIDE(vlswu_v_d, uint32_t, uint64_t, ldwu_d, clearq)
344 #define GEN_VEXT_ST_STRIDE(NAME, MTYPE, ETYPE, STORE_FN) \
345 void HELPER(NAME)(void *vd, void *v0, target_ulong base, \
346 target_ulong stride, CPURISCVState *env, \
347 uint32_t desc) \
349 uint32_t vm = vext_vm(desc); \
350 vext_ldst_stride(vd, v0, base, stride, env, desc, vm, STORE_FN, \
351 NULL, sizeof(ETYPE), sizeof(MTYPE), \
352 GETPC(), MMU_DATA_STORE); \
355 GEN_VEXT_ST_STRIDE(vssb_v_b, int8_t, int8_t, stb_b)
356 GEN_VEXT_ST_STRIDE(vssb_v_h, int8_t, int16_t, stb_h)
357 GEN_VEXT_ST_STRIDE(vssb_v_w, int8_t, int32_t, stb_w)
358 GEN_VEXT_ST_STRIDE(vssb_v_d, int8_t, int64_t, stb_d)
359 GEN_VEXT_ST_STRIDE(vssh_v_h, int16_t, int16_t, sth_h)
360 GEN_VEXT_ST_STRIDE(vssh_v_w, int16_t, int32_t, sth_w)
361 GEN_VEXT_ST_STRIDE(vssh_v_d, int16_t, int64_t, sth_d)
362 GEN_VEXT_ST_STRIDE(vssw_v_w, int32_t, int32_t, stw_w)
363 GEN_VEXT_ST_STRIDE(vssw_v_d, int32_t, int64_t, stw_d)
364 GEN_VEXT_ST_STRIDE(vsse_v_b, int8_t, int8_t, ste_b)
365 GEN_VEXT_ST_STRIDE(vsse_v_h, int16_t, int16_t, ste_h)
366 GEN_VEXT_ST_STRIDE(vsse_v_w, int32_t, int32_t, ste_w)
367 GEN_VEXT_ST_STRIDE(vsse_v_d, int64_t, int64_t, ste_d)
370 *** unit-stride: access elements stored contiguously in memory
373 /* unmasked unit-stride load and store operation*/
374 static void
375 vext_ldst_us(void *vd, target_ulong base, CPURISCVState *env, uint32_t desc,
376 vext_ldst_elem_fn *ldst_elem, clear_fn *clear_elem,
377 uint32_t esz, uint32_t msz, uintptr_t ra,
378 MMUAccessType access_type)
380 uint32_t i, k;
381 uint32_t nf = vext_nf(desc);
382 uint32_t vlmax = vext_maxsz(desc) / esz;
384 /* probe every access */
385 probe_pages(env, base, env->vl * nf * msz, ra, access_type);
386 /* load bytes from guest memory */
387 for (i = 0; i < env->vl; i++) {
388 k = 0;
389 while (k < nf) {
390 target_ulong addr = base + (i * nf + k) * msz;
391 ldst_elem(env, addr, i + k * vlmax, vd, ra);
392 k++;
395 /* clear tail elements */
396 if (clear_elem) {
397 for (k = 0; k < nf; k++) {
398 clear_elem(vd, env->vl + k * vlmax, env->vl * esz, vlmax * esz);
404 * masked unit-stride load and store operation will be a special case of stride,
405 * stride = NF * sizeof (MTYPE)
408 #define GEN_VEXT_LD_US(NAME, MTYPE, ETYPE, LOAD_FN, CLEAR_FN) \
409 void HELPER(NAME##_mask)(void *vd, void *v0, target_ulong base, \
410 CPURISCVState *env, uint32_t desc) \
412 uint32_t stride = vext_nf(desc) * sizeof(MTYPE); \
413 vext_ldst_stride(vd, v0, base, stride, env, desc, false, LOAD_FN, \
414 CLEAR_FN, sizeof(ETYPE), sizeof(MTYPE), \
415 GETPC(), MMU_DATA_LOAD); \
418 void HELPER(NAME)(void *vd, void *v0, target_ulong base, \
419 CPURISCVState *env, uint32_t desc) \
421 vext_ldst_us(vd, base, env, desc, LOAD_FN, CLEAR_FN, \
422 sizeof(ETYPE), sizeof(MTYPE), GETPC(), MMU_DATA_LOAD); \
425 GEN_VEXT_LD_US(vlb_v_b, int8_t, int8_t, ldb_b, clearb)
426 GEN_VEXT_LD_US(vlb_v_h, int8_t, int16_t, ldb_h, clearh)
427 GEN_VEXT_LD_US(vlb_v_w, int8_t, int32_t, ldb_w, clearl)
428 GEN_VEXT_LD_US(vlb_v_d, int8_t, int64_t, ldb_d, clearq)
429 GEN_VEXT_LD_US(vlh_v_h, int16_t, int16_t, ldh_h, clearh)
430 GEN_VEXT_LD_US(vlh_v_w, int16_t, int32_t, ldh_w, clearl)
431 GEN_VEXT_LD_US(vlh_v_d, int16_t, int64_t, ldh_d, clearq)
432 GEN_VEXT_LD_US(vlw_v_w, int32_t, int32_t, ldw_w, clearl)
433 GEN_VEXT_LD_US(vlw_v_d, int32_t, int64_t, ldw_d, clearq)
434 GEN_VEXT_LD_US(vle_v_b, int8_t, int8_t, lde_b, clearb)
435 GEN_VEXT_LD_US(vle_v_h, int16_t, int16_t, lde_h, clearh)
436 GEN_VEXT_LD_US(vle_v_w, int32_t, int32_t, lde_w, clearl)
437 GEN_VEXT_LD_US(vle_v_d, int64_t, int64_t, lde_d, clearq)
438 GEN_VEXT_LD_US(vlbu_v_b, uint8_t, uint8_t, ldbu_b, clearb)
439 GEN_VEXT_LD_US(vlbu_v_h, uint8_t, uint16_t, ldbu_h, clearh)
440 GEN_VEXT_LD_US(vlbu_v_w, uint8_t, uint32_t, ldbu_w, clearl)
441 GEN_VEXT_LD_US(vlbu_v_d, uint8_t, uint64_t, ldbu_d, clearq)
442 GEN_VEXT_LD_US(vlhu_v_h, uint16_t, uint16_t, ldhu_h, clearh)
443 GEN_VEXT_LD_US(vlhu_v_w, uint16_t, uint32_t, ldhu_w, clearl)
444 GEN_VEXT_LD_US(vlhu_v_d, uint16_t, uint64_t, ldhu_d, clearq)
445 GEN_VEXT_LD_US(vlwu_v_w, uint32_t, uint32_t, ldwu_w, clearl)
446 GEN_VEXT_LD_US(vlwu_v_d, uint32_t, uint64_t, ldwu_d, clearq)
448 #define GEN_VEXT_ST_US(NAME, MTYPE, ETYPE, STORE_FN) \
449 void HELPER(NAME##_mask)(void *vd, void *v0, target_ulong base, \
450 CPURISCVState *env, uint32_t desc) \
452 uint32_t stride = vext_nf(desc) * sizeof(MTYPE); \
453 vext_ldst_stride(vd, v0, base, stride, env, desc, false, STORE_FN, \
454 NULL, sizeof(ETYPE), sizeof(MTYPE), \
455 GETPC(), MMU_DATA_STORE); \
458 void HELPER(NAME)(void *vd, void *v0, target_ulong base, \
459 CPURISCVState *env, uint32_t desc) \
461 vext_ldst_us(vd, base, env, desc, STORE_FN, NULL, \
462 sizeof(ETYPE), sizeof(MTYPE), GETPC(), MMU_DATA_STORE);\
465 GEN_VEXT_ST_US(vsb_v_b, int8_t, int8_t , stb_b)
466 GEN_VEXT_ST_US(vsb_v_h, int8_t, int16_t, stb_h)
467 GEN_VEXT_ST_US(vsb_v_w, int8_t, int32_t, stb_w)
468 GEN_VEXT_ST_US(vsb_v_d, int8_t, int64_t, stb_d)
469 GEN_VEXT_ST_US(vsh_v_h, int16_t, int16_t, sth_h)
470 GEN_VEXT_ST_US(vsh_v_w, int16_t, int32_t, sth_w)
471 GEN_VEXT_ST_US(vsh_v_d, int16_t, int64_t, sth_d)
472 GEN_VEXT_ST_US(vsw_v_w, int32_t, int32_t, stw_w)
473 GEN_VEXT_ST_US(vsw_v_d, int32_t, int64_t, stw_d)
474 GEN_VEXT_ST_US(vse_v_b, int8_t, int8_t , ste_b)
475 GEN_VEXT_ST_US(vse_v_h, int16_t, int16_t, ste_h)
476 GEN_VEXT_ST_US(vse_v_w, int32_t, int32_t, ste_w)
477 GEN_VEXT_ST_US(vse_v_d, int64_t, int64_t, ste_d)
480 *** index: access vector element from indexed memory
482 typedef target_ulong vext_get_index_addr(target_ulong base,
483 uint32_t idx, void *vs2);
485 #define GEN_VEXT_GET_INDEX_ADDR(NAME, ETYPE, H) \
486 static target_ulong NAME(target_ulong base, \
487 uint32_t idx, void *vs2) \
489 return (base + *((ETYPE *)vs2 + H(idx))); \
492 GEN_VEXT_GET_INDEX_ADDR(idx_b, int8_t, H1)
493 GEN_VEXT_GET_INDEX_ADDR(idx_h, int16_t, H2)
494 GEN_VEXT_GET_INDEX_ADDR(idx_w, int32_t, H4)
495 GEN_VEXT_GET_INDEX_ADDR(idx_d, int64_t, H8)
497 static inline void
498 vext_ldst_index(void *vd, void *v0, target_ulong base,
499 void *vs2, CPURISCVState *env, uint32_t desc,
500 vext_get_index_addr get_index_addr,
501 vext_ldst_elem_fn *ldst_elem,
502 clear_fn *clear_elem,
503 uint32_t esz, uint32_t msz, uintptr_t ra,
504 MMUAccessType access_type)
506 uint32_t i, k;
507 uint32_t nf = vext_nf(desc);
508 uint32_t vm = vext_vm(desc);
509 uint32_t mlen = vext_mlen(desc);
510 uint32_t vlmax = vext_maxsz(desc) / esz;
512 /* probe every access*/
513 for (i = 0; i < env->vl; i++) {
514 if (!vm && !vext_elem_mask(v0, mlen, i)) {
515 continue;
517 probe_pages(env, get_index_addr(base, i, vs2), nf * msz, ra,
518 access_type);
520 /* load bytes from guest memory */
521 for (i = 0; i < env->vl; i++) {
522 k = 0;
523 if (!vm && !vext_elem_mask(v0, mlen, i)) {
524 continue;
526 while (k < nf) {
527 abi_ptr addr = get_index_addr(base, i, vs2) + k * msz;
528 ldst_elem(env, addr, i + k * vlmax, vd, ra);
529 k++;
532 /* clear tail elements */
533 if (clear_elem) {
534 for (k = 0; k < nf; k++) {
535 clear_elem(vd, env->vl + k * vlmax, env->vl * esz, vlmax * esz);
540 #define GEN_VEXT_LD_INDEX(NAME, MTYPE, ETYPE, INDEX_FN, LOAD_FN, CLEAR_FN) \
541 void HELPER(NAME)(void *vd, void *v0, target_ulong base, \
542 void *vs2, CPURISCVState *env, uint32_t desc) \
544 vext_ldst_index(vd, v0, base, vs2, env, desc, INDEX_FN, \
545 LOAD_FN, CLEAR_FN, sizeof(ETYPE), sizeof(MTYPE), \
546 GETPC(), MMU_DATA_LOAD); \
549 GEN_VEXT_LD_INDEX(vlxb_v_b, int8_t, int8_t, idx_b, ldb_b, clearb)
550 GEN_VEXT_LD_INDEX(vlxb_v_h, int8_t, int16_t, idx_h, ldb_h, clearh)
551 GEN_VEXT_LD_INDEX(vlxb_v_w, int8_t, int32_t, idx_w, ldb_w, clearl)
552 GEN_VEXT_LD_INDEX(vlxb_v_d, int8_t, int64_t, idx_d, ldb_d, clearq)
553 GEN_VEXT_LD_INDEX(vlxh_v_h, int16_t, int16_t, idx_h, ldh_h, clearh)
554 GEN_VEXT_LD_INDEX(vlxh_v_w, int16_t, int32_t, idx_w, ldh_w, clearl)
555 GEN_VEXT_LD_INDEX(vlxh_v_d, int16_t, int64_t, idx_d, ldh_d, clearq)
556 GEN_VEXT_LD_INDEX(vlxw_v_w, int32_t, int32_t, idx_w, ldw_w, clearl)
557 GEN_VEXT_LD_INDEX(vlxw_v_d, int32_t, int64_t, idx_d, ldw_d, clearq)
558 GEN_VEXT_LD_INDEX(vlxe_v_b, int8_t, int8_t, idx_b, lde_b, clearb)
559 GEN_VEXT_LD_INDEX(vlxe_v_h, int16_t, int16_t, idx_h, lde_h, clearh)
560 GEN_VEXT_LD_INDEX(vlxe_v_w, int32_t, int32_t, idx_w, lde_w, clearl)
561 GEN_VEXT_LD_INDEX(vlxe_v_d, int64_t, int64_t, idx_d, lde_d, clearq)
562 GEN_VEXT_LD_INDEX(vlxbu_v_b, uint8_t, uint8_t, idx_b, ldbu_b, clearb)
563 GEN_VEXT_LD_INDEX(vlxbu_v_h, uint8_t, uint16_t, idx_h, ldbu_h, clearh)
564 GEN_VEXT_LD_INDEX(vlxbu_v_w, uint8_t, uint32_t, idx_w, ldbu_w, clearl)
565 GEN_VEXT_LD_INDEX(vlxbu_v_d, uint8_t, uint64_t, idx_d, ldbu_d, clearq)
566 GEN_VEXT_LD_INDEX(vlxhu_v_h, uint16_t, uint16_t, idx_h, ldhu_h, clearh)
567 GEN_VEXT_LD_INDEX(vlxhu_v_w, uint16_t, uint32_t, idx_w, ldhu_w, clearl)
568 GEN_VEXT_LD_INDEX(vlxhu_v_d, uint16_t, uint64_t, idx_d, ldhu_d, clearq)
569 GEN_VEXT_LD_INDEX(vlxwu_v_w, uint32_t, uint32_t, idx_w, ldwu_w, clearl)
570 GEN_VEXT_LD_INDEX(vlxwu_v_d, uint32_t, uint64_t, idx_d, ldwu_d, clearq)
572 #define GEN_VEXT_ST_INDEX(NAME, MTYPE, ETYPE, INDEX_FN, STORE_FN)\
573 void HELPER(NAME)(void *vd, void *v0, target_ulong base, \
574 void *vs2, CPURISCVState *env, uint32_t desc) \
576 vext_ldst_index(vd, v0, base, vs2, env, desc, INDEX_FN, \
577 STORE_FN, NULL, sizeof(ETYPE), sizeof(MTYPE),\
578 GETPC(), MMU_DATA_STORE); \
581 GEN_VEXT_ST_INDEX(vsxb_v_b, int8_t, int8_t, idx_b, stb_b)
582 GEN_VEXT_ST_INDEX(vsxb_v_h, int8_t, int16_t, idx_h, stb_h)
583 GEN_VEXT_ST_INDEX(vsxb_v_w, int8_t, int32_t, idx_w, stb_w)
584 GEN_VEXT_ST_INDEX(vsxb_v_d, int8_t, int64_t, idx_d, stb_d)
585 GEN_VEXT_ST_INDEX(vsxh_v_h, int16_t, int16_t, idx_h, sth_h)
586 GEN_VEXT_ST_INDEX(vsxh_v_w, int16_t, int32_t, idx_w, sth_w)
587 GEN_VEXT_ST_INDEX(vsxh_v_d, int16_t, int64_t, idx_d, sth_d)
588 GEN_VEXT_ST_INDEX(vsxw_v_w, int32_t, int32_t, idx_w, stw_w)
589 GEN_VEXT_ST_INDEX(vsxw_v_d, int32_t, int64_t, idx_d, stw_d)
590 GEN_VEXT_ST_INDEX(vsxe_v_b, int8_t, int8_t, idx_b, ste_b)
591 GEN_VEXT_ST_INDEX(vsxe_v_h, int16_t, int16_t, idx_h, ste_h)
592 GEN_VEXT_ST_INDEX(vsxe_v_w, int32_t, int32_t, idx_w, ste_w)
593 GEN_VEXT_ST_INDEX(vsxe_v_d, int64_t, int64_t, idx_d, ste_d)
596 *** unit-stride fault-only-fisrt load instructions
598 static inline void
599 vext_ldff(void *vd, void *v0, target_ulong base,
600 CPURISCVState *env, uint32_t desc,
601 vext_ldst_elem_fn *ldst_elem,
602 clear_fn *clear_elem,
603 uint32_t esz, uint32_t msz, uintptr_t ra)
605 void *host;
606 uint32_t i, k, vl = 0;
607 uint32_t mlen = vext_mlen(desc);
608 uint32_t nf = vext_nf(desc);
609 uint32_t vm = vext_vm(desc);
610 uint32_t vlmax = vext_maxsz(desc) / esz;
611 target_ulong addr, offset, remain;
613 /* probe every access*/
614 for (i = 0; i < env->vl; i++) {
615 if (!vm && !vext_elem_mask(v0, mlen, i)) {
616 continue;
618 addr = base + nf * i * msz;
619 if (i == 0) {
620 probe_pages(env, addr, nf * msz, ra, MMU_DATA_LOAD);
621 } else {
622 /* if it triggers an exception, no need to check watchpoint */
623 remain = nf * msz;
624 while (remain > 0) {
625 offset = -(addr | TARGET_PAGE_MASK);
626 host = tlb_vaddr_to_host(env, addr, MMU_DATA_LOAD,
627 cpu_mmu_index(env, false));
628 if (host) {
629 #ifdef CONFIG_USER_ONLY
630 if (page_check_range(addr, nf * msz, PAGE_READ) < 0) {
631 vl = i;
632 goto ProbeSuccess;
634 #else
635 probe_pages(env, addr, nf * msz, ra, MMU_DATA_LOAD);
636 #endif
637 } else {
638 vl = i;
639 goto ProbeSuccess;
641 if (remain <= offset) {
642 break;
644 remain -= offset;
645 addr += offset;
649 ProbeSuccess:
650 /* load bytes from guest memory */
651 if (vl != 0) {
652 env->vl = vl;
654 for (i = 0; i < env->vl; i++) {
655 k = 0;
656 if (!vm && !vext_elem_mask(v0, mlen, i)) {
657 continue;
659 while (k < nf) {
660 target_ulong addr = base + (i * nf + k) * msz;
661 ldst_elem(env, addr, i + k * vlmax, vd, ra);
662 k++;
665 /* clear tail elements */
666 if (vl != 0) {
667 return;
669 for (k = 0; k < nf; k++) {
670 clear_elem(vd, env->vl + k * vlmax, env->vl * esz, vlmax * esz);
674 #define GEN_VEXT_LDFF(NAME, MTYPE, ETYPE, LOAD_FN, CLEAR_FN) \
675 void HELPER(NAME)(void *vd, void *v0, target_ulong base, \
676 CPURISCVState *env, uint32_t desc) \
678 vext_ldff(vd, v0, base, env, desc, LOAD_FN, CLEAR_FN, \
679 sizeof(ETYPE), sizeof(MTYPE), GETPC()); \
682 GEN_VEXT_LDFF(vlbff_v_b, int8_t, int8_t, ldb_b, clearb)
683 GEN_VEXT_LDFF(vlbff_v_h, int8_t, int16_t, ldb_h, clearh)
684 GEN_VEXT_LDFF(vlbff_v_w, int8_t, int32_t, ldb_w, clearl)
685 GEN_VEXT_LDFF(vlbff_v_d, int8_t, int64_t, ldb_d, clearq)
686 GEN_VEXT_LDFF(vlhff_v_h, int16_t, int16_t, ldh_h, clearh)
687 GEN_VEXT_LDFF(vlhff_v_w, int16_t, int32_t, ldh_w, clearl)
688 GEN_VEXT_LDFF(vlhff_v_d, int16_t, int64_t, ldh_d, clearq)
689 GEN_VEXT_LDFF(vlwff_v_w, int32_t, int32_t, ldw_w, clearl)
690 GEN_VEXT_LDFF(vlwff_v_d, int32_t, int64_t, ldw_d, clearq)
691 GEN_VEXT_LDFF(vleff_v_b, int8_t, int8_t, lde_b, clearb)
692 GEN_VEXT_LDFF(vleff_v_h, int16_t, int16_t, lde_h, clearh)
693 GEN_VEXT_LDFF(vleff_v_w, int32_t, int32_t, lde_w, clearl)
694 GEN_VEXT_LDFF(vleff_v_d, int64_t, int64_t, lde_d, clearq)
695 GEN_VEXT_LDFF(vlbuff_v_b, uint8_t, uint8_t, ldbu_b, clearb)
696 GEN_VEXT_LDFF(vlbuff_v_h, uint8_t, uint16_t, ldbu_h, clearh)
697 GEN_VEXT_LDFF(vlbuff_v_w, uint8_t, uint32_t, ldbu_w, clearl)
698 GEN_VEXT_LDFF(vlbuff_v_d, uint8_t, uint64_t, ldbu_d, clearq)
699 GEN_VEXT_LDFF(vlhuff_v_h, uint16_t, uint16_t, ldhu_h, clearh)
700 GEN_VEXT_LDFF(vlhuff_v_w, uint16_t, uint32_t, ldhu_w, clearl)
701 GEN_VEXT_LDFF(vlhuff_v_d, uint16_t, uint64_t, ldhu_d, clearq)
702 GEN_VEXT_LDFF(vlwuff_v_w, uint32_t, uint32_t, ldwu_w, clearl)
703 GEN_VEXT_LDFF(vlwuff_v_d, uint32_t, uint64_t, ldwu_d, clearq)
706 *** Vector AMO Operations (Zvamo)
708 typedef void vext_amo_noatomic_fn(void *vs3, target_ulong addr,
709 uint32_t wd, uint32_t idx, CPURISCVState *env,
710 uintptr_t retaddr);
712 /* no atomic opreation for vector atomic insructions */
713 #define DO_SWAP(N, M) (M)
714 #define DO_AND(N, M) (N & M)
715 #define DO_XOR(N, M) (N ^ M)
716 #define DO_OR(N, M) (N | M)
717 #define DO_ADD(N, M) (N + M)
719 #define GEN_VEXT_AMO_NOATOMIC_OP(NAME, ESZ, MSZ, H, DO_OP, SUF) \
720 static void \
721 vext_##NAME##_noatomic_op(void *vs3, target_ulong addr, \
722 uint32_t wd, uint32_t idx, \
723 CPURISCVState *env, uintptr_t retaddr)\
725 typedef int##ESZ##_t ETYPE; \
726 typedef int##MSZ##_t MTYPE; \
727 typedef uint##MSZ##_t UMTYPE __attribute__((unused)); \
728 ETYPE *pe3 = (ETYPE *)vs3 + H(idx); \
729 MTYPE a = cpu_ld##SUF##_data(env, addr), b = *pe3; \
731 cpu_st##SUF##_data(env, addr, DO_OP(a, b)); \
732 if (wd) { \
733 *pe3 = a; \
737 /* Signed min/max */
738 #define DO_MAX(N, M) ((N) >= (M) ? (N) : (M))
739 #define DO_MIN(N, M) ((N) >= (M) ? (M) : (N))
741 /* Unsigned min/max */
742 #define DO_MAXU(N, M) DO_MAX((UMTYPE)N, (UMTYPE)M)
743 #define DO_MINU(N, M) DO_MIN((UMTYPE)N, (UMTYPE)M)
745 GEN_VEXT_AMO_NOATOMIC_OP(vamoswapw_v_w, 32, 32, H4, DO_SWAP, l)
746 GEN_VEXT_AMO_NOATOMIC_OP(vamoaddw_v_w, 32, 32, H4, DO_ADD, l)
747 GEN_VEXT_AMO_NOATOMIC_OP(vamoxorw_v_w, 32, 32, H4, DO_XOR, l)
748 GEN_VEXT_AMO_NOATOMIC_OP(vamoandw_v_w, 32, 32, H4, DO_AND, l)
749 GEN_VEXT_AMO_NOATOMIC_OP(vamoorw_v_w, 32, 32, H4, DO_OR, l)
750 GEN_VEXT_AMO_NOATOMIC_OP(vamominw_v_w, 32, 32, H4, DO_MIN, l)
751 GEN_VEXT_AMO_NOATOMIC_OP(vamomaxw_v_w, 32, 32, H4, DO_MAX, l)
752 GEN_VEXT_AMO_NOATOMIC_OP(vamominuw_v_w, 32, 32, H4, DO_MINU, l)
753 GEN_VEXT_AMO_NOATOMIC_OP(vamomaxuw_v_w, 32, 32, H4, DO_MAXU, l)
754 #ifdef TARGET_RISCV64
755 GEN_VEXT_AMO_NOATOMIC_OP(vamoswapw_v_d, 64, 32, H8, DO_SWAP, l)
756 GEN_VEXT_AMO_NOATOMIC_OP(vamoswapd_v_d, 64, 64, H8, DO_SWAP, q)
757 GEN_VEXT_AMO_NOATOMIC_OP(vamoaddw_v_d, 64, 32, H8, DO_ADD, l)
758 GEN_VEXT_AMO_NOATOMIC_OP(vamoaddd_v_d, 64, 64, H8, DO_ADD, q)
759 GEN_VEXT_AMO_NOATOMIC_OP(vamoxorw_v_d, 64, 32, H8, DO_XOR, l)
760 GEN_VEXT_AMO_NOATOMIC_OP(vamoxord_v_d, 64, 64, H8, DO_XOR, q)
761 GEN_VEXT_AMO_NOATOMIC_OP(vamoandw_v_d, 64, 32, H8, DO_AND, l)
762 GEN_VEXT_AMO_NOATOMIC_OP(vamoandd_v_d, 64, 64, H8, DO_AND, q)
763 GEN_VEXT_AMO_NOATOMIC_OP(vamoorw_v_d, 64, 32, H8, DO_OR, l)
764 GEN_VEXT_AMO_NOATOMIC_OP(vamoord_v_d, 64, 64, H8, DO_OR, q)
765 GEN_VEXT_AMO_NOATOMIC_OP(vamominw_v_d, 64, 32, H8, DO_MIN, l)
766 GEN_VEXT_AMO_NOATOMIC_OP(vamomind_v_d, 64, 64, H8, DO_MIN, q)
767 GEN_VEXT_AMO_NOATOMIC_OP(vamomaxw_v_d, 64, 32, H8, DO_MAX, l)
768 GEN_VEXT_AMO_NOATOMIC_OP(vamomaxd_v_d, 64, 64, H8, DO_MAX, q)
769 GEN_VEXT_AMO_NOATOMIC_OP(vamominuw_v_d, 64, 32, H8, DO_MINU, l)
770 GEN_VEXT_AMO_NOATOMIC_OP(vamominud_v_d, 64, 64, H8, DO_MINU, q)
771 GEN_VEXT_AMO_NOATOMIC_OP(vamomaxuw_v_d, 64, 32, H8, DO_MAXU, l)
772 GEN_VEXT_AMO_NOATOMIC_OP(vamomaxud_v_d, 64, 64, H8, DO_MAXU, q)
773 #endif
775 static inline void
776 vext_amo_noatomic(void *vs3, void *v0, target_ulong base,
777 void *vs2, CPURISCVState *env, uint32_t desc,
778 vext_get_index_addr get_index_addr,
779 vext_amo_noatomic_fn *noatomic_op,
780 clear_fn *clear_elem,
781 uint32_t esz, uint32_t msz, uintptr_t ra)
783 uint32_t i;
784 target_long addr;
785 uint32_t wd = vext_wd(desc);
786 uint32_t vm = vext_vm(desc);
787 uint32_t mlen = vext_mlen(desc);
788 uint32_t vlmax = vext_maxsz(desc) / esz;
790 for (i = 0; i < env->vl; i++) {
791 if (!vm && !vext_elem_mask(v0, mlen, i)) {
792 continue;
794 probe_pages(env, get_index_addr(base, i, vs2), msz, ra, MMU_DATA_LOAD);
795 probe_pages(env, get_index_addr(base, i, vs2), msz, ra, MMU_DATA_STORE);
797 for (i = 0; i < env->vl; i++) {
798 if (!vm && !vext_elem_mask(v0, mlen, i)) {
799 continue;
801 addr = get_index_addr(base, i, vs2);
802 noatomic_op(vs3, addr, wd, i, env, ra);
804 clear_elem(vs3, env->vl, env->vl * esz, vlmax * esz);
807 #define GEN_VEXT_AMO(NAME, MTYPE, ETYPE, INDEX_FN, CLEAR_FN) \
808 void HELPER(NAME)(void *vs3, void *v0, target_ulong base, \
809 void *vs2, CPURISCVState *env, uint32_t desc) \
811 vext_amo_noatomic(vs3, v0, base, vs2, env, desc, \
812 INDEX_FN, vext_##NAME##_noatomic_op, \
813 CLEAR_FN, sizeof(ETYPE), sizeof(MTYPE), \
814 GETPC()); \
817 #ifdef TARGET_RISCV64
818 GEN_VEXT_AMO(vamoswapw_v_d, int32_t, int64_t, idx_d, clearq)
819 GEN_VEXT_AMO(vamoswapd_v_d, int64_t, int64_t, idx_d, clearq)
820 GEN_VEXT_AMO(vamoaddw_v_d, int32_t, int64_t, idx_d, clearq)
821 GEN_VEXT_AMO(vamoaddd_v_d, int64_t, int64_t, idx_d, clearq)
822 GEN_VEXT_AMO(vamoxorw_v_d, int32_t, int64_t, idx_d, clearq)
823 GEN_VEXT_AMO(vamoxord_v_d, int64_t, int64_t, idx_d, clearq)
824 GEN_VEXT_AMO(vamoandw_v_d, int32_t, int64_t, idx_d, clearq)
825 GEN_VEXT_AMO(vamoandd_v_d, int64_t, int64_t, idx_d, clearq)
826 GEN_VEXT_AMO(vamoorw_v_d, int32_t, int64_t, idx_d, clearq)
827 GEN_VEXT_AMO(vamoord_v_d, int64_t, int64_t, idx_d, clearq)
828 GEN_VEXT_AMO(vamominw_v_d, int32_t, int64_t, idx_d, clearq)
829 GEN_VEXT_AMO(vamomind_v_d, int64_t, int64_t, idx_d, clearq)
830 GEN_VEXT_AMO(vamomaxw_v_d, int32_t, int64_t, idx_d, clearq)
831 GEN_VEXT_AMO(vamomaxd_v_d, int64_t, int64_t, idx_d, clearq)
832 GEN_VEXT_AMO(vamominuw_v_d, uint32_t, uint64_t, idx_d, clearq)
833 GEN_VEXT_AMO(vamominud_v_d, uint64_t, uint64_t, idx_d, clearq)
834 GEN_VEXT_AMO(vamomaxuw_v_d, uint32_t, uint64_t, idx_d, clearq)
835 GEN_VEXT_AMO(vamomaxud_v_d, uint64_t, uint64_t, idx_d, clearq)
836 #endif
837 GEN_VEXT_AMO(vamoswapw_v_w, int32_t, int32_t, idx_w, clearl)
838 GEN_VEXT_AMO(vamoaddw_v_w, int32_t, int32_t, idx_w, clearl)
839 GEN_VEXT_AMO(vamoxorw_v_w, int32_t, int32_t, idx_w, clearl)
840 GEN_VEXT_AMO(vamoandw_v_w, int32_t, int32_t, idx_w, clearl)
841 GEN_VEXT_AMO(vamoorw_v_w, int32_t, int32_t, idx_w, clearl)
842 GEN_VEXT_AMO(vamominw_v_w, int32_t, int32_t, idx_w, clearl)
843 GEN_VEXT_AMO(vamomaxw_v_w, int32_t, int32_t, idx_w, clearl)
844 GEN_VEXT_AMO(vamominuw_v_w, uint32_t, uint32_t, idx_w, clearl)
845 GEN_VEXT_AMO(vamomaxuw_v_w, uint32_t, uint32_t, idx_w, clearl)
848 *** Vector Integer Arithmetic Instructions
851 /* expand macro args before macro */
852 #define RVVCALL(macro, ...) macro(__VA_ARGS__)
854 /* (TD, T1, T2, TX1, TX2) */
855 #define OP_SSS_B int8_t, int8_t, int8_t, int8_t, int8_t
856 #define OP_SSS_H int16_t, int16_t, int16_t, int16_t, int16_t
857 #define OP_SSS_W int32_t, int32_t, int32_t, int32_t, int32_t
858 #define OP_SSS_D int64_t, int64_t, int64_t, int64_t, int64_t
859 #define OP_UUU_B uint8_t, uint8_t, uint8_t, uint8_t, uint8_t
860 #define OP_UUU_H uint16_t, uint16_t, uint16_t, uint16_t, uint16_t
861 #define OP_UUU_W uint32_t, uint32_t, uint32_t, uint32_t, uint32_t
862 #define OP_UUU_D uint64_t, uint64_t, uint64_t, uint64_t, uint64_t
863 #define OP_SUS_B int8_t, uint8_t, int8_t, uint8_t, int8_t
864 #define OP_SUS_H int16_t, uint16_t, int16_t, uint16_t, int16_t
865 #define OP_SUS_W int32_t, uint32_t, int32_t, uint32_t, int32_t
866 #define OP_SUS_D int64_t, uint64_t, int64_t, uint64_t, int64_t
867 #define WOP_UUU_B uint16_t, uint8_t, uint8_t, uint16_t, uint16_t
868 #define WOP_UUU_H uint32_t, uint16_t, uint16_t, uint32_t, uint32_t
869 #define WOP_UUU_W uint64_t, uint32_t, uint32_t, uint64_t, uint64_t
870 #define WOP_SSS_B int16_t, int8_t, int8_t, int16_t, int16_t
871 #define WOP_SSS_H int32_t, int16_t, int16_t, int32_t, int32_t
872 #define WOP_SSS_W int64_t, int32_t, int32_t, int64_t, int64_t
873 #define WOP_SUS_B int16_t, uint8_t, int8_t, uint16_t, int16_t
874 #define WOP_SUS_H int32_t, uint16_t, int16_t, uint32_t, int32_t
875 #define WOP_SUS_W int64_t, uint32_t, int32_t, uint64_t, int64_t
876 #define WOP_SSU_B int16_t, int8_t, uint8_t, int16_t, uint16_t
877 #define WOP_SSU_H int32_t, int16_t, uint16_t, int32_t, uint32_t
878 #define WOP_SSU_W int64_t, int32_t, uint32_t, int64_t, uint64_t
879 #define NOP_SSS_B int8_t, int8_t, int16_t, int8_t, int16_t
880 #define NOP_SSS_H int16_t, int16_t, int32_t, int16_t, int32_t
881 #define NOP_SSS_W int32_t, int32_t, int64_t, int32_t, int64_t
882 #define NOP_UUU_B uint8_t, uint8_t, uint16_t, uint8_t, uint16_t
883 #define NOP_UUU_H uint16_t, uint16_t, uint32_t, uint16_t, uint32_t
884 #define NOP_UUU_W uint32_t, uint32_t, uint64_t, uint32_t, uint64_t
886 /* operation of two vector elements */
887 typedef void opivv2_fn(void *vd, void *vs1, void *vs2, int i);
889 #define OPIVV2(NAME, TD, T1, T2, TX1, TX2, HD, HS1, HS2, OP) \
890 static void do_##NAME(void *vd, void *vs1, void *vs2, int i) \
892 TX1 s1 = *((T1 *)vs1 + HS1(i)); \
893 TX2 s2 = *((T2 *)vs2 + HS2(i)); \
894 *((TD *)vd + HD(i)) = OP(s2, s1); \
896 #define DO_SUB(N, M) (N - M)
897 #define DO_RSUB(N, M) (M - N)
899 RVVCALL(OPIVV2, vadd_vv_b, OP_SSS_B, H1, H1, H1, DO_ADD)
900 RVVCALL(OPIVV2, vadd_vv_h, OP_SSS_H, H2, H2, H2, DO_ADD)
901 RVVCALL(OPIVV2, vadd_vv_w, OP_SSS_W, H4, H4, H4, DO_ADD)
902 RVVCALL(OPIVV2, vadd_vv_d, OP_SSS_D, H8, H8, H8, DO_ADD)
903 RVVCALL(OPIVV2, vsub_vv_b, OP_SSS_B, H1, H1, H1, DO_SUB)
904 RVVCALL(OPIVV2, vsub_vv_h, OP_SSS_H, H2, H2, H2, DO_SUB)
905 RVVCALL(OPIVV2, vsub_vv_w, OP_SSS_W, H4, H4, H4, DO_SUB)
906 RVVCALL(OPIVV2, vsub_vv_d, OP_SSS_D, H8, H8, H8, DO_SUB)
908 static void do_vext_vv(void *vd, void *v0, void *vs1, void *vs2,
909 CPURISCVState *env, uint32_t desc,
910 uint32_t esz, uint32_t dsz,
911 opivv2_fn *fn, clear_fn *clearfn)
913 uint32_t vlmax = vext_maxsz(desc) / esz;
914 uint32_t mlen = vext_mlen(desc);
915 uint32_t vm = vext_vm(desc);
916 uint32_t vl = env->vl;
917 uint32_t i;
919 for (i = 0; i < vl; i++) {
920 if (!vm && !vext_elem_mask(v0, mlen, i)) {
921 continue;
923 fn(vd, vs1, vs2, i);
925 clearfn(vd, vl, vl * dsz, vlmax * dsz);
928 /* generate the helpers for OPIVV */
929 #define GEN_VEXT_VV(NAME, ESZ, DSZ, CLEAR_FN) \
930 void HELPER(NAME)(void *vd, void *v0, void *vs1, \
931 void *vs2, CPURISCVState *env, \
932 uint32_t desc) \
934 do_vext_vv(vd, v0, vs1, vs2, env, desc, ESZ, DSZ, \
935 do_##NAME, CLEAR_FN); \
938 GEN_VEXT_VV(vadd_vv_b, 1, 1, clearb)
939 GEN_VEXT_VV(vadd_vv_h, 2, 2, clearh)
940 GEN_VEXT_VV(vadd_vv_w, 4, 4, clearl)
941 GEN_VEXT_VV(vadd_vv_d, 8, 8, clearq)
942 GEN_VEXT_VV(vsub_vv_b, 1, 1, clearb)
943 GEN_VEXT_VV(vsub_vv_h, 2, 2, clearh)
944 GEN_VEXT_VV(vsub_vv_w, 4, 4, clearl)
945 GEN_VEXT_VV(vsub_vv_d, 8, 8, clearq)
947 typedef void opivx2_fn(void *vd, target_long s1, void *vs2, int i);
950 * (T1)s1 gives the real operator type.
951 * (TX1)(T1)s1 expands the operator type of widen or narrow operations.
953 #define OPIVX2(NAME, TD, T1, T2, TX1, TX2, HD, HS2, OP) \
954 static void do_##NAME(void *vd, target_long s1, void *vs2, int i) \
956 TX2 s2 = *((T2 *)vs2 + HS2(i)); \
957 *((TD *)vd + HD(i)) = OP(s2, (TX1)(T1)s1); \
960 RVVCALL(OPIVX2, vadd_vx_b, OP_SSS_B, H1, H1, DO_ADD)
961 RVVCALL(OPIVX2, vadd_vx_h, OP_SSS_H, H2, H2, DO_ADD)
962 RVVCALL(OPIVX2, vadd_vx_w, OP_SSS_W, H4, H4, DO_ADD)
963 RVVCALL(OPIVX2, vadd_vx_d, OP_SSS_D, H8, H8, DO_ADD)
964 RVVCALL(OPIVX2, vsub_vx_b, OP_SSS_B, H1, H1, DO_SUB)
965 RVVCALL(OPIVX2, vsub_vx_h, OP_SSS_H, H2, H2, DO_SUB)
966 RVVCALL(OPIVX2, vsub_vx_w, OP_SSS_W, H4, H4, DO_SUB)
967 RVVCALL(OPIVX2, vsub_vx_d, OP_SSS_D, H8, H8, DO_SUB)
968 RVVCALL(OPIVX2, vrsub_vx_b, OP_SSS_B, H1, H1, DO_RSUB)
969 RVVCALL(OPIVX2, vrsub_vx_h, OP_SSS_H, H2, H2, DO_RSUB)
970 RVVCALL(OPIVX2, vrsub_vx_w, OP_SSS_W, H4, H4, DO_RSUB)
971 RVVCALL(OPIVX2, vrsub_vx_d, OP_SSS_D, H8, H8, DO_RSUB)
973 static void do_vext_vx(void *vd, void *v0, target_long s1, void *vs2,
974 CPURISCVState *env, uint32_t desc,
975 uint32_t esz, uint32_t dsz,
976 opivx2_fn fn, clear_fn *clearfn)
978 uint32_t vlmax = vext_maxsz(desc) / esz;
979 uint32_t mlen = vext_mlen(desc);
980 uint32_t vm = vext_vm(desc);
981 uint32_t vl = env->vl;
982 uint32_t i;
984 for (i = 0; i < vl; i++) {
985 if (!vm && !vext_elem_mask(v0, mlen, i)) {
986 continue;
988 fn(vd, s1, vs2, i);
990 clearfn(vd, vl, vl * dsz, vlmax * dsz);
993 /* generate the helpers for OPIVX */
994 #define GEN_VEXT_VX(NAME, ESZ, DSZ, CLEAR_FN) \
995 void HELPER(NAME)(void *vd, void *v0, target_ulong s1, \
996 void *vs2, CPURISCVState *env, \
997 uint32_t desc) \
999 do_vext_vx(vd, v0, s1, vs2, env, desc, ESZ, DSZ, \
1000 do_##NAME, CLEAR_FN); \
1003 GEN_VEXT_VX(vadd_vx_b, 1, 1, clearb)
1004 GEN_VEXT_VX(vadd_vx_h, 2, 2, clearh)
1005 GEN_VEXT_VX(vadd_vx_w, 4, 4, clearl)
1006 GEN_VEXT_VX(vadd_vx_d, 8, 8, clearq)
1007 GEN_VEXT_VX(vsub_vx_b, 1, 1, clearb)
1008 GEN_VEXT_VX(vsub_vx_h, 2, 2, clearh)
1009 GEN_VEXT_VX(vsub_vx_w, 4, 4, clearl)
1010 GEN_VEXT_VX(vsub_vx_d, 8, 8, clearq)
1011 GEN_VEXT_VX(vrsub_vx_b, 1, 1, clearb)
1012 GEN_VEXT_VX(vrsub_vx_h, 2, 2, clearh)
1013 GEN_VEXT_VX(vrsub_vx_w, 4, 4, clearl)
1014 GEN_VEXT_VX(vrsub_vx_d, 8, 8, clearq)
1016 void HELPER(vec_rsubs8)(void *d, void *a, uint64_t b, uint32_t desc)
1018 intptr_t oprsz = simd_oprsz(desc);
1019 intptr_t i;
1021 for (i = 0; i < oprsz; i += sizeof(uint8_t)) {
1022 *(uint8_t *)(d + i) = (uint8_t)b - *(uint8_t *)(a + i);
1026 void HELPER(vec_rsubs16)(void *d, void *a, uint64_t b, uint32_t desc)
1028 intptr_t oprsz = simd_oprsz(desc);
1029 intptr_t i;
1031 for (i = 0; i < oprsz; i += sizeof(uint16_t)) {
1032 *(uint16_t *)(d + i) = (uint16_t)b - *(uint16_t *)(a + i);
1036 void HELPER(vec_rsubs32)(void *d, void *a, uint64_t b, uint32_t desc)
1038 intptr_t oprsz = simd_oprsz(desc);
1039 intptr_t i;
1041 for (i = 0; i < oprsz; i += sizeof(uint32_t)) {
1042 *(uint32_t *)(d + i) = (uint32_t)b - *(uint32_t *)(a + i);
1046 void HELPER(vec_rsubs64)(void *d, void *a, uint64_t b, uint32_t desc)
1048 intptr_t oprsz = simd_oprsz(desc);
1049 intptr_t i;
1051 for (i = 0; i < oprsz; i += sizeof(uint64_t)) {
1052 *(uint64_t *)(d + i) = b - *(uint64_t *)(a + i);
1056 /* Vector Widening Integer Add/Subtract */
1057 #define WOP_UUU_B uint16_t, uint8_t, uint8_t, uint16_t, uint16_t
1058 #define WOP_UUU_H uint32_t, uint16_t, uint16_t, uint32_t, uint32_t
1059 #define WOP_UUU_W uint64_t, uint32_t, uint32_t, uint64_t, uint64_t
1060 #define WOP_SSS_B int16_t, int8_t, int8_t, int16_t, int16_t
1061 #define WOP_SSS_H int32_t, int16_t, int16_t, int32_t, int32_t
1062 #define WOP_SSS_W int64_t, int32_t, int32_t, int64_t, int64_t
1063 #define WOP_WUUU_B uint16_t, uint8_t, uint16_t, uint16_t, uint16_t
1064 #define WOP_WUUU_H uint32_t, uint16_t, uint32_t, uint32_t, uint32_t
1065 #define WOP_WUUU_W uint64_t, uint32_t, uint64_t, uint64_t, uint64_t
1066 #define WOP_WSSS_B int16_t, int8_t, int16_t, int16_t, int16_t
1067 #define WOP_WSSS_H int32_t, int16_t, int32_t, int32_t, int32_t
1068 #define WOP_WSSS_W int64_t, int32_t, int64_t, int64_t, int64_t
1069 RVVCALL(OPIVV2, vwaddu_vv_b, WOP_UUU_B, H2, H1, H1, DO_ADD)
1070 RVVCALL(OPIVV2, vwaddu_vv_h, WOP_UUU_H, H4, H2, H2, DO_ADD)
1071 RVVCALL(OPIVV2, vwaddu_vv_w, WOP_UUU_W, H8, H4, H4, DO_ADD)
1072 RVVCALL(OPIVV2, vwsubu_vv_b, WOP_UUU_B, H2, H1, H1, DO_SUB)
1073 RVVCALL(OPIVV2, vwsubu_vv_h, WOP_UUU_H, H4, H2, H2, DO_SUB)
1074 RVVCALL(OPIVV2, vwsubu_vv_w, WOP_UUU_W, H8, H4, H4, DO_SUB)
1075 RVVCALL(OPIVV2, vwadd_vv_b, WOP_SSS_B, H2, H1, H1, DO_ADD)
1076 RVVCALL(OPIVV2, vwadd_vv_h, WOP_SSS_H, H4, H2, H2, DO_ADD)
1077 RVVCALL(OPIVV2, vwadd_vv_w, WOP_SSS_W, H8, H4, H4, DO_ADD)
1078 RVVCALL(OPIVV2, vwsub_vv_b, WOP_SSS_B, H2, H1, H1, DO_SUB)
1079 RVVCALL(OPIVV2, vwsub_vv_h, WOP_SSS_H, H4, H2, H2, DO_SUB)
1080 RVVCALL(OPIVV2, vwsub_vv_w, WOP_SSS_W, H8, H4, H4, DO_SUB)
1081 RVVCALL(OPIVV2, vwaddu_wv_b, WOP_WUUU_B, H2, H1, H1, DO_ADD)
1082 RVVCALL(OPIVV2, vwaddu_wv_h, WOP_WUUU_H, H4, H2, H2, DO_ADD)
1083 RVVCALL(OPIVV2, vwaddu_wv_w, WOP_WUUU_W, H8, H4, H4, DO_ADD)
1084 RVVCALL(OPIVV2, vwsubu_wv_b, WOP_WUUU_B, H2, H1, H1, DO_SUB)
1085 RVVCALL(OPIVV2, vwsubu_wv_h, WOP_WUUU_H, H4, H2, H2, DO_SUB)
1086 RVVCALL(OPIVV2, vwsubu_wv_w, WOP_WUUU_W, H8, H4, H4, DO_SUB)
1087 RVVCALL(OPIVV2, vwadd_wv_b, WOP_WSSS_B, H2, H1, H1, DO_ADD)
1088 RVVCALL(OPIVV2, vwadd_wv_h, WOP_WSSS_H, H4, H2, H2, DO_ADD)
1089 RVVCALL(OPIVV2, vwadd_wv_w, WOP_WSSS_W, H8, H4, H4, DO_ADD)
1090 RVVCALL(OPIVV2, vwsub_wv_b, WOP_WSSS_B, H2, H1, H1, DO_SUB)
1091 RVVCALL(OPIVV2, vwsub_wv_h, WOP_WSSS_H, H4, H2, H2, DO_SUB)
1092 RVVCALL(OPIVV2, vwsub_wv_w, WOP_WSSS_W, H8, H4, H4, DO_SUB)
1093 GEN_VEXT_VV(vwaddu_vv_b, 1, 2, clearh)
1094 GEN_VEXT_VV(vwaddu_vv_h, 2, 4, clearl)
1095 GEN_VEXT_VV(vwaddu_vv_w, 4, 8, clearq)
1096 GEN_VEXT_VV(vwsubu_vv_b, 1, 2, clearh)
1097 GEN_VEXT_VV(vwsubu_vv_h, 2, 4, clearl)
1098 GEN_VEXT_VV(vwsubu_vv_w, 4, 8, clearq)
1099 GEN_VEXT_VV(vwadd_vv_b, 1, 2, clearh)
1100 GEN_VEXT_VV(vwadd_vv_h, 2, 4, clearl)
1101 GEN_VEXT_VV(vwadd_vv_w, 4, 8, clearq)
1102 GEN_VEXT_VV(vwsub_vv_b, 1, 2, clearh)
1103 GEN_VEXT_VV(vwsub_vv_h, 2, 4, clearl)
1104 GEN_VEXT_VV(vwsub_vv_w, 4, 8, clearq)
1105 GEN_VEXT_VV(vwaddu_wv_b, 1, 2, clearh)
1106 GEN_VEXT_VV(vwaddu_wv_h, 2, 4, clearl)
1107 GEN_VEXT_VV(vwaddu_wv_w, 4, 8, clearq)
1108 GEN_VEXT_VV(vwsubu_wv_b, 1, 2, clearh)
1109 GEN_VEXT_VV(vwsubu_wv_h, 2, 4, clearl)
1110 GEN_VEXT_VV(vwsubu_wv_w, 4, 8, clearq)
1111 GEN_VEXT_VV(vwadd_wv_b, 1, 2, clearh)
1112 GEN_VEXT_VV(vwadd_wv_h, 2, 4, clearl)
1113 GEN_VEXT_VV(vwadd_wv_w, 4, 8, clearq)
1114 GEN_VEXT_VV(vwsub_wv_b, 1, 2, clearh)
1115 GEN_VEXT_VV(vwsub_wv_h, 2, 4, clearl)
1116 GEN_VEXT_VV(vwsub_wv_w, 4, 8, clearq)
1118 RVVCALL(OPIVX2, vwaddu_vx_b, WOP_UUU_B, H2, H1, DO_ADD)
1119 RVVCALL(OPIVX2, vwaddu_vx_h, WOP_UUU_H, H4, H2, DO_ADD)
1120 RVVCALL(OPIVX2, vwaddu_vx_w, WOP_UUU_W, H8, H4, DO_ADD)
1121 RVVCALL(OPIVX2, vwsubu_vx_b, WOP_UUU_B, H2, H1, DO_SUB)
1122 RVVCALL(OPIVX2, vwsubu_vx_h, WOP_UUU_H, H4, H2, DO_SUB)
1123 RVVCALL(OPIVX2, vwsubu_vx_w, WOP_UUU_W, H8, H4, DO_SUB)
1124 RVVCALL(OPIVX2, vwadd_vx_b, WOP_SSS_B, H2, H1, DO_ADD)
1125 RVVCALL(OPIVX2, vwadd_vx_h, WOP_SSS_H, H4, H2, DO_ADD)
1126 RVVCALL(OPIVX2, vwadd_vx_w, WOP_SSS_W, H8, H4, DO_ADD)
1127 RVVCALL(OPIVX2, vwsub_vx_b, WOP_SSS_B, H2, H1, DO_SUB)
1128 RVVCALL(OPIVX2, vwsub_vx_h, WOP_SSS_H, H4, H2, DO_SUB)
1129 RVVCALL(OPIVX2, vwsub_vx_w, WOP_SSS_W, H8, H4, DO_SUB)
1130 RVVCALL(OPIVX2, vwaddu_wx_b, WOP_WUUU_B, H2, H1, DO_ADD)
1131 RVVCALL(OPIVX2, vwaddu_wx_h, WOP_WUUU_H, H4, H2, DO_ADD)
1132 RVVCALL(OPIVX2, vwaddu_wx_w, WOP_WUUU_W, H8, H4, DO_ADD)
1133 RVVCALL(OPIVX2, vwsubu_wx_b, WOP_WUUU_B, H2, H1, DO_SUB)
1134 RVVCALL(OPIVX2, vwsubu_wx_h, WOP_WUUU_H, H4, H2, DO_SUB)
1135 RVVCALL(OPIVX2, vwsubu_wx_w, WOP_WUUU_W, H8, H4, DO_SUB)
1136 RVVCALL(OPIVX2, vwadd_wx_b, WOP_WSSS_B, H2, H1, DO_ADD)
1137 RVVCALL(OPIVX2, vwadd_wx_h, WOP_WSSS_H, H4, H2, DO_ADD)
1138 RVVCALL(OPIVX2, vwadd_wx_w, WOP_WSSS_W, H8, H4, DO_ADD)
1139 RVVCALL(OPIVX2, vwsub_wx_b, WOP_WSSS_B, H2, H1, DO_SUB)
1140 RVVCALL(OPIVX2, vwsub_wx_h, WOP_WSSS_H, H4, H2, DO_SUB)
1141 RVVCALL(OPIVX2, vwsub_wx_w, WOP_WSSS_W, H8, H4, DO_SUB)
1142 GEN_VEXT_VX(vwaddu_vx_b, 1, 2, clearh)
1143 GEN_VEXT_VX(vwaddu_vx_h, 2, 4, clearl)
1144 GEN_VEXT_VX(vwaddu_vx_w, 4, 8, clearq)
1145 GEN_VEXT_VX(vwsubu_vx_b, 1, 2, clearh)
1146 GEN_VEXT_VX(vwsubu_vx_h, 2, 4, clearl)
1147 GEN_VEXT_VX(vwsubu_vx_w, 4, 8, clearq)
1148 GEN_VEXT_VX(vwadd_vx_b, 1, 2, clearh)
1149 GEN_VEXT_VX(vwadd_vx_h, 2, 4, clearl)
1150 GEN_VEXT_VX(vwadd_vx_w, 4, 8, clearq)
1151 GEN_VEXT_VX(vwsub_vx_b, 1, 2, clearh)
1152 GEN_VEXT_VX(vwsub_vx_h, 2, 4, clearl)
1153 GEN_VEXT_VX(vwsub_vx_w, 4, 8, clearq)
1154 GEN_VEXT_VX(vwaddu_wx_b, 1, 2, clearh)
1155 GEN_VEXT_VX(vwaddu_wx_h, 2, 4, clearl)
1156 GEN_VEXT_VX(vwaddu_wx_w, 4, 8, clearq)
1157 GEN_VEXT_VX(vwsubu_wx_b, 1, 2, clearh)
1158 GEN_VEXT_VX(vwsubu_wx_h, 2, 4, clearl)
1159 GEN_VEXT_VX(vwsubu_wx_w, 4, 8, clearq)
1160 GEN_VEXT_VX(vwadd_wx_b, 1, 2, clearh)
1161 GEN_VEXT_VX(vwadd_wx_h, 2, 4, clearl)
1162 GEN_VEXT_VX(vwadd_wx_w, 4, 8, clearq)
1163 GEN_VEXT_VX(vwsub_wx_b, 1, 2, clearh)
1164 GEN_VEXT_VX(vwsub_wx_h, 2, 4, clearl)
1165 GEN_VEXT_VX(vwsub_wx_w, 4, 8, clearq)
1167 /* Vector Integer Add-with-Carry / Subtract-with-Borrow Instructions */
1168 #define DO_VADC(N, M, C) (N + M + C)
1169 #define DO_VSBC(N, M, C) (N - M - C)
1171 #define GEN_VEXT_VADC_VVM(NAME, ETYPE, H, DO_OP, CLEAR_FN) \
1172 void HELPER(NAME)(void *vd, void *v0, void *vs1, void *vs2, \
1173 CPURISCVState *env, uint32_t desc) \
1175 uint32_t mlen = vext_mlen(desc); \
1176 uint32_t vl = env->vl; \
1177 uint32_t esz = sizeof(ETYPE); \
1178 uint32_t vlmax = vext_maxsz(desc) / esz; \
1179 uint32_t i; \
1181 for (i = 0; i < vl; i++) { \
1182 ETYPE s1 = *((ETYPE *)vs1 + H(i)); \
1183 ETYPE s2 = *((ETYPE *)vs2 + H(i)); \
1184 uint8_t carry = vext_elem_mask(v0, mlen, i); \
1186 *((ETYPE *)vd + H(i)) = DO_OP(s2, s1, carry); \
1188 CLEAR_FN(vd, vl, vl * esz, vlmax * esz); \
1191 GEN_VEXT_VADC_VVM(vadc_vvm_b, uint8_t, H1, DO_VADC, clearb)
1192 GEN_VEXT_VADC_VVM(vadc_vvm_h, uint16_t, H2, DO_VADC, clearh)
1193 GEN_VEXT_VADC_VVM(vadc_vvm_w, uint32_t, H4, DO_VADC, clearl)
1194 GEN_VEXT_VADC_VVM(vadc_vvm_d, uint64_t, H8, DO_VADC, clearq)
1196 GEN_VEXT_VADC_VVM(vsbc_vvm_b, uint8_t, H1, DO_VSBC, clearb)
1197 GEN_VEXT_VADC_VVM(vsbc_vvm_h, uint16_t, H2, DO_VSBC, clearh)
1198 GEN_VEXT_VADC_VVM(vsbc_vvm_w, uint32_t, H4, DO_VSBC, clearl)
1199 GEN_VEXT_VADC_VVM(vsbc_vvm_d, uint64_t, H8, DO_VSBC, clearq)
1201 #define GEN_VEXT_VADC_VXM(NAME, ETYPE, H, DO_OP, CLEAR_FN) \
1202 void HELPER(NAME)(void *vd, void *v0, target_ulong s1, void *vs2, \
1203 CPURISCVState *env, uint32_t desc) \
1205 uint32_t mlen = vext_mlen(desc); \
1206 uint32_t vl = env->vl; \
1207 uint32_t esz = sizeof(ETYPE); \
1208 uint32_t vlmax = vext_maxsz(desc) / esz; \
1209 uint32_t i; \
1211 for (i = 0; i < vl; i++) { \
1212 ETYPE s2 = *((ETYPE *)vs2 + H(i)); \
1213 uint8_t carry = vext_elem_mask(v0, mlen, i); \
1215 *((ETYPE *)vd + H(i)) = DO_OP(s2, (ETYPE)(target_long)s1, carry);\
1217 CLEAR_FN(vd, vl, vl * esz, vlmax * esz); \
1220 GEN_VEXT_VADC_VXM(vadc_vxm_b, uint8_t, H1, DO_VADC, clearb)
1221 GEN_VEXT_VADC_VXM(vadc_vxm_h, uint16_t, H2, DO_VADC, clearh)
1222 GEN_VEXT_VADC_VXM(vadc_vxm_w, uint32_t, H4, DO_VADC, clearl)
1223 GEN_VEXT_VADC_VXM(vadc_vxm_d, uint64_t, H8, DO_VADC, clearq)
1225 GEN_VEXT_VADC_VXM(vsbc_vxm_b, uint8_t, H1, DO_VSBC, clearb)
1226 GEN_VEXT_VADC_VXM(vsbc_vxm_h, uint16_t, H2, DO_VSBC, clearh)
1227 GEN_VEXT_VADC_VXM(vsbc_vxm_w, uint32_t, H4, DO_VSBC, clearl)
1228 GEN_VEXT_VADC_VXM(vsbc_vxm_d, uint64_t, H8, DO_VSBC, clearq)
1230 #define DO_MADC(N, M, C) (C ? (__typeof(N))(N + M + 1) <= N : \
1231 (__typeof(N))(N + M) < N)
1232 #define DO_MSBC(N, M, C) (C ? N <= M : N < M)
1234 #define GEN_VEXT_VMADC_VVM(NAME, ETYPE, H, DO_OP) \
1235 void HELPER(NAME)(void *vd, void *v0, void *vs1, void *vs2, \
1236 CPURISCVState *env, uint32_t desc) \
1238 uint32_t mlen = vext_mlen(desc); \
1239 uint32_t vl = env->vl; \
1240 uint32_t vlmax = vext_maxsz(desc) / sizeof(ETYPE); \
1241 uint32_t i; \
1243 for (i = 0; i < vl; i++) { \
1244 ETYPE s1 = *((ETYPE *)vs1 + H(i)); \
1245 ETYPE s2 = *((ETYPE *)vs2 + H(i)); \
1246 uint8_t carry = vext_elem_mask(v0, mlen, i); \
1248 vext_set_elem_mask(vd, mlen, i, DO_OP(s2, s1, carry));\
1250 for (; i < vlmax; i++) { \
1251 vext_set_elem_mask(vd, mlen, i, 0); \
1255 GEN_VEXT_VMADC_VVM(vmadc_vvm_b, uint8_t, H1, DO_MADC)
1256 GEN_VEXT_VMADC_VVM(vmadc_vvm_h, uint16_t, H2, DO_MADC)
1257 GEN_VEXT_VMADC_VVM(vmadc_vvm_w, uint32_t, H4, DO_MADC)
1258 GEN_VEXT_VMADC_VVM(vmadc_vvm_d, uint64_t, H8, DO_MADC)
1260 GEN_VEXT_VMADC_VVM(vmsbc_vvm_b, uint8_t, H1, DO_MSBC)
1261 GEN_VEXT_VMADC_VVM(vmsbc_vvm_h, uint16_t, H2, DO_MSBC)
1262 GEN_VEXT_VMADC_VVM(vmsbc_vvm_w, uint32_t, H4, DO_MSBC)
1263 GEN_VEXT_VMADC_VVM(vmsbc_vvm_d, uint64_t, H8, DO_MSBC)
1265 #define GEN_VEXT_VMADC_VXM(NAME, ETYPE, H, DO_OP) \
1266 void HELPER(NAME)(void *vd, void *v0, target_ulong s1, \
1267 void *vs2, CPURISCVState *env, uint32_t desc) \
1269 uint32_t mlen = vext_mlen(desc); \
1270 uint32_t vl = env->vl; \
1271 uint32_t vlmax = vext_maxsz(desc) / sizeof(ETYPE); \
1272 uint32_t i; \
1274 for (i = 0; i < vl; i++) { \
1275 ETYPE s2 = *((ETYPE *)vs2 + H(i)); \
1276 uint8_t carry = vext_elem_mask(v0, mlen, i); \
1278 vext_set_elem_mask(vd, mlen, i, \
1279 DO_OP(s2, (ETYPE)(target_long)s1, carry)); \
1281 for (; i < vlmax; i++) { \
1282 vext_set_elem_mask(vd, mlen, i, 0); \
1286 GEN_VEXT_VMADC_VXM(vmadc_vxm_b, uint8_t, H1, DO_MADC)
1287 GEN_VEXT_VMADC_VXM(vmadc_vxm_h, uint16_t, H2, DO_MADC)
1288 GEN_VEXT_VMADC_VXM(vmadc_vxm_w, uint32_t, H4, DO_MADC)
1289 GEN_VEXT_VMADC_VXM(vmadc_vxm_d, uint64_t, H8, DO_MADC)
1291 GEN_VEXT_VMADC_VXM(vmsbc_vxm_b, uint8_t, H1, DO_MSBC)
1292 GEN_VEXT_VMADC_VXM(vmsbc_vxm_h, uint16_t, H2, DO_MSBC)
1293 GEN_VEXT_VMADC_VXM(vmsbc_vxm_w, uint32_t, H4, DO_MSBC)
1294 GEN_VEXT_VMADC_VXM(vmsbc_vxm_d, uint64_t, H8, DO_MSBC)
1296 /* Vector Bitwise Logical Instructions */
1297 RVVCALL(OPIVV2, vand_vv_b, OP_SSS_B, H1, H1, H1, DO_AND)
1298 RVVCALL(OPIVV2, vand_vv_h, OP_SSS_H, H2, H2, H2, DO_AND)
1299 RVVCALL(OPIVV2, vand_vv_w, OP_SSS_W, H4, H4, H4, DO_AND)
1300 RVVCALL(OPIVV2, vand_vv_d, OP_SSS_D, H8, H8, H8, DO_AND)
1301 RVVCALL(OPIVV2, vor_vv_b, OP_SSS_B, H1, H1, H1, DO_OR)
1302 RVVCALL(OPIVV2, vor_vv_h, OP_SSS_H, H2, H2, H2, DO_OR)
1303 RVVCALL(OPIVV2, vor_vv_w, OP_SSS_W, H4, H4, H4, DO_OR)
1304 RVVCALL(OPIVV2, vor_vv_d, OP_SSS_D, H8, H8, H8, DO_OR)
1305 RVVCALL(OPIVV2, vxor_vv_b, OP_SSS_B, H1, H1, H1, DO_XOR)
1306 RVVCALL(OPIVV2, vxor_vv_h, OP_SSS_H, H2, H2, H2, DO_XOR)
1307 RVVCALL(OPIVV2, vxor_vv_w, OP_SSS_W, H4, H4, H4, DO_XOR)
1308 RVVCALL(OPIVV2, vxor_vv_d, OP_SSS_D, H8, H8, H8, DO_XOR)
1309 GEN_VEXT_VV(vand_vv_b, 1, 1, clearb)
1310 GEN_VEXT_VV(vand_vv_h, 2, 2, clearh)
1311 GEN_VEXT_VV(vand_vv_w, 4, 4, clearl)
1312 GEN_VEXT_VV(vand_vv_d, 8, 8, clearq)
1313 GEN_VEXT_VV(vor_vv_b, 1, 1, clearb)
1314 GEN_VEXT_VV(vor_vv_h, 2, 2, clearh)
1315 GEN_VEXT_VV(vor_vv_w, 4, 4, clearl)
1316 GEN_VEXT_VV(vor_vv_d, 8, 8, clearq)
1317 GEN_VEXT_VV(vxor_vv_b, 1, 1, clearb)
1318 GEN_VEXT_VV(vxor_vv_h, 2, 2, clearh)
1319 GEN_VEXT_VV(vxor_vv_w, 4, 4, clearl)
1320 GEN_VEXT_VV(vxor_vv_d, 8, 8, clearq)
1322 RVVCALL(OPIVX2, vand_vx_b, OP_SSS_B, H1, H1, DO_AND)
1323 RVVCALL(OPIVX2, vand_vx_h, OP_SSS_H, H2, H2, DO_AND)
1324 RVVCALL(OPIVX2, vand_vx_w, OP_SSS_W, H4, H4, DO_AND)
1325 RVVCALL(OPIVX2, vand_vx_d, OP_SSS_D, H8, H8, DO_AND)
1326 RVVCALL(OPIVX2, vor_vx_b, OP_SSS_B, H1, H1, DO_OR)
1327 RVVCALL(OPIVX2, vor_vx_h, OP_SSS_H, H2, H2, DO_OR)
1328 RVVCALL(OPIVX2, vor_vx_w, OP_SSS_W, H4, H4, DO_OR)
1329 RVVCALL(OPIVX2, vor_vx_d, OP_SSS_D, H8, H8, DO_OR)
1330 RVVCALL(OPIVX2, vxor_vx_b, OP_SSS_B, H1, H1, DO_XOR)
1331 RVVCALL(OPIVX2, vxor_vx_h, OP_SSS_H, H2, H2, DO_XOR)
1332 RVVCALL(OPIVX2, vxor_vx_w, OP_SSS_W, H4, H4, DO_XOR)
1333 RVVCALL(OPIVX2, vxor_vx_d, OP_SSS_D, H8, H8, DO_XOR)
1334 GEN_VEXT_VX(vand_vx_b, 1, 1, clearb)
1335 GEN_VEXT_VX(vand_vx_h, 2, 2, clearh)
1336 GEN_VEXT_VX(vand_vx_w, 4, 4, clearl)
1337 GEN_VEXT_VX(vand_vx_d, 8, 8, clearq)
1338 GEN_VEXT_VX(vor_vx_b, 1, 1, clearb)
1339 GEN_VEXT_VX(vor_vx_h, 2, 2, clearh)
1340 GEN_VEXT_VX(vor_vx_w, 4, 4, clearl)
1341 GEN_VEXT_VX(vor_vx_d, 8, 8, clearq)
1342 GEN_VEXT_VX(vxor_vx_b, 1, 1, clearb)
1343 GEN_VEXT_VX(vxor_vx_h, 2, 2, clearh)
1344 GEN_VEXT_VX(vxor_vx_w, 4, 4, clearl)
1345 GEN_VEXT_VX(vxor_vx_d, 8, 8, clearq)
1347 /* Vector Single-Width Bit Shift Instructions */
1348 #define DO_SLL(N, M) (N << (M))
1349 #define DO_SRL(N, M) (N >> (M))
1351 /* generate the helpers for shift instructions with two vector operators */
1352 #define GEN_VEXT_SHIFT_VV(NAME, TS1, TS2, HS1, HS2, OP, MASK, CLEAR_FN) \
1353 void HELPER(NAME)(void *vd, void *v0, void *vs1, \
1354 void *vs2, CPURISCVState *env, uint32_t desc) \
1356 uint32_t mlen = vext_mlen(desc); \
1357 uint32_t vm = vext_vm(desc); \
1358 uint32_t vl = env->vl; \
1359 uint32_t esz = sizeof(TS1); \
1360 uint32_t vlmax = vext_maxsz(desc) / esz; \
1361 uint32_t i; \
1363 for (i = 0; i < vl; i++) { \
1364 if (!vm && !vext_elem_mask(v0, mlen, i)) { \
1365 continue; \
1367 TS1 s1 = *((TS1 *)vs1 + HS1(i)); \
1368 TS2 s2 = *((TS2 *)vs2 + HS2(i)); \
1369 *((TS1 *)vd + HS1(i)) = OP(s2, s1 & MASK); \
1371 CLEAR_FN(vd, vl, vl * esz, vlmax * esz); \
1374 GEN_VEXT_SHIFT_VV(vsll_vv_b, uint8_t, uint8_t, H1, H1, DO_SLL, 0x7, clearb)
1375 GEN_VEXT_SHIFT_VV(vsll_vv_h, uint16_t, uint16_t, H2, H2, DO_SLL, 0xf, clearh)
1376 GEN_VEXT_SHIFT_VV(vsll_vv_w, uint32_t, uint32_t, H4, H4, DO_SLL, 0x1f, clearl)
1377 GEN_VEXT_SHIFT_VV(vsll_vv_d, uint64_t, uint64_t, H8, H8, DO_SLL, 0x3f, clearq)
1379 GEN_VEXT_SHIFT_VV(vsrl_vv_b, uint8_t, uint8_t, H1, H1, DO_SRL, 0x7, clearb)
1380 GEN_VEXT_SHIFT_VV(vsrl_vv_h, uint16_t, uint16_t, H2, H2, DO_SRL, 0xf, clearh)
1381 GEN_VEXT_SHIFT_VV(vsrl_vv_w, uint32_t, uint32_t, H4, H4, DO_SRL, 0x1f, clearl)
1382 GEN_VEXT_SHIFT_VV(vsrl_vv_d, uint64_t, uint64_t, H8, H8, DO_SRL, 0x3f, clearq)
1384 GEN_VEXT_SHIFT_VV(vsra_vv_b, uint8_t, int8_t, H1, H1, DO_SRL, 0x7, clearb)
1385 GEN_VEXT_SHIFT_VV(vsra_vv_h, uint16_t, int16_t, H2, H2, DO_SRL, 0xf, clearh)
1386 GEN_VEXT_SHIFT_VV(vsra_vv_w, uint32_t, int32_t, H4, H4, DO_SRL, 0x1f, clearl)
1387 GEN_VEXT_SHIFT_VV(vsra_vv_d, uint64_t, int64_t, H8, H8, DO_SRL, 0x3f, clearq)
1389 /* generate the helpers for shift instructions with one vector and one scalar */
1390 #define GEN_VEXT_SHIFT_VX(NAME, TD, TS2, HD, HS2, OP, MASK, CLEAR_FN) \
1391 void HELPER(NAME)(void *vd, void *v0, target_ulong s1, \
1392 void *vs2, CPURISCVState *env, uint32_t desc) \
1394 uint32_t mlen = vext_mlen(desc); \
1395 uint32_t vm = vext_vm(desc); \
1396 uint32_t vl = env->vl; \
1397 uint32_t esz = sizeof(TD); \
1398 uint32_t vlmax = vext_maxsz(desc) / esz; \
1399 uint32_t i; \
1401 for (i = 0; i < vl; i++) { \
1402 if (!vm && !vext_elem_mask(v0, mlen, i)) { \
1403 continue; \
1405 TS2 s2 = *((TS2 *)vs2 + HS2(i)); \
1406 *((TD *)vd + HD(i)) = OP(s2, s1 & MASK); \
1408 CLEAR_FN(vd, vl, vl * esz, vlmax * esz); \
1411 GEN_VEXT_SHIFT_VX(vsll_vx_b, uint8_t, int8_t, H1, H1, DO_SLL, 0x7, clearb)
1412 GEN_VEXT_SHIFT_VX(vsll_vx_h, uint16_t, int16_t, H2, H2, DO_SLL, 0xf, clearh)
1413 GEN_VEXT_SHIFT_VX(vsll_vx_w, uint32_t, int32_t, H4, H4, DO_SLL, 0x1f, clearl)
1414 GEN_VEXT_SHIFT_VX(vsll_vx_d, uint64_t, int64_t, H8, H8, DO_SLL, 0x3f, clearq)
1416 GEN_VEXT_SHIFT_VX(vsrl_vx_b, uint8_t, uint8_t, H1, H1, DO_SRL, 0x7, clearb)
1417 GEN_VEXT_SHIFT_VX(vsrl_vx_h, uint16_t, uint16_t, H2, H2, DO_SRL, 0xf, clearh)
1418 GEN_VEXT_SHIFT_VX(vsrl_vx_w, uint32_t, uint32_t, H4, H4, DO_SRL, 0x1f, clearl)
1419 GEN_VEXT_SHIFT_VX(vsrl_vx_d, uint64_t, uint64_t, H8, H8, DO_SRL, 0x3f, clearq)
1421 GEN_VEXT_SHIFT_VX(vsra_vx_b, int8_t, int8_t, H1, H1, DO_SRL, 0x7, clearb)
1422 GEN_VEXT_SHIFT_VX(vsra_vx_h, int16_t, int16_t, H2, H2, DO_SRL, 0xf, clearh)
1423 GEN_VEXT_SHIFT_VX(vsra_vx_w, int32_t, int32_t, H4, H4, DO_SRL, 0x1f, clearl)
1424 GEN_VEXT_SHIFT_VX(vsra_vx_d, int64_t, int64_t, H8, H8, DO_SRL, 0x3f, clearq)
1426 /* Vector Narrowing Integer Right Shift Instructions */
1427 GEN_VEXT_SHIFT_VV(vnsrl_vv_b, uint8_t, uint16_t, H1, H2, DO_SRL, 0xf, clearb)
1428 GEN_VEXT_SHIFT_VV(vnsrl_vv_h, uint16_t, uint32_t, H2, H4, DO_SRL, 0x1f, clearh)
1429 GEN_VEXT_SHIFT_VV(vnsrl_vv_w, uint32_t, uint64_t, H4, H8, DO_SRL, 0x3f, clearl)
1430 GEN_VEXT_SHIFT_VV(vnsra_vv_b, uint8_t, int16_t, H1, H2, DO_SRL, 0xf, clearb)
1431 GEN_VEXT_SHIFT_VV(vnsra_vv_h, uint16_t, int32_t, H2, H4, DO_SRL, 0x1f, clearh)
1432 GEN_VEXT_SHIFT_VV(vnsra_vv_w, uint32_t, int64_t, H4, H8, DO_SRL, 0x3f, clearl)
1433 GEN_VEXT_SHIFT_VX(vnsrl_vx_b, uint8_t, uint16_t, H1, H2, DO_SRL, 0xf, clearb)
1434 GEN_VEXT_SHIFT_VX(vnsrl_vx_h, uint16_t, uint32_t, H2, H4, DO_SRL, 0x1f, clearh)
1435 GEN_VEXT_SHIFT_VX(vnsrl_vx_w, uint32_t, uint64_t, H4, H8, DO_SRL, 0x3f, clearl)
1436 GEN_VEXT_SHIFT_VX(vnsra_vx_b, int8_t, int16_t, H1, H2, DO_SRL, 0xf, clearb)
1437 GEN_VEXT_SHIFT_VX(vnsra_vx_h, int16_t, int32_t, H2, H4, DO_SRL, 0x1f, clearh)
1438 GEN_VEXT_SHIFT_VX(vnsra_vx_w, int32_t, int64_t, H4, H8, DO_SRL, 0x3f, clearl)
1440 /* Vector Integer Comparison Instructions */
1441 #define DO_MSEQ(N, M) (N == M)
1442 #define DO_MSNE(N, M) (N != M)
1443 #define DO_MSLT(N, M) (N < M)
1444 #define DO_MSLE(N, M) (N <= M)
1445 #define DO_MSGT(N, M) (N > M)
1447 #define GEN_VEXT_CMP_VV(NAME, ETYPE, H, DO_OP) \
1448 void HELPER(NAME)(void *vd, void *v0, void *vs1, void *vs2, \
1449 CPURISCVState *env, uint32_t desc) \
1451 uint32_t mlen = vext_mlen(desc); \
1452 uint32_t vm = vext_vm(desc); \
1453 uint32_t vl = env->vl; \
1454 uint32_t vlmax = vext_maxsz(desc) / sizeof(ETYPE); \
1455 uint32_t i; \
1457 for (i = 0; i < vl; i++) { \
1458 ETYPE s1 = *((ETYPE *)vs1 + H(i)); \
1459 ETYPE s2 = *((ETYPE *)vs2 + H(i)); \
1460 if (!vm && !vext_elem_mask(v0, mlen, i)) { \
1461 continue; \
1463 vext_set_elem_mask(vd, mlen, i, DO_OP(s2, s1)); \
1465 for (; i < vlmax; i++) { \
1466 vext_set_elem_mask(vd, mlen, i, 0); \
1470 GEN_VEXT_CMP_VV(vmseq_vv_b, uint8_t, H1, DO_MSEQ)
1471 GEN_VEXT_CMP_VV(vmseq_vv_h, uint16_t, H2, DO_MSEQ)
1472 GEN_VEXT_CMP_VV(vmseq_vv_w, uint32_t, H4, DO_MSEQ)
1473 GEN_VEXT_CMP_VV(vmseq_vv_d, uint64_t, H8, DO_MSEQ)
1475 GEN_VEXT_CMP_VV(vmsne_vv_b, uint8_t, H1, DO_MSNE)
1476 GEN_VEXT_CMP_VV(vmsne_vv_h, uint16_t, H2, DO_MSNE)
1477 GEN_VEXT_CMP_VV(vmsne_vv_w, uint32_t, H4, DO_MSNE)
1478 GEN_VEXT_CMP_VV(vmsne_vv_d, uint64_t, H8, DO_MSNE)
1480 GEN_VEXT_CMP_VV(vmsltu_vv_b, uint8_t, H1, DO_MSLT)
1481 GEN_VEXT_CMP_VV(vmsltu_vv_h, uint16_t, H2, DO_MSLT)
1482 GEN_VEXT_CMP_VV(vmsltu_vv_w, uint32_t, H4, DO_MSLT)
1483 GEN_VEXT_CMP_VV(vmsltu_vv_d, uint64_t, H8, DO_MSLT)
1485 GEN_VEXT_CMP_VV(vmslt_vv_b, int8_t, H1, DO_MSLT)
1486 GEN_VEXT_CMP_VV(vmslt_vv_h, int16_t, H2, DO_MSLT)
1487 GEN_VEXT_CMP_VV(vmslt_vv_w, int32_t, H4, DO_MSLT)
1488 GEN_VEXT_CMP_VV(vmslt_vv_d, int64_t, H8, DO_MSLT)
1490 GEN_VEXT_CMP_VV(vmsleu_vv_b, uint8_t, H1, DO_MSLE)
1491 GEN_VEXT_CMP_VV(vmsleu_vv_h, uint16_t, H2, DO_MSLE)
1492 GEN_VEXT_CMP_VV(vmsleu_vv_w, uint32_t, H4, DO_MSLE)
1493 GEN_VEXT_CMP_VV(vmsleu_vv_d, uint64_t, H8, DO_MSLE)
1495 GEN_VEXT_CMP_VV(vmsle_vv_b, int8_t, H1, DO_MSLE)
1496 GEN_VEXT_CMP_VV(vmsle_vv_h, int16_t, H2, DO_MSLE)
1497 GEN_VEXT_CMP_VV(vmsle_vv_w, int32_t, H4, DO_MSLE)
1498 GEN_VEXT_CMP_VV(vmsle_vv_d, int64_t, H8, DO_MSLE)
1500 #define GEN_VEXT_CMP_VX(NAME, ETYPE, H, DO_OP) \
1501 void HELPER(NAME)(void *vd, void *v0, target_ulong s1, void *vs2, \
1502 CPURISCVState *env, uint32_t desc) \
1504 uint32_t mlen = vext_mlen(desc); \
1505 uint32_t vm = vext_vm(desc); \
1506 uint32_t vl = env->vl; \
1507 uint32_t vlmax = vext_maxsz(desc) / sizeof(ETYPE); \
1508 uint32_t i; \
1510 for (i = 0; i < vl; i++) { \
1511 ETYPE s2 = *((ETYPE *)vs2 + H(i)); \
1512 if (!vm && !vext_elem_mask(v0, mlen, i)) { \
1513 continue; \
1515 vext_set_elem_mask(vd, mlen, i, \
1516 DO_OP(s2, (ETYPE)(target_long)s1)); \
1518 for (; i < vlmax; i++) { \
1519 vext_set_elem_mask(vd, mlen, i, 0); \
1523 GEN_VEXT_CMP_VX(vmseq_vx_b, uint8_t, H1, DO_MSEQ)
1524 GEN_VEXT_CMP_VX(vmseq_vx_h, uint16_t, H2, DO_MSEQ)
1525 GEN_VEXT_CMP_VX(vmseq_vx_w, uint32_t, H4, DO_MSEQ)
1526 GEN_VEXT_CMP_VX(vmseq_vx_d, uint64_t, H8, DO_MSEQ)
1528 GEN_VEXT_CMP_VX(vmsne_vx_b, uint8_t, H1, DO_MSNE)
1529 GEN_VEXT_CMP_VX(vmsne_vx_h, uint16_t, H2, DO_MSNE)
1530 GEN_VEXT_CMP_VX(vmsne_vx_w, uint32_t, H4, DO_MSNE)
1531 GEN_VEXT_CMP_VX(vmsne_vx_d, uint64_t, H8, DO_MSNE)
1533 GEN_VEXT_CMP_VX(vmsltu_vx_b, uint8_t, H1, DO_MSLT)
1534 GEN_VEXT_CMP_VX(vmsltu_vx_h, uint16_t, H2, DO_MSLT)
1535 GEN_VEXT_CMP_VX(vmsltu_vx_w, uint32_t, H4, DO_MSLT)
1536 GEN_VEXT_CMP_VX(vmsltu_vx_d, uint64_t, H8, DO_MSLT)
1538 GEN_VEXT_CMP_VX(vmslt_vx_b, int8_t, H1, DO_MSLT)
1539 GEN_VEXT_CMP_VX(vmslt_vx_h, int16_t, H2, DO_MSLT)
1540 GEN_VEXT_CMP_VX(vmslt_vx_w, int32_t, H4, DO_MSLT)
1541 GEN_VEXT_CMP_VX(vmslt_vx_d, int64_t, H8, DO_MSLT)
1543 GEN_VEXT_CMP_VX(vmsleu_vx_b, uint8_t, H1, DO_MSLE)
1544 GEN_VEXT_CMP_VX(vmsleu_vx_h, uint16_t, H2, DO_MSLE)
1545 GEN_VEXT_CMP_VX(vmsleu_vx_w, uint32_t, H4, DO_MSLE)
1546 GEN_VEXT_CMP_VX(vmsleu_vx_d, uint64_t, H8, DO_MSLE)
1548 GEN_VEXT_CMP_VX(vmsle_vx_b, int8_t, H1, DO_MSLE)
1549 GEN_VEXT_CMP_VX(vmsle_vx_h, int16_t, H2, DO_MSLE)
1550 GEN_VEXT_CMP_VX(vmsle_vx_w, int32_t, H4, DO_MSLE)
1551 GEN_VEXT_CMP_VX(vmsle_vx_d, int64_t, H8, DO_MSLE)
1553 GEN_VEXT_CMP_VX(vmsgtu_vx_b, uint8_t, H1, DO_MSGT)
1554 GEN_VEXT_CMP_VX(vmsgtu_vx_h, uint16_t, H2, DO_MSGT)
1555 GEN_VEXT_CMP_VX(vmsgtu_vx_w, uint32_t, H4, DO_MSGT)
1556 GEN_VEXT_CMP_VX(vmsgtu_vx_d, uint64_t, H8, DO_MSGT)
1558 GEN_VEXT_CMP_VX(vmsgt_vx_b, int8_t, H1, DO_MSGT)
1559 GEN_VEXT_CMP_VX(vmsgt_vx_h, int16_t, H2, DO_MSGT)
1560 GEN_VEXT_CMP_VX(vmsgt_vx_w, int32_t, H4, DO_MSGT)
1561 GEN_VEXT_CMP_VX(vmsgt_vx_d, int64_t, H8, DO_MSGT)
1563 /* Vector Integer Min/Max Instructions */
1564 RVVCALL(OPIVV2, vminu_vv_b, OP_UUU_B, H1, H1, H1, DO_MIN)
1565 RVVCALL(OPIVV2, vminu_vv_h, OP_UUU_H, H2, H2, H2, DO_MIN)
1566 RVVCALL(OPIVV2, vminu_vv_w, OP_UUU_W, H4, H4, H4, DO_MIN)
1567 RVVCALL(OPIVV2, vminu_vv_d, OP_UUU_D, H8, H8, H8, DO_MIN)
1568 RVVCALL(OPIVV2, vmin_vv_b, OP_SSS_B, H1, H1, H1, DO_MIN)
1569 RVVCALL(OPIVV2, vmin_vv_h, OP_SSS_H, H2, H2, H2, DO_MIN)
1570 RVVCALL(OPIVV2, vmin_vv_w, OP_SSS_W, H4, H4, H4, DO_MIN)
1571 RVVCALL(OPIVV2, vmin_vv_d, OP_SSS_D, H8, H8, H8, DO_MIN)
1572 RVVCALL(OPIVV2, vmaxu_vv_b, OP_UUU_B, H1, H1, H1, DO_MAX)
1573 RVVCALL(OPIVV2, vmaxu_vv_h, OP_UUU_H, H2, H2, H2, DO_MAX)
1574 RVVCALL(OPIVV2, vmaxu_vv_w, OP_UUU_W, H4, H4, H4, DO_MAX)
1575 RVVCALL(OPIVV2, vmaxu_vv_d, OP_UUU_D, H8, H8, H8, DO_MAX)
1576 RVVCALL(OPIVV2, vmax_vv_b, OP_SSS_B, H1, H1, H1, DO_MAX)
1577 RVVCALL(OPIVV2, vmax_vv_h, OP_SSS_H, H2, H2, H2, DO_MAX)
1578 RVVCALL(OPIVV2, vmax_vv_w, OP_SSS_W, H4, H4, H4, DO_MAX)
1579 RVVCALL(OPIVV2, vmax_vv_d, OP_SSS_D, H8, H8, H8, DO_MAX)
1580 GEN_VEXT_VV(vminu_vv_b, 1, 1, clearb)
1581 GEN_VEXT_VV(vminu_vv_h, 2, 2, clearh)
1582 GEN_VEXT_VV(vminu_vv_w, 4, 4, clearl)
1583 GEN_VEXT_VV(vminu_vv_d, 8, 8, clearq)
1584 GEN_VEXT_VV(vmin_vv_b, 1, 1, clearb)
1585 GEN_VEXT_VV(vmin_vv_h, 2, 2, clearh)
1586 GEN_VEXT_VV(vmin_vv_w, 4, 4, clearl)
1587 GEN_VEXT_VV(vmin_vv_d, 8, 8, clearq)
1588 GEN_VEXT_VV(vmaxu_vv_b, 1, 1, clearb)
1589 GEN_VEXT_VV(vmaxu_vv_h, 2, 2, clearh)
1590 GEN_VEXT_VV(vmaxu_vv_w, 4, 4, clearl)
1591 GEN_VEXT_VV(vmaxu_vv_d, 8, 8, clearq)
1592 GEN_VEXT_VV(vmax_vv_b, 1, 1, clearb)
1593 GEN_VEXT_VV(vmax_vv_h, 2, 2, clearh)
1594 GEN_VEXT_VV(vmax_vv_w, 4, 4, clearl)
1595 GEN_VEXT_VV(vmax_vv_d, 8, 8, clearq)
1597 RVVCALL(OPIVX2, vminu_vx_b, OP_UUU_B, H1, H1, DO_MIN)
1598 RVVCALL(OPIVX2, vminu_vx_h, OP_UUU_H, H2, H2, DO_MIN)
1599 RVVCALL(OPIVX2, vminu_vx_w, OP_UUU_W, H4, H4, DO_MIN)
1600 RVVCALL(OPIVX2, vminu_vx_d, OP_UUU_D, H8, H8, DO_MIN)
1601 RVVCALL(OPIVX2, vmin_vx_b, OP_SSS_B, H1, H1, DO_MIN)
1602 RVVCALL(OPIVX2, vmin_vx_h, OP_SSS_H, H2, H2, DO_MIN)
1603 RVVCALL(OPIVX2, vmin_vx_w, OP_SSS_W, H4, H4, DO_MIN)
1604 RVVCALL(OPIVX2, vmin_vx_d, OP_SSS_D, H8, H8, DO_MIN)
1605 RVVCALL(OPIVX2, vmaxu_vx_b, OP_UUU_B, H1, H1, DO_MAX)
1606 RVVCALL(OPIVX2, vmaxu_vx_h, OP_UUU_H, H2, H2, DO_MAX)
1607 RVVCALL(OPIVX2, vmaxu_vx_w, OP_UUU_W, H4, H4, DO_MAX)
1608 RVVCALL(OPIVX2, vmaxu_vx_d, OP_UUU_D, H8, H8, DO_MAX)
1609 RVVCALL(OPIVX2, vmax_vx_b, OP_SSS_B, H1, H1, DO_MAX)
1610 RVVCALL(OPIVX2, vmax_vx_h, OP_SSS_H, H2, H2, DO_MAX)
1611 RVVCALL(OPIVX2, vmax_vx_w, OP_SSS_W, H4, H4, DO_MAX)
1612 RVVCALL(OPIVX2, vmax_vx_d, OP_SSS_D, H8, H8, DO_MAX)
1613 GEN_VEXT_VX(vminu_vx_b, 1, 1, clearb)
1614 GEN_VEXT_VX(vminu_vx_h, 2, 2, clearh)
1615 GEN_VEXT_VX(vminu_vx_w, 4, 4, clearl)
1616 GEN_VEXT_VX(vminu_vx_d, 8, 8, clearq)
1617 GEN_VEXT_VX(vmin_vx_b, 1, 1, clearb)
1618 GEN_VEXT_VX(vmin_vx_h, 2, 2, clearh)
1619 GEN_VEXT_VX(vmin_vx_w, 4, 4, clearl)
1620 GEN_VEXT_VX(vmin_vx_d, 8, 8, clearq)
1621 GEN_VEXT_VX(vmaxu_vx_b, 1, 1, clearb)
1622 GEN_VEXT_VX(vmaxu_vx_h, 2, 2, clearh)
1623 GEN_VEXT_VX(vmaxu_vx_w, 4, 4, clearl)
1624 GEN_VEXT_VX(vmaxu_vx_d, 8, 8, clearq)
1625 GEN_VEXT_VX(vmax_vx_b, 1, 1, clearb)
1626 GEN_VEXT_VX(vmax_vx_h, 2, 2, clearh)
1627 GEN_VEXT_VX(vmax_vx_w, 4, 4, clearl)
1628 GEN_VEXT_VX(vmax_vx_d, 8, 8, clearq)
1630 /* Vector Single-Width Integer Multiply Instructions */
1631 #define DO_MUL(N, M) (N * M)
1632 RVVCALL(OPIVV2, vmul_vv_b, OP_SSS_B, H1, H1, H1, DO_MUL)
1633 RVVCALL(OPIVV2, vmul_vv_h, OP_SSS_H, H2, H2, H2, DO_MUL)
1634 RVVCALL(OPIVV2, vmul_vv_w, OP_SSS_W, H4, H4, H4, DO_MUL)
1635 RVVCALL(OPIVV2, vmul_vv_d, OP_SSS_D, H8, H8, H8, DO_MUL)
1636 GEN_VEXT_VV(vmul_vv_b, 1, 1, clearb)
1637 GEN_VEXT_VV(vmul_vv_h, 2, 2, clearh)
1638 GEN_VEXT_VV(vmul_vv_w, 4, 4, clearl)
1639 GEN_VEXT_VV(vmul_vv_d, 8, 8, clearq)
1641 static int8_t do_mulh_b(int8_t s2, int8_t s1)
1643 return (int16_t)s2 * (int16_t)s1 >> 8;
1646 static int16_t do_mulh_h(int16_t s2, int16_t s1)
1648 return (int32_t)s2 * (int32_t)s1 >> 16;
1651 static int32_t do_mulh_w(int32_t s2, int32_t s1)
1653 return (int64_t)s2 * (int64_t)s1 >> 32;
1656 static int64_t do_mulh_d(int64_t s2, int64_t s1)
1658 uint64_t hi_64, lo_64;
1660 muls64(&lo_64, &hi_64, s1, s2);
1661 return hi_64;
1664 static uint8_t do_mulhu_b(uint8_t s2, uint8_t s1)
1666 return (uint16_t)s2 * (uint16_t)s1 >> 8;
1669 static uint16_t do_mulhu_h(uint16_t s2, uint16_t s1)
1671 return (uint32_t)s2 * (uint32_t)s1 >> 16;
1674 static uint32_t do_mulhu_w(uint32_t s2, uint32_t s1)
1676 return (uint64_t)s2 * (uint64_t)s1 >> 32;
1679 static uint64_t do_mulhu_d(uint64_t s2, uint64_t s1)
1681 uint64_t hi_64, lo_64;
1683 mulu64(&lo_64, &hi_64, s2, s1);
1684 return hi_64;
1687 static int8_t do_mulhsu_b(int8_t s2, uint8_t s1)
1689 return (int16_t)s2 * (uint16_t)s1 >> 8;
1692 static int16_t do_mulhsu_h(int16_t s2, uint16_t s1)
1694 return (int32_t)s2 * (uint32_t)s1 >> 16;
1697 static int32_t do_mulhsu_w(int32_t s2, uint32_t s1)
1699 return (int64_t)s2 * (uint64_t)s1 >> 32;
1703 * Let A = signed operand,
1704 * B = unsigned operand
1705 * P = mulu64(A, B), unsigned product
1707 * LET X = 2 ** 64 - A, 2's complement of A
1708 * SP = signed product
1709 * THEN
1710 * IF A < 0
1711 * SP = -X * B
1712 * = -(2 ** 64 - A) * B
1713 * = A * B - 2 ** 64 * B
1714 * = P - 2 ** 64 * B
1715 * ELSE
1716 * SP = P
1717 * THEN
1718 * HI_P -= (A < 0 ? B : 0)
1721 static int64_t do_mulhsu_d(int64_t s2, uint64_t s1)
1723 uint64_t hi_64, lo_64;
1725 mulu64(&lo_64, &hi_64, s2, s1);
1727 hi_64 -= s2 < 0 ? s1 : 0;
1728 return hi_64;
1731 RVVCALL(OPIVV2, vmulh_vv_b, OP_SSS_B, H1, H1, H1, do_mulh_b)
1732 RVVCALL(OPIVV2, vmulh_vv_h, OP_SSS_H, H2, H2, H2, do_mulh_h)
1733 RVVCALL(OPIVV2, vmulh_vv_w, OP_SSS_W, H4, H4, H4, do_mulh_w)
1734 RVVCALL(OPIVV2, vmulh_vv_d, OP_SSS_D, H8, H8, H8, do_mulh_d)
1735 RVVCALL(OPIVV2, vmulhu_vv_b, OP_UUU_B, H1, H1, H1, do_mulhu_b)
1736 RVVCALL(OPIVV2, vmulhu_vv_h, OP_UUU_H, H2, H2, H2, do_mulhu_h)
1737 RVVCALL(OPIVV2, vmulhu_vv_w, OP_UUU_W, H4, H4, H4, do_mulhu_w)
1738 RVVCALL(OPIVV2, vmulhu_vv_d, OP_UUU_D, H8, H8, H8, do_mulhu_d)
1739 RVVCALL(OPIVV2, vmulhsu_vv_b, OP_SUS_B, H1, H1, H1, do_mulhsu_b)
1740 RVVCALL(OPIVV2, vmulhsu_vv_h, OP_SUS_H, H2, H2, H2, do_mulhsu_h)
1741 RVVCALL(OPIVV2, vmulhsu_vv_w, OP_SUS_W, H4, H4, H4, do_mulhsu_w)
1742 RVVCALL(OPIVV2, vmulhsu_vv_d, OP_SUS_D, H8, H8, H8, do_mulhsu_d)
1743 GEN_VEXT_VV(vmulh_vv_b, 1, 1, clearb)
1744 GEN_VEXT_VV(vmulh_vv_h, 2, 2, clearh)
1745 GEN_VEXT_VV(vmulh_vv_w, 4, 4, clearl)
1746 GEN_VEXT_VV(vmulh_vv_d, 8, 8, clearq)
1747 GEN_VEXT_VV(vmulhu_vv_b, 1, 1, clearb)
1748 GEN_VEXT_VV(vmulhu_vv_h, 2, 2, clearh)
1749 GEN_VEXT_VV(vmulhu_vv_w, 4, 4, clearl)
1750 GEN_VEXT_VV(vmulhu_vv_d, 8, 8, clearq)
1751 GEN_VEXT_VV(vmulhsu_vv_b, 1, 1, clearb)
1752 GEN_VEXT_VV(vmulhsu_vv_h, 2, 2, clearh)
1753 GEN_VEXT_VV(vmulhsu_vv_w, 4, 4, clearl)
1754 GEN_VEXT_VV(vmulhsu_vv_d, 8, 8, clearq)
1756 RVVCALL(OPIVX2, vmul_vx_b, OP_SSS_B, H1, H1, DO_MUL)
1757 RVVCALL(OPIVX2, vmul_vx_h, OP_SSS_H, H2, H2, DO_MUL)
1758 RVVCALL(OPIVX2, vmul_vx_w, OP_SSS_W, H4, H4, DO_MUL)
1759 RVVCALL(OPIVX2, vmul_vx_d, OP_SSS_D, H8, H8, DO_MUL)
1760 RVVCALL(OPIVX2, vmulh_vx_b, OP_SSS_B, H1, H1, do_mulh_b)
1761 RVVCALL(OPIVX2, vmulh_vx_h, OP_SSS_H, H2, H2, do_mulh_h)
1762 RVVCALL(OPIVX2, vmulh_vx_w, OP_SSS_W, H4, H4, do_mulh_w)
1763 RVVCALL(OPIVX2, vmulh_vx_d, OP_SSS_D, H8, H8, do_mulh_d)
1764 RVVCALL(OPIVX2, vmulhu_vx_b, OP_UUU_B, H1, H1, do_mulhu_b)
1765 RVVCALL(OPIVX2, vmulhu_vx_h, OP_UUU_H, H2, H2, do_mulhu_h)
1766 RVVCALL(OPIVX2, vmulhu_vx_w, OP_UUU_W, H4, H4, do_mulhu_w)
1767 RVVCALL(OPIVX2, vmulhu_vx_d, OP_UUU_D, H8, H8, do_mulhu_d)
1768 RVVCALL(OPIVX2, vmulhsu_vx_b, OP_SUS_B, H1, H1, do_mulhsu_b)
1769 RVVCALL(OPIVX2, vmulhsu_vx_h, OP_SUS_H, H2, H2, do_mulhsu_h)
1770 RVVCALL(OPIVX2, vmulhsu_vx_w, OP_SUS_W, H4, H4, do_mulhsu_w)
1771 RVVCALL(OPIVX2, vmulhsu_vx_d, OP_SUS_D, H8, H8, do_mulhsu_d)
1772 GEN_VEXT_VX(vmul_vx_b, 1, 1, clearb)
1773 GEN_VEXT_VX(vmul_vx_h, 2, 2, clearh)
1774 GEN_VEXT_VX(vmul_vx_w, 4, 4, clearl)
1775 GEN_VEXT_VX(vmul_vx_d, 8, 8, clearq)
1776 GEN_VEXT_VX(vmulh_vx_b, 1, 1, clearb)
1777 GEN_VEXT_VX(vmulh_vx_h, 2, 2, clearh)
1778 GEN_VEXT_VX(vmulh_vx_w, 4, 4, clearl)
1779 GEN_VEXT_VX(vmulh_vx_d, 8, 8, clearq)
1780 GEN_VEXT_VX(vmulhu_vx_b, 1, 1, clearb)
1781 GEN_VEXT_VX(vmulhu_vx_h, 2, 2, clearh)
1782 GEN_VEXT_VX(vmulhu_vx_w, 4, 4, clearl)
1783 GEN_VEXT_VX(vmulhu_vx_d, 8, 8, clearq)
1784 GEN_VEXT_VX(vmulhsu_vx_b, 1, 1, clearb)
1785 GEN_VEXT_VX(vmulhsu_vx_h, 2, 2, clearh)
1786 GEN_VEXT_VX(vmulhsu_vx_w, 4, 4, clearl)
1787 GEN_VEXT_VX(vmulhsu_vx_d, 8, 8, clearq)
1789 /* Vector Integer Divide Instructions */
1790 #define DO_DIVU(N, M) (unlikely(M == 0) ? (__typeof(N))(-1) : N / M)
1791 #define DO_REMU(N, M) (unlikely(M == 0) ? N : N % M)
1792 #define DO_DIV(N, M) (unlikely(M == 0) ? (__typeof(N))(-1) :\
1793 unlikely((N == -N) && (M == (__typeof(N))(-1))) ? N : N / M)
1794 #define DO_REM(N, M) (unlikely(M == 0) ? N :\
1795 unlikely((N == -N) && (M == (__typeof(N))(-1))) ? 0 : N % M)
1797 RVVCALL(OPIVV2, vdivu_vv_b, OP_UUU_B, H1, H1, H1, DO_DIVU)
1798 RVVCALL(OPIVV2, vdivu_vv_h, OP_UUU_H, H2, H2, H2, DO_DIVU)
1799 RVVCALL(OPIVV2, vdivu_vv_w, OP_UUU_W, H4, H4, H4, DO_DIVU)
1800 RVVCALL(OPIVV2, vdivu_vv_d, OP_UUU_D, H8, H8, H8, DO_DIVU)
1801 RVVCALL(OPIVV2, vdiv_vv_b, OP_SSS_B, H1, H1, H1, DO_DIV)
1802 RVVCALL(OPIVV2, vdiv_vv_h, OP_SSS_H, H2, H2, H2, DO_DIV)
1803 RVVCALL(OPIVV2, vdiv_vv_w, OP_SSS_W, H4, H4, H4, DO_DIV)
1804 RVVCALL(OPIVV2, vdiv_vv_d, OP_SSS_D, H8, H8, H8, DO_DIV)
1805 RVVCALL(OPIVV2, vremu_vv_b, OP_UUU_B, H1, H1, H1, DO_REMU)
1806 RVVCALL(OPIVV2, vremu_vv_h, OP_UUU_H, H2, H2, H2, DO_REMU)
1807 RVVCALL(OPIVV2, vremu_vv_w, OP_UUU_W, H4, H4, H4, DO_REMU)
1808 RVVCALL(OPIVV2, vremu_vv_d, OP_UUU_D, H8, H8, H8, DO_REMU)
1809 RVVCALL(OPIVV2, vrem_vv_b, OP_SSS_B, H1, H1, H1, DO_REM)
1810 RVVCALL(OPIVV2, vrem_vv_h, OP_SSS_H, H2, H2, H2, DO_REM)
1811 RVVCALL(OPIVV2, vrem_vv_w, OP_SSS_W, H4, H4, H4, DO_REM)
1812 RVVCALL(OPIVV2, vrem_vv_d, OP_SSS_D, H8, H8, H8, DO_REM)
1813 GEN_VEXT_VV(vdivu_vv_b, 1, 1, clearb)
1814 GEN_VEXT_VV(vdivu_vv_h, 2, 2, clearh)
1815 GEN_VEXT_VV(vdivu_vv_w, 4, 4, clearl)
1816 GEN_VEXT_VV(vdivu_vv_d, 8, 8, clearq)
1817 GEN_VEXT_VV(vdiv_vv_b, 1, 1, clearb)
1818 GEN_VEXT_VV(vdiv_vv_h, 2, 2, clearh)
1819 GEN_VEXT_VV(vdiv_vv_w, 4, 4, clearl)
1820 GEN_VEXT_VV(vdiv_vv_d, 8, 8, clearq)
1821 GEN_VEXT_VV(vremu_vv_b, 1, 1, clearb)
1822 GEN_VEXT_VV(vremu_vv_h, 2, 2, clearh)
1823 GEN_VEXT_VV(vremu_vv_w, 4, 4, clearl)
1824 GEN_VEXT_VV(vremu_vv_d, 8, 8, clearq)
1825 GEN_VEXT_VV(vrem_vv_b, 1, 1, clearb)
1826 GEN_VEXT_VV(vrem_vv_h, 2, 2, clearh)
1827 GEN_VEXT_VV(vrem_vv_w, 4, 4, clearl)
1828 GEN_VEXT_VV(vrem_vv_d, 8, 8, clearq)
1830 RVVCALL(OPIVX2, vdivu_vx_b, OP_UUU_B, H1, H1, DO_DIVU)
1831 RVVCALL(OPIVX2, vdivu_vx_h, OP_UUU_H, H2, H2, DO_DIVU)
1832 RVVCALL(OPIVX2, vdivu_vx_w, OP_UUU_W, H4, H4, DO_DIVU)
1833 RVVCALL(OPIVX2, vdivu_vx_d, OP_UUU_D, H8, H8, DO_DIVU)
1834 RVVCALL(OPIVX2, vdiv_vx_b, OP_SSS_B, H1, H1, DO_DIV)
1835 RVVCALL(OPIVX2, vdiv_vx_h, OP_SSS_H, H2, H2, DO_DIV)
1836 RVVCALL(OPIVX2, vdiv_vx_w, OP_SSS_W, H4, H4, DO_DIV)
1837 RVVCALL(OPIVX2, vdiv_vx_d, OP_SSS_D, H8, H8, DO_DIV)
1838 RVVCALL(OPIVX2, vremu_vx_b, OP_UUU_B, H1, H1, DO_REMU)
1839 RVVCALL(OPIVX2, vremu_vx_h, OP_UUU_H, H2, H2, DO_REMU)
1840 RVVCALL(OPIVX2, vremu_vx_w, OP_UUU_W, H4, H4, DO_REMU)
1841 RVVCALL(OPIVX2, vremu_vx_d, OP_UUU_D, H8, H8, DO_REMU)
1842 RVVCALL(OPIVX2, vrem_vx_b, OP_SSS_B, H1, H1, DO_REM)
1843 RVVCALL(OPIVX2, vrem_vx_h, OP_SSS_H, H2, H2, DO_REM)
1844 RVVCALL(OPIVX2, vrem_vx_w, OP_SSS_W, H4, H4, DO_REM)
1845 RVVCALL(OPIVX2, vrem_vx_d, OP_SSS_D, H8, H8, DO_REM)
1846 GEN_VEXT_VX(vdivu_vx_b, 1, 1, clearb)
1847 GEN_VEXT_VX(vdivu_vx_h, 2, 2, clearh)
1848 GEN_VEXT_VX(vdivu_vx_w, 4, 4, clearl)
1849 GEN_VEXT_VX(vdivu_vx_d, 8, 8, clearq)
1850 GEN_VEXT_VX(vdiv_vx_b, 1, 1, clearb)
1851 GEN_VEXT_VX(vdiv_vx_h, 2, 2, clearh)
1852 GEN_VEXT_VX(vdiv_vx_w, 4, 4, clearl)
1853 GEN_VEXT_VX(vdiv_vx_d, 8, 8, clearq)
1854 GEN_VEXT_VX(vremu_vx_b, 1, 1, clearb)
1855 GEN_VEXT_VX(vremu_vx_h, 2, 2, clearh)
1856 GEN_VEXT_VX(vremu_vx_w, 4, 4, clearl)
1857 GEN_VEXT_VX(vremu_vx_d, 8, 8, clearq)
1858 GEN_VEXT_VX(vrem_vx_b, 1, 1, clearb)
1859 GEN_VEXT_VX(vrem_vx_h, 2, 2, clearh)
1860 GEN_VEXT_VX(vrem_vx_w, 4, 4, clearl)
1861 GEN_VEXT_VX(vrem_vx_d, 8, 8, clearq)
1863 /* Vector Widening Integer Multiply Instructions */
1864 RVVCALL(OPIVV2, vwmul_vv_b, WOP_SSS_B, H2, H1, H1, DO_MUL)
1865 RVVCALL(OPIVV2, vwmul_vv_h, WOP_SSS_H, H4, H2, H2, DO_MUL)
1866 RVVCALL(OPIVV2, vwmul_vv_w, WOP_SSS_W, H8, H4, H4, DO_MUL)
1867 RVVCALL(OPIVV2, vwmulu_vv_b, WOP_UUU_B, H2, H1, H1, DO_MUL)
1868 RVVCALL(OPIVV2, vwmulu_vv_h, WOP_UUU_H, H4, H2, H2, DO_MUL)
1869 RVVCALL(OPIVV2, vwmulu_vv_w, WOP_UUU_W, H8, H4, H4, DO_MUL)
1870 RVVCALL(OPIVV2, vwmulsu_vv_b, WOP_SUS_B, H2, H1, H1, DO_MUL)
1871 RVVCALL(OPIVV2, vwmulsu_vv_h, WOP_SUS_H, H4, H2, H2, DO_MUL)
1872 RVVCALL(OPIVV2, vwmulsu_vv_w, WOP_SUS_W, H8, H4, H4, DO_MUL)
1873 GEN_VEXT_VV(vwmul_vv_b, 1, 2, clearh)
1874 GEN_VEXT_VV(vwmul_vv_h, 2, 4, clearl)
1875 GEN_VEXT_VV(vwmul_vv_w, 4, 8, clearq)
1876 GEN_VEXT_VV(vwmulu_vv_b, 1, 2, clearh)
1877 GEN_VEXT_VV(vwmulu_vv_h, 2, 4, clearl)
1878 GEN_VEXT_VV(vwmulu_vv_w, 4, 8, clearq)
1879 GEN_VEXT_VV(vwmulsu_vv_b, 1, 2, clearh)
1880 GEN_VEXT_VV(vwmulsu_vv_h, 2, 4, clearl)
1881 GEN_VEXT_VV(vwmulsu_vv_w, 4, 8, clearq)
1883 RVVCALL(OPIVX2, vwmul_vx_b, WOP_SSS_B, H2, H1, DO_MUL)
1884 RVVCALL(OPIVX2, vwmul_vx_h, WOP_SSS_H, H4, H2, DO_MUL)
1885 RVVCALL(OPIVX2, vwmul_vx_w, WOP_SSS_W, H8, H4, DO_MUL)
1886 RVVCALL(OPIVX2, vwmulu_vx_b, WOP_UUU_B, H2, H1, DO_MUL)
1887 RVVCALL(OPIVX2, vwmulu_vx_h, WOP_UUU_H, H4, H2, DO_MUL)
1888 RVVCALL(OPIVX2, vwmulu_vx_w, WOP_UUU_W, H8, H4, DO_MUL)
1889 RVVCALL(OPIVX2, vwmulsu_vx_b, WOP_SUS_B, H2, H1, DO_MUL)
1890 RVVCALL(OPIVX2, vwmulsu_vx_h, WOP_SUS_H, H4, H2, DO_MUL)
1891 RVVCALL(OPIVX2, vwmulsu_vx_w, WOP_SUS_W, H8, H4, DO_MUL)
1892 GEN_VEXT_VX(vwmul_vx_b, 1, 2, clearh)
1893 GEN_VEXT_VX(vwmul_vx_h, 2, 4, clearl)
1894 GEN_VEXT_VX(vwmul_vx_w, 4, 8, clearq)
1895 GEN_VEXT_VX(vwmulu_vx_b, 1, 2, clearh)
1896 GEN_VEXT_VX(vwmulu_vx_h, 2, 4, clearl)
1897 GEN_VEXT_VX(vwmulu_vx_w, 4, 8, clearq)
1898 GEN_VEXT_VX(vwmulsu_vx_b, 1, 2, clearh)
1899 GEN_VEXT_VX(vwmulsu_vx_h, 2, 4, clearl)
1900 GEN_VEXT_VX(vwmulsu_vx_w, 4, 8, clearq)
1902 /* Vector Single-Width Integer Multiply-Add Instructions */
1903 #define OPIVV3(NAME, TD, T1, T2, TX1, TX2, HD, HS1, HS2, OP) \
1904 static void do_##NAME(void *vd, void *vs1, void *vs2, int i) \
1906 TX1 s1 = *((T1 *)vs1 + HS1(i)); \
1907 TX2 s2 = *((T2 *)vs2 + HS2(i)); \
1908 TD d = *((TD *)vd + HD(i)); \
1909 *((TD *)vd + HD(i)) = OP(s2, s1, d); \
1912 #define DO_MACC(N, M, D) (M * N + D)
1913 #define DO_NMSAC(N, M, D) (-(M * N) + D)
1914 #define DO_MADD(N, M, D) (M * D + N)
1915 #define DO_NMSUB(N, M, D) (-(M * D) + N)
1916 RVVCALL(OPIVV3, vmacc_vv_b, OP_SSS_B, H1, H1, H1, DO_MACC)
1917 RVVCALL(OPIVV3, vmacc_vv_h, OP_SSS_H, H2, H2, H2, DO_MACC)
1918 RVVCALL(OPIVV3, vmacc_vv_w, OP_SSS_W, H4, H4, H4, DO_MACC)
1919 RVVCALL(OPIVV3, vmacc_vv_d, OP_SSS_D, H8, H8, H8, DO_MACC)
1920 RVVCALL(OPIVV3, vnmsac_vv_b, OP_SSS_B, H1, H1, H1, DO_NMSAC)
1921 RVVCALL(OPIVV3, vnmsac_vv_h, OP_SSS_H, H2, H2, H2, DO_NMSAC)
1922 RVVCALL(OPIVV3, vnmsac_vv_w, OP_SSS_W, H4, H4, H4, DO_NMSAC)
1923 RVVCALL(OPIVV3, vnmsac_vv_d, OP_SSS_D, H8, H8, H8, DO_NMSAC)
1924 RVVCALL(OPIVV3, vmadd_vv_b, OP_SSS_B, H1, H1, H1, DO_MADD)
1925 RVVCALL(OPIVV3, vmadd_vv_h, OP_SSS_H, H2, H2, H2, DO_MADD)
1926 RVVCALL(OPIVV3, vmadd_vv_w, OP_SSS_W, H4, H4, H4, DO_MADD)
1927 RVVCALL(OPIVV3, vmadd_vv_d, OP_SSS_D, H8, H8, H8, DO_MADD)
1928 RVVCALL(OPIVV3, vnmsub_vv_b, OP_SSS_B, H1, H1, H1, DO_NMSUB)
1929 RVVCALL(OPIVV3, vnmsub_vv_h, OP_SSS_H, H2, H2, H2, DO_NMSUB)
1930 RVVCALL(OPIVV3, vnmsub_vv_w, OP_SSS_W, H4, H4, H4, DO_NMSUB)
1931 RVVCALL(OPIVV3, vnmsub_vv_d, OP_SSS_D, H8, H8, H8, DO_NMSUB)
1932 GEN_VEXT_VV(vmacc_vv_b, 1, 1, clearb)
1933 GEN_VEXT_VV(vmacc_vv_h, 2, 2, clearh)
1934 GEN_VEXT_VV(vmacc_vv_w, 4, 4, clearl)
1935 GEN_VEXT_VV(vmacc_vv_d, 8, 8, clearq)
1936 GEN_VEXT_VV(vnmsac_vv_b, 1, 1, clearb)
1937 GEN_VEXT_VV(vnmsac_vv_h, 2, 2, clearh)
1938 GEN_VEXT_VV(vnmsac_vv_w, 4, 4, clearl)
1939 GEN_VEXT_VV(vnmsac_vv_d, 8, 8, clearq)
1940 GEN_VEXT_VV(vmadd_vv_b, 1, 1, clearb)
1941 GEN_VEXT_VV(vmadd_vv_h, 2, 2, clearh)
1942 GEN_VEXT_VV(vmadd_vv_w, 4, 4, clearl)
1943 GEN_VEXT_VV(vmadd_vv_d, 8, 8, clearq)
1944 GEN_VEXT_VV(vnmsub_vv_b, 1, 1, clearb)
1945 GEN_VEXT_VV(vnmsub_vv_h, 2, 2, clearh)
1946 GEN_VEXT_VV(vnmsub_vv_w, 4, 4, clearl)
1947 GEN_VEXT_VV(vnmsub_vv_d, 8, 8, clearq)
1949 #define OPIVX3(NAME, TD, T1, T2, TX1, TX2, HD, HS2, OP) \
1950 static void do_##NAME(void *vd, target_long s1, void *vs2, int i) \
1952 TX2 s2 = *((T2 *)vs2 + HS2(i)); \
1953 TD d = *((TD *)vd + HD(i)); \
1954 *((TD *)vd + HD(i)) = OP(s2, (TX1)(T1)s1, d); \
1957 RVVCALL(OPIVX3, vmacc_vx_b, OP_SSS_B, H1, H1, DO_MACC)
1958 RVVCALL(OPIVX3, vmacc_vx_h, OP_SSS_H, H2, H2, DO_MACC)
1959 RVVCALL(OPIVX3, vmacc_vx_w, OP_SSS_W, H4, H4, DO_MACC)
1960 RVVCALL(OPIVX3, vmacc_vx_d, OP_SSS_D, H8, H8, DO_MACC)
1961 RVVCALL(OPIVX3, vnmsac_vx_b, OP_SSS_B, H1, H1, DO_NMSAC)
1962 RVVCALL(OPIVX3, vnmsac_vx_h, OP_SSS_H, H2, H2, DO_NMSAC)
1963 RVVCALL(OPIVX3, vnmsac_vx_w, OP_SSS_W, H4, H4, DO_NMSAC)
1964 RVVCALL(OPIVX3, vnmsac_vx_d, OP_SSS_D, H8, H8, DO_NMSAC)
1965 RVVCALL(OPIVX3, vmadd_vx_b, OP_SSS_B, H1, H1, DO_MADD)
1966 RVVCALL(OPIVX3, vmadd_vx_h, OP_SSS_H, H2, H2, DO_MADD)
1967 RVVCALL(OPIVX3, vmadd_vx_w, OP_SSS_W, H4, H4, DO_MADD)
1968 RVVCALL(OPIVX3, vmadd_vx_d, OP_SSS_D, H8, H8, DO_MADD)
1969 RVVCALL(OPIVX3, vnmsub_vx_b, OP_SSS_B, H1, H1, DO_NMSUB)
1970 RVVCALL(OPIVX3, vnmsub_vx_h, OP_SSS_H, H2, H2, DO_NMSUB)
1971 RVVCALL(OPIVX3, vnmsub_vx_w, OP_SSS_W, H4, H4, DO_NMSUB)
1972 RVVCALL(OPIVX3, vnmsub_vx_d, OP_SSS_D, H8, H8, DO_NMSUB)
1973 GEN_VEXT_VX(vmacc_vx_b, 1, 1, clearb)
1974 GEN_VEXT_VX(vmacc_vx_h, 2, 2, clearh)
1975 GEN_VEXT_VX(vmacc_vx_w, 4, 4, clearl)
1976 GEN_VEXT_VX(vmacc_vx_d, 8, 8, clearq)
1977 GEN_VEXT_VX(vnmsac_vx_b, 1, 1, clearb)
1978 GEN_VEXT_VX(vnmsac_vx_h, 2, 2, clearh)
1979 GEN_VEXT_VX(vnmsac_vx_w, 4, 4, clearl)
1980 GEN_VEXT_VX(vnmsac_vx_d, 8, 8, clearq)
1981 GEN_VEXT_VX(vmadd_vx_b, 1, 1, clearb)
1982 GEN_VEXT_VX(vmadd_vx_h, 2, 2, clearh)
1983 GEN_VEXT_VX(vmadd_vx_w, 4, 4, clearl)
1984 GEN_VEXT_VX(vmadd_vx_d, 8, 8, clearq)
1985 GEN_VEXT_VX(vnmsub_vx_b, 1, 1, clearb)
1986 GEN_VEXT_VX(vnmsub_vx_h, 2, 2, clearh)
1987 GEN_VEXT_VX(vnmsub_vx_w, 4, 4, clearl)
1988 GEN_VEXT_VX(vnmsub_vx_d, 8, 8, clearq)
1990 /* Vector Widening Integer Multiply-Add Instructions */
1991 RVVCALL(OPIVV3, vwmaccu_vv_b, WOP_UUU_B, H2, H1, H1, DO_MACC)
1992 RVVCALL(OPIVV3, vwmaccu_vv_h, WOP_UUU_H, H4, H2, H2, DO_MACC)
1993 RVVCALL(OPIVV3, vwmaccu_vv_w, WOP_UUU_W, H8, H4, H4, DO_MACC)
1994 RVVCALL(OPIVV3, vwmacc_vv_b, WOP_SSS_B, H2, H1, H1, DO_MACC)
1995 RVVCALL(OPIVV3, vwmacc_vv_h, WOP_SSS_H, H4, H2, H2, DO_MACC)
1996 RVVCALL(OPIVV3, vwmacc_vv_w, WOP_SSS_W, H8, H4, H4, DO_MACC)
1997 RVVCALL(OPIVV3, vwmaccsu_vv_b, WOP_SSU_B, H2, H1, H1, DO_MACC)
1998 RVVCALL(OPIVV3, vwmaccsu_vv_h, WOP_SSU_H, H4, H2, H2, DO_MACC)
1999 RVVCALL(OPIVV3, vwmaccsu_vv_w, WOP_SSU_W, H8, H4, H4, DO_MACC)
2000 GEN_VEXT_VV(vwmaccu_vv_b, 1, 2, clearh)
2001 GEN_VEXT_VV(vwmaccu_vv_h, 2, 4, clearl)
2002 GEN_VEXT_VV(vwmaccu_vv_w, 4, 8, clearq)
2003 GEN_VEXT_VV(vwmacc_vv_b, 1, 2, clearh)
2004 GEN_VEXT_VV(vwmacc_vv_h, 2, 4, clearl)
2005 GEN_VEXT_VV(vwmacc_vv_w, 4, 8, clearq)
2006 GEN_VEXT_VV(vwmaccsu_vv_b, 1, 2, clearh)
2007 GEN_VEXT_VV(vwmaccsu_vv_h, 2, 4, clearl)
2008 GEN_VEXT_VV(vwmaccsu_vv_w, 4, 8, clearq)
2010 RVVCALL(OPIVX3, vwmaccu_vx_b, WOP_UUU_B, H2, H1, DO_MACC)
2011 RVVCALL(OPIVX3, vwmaccu_vx_h, WOP_UUU_H, H4, H2, DO_MACC)
2012 RVVCALL(OPIVX3, vwmaccu_vx_w, WOP_UUU_W, H8, H4, DO_MACC)
2013 RVVCALL(OPIVX3, vwmacc_vx_b, WOP_SSS_B, H2, H1, DO_MACC)
2014 RVVCALL(OPIVX3, vwmacc_vx_h, WOP_SSS_H, H4, H2, DO_MACC)
2015 RVVCALL(OPIVX3, vwmacc_vx_w, WOP_SSS_W, H8, H4, DO_MACC)
2016 RVVCALL(OPIVX3, vwmaccsu_vx_b, WOP_SSU_B, H2, H1, DO_MACC)
2017 RVVCALL(OPIVX3, vwmaccsu_vx_h, WOP_SSU_H, H4, H2, DO_MACC)
2018 RVVCALL(OPIVX3, vwmaccsu_vx_w, WOP_SSU_W, H8, H4, DO_MACC)
2019 RVVCALL(OPIVX3, vwmaccus_vx_b, WOP_SUS_B, H2, H1, DO_MACC)
2020 RVVCALL(OPIVX3, vwmaccus_vx_h, WOP_SUS_H, H4, H2, DO_MACC)
2021 RVVCALL(OPIVX3, vwmaccus_vx_w, WOP_SUS_W, H8, H4, DO_MACC)
2022 GEN_VEXT_VX(vwmaccu_vx_b, 1, 2, clearh)
2023 GEN_VEXT_VX(vwmaccu_vx_h, 2, 4, clearl)
2024 GEN_VEXT_VX(vwmaccu_vx_w, 4, 8, clearq)
2025 GEN_VEXT_VX(vwmacc_vx_b, 1, 2, clearh)
2026 GEN_VEXT_VX(vwmacc_vx_h, 2, 4, clearl)
2027 GEN_VEXT_VX(vwmacc_vx_w, 4, 8, clearq)
2028 GEN_VEXT_VX(vwmaccsu_vx_b, 1, 2, clearh)
2029 GEN_VEXT_VX(vwmaccsu_vx_h, 2, 4, clearl)
2030 GEN_VEXT_VX(vwmaccsu_vx_w, 4, 8, clearq)
2031 GEN_VEXT_VX(vwmaccus_vx_b, 1, 2, clearh)
2032 GEN_VEXT_VX(vwmaccus_vx_h, 2, 4, clearl)
2033 GEN_VEXT_VX(vwmaccus_vx_w, 4, 8, clearq)
2035 /* Vector Integer Merge and Move Instructions */
2036 #define GEN_VEXT_VMV_VV(NAME, ETYPE, H, CLEAR_FN) \
2037 void HELPER(NAME)(void *vd, void *vs1, CPURISCVState *env, \
2038 uint32_t desc) \
2040 uint32_t vl = env->vl; \
2041 uint32_t esz = sizeof(ETYPE); \
2042 uint32_t vlmax = vext_maxsz(desc) / esz; \
2043 uint32_t i; \
2045 for (i = 0; i < vl; i++) { \
2046 ETYPE s1 = *((ETYPE *)vs1 + H(i)); \
2047 *((ETYPE *)vd + H(i)) = s1; \
2049 CLEAR_FN(vd, vl, vl * esz, vlmax * esz); \
2052 GEN_VEXT_VMV_VV(vmv_v_v_b, int8_t, H1, clearb)
2053 GEN_VEXT_VMV_VV(vmv_v_v_h, int16_t, H2, clearh)
2054 GEN_VEXT_VMV_VV(vmv_v_v_w, int32_t, H4, clearl)
2055 GEN_VEXT_VMV_VV(vmv_v_v_d, int64_t, H8, clearq)
2057 #define GEN_VEXT_VMV_VX(NAME, ETYPE, H, CLEAR_FN) \
2058 void HELPER(NAME)(void *vd, uint64_t s1, CPURISCVState *env, \
2059 uint32_t desc) \
2061 uint32_t vl = env->vl; \
2062 uint32_t esz = sizeof(ETYPE); \
2063 uint32_t vlmax = vext_maxsz(desc) / esz; \
2064 uint32_t i; \
2066 for (i = 0; i < vl; i++) { \
2067 *((ETYPE *)vd + H(i)) = (ETYPE)s1; \
2069 CLEAR_FN(vd, vl, vl * esz, vlmax * esz); \
2072 GEN_VEXT_VMV_VX(vmv_v_x_b, int8_t, H1, clearb)
2073 GEN_VEXT_VMV_VX(vmv_v_x_h, int16_t, H2, clearh)
2074 GEN_VEXT_VMV_VX(vmv_v_x_w, int32_t, H4, clearl)
2075 GEN_VEXT_VMV_VX(vmv_v_x_d, int64_t, H8, clearq)
2077 #define GEN_VEXT_VMERGE_VV(NAME, ETYPE, H, CLEAR_FN) \
2078 void HELPER(NAME)(void *vd, void *v0, void *vs1, void *vs2, \
2079 CPURISCVState *env, uint32_t desc) \
2081 uint32_t mlen = vext_mlen(desc); \
2082 uint32_t vl = env->vl; \
2083 uint32_t esz = sizeof(ETYPE); \
2084 uint32_t vlmax = vext_maxsz(desc) / esz; \
2085 uint32_t i; \
2087 for (i = 0; i < vl; i++) { \
2088 ETYPE *vt = (!vext_elem_mask(v0, mlen, i) ? vs2 : vs1); \
2089 *((ETYPE *)vd + H(i)) = *(vt + H(i)); \
2091 CLEAR_FN(vd, vl, vl * esz, vlmax * esz); \
2094 GEN_VEXT_VMERGE_VV(vmerge_vvm_b, int8_t, H1, clearb)
2095 GEN_VEXT_VMERGE_VV(vmerge_vvm_h, int16_t, H2, clearh)
2096 GEN_VEXT_VMERGE_VV(vmerge_vvm_w, int32_t, H4, clearl)
2097 GEN_VEXT_VMERGE_VV(vmerge_vvm_d, int64_t, H8, clearq)
2099 #define GEN_VEXT_VMERGE_VX(NAME, ETYPE, H, CLEAR_FN) \
2100 void HELPER(NAME)(void *vd, void *v0, target_ulong s1, \
2101 void *vs2, CPURISCVState *env, uint32_t desc) \
2103 uint32_t mlen = vext_mlen(desc); \
2104 uint32_t vl = env->vl; \
2105 uint32_t esz = sizeof(ETYPE); \
2106 uint32_t vlmax = vext_maxsz(desc) / esz; \
2107 uint32_t i; \
2109 for (i = 0; i < vl; i++) { \
2110 ETYPE s2 = *((ETYPE *)vs2 + H(i)); \
2111 ETYPE d = (!vext_elem_mask(v0, mlen, i) ? s2 : \
2112 (ETYPE)(target_long)s1); \
2113 *((ETYPE *)vd + H(i)) = d; \
2115 CLEAR_FN(vd, vl, vl * esz, vlmax * esz); \
2118 GEN_VEXT_VMERGE_VX(vmerge_vxm_b, int8_t, H1, clearb)
2119 GEN_VEXT_VMERGE_VX(vmerge_vxm_h, int16_t, H2, clearh)
2120 GEN_VEXT_VMERGE_VX(vmerge_vxm_w, int32_t, H4, clearl)
2121 GEN_VEXT_VMERGE_VX(vmerge_vxm_d, int64_t, H8, clearq)
2124 *** Vector Fixed-Point Arithmetic Instructions
2127 /* Vector Single-Width Saturating Add and Subtract */
2130 * As fixed point instructions probably have round mode and saturation,
2131 * define common macros for fixed point here.
2133 typedef void opivv2_rm_fn(void *vd, void *vs1, void *vs2, int i,
2134 CPURISCVState *env, int vxrm);
2136 #define OPIVV2_RM(NAME, TD, T1, T2, TX1, TX2, HD, HS1, HS2, OP) \
2137 static inline void \
2138 do_##NAME(void *vd, void *vs1, void *vs2, int i, \
2139 CPURISCVState *env, int vxrm) \
2141 TX1 s1 = *((T1 *)vs1 + HS1(i)); \
2142 TX2 s2 = *((T2 *)vs2 + HS2(i)); \
2143 *((TD *)vd + HD(i)) = OP(env, vxrm, s2, s1); \
2146 static inline void
2147 vext_vv_rm_1(void *vd, void *v0, void *vs1, void *vs2,
2148 CPURISCVState *env,
2149 uint32_t vl, uint32_t vm, uint32_t mlen, int vxrm,
2150 opivv2_rm_fn *fn)
2152 for (uint32_t i = 0; i < vl; i++) {
2153 if (!vm && !vext_elem_mask(v0, mlen, i)) {
2154 continue;
2156 fn(vd, vs1, vs2, i, env, vxrm);
2160 static inline void
2161 vext_vv_rm_2(void *vd, void *v0, void *vs1, void *vs2,
2162 CPURISCVState *env,
2163 uint32_t desc, uint32_t esz, uint32_t dsz,
2164 opivv2_rm_fn *fn, clear_fn *clearfn)
2166 uint32_t vlmax = vext_maxsz(desc) / esz;
2167 uint32_t mlen = vext_mlen(desc);
2168 uint32_t vm = vext_vm(desc);
2169 uint32_t vl = env->vl;
2171 switch (env->vxrm) {
2172 case 0: /* rnu */
2173 vext_vv_rm_1(vd, v0, vs1, vs2,
2174 env, vl, vm, mlen, 0, fn);
2175 break;
2176 case 1: /* rne */
2177 vext_vv_rm_1(vd, v0, vs1, vs2,
2178 env, vl, vm, mlen, 1, fn);
2179 break;
2180 case 2: /* rdn */
2181 vext_vv_rm_1(vd, v0, vs1, vs2,
2182 env, vl, vm, mlen, 2, fn);
2183 break;
2184 default: /* rod */
2185 vext_vv_rm_1(vd, v0, vs1, vs2,
2186 env, vl, vm, mlen, 3, fn);
2187 break;
2190 clearfn(vd, vl, vl * dsz, vlmax * dsz);
2193 /* generate helpers for fixed point instructions with OPIVV format */
2194 #define GEN_VEXT_VV_RM(NAME, ESZ, DSZ, CLEAR_FN) \
2195 void HELPER(NAME)(void *vd, void *v0, void *vs1, void *vs2, \
2196 CPURISCVState *env, uint32_t desc) \
2198 vext_vv_rm_2(vd, v0, vs1, vs2, env, desc, ESZ, DSZ, \
2199 do_##NAME, CLEAR_FN); \
2202 static inline uint8_t saddu8(CPURISCVState *env, int vxrm, uint8_t a, uint8_t b)
2204 uint8_t res = a + b;
2205 if (res < a) {
2206 res = UINT8_MAX;
2207 env->vxsat = 0x1;
2209 return res;
2212 static inline uint16_t saddu16(CPURISCVState *env, int vxrm, uint16_t a,
2213 uint16_t b)
2215 uint16_t res = a + b;
2216 if (res < a) {
2217 res = UINT16_MAX;
2218 env->vxsat = 0x1;
2220 return res;
2223 static inline uint32_t saddu32(CPURISCVState *env, int vxrm, uint32_t a,
2224 uint32_t b)
2226 uint32_t res = a + b;
2227 if (res < a) {
2228 res = UINT32_MAX;
2229 env->vxsat = 0x1;
2231 return res;
2234 static inline uint64_t saddu64(CPURISCVState *env, int vxrm, uint64_t a,
2235 uint64_t b)
2237 uint64_t res = a + b;
2238 if (res < a) {
2239 res = UINT64_MAX;
2240 env->vxsat = 0x1;
2242 return res;
2245 RVVCALL(OPIVV2_RM, vsaddu_vv_b, OP_UUU_B, H1, H1, H1, saddu8)
2246 RVVCALL(OPIVV2_RM, vsaddu_vv_h, OP_UUU_H, H2, H2, H2, saddu16)
2247 RVVCALL(OPIVV2_RM, vsaddu_vv_w, OP_UUU_W, H4, H4, H4, saddu32)
2248 RVVCALL(OPIVV2_RM, vsaddu_vv_d, OP_UUU_D, H8, H8, H8, saddu64)
2249 GEN_VEXT_VV_RM(vsaddu_vv_b, 1, 1, clearb)
2250 GEN_VEXT_VV_RM(vsaddu_vv_h, 2, 2, clearh)
2251 GEN_VEXT_VV_RM(vsaddu_vv_w, 4, 4, clearl)
2252 GEN_VEXT_VV_RM(vsaddu_vv_d, 8, 8, clearq)
2254 typedef void opivx2_rm_fn(void *vd, target_long s1, void *vs2, int i,
2255 CPURISCVState *env, int vxrm);
2257 #define OPIVX2_RM(NAME, TD, T1, T2, TX1, TX2, HD, HS2, OP) \
2258 static inline void \
2259 do_##NAME(void *vd, target_long s1, void *vs2, int i, \
2260 CPURISCVState *env, int vxrm) \
2262 TX2 s2 = *((T2 *)vs2 + HS2(i)); \
2263 *((TD *)vd + HD(i)) = OP(env, vxrm, s2, (TX1)(T1)s1); \
2266 static inline void
2267 vext_vx_rm_1(void *vd, void *v0, target_long s1, void *vs2,
2268 CPURISCVState *env,
2269 uint32_t vl, uint32_t vm, uint32_t mlen, int vxrm,
2270 opivx2_rm_fn *fn)
2272 for (uint32_t i = 0; i < vl; i++) {
2273 if (!vm && !vext_elem_mask(v0, mlen, i)) {
2274 continue;
2276 fn(vd, s1, vs2, i, env, vxrm);
2280 static inline void
2281 vext_vx_rm_2(void *vd, void *v0, target_long s1, void *vs2,
2282 CPURISCVState *env,
2283 uint32_t desc, uint32_t esz, uint32_t dsz,
2284 opivx2_rm_fn *fn, clear_fn *clearfn)
2286 uint32_t vlmax = vext_maxsz(desc) / esz;
2287 uint32_t mlen = vext_mlen(desc);
2288 uint32_t vm = vext_vm(desc);
2289 uint32_t vl = env->vl;
2291 switch (env->vxrm) {
2292 case 0: /* rnu */
2293 vext_vx_rm_1(vd, v0, s1, vs2,
2294 env, vl, vm, mlen, 0, fn);
2295 break;
2296 case 1: /* rne */
2297 vext_vx_rm_1(vd, v0, s1, vs2,
2298 env, vl, vm, mlen, 1, fn);
2299 break;
2300 case 2: /* rdn */
2301 vext_vx_rm_1(vd, v0, s1, vs2,
2302 env, vl, vm, mlen, 2, fn);
2303 break;
2304 default: /* rod */
2305 vext_vx_rm_1(vd, v0, s1, vs2,
2306 env, vl, vm, mlen, 3, fn);
2307 break;
2310 clearfn(vd, vl, vl * dsz, vlmax * dsz);
2313 /* generate helpers for fixed point instructions with OPIVX format */
2314 #define GEN_VEXT_VX_RM(NAME, ESZ, DSZ, CLEAR_FN) \
2315 void HELPER(NAME)(void *vd, void *v0, target_ulong s1, \
2316 void *vs2, CPURISCVState *env, uint32_t desc) \
2318 vext_vx_rm_2(vd, v0, s1, vs2, env, desc, ESZ, DSZ, \
2319 do_##NAME, CLEAR_FN); \
2322 RVVCALL(OPIVX2_RM, vsaddu_vx_b, OP_UUU_B, H1, H1, saddu8)
2323 RVVCALL(OPIVX2_RM, vsaddu_vx_h, OP_UUU_H, H2, H2, saddu16)
2324 RVVCALL(OPIVX2_RM, vsaddu_vx_w, OP_UUU_W, H4, H4, saddu32)
2325 RVVCALL(OPIVX2_RM, vsaddu_vx_d, OP_UUU_D, H8, H8, saddu64)
2326 GEN_VEXT_VX_RM(vsaddu_vx_b, 1, 1, clearb)
2327 GEN_VEXT_VX_RM(vsaddu_vx_h, 2, 2, clearh)
2328 GEN_VEXT_VX_RM(vsaddu_vx_w, 4, 4, clearl)
2329 GEN_VEXT_VX_RM(vsaddu_vx_d, 8, 8, clearq)
2331 static inline int8_t sadd8(CPURISCVState *env, int vxrm, int8_t a, int8_t b)
2333 int8_t res = a + b;
2334 if ((res ^ a) & (res ^ b) & INT8_MIN) {
2335 res = a > 0 ? INT8_MAX : INT8_MIN;
2336 env->vxsat = 0x1;
2338 return res;
2341 static inline int16_t sadd16(CPURISCVState *env, int vxrm, int16_t a, int16_t b)
2343 int16_t res = a + b;
2344 if ((res ^ a) & (res ^ b) & INT16_MIN) {
2345 res = a > 0 ? INT16_MAX : INT16_MIN;
2346 env->vxsat = 0x1;
2348 return res;
2351 static inline int32_t sadd32(CPURISCVState *env, int vxrm, int32_t a, int32_t b)
2353 int32_t res = a + b;
2354 if ((res ^ a) & (res ^ b) & INT32_MIN) {
2355 res = a > 0 ? INT32_MAX : INT32_MIN;
2356 env->vxsat = 0x1;
2358 return res;
2361 static inline int64_t sadd64(CPURISCVState *env, int vxrm, int64_t a, int64_t b)
2363 int64_t res = a + b;
2364 if ((res ^ a) & (res ^ b) & INT64_MIN) {
2365 res = a > 0 ? INT64_MAX : INT64_MIN;
2366 env->vxsat = 0x1;
2368 return res;
2371 RVVCALL(OPIVV2_RM, vsadd_vv_b, OP_SSS_B, H1, H1, H1, sadd8)
2372 RVVCALL(OPIVV2_RM, vsadd_vv_h, OP_SSS_H, H2, H2, H2, sadd16)
2373 RVVCALL(OPIVV2_RM, vsadd_vv_w, OP_SSS_W, H4, H4, H4, sadd32)
2374 RVVCALL(OPIVV2_RM, vsadd_vv_d, OP_SSS_D, H8, H8, H8, sadd64)
2375 GEN_VEXT_VV_RM(vsadd_vv_b, 1, 1, clearb)
2376 GEN_VEXT_VV_RM(vsadd_vv_h, 2, 2, clearh)
2377 GEN_VEXT_VV_RM(vsadd_vv_w, 4, 4, clearl)
2378 GEN_VEXT_VV_RM(vsadd_vv_d, 8, 8, clearq)
2380 RVVCALL(OPIVX2_RM, vsadd_vx_b, OP_SSS_B, H1, H1, sadd8)
2381 RVVCALL(OPIVX2_RM, vsadd_vx_h, OP_SSS_H, H2, H2, sadd16)
2382 RVVCALL(OPIVX2_RM, vsadd_vx_w, OP_SSS_W, H4, H4, sadd32)
2383 RVVCALL(OPIVX2_RM, vsadd_vx_d, OP_SSS_D, H8, H8, sadd64)
2384 GEN_VEXT_VX_RM(vsadd_vx_b, 1, 1, clearb)
2385 GEN_VEXT_VX_RM(vsadd_vx_h, 2, 2, clearh)
2386 GEN_VEXT_VX_RM(vsadd_vx_w, 4, 4, clearl)
2387 GEN_VEXT_VX_RM(vsadd_vx_d, 8, 8, clearq)
2389 static inline uint8_t ssubu8(CPURISCVState *env, int vxrm, uint8_t a, uint8_t b)
2391 uint8_t res = a - b;
2392 if (res > a) {
2393 res = 0;
2394 env->vxsat = 0x1;
2396 return res;
2399 static inline uint16_t ssubu16(CPURISCVState *env, int vxrm, uint16_t a,
2400 uint16_t b)
2402 uint16_t res = a - b;
2403 if (res > a) {
2404 res = 0;
2405 env->vxsat = 0x1;
2407 return res;
2410 static inline uint32_t ssubu32(CPURISCVState *env, int vxrm, uint32_t a,
2411 uint32_t b)
2413 uint32_t res = a - b;
2414 if (res > a) {
2415 res = 0;
2416 env->vxsat = 0x1;
2418 return res;
2421 static inline uint64_t ssubu64(CPURISCVState *env, int vxrm, uint64_t a,
2422 uint64_t b)
2424 uint64_t res = a - b;
2425 if (res > a) {
2426 res = 0;
2427 env->vxsat = 0x1;
2429 return res;
2432 RVVCALL(OPIVV2_RM, vssubu_vv_b, OP_UUU_B, H1, H1, H1, ssubu8)
2433 RVVCALL(OPIVV2_RM, vssubu_vv_h, OP_UUU_H, H2, H2, H2, ssubu16)
2434 RVVCALL(OPIVV2_RM, vssubu_vv_w, OP_UUU_W, H4, H4, H4, ssubu32)
2435 RVVCALL(OPIVV2_RM, vssubu_vv_d, OP_UUU_D, H8, H8, H8, ssubu64)
2436 GEN_VEXT_VV_RM(vssubu_vv_b, 1, 1, clearb)
2437 GEN_VEXT_VV_RM(vssubu_vv_h, 2, 2, clearh)
2438 GEN_VEXT_VV_RM(vssubu_vv_w, 4, 4, clearl)
2439 GEN_VEXT_VV_RM(vssubu_vv_d, 8, 8, clearq)
2441 RVVCALL(OPIVX2_RM, vssubu_vx_b, OP_UUU_B, H1, H1, ssubu8)
2442 RVVCALL(OPIVX2_RM, vssubu_vx_h, OP_UUU_H, H2, H2, ssubu16)
2443 RVVCALL(OPIVX2_RM, vssubu_vx_w, OP_UUU_W, H4, H4, ssubu32)
2444 RVVCALL(OPIVX2_RM, vssubu_vx_d, OP_UUU_D, H8, H8, ssubu64)
2445 GEN_VEXT_VX_RM(vssubu_vx_b, 1, 1, clearb)
2446 GEN_VEXT_VX_RM(vssubu_vx_h, 2, 2, clearh)
2447 GEN_VEXT_VX_RM(vssubu_vx_w, 4, 4, clearl)
2448 GEN_VEXT_VX_RM(vssubu_vx_d, 8, 8, clearq)
2450 static inline int8_t ssub8(CPURISCVState *env, int vxrm, int8_t a, int8_t b)
2452 int8_t res = a - b;
2453 if ((res ^ a) & (a ^ b) & INT8_MIN) {
2454 res = a > 0 ? INT8_MAX : INT8_MIN;
2455 env->vxsat = 0x1;
2457 return res;
2460 static inline int16_t ssub16(CPURISCVState *env, int vxrm, int16_t a, int16_t b)
2462 int16_t res = a - b;
2463 if ((res ^ a) & (a ^ b) & INT16_MIN) {
2464 res = a > 0 ? INT16_MAX : INT16_MIN;
2465 env->vxsat = 0x1;
2467 return res;
2470 static inline int32_t ssub32(CPURISCVState *env, int vxrm, int32_t a, int32_t b)
2472 int32_t res = a - b;
2473 if ((res ^ a) & (a ^ b) & INT32_MIN) {
2474 res = a > 0 ? INT32_MAX : INT32_MIN;
2475 env->vxsat = 0x1;
2477 return res;
2480 static inline int64_t ssub64(CPURISCVState *env, int vxrm, int64_t a, int64_t b)
2482 int64_t res = a - b;
2483 if ((res ^ a) & (a ^ b) & INT64_MIN) {
2484 res = a > 0 ? INT64_MAX : INT64_MIN;
2485 env->vxsat = 0x1;
2487 return res;
2490 RVVCALL(OPIVV2_RM, vssub_vv_b, OP_SSS_B, H1, H1, H1, ssub8)
2491 RVVCALL(OPIVV2_RM, vssub_vv_h, OP_SSS_H, H2, H2, H2, ssub16)
2492 RVVCALL(OPIVV2_RM, vssub_vv_w, OP_SSS_W, H4, H4, H4, ssub32)
2493 RVVCALL(OPIVV2_RM, vssub_vv_d, OP_SSS_D, H8, H8, H8, ssub64)
2494 GEN_VEXT_VV_RM(vssub_vv_b, 1, 1, clearb)
2495 GEN_VEXT_VV_RM(vssub_vv_h, 2, 2, clearh)
2496 GEN_VEXT_VV_RM(vssub_vv_w, 4, 4, clearl)
2497 GEN_VEXT_VV_RM(vssub_vv_d, 8, 8, clearq)
2499 RVVCALL(OPIVX2_RM, vssub_vx_b, OP_SSS_B, H1, H1, ssub8)
2500 RVVCALL(OPIVX2_RM, vssub_vx_h, OP_SSS_H, H2, H2, ssub16)
2501 RVVCALL(OPIVX2_RM, vssub_vx_w, OP_SSS_W, H4, H4, ssub32)
2502 RVVCALL(OPIVX2_RM, vssub_vx_d, OP_SSS_D, H8, H8, ssub64)
2503 GEN_VEXT_VX_RM(vssub_vx_b, 1, 1, clearb)
2504 GEN_VEXT_VX_RM(vssub_vx_h, 2, 2, clearh)
2505 GEN_VEXT_VX_RM(vssub_vx_w, 4, 4, clearl)
2506 GEN_VEXT_VX_RM(vssub_vx_d, 8, 8, clearq)
2508 /* Vector Single-Width Averaging Add and Subtract */
2509 static inline uint8_t get_round(int vxrm, uint64_t v, uint8_t shift)
2511 uint8_t d = extract64(v, shift, 1);
2512 uint8_t d1;
2513 uint64_t D1, D2;
2515 if (shift == 0 || shift > 64) {
2516 return 0;
2519 d1 = extract64(v, shift - 1, 1);
2520 D1 = extract64(v, 0, shift);
2521 if (vxrm == 0) { /* round-to-nearest-up (add +0.5 LSB) */
2522 return d1;
2523 } else if (vxrm == 1) { /* round-to-nearest-even */
2524 if (shift > 1) {
2525 D2 = extract64(v, 0, shift - 1);
2526 return d1 & ((D2 != 0) | d);
2527 } else {
2528 return d1 & d;
2530 } else if (vxrm == 3) { /* round-to-odd (OR bits into LSB, aka "jam") */
2531 return !d & (D1 != 0);
2533 return 0; /* round-down (truncate) */
2536 static inline int32_t aadd32(CPURISCVState *env, int vxrm, int32_t a, int32_t b)
2538 int64_t res = (int64_t)a + b;
2539 uint8_t round = get_round(vxrm, res, 1);
2541 return (res >> 1) + round;
2544 static inline int64_t aadd64(CPURISCVState *env, int vxrm, int64_t a, int64_t b)
2546 int64_t res = a + b;
2547 uint8_t round = get_round(vxrm, res, 1);
2548 int64_t over = (res ^ a) & (res ^ b) & INT64_MIN;
2550 /* With signed overflow, bit 64 is inverse of bit 63. */
2551 return ((res >> 1) ^ over) + round;
2554 RVVCALL(OPIVV2_RM, vaadd_vv_b, OP_SSS_B, H1, H1, H1, aadd32)
2555 RVVCALL(OPIVV2_RM, vaadd_vv_h, OP_SSS_H, H2, H2, H2, aadd32)
2556 RVVCALL(OPIVV2_RM, vaadd_vv_w, OP_SSS_W, H4, H4, H4, aadd32)
2557 RVVCALL(OPIVV2_RM, vaadd_vv_d, OP_SSS_D, H8, H8, H8, aadd64)
2558 GEN_VEXT_VV_RM(vaadd_vv_b, 1, 1, clearb)
2559 GEN_VEXT_VV_RM(vaadd_vv_h, 2, 2, clearh)
2560 GEN_VEXT_VV_RM(vaadd_vv_w, 4, 4, clearl)
2561 GEN_VEXT_VV_RM(vaadd_vv_d, 8, 8, clearq)
2563 RVVCALL(OPIVX2_RM, vaadd_vx_b, OP_SSS_B, H1, H1, aadd32)
2564 RVVCALL(OPIVX2_RM, vaadd_vx_h, OP_SSS_H, H2, H2, aadd32)
2565 RVVCALL(OPIVX2_RM, vaadd_vx_w, OP_SSS_W, H4, H4, aadd32)
2566 RVVCALL(OPIVX2_RM, vaadd_vx_d, OP_SSS_D, H8, H8, aadd64)
2567 GEN_VEXT_VX_RM(vaadd_vx_b, 1, 1, clearb)
2568 GEN_VEXT_VX_RM(vaadd_vx_h, 2, 2, clearh)
2569 GEN_VEXT_VX_RM(vaadd_vx_w, 4, 4, clearl)
2570 GEN_VEXT_VX_RM(vaadd_vx_d, 8, 8, clearq)
2572 static inline int32_t asub32(CPURISCVState *env, int vxrm, int32_t a, int32_t b)
2574 int64_t res = (int64_t)a - b;
2575 uint8_t round = get_round(vxrm, res, 1);
2577 return (res >> 1) + round;
2580 static inline int64_t asub64(CPURISCVState *env, int vxrm, int64_t a, int64_t b)
2582 int64_t res = (int64_t)a - b;
2583 uint8_t round = get_round(vxrm, res, 1);
2584 int64_t over = (res ^ a) & (a ^ b) & INT64_MIN;
2586 /* With signed overflow, bit 64 is inverse of bit 63. */
2587 return ((res >> 1) ^ over) + round;
2590 RVVCALL(OPIVV2_RM, vasub_vv_b, OP_SSS_B, H1, H1, H1, asub32)
2591 RVVCALL(OPIVV2_RM, vasub_vv_h, OP_SSS_H, H2, H2, H2, asub32)
2592 RVVCALL(OPIVV2_RM, vasub_vv_w, OP_SSS_W, H4, H4, H4, asub32)
2593 RVVCALL(OPIVV2_RM, vasub_vv_d, OP_SSS_D, H8, H8, H8, asub64)
2594 GEN_VEXT_VV_RM(vasub_vv_b, 1, 1, clearb)
2595 GEN_VEXT_VV_RM(vasub_vv_h, 2, 2, clearh)
2596 GEN_VEXT_VV_RM(vasub_vv_w, 4, 4, clearl)
2597 GEN_VEXT_VV_RM(vasub_vv_d, 8, 8, clearq)
2599 RVVCALL(OPIVX2_RM, vasub_vx_b, OP_SSS_B, H1, H1, asub32)
2600 RVVCALL(OPIVX2_RM, vasub_vx_h, OP_SSS_H, H2, H2, asub32)
2601 RVVCALL(OPIVX2_RM, vasub_vx_w, OP_SSS_W, H4, H4, asub32)
2602 RVVCALL(OPIVX2_RM, vasub_vx_d, OP_SSS_D, H8, H8, asub64)
2603 GEN_VEXT_VX_RM(vasub_vx_b, 1, 1, clearb)
2604 GEN_VEXT_VX_RM(vasub_vx_h, 2, 2, clearh)
2605 GEN_VEXT_VX_RM(vasub_vx_w, 4, 4, clearl)
2606 GEN_VEXT_VX_RM(vasub_vx_d, 8, 8, clearq)
2608 /* Vector Single-Width Fractional Multiply with Rounding and Saturation */
2609 static inline int8_t vsmul8(CPURISCVState *env, int vxrm, int8_t a, int8_t b)
2611 uint8_t round;
2612 int16_t res;
2614 res = (int16_t)a * (int16_t)b;
2615 round = get_round(vxrm, res, 7);
2616 res = (res >> 7) + round;
2618 if (res > INT8_MAX) {
2619 env->vxsat = 0x1;
2620 return INT8_MAX;
2621 } else if (res < INT8_MIN) {
2622 env->vxsat = 0x1;
2623 return INT8_MIN;
2624 } else {
2625 return res;
2629 static int16_t vsmul16(CPURISCVState *env, int vxrm, int16_t a, int16_t b)
2631 uint8_t round;
2632 int32_t res;
2634 res = (int32_t)a * (int32_t)b;
2635 round = get_round(vxrm, res, 15);
2636 res = (res >> 15) + round;
2638 if (res > INT16_MAX) {
2639 env->vxsat = 0x1;
2640 return INT16_MAX;
2641 } else if (res < INT16_MIN) {
2642 env->vxsat = 0x1;
2643 return INT16_MIN;
2644 } else {
2645 return res;
2649 static int32_t vsmul32(CPURISCVState *env, int vxrm, int32_t a, int32_t b)
2651 uint8_t round;
2652 int64_t res;
2654 res = (int64_t)a * (int64_t)b;
2655 round = get_round(vxrm, res, 31);
2656 res = (res >> 31) + round;
2658 if (res > INT32_MAX) {
2659 env->vxsat = 0x1;
2660 return INT32_MAX;
2661 } else if (res < INT32_MIN) {
2662 env->vxsat = 0x1;
2663 return INT32_MIN;
2664 } else {
2665 return res;
2669 static int64_t vsmul64(CPURISCVState *env, int vxrm, int64_t a, int64_t b)
2671 uint8_t round;
2672 uint64_t hi_64, lo_64;
2673 int64_t res;
2675 if (a == INT64_MIN && b == INT64_MIN) {
2676 env->vxsat = 1;
2677 return INT64_MAX;
2680 muls64(&lo_64, &hi_64, a, b);
2681 round = get_round(vxrm, lo_64, 63);
2683 * Cannot overflow, as there are always
2684 * 2 sign bits after multiply.
2686 res = (hi_64 << 1) | (lo_64 >> 63);
2687 if (round) {
2688 if (res == INT64_MAX) {
2689 env->vxsat = 1;
2690 } else {
2691 res += 1;
2694 return res;
2697 RVVCALL(OPIVV2_RM, vsmul_vv_b, OP_SSS_B, H1, H1, H1, vsmul8)
2698 RVVCALL(OPIVV2_RM, vsmul_vv_h, OP_SSS_H, H2, H2, H2, vsmul16)
2699 RVVCALL(OPIVV2_RM, vsmul_vv_w, OP_SSS_W, H4, H4, H4, vsmul32)
2700 RVVCALL(OPIVV2_RM, vsmul_vv_d, OP_SSS_D, H8, H8, H8, vsmul64)
2701 GEN_VEXT_VV_RM(vsmul_vv_b, 1, 1, clearb)
2702 GEN_VEXT_VV_RM(vsmul_vv_h, 2, 2, clearh)
2703 GEN_VEXT_VV_RM(vsmul_vv_w, 4, 4, clearl)
2704 GEN_VEXT_VV_RM(vsmul_vv_d, 8, 8, clearq)
2706 RVVCALL(OPIVX2_RM, vsmul_vx_b, OP_SSS_B, H1, H1, vsmul8)
2707 RVVCALL(OPIVX2_RM, vsmul_vx_h, OP_SSS_H, H2, H2, vsmul16)
2708 RVVCALL(OPIVX2_RM, vsmul_vx_w, OP_SSS_W, H4, H4, vsmul32)
2709 RVVCALL(OPIVX2_RM, vsmul_vx_d, OP_SSS_D, H8, H8, vsmul64)
2710 GEN_VEXT_VX_RM(vsmul_vx_b, 1, 1, clearb)
2711 GEN_VEXT_VX_RM(vsmul_vx_h, 2, 2, clearh)
2712 GEN_VEXT_VX_RM(vsmul_vx_w, 4, 4, clearl)
2713 GEN_VEXT_VX_RM(vsmul_vx_d, 8, 8, clearq)
2715 /* Vector Widening Saturating Scaled Multiply-Add */
2716 static inline uint16_t
2717 vwsmaccu8(CPURISCVState *env, int vxrm, uint8_t a, uint8_t b,
2718 uint16_t c)
2720 uint8_t round;
2721 uint16_t res = (uint16_t)a * b;
2723 round = get_round(vxrm, res, 4);
2724 res = (res >> 4) + round;
2725 return saddu16(env, vxrm, c, res);
2728 static inline uint32_t
2729 vwsmaccu16(CPURISCVState *env, int vxrm, uint16_t a, uint16_t b,
2730 uint32_t c)
2732 uint8_t round;
2733 uint32_t res = (uint32_t)a * b;
2735 round = get_round(vxrm, res, 8);
2736 res = (res >> 8) + round;
2737 return saddu32(env, vxrm, c, res);
2740 static inline uint64_t
2741 vwsmaccu32(CPURISCVState *env, int vxrm, uint32_t a, uint32_t b,
2742 uint64_t c)
2744 uint8_t round;
2745 uint64_t res = (uint64_t)a * b;
2747 round = get_round(vxrm, res, 16);
2748 res = (res >> 16) + round;
2749 return saddu64(env, vxrm, c, res);
2752 #define OPIVV3_RM(NAME, TD, T1, T2, TX1, TX2, HD, HS1, HS2, OP) \
2753 static inline void \
2754 do_##NAME(void *vd, void *vs1, void *vs2, int i, \
2755 CPURISCVState *env, int vxrm) \
2757 TX1 s1 = *((T1 *)vs1 + HS1(i)); \
2758 TX2 s2 = *((T2 *)vs2 + HS2(i)); \
2759 TD d = *((TD *)vd + HD(i)); \
2760 *((TD *)vd + HD(i)) = OP(env, vxrm, s2, s1, d); \
2763 RVVCALL(OPIVV3_RM, vwsmaccu_vv_b, WOP_UUU_B, H2, H1, H1, vwsmaccu8)
2764 RVVCALL(OPIVV3_RM, vwsmaccu_vv_h, WOP_UUU_H, H4, H2, H2, vwsmaccu16)
2765 RVVCALL(OPIVV3_RM, vwsmaccu_vv_w, WOP_UUU_W, H8, H4, H4, vwsmaccu32)
2766 GEN_VEXT_VV_RM(vwsmaccu_vv_b, 1, 2, clearh)
2767 GEN_VEXT_VV_RM(vwsmaccu_vv_h, 2, 4, clearl)
2768 GEN_VEXT_VV_RM(vwsmaccu_vv_w, 4, 8, clearq)
2770 #define OPIVX3_RM(NAME, TD, T1, T2, TX1, TX2, HD, HS2, OP) \
2771 static inline void \
2772 do_##NAME(void *vd, target_long s1, void *vs2, int i, \
2773 CPURISCVState *env, int vxrm) \
2775 TX2 s2 = *((T2 *)vs2 + HS2(i)); \
2776 TD d = *((TD *)vd + HD(i)); \
2777 *((TD *)vd + HD(i)) = OP(env, vxrm, s2, (TX1)(T1)s1, d); \
2780 RVVCALL(OPIVX3_RM, vwsmaccu_vx_b, WOP_UUU_B, H2, H1, vwsmaccu8)
2781 RVVCALL(OPIVX3_RM, vwsmaccu_vx_h, WOP_UUU_H, H4, H2, vwsmaccu16)
2782 RVVCALL(OPIVX3_RM, vwsmaccu_vx_w, WOP_UUU_W, H8, H4, vwsmaccu32)
2783 GEN_VEXT_VX_RM(vwsmaccu_vx_b, 1, 2, clearh)
2784 GEN_VEXT_VX_RM(vwsmaccu_vx_h, 2, 4, clearl)
2785 GEN_VEXT_VX_RM(vwsmaccu_vx_w, 4, 8, clearq)
2787 static inline int16_t
2788 vwsmacc8(CPURISCVState *env, int vxrm, int8_t a, int8_t b, int16_t c)
2790 uint8_t round;
2791 int16_t res = (int16_t)a * b;
2793 round = get_round(vxrm, res, 4);
2794 res = (res >> 4) + round;
2795 return sadd16(env, vxrm, c, res);
2798 static inline int32_t
2799 vwsmacc16(CPURISCVState *env, int vxrm, int16_t a, int16_t b, int32_t c)
2801 uint8_t round;
2802 int32_t res = (int32_t)a * b;
2804 round = get_round(vxrm, res, 8);
2805 res = (res >> 8) + round;
2806 return sadd32(env, vxrm, c, res);
2810 static inline int64_t
2811 vwsmacc32(CPURISCVState *env, int vxrm, int32_t a, int32_t b, int64_t c)
2813 uint8_t round;
2814 int64_t res = (int64_t)a * b;
2816 round = get_round(vxrm, res, 16);
2817 res = (res >> 16) + round;
2818 return sadd64(env, vxrm, c, res);
2821 RVVCALL(OPIVV3_RM, vwsmacc_vv_b, WOP_SSS_B, H2, H1, H1, vwsmacc8)
2822 RVVCALL(OPIVV3_RM, vwsmacc_vv_h, WOP_SSS_H, H4, H2, H2, vwsmacc16)
2823 RVVCALL(OPIVV3_RM, vwsmacc_vv_w, WOP_SSS_W, H8, H4, H4, vwsmacc32)
2824 GEN_VEXT_VV_RM(vwsmacc_vv_b, 1, 2, clearh)
2825 GEN_VEXT_VV_RM(vwsmacc_vv_h, 2, 4, clearl)
2826 GEN_VEXT_VV_RM(vwsmacc_vv_w, 4, 8, clearq)
2827 RVVCALL(OPIVX3_RM, vwsmacc_vx_b, WOP_SSS_B, H2, H1, vwsmacc8)
2828 RVVCALL(OPIVX3_RM, vwsmacc_vx_h, WOP_SSS_H, H4, H2, vwsmacc16)
2829 RVVCALL(OPIVX3_RM, vwsmacc_vx_w, WOP_SSS_W, H8, H4, vwsmacc32)
2830 GEN_VEXT_VX_RM(vwsmacc_vx_b, 1, 2, clearh)
2831 GEN_VEXT_VX_RM(vwsmacc_vx_h, 2, 4, clearl)
2832 GEN_VEXT_VX_RM(vwsmacc_vx_w, 4, 8, clearq)
2834 static inline int16_t
2835 vwsmaccsu8(CPURISCVState *env, int vxrm, uint8_t a, int8_t b, int16_t c)
2837 uint8_t round;
2838 int16_t res = a * (int16_t)b;
2840 round = get_round(vxrm, res, 4);
2841 res = (res >> 4) + round;
2842 return ssub16(env, vxrm, c, res);
2845 static inline int32_t
2846 vwsmaccsu16(CPURISCVState *env, int vxrm, uint16_t a, int16_t b, uint32_t c)
2848 uint8_t round;
2849 int32_t res = a * (int32_t)b;
2851 round = get_round(vxrm, res, 8);
2852 res = (res >> 8) + round;
2853 return ssub32(env, vxrm, c, res);
2856 static inline int64_t
2857 vwsmaccsu32(CPURISCVState *env, int vxrm, uint32_t a, int32_t b, int64_t c)
2859 uint8_t round;
2860 int64_t res = a * (int64_t)b;
2862 round = get_round(vxrm, res, 16);
2863 res = (res >> 16) + round;
2864 return ssub64(env, vxrm, c, res);
2867 RVVCALL(OPIVV3_RM, vwsmaccsu_vv_b, WOP_SSU_B, H2, H1, H1, vwsmaccsu8)
2868 RVVCALL(OPIVV3_RM, vwsmaccsu_vv_h, WOP_SSU_H, H4, H2, H2, vwsmaccsu16)
2869 RVVCALL(OPIVV3_RM, vwsmaccsu_vv_w, WOP_SSU_W, H8, H4, H4, vwsmaccsu32)
2870 GEN_VEXT_VV_RM(vwsmaccsu_vv_b, 1, 2, clearh)
2871 GEN_VEXT_VV_RM(vwsmaccsu_vv_h, 2, 4, clearl)
2872 GEN_VEXT_VV_RM(vwsmaccsu_vv_w, 4, 8, clearq)
2873 RVVCALL(OPIVX3_RM, vwsmaccsu_vx_b, WOP_SSU_B, H2, H1, vwsmaccsu8)
2874 RVVCALL(OPIVX3_RM, vwsmaccsu_vx_h, WOP_SSU_H, H4, H2, vwsmaccsu16)
2875 RVVCALL(OPIVX3_RM, vwsmaccsu_vx_w, WOP_SSU_W, H8, H4, vwsmaccsu32)
2876 GEN_VEXT_VX_RM(vwsmaccsu_vx_b, 1, 2, clearh)
2877 GEN_VEXT_VX_RM(vwsmaccsu_vx_h, 2, 4, clearl)
2878 GEN_VEXT_VX_RM(vwsmaccsu_vx_w, 4, 8, clearq)
2880 static inline int16_t
2881 vwsmaccus8(CPURISCVState *env, int vxrm, int8_t a, uint8_t b, int16_t c)
2883 uint8_t round;
2884 int16_t res = (int16_t)a * b;
2886 round = get_round(vxrm, res, 4);
2887 res = (res >> 4) + round;
2888 return ssub16(env, vxrm, c, res);
2891 static inline int32_t
2892 vwsmaccus16(CPURISCVState *env, int vxrm, int16_t a, uint16_t b, int32_t c)
2894 uint8_t round;
2895 int32_t res = (int32_t)a * b;
2897 round = get_round(vxrm, res, 8);
2898 res = (res >> 8) + round;
2899 return ssub32(env, vxrm, c, res);
2902 static inline int64_t
2903 vwsmaccus32(CPURISCVState *env, int vxrm, int32_t a, uint32_t b, int64_t c)
2905 uint8_t round;
2906 int64_t res = (int64_t)a * b;
2908 round = get_round(vxrm, res, 16);
2909 res = (res >> 16) + round;
2910 return ssub64(env, vxrm, c, res);
2913 RVVCALL(OPIVX3_RM, vwsmaccus_vx_b, WOP_SUS_B, H2, H1, vwsmaccus8)
2914 RVVCALL(OPIVX3_RM, vwsmaccus_vx_h, WOP_SUS_H, H4, H2, vwsmaccus16)
2915 RVVCALL(OPIVX3_RM, vwsmaccus_vx_w, WOP_SUS_W, H8, H4, vwsmaccus32)
2916 GEN_VEXT_VX_RM(vwsmaccus_vx_b, 1, 2, clearh)
2917 GEN_VEXT_VX_RM(vwsmaccus_vx_h, 2, 4, clearl)
2918 GEN_VEXT_VX_RM(vwsmaccus_vx_w, 4, 8, clearq)
2920 /* Vector Single-Width Scaling Shift Instructions */
2921 static inline uint8_t
2922 vssrl8(CPURISCVState *env, int vxrm, uint8_t a, uint8_t b)
2924 uint8_t round, shift = b & 0x7;
2925 uint8_t res;
2927 round = get_round(vxrm, a, shift);
2928 res = (a >> shift) + round;
2929 return res;
2931 static inline uint16_t
2932 vssrl16(CPURISCVState *env, int vxrm, uint16_t a, uint16_t b)
2934 uint8_t round, shift = b & 0xf;
2935 uint16_t res;
2937 round = get_round(vxrm, a, shift);
2938 res = (a >> shift) + round;
2939 return res;
2941 static inline uint32_t
2942 vssrl32(CPURISCVState *env, int vxrm, uint32_t a, uint32_t b)
2944 uint8_t round, shift = b & 0x1f;
2945 uint32_t res;
2947 round = get_round(vxrm, a, shift);
2948 res = (a >> shift) + round;
2949 return res;
2951 static inline uint64_t
2952 vssrl64(CPURISCVState *env, int vxrm, uint64_t a, uint64_t b)
2954 uint8_t round, shift = b & 0x3f;
2955 uint64_t res;
2957 round = get_round(vxrm, a, shift);
2958 res = (a >> shift) + round;
2959 return res;
2961 RVVCALL(OPIVV2_RM, vssrl_vv_b, OP_UUU_B, H1, H1, H1, vssrl8)
2962 RVVCALL(OPIVV2_RM, vssrl_vv_h, OP_UUU_H, H2, H2, H2, vssrl16)
2963 RVVCALL(OPIVV2_RM, vssrl_vv_w, OP_UUU_W, H4, H4, H4, vssrl32)
2964 RVVCALL(OPIVV2_RM, vssrl_vv_d, OP_UUU_D, H8, H8, H8, vssrl64)
2965 GEN_VEXT_VV_RM(vssrl_vv_b, 1, 1, clearb)
2966 GEN_VEXT_VV_RM(vssrl_vv_h, 2, 2, clearh)
2967 GEN_VEXT_VV_RM(vssrl_vv_w, 4, 4, clearl)
2968 GEN_VEXT_VV_RM(vssrl_vv_d, 8, 8, clearq)
2970 RVVCALL(OPIVX2_RM, vssrl_vx_b, OP_UUU_B, H1, H1, vssrl8)
2971 RVVCALL(OPIVX2_RM, vssrl_vx_h, OP_UUU_H, H2, H2, vssrl16)
2972 RVVCALL(OPIVX2_RM, vssrl_vx_w, OP_UUU_W, H4, H4, vssrl32)
2973 RVVCALL(OPIVX2_RM, vssrl_vx_d, OP_UUU_D, H8, H8, vssrl64)
2974 GEN_VEXT_VX_RM(vssrl_vx_b, 1, 1, clearb)
2975 GEN_VEXT_VX_RM(vssrl_vx_h, 2, 2, clearh)
2976 GEN_VEXT_VX_RM(vssrl_vx_w, 4, 4, clearl)
2977 GEN_VEXT_VX_RM(vssrl_vx_d, 8, 8, clearq)
2979 static inline int8_t
2980 vssra8(CPURISCVState *env, int vxrm, int8_t a, int8_t b)
2982 uint8_t round, shift = b & 0x7;
2983 int8_t res;
2985 round = get_round(vxrm, a, shift);
2986 res = (a >> shift) + round;
2987 return res;
2989 static inline int16_t
2990 vssra16(CPURISCVState *env, int vxrm, int16_t a, int16_t b)
2992 uint8_t round, shift = b & 0xf;
2993 int16_t res;
2995 round = get_round(vxrm, a, shift);
2996 res = (a >> shift) + round;
2997 return res;
2999 static inline int32_t
3000 vssra32(CPURISCVState *env, int vxrm, int32_t a, int32_t b)
3002 uint8_t round, shift = b & 0x1f;
3003 int32_t res;
3005 round = get_round(vxrm, a, shift);
3006 res = (a >> shift) + round;
3007 return res;
3009 static inline int64_t
3010 vssra64(CPURISCVState *env, int vxrm, int64_t a, int64_t b)
3012 uint8_t round, shift = b & 0x3f;
3013 int64_t res;
3015 round = get_round(vxrm, a, shift);
3016 res = (a >> shift) + round;
3017 return res;
3020 RVVCALL(OPIVV2_RM, vssra_vv_b, OP_SSS_B, H1, H1, H1, vssra8)
3021 RVVCALL(OPIVV2_RM, vssra_vv_h, OP_SSS_H, H2, H2, H2, vssra16)
3022 RVVCALL(OPIVV2_RM, vssra_vv_w, OP_SSS_W, H4, H4, H4, vssra32)
3023 RVVCALL(OPIVV2_RM, vssra_vv_d, OP_SSS_D, H8, H8, H8, vssra64)
3024 GEN_VEXT_VV_RM(vssra_vv_b, 1, 1, clearb)
3025 GEN_VEXT_VV_RM(vssra_vv_h, 2, 2, clearh)
3026 GEN_VEXT_VV_RM(vssra_vv_w, 4, 4, clearl)
3027 GEN_VEXT_VV_RM(vssra_vv_d, 8, 8, clearq)
3029 RVVCALL(OPIVX2_RM, vssra_vx_b, OP_SSS_B, H1, H1, vssra8)
3030 RVVCALL(OPIVX2_RM, vssra_vx_h, OP_SSS_H, H2, H2, vssra16)
3031 RVVCALL(OPIVX2_RM, vssra_vx_w, OP_SSS_W, H4, H4, vssra32)
3032 RVVCALL(OPIVX2_RM, vssra_vx_d, OP_SSS_D, H8, H8, vssra64)
3033 GEN_VEXT_VX_RM(vssra_vx_b, 1, 1, clearb)
3034 GEN_VEXT_VX_RM(vssra_vx_h, 2, 2, clearh)
3035 GEN_VEXT_VX_RM(vssra_vx_w, 4, 4, clearl)
3036 GEN_VEXT_VX_RM(vssra_vx_d, 8, 8, clearq)
3038 /* Vector Narrowing Fixed-Point Clip Instructions */
3039 static inline int8_t
3040 vnclip8(CPURISCVState *env, int vxrm, int16_t a, int8_t b)
3042 uint8_t round, shift = b & 0xf;
3043 int16_t res;
3045 round = get_round(vxrm, a, shift);
3046 res = (a >> shift) + round;
3047 if (res > INT8_MAX) {
3048 env->vxsat = 0x1;
3049 return INT8_MAX;
3050 } else if (res < INT8_MIN) {
3051 env->vxsat = 0x1;
3052 return INT8_MIN;
3053 } else {
3054 return res;
3058 static inline int16_t
3059 vnclip16(CPURISCVState *env, int vxrm, int32_t a, int16_t b)
3061 uint8_t round, shift = b & 0x1f;
3062 int32_t res;
3064 round = get_round(vxrm, a, shift);
3065 res = (a >> shift) + round;
3066 if (res > INT16_MAX) {
3067 env->vxsat = 0x1;
3068 return INT16_MAX;
3069 } else if (res < INT16_MIN) {
3070 env->vxsat = 0x1;
3071 return INT16_MIN;
3072 } else {
3073 return res;
3077 static inline int32_t
3078 vnclip32(CPURISCVState *env, int vxrm, int64_t a, int32_t b)
3080 uint8_t round, shift = b & 0x3f;
3081 int64_t res;
3083 round = get_round(vxrm, a, shift);
3084 res = (a >> shift) + round;
3085 if (res > INT32_MAX) {
3086 env->vxsat = 0x1;
3087 return INT32_MAX;
3088 } else if (res < INT32_MIN) {
3089 env->vxsat = 0x1;
3090 return INT32_MIN;
3091 } else {
3092 return res;
3096 RVVCALL(OPIVV2_RM, vnclip_vv_b, NOP_SSS_B, H1, H2, H1, vnclip8)
3097 RVVCALL(OPIVV2_RM, vnclip_vv_h, NOP_SSS_H, H2, H4, H2, vnclip16)
3098 RVVCALL(OPIVV2_RM, vnclip_vv_w, NOP_SSS_W, H4, H8, H4, vnclip32)
3099 GEN_VEXT_VV_RM(vnclip_vv_b, 1, 1, clearb)
3100 GEN_VEXT_VV_RM(vnclip_vv_h, 2, 2, clearh)
3101 GEN_VEXT_VV_RM(vnclip_vv_w, 4, 4, clearl)
3103 RVVCALL(OPIVX2_RM, vnclip_vx_b, NOP_SSS_B, H1, H2, vnclip8)
3104 RVVCALL(OPIVX2_RM, vnclip_vx_h, NOP_SSS_H, H2, H4, vnclip16)
3105 RVVCALL(OPIVX2_RM, vnclip_vx_w, NOP_SSS_W, H4, H8, vnclip32)
3106 GEN_VEXT_VX_RM(vnclip_vx_b, 1, 1, clearb)
3107 GEN_VEXT_VX_RM(vnclip_vx_h, 2, 2, clearh)
3108 GEN_VEXT_VX_RM(vnclip_vx_w, 4, 4, clearl)
3110 static inline uint8_t
3111 vnclipu8(CPURISCVState *env, int vxrm, uint16_t a, uint8_t b)
3113 uint8_t round, shift = b & 0xf;
3114 uint16_t res;
3116 round = get_round(vxrm, a, shift);
3117 res = (a >> shift) + round;
3118 if (res > UINT8_MAX) {
3119 env->vxsat = 0x1;
3120 return UINT8_MAX;
3121 } else {
3122 return res;
3126 static inline uint16_t
3127 vnclipu16(CPURISCVState *env, int vxrm, uint32_t a, uint16_t b)
3129 uint8_t round, shift = b & 0x1f;
3130 uint32_t res;
3132 round = get_round(vxrm, a, shift);
3133 res = (a >> shift) + round;
3134 if (res > UINT16_MAX) {
3135 env->vxsat = 0x1;
3136 return UINT16_MAX;
3137 } else {
3138 return res;
3142 static inline uint32_t
3143 vnclipu32(CPURISCVState *env, int vxrm, uint64_t a, uint32_t b)
3145 uint8_t round, shift = b & 0x3f;
3146 int64_t res;
3148 round = get_round(vxrm, a, shift);
3149 res = (a >> shift) + round;
3150 if (res > UINT32_MAX) {
3151 env->vxsat = 0x1;
3152 return UINT32_MAX;
3153 } else {
3154 return res;
3158 RVVCALL(OPIVV2_RM, vnclipu_vv_b, NOP_UUU_B, H1, H2, H1, vnclipu8)
3159 RVVCALL(OPIVV2_RM, vnclipu_vv_h, NOP_UUU_H, H2, H4, H2, vnclipu16)
3160 RVVCALL(OPIVV2_RM, vnclipu_vv_w, NOP_UUU_W, H4, H8, H4, vnclipu32)
3161 GEN_VEXT_VV_RM(vnclipu_vv_b, 1, 1, clearb)
3162 GEN_VEXT_VV_RM(vnclipu_vv_h, 2, 2, clearh)
3163 GEN_VEXT_VV_RM(vnclipu_vv_w, 4, 4, clearl)
3165 RVVCALL(OPIVX2_RM, vnclipu_vx_b, NOP_UUU_B, H1, H2, vnclipu8)
3166 RVVCALL(OPIVX2_RM, vnclipu_vx_h, NOP_UUU_H, H2, H4, vnclipu16)
3167 RVVCALL(OPIVX2_RM, vnclipu_vx_w, NOP_UUU_W, H4, H8, vnclipu32)
3168 GEN_VEXT_VX_RM(vnclipu_vx_b, 1, 1, clearb)
3169 GEN_VEXT_VX_RM(vnclipu_vx_h, 2, 2, clearh)
3170 GEN_VEXT_VX_RM(vnclipu_vx_w, 4, 4, clearl)
3173 *** Vector Float Point Arithmetic Instructions
3175 /* Vector Single-Width Floating-Point Add/Subtract Instructions */
3176 #define OPFVV2(NAME, TD, T1, T2, TX1, TX2, HD, HS1, HS2, OP) \
3177 static void do_##NAME(void *vd, void *vs1, void *vs2, int i, \
3178 CPURISCVState *env) \
3180 TX1 s1 = *((T1 *)vs1 + HS1(i)); \
3181 TX2 s2 = *((T2 *)vs2 + HS2(i)); \
3182 *((TD *)vd + HD(i)) = OP(s2, s1, &env->fp_status); \
3185 #define GEN_VEXT_VV_ENV(NAME, ESZ, DSZ, CLEAR_FN) \
3186 void HELPER(NAME)(void *vd, void *v0, void *vs1, \
3187 void *vs2, CPURISCVState *env, \
3188 uint32_t desc) \
3190 uint32_t vlmax = vext_maxsz(desc) / ESZ; \
3191 uint32_t mlen = vext_mlen(desc); \
3192 uint32_t vm = vext_vm(desc); \
3193 uint32_t vl = env->vl; \
3194 uint32_t i; \
3196 for (i = 0; i < vl; i++) { \
3197 if (!vm && !vext_elem_mask(v0, mlen, i)) { \
3198 continue; \
3200 do_##NAME(vd, vs1, vs2, i, env); \
3202 CLEAR_FN(vd, vl, vl * DSZ, vlmax * DSZ); \
3205 RVVCALL(OPFVV2, vfadd_vv_h, OP_UUU_H, H2, H2, H2, float16_add)
3206 RVVCALL(OPFVV2, vfadd_vv_w, OP_UUU_W, H4, H4, H4, float32_add)
3207 RVVCALL(OPFVV2, vfadd_vv_d, OP_UUU_D, H8, H8, H8, float64_add)
3208 GEN_VEXT_VV_ENV(vfadd_vv_h, 2, 2, clearh)
3209 GEN_VEXT_VV_ENV(vfadd_vv_w, 4, 4, clearl)
3210 GEN_VEXT_VV_ENV(vfadd_vv_d, 8, 8, clearq)
3212 #define OPFVF2(NAME, TD, T1, T2, TX1, TX2, HD, HS2, OP) \
3213 static void do_##NAME(void *vd, uint64_t s1, void *vs2, int i, \
3214 CPURISCVState *env) \
3216 TX2 s2 = *((T2 *)vs2 + HS2(i)); \
3217 *((TD *)vd + HD(i)) = OP(s2, (TX1)(T1)s1, &env->fp_status);\
3220 #define GEN_VEXT_VF(NAME, ESZ, DSZ, CLEAR_FN) \
3221 void HELPER(NAME)(void *vd, void *v0, uint64_t s1, \
3222 void *vs2, CPURISCVState *env, \
3223 uint32_t desc) \
3225 uint32_t vlmax = vext_maxsz(desc) / ESZ; \
3226 uint32_t mlen = vext_mlen(desc); \
3227 uint32_t vm = vext_vm(desc); \
3228 uint32_t vl = env->vl; \
3229 uint32_t i; \
3231 for (i = 0; i < vl; i++) { \
3232 if (!vm && !vext_elem_mask(v0, mlen, i)) { \
3233 continue; \
3235 do_##NAME(vd, s1, vs2, i, env); \
3237 CLEAR_FN(vd, vl, vl * DSZ, vlmax * DSZ); \
3240 RVVCALL(OPFVF2, vfadd_vf_h, OP_UUU_H, H2, H2, float16_add)
3241 RVVCALL(OPFVF2, vfadd_vf_w, OP_UUU_W, H4, H4, float32_add)
3242 RVVCALL(OPFVF2, vfadd_vf_d, OP_UUU_D, H8, H8, float64_add)
3243 GEN_VEXT_VF(vfadd_vf_h, 2, 2, clearh)
3244 GEN_VEXT_VF(vfadd_vf_w, 4, 4, clearl)
3245 GEN_VEXT_VF(vfadd_vf_d, 8, 8, clearq)
3247 RVVCALL(OPFVV2, vfsub_vv_h, OP_UUU_H, H2, H2, H2, float16_sub)
3248 RVVCALL(OPFVV2, vfsub_vv_w, OP_UUU_W, H4, H4, H4, float32_sub)
3249 RVVCALL(OPFVV2, vfsub_vv_d, OP_UUU_D, H8, H8, H8, float64_sub)
3250 GEN_VEXT_VV_ENV(vfsub_vv_h, 2, 2, clearh)
3251 GEN_VEXT_VV_ENV(vfsub_vv_w, 4, 4, clearl)
3252 GEN_VEXT_VV_ENV(vfsub_vv_d, 8, 8, clearq)
3253 RVVCALL(OPFVF2, vfsub_vf_h, OP_UUU_H, H2, H2, float16_sub)
3254 RVVCALL(OPFVF2, vfsub_vf_w, OP_UUU_W, H4, H4, float32_sub)
3255 RVVCALL(OPFVF2, vfsub_vf_d, OP_UUU_D, H8, H8, float64_sub)
3256 GEN_VEXT_VF(vfsub_vf_h, 2, 2, clearh)
3257 GEN_VEXT_VF(vfsub_vf_w, 4, 4, clearl)
3258 GEN_VEXT_VF(vfsub_vf_d, 8, 8, clearq)
3260 static uint16_t float16_rsub(uint16_t a, uint16_t b, float_status *s)
3262 return float16_sub(b, a, s);
3265 static uint32_t float32_rsub(uint32_t a, uint32_t b, float_status *s)
3267 return float32_sub(b, a, s);
3270 static uint64_t float64_rsub(uint64_t a, uint64_t b, float_status *s)
3272 return float64_sub(b, a, s);
3275 RVVCALL(OPFVF2, vfrsub_vf_h, OP_UUU_H, H2, H2, float16_rsub)
3276 RVVCALL(OPFVF2, vfrsub_vf_w, OP_UUU_W, H4, H4, float32_rsub)
3277 RVVCALL(OPFVF2, vfrsub_vf_d, OP_UUU_D, H8, H8, float64_rsub)
3278 GEN_VEXT_VF(vfrsub_vf_h, 2, 2, clearh)
3279 GEN_VEXT_VF(vfrsub_vf_w, 4, 4, clearl)
3280 GEN_VEXT_VF(vfrsub_vf_d, 8, 8, clearq)
3282 /* Vector Widening Floating-Point Add/Subtract Instructions */
3283 static uint32_t vfwadd16(uint16_t a, uint16_t b, float_status *s)
3285 return float32_add(float16_to_float32(a, true, s),
3286 float16_to_float32(b, true, s), s);
3289 static uint64_t vfwadd32(uint32_t a, uint32_t b, float_status *s)
3291 return float64_add(float32_to_float64(a, s),
3292 float32_to_float64(b, s), s);
3296 RVVCALL(OPFVV2, vfwadd_vv_h, WOP_UUU_H, H4, H2, H2, vfwadd16)
3297 RVVCALL(OPFVV2, vfwadd_vv_w, WOP_UUU_W, H8, H4, H4, vfwadd32)
3298 GEN_VEXT_VV_ENV(vfwadd_vv_h, 2, 4, clearl)
3299 GEN_VEXT_VV_ENV(vfwadd_vv_w, 4, 8, clearq)
3300 RVVCALL(OPFVF2, vfwadd_vf_h, WOP_UUU_H, H4, H2, vfwadd16)
3301 RVVCALL(OPFVF2, vfwadd_vf_w, WOP_UUU_W, H8, H4, vfwadd32)
3302 GEN_VEXT_VF(vfwadd_vf_h, 2, 4, clearl)
3303 GEN_VEXT_VF(vfwadd_vf_w, 4, 8, clearq)
3305 static uint32_t vfwsub16(uint16_t a, uint16_t b, float_status *s)
3307 return float32_sub(float16_to_float32(a, true, s),
3308 float16_to_float32(b, true, s), s);
3311 static uint64_t vfwsub32(uint32_t a, uint32_t b, float_status *s)
3313 return float64_sub(float32_to_float64(a, s),
3314 float32_to_float64(b, s), s);
3318 RVVCALL(OPFVV2, vfwsub_vv_h, WOP_UUU_H, H4, H2, H2, vfwsub16)
3319 RVVCALL(OPFVV2, vfwsub_vv_w, WOP_UUU_W, H8, H4, H4, vfwsub32)
3320 GEN_VEXT_VV_ENV(vfwsub_vv_h, 2, 4, clearl)
3321 GEN_VEXT_VV_ENV(vfwsub_vv_w, 4, 8, clearq)
3322 RVVCALL(OPFVF2, vfwsub_vf_h, WOP_UUU_H, H4, H2, vfwsub16)
3323 RVVCALL(OPFVF2, vfwsub_vf_w, WOP_UUU_W, H8, H4, vfwsub32)
3324 GEN_VEXT_VF(vfwsub_vf_h, 2, 4, clearl)
3325 GEN_VEXT_VF(vfwsub_vf_w, 4, 8, clearq)
3327 static uint32_t vfwaddw16(uint32_t a, uint16_t b, float_status *s)
3329 return float32_add(a, float16_to_float32(b, true, s), s);
3332 static uint64_t vfwaddw32(uint64_t a, uint32_t b, float_status *s)
3334 return float64_add(a, float32_to_float64(b, s), s);
3337 RVVCALL(OPFVV2, vfwadd_wv_h, WOP_WUUU_H, H4, H2, H2, vfwaddw16)
3338 RVVCALL(OPFVV2, vfwadd_wv_w, WOP_WUUU_W, H8, H4, H4, vfwaddw32)
3339 GEN_VEXT_VV_ENV(vfwadd_wv_h, 2, 4, clearl)
3340 GEN_VEXT_VV_ENV(vfwadd_wv_w, 4, 8, clearq)
3341 RVVCALL(OPFVF2, vfwadd_wf_h, WOP_WUUU_H, H4, H2, vfwaddw16)
3342 RVVCALL(OPFVF2, vfwadd_wf_w, WOP_WUUU_W, H8, H4, vfwaddw32)
3343 GEN_VEXT_VF(vfwadd_wf_h, 2, 4, clearl)
3344 GEN_VEXT_VF(vfwadd_wf_w, 4, 8, clearq)
3346 static uint32_t vfwsubw16(uint32_t a, uint16_t b, float_status *s)
3348 return float32_sub(a, float16_to_float32(b, true, s), s);
3351 static uint64_t vfwsubw32(uint64_t a, uint32_t b, float_status *s)
3353 return float64_sub(a, float32_to_float64(b, s), s);
3356 RVVCALL(OPFVV2, vfwsub_wv_h, WOP_WUUU_H, H4, H2, H2, vfwsubw16)
3357 RVVCALL(OPFVV2, vfwsub_wv_w, WOP_WUUU_W, H8, H4, H4, vfwsubw32)
3358 GEN_VEXT_VV_ENV(vfwsub_wv_h, 2, 4, clearl)
3359 GEN_VEXT_VV_ENV(vfwsub_wv_w, 4, 8, clearq)
3360 RVVCALL(OPFVF2, vfwsub_wf_h, WOP_WUUU_H, H4, H2, vfwsubw16)
3361 RVVCALL(OPFVF2, vfwsub_wf_w, WOP_WUUU_W, H8, H4, vfwsubw32)
3362 GEN_VEXT_VF(vfwsub_wf_h, 2, 4, clearl)
3363 GEN_VEXT_VF(vfwsub_wf_w, 4, 8, clearq)
3365 /* Vector Single-Width Floating-Point Multiply/Divide Instructions */
3366 RVVCALL(OPFVV2, vfmul_vv_h, OP_UUU_H, H2, H2, H2, float16_mul)
3367 RVVCALL(OPFVV2, vfmul_vv_w, OP_UUU_W, H4, H4, H4, float32_mul)
3368 RVVCALL(OPFVV2, vfmul_vv_d, OP_UUU_D, H8, H8, H8, float64_mul)
3369 GEN_VEXT_VV_ENV(vfmul_vv_h, 2, 2, clearh)
3370 GEN_VEXT_VV_ENV(vfmul_vv_w, 4, 4, clearl)
3371 GEN_VEXT_VV_ENV(vfmul_vv_d, 8, 8, clearq)
3372 RVVCALL(OPFVF2, vfmul_vf_h, OP_UUU_H, H2, H2, float16_mul)
3373 RVVCALL(OPFVF2, vfmul_vf_w, OP_UUU_W, H4, H4, float32_mul)
3374 RVVCALL(OPFVF2, vfmul_vf_d, OP_UUU_D, H8, H8, float64_mul)
3375 GEN_VEXT_VF(vfmul_vf_h, 2, 2, clearh)
3376 GEN_VEXT_VF(vfmul_vf_w, 4, 4, clearl)
3377 GEN_VEXT_VF(vfmul_vf_d, 8, 8, clearq)
3379 RVVCALL(OPFVV2, vfdiv_vv_h, OP_UUU_H, H2, H2, H2, float16_div)
3380 RVVCALL(OPFVV2, vfdiv_vv_w, OP_UUU_W, H4, H4, H4, float32_div)
3381 RVVCALL(OPFVV2, vfdiv_vv_d, OP_UUU_D, H8, H8, H8, float64_div)
3382 GEN_VEXT_VV_ENV(vfdiv_vv_h, 2, 2, clearh)
3383 GEN_VEXT_VV_ENV(vfdiv_vv_w, 4, 4, clearl)
3384 GEN_VEXT_VV_ENV(vfdiv_vv_d, 8, 8, clearq)
3385 RVVCALL(OPFVF2, vfdiv_vf_h, OP_UUU_H, H2, H2, float16_div)
3386 RVVCALL(OPFVF2, vfdiv_vf_w, OP_UUU_W, H4, H4, float32_div)
3387 RVVCALL(OPFVF2, vfdiv_vf_d, OP_UUU_D, H8, H8, float64_div)
3388 GEN_VEXT_VF(vfdiv_vf_h, 2, 2, clearh)
3389 GEN_VEXT_VF(vfdiv_vf_w, 4, 4, clearl)
3390 GEN_VEXT_VF(vfdiv_vf_d, 8, 8, clearq)
3392 static uint16_t float16_rdiv(uint16_t a, uint16_t b, float_status *s)
3394 return float16_div(b, a, s);
3397 static uint32_t float32_rdiv(uint32_t a, uint32_t b, float_status *s)
3399 return float32_div(b, a, s);
3402 static uint64_t float64_rdiv(uint64_t a, uint64_t b, float_status *s)
3404 return float64_div(b, a, s);
3407 RVVCALL(OPFVF2, vfrdiv_vf_h, OP_UUU_H, H2, H2, float16_rdiv)
3408 RVVCALL(OPFVF2, vfrdiv_vf_w, OP_UUU_W, H4, H4, float32_rdiv)
3409 RVVCALL(OPFVF2, vfrdiv_vf_d, OP_UUU_D, H8, H8, float64_rdiv)
3410 GEN_VEXT_VF(vfrdiv_vf_h, 2, 2, clearh)
3411 GEN_VEXT_VF(vfrdiv_vf_w, 4, 4, clearl)
3412 GEN_VEXT_VF(vfrdiv_vf_d, 8, 8, clearq)
3414 /* Vector Widening Floating-Point Multiply */
3415 static uint32_t vfwmul16(uint16_t a, uint16_t b, float_status *s)
3417 return float32_mul(float16_to_float32(a, true, s),
3418 float16_to_float32(b, true, s), s);
3421 static uint64_t vfwmul32(uint32_t a, uint32_t b, float_status *s)
3423 return float64_mul(float32_to_float64(a, s),
3424 float32_to_float64(b, s), s);
3427 RVVCALL(OPFVV2, vfwmul_vv_h, WOP_UUU_H, H4, H2, H2, vfwmul16)
3428 RVVCALL(OPFVV2, vfwmul_vv_w, WOP_UUU_W, H8, H4, H4, vfwmul32)
3429 GEN_VEXT_VV_ENV(vfwmul_vv_h, 2, 4, clearl)
3430 GEN_VEXT_VV_ENV(vfwmul_vv_w, 4, 8, clearq)
3431 RVVCALL(OPFVF2, vfwmul_vf_h, WOP_UUU_H, H4, H2, vfwmul16)
3432 RVVCALL(OPFVF2, vfwmul_vf_w, WOP_UUU_W, H8, H4, vfwmul32)
3433 GEN_VEXT_VF(vfwmul_vf_h, 2, 4, clearl)
3434 GEN_VEXT_VF(vfwmul_vf_w, 4, 8, clearq)
3436 /* Vector Single-Width Floating-Point Fused Multiply-Add Instructions */
3437 #define OPFVV3(NAME, TD, T1, T2, TX1, TX2, HD, HS1, HS2, OP) \
3438 static void do_##NAME(void *vd, void *vs1, void *vs2, int i, \
3439 CPURISCVState *env) \
3441 TX1 s1 = *((T1 *)vs1 + HS1(i)); \
3442 TX2 s2 = *((T2 *)vs2 + HS2(i)); \
3443 TD d = *((TD *)vd + HD(i)); \
3444 *((TD *)vd + HD(i)) = OP(s2, s1, d, &env->fp_status); \
3447 static uint16_t fmacc16(uint16_t a, uint16_t b, uint16_t d, float_status *s)
3449 return float16_muladd(a, b, d, 0, s);
3452 static uint32_t fmacc32(uint32_t a, uint32_t b, uint32_t d, float_status *s)
3454 return float32_muladd(a, b, d, 0, s);
3457 static uint64_t fmacc64(uint64_t a, uint64_t b, uint64_t d, float_status *s)
3459 return float64_muladd(a, b, d, 0, s);
3462 RVVCALL(OPFVV3, vfmacc_vv_h, OP_UUU_H, H2, H2, H2, fmacc16)
3463 RVVCALL(OPFVV3, vfmacc_vv_w, OP_UUU_W, H4, H4, H4, fmacc32)
3464 RVVCALL(OPFVV3, vfmacc_vv_d, OP_UUU_D, H8, H8, H8, fmacc64)
3465 GEN_VEXT_VV_ENV(vfmacc_vv_h, 2, 2, clearh)
3466 GEN_VEXT_VV_ENV(vfmacc_vv_w, 4, 4, clearl)
3467 GEN_VEXT_VV_ENV(vfmacc_vv_d, 8, 8, clearq)
3469 #define OPFVF3(NAME, TD, T1, T2, TX1, TX2, HD, HS2, OP) \
3470 static void do_##NAME(void *vd, uint64_t s1, void *vs2, int i, \
3471 CPURISCVState *env) \
3473 TX2 s2 = *((T2 *)vs2 + HS2(i)); \
3474 TD d = *((TD *)vd + HD(i)); \
3475 *((TD *)vd + HD(i)) = OP(s2, (TX1)(T1)s1, d, &env->fp_status);\
3478 RVVCALL(OPFVF3, vfmacc_vf_h, OP_UUU_H, H2, H2, fmacc16)
3479 RVVCALL(OPFVF3, vfmacc_vf_w, OP_UUU_W, H4, H4, fmacc32)
3480 RVVCALL(OPFVF3, vfmacc_vf_d, OP_UUU_D, H8, H8, fmacc64)
3481 GEN_VEXT_VF(vfmacc_vf_h, 2, 2, clearh)
3482 GEN_VEXT_VF(vfmacc_vf_w, 4, 4, clearl)
3483 GEN_VEXT_VF(vfmacc_vf_d, 8, 8, clearq)
3485 static uint16_t fnmacc16(uint16_t a, uint16_t b, uint16_t d, float_status *s)
3487 return float16_muladd(a, b, d,
3488 float_muladd_negate_c | float_muladd_negate_product, s);
3491 static uint32_t fnmacc32(uint32_t a, uint32_t b, uint32_t d, float_status *s)
3493 return float32_muladd(a, b, d,
3494 float_muladd_negate_c | float_muladd_negate_product, s);
3497 static uint64_t fnmacc64(uint64_t a, uint64_t b, uint64_t d, float_status *s)
3499 return float64_muladd(a, b, d,
3500 float_muladd_negate_c | float_muladd_negate_product, s);
3503 RVVCALL(OPFVV3, vfnmacc_vv_h, OP_UUU_H, H2, H2, H2, fnmacc16)
3504 RVVCALL(OPFVV3, vfnmacc_vv_w, OP_UUU_W, H4, H4, H4, fnmacc32)
3505 RVVCALL(OPFVV3, vfnmacc_vv_d, OP_UUU_D, H8, H8, H8, fnmacc64)
3506 GEN_VEXT_VV_ENV(vfnmacc_vv_h, 2, 2, clearh)
3507 GEN_VEXT_VV_ENV(vfnmacc_vv_w, 4, 4, clearl)
3508 GEN_VEXT_VV_ENV(vfnmacc_vv_d, 8, 8, clearq)
3509 RVVCALL(OPFVF3, vfnmacc_vf_h, OP_UUU_H, H2, H2, fnmacc16)
3510 RVVCALL(OPFVF3, vfnmacc_vf_w, OP_UUU_W, H4, H4, fnmacc32)
3511 RVVCALL(OPFVF3, vfnmacc_vf_d, OP_UUU_D, H8, H8, fnmacc64)
3512 GEN_VEXT_VF(vfnmacc_vf_h, 2, 2, clearh)
3513 GEN_VEXT_VF(vfnmacc_vf_w, 4, 4, clearl)
3514 GEN_VEXT_VF(vfnmacc_vf_d, 8, 8, clearq)
3516 static uint16_t fmsac16(uint16_t a, uint16_t b, uint16_t d, float_status *s)
3518 return float16_muladd(a, b, d, float_muladd_negate_c, s);
3521 static uint32_t fmsac32(uint32_t a, uint32_t b, uint32_t d, float_status *s)
3523 return float32_muladd(a, b, d, float_muladd_negate_c, s);
3526 static uint64_t fmsac64(uint64_t a, uint64_t b, uint64_t d, float_status *s)
3528 return float64_muladd(a, b, d, float_muladd_negate_c, s);
3531 RVVCALL(OPFVV3, vfmsac_vv_h, OP_UUU_H, H2, H2, H2, fmsac16)
3532 RVVCALL(OPFVV3, vfmsac_vv_w, OP_UUU_W, H4, H4, H4, fmsac32)
3533 RVVCALL(OPFVV3, vfmsac_vv_d, OP_UUU_D, H8, H8, H8, fmsac64)
3534 GEN_VEXT_VV_ENV(vfmsac_vv_h, 2, 2, clearh)
3535 GEN_VEXT_VV_ENV(vfmsac_vv_w, 4, 4, clearl)
3536 GEN_VEXT_VV_ENV(vfmsac_vv_d, 8, 8, clearq)
3537 RVVCALL(OPFVF3, vfmsac_vf_h, OP_UUU_H, H2, H2, fmsac16)
3538 RVVCALL(OPFVF3, vfmsac_vf_w, OP_UUU_W, H4, H4, fmsac32)
3539 RVVCALL(OPFVF3, vfmsac_vf_d, OP_UUU_D, H8, H8, fmsac64)
3540 GEN_VEXT_VF(vfmsac_vf_h, 2, 2, clearh)
3541 GEN_VEXT_VF(vfmsac_vf_w, 4, 4, clearl)
3542 GEN_VEXT_VF(vfmsac_vf_d, 8, 8, clearq)
3544 static uint16_t fnmsac16(uint16_t a, uint16_t b, uint16_t d, float_status *s)
3546 return float16_muladd(a, b, d, float_muladd_negate_product, s);
3549 static uint32_t fnmsac32(uint32_t a, uint32_t b, uint32_t d, float_status *s)
3551 return float32_muladd(a, b, d, float_muladd_negate_product, s);
3554 static uint64_t fnmsac64(uint64_t a, uint64_t b, uint64_t d, float_status *s)
3556 return float64_muladd(a, b, d, float_muladd_negate_product, s);
3559 RVVCALL(OPFVV3, vfnmsac_vv_h, OP_UUU_H, H2, H2, H2, fnmsac16)
3560 RVVCALL(OPFVV3, vfnmsac_vv_w, OP_UUU_W, H4, H4, H4, fnmsac32)
3561 RVVCALL(OPFVV3, vfnmsac_vv_d, OP_UUU_D, H8, H8, H8, fnmsac64)
3562 GEN_VEXT_VV_ENV(vfnmsac_vv_h, 2, 2, clearh)
3563 GEN_VEXT_VV_ENV(vfnmsac_vv_w, 4, 4, clearl)
3564 GEN_VEXT_VV_ENV(vfnmsac_vv_d, 8, 8, clearq)
3565 RVVCALL(OPFVF3, vfnmsac_vf_h, OP_UUU_H, H2, H2, fnmsac16)
3566 RVVCALL(OPFVF3, vfnmsac_vf_w, OP_UUU_W, H4, H4, fnmsac32)
3567 RVVCALL(OPFVF3, vfnmsac_vf_d, OP_UUU_D, H8, H8, fnmsac64)
3568 GEN_VEXT_VF(vfnmsac_vf_h, 2, 2, clearh)
3569 GEN_VEXT_VF(vfnmsac_vf_w, 4, 4, clearl)
3570 GEN_VEXT_VF(vfnmsac_vf_d, 8, 8, clearq)
3572 static uint16_t fmadd16(uint16_t a, uint16_t b, uint16_t d, float_status *s)
3574 return float16_muladd(d, b, a, 0, s);
3577 static uint32_t fmadd32(uint32_t a, uint32_t b, uint32_t d, float_status *s)
3579 return float32_muladd(d, b, a, 0, s);
3582 static uint64_t fmadd64(uint64_t a, uint64_t b, uint64_t d, float_status *s)
3584 return float64_muladd(d, b, a, 0, s);
3587 RVVCALL(OPFVV3, vfmadd_vv_h, OP_UUU_H, H2, H2, H2, fmadd16)
3588 RVVCALL(OPFVV3, vfmadd_vv_w, OP_UUU_W, H4, H4, H4, fmadd32)
3589 RVVCALL(OPFVV3, vfmadd_vv_d, OP_UUU_D, H8, H8, H8, fmadd64)
3590 GEN_VEXT_VV_ENV(vfmadd_vv_h, 2, 2, clearh)
3591 GEN_VEXT_VV_ENV(vfmadd_vv_w, 4, 4, clearl)
3592 GEN_VEXT_VV_ENV(vfmadd_vv_d, 8, 8, clearq)
3593 RVVCALL(OPFVF3, vfmadd_vf_h, OP_UUU_H, H2, H2, fmadd16)
3594 RVVCALL(OPFVF3, vfmadd_vf_w, OP_UUU_W, H4, H4, fmadd32)
3595 RVVCALL(OPFVF3, vfmadd_vf_d, OP_UUU_D, H8, H8, fmadd64)
3596 GEN_VEXT_VF(vfmadd_vf_h, 2, 2, clearh)
3597 GEN_VEXT_VF(vfmadd_vf_w, 4, 4, clearl)
3598 GEN_VEXT_VF(vfmadd_vf_d, 8, 8, clearq)
3600 static uint16_t fnmadd16(uint16_t a, uint16_t b, uint16_t d, float_status *s)
3602 return float16_muladd(d, b, a,
3603 float_muladd_negate_c | float_muladd_negate_product, s);
3606 static uint32_t fnmadd32(uint32_t a, uint32_t b, uint32_t d, float_status *s)
3608 return float32_muladd(d, b, a,
3609 float_muladd_negate_c | float_muladd_negate_product, s);
3612 static uint64_t fnmadd64(uint64_t a, uint64_t b, uint64_t d, float_status *s)
3614 return float64_muladd(d, b, a,
3615 float_muladd_negate_c | float_muladd_negate_product, s);
3618 RVVCALL(OPFVV3, vfnmadd_vv_h, OP_UUU_H, H2, H2, H2, fnmadd16)
3619 RVVCALL(OPFVV3, vfnmadd_vv_w, OP_UUU_W, H4, H4, H4, fnmadd32)
3620 RVVCALL(OPFVV3, vfnmadd_vv_d, OP_UUU_D, H8, H8, H8, fnmadd64)
3621 GEN_VEXT_VV_ENV(vfnmadd_vv_h, 2, 2, clearh)
3622 GEN_VEXT_VV_ENV(vfnmadd_vv_w, 4, 4, clearl)
3623 GEN_VEXT_VV_ENV(vfnmadd_vv_d, 8, 8, clearq)
3624 RVVCALL(OPFVF3, vfnmadd_vf_h, OP_UUU_H, H2, H2, fnmadd16)
3625 RVVCALL(OPFVF3, vfnmadd_vf_w, OP_UUU_W, H4, H4, fnmadd32)
3626 RVVCALL(OPFVF3, vfnmadd_vf_d, OP_UUU_D, H8, H8, fnmadd64)
3627 GEN_VEXT_VF(vfnmadd_vf_h, 2, 2, clearh)
3628 GEN_VEXT_VF(vfnmadd_vf_w, 4, 4, clearl)
3629 GEN_VEXT_VF(vfnmadd_vf_d, 8, 8, clearq)
3631 static uint16_t fmsub16(uint16_t a, uint16_t b, uint16_t d, float_status *s)
3633 return float16_muladd(d, b, a, float_muladd_negate_c, s);
3636 static uint32_t fmsub32(uint32_t a, uint32_t b, uint32_t d, float_status *s)
3638 return float32_muladd(d, b, a, float_muladd_negate_c, s);
3641 static uint64_t fmsub64(uint64_t a, uint64_t b, uint64_t d, float_status *s)
3643 return float64_muladd(d, b, a, float_muladd_negate_c, s);
3646 RVVCALL(OPFVV3, vfmsub_vv_h, OP_UUU_H, H2, H2, H2, fmsub16)
3647 RVVCALL(OPFVV3, vfmsub_vv_w, OP_UUU_W, H4, H4, H4, fmsub32)
3648 RVVCALL(OPFVV3, vfmsub_vv_d, OP_UUU_D, H8, H8, H8, fmsub64)
3649 GEN_VEXT_VV_ENV(vfmsub_vv_h, 2, 2, clearh)
3650 GEN_VEXT_VV_ENV(vfmsub_vv_w, 4, 4, clearl)
3651 GEN_VEXT_VV_ENV(vfmsub_vv_d, 8, 8, clearq)
3652 RVVCALL(OPFVF3, vfmsub_vf_h, OP_UUU_H, H2, H2, fmsub16)
3653 RVVCALL(OPFVF3, vfmsub_vf_w, OP_UUU_W, H4, H4, fmsub32)
3654 RVVCALL(OPFVF3, vfmsub_vf_d, OP_UUU_D, H8, H8, fmsub64)
3655 GEN_VEXT_VF(vfmsub_vf_h, 2, 2, clearh)
3656 GEN_VEXT_VF(vfmsub_vf_w, 4, 4, clearl)
3657 GEN_VEXT_VF(vfmsub_vf_d, 8, 8, clearq)
3659 static uint16_t fnmsub16(uint16_t a, uint16_t b, uint16_t d, float_status *s)
3661 return float16_muladd(d, b, a, float_muladd_negate_product, s);
3664 static uint32_t fnmsub32(uint32_t a, uint32_t b, uint32_t d, float_status *s)
3666 return float32_muladd(d, b, a, float_muladd_negate_product, s);
3669 static uint64_t fnmsub64(uint64_t a, uint64_t b, uint64_t d, float_status *s)
3671 return float64_muladd(d, b, a, float_muladd_negate_product, s);
3674 RVVCALL(OPFVV3, vfnmsub_vv_h, OP_UUU_H, H2, H2, H2, fnmsub16)
3675 RVVCALL(OPFVV3, vfnmsub_vv_w, OP_UUU_W, H4, H4, H4, fnmsub32)
3676 RVVCALL(OPFVV3, vfnmsub_vv_d, OP_UUU_D, H8, H8, H8, fnmsub64)
3677 GEN_VEXT_VV_ENV(vfnmsub_vv_h, 2, 2, clearh)
3678 GEN_VEXT_VV_ENV(vfnmsub_vv_w, 4, 4, clearl)
3679 GEN_VEXT_VV_ENV(vfnmsub_vv_d, 8, 8, clearq)
3680 RVVCALL(OPFVF3, vfnmsub_vf_h, OP_UUU_H, H2, H2, fnmsub16)
3681 RVVCALL(OPFVF3, vfnmsub_vf_w, OP_UUU_W, H4, H4, fnmsub32)
3682 RVVCALL(OPFVF3, vfnmsub_vf_d, OP_UUU_D, H8, H8, fnmsub64)
3683 GEN_VEXT_VF(vfnmsub_vf_h, 2, 2, clearh)
3684 GEN_VEXT_VF(vfnmsub_vf_w, 4, 4, clearl)
3685 GEN_VEXT_VF(vfnmsub_vf_d, 8, 8, clearq)
3687 /* Vector Widening Floating-Point Fused Multiply-Add Instructions */
3688 static uint32_t fwmacc16(uint16_t a, uint16_t b, uint32_t d, float_status *s)
3690 return float32_muladd(float16_to_float32(a, true, s),
3691 float16_to_float32(b, true, s), d, 0, s);
3694 static uint64_t fwmacc32(uint32_t a, uint32_t b, uint64_t d, float_status *s)
3696 return float64_muladd(float32_to_float64(a, s),
3697 float32_to_float64(b, s), d, 0, s);
3700 RVVCALL(OPFVV3, vfwmacc_vv_h, WOP_UUU_H, H4, H2, H2, fwmacc16)
3701 RVVCALL(OPFVV3, vfwmacc_vv_w, WOP_UUU_W, H8, H4, H4, fwmacc32)
3702 GEN_VEXT_VV_ENV(vfwmacc_vv_h, 2, 4, clearl)
3703 GEN_VEXT_VV_ENV(vfwmacc_vv_w, 4, 8, clearq)
3704 RVVCALL(OPFVF3, vfwmacc_vf_h, WOP_UUU_H, H4, H2, fwmacc16)
3705 RVVCALL(OPFVF3, vfwmacc_vf_w, WOP_UUU_W, H8, H4, fwmacc32)
3706 GEN_VEXT_VF(vfwmacc_vf_h, 2, 4, clearl)
3707 GEN_VEXT_VF(vfwmacc_vf_w, 4, 8, clearq)
3709 static uint32_t fwnmacc16(uint16_t a, uint16_t b, uint32_t d, float_status *s)
3711 return float32_muladd(float16_to_float32(a, true, s),
3712 float16_to_float32(b, true, s), d,
3713 float_muladd_negate_c | float_muladd_negate_product, s);
3716 static uint64_t fwnmacc32(uint32_t a, uint32_t b, uint64_t d, float_status *s)
3718 return float64_muladd(float32_to_float64(a, s),
3719 float32_to_float64(b, s), d,
3720 float_muladd_negate_c | float_muladd_negate_product, s);
3723 RVVCALL(OPFVV3, vfwnmacc_vv_h, WOP_UUU_H, H4, H2, H2, fwnmacc16)
3724 RVVCALL(OPFVV3, vfwnmacc_vv_w, WOP_UUU_W, H8, H4, H4, fwnmacc32)
3725 GEN_VEXT_VV_ENV(vfwnmacc_vv_h, 2, 4, clearl)
3726 GEN_VEXT_VV_ENV(vfwnmacc_vv_w, 4, 8, clearq)
3727 RVVCALL(OPFVF3, vfwnmacc_vf_h, WOP_UUU_H, H4, H2, fwnmacc16)
3728 RVVCALL(OPFVF3, vfwnmacc_vf_w, WOP_UUU_W, H8, H4, fwnmacc32)
3729 GEN_VEXT_VF(vfwnmacc_vf_h, 2, 4, clearl)
3730 GEN_VEXT_VF(vfwnmacc_vf_w, 4, 8, clearq)
3732 static uint32_t fwmsac16(uint16_t a, uint16_t b, uint32_t d, float_status *s)
3734 return float32_muladd(float16_to_float32(a, true, s),
3735 float16_to_float32(b, true, s), d,
3736 float_muladd_negate_c, s);
3739 static uint64_t fwmsac32(uint32_t a, uint32_t b, uint64_t d, float_status *s)
3741 return float64_muladd(float32_to_float64(a, s),
3742 float32_to_float64(b, s), d,
3743 float_muladd_negate_c, s);
3746 RVVCALL(OPFVV3, vfwmsac_vv_h, WOP_UUU_H, H4, H2, H2, fwmsac16)
3747 RVVCALL(OPFVV3, vfwmsac_vv_w, WOP_UUU_W, H8, H4, H4, fwmsac32)
3748 GEN_VEXT_VV_ENV(vfwmsac_vv_h, 2, 4, clearl)
3749 GEN_VEXT_VV_ENV(vfwmsac_vv_w, 4, 8, clearq)
3750 RVVCALL(OPFVF3, vfwmsac_vf_h, WOP_UUU_H, H4, H2, fwmsac16)
3751 RVVCALL(OPFVF3, vfwmsac_vf_w, WOP_UUU_W, H8, H4, fwmsac32)
3752 GEN_VEXT_VF(vfwmsac_vf_h, 2, 4, clearl)
3753 GEN_VEXT_VF(vfwmsac_vf_w, 4, 8, clearq)
3755 static uint32_t fwnmsac16(uint16_t a, uint16_t b, uint32_t d, float_status *s)
3757 return float32_muladd(float16_to_float32(a, true, s),
3758 float16_to_float32(b, true, s), d,
3759 float_muladd_negate_product, s);
3762 static uint64_t fwnmsac32(uint32_t a, uint32_t b, uint64_t d, float_status *s)
3764 return float64_muladd(float32_to_float64(a, s),
3765 float32_to_float64(b, s), d,
3766 float_muladd_negate_product, s);
3769 RVVCALL(OPFVV3, vfwnmsac_vv_h, WOP_UUU_H, H4, H2, H2, fwnmsac16)
3770 RVVCALL(OPFVV3, vfwnmsac_vv_w, WOP_UUU_W, H8, H4, H4, fwnmsac32)
3771 GEN_VEXT_VV_ENV(vfwnmsac_vv_h, 2, 4, clearl)
3772 GEN_VEXT_VV_ENV(vfwnmsac_vv_w, 4, 8, clearq)
3773 RVVCALL(OPFVF3, vfwnmsac_vf_h, WOP_UUU_H, H4, H2, fwnmsac16)
3774 RVVCALL(OPFVF3, vfwnmsac_vf_w, WOP_UUU_W, H8, H4, fwnmsac32)
3775 GEN_VEXT_VF(vfwnmsac_vf_h, 2, 4, clearl)
3776 GEN_VEXT_VF(vfwnmsac_vf_w, 4, 8, clearq)
3778 /* Vector Floating-Point Square-Root Instruction */
3779 /* (TD, T2, TX2) */
3780 #define OP_UU_H uint16_t, uint16_t, uint16_t
3781 #define OP_UU_W uint32_t, uint32_t, uint32_t
3782 #define OP_UU_D uint64_t, uint64_t, uint64_t
3784 #define OPFVV1(NAME, TD, T2, TX2, HD, HS2, OP) \
3785 static void do_##NAME(void *vd, void *vs2, int i, \
3786 CPURISCVState *env) \
3788 TX2 s2 = *((T2 *)vs2 + HS2(i)); \
3789 *((TD *)vd + HD(i)) = OP(s2, &env->fp_status); \
3792 #define GEN_VEXT_V_ENV(NAME, ESZ, DSZ, CLEAR_FN) \
3793 void HELPER(NAME)(void *vd, void *v0, void *vs2, \
3794 CPURISCVState *env, uint32_t desc) \
3796 uint32_t vlmax = vext_maxsz(desc) / ESZ; \
3797 uint32_t mlen = vext_mlen(desc); \
3798 uint32_t vm = vext_vm(desc); \
3799 uint32_t vl = env->vl; \
3800 uint32_t i; \
3802 if (vl == 0) { \
3803 return; \
3805 for (i = 0; i < vl; i++) { \
3806 if (!vm && !vext_elem_mask(v0, mlen, i)) { \
3807 continue; \
3809 do_##NAME(vd, vs2, i, env); \
3811 CLEAR_FN(vd, vl, vl * DSZ, vlmax * DSZ); \
3814 RVVCALL(OPFVV1, vfsqrt_v_h, OP_UU_H, H2, H2, float16_sqrt)
3815 RVVCALL(OPFVV1, vfsqrt_v_w, OP_UU_W, H4, H4, float32_sqrt)
3816 RVVCALL(OPFVV1, vfsqrt_v_d, OP_UU_D, H8, H8, float64_sqrt)
3817 GEN_VEXT_V_ENV(vfsqrt_v_h, 2, 2, clearh)
3818 GEN_VEXT_V_ENV(vfsqrt_v_w, 4, 4, clearl)
3819 GEN_VEXT_V_ENV(vfsqrt_v_d, 8, 8, clearq)
3821 /* Vector Floating-Point MIN/MAX Instructions */
3822 RVVCALL(OPFVV2, vfmin_vv_h, OP_UUU_H, H2, H2, H2, float16_minnum)
3823 RVVCALL(OPFVV2, vfmin_vv_w, OP_UUU_W, H4, H4, H4, float32_minnum)
3824 RVVCALL(OPFVV2, vfmin_vv_d, OP_UUU_D, H8, H8, H8, float64_minnum)
3825 GEN_VEXT_VV_ENV(vfmin_vv_h, 2, 2, clearh)
3826 GEN_VEXT_VV_ENV(vfmin_vv_w, 4, 4, clearl)
3827 GEN_VEXT_VV_ENV(vfmin_vv_d, 8, 8, clearq)
3828 RVVCALL(OPFVF2, vfmin_vf_h, OP_UUU_H, H2, H2, float16_minnum)
3829 RVVCALL(OPFVF2, vfmin_vf_w, OP_UUU_W, H4, H4, float32_minnum)
3830 RVVCALL(OPFVF2, vfmin_vf_d, OP_UUU_D, H8, H8, float64_minnum)
3831 GEN_VEXT_VF(vfmin_vf_h, 2, 2, clearh)
3832 GEN_VEXT_VF(vfmin_vf_w, 4, 4, clearl)
3833 GEN_VEXT_VF(vfmin_vf_d, 8, 8, clearq)
3835 RVVCALL(OPFVV2, vfmax_vv_h, OP_UUU_H, H2, H2, H2, float16_maxnum)
3836 RVVCALL(OPFVV2, vfmax_vv_w, OP_UUU_W, H4, H4, H4, float32_maxnum)
3837 RVVCALL(OPFVV2, vfmax_vv_d, OP_UUU_D, H8, H8, H8, float64_maxnum)
3838 GEN_VEXT_VV_ENV(vfmax_vv_h, 2, 2, clearh)
3839 GEN_VEXT_VV_ENV(vfmax_vv_w, 4, 4, clearl)
3840 GEN_VEXT_VV_ENV(vfmax_vv_d, 8, 8, clearq)
3841 RVVCALL(OPFVF2, vfmax_vf_h, OP_UUU_H, H2, H2, float16_maxnum)
3842 RVVCALL(OPFVF2, vfmax_vf_w, OP_UUU_W, H4, H4, float32_maxnum)
3843 RVVCALL(OPFVF2, vfmax_vf_d, OP_UUU_D, H8, H8, float64_maxnum)
3844 GEN_VEXT_VF(vfmax_vf_h, 2, 2, clearh)
3845 GEN_VEXT_VF(vfmax_vf_w, 4, 4, clearl)
3846 GEN_VEXT_VF(vfmax_vf_d, 8, 8, clearq)
3848 /* Vector Floating-Point Sign-Injection Instructions */
3849 static uint16_t fsgnj16(uint16_t a, uint16_t b, float_status *s)
3851 return deposit64(b, 0, 15, a);
3854 static uint32_t fsgnj32(uint32_t a, uint32_t b, float_status *s)
3856 return deposit64(b, 0, 31, a);
3859 static uint64_t fsgnj64(uint64_t a, uint64_t b, float_status *s)
3861 return deposit64(b, 0, 63, a);
3864 RVVCALL(OPFVV2, vfsgnj_vv_h, OP_UUU_H, H2, H2, H2, fsgnj16)
3865 RVVCALL(OPFVV2, vfsgnj_vv_w, OP_UUU_W, H4, H4, H4, fsgnj32)
3866 RVVCALL(OPFVV2, vfsgnj_vv_d, OP_UUU_D, H8, H8, H8, fsgnj64)
3867 GEN_VEXT_VV_ENV(vfsgnj_vv_h, 2, 2, clearh)
3868 GEN_VEXT_VV_ENV(vfsgnj_vv_w, 4, 4, clearl)
3869 GEN_VEXT_VV_ENV(vfsgnj_vv_d, 8, 8, clearq)
3870 RVVCALL(OPFVF2, vfsgnj_vf_h, OP_UUU_H, H2, H2, fsgnj16)
3871 RVVCALL(OPFVF2, vfsgnj_vf_w, OP_UUU_W, H4, H4, fsgnj32)
3872 RVVCALL(OPFVF2, vfsgnj_vf_d, OP_UUU_D, H8, H8, fsgnj64)
3873 GEN_VEXT_VF(vfsgnj_vf_h, 2, 2, clearh)
3874 GEN_VEXT_VF(vfsgnj_vf_w, 4, 4, clearl)
3875 GEN_VEXT_VF(vfsgnj_vf_d, 8, 8, clearq)
3877 static uint16_t fsgnjn16(uint16_t a, uint16_t b, float_status *s)
3879 return deposit64(~b, 0, 15, a);
3882 static uint32_t fsgnjn32(uint32_t a, uint32_t b, float_status *s)
3884 return deposit64(~b, 0, 31, a);
3887 static uint64_t fsgnjn64(uint64_t a, uint64_t b, float_status *s)
3889 return deposit64(~b, 0, 63, a);
3892 RVVCALL(OPFVV2, vfsgnjn_vv_h, OP_UUU_H, H2, H2, H2, fsgnjn16)
3893 RVVCALL(OPFVV2, vfsgnjn_vv_w, OP_UUU_W, H4, H4, H4, fsgnjn32)
3894 RVVCALL(OPFVV2, vfsgnjn_vv_d, OP_UUU_D, H8, H8, H8, fsgnjn64)
3895 GEN_VEXT_VV_ENV(vfsgnjn_vv_h, 2, 2, clearh)
3896 GEN_VEXT_VV_ENV(vfsgnjn_vv_w, 4, 4, clearl)
3897 GEN_VEXT_VV_ENV(vfsgnjn_vv_d, 8, 8, clearq)
3898 RVVCALL(OPFVF2, vfsgnjn_vf_h, OP_UUU_H, H2, H2, fsgnjn16)
3899 RVVCALL(OPFVF2, vfsgnjn_vf_w, OP_UUU_W, H4, H4, fsgnjn32)
3900 RVVCALL(OPFVF2, vfsgnjn_vf_d, OP_UUU_D, H8, H8, fsgnjn64)
3901 GEN_VEXT_VF(vfsgnjn_vf_h, 2, 2, clearh)
3902 GEN_VEXT_VF(vfsgnjn_vf_w, 4, 4, clearl)
3903 GEN_VEXT_VF(vfsgnjn_vf_d, 8, 8, clearq)
3905 static uint16_t fsgnjx16(uint16_t a, uint16_t b, float_status *s)
3907 return deposit64(b ^ a, 0, 15, a);
3910 static uint32_t fsgnjx32(uint32_t a, uint32_t b, float_status *s)
3912 return deposit64(b ^ a, 0, 31, a);
3915 static uint64_t fsgnjx64(uint64_t a, uint64_t b, float_status *s)
3917 return deposit64(b ^ a, 0, 63, a);
3920 RVVCALL(OPFVV2, vfsgnjx_vv_h, OP_UUU_H, H2, H2, H2, fsgnjx16)
3921 RVVCALL(OPFVV2, vfsgnjx_vv_w, OP_UUU_W, H4, H4, H4, fsgnjx32)
3922 RVVCALL(OPFVV2, vfsgnjx_vv_d, OP_UUU_D, H8, H8, H8, fsgnjx64)
3923 GEN_VEXT_VV_ENV(vfsgnjx_vv_h, 2, 2, clearh)
3924 GEN_VEXT_VV_ENV(vfsgnjx_vv_w, 4, 4, clearl)
3925 GEN_VEXT_VV_ENV(vfsgnjx_vv_d, 8, 8, clearq)
3926 RVVCALL(OPFVF2, vfsgnjx_vf_h, OP_UUU_H, H2, H2, fsgnjx16)
3927 RVVCALL(OPFVF2, vfsgnjx_vf_w, OP_UUU_W, H4, H4, fsgnjx32)
3928 RVVCALL(OPFVF2, vfsgnjx_vf_d, OP_UUU_D, H8, H8, fsgnjx64)
3929 GEN_VEXT_VF(vfsgnjx_vf_h, 2, 2, clearh)
3930 GEN_VEXT_VF(vfsgnjx_vf_w, 4, 4, clearl)
3931 GEN_VEXT_VF(vfsgnjx_vf_d, 8, 8, clearq)
3933 /* Vector Floating-Point Compare Instructions */
3934 #define GEN_VEXT_CMP_VV_ENV(NAME, ETYPE, H, DO_OP) \
3935 void HELPER(NAME)(void *vd, void *v0, void *vs1, void *vs2, \
3936 CPURISCVState *env, uint32_t desc) \
3938 uint32_t mlen = vext_mlen(desc); \
3939 uint32_t vm = vext_vm(desc); \
3940 uint32_t vl = env->vl; \
3941 uint32_t vlmax = vext_maxsz(desc) / sizeof(ETYPE); \
3942 uint32_t i; \
3944 for (i = 0; i < vl; i++) { \
3945 ETYPE s1 = *((ETYPE *)vs1 + H(i)); \
3946 ETYPE s2 = *((ETYPE *)vs2 + H(i)); \
3947 if (!vm && !vext_elem_mask(v0, mlen, i)) { \
3948 continue; \
3950 vext_set_elem_mask(vd, mlen, i, \
3951 DO_OP(s2, s1, &env->fp_status)); \
3953 for (; i < vlmax; i++) { \
3954 vext_set_elem_mask(vd, mlen, i, 0); \
3958 GEN_VEXT_CMP_VV_ENV(vmfeq_vv_h, uint16_t, H2, float16_eq_quiet)
3959 GEN_VEXT_CMP_VV_ENV(vmfeq_vv_w, uint32_t, H4, float32_eq_quiet)
3960 GEN_VEXT_CMP_VV_ENV(vmfeq_vv_d, uint64_t, H8, float64_eq_quiet)
3962 #define GEN_VEXT_CMP_VF(NAME, ETYPE, H, DO_OP) \
3963 void HELPER(NAME)(void *vd, void *v0, uint64_t s1, void *vs2, \
3964 CPURISCVState *env, uint32_t desc) \
3966 uint32_t mlen = vext_mlen(desc); \
3967 uint32_t vm = vext_vm(desc); \
3968 uint32_t vl = env->vl; \
3969 uint32_t vlmax = vext_maxsz(desc) / sizeof(ETYPE); \
3970 uint32_t i; \
3972 for (i = 0; i < vl; i++) { \
3973 ETYPE s2 = *((ETYPE *)vs2 + H(i)); \
3974 if (!vm && !vext_elem_mask(v0, mlen, i)) { \
3975 continue; \
3977 vext_set_elem_mask(vd, mlen, i, \
3978 DO_OP(s2, (ETYPE)s1, &env->fp_status)); \
3980 for (; i < vlmax; i++) { \
3981 vext_set_elem_mask(vd, mlen, i, 0); \
3985 GEN_VEXT_CMP_VF(vmfeq_vf_h, uint16_t, H2, float16_eq_quiet)
3986 GEN_VEXT_CMP_VF(vmfeq_vf_w, uint32_t, H4, float32_eq_quiet)
3987 GEN_VEXT_CMP_VF(vmfeq_vf_d, uint64_t, H8, float64_eq_quiet)
3989 static bool vmfne16(uint16_t a, uint16_t b, float_status *s)
3991 FloatRelation compare = float16_compare_quiet(a, b, s);
3992 return compare != float_relation_equal;
3995 static bool vmfne32(uint32_t a, uint32_t b, float_status *s)
3997 FloatRelation compare = float32_compare_quiet(a, b, s);
3998 return compare != float_relation_equal;
4001 static bool vmfne64(uint64_t a, uint64_t b, float_status *s)
4003 FloatRelation compare = float64_compare_quiet(a, b, s);
4004 return compare != float_relation_equal;
4007 GEN_VEXT_CMP_VV_ENV(vmfne_vv_h, uint16_t, H2, vmfne16)
4008 GEN_VEXT_CMP_VV_ENV(vmfne_vv_w, uint32_t, H4, vmfne32)
4009 GEN_VEXT_CMP_VV_ENV(vmfne_vv_d, uint64_t, H8, vmfne64)
4010 GEN_VEXT_CMP_VF(vmfne_vf_h, uint16_t, H2, vmfne16)
4011 GEN_VEXT_CMP_VF(vmfne_vf_w, uint32_t, H4, vmfne32)
4012 GEN_VEXT_CMP_VF(vmfne_vf_d, uint64_t, H8, vmfne64)
4014 GEN_VEXT_CMP_VV_ENV(vmflt_vv_h, uint16_t, H2, float16_lt)
4015 GEN_VEXT_CMP_VV_ENV(vmflt_vv_w, uint32_t, H4, float32_lt)
4016 GEN_VEXT_CMP_VV_ENV(vmflt_vv_d, uint64_t, H8, float64_lt)
4017 GEN_VEXT_CMP_VF(vmflt_vf_h, uint16_t, H2, float16_lt)
4018 GEN_VEXT_CMP_VF(vmflt_vf_w, uint32_t, H4, float32_lt)
4019 GEN_VEXT_CMP_VF(vmflt_vf_d, uint64_t, H8, float64_lt)
4021 GEN_VEXT_CMP_VV_ENV(vmfle_vv_h, uint16_t, H2, float16_le)
4022 GEN_VEXT_CMP_VV_ENV(vmfle_vv_w, uint32_t, H4, float32_le)
4023 GEN_VEXT_CMP_VV_ENV(vmfle_vv_d, uint64_t, H8, float64_le)
4024 GEN_VEXT_CMP_VF(vmfle_vf_h, uint16_t, H2, float16_le)
4025 GEN_VEXT_CMP_VF(vmfle_vf_w, uint32_t, H4, float32_le)
4026 GEN_VEXT_CMP_VF(vmfle_vf_d, uint64_t, H8, float64_le)
4028 static bool vmfgt16(uint16_t a, uint16_t b, float_status *s)
4030 FloatRelation compare = float16_compare(a, b, s);
4031 return compare == float_relation_greater;
4034 static bool vmfgt32(uint32_t a, uint32_t b, float_status *s)
4036 FloatRelation compare = float32_compare(a, b, s);
4037 return compare == float_relation_greater;
4040 static bool vmfgt64(uint64_t a, uint64_t b, float_status *s)
4042 FloatRelation compare = float64_compare(a, b, s);
4043 return compare == float_relation_greater;
4046 GEN_VEXT_CMP_VF(vmfgt_vf_h, uint16_t, H2, vmfgt16)
4047 GEN_VEXT_CMP_VF(vmfgt_vf_w, uint32_t, H4, vmfgt32)
4048 GEN_VEXT_CMP_VF(vmfgt_vf_d, uint64_t, H8, vmfgt64)
4050 static bool vmfge16(uint16_t a, uint16_t b, float_status *s)
4052 FloatRelation compare = float16_compare(a, b, s);
4053 return compare == float_relation_greater ||
4054 compare == float_relation_equal;
4057 static bool vmfge32(uint32_t a, uint32_t b, float_status *s)
4059 FloatRelation compare = float32_compare(a, b, s);
4060 return compare == float_relation_greater ||
4061 compare == float_relation_equal;
4064 static bool vmfge64(uint64_t a, uint64_t b, float_status *s)
4066 FloatRelation compare = float64_compare(a, b, s);
4067 return compare == float_relation_greater ||
4068 compare == float_relation_equal;
4071 GEN_VEXT_CMP_VF(vmfge_vf_h, uint16_t, H2, vmfge16)
4072 GEN_VEXT_CMP_VF(vmfge_vf_w, uint32_t, H4, vmfge32)
4073 GEN_VEXT_CMP_VF(vmfge_vf_d, uint64_t, H8, vmfge64)
4075 GEN_VEXT_CMP_VV_ENV(vmford_vv_h, uint16_t, H2, !float16_unordered_quiet)
4076 GEN_VEXT_CMP_VV_ENV(vmford_vv_w, uint32_t, H4, !float32_unordered_quiet)
4077 GEN_VEXT_CMP_VV_ENV(vmford_vv_d, uint64_t, H8, !float64_unordered_quiet)
4078 GEN_VEXT_CMP_VF(vmford_vf_h, uint16_t, H2, !float16_unordered_quiet)
4079 GEN_VEXT_CMP_VF(vmford_vf_w, uint32_t, H4, !float32_unordered_quiet)
4080 GEN_VEXT_CMP_VF(vmford_vf_d, uint64_t, H8, !float64_unordered_quiet)
4082 /* Vector Floating-Point Classify Instruction */
4083 #define OPIVV1(NAME, TD, T2, TX2, HD, HS2, OP) \
4084 static void do_##NAME(void *vd, void *vs2, int i) \
4086 TX2 s2 = *((T2 *)vs2 + HS2(i)); \
4087 *((TD *)vd + HD(i)) = OP(s2); \
4090 #define GEN_VEXT_V(NAME, ESZ, DSZ, CLEAR_FN) \
4091 void HELPER(NAME)(void *vd, void *v0, void *vs2, \
4092 CPURISCVState *env, uint32_t desc) \
4094 uint32_t vlmax = vext_maxsz(desc) / ESZ; \
4095 uint32_t mlen = vext_mlen(desc); \
4096 uint32_t vm = vext_vm(desc); \
4097 uint32_t vl = env->vl; \
4098 uint32_t i; \
4100 for (i = 0; i < vl; i++) { \
4101 if (!vm && !vext_elem_mask(v0, mlen, i)) { \
4102 continue; \
4104 do_##NAME(vd, vs2, i); \
4106 CLEAR_FN(vd, vl, vl * DSZ, vlmax * DSZ); \
4109 target_ulong fclass_h(uint64_t frs1)
4111 float16 f = frs1;
4112 bool sign = float16_is_neg(f);
4114 if (float16_is_infinity(f)) {
4115 return sign ? 1 << 0 : 1 << 7;
4116 } else if (float16_is_zero(f)) {
4117 return sign ? 1 << 3 : 1 << 4;
4118 } else if (float16_is_zero_or_denormal(f)) {
4119 return sign ? 1 << 2 : 1 << 5;
4120 } else if (float16_is_any_nan(f)) {
4121 float_status s = { }; /* for snan_bit_is_one */
4122 return float16_is_quiet_nan(f, &s) ? 1 << 9 : 1 << 8;
4123 } else {
4124 return sign ? 1 << 1 : 1 << 6;
4128 target_ulong fclass_s(uint64_t frs1)
4130 float32 f = frs1;
4131 bool sign = float32_is_neg(f);
4133 if (float32_is_infinity(f)) {
4134 return sign ? 1 << 0 : 1 << 7;
4135 } else if (float32_is_zero(f)) {
4136 return sign ? 1 << 3 : 1 << 4;
4137 } else if (float32_is_zero_or_denormal(f)) {
4138 return sign ? 1 << 2 : 1 << 5;
4139 } else if (float32_is_any_nan(f)) {
4140 float_status s = { }; /* for snan_bit_is_one */
4141 return float32_is_quiet_nan(f, &s) ? 1 << 9 : 1 << 8;
4142 } else {
4143 return sign ? 1 << 1 : 1 << 6;
4147 target_ulong fclass_d(uint64_t frs1)
4149 float64 f = frs1;
4150 bool sign = float64_is_neg(f);
4152 if (float64_is_infinity(f)) {
4153 return sign ? 1 << 0 : 1 << 7;
4154 } else if (float64_is_zero(f)) {
4155 return sign ? 1 << 3 : 1 << 4;
4156 } else if (float64_is_zero_or_denormal(f)) {
4157 return sign ? 1 << 2 : 1 << 5;
4158 } else if (float64_is_any_nan(f)) {
4159 float_status s = { }; /* for snan_bit_is_one */
4160 return float64_is_quiet_nan(f, &s) ? 1 << 9 : 1 << 8;
4161 } else {
4162 return sign ? 1 << 1 : 1 << 6;
4166 RVVCALL(OPIVV1, vfclass_v_h, OP_UU_H, H2, H2, fclass_h)
4167 RVVCALL(OPIVV1, vfclass_v_w, OP_UU_W, H4, H4, fclass_s)
4168 RVVCALL(OPIVV1, vfclass_v_d, OP_UU_D, H8, H8, fclass_d)
4169 GEN_VEXT_V(vfclass_v_h, 2, 2, clearh)
4170 GEN_VEXT_V(vfclass_v_w, 4, 4, clearl)
4171 GEN_VEXT_V(vfclass_v_d, 8, 8, clearq)
4173 /* Vector Floating-Point Merge Instruction */
4174 #define GEN_VFMERGE_VF(NAME, ETYPE, H, CLEAR_FN) \
4175 void HELPER(NAME)(void *vd, void *v0, uint64_t s1, void *vs2, \
4176 CPURISCVState *env, uint32_t desc) \
4178 uint32_t mlen = vext_mlen(desc); \
4179 uint32_t vm = vext_vm(desc); \
4180 uint32_t vl = env->vl; \
4181 uint32_t esz = sizeof(ETYPE); \
4182 uint32_t vlmax = vext_maxsz(desc) / esz; \
4183 uint32_t i; \
4185 for (i = 0; i < vl; i++) { \
4186 ETYPE s2 = *((ETYPE *)vs2 + H(i)); \
4187 *((ETYPE *)vd + H(i)) \
4188 = (!vm && !vext_elem_mask(v0, mlen, i) ? s2 : s1); \
4190 CLEAR_FN(vd, vl, vl * esz, vlmax * esz); \
4193 GEN_VFMERGE_VF(vfmerge_vfm_h, int16_t, H2, clearh)
4194 GEN_VFMERGE_VF(vfmerge_vfm_w, int32_t, H4, clearl)
4195 GEN_VFMERGE_VF(vfmerge_vfm_d, int64_t, H8, clearq)
4197 /* Single-Width Floating-Point/Integer Type-Convert Instructions */
4198 /* vfcvt.xu.f.v vd, vs2, vm # Convert float to unsigned integer. */
4199 RVVCALL(OPFVV1, vfcvt_xu_f_v_h, OP_UU_H, H2, H2, float16_to_uint16)
4200 RVVCALL(OPFVV1, vfcvt_xu_f_v_w, OP_UU_W, H4, H4, float32_to_uint32)
4201 RVVCALL(OPFVV1, vfcvt_xu_f_v_d, OP_UU_D, H8, H8, float64_to_uint64)
4202 GEN_VEXT_V_ENV(vfcvt_xu_f_v_h, 2, 2, clearh)
4203 GEN_VEXT_V_ENV(vfcvt_xu_f_v_w, 4, 4, clearl)
4204 GEN_VEXT_V_ENV(vfcvt_xu_f_v_d, 8, 8, clearq)
4206 /* vfcvt.x.f.v vd, vs2, vm # Convert float to signed integer. */
4207 RVVCALL(OPFVV1, vfcvt_x_f_v_h, OP_UU_H, H2, H2, float16_to_int16)
4208 RVVCALL(OPFVV1, vfcvt_x_f_v_w, OP_UU_W, H4, H4, float32_to_int32)
4209 RVVCALL(OPFVV1, vfcvt_x_f_v_d, OP_UU_D, H8, H8, float64_to_int64)
4210 GEN_VEXT_V_ENV(vfcvt_x_f_v_h, 2, 2, clearh)
4211 GEN_VEXT_V_ENV(vfcvt_x_f_v_w, 4, 4, clearl)
4212 GEN_VEXT_V_ENV(vfcvt_x_f_v_d, 8, 8, clearq)
4214 /* vfcvt.f.xu.v vd, vs2, vm # Convert unsigned integer to float. */
4215 RVVCALL(OPFVV1, vfcvt_f_xu_v_h, OP_UU_H, H2, H2, uint16_to_float16)
4216 RVVCALL(OPFVV1, vfcvt_f_xu_v_w, OP_UU_W, H4, H4, uint32_to_float32)
4217 RVVCALL(OPFVV1, vfcvt_f_xu_v_d, OP_UU_D, H8, H8, uint64_to_float64)
4218 GEN_VEXT_V_ENV(vfcvt_f_xu_v_h, 2, 2, clearh)
4219 GEN_VEXT_V_ENV(vfcvt_f_xu_v_w, 4, 4, clearl)
4220 GEN_VEXT_V_ENV(vfcvt_f_xu_v_d, 8, 8, clearq)
4222 /* vfcvt.f.x.v vd, vs2, vm # Convert integer to float. */
4223 RVVCALL(OPFVV1, vfcvt_f_x_v_h, OP_UU_H, H2, H2, int16_to_float16)
4224 RVVCALL(OPFVV1, vfcvt_f_x_v_w, OP_UU_W, H4, H4, int32_to_float32)
4225 RVVCALL(OPFVV1, vfcvt_f_x_v_d, OP_UU_D, H8, H8, int64_to_float64)
4226 GEN_VEXT_V_ENV(vfcvt_f_x_v_h, 2, 2, clearh)
4227 GEN_VEXT_V_ENV(vfcvt_f_x_v_w, 4, 4, clearl)
4228 GEN_VEXT_V_ENV(vfcvt_f_x_v_d, 8, 8, clearq)
4230 /* Widening Floating-Point/Integer Type-Convert Instructions */
4231 /* (TD, T2, TX2) */
4232 #define WOP_UU_H uint32_t, uint16_t, uint16_t
4233 #define WOP_UU_W uint64_t, uint32_t, uint32_t
4234 /* vfwcvt.xu.f.v vd, vs2, vm # Convert float to double-width unsigned integer.*/
4235 RVVCALL(OPFVV1, vfwcvt_xu_f_v_h, WOP_UU_H, H4, H2, float16_to_uint32)
4236 RVVCALL(OPFVV1, vfwcvt_xu_f_v_w, WOP_UU_W, H8, H4, float32_to_uint64)
4237 GEN_VEXT_V_ENV(vfwcvt_xu_f_v_h, 2, 4, clearl)
4238 GEN_VEXT_V_ENV(vfwcvt_xu_f_v_w, 4, 8, clearq)
4240 /* vfwcvt.x.f.v vd, vs2, vm # Convert float to double-width signed integer. */
4241 RVVCALL(OPFVV1, vfwcvt_x_f_v_h, WOP_UU_H, H4, H2, float16_to_int32)
4242 RVVCALL(OPFVV1, vfwcvt_x_f_v_w, WOP_UU_W, H8, H4, float32_to_int64)
4243 GEN_VEXT_V_ENV(vfwcvt_x_f_v_h, 2, 4, clearl)
4244 GEN_VEXT_V_ENV(vfwcvt_x_f_v_w, 4, 8, clearq)
4246 /* vfwcvt.f.xu.v vd, vs2, vm # Convert unsigned integer to double-width float */
4247 RVVCALL(OPFVV1, vfwcvt_f_xu_v_h, WOP_UU_H, H4, H2, uint16_to_float32)
4248 RVVCALL(OPFVV1, vfwcvt_f_xu_v_w, WOP_UU_W, H8, H4, uint32_to_float64)
4249 GEN_VEXT_V_ENV(vfwcvt_f_xu_v_h, 2, 4, clearl)
4250 GEN_VEXT_V_ENV(vfwcvt_f_xu_v_w, 4, 8, clearq)
4252 /* vfwcvt.f.x.v vd, vs2, vm # Convert integer to double-width float. */
4253 RVVCALL(OPFVV1, vfwcvt_f_x_v_h, WOP_UU_H, H4, H2, int16_to_float32)
4254 RVVCALL(OPFVV1, vfwcvt_f_x_v_w, WOP_UU_W, H8, H4, int32_to_float64)
4255 GEN_VEXT_V_ENV(vfwcvt_f_x_v_h, 2, 4, clearl)
4256 GEN_VEXT_V_ENV(vfwcvt_f_x_v_w, 4, 8, clearq)
4259 * vfwcvt.f.f.v vd, vs2, vm #
4260 * Convert single-width float to double-width float.
4262 static uint32_t vfwcvtffv16(uint16_t a, float_status *s)
4264 return float16_to_float32(a, true, s);
4267 RVVCALL(OPFVV1, vfwcvt_f_f_v_h, WOP_UU_H, H4, H2, vfwcvtffv16)
4268 RVVCALL(OPFVV1, vfwcvt_f_f_v_w, WOP_UU_W, H8, H4, float32_to_float64)
4269 GEN_VEXT_V_ENV(vfwcvt_f_f_v_h, 2, 4, clearl)
4270 GEN_VEXT_V_ENV(vfwcvt_f_f_v_w, 4, 8, clearq)
4272 /* Narrowing Floating-Point/Integer Type-Convert Instructions */
4273 /* (TD, T2, TX2) */
4274 #define NOP_UU_H uint16_t, uint32_t, uint32_t
4275 #define NOP_UU_W uint32_t, uint64_t, uint64_t
4276 /* vfncvt.xu.f.v vd, vs2, vm # Convert float to unsigned integer. */
4277 RVVCALL(OPFVV1, vfncvt_xu_f_v_h, NOP_UU_H, H2, H4, float32_to_uint16)
4278 RVVCALL(OPFVV1, vfncvt_xu_f_v_w, NOP_UU_W, H4, H8, float64_to_uint32)
4279 GEN_VEXT_V_ENV(vfncvt_xu_f_v_h, 2, 2, clearh)
4280 GEN_VEXT_V_ENV(vfncvt_xu_f_v_w, 4, 4, clearl)
4282 /* vfncvt.x.f.v vd, vs2, vm # Convert double-width float to signed integer. */
4283 RVVCALL(OPFVV1, vfncvt_x_f_v_h, NOP_UU_H, H2, H4, float32_to_int16)
4284 RVVCALL(OPFVV1, vfncvt_x_f_v_w, NOP_UU_W, H4, H8, float64_to_int32)
4285 GEN_VEXT_V_ENV(vfncvt_x_f_v_h, 2, 2, clearh)
4286 GEN_VEXT_V_ENV(vfncvt_x_f_v_w, 4, 4, clearl)
4288 /* vfncvt.f.xu.v vd, vs2, vm # Convert double-width unsigned integer to float */
4289 RVVCALL(OPFVV1, vfncvt_f_xu_v_h, NOP_UU_H, H2, H4, uint32_to_float16)
4290 RVVCALL(OPFVV1, vfncvt_f_xu_v_w, NOP_UU_W, H4, H8, uint64_to_float32)
4291 GEN_VEXT_V_ENV(vfncvt_f_xu_v_h, 2, 2, clearh)
4292 GEN_VEXT_V_ENV(vfncvt_f_xu_v_w, 4, 4, clearl)
4294 /* vfncvt.f.x.v vd, vs2, vm # Convert double-width integer to float. */
4295 RVVCALL(OPFVV1, vfncvt_f_x_v_h, NOP_UU_H, H2, H4, int32_to_float16)
4296 RVVCALL(OPFVV1, vfncvt_f_x_v_w, NOP_UU_W, H4, H8, int64_to_float32)
4297 GEN_VEXT_V_ENV(vfncvt_f_x_v_h, 2, 2, clearh)
4298 GEN_VEXT_V_ENV(vfncvt_f_x_v_w, 4, 4, clearl)
4300 /* vfncvt.f.f.v vd, vs2, vm # Convert double float to single-width float. */
4301 static uint16_t vfncvtffv16(uint32_t a, float_status *s)
4303 return float32_to_float16(a, true, s);
4306 RVVCALL(OPFVV1, vfncvt_f_f_v_h, NOP_UU_H, H2, H4, vfncvtffv16)
4307 RVVCALL(OPFVV1, vfncvt_f_f_v_w, NOP_UU_W, H4, H8, float64_to_float32)
4308 GEN_VEXT_V_ENV(vfncvt_f_f_v_h, 2, 2, clearh)
4309 GEN_VEXT_V_ENV(vfncvt_f_f_v_w, 4, 4, clearl)
4312 *** Vector Reduction Operations
4314 /* Vector Single-Width Integer Reduction Instructions */
4315 #define GEN_VEXT_RED(NAME, TD, TS2, HD, HS2, OP, CLEAR_FN)\
4316 void HELPER(NAME)(void *vd, void *v0, void *vs1, \
4317 void *vs2, CPURISCVState *env, uint32_t desc) \
4319 uint32_t mlen = vext_mlen(desc); \
4320 uint32_t vm = vext_vm(desc); \
4321 uint32_t vl = env->vl; \
4322 uint32_t i; \
4323 uint32_t tot = env_archcpu(env)->cfg.vlen / 8; \
4324 TD s1 = *((TD *)vs1 + HD(0)); \
4326 for (i = 0; i < vl; i++) { \
4327 TS2 s2 = *((TS2 *)vs2 + HS2(i)); \
4328 if (!vm && !vext_elem_mask(v0, mlen, i)) { \
4329 continue; \
4331 s1 = OP(s1, (TD)s2); \
4333 *((TD *)vd + HD(0)) = s1; \
4334 CLEAR_FN(vd, 1, sizeof(TD), tot); \
4337 /* vd[0] = sum(vs1[0], vs2[*]) */
4338 GEN_VEXT_RED(vredsum_vs_b, int8_t, int8_t, H1, H1, DO_ADD, clearb)
4339 GEN_VEXT_RED(vredsum_vs_h, int16_t, int16_t, H2, H2, DO_ADD, clearh)
4340 GEN_VEXT_RED(vredsum_vs_w, int32_t, int32_t, H4, H4, DO_ADD, clearl)
4341 GEN_VEXT_RED(vredsum_vs_d, int64_t, int64_t, H8, H8, DO_ADD, clearq)
4343 /* vd[0] = maxu(vs1[0], vs2[*]) */
4344 GEN_VEXT_RED(vredmaxu_vs_b, uint8_t, uint8_t, H1, H1, DO_MAX, clearb)
4345 GEN_VEXT_RED(vredmaxu_vs_h, uint16_t, uint16_t, H2, H2, DO_MAX, clearh)
4346 GEN_VEXT_RED(vredmaxu_vs_w, uint32_t, uint32_t, H4, H4, DO_MAX, clearl)
4347 GEN_VEXT_RED(vredmaxu_vs_d, uint64_t, uint64_t, H8, H8, DO_MAX, clearq)
4349 /* vd[0] = max(vs1[0], vs2[*]) */
4350 GEN_VEXT_RED(vredmax_vs_b, int8_t, int8_t, H1, H1, DO_MAX, clearb)
4351 GEN_VEXT_RED(vredmax_vs_h, int16_t, int16_t, H2, H2, DO_MAX, clearh)
4352 GEN_VEXT_RED(vredmax_vs_w, int32_t, int32_t, H4, H4, DO_MAX, clearl)
4353 GEN_VEXT_RED(vredmax_vs_d, int64_t, int64_t, H8, H8, DO_MAX, clearq)
4355 /* vd[0] = minu(vs1[0], vs2[*]) */
4356 GEN_VEXT_RED(vredminu_vs_b, uint8_t, uint8_t, H1, H1, DO_MIN, clearb)
4357 GEN_VEXT_RED(vredminu_vs_h, uint16_t, uint16_t, H2, H2, DO_MIN, clearh)
4358 GEN_VEXT_RED(vredminu_vs_w, uint32_t, uint32_t, H4, H4, DO_MIN, clearl)
4359 GEN_VEXT_RED(vredminu_vs_d, uint64_t, uint64_t, H8, H8, DO_MIN, clearq)
4361 /* vd[0] = min(vs1[0], vs2[*]) */
4362 GEN_VEXT_RED(vredmin_vs_b, int8_t, int8_t, H1, H1, DO_MIN, clearb)
4363 GEN_VEXT_RED(vredmin_vs_h, int16_t, int16_t, H2, H2, DO_MIN, clearh)
4364 GEN_VEXT_RED(vredmin_vs_w, int32_t, int32_t, H4, H4, DO_MIN, clearl)
4365 GEN_VEXT_RED(vredmin_vs_d, int64_t, int64_t, H8, H8, DO_MIN, clearq)
4367 /* vd[0] = and(vs1[0], vs2[*]) */
4368 GEN_VEXT_RED(vredand_vs_b, int8_t, int8_t, H1, H1, DO_AND, clearb)
4369 GEN_VEXT_RED(vredand_vs_h, int16_t, int16_t, H2, H2, DO_AND, clearh)
4370 GEN_VEXT_RED(vredand_vs_w, int32_t, int32_t, H4, H4, DO_AND, clearl)
4371 GEN_VEXT_RED(vredand_vs_d, int64_t, int64_t, H8, H8, DO_AND, clearq)
4373 /* vd[0] = or(vs1[0], vs2[*]) */
4374 GEN_VEXT_RED(vredor_vs_b, int8_t, int8_t, H1, H1, DO_OR, clearb)
4375 GEN_VEXT_RED(vredor_vs_h, int16_t, int16_t, H2, H2, DO_OR, clearh)
4376 GEN_VEXT_RED(vredor_vs_w, int32_t, int32_t, H4, H4, DO_OR, clearl)
4377 GEN_VEXT_RED(vredor_vs_d, int64_t, int64_t, H8, H8, DO_OR, clearq)
4379 /* vd[0] = xor(vs1[0], vs2[*]) */
4380 GEN_VEXT_RED(vredxor_vs_b, int8_t, int8_t, H1, H1, DO_XOR, clearb)
4381 GEN_VEXT_RED(vredxor_vs_h, int16_t, int16_t, H2, H2, DO_XOR, clearh)
4382 GEN_VEXT_RED(vredxor_vs_w, int32_t, int32_t, H4, H4, DO_XOR, clearl)
4383 GEN_VEXT_RED(vredxor_vs_d, int64_t, int64_t, H8, H8, DO_XOR, clearq)
4385 /* Vector Widening Integer Reduction Instructions */
4386 /* signed sum reduction into double-width accumulator */
4387 GEN_VEXT_RED(vwredsum_vs_b, int16_t, int8_t, H2, H1, DO_ADD, clearh)
4388 GEN_VEXT_RED(vwredsum_vs_h, int32_t, int16_t, H4, H2, DO_ADD, clearl)
4389 GEN_VEXT_RED(vwredsum_vs_w, int64_t, int32_t, H8, H4, DO_ADD, clearq)
4391 /* Unsigned sum reduction into double-width accumulator */
4392 GEN_VEXT_RED(vwredsumu_vs_b, uint16_t, uint8_t, H2, H1, DO_ADD, clearh)
4393 GEN_VEXT_RED(vwredsumu_vs_h, uint32_t, uint16_t, H4, H2, DO_ADD, clearl)
4394 GEN_VEXT_RED(vwredsumu_vs_w, uint64_t, uint32_t, H8, H4, DO_ADD, clearq)
4396 /* Vector Single-Width Floating-Point Reduction Instructions */
4397 #define GEN_VEXT_FRED(NAME, TD, TS2, HD, HS2, OP, CLEAR_FN)\
4398 void HELPER(NAME)(void *vd, void *v0, void *vs1, \
4399 void *vs2, CPURISCVState *env, \
4400 uint32_t desc) \
4402 uint32_t mlen = vext_mlen(desc); \
4403 uint32_t vm = vext_vm(desc); \
4404 uint32_t vl = env->vl; \
4405 uint32_t i; \
4406 uint32_t tot = env_archcpu(env)->cfg.vlen / 8; \
4407 TD s1 = *((TD *)vs1 + HD(0)); \
4409 for (i = 0; i < vl; i++) { \
4410 TS2 s2 = *((TS2 *)vs2 + HS2(i)); \
4411 if (!vm && !vext_elem_mask(v0, mlen, i)) { \
4412 continue; \
4414 s1 = OP(s1, (TD)s2, &env->fp_status); \
4416 *((TD *)vd + HD(0)) = s1; \
4417 CLEAR_FN(vd, 1, sizeof(TD), tot); \
4420 /* Unordered sum */
4421 GEN_VEXT_FRED(vfredsum_vs_h, uint16_t, uint16_t, H2, H2, float16_add, clearh)
4422 GEN_VEXT_FRED(vfredsum_vs_w, uint32_t, uint32_t, H4, H4, float32_add, clearl)
4423 GEN_VEXT_FRED(vfredsum_vs_d, uint64_t, uint64_t, H8, H8, float64_add, clearq)
4425 /* Maximum value */
4426 GEN_VEXT_FRED(vfredmax_vs_h, uint16_t, uint16_t, H2, H2, float16_maxnum, clearh)
4427 GEN_VEXT_FRED(vfredmax_vs_w, uint32_t, uint32_t, H4, H4, float32_maxnum, clearl)
4428 GEN_VEXT_FRED(vfredmax_vs_d, uint64_t, uint64_t, H8, H8, float64_maxnum, clearq)
4430 /* Minimum value */
4431 GEN_VEXT_FRED(vfredmin_vs_h, uint16_t, uint16_t, H2, H2, float16_minnum, clearh)
4432 GEN_VEXT_FRED(vfredmin_vs_w, uint32_t, uint32_t, H4, H4, float32_minnum, clearl)
4433 GEN_VEXT_FRED(vfredmin_vs_d, uint64_t, uint64_t, H8, H8, float64_minnum, clearq)
4435 /* Vector Widening Floating-Point Reduction Instructions */
4436 /* Unordered reduce 2*SEW = 2*SEW + sum(promote(SEW)) */
4437 void HELPER(vfwredsum_vs_h)(void *vd, void *v0, void *vs1,
4438 void *vs2, CPURISCVState *env, uint32_t desc)
4440 uint32_t mlen = vext_mlen(desc);
4441 uint32_t vm = vext_vm(desc);
4442 uint32_t vl = env->vl;
4443 uint32_t i;
4444 uint32_t tot = env_archcpu(env)->cfg.vlen / 8;
4445 uint32_t s1 = *((uint32_t *)vs1 + H4(0));
4447 for (i = 0; i < vl; i++) {
4448 uint16_t s2 = *((uint16_t *)vs2 + H2(i));
4449 if (!vm && !vext_elem_mask(v0, mlen, i)) {
4450 continue;
4452 s1 = float32_add(s1, float16_to_float32(s2, true, &env->fp_status),
4453 &env->fp_status);
4455 *((uint32_t *)vd + H4(0)) = s1;
4456 clearl(vd, 1, sizeof(uint32_t), tot);
4459 void HELPER(vfwredsum_vs_w)(void *vd, void *v0, void *vs1,
4460 void *vs2, CPURISCVState *env, uint32_t desc)
4462 uint32_t mlen = vext_mlen(desc);
4463 uint32_t vm = vext_vm(desc);
4464 uint32_t vl = env->vl;
4465 uint32_t i;
4466 uint32_t tot = env_archcpu(env)->cfg.vlen / 8;
4467 uint64_t s1 = *((uint64_t *)vs1);
4469 for (i = 0; i < vl; i++) {
4470 uint32_t s2 = *((uint32_t *)vs2 + H4(i));
4471 if (!vm && !vext_elem_mask(v0, mlen, i)) {
4472 continue;
4474 s1 = float64_add(s1, float32_to_float64(s2, &env->fp_status),
4475 &env->fp_status);
4477 *((uint64_t *)vd) = s1;
4478 clearq(vd, 1, sizeof(uint64_t), tot);
4482 *** Vector Mask Operations
4484 /* Vector Mask-Register Logical Instructions */
4485 #define GEN_VEXT_MASK_VV(NAME, OP) \
4486 void HELPER(NAME)(void *vd, void *v0, void *vs1, \
4487 void *vs2, CPURISCVState *env, \
4488 uint32_t desc) \
4490 uint32_t mlen = vext_mlen(desc); \
4491 uint32_t vlmax = env_archcpu(env)->cfg.vlen / mlen; \
4492 uint32_t vl = env->vl; \
4493 uint32_t i; \
4494 int a, b; \
4496 for (i = 0; i < vl; i++) { \
4497 a = vext_elem_mask(vs1, mlen, i); \
4498 b = vext_elem_mask(vs2, mlen, i); \
4499 vext_set_elem_mask(vd, mlen, i, OP(b, a)); \
4501 for (; i < vlmax; i++) { \
4502 vext_set_elem_mask(vd, mlen, i, 0); \
4506 #define DO_NAND(N, M) (!(N & M))
4507 #define DO_ANDNOT(N, M) (N & !M)
4508 #define DO_NOR(N, M) (!(N | M))
4509 #define DO_ORNOT(N, M) (N | !M)
4510 #define DO_XNOR(N, M) (!(N ^ M))
4512 GEN_VEXT_MASK_VV(vmand_mm, DO_AND)
4513 GEN_VEXT_MASK_VV(vmnand_mm, DO_NAND)
4514 GEN_VEXT_MASK_VV(vmandnot_mm, DO_ANDNOT)
4515 GEN_VEXT_MASK_VV(vmxor_mm, DO_XOR)
4516 GEN_VEXT_MASK_VV(vmor_mm, DO_OR)
4517 GEN_VEXT_MASK_VV(vmnor_mm, DO_NOR)
4518 GEN_VEXT_MASK_VV(vmornot_mm, DO_ORNOT)
4519 GEN_VEXT_MASK_VV(vmxnor_mm, DO_XNOR)
4521 /* Vector mask population count vmpopc */
4522 target_ulong HELPER(vmpopc_m)(void *v0, void *vs2, CPURISCVState *env,
4523 uint32_t desc)
4525 target_ulong cnt = 0;
4526 uint32_t mlen = vext_mlen(desc);
4527 uint32_t vm = vext_vm(desc);
4528 uint32_t vl = env->vl;
4529 int i;
4531 for (i = 0; i < vl; i++) {
4532 if (vm || vext_elem_mask(v0, mlen, i)) {
4533 if (vext_elem_mask(vs2, mlen, i)) {
4534 cnt++;
4538 return cnt;
4541 /* vmfirst find-first-set mask bit*/
4542 target_ulong HELPER(vmfirst_m)(void *v0, void *vs2, CPURISCVState *env,
4543 uint32_t desc)
4545 uint32_t mlen = vext_mlen(desc);
4546 uint32_t vm = vext_vm(desc);
4547 uint32_t vl = env->vl;
4548 int i;
4550 for (i = 0; i < vl; i++) {
4551 if (vm || vext_elem_mask(v0, mlen, i)) {
4552 if (vext_elem_mask(vs2, mlen, i)) {
4553 return i;
4557 return -1LL;
4560 enum set_mask_type {
4561 ONLY_FIRST = 1,
4562 INCLUDE_FIRST,
4563 BEFORE_FIRST,
4566 static void vmsetm(void *vd, void *v0, void *vs2, CPURISCVState *env,
4567 uint32_t desc, enum set_mask_type type)
4569 uint32_t mlen = vext_mlen(desc);
4570 uint32_t vlmax = env_archcpu(env)->cfg.vlen / mlen;
4571 uint32_t vm = vext_vm(desc);
4572 uint32_t vl = env->vl;
4573 int i;
4574 bool first_mask_bit = false;
4576 for (i = 0; i < vl; i++) {
4577 if (!vm && !vext_elem_mask(v0, mlen, i)) {
4578 continue;
4580 /* write a zero to all following active elements */
4581 if (first_mask_bit) {
4582 vext_set_elem_mask(vd, mlen, i, 0);
4583 continue;
4585 if (vext_elem_mask(vs2, mlen, i)) {
4586 first_mask_bit = true;
4587 if (type == BEFORE_FIRST) {
4588 vext_set_elem_mask(vd, mlen, i, 0);
4589 } else {
4590 vext_set_elem_mask(vd, mlen, i, 1);
4592 } else {
4593 if (type == ONLY_FIRST) {
4594 vext_set_elem_mask(vd, mlen, i, 0);
4595 } else {
4596 vext_set_elem_mask(vd, mlen, i, 1);
4600 for (; i < vlmax; i++) {
4601 vext_set_elem_mask(vd, mlen, i, 0);
4605 void HELPER(vmsbf_m)(void *vd, void *v0, void *vs2, CPURISCVState *env,
4606 uint32_t desc)
4608 vmsetm(vd, v0, vs2, env, desc, BEFORE_FIRST);
4611 void HELPER(vmsif_m)(void *vd, void *v0, void *vs2, CPURISCVState *env,
4612 uint32_t desc)
4614 vmsetm(vd, v0, vs2, env, desc, INCLUDE_FIRST);
4617 void HELPER(vmsof_m)(void *vd, void *v0, void *vs2, CPURISCVState *env,
4618 uint32_t desc)
4620 vmsetm(vd, v0, vs2, env, desc, ONLY_FIRST);
4623 /* Vector Iota Instruction */
4624 #define GEN_VEXT_VIOTA_M(NAME, ETYPE, H, CLEAR_FN) \
4625 void HELPER(NAME)(void *vd, void *v0, void *vs2, CPURISCVState *env, \
4626 uint32_t desc) \
4628 uint32_t mlen = vext_mlen(desc); \
4629 uint32_t vlmax = env_archcpu(env)->cfg.vlen / mlen; \
4630 uint32_t vm = vext_vm(desc); \
4631 uint32_t vl = env->vl; \
4632 uint32_t sum = 0; \
4633 int i; \
4635 for (i = 0; i < vl; i++) { \
4636 if (!vm && !vext_elem_mask(v0, mlen, i)) { \
4637 continue; \
4639 *((ETYPE *)vd + H(i)) = sum; \
4640 if (vext_elem_mask(vs2, mlen, i)) { \
4641 sum++; \
4644 CLEAR_FN(vd, vl, vl * sizeof(ETYPE), vlmax * sizeof(ETYPE)); \
4647 GEN_VEXT_VIOTA_M(viota_m_b, uint8_t, H1, clearb)
4648 GEN_VEXT_VIOTA_M(viota_m_h, uint16_t, H2, clearh)
4649 GEN_VEXT_VIOTA_M(viota_m_w, uint32_t, H4, clearl)
4650 GEN_VEXT_VIOTA_M(viota_m_d, uint64_t, H8, clearq)
4652 /* Vector Element Index Instruction */
4653 #define GEN_VEXT_VID_V(NAME, ETYPE, H, CLEAR_FN) \
4654 void HELPER(NAME)(void *vd, void *v0, CPURISCVState *env, uint32_t desc) \
4656 uint32_t mlen = vext_mlen(desc); \
4657 uint32_t vlmax = env_archcpu(env)->cfg.vlen / mlen; \
4658 uint32_t vm = vext_vm(desc); \
4659 uint32_t vl = env->vl; \
4660 int i; \
4662 for (i = 0; i < vl; i++) { \
4663 if (!vm && !vext_elem_mask(v0, mlen, i)) { \
4664 continue; \
4666 *((ETYPE *)vd + H(i)) = i; \
4668 CLEAR_FN(vd, vl, vl * sizeof(ETYPE), vlmax * sizeof(ETYPE)); \
4671 GEN_VEXT_VID_V(vid_v_b, uint8_t, H1, clearb)
4672 GEN_VEXT_VID_V(vid_v_h, uint16_t, H2, clearh)
4673 GEN_VEXT_VID_V(vid_v_w, uint32_t, H4, clearl)
4674 GEN_VEXT_VID_V(vid_v_d, uint64_t, H8, clearq)
4677 *** Vector Permutation Instructions
4680 /* Vector Slide Instructions */
4681 #define GEN_VEXT_VSLIDEUP_VX(NAME, ETYPE, H, CLEAR_FN) \
4682 void HELPER(NAME)(void *vd, void *v0, target_ulong s1, void *vs2, \
4683 CPURISCVState *env, uint32_t desc) \
4685 uint32_t mlen = vext_mlen(desc); \
4686 uint32_t vlmax = env_archcpu(env)->cfg.vlen / mlen; \
4687 uint32_t vm = vext_vm(desc); \
4688 uint32_t vl = env->vl; \
4689 target_ulong offset = s1, i; \
4691 for (i = offset; i < vl; i++) { \
4692 if (!vm && !vext_elem_mask(v0, mlen, i)) { \
4693 continue; \
4695 *((ETYPE *)vd + H(i)) = *((ETYPE *)vs2 + H(i - offset)); \
4697 CLEAR_FN(vd, vl, vl * sizeof(ETYPE), vlmax * sizeof(ETYPE)); \
4700 /* vslideup.vx vd, vs2, rs1, vm # vd[i+rs1] = vs2[i] */
4701 GEN_VEXT_VSLIDEUP_VX(vslideup_vx_b, uint8_t, H1, clearb)
4702 GEN_VEXT_VSLIDEUP_VX(vslideup_vx_h, uint16_t, H2, clearh)
4703 GEN_VEXT_VSLIDEUP_VX(vslideup_vx_w, uint32_t, H4, clearl)
4704 GEN_VEXT_VSLIDEUP_VX(vslideup_vx_d, uint64_t, H8, clearq)
4706 #define GEN_VEXT_VSLIDEDOWN_VX(NAME, ETYPE, H, CLEAR_FN) \
4707 void HELPER(NAME)(void *vd, void *v0, target_ulong s1, void *vs2, \
4708 CPURISCVState *env, uint32_t desc) \
4710 uint32_t mlen = vext_mlen(desc); \
4711 uint32_t vlmax = env_archcpu(env)->cfg.vlen / mlen; \
4712 uint32_t vm = vext_vm(desc); \
4713 uint32_t vl = env->vl; \
4714 target_ulong offset = s1, i; \
4716 for (i = 0; i < vl; ++i) { \
4717 target_ulong j = i + offset; \
4718 if (!vm && !vext_elem_mask(v0, mlen, i)) { \
4719 continue; \
4721 *((ETYPE *)vd + H(i)) = j >= vlmax ? 0 : *((ETYPE *)vs2 + H(j)); \
4723 CLEAR_FN(vd, vl, vl * sizeof(ETYPE), vlmax * sizeof(ETYPE)); \
4726 /* vslidedown.vx vd, vs2, rs1, vm # vd[i] = vs2[i+rs1] */
4727 GEN_VEXT_VSLIDEDOWN_VX(vslidedown_vx_b, uint8_t, H1, clearb)
4728 GEN_VEXT_VSLIDEDOWN_VX(vslidedown_vx_h, uint16_t, H2, clearh)
4729 GEN_VEXT_VSLIDEDOWN_VX(vslidedown_vx_w, uint32_t, H4, clearl)
4730 GEN_VEXT_VSLIDEDOWN_VX(vslidedown_vx_d, uint64_t, H8, clearq)
4732 #define GEN_VEXT_VSLIDE1UP_VX(NAME, ETYPE, H, CLEAR_FN) \
4733 void HELPER(NAME)(void *vd, void *v0, target_ulong s1, void *vs2, \
4734 CPURISCVState *env, uint32_t desc) \
4736 uint32_t mlen = vext_mlen(desc); \
4737 uint32_t vlmax = env_archcpu(env)->cfg.vlen / mlen; \
4738 uint32_t vm = vext_vm(desc); \
4739 uint32_t vl = env->vl; \
4740 uint32_t i; \
4742 for (i = 0; i < vl; i++) { \
4743 if (!vm && !vext_elem_mask(v0, mlen, i)) { \
4744 continue; \
4746 if (i == 0) { \
4747 *((ETYPE *)vd + H(i)) = s1; \
4748 } else { \
4749 *((ETYPE *)vd + H(i)) = *((ETYPE *)vs2 + H(i - 1)); \
4752 CLEAR_FN(vd, vl, vl * sizeof(ETYPE), vlmax * sizeof(ETYPE)); \
4755 /* vslide1up.vx vd, vs2, rs1, vm # vd[0]=x[rs1], vd[i+1] = vs2[i] */
4756 GEN_VEXT_VSLIDE1UP_VX(vslide1up_vx_b, uint8_t, H1, clearb)
4757 GEN_VEXT_VSLIDE1UP_VX(vslide1up_vx_h, uint16_t, H2, clearh)
4758 GEN_VEXT_VSLIDE1UP_VX(vslide1up_vx_w, uint32_t, H4, clearl)
4759 GEN_VEXT_VSLIDE1UP_VX(vslide1up_vx_d, uint64_t, H8, clearq)
4761 #define GEN_VEXT_VSLIDE1DOWN_VX(NAME, ETYPE, H, CLEAR_FN) \
4762 void HELPER(NAME)(void *vd, void *v0, target_ulong s1, void *vs2, \
4763 CPURISCVState *env, uint32_t desc) \
4765 uint32_t mlen = vext_mlen(desc); \
4766 uint32_t vlmax = env_archcpu(env)->cfg.vlen / mlen; \
4767 uint32_t vm = vext_vm(desc); \
4768 uint32_t vl = env->vl; \
4769 uint32_t i; \
4771 for (i = 0; i < vl; i++) { \
4772 if (!vm && !vext_elem_mask(v0, mlen, i)) { \
4773 continue; \
4775 if (i == vl - 1) { \
4776 *((ETYPE *)vd + H(i)) = s1; \
4777 } else { \
4778 *((ETYPE *)vd + H(i)) = *((ETYPE *)vs2 + H(i + 1)); \
4781 CLEAR_FN(vd, vl, vl * sizeof(ETYPE), vlmax * sizeof(ETYPE)); \
4784 /* vslide1down.vx vd, vs2, rs1, vm # vd[i] = vs2[i+1], vd[vl-1]=x[rs1] */
4785 GEN_VEXT_VSLIDE1DOWN_VX(vslide1down_vx_b, uint8_t, H1, clearb)
4786 GEN_VEXT_VSLIDE1DOWN_VX(vslide1down_vx_h, uint16_t, H2, clearh)
4787 GEN_VEXT_VSLIDE1DOWN_VX(vslide1down_vx_w, uint32_t, H4, clearl)
4788 GEN_VEXT_VSLIDE1DOWN_VX(vslide1down_vx_d, uint64_t, H8, clearq)
4790 /* Vector Register Gather Instruction */
4791 #define GEN_VEXT_VRGATHER_VV(NAME, ETYPE, H, CLEAR_FN) \
4792 void HELPER(NAME)(void *vd, void *v0, void *vs1, void *vs2, \
4793 CPURISCVState *env, uint32_t desc) \
4795 uint32_t mlen = vext_mlen(desc); \
4796 uint32_t vlmax = env_archcpu(env)->cfg.vlen / mlen; \
4797 uint32_t vm = vext_vm(desc); \
4798 uint32_t vl = env->vl; \
4799 uint32_t index, i; \
4801 for (i = 0; i < vl; i++) { \
4802 if (!vm && !vext_elem_mask(v0, mlen, i)) { \
4803 continue; \
4805 index = *((ETYPE *)vs1 + H(i)); \
4806 if (index >= vlmax) { \
4807 *((ETYPE *)vd + H(i)) = 0; \
4808 } else { \
4809 *((ETYPE *)vd + H(i)) = *((ETYPE *)vs2 + H(index)); \
4812 CLEAR_FN(vd, vl, vl * sizeof(ETYPE), vlmax * sizeof(ETYPE)); \
4815 /* vd[i] = (vs1[i] >= VLMAX) ? 0 : vs2[vs1[i]]; */
4816 GEN_VEXT_VRGATHER_VV(vrgather_vv_b, uint8_t, H1, clearb)
4817 GEN_VEXT_VRGATHER_VV(vrgather_vv_h, uint16_t, H2, clearh)
4818 GEN_VEXT_VRGATHER_VV(vrgather_vv_w, uint32_t, H4, clearl)
4819 GEN_VEXT_VRGATHER_VV(vrgather_vv_d, uint64_t, H8, clearq)
4821 #define GEN_VEXT_VRGATHER_VX(NAME, ETYPE, H, CLEAR_FN) \
4822 void HELPER(NAME)(void *vd, void *v0, target_ulong s1, void *vs2, \
4823 CPURISCVState *env, uint32_t desc) \
4825 uint32_t mlen = vext_mlen(desc); \
4826 uint32_t vlmax = env_archcpu(env)->cfg.vlen / mlen; \
4827 uint32_t vm = vext_vm(desc); \
4828 uint32_t vl = env->vl; \
4829 uint32_t index = s1, i; \
4831 for (i = 0; i < vl; i++) { \
4832 if (!vm && !vext_elem_mask(v0, mlen, i)) { \
4833 continue; \
4835 if (index >= vlmax) { \
4836 *((ETYPE *)vd + H(i)) = 0; \
4837 } else { \
4838 *((ETYPE *)vd + H(i)) = *((ETYPE *)vs2 + H(index)); \
4841 CLEAR_FN(vd, vl, vl * sizeof(ETYPE), vlmax * sizeof(ETYPE)); \
4844 /* vd[i] = (x[rs1] >= VLMAX) ? 0 : vs2[rs1] */
4845 GEN_VEXT_VRGATHER_VX(vrgather_vx_b, uint8_t, H1, clearb)
4846 GEN_VEXT_VRGATHER_VX(vrgather_vx_h, uint16_t, H2, clearh)
4847 GEN_VEXT_VRGATHER_VX(vrgather_vx_w, uint32_t, H4, clearl)
4848 GEN_VEXT_VRGATHER_VX(vrgather_vx_d, uint64_t, H8, clearq)
4850 /* Vector Compress Instruction */
4851 #define GEN_VEXT_VCOMPRESS_VM(NAME, ETYPE, H, CLEAR_FN) \
4852 void HELPER(NAME)(void *vd, void *v0, void *vs1, void *vs2, \
4853 CPURISCVState *env, uint32_t desc) \
4855 uint32_t mlen = vext_mlen(desc); \
4856 uint32_t vlmax = env_archcpu(env)->cfg.vlen / mlen; \
4857 uint32_t vl = env->vl; \
4858 uint32_t num = 0, i; \
4860 for (i = 0; i < vl; i++) { \
4861 if (!vext_elem_mask(vs1, mlen, i)) { \
4862 continue; \
4864 *((ETYPE *)vd + H(num)) = *((ETYPE *)vs2 + H(i)); \
4865 num++; \
4867 CLEAR_FN(vd, num, num * sizeof(ETYPE), vlmax * sizeof(ETYPE)); \
4870 /* Compress into vd elements of vs2 where vs1 is enabled */
4871 GEN_VEXT_VCOMPRESS_VM(vcompress_vm_b, uint8_t, H1, clearb)
4872 GEN_VEXT_VCOMPRESS_VM(vcompress_vm_h, uint16_t, H2, clearh)
4873 GEN_VEXT_VCOMPRESS_VM(vcompress_vm_w, uint32_t, H4, clearl)
4874 GEN_VEXT_VCOMPRESS_VM(vcompress_vm_d, uint64_t, H8, clearq)