spapr: Render full FDT on ibm,client-architecture-support
[qemu/ar7.git] / hw / ppc / spapr.c
blob43920c140df4e6fd4289bb21b2d9bd550e964b2d
1 /*
2 * QEMU PowerPC pSeries Logical Partition (aka sPAPR) hardware System Emulator
4 * Copyright (c) 2004-2007 Fabrice Bellard
5 * Copyright (c) 2007 Jocelyn Mayer
6 * Copyright (c) 2010 David Gibson, IBM Corporation.
8 * Permission is hereby granted, free of charge, to any person obtaining a copy
9 * of this software and associated documentation files (the "Software"), to deal
10 * in the Software without restriction, including without limitation the rights
11 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
12 * copies of the Software, and to permit persons to whom the Software is
13 * furnished to do so, subject to the following conditions:
15 * The above copyright notice and this permission notice shall be included in
16 * all copies or substantial portions of the Software.
18 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
19 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
20 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
21 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
22 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
23 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
24 * THE SOFTWARE.
27 #include "qemu/osdep.h"
28 #include "qemu-common.h"
29 #include "qapi/error.h"
30 #include "qapi/visitor.h"
31 #include "sysemu/sysemu.h"
32 #include "sysemu/hostmem.h"
33 #include "sysemu/numa.h"
34 #include "sysemu/qtest.h"
35 #include "sysemu/reset.h"
36 #include "sysemu/runstate.h"
37 #include "qemu/log.h"
38 #include "hw/fw-path-provider.h"
39 #include "elf.h"
40 #include "net/net.h"
41 #include "sysemu/device_tree.h"
42 #include "sysemu/cpus.h"
43 #include "sysemu/hw_accel.h"
44 #include "kvm_ppc.h"
45 #include "migration/misc.h"
46 #include "migration/qemu-file-types.h"
47 #include "migration/global_state.h"
48 #include "migration/register.h"
49 #include "mmu-hash64.h"
50 #include "mmu-book3s-v3.h"
51 #include "cpu-models.h"
52 #include "hw/core/cpu.h"
54 #include "hw/boards.h"
55 #include "hw/ppc/ppc.h"
56 #include "hw/loader.h"
58 #include "hw/ppc/fdt.h"
59 #include "hw/ppc/spapr.h"
60 #include "hw/ppc/spapr_vio.h"
61 #include "hw/qdev-properties.h"
62 #include "hw/pci-host/spapr.h"
63 #include "hw/pci/msi.h"
65 #include "hw/pci/pci.h"
66 #include "hw/scsi/scsi.h"
67 #include "hw/virtio/virtio-scsi.h"
68 #include "hw/virtio/vhost-scsi-common.h"
70 #include "exec/address-spaces.h"
71 #include "exec/ram_addr.h"
72 #include "hw/usb.h"
73 #include "qemu/config-file.h"
74 #include "qemu/error-report.h"
75 #include "trace.h"
76 #include "hw/nmi.h"
77 #include "hw/intc/intc.h"
79 #include "qemu/cutils.h"
80 #include "hw/ppc/spapr_cpu_core.h"
81 #include "hw/mem/memory-device.h"
82 #include "hw/ppc/spapr_tpm_proxy.h"
84 #include "monitor/monitor.h"
86 #include <libfdt.h>
88 /* SLOF memory layout:
90 * SLOF raw image loaded at 0, copies its romfs right below the flat
91 * device-tree, then position SLOF itself 31M below that
93 * So we set FW_OVERHEAD to 40MB which should account for all of that
94 * and more
96 * We load our kernel at 4M, leaving space for SLOF initial image
98 #define FDT_MAX_SIZE 0x100000
99 #define RTAS_MAX_ADDR 0x80000000 /* RTAS must stay below that */
100 #define FW_MAX_SIZE 0x400000
101 #define FW_FILE_NAME "slof.bin"
102 #define FW_OVERHEAD 0x2800000
103 #define KERNEL_LOAD_ADDR FW_MAX_SIZE
105 #define MIN_RMA_SLOF 128UL
107 #define PHANDLE_INTC 0x00001111
109 /* These two functions implement the VCPU id numbering: one to compute them
110 * all and one to identify thread 0 of a VCORE. Any change to the first one
111 * is likely to have an impact on the second one, so let's keep them close.
113 static int spapr_vcpu_id(SpaprMachineState *spapr, int cpu_index)
115 MachineState *ms = MACHINE(spapr);
116 unsigned int smp_threads = ms->smp.threads;
118 assert(spapr->vsmt);
119 return
120 (cpu_index / smp_threads) * spapr->vsmt + cpu_index % smp_threads;
122 static bool spapr_is_thread0_in_vcore(SpaprMachineState *spapr,
123 PowerPCCPU *cpu)
125 assert(spapr->vsmt);
126 return spapr_get_vcpu_id(cpu) % spapr->vsmt == 0;
129 static bool pre_2_10_vmstate_dummy_icp_needed(void *opaque)
131 /* Dummy entries correspond to unused ICPState objects in older QEMUs,
132 * and newer QEMUs don't even have them. In both cases, we don't want
133 * to send anything on the wire.
135 return false;
138 static const VMStateDescription pre_2_10_vmstate_dummy_icp = {
139 .name = "icp/server",
140 .version_id = 1,
141 .minimum_version_id = 1,
142 .needed = pre_2_10_vmstate_dummy_icp_needed,
143 .fields = (VMStateField[]) {
144 VMSTATE_UNUSED(4), /* uint32_t xirr */
145 VMSTATE_UNUSED(1), /* uint8_t pending_priority */
146 VMSTATE_UNUSED(1), /* uint8_t mfrr */
147 VMSTATE_END_OF_LIST()
151 static void pre_2_10_vmstate_register_dummy_icp(int i)
153 vmstate_register(NULL, i, &pre_2_10_vmstate_dummy_icp,
154 (void *)(uintptr_t) i);
157 static void pre_2_10_vmstate_unregister_dummy_icp(int i)
159 vmstate_unregister(NULL, &pre_2_10_vmstate_dummy_icp,
160 (void *)(uintptr_t) i);
163 int spapr_max_server_number(SpaprMachineState *spapr)
165 MachineState *ms = MACHINE(spapr);
167 assert(spapr->vsmt);
168 return DIV_ROUND_UP(ms->smp.max_cpus * spapr->vsmt, ms->smp.threads);
171 static int spapr_fixup_cpu_smt_dt(void *fdt, int offset, PowerPCCPU *cpu,
172 int smt_threads)
174 int i, ret = 0;
175 uint32_t servers_prop[smt_threads];
176 uint32_t gservers_prop[smt_threads * 2];
177 int index = spapr_get_vcpu_id(cpu);
179 if (cpu->compat_pvr) {
180 ret = fdt_setprop_cell(fdt, offset, "cpu-version", cpu->compat_pvr);
181 if (ret < 0) {
182 return ret;
186 /* Build interrupt servers and gservers properties */
187 for (i = 0; i < smt_threads; i++) {
188 servers_prop[i] = cpu_to_be32(index + i);
189 /* Hack, direct the group queues back to cpu 0 */
190 gservers_prop[i*2] = cpu_to_be32(index + i);
191 gservers_prop[i*2 + 1] = 0;
193 ret = fdt_setprop(fdt, offset, "ibm,ppc-interrupt-server#s",
194 servers_prop, sizeof(servers_prop));
195 if (ret < 0) {
196 return ret;
198 ret = fdt_setprop(fdt, offset, "ibm,ppc-interrupt-gserver#s",
199 gservers_prop, sizeof(gservers_prop));
201 return ret;
204 static int spapr_fixup_cpu_numa_dt(void *fdt, int offset, PowerPCCPU *cpu)
206 int index = spapr_get_vcpu_id(cpu);
207 uint32_t associativity[] = {cpu_to_be32(0x5),
208 cpu_to_be32(0x0),
209 cpu_to_be32(0x0),
210 cpu_to_be32(0x0),
211 cpu_to_be32(cpu->node_id),
212 cpu_to_be32(index)};
214 /* Advertise NUMA via ibm,associativity */
215 return fdt_setprop(fdt, offset, "ibm,associativity", associativity,
216 sizeof(associativity));
219 /* Populate the "ibm,pa-features" property */
220 static void spapr_populate_pa_features(SpaprMachineState *spapr,
221 PowerPCCPU *cpu,
222 void *fdt, int offset)
224 uint8_t pa_features_206[] = { 6, 0,
225 0xf6, 0x1f, 0xc7, 0x00, 0x80, 0xc0 };
226 uint8_t pa_features_207[] = { 24, 0,
227 0xf6, 0x1f, 0xc7, 0xc0, 0x80, 0xf0,
228 0x80, 0x00, 0x00, 0x00, 0x00, 0x00,
229 0x00, 0x00, 0x00, 0x00, 0x80, 0x00,
230 0x80, 0x00, 0x80, 0x00, 0x00, 0x00 };
231 uint8_t pa_features_300[] = { 66, 0,
232 /* 0: MMU|FPU|SLB|RUN|DABR|NX, 1: fri[nzpm]|DABRX|SPRG3|SLB0|PP110 */
233 /* 2: VPM|DS205|PPR|DS202|DS206, 3: LSD|URG, SSO, 5: LE|CFAR|EB|LSQ */
234 0xf6, 0x1f, 0xc7, 0xc0, 0x80, 0xf0, /* 0 - 5 */
235 /* 6: DS207 */
236 0x80, 0x00, 0x00, 0x00, 0x00, 0x00, /* 6 - 11 */
237 /* 16: Vector */
238 0x00, 0x00, 0x00, 0x00, 0x80, 0x00, /* 12 - 17 */
239 /* 18: Vec. Scalar, 20: Vec. XOR, 22: HTM */
240 0x80, 0x00, 0x80, 0x00, 0x00, 0x00, /* 18 - 23 */
241 /* 24: Ext. Dec, 26: 64 bit ftrs, 28: PM ftrs */
242 0x80, 0x00, 0x80, 0x00, 0x80, 0x00, /* 24 - 29 */
243 /* 30: MMR, 32: LE atomic, 34: EBB + ext EBB */
244 0x80, 0x00, 0x80, 0x00, 0xC0, 0x00, /* 30 - 35 */
245 /* 36: SPR SO, 38: Copy/Paste, 40: Radix MMU */
246 0x80, 0x00, 0x80, 0x00, 0x80, 0x00, /* 36 - 41 */
247 /* 42: PM, 44: PC RA, 46: SC vec'd */
248 0x80, 0x00, 0x80, 0x00, 0x80, 0x00, /* 42 - 47 */
249 /* 48: SIMD, 50: QP BFP, 52: String */
250 0x80, 0x00, 0x80, 0x00, 0x80, 0x00, /* 48 - 53 */
251 /* 54: DecFP, 56: DecI, 58: SHA */
252 0x80, 0x00, 0x80, 0x00, 0x80, 0x00, /* 54 - 59 */
253 /* 60: NM atomic, 62: RNG */
254 0x80, 0x00, 0x80, 0x00, 0x00, 0x00, /* 60 - 65 */
256 uint8_t *pa_features = NULL;
257 size_t pa_size;
259 if (ppc_check_compat(cpu, CPU_POWERPC_LOGICAL_2_06, 0, cpu->compat_pvr)) {
260 pa_features = pa_features_206;
261 pa_size = sizeof(pa_features_206);
263 if (ppc_check_compat(cpu, CPU_POWERPC_LOGICAL_2_07, 0, cpu->compat_pvr)) {
264 pa_features = pa_features_207;
265 pa_size = sizeof(pa_features_207);
267 if (ppc_check_compat(cpu, CPU_POWERPC_LOGICAL_3_00, 0, cpu->compat_pvr)) {
268 pa_features = pa_features_300;
269 pa_size = sizeof(pa_features_300);
271 if (!pa_features) {
272 return;
275 if (ppc_hash64_has(cpu, PPC_HASH64_CI_LARGEPAGE)) {
277 * Note: we keep CI large pages off by default because a 64K capable
278 * guest provisioned with large pages might otherwise try to map a qemu
279 * framebuffer (or other kind of memory mapped PCI BAR) using 64K pages
280 * even if that qemu runs on a 4k host.
281 * We dd this bit back here if we are confident this is not an issue
283 pa_features[3] |= 0x20;
285 if ((spapr_get_cap(spapr, SPAPR_CAP_HTM) != 0) && pa_size > 24) {
286 pa_features[24] |= 0x80; /* Transactional memory support */
288 if (spapr->cas_pre_isa3_guest && pa_size > 40) {
289 /* Workaround for broken kernels that attempt (guest) radix
290 * mode when they can't handle it, if they see the radix bit set
291 * in pa-features. So hide it from them. */
292 pa_features[40 + 2] &= ~0x80; /* Radix MMU */
295 _FDT((fdt_setprop(fdt, offset, "ibm,pa-features", pa_features, pa_size)));
298 static hwaddr spapr_node0_size(MachineState *machine)
300 if (machine->numa_state->num_nodes) {
301 int i;
302 for (i = 0; i < machine->numa_state->num_nodes; ++i) {
303 if (machine->numa_state->nodes[i].node_mem) {
304 return MIN(pow2floor(machine->numa_state->nodes[i].node_mem),
305 machine->ram_size);
309 return machine->ram_size;
312 static void add_str(GString *s, const gchar *s1)
314 g_string_append_len(s, s1, strlen(s1) + 1);
317 static int spapr_populate_memory_node(void *fdt, int nodeid, hwaddr start,
318 hwaddr size)
320 uint32_t associativity[] = {
321 cpu_to_be32(0x4), /* length */
322 cpu_to_be32(0x0), cpu_to_be32(0x0),
323 cpu_to_be32(0x0), cpu_to_be32(nodeid)
325 char mem_name[32];
326 uint64_t mem_reg_property[2];
327 int off;
329 mem_reg_property[0] = cpu_to_be64(start);
330 mem_reg_property[1] = cpu_to_be64(size);
332 sprintf(mem_name, "memory@%" HWADDR_PRIx, start);
333 off = fdt_add_subnode(fdt, 0, mem_name);
334 _FDT(off);
335 _FDT((fdt_setprop_string(fdt, off, "device_type", "memory")));
336 _FDT((fdt_setprop(fdt, off, "reg", mem_reg_property,
337 sizeof(mem_reg_property))));
338 _FDT((fdt_setprop(fdt, off, "ibm,associativity", associativity,
339 sizeof(associativity))));
340 return off;
343 static int spapr_populate_memory(SpaprMachineState *spapr, void *fdt)
345 MachineState *machine = MACHINE(spapr);
346 hwaddr mem_start, node_size;
347 int i, nb_nodes = machine->numa_state->num_nodes;
348 NodeInfo *nodes = machine->numa_state->nodes;
349 NodeInfo ramnode;
351 /* No NUMA nodes, assume there is just one node with whole RAM */
352 if (!nb_nodes) {
353 nb_nodes = 1;
354 ramnode.node_mem = machine->ram_size;
355 nodes = &ramnode;
358 for (i = 0, mem_start = 0; i < nb_nodes; ++i) {
359 if (!nodes[i].node_mem) {
360 continue;
362 if (mem_start >= machine->ram_size) {
363 node_size = 0;
364 } else {
365 node_size = nodes[i].node_mem;
366 if (node_size > machine->ram_size - mem_start) {
367 node_size = machine->ram_size - mem_start;
370 if (!mem_start) {
371 /* spapr_machine_init() checks for rma_size <= node0_size
372 * already */
373 spapr_populate_memory_node(fdt, i, 0, spapr->rma_size);
374 mem_start += spapr->rma_size;
375 node_size -= spapr->rma_size;
377 for ( ; node_size; ) {
378 hwaddr sizetmp = pow2floor(node_size);
380 /* mem_start != 0 here */
381 if (ctzl(mem_start) < ctzl(sizetmp)) {
382 sizetmp = 1ULL << ctzl(mem_start);
385 spapr_populate_memory_node(fdt, i, mem_start, sizetmp);
386 node_size -= sizetmp;
387 mem_start += sizetmp;
391 return 0;
394 static void spapr_populate_cpu_dt(CPUState *cs, void *fdt, int offset,
395 SpaprMachineState *spapr)
397 MachineState *ms = MACHINE(spapr);
398 PowerPCCPU *cpu = POWERPC_CPU(cs);
399 CPUPPCState *env = &cpu->env;
400 PowerPCCPUClass *pcc = POWERPC_CPU_GET_CLASS(cs);
401 int index = spapr_get_vcpu_id(cpu);
402 uint32_t segs[] = {cpu_to_be32(28), cpu_to_be32(40),
403 0xffffffff, 0xffffffff};
404 uint32_t tbfreq = kvm_enabled() ? kvmppc_get_tbfreq()
405 : SPAPR_TIMEBASE_FREQ;
406 uint32_t cpufreq = kvm_enabled() ? kvmppc_get_clockfreq() : 1000000000;
407 uint32_t page_sizes_prop[64];
408 size_t page_sizes_prop_size;
409 unsigned int smp_threads = ms->smp.threads;
410 uint32_t vcpus_per_socket = smp_threads * ms->smp.cores;
411 uint32_t pft_size_prop[] = {0, cpu_to_be32(spapr->htab_shift)};
412 int compat_smt = MIN(smp_threads, ppc_compat_max_vthreads(cpu));
413 SpaprDrc *drc;
414 int drc_index;
415 uint32_t radix_AP_encodings[PPC_PAGE_SIZES_MAX_SZ];
416 int i;
418 drc = spapr_drc_by_id(TYPE_SPAPR_DRC_CPU, index);
419 if (drc) {
420 drc_index = spapr_drc_index(drc);
421 _FDT((fdt_setprop_cell(fdt, offset, "ibm,my-drc-index", drc_index)));
424 _FDT((fdt_setprop_cell(fdt, offset, "reg", index)));
425 _FDT((fdt_setprop_string(fdt, offset, "device_type", "cpu")));
427 _FDT((fdt_setprop_cell(fdt, offset, "cpu-version", env->spr[SPR_PVR])));
428 _FDT((fdt_setprop_cell(fdt, offset, "d-cache-block-size",
429 env->dcache_line_size)));
430 _FDT((fdt_setprop_cell(fdt, offset, "d-cache-line-size",
431 env->dcache_line_size)));
432 _FDT((fdt_setprop_cell(fdt, offset, "i-cache-block-size",
433 env->icache_line_size)));
434 _FDT((fdt_setprop_cell(fdt, offset, "i-cache-line-size",
435 env->icache_line_size)));
437 if (pcc->l1_dcache_size) {
438 _FDT((fdt_setprop_cell(fdt, offset, "d-cache-size",
439 pcc->l1_dcache_size)));
440 } else {
441 warn_report("Unknown L1 dcache size for cpu");
443 if (pcc->l1_icache_size) {
444 _FDT((fdt_setprop_cell(fdt, offset, "i-cache-size",
445 pcc->l1_icache_size)));
446 } else {
447 warn_report("Unknown L1 icache size for cpu");
450 _FDT((fdt_setprop_cell(fdt, offset, "timebase-frequency", tbfreq)));
451 _FDT((fdt_setprop_cell(fdt, offset, "clock-frequency", cpufreq)));
452 _FDT((fdt_setprop_cell(fdt, offset, "slb-size", cpu->hash64_opts->slb_size)));
453 _FDT((fdt_setprop_cell(fdt, offset, "ibm,slb-size", cpu->hash64_opts->slb_size)));
454 _FDT((fdt_setprop_string(fdt, offset, "status", "okay")));
455 _FDT((fdt_setprop(fdt, offset, "64-bit", NULL, 0)));
457 if (env->spr_cb[SPR_PURR].oea_read) {
458 _FDT((fdt_setprop_cell(fdt, offset, "ibm,purr", 1)));
460 if (env->spr_cb[SPR_SPURR].oea_read) {
461 _FDT((fdt_setprop_cell(fdt, offset, "ibm,spurr", 1)));
464 if (ppc_hash64_has(cpu, PPC_HASH64_1TSEG)) {
465 _FDT((fdt_setprop(fdt, offset, "ibm,processor-segment-sizes",
466 segs, sizeof(segs))));
469 /* Advertise VSX (vector extensions) if available
470 * 1 == VMX / Altivec available
471 * 2 == VSX available
473 * Only CPUs for which we create core types in spapr_cpu_core.c
474 * are possible, and all of those have VMX */
475 if (spapr_get_cap(spapr, SPAPR_CAP_VSX) != 0) {
476 _FDT((fdt_setprop_cell(fdt, offset, "ibm,vmx", 2)));
477 } else {
478 _FDT((fdt_setprop_cell(fdt, offset, "ibm,vmx", 1)));
481 /* Advertise DFP (Decimal Floating Point) if available
482 * 0 / no property == no DFP
483 * 1 == DFP available */
484 if (spapr_get_cap(spapr, SPAPR_CAP_DFP) != 0) {
485 _FDT((fdt_setprop_cell(fdt, offset, "ibm,dfp", 1)));
488 page_sizes_prop_size = ppc_create_page_sizes_prop(cpu, page_sizes_prop,
489 sizeof(page_sizes_prop));
490 if (page_sizes_prop_size) {
491 _FDT((fdt_setprop(fdt, offset, "ibm,segment-page-sizes",
492 page_sizes_prop, page_sizes_prop_size)));
495 spapr_populate_pa_features(spapr, cpu, fdt, offset);
497 _FDT((fdt_setprop_cell(fdt, offset, "ibm,chip-id",
498 cs->cpu_index / vcpus_per_socket)));
500 _FDT((fdt_setprop(fdt, offset, "ibm,pft-size",
501 pft_size_prop, sizeof(pft_size_prop))));
503 if (ms->numa_state->num_nodes > 1) {
504 _FDT(spapr_fixup_cpu_numa_dt(fdt, offset, cpu));
507 _FDT(spapr_fixup_cpu_smt_dt(fdt, offset, cpu, compat_smt));
509 if (pcc->radix_page_info) {
510 for (i = 0; i < pcc->radix_page_info->count; i++) {
511 radix_AP_encodings[i] =
512 cpu_to_be32(pcc->radix_page_info->entries[i]);
514 _FDT((fdt_setprop(fdt, offset, "ibm,processor-radix-AP-encodings",
515 radix_AP_encodings,
516 pcc->radix_page_info->count *
517 sizeof(radix_AP_encodings[0]))));
521 * We set this property to let the guest know that it can use the large
522 * decrementer and its width in bits.
524 if (spapr_get_cap(spapr, SPAPR_CAP_LARGE_DECREMENTER) != SPAPR_CAP_OFF)
525 _FDT((fdt_setprop_u32(fdt, offset, "ibm,dec-bits",
526 pcc->lrg_decr_bits)));
529 static void spapr_populate_cpus_dt_node(void *fdt, SpaprMachineState *spapr)
531 CPUState **rev;
532 CPUState *cs;
533 int n_cpus;
534 int cpus_offset;
535 char *nodename;
536 int i;
538 cpus_offset = fdt_add_subnode(fdt, 0, "cpus");
539 _FDT(cpus_offset);
540 _FDT((fdt_setprop_cell(fdt, cpus_offset, "#address-cells", 0x1)));
541 _FDT((fdt_setprop_cell(fdt, cpus_offset, "#size-cells", 0x0)));
544 * We walk the CPUs in reverse order to ensure that CPU DT nodes
545 * created by fdt_add_subnode() end up in the right order in FDT
546 * for the guest kernel the enumerate the CPUs correctly.
548 * The CPU list cannot be traversed in reverse order, so we need
549 * to do extra work.
551 n_cpus = 0;
552 rev = NULL;
553 CPU_FOREACH(cs) {
554 rev = g_renew(CPUState *, rev, n_cpus + 1);
555 rev[n_cpus++] = cs;
558 for (i = n_cpus - 1; i >= 0; i--) {
559 CPUState *cs = rev[i];
560 PowerPCCPU *cpu = POWERPC_CPU(cs);
561 int index = spapr_get_vcpu_id(cpu);
562 DeviceClass *dc = DEVICE_GET_CLASS(cs);
563 int offset;
565 if (!spapr_is_thread0_in_vcore(spapr, cpu)) {
566 continue;
569 nodename = g_strdup_printf("%s@%x", dc->fw_name, index);
570 offset = fdt_add_subnode(fdt, cpus_offset, nodename);
571 g_free(nodename);
572 _FDT(offset);
573 spapr_populate_cpu_dt(cs, fdt, offset, spapr);
576 g_free(rev);
579 static int spapr_rng_populate_dt(void *fdt)
581 int node;
582 int ret;
584 node = qemu_fdt_add_subnode(fdt, "/ibm,platform-facilities");
585 if (node <= 0) {
586 return -1;
588 ret = fdt_setprop_string(fdt, node, "device_type",
589 "ibm,platform-facilities");
590 ret |= fdt_setprop_cell(fdt, node, "#address-cells", 0x1);
591 ret |= fdt_setprop_cell(fdt, node, "#size-cells", 0x0);
593 node = fdt_add_subnode(fdt, node, "ibm,random-v1");
594 if (node <= 0) {
595 return -1;
597 ret |= fdt_setprop_string(fdt, node, "compatible", "ibm,random");
599 return ret ? -1 : 0;
602 static uint32_t spapr_pc_dimm_node(MemoryDeviceInfoList *list, ram_addr_t addr)
604 MemoryDeviceInfoList *info;
606 for (info = list; info; info = info->next) {
607 MemoryDeviceInfo *value = info->value;
609 if (value && value->type == MEMORY_DEVICE_INFO_KIND_DIMM) {
610 PCDIMMDeviceInfo *pcdimm_info = value->u.dimm.data;
612 if (addr >= pcdimm_info->addr &&
613 addr < (pcdimm_info->addr + pcdimm_info->size)) {
614 return pcdimm_info->node;
619 return -1;
622 struct sPAPRDrconfCellV2 {
623 uint32_t seq_lmbs;
624 uint64_t base_addr;
625 uint32_t drc_index;
626 uint32_t aa_index;
627 uint32_t flags;
628 } QEMU_PACKED;
630 typedef struct DrconfCellQueue {
631 struct sPAPRDrconfCellV2 cell;
632 QSIMPLEQ_ENTRY(DrconfCellQueue) entry;
633 } DrconfCellQueue;
635 static DrconfCellQueue *
636 spapr_get_drconf_cell(uint32_t seq_lmbs, uint64_t base_addr,
637 uint32_t drc_index, uint32_t aa_index,
638 uint32_t flags)
640 DrconfCellQueue *elem;
642 elem = g_malloc0(sizeof(*elem));
643 elem->cell.seq_lmbs = cpu_to_be32(seq_lmbs);
644 elem->cell.base_addr = cpu_to_be64(base_addr);
645 elem->cell.drc_index = cpu_to_be32(drc_index);
646 elem->cell.aa_index = cpu_to_be32(aa_index);
647 elem->cell.flags = cpu_to_be32(flags);
649 return elem;
652 /* ibm,dynamic-memory-v2 */
653 static int spapr_populate_drmem_v2(SpaprMachineState *spapr, void *fdt,
654 int offset, MemoryDeviceInfoList *dimms)
656 MachineState *machine = MACHINE(spapr);
657 uint8_t *int_buf, *cur_index;
658 int ret;
659 uint64_t lmb_size = SPAPR_MEMORY_BLOCK_SIZE;
660 uint64_t addr, cur_addr, size;
661 uint32_t nr_boot_lmbs = (machine->device_memory->base / lmb_size);
662 uint64_t mem_end = machine->device_memory->base +
663 memory_region_size(&machine->device_memory->mr);
664 uint32_t node, buf_len, nr_entries = 0;
665 SpaprDrc *drc;
666 DrconfCellQueue *elem, *next;
667 MemoryDeviceInfoList *info;
668 QSIMPLEQ_HEAD(, DrconfCellQueue) drconf_queue
669 = QSIMPLEQ_HEAD_INITIALIZER(drconf_queue);
671 /* Entry to cover RAM and the gap area */
672 elem = spapr_get_drconf_cell(nr_boot_lmbs, 0, 0, -1,
673 SPAPR_LMB_FLAGS_RESERVED |
674 SPAPR_LMB_FLAGS_DRC_INVALID);
675 QSIMPLEQ_INSERT_TAIL(&drconf_queue, elem, entry);
676 nr_entries++;
678 cur_addr = machine->device_memory->base;
679 for (info = dimms; info; info = info->next) {
680 PCDIMMDeviceInfo *di = info->value->u.dimm.data;
682 addr = di->addr;
683 size = di->size;
684 node = di->node;
686 /* Entry for hot-pluggable area */
687 if (cur_addr < addr) {
688 drc = spapr_drc_by_id(TYPE_SPAPR_DRC_LMB, cur_addr / lmb_size);
689 g_assert(drc);
690 elem = spapr_get_drconf_cell((addr - cur_addr) / lmb_size,
691 cur_addr, spapr_drc_index(drc), -1, 0);
692 QSIMPLEQ_INSERT_TAIL(&drconf_queue, elem, entry);
693 nr_entries++;
696 /* Entry for DIMM */
697 drc = spapr_drc_by_id(TYPE_SPAPR_DRC_LMB, addr / lmb_size);
698 g_assert(drc);
699 elem = spapr_get_drconf_cell(size / lmb_size, addr,
700 spapr_drc_index(drc), node,
701 SPAPR_LMB_FLAGS_ASSIGNED);
702 QSIMPLEQ_INSERT_TAIL(&drconf_queue, elem, entry);
703 nr_entries++;
704 cur_addr = addr + size;
707 /* Entry for remaining hotpluggable area */
708 if (cur_addr < mem_end) {
709 drc = spapr_drc_by_id(TYPE_SPAPR_DRC_LMB, cur_addr / lmb_size);
710 g_assert(drc);
711 elem = spapr_get_drconf_cell((mem_end - cur_addr) / lmb_size,
712 cur_addr, spapr_drc_index(drc), -1, 0);
713 QSIMPLEQ_INSERT_TAIL(&drconf_queue, elem, entry);
714 nr_entries++;
717 buf_len = nr_entries * sizeof(struct sPAPRDrconfCellV2) + sizeof(uint32_t);
718 int_buf = cur_index = g_malloc0(buf_len);
719 *(uint32_t *)int_buf = cpu_to_be32(nr_entries);
720 cur_index += sizeof(nr_entries);
722 QSIMPLEQ_FOREACH_SAFE(elem, &drconf_queue, entry, next) {
723 memcpy(cur_index, &elem->cell, sizeof(elem->cell));
724 cur_index += sizeof(elem->cell);
725 QSIMPLEQ_REMOVE(&drconf_queue, elem, DrconfCellQueue, entry);
726 g_free(elem);
729 ret = fdt_setprop(fdt, offset, "ibm,dynamic-memory-v2", int_buf, buf_len);
730 g_free(int_buf);
731 if (ret < 0) {
732 return -1;
734 return 0;
737 /* ibm,dynamic-memory */
738 static int spapr_populate_drmem_v1(SpaprMachineState *spapr, void *fdt,
739 int offset, MemoryDeviceInfoList *dimms)
741 MachineState *machine = MACHINE(spapr);
742 int i, ret;
743 uint64_t lmb_size = SPAPR_MEMORY_BLOCK_SIZE;
744 uint32_t device_lmb_start = machine->device_memory->base / lmb_size;
745 uint32_t nr_lmbs = (machine->device_memory->base +
746 memory_region_size(&machine->device_memory->mr)) /
747 lmb_size;
748 uint32_t *int_buf, *cur_index, buf_len;
751 * Allocate enough buffer size to fit in ibm,dynamic-memory
753 buf_len = (nr_lmbs * SPAPR_DR_LMB_LIST_ENTRY_SIZE + 1) * sizeof(uint32_t);
754 cur_index = int_buf = g_malloc0(buf_len);
755 int_buf[0] = cpu_to_be32(nr_lmbs);
756 cur_index++;
757 for (i = 0; i < nr_lmbs; i++) {
758 uint64_t addr = i * lmb_size;
759 uint32_t *dynamic_memory = cur_index;
761 if (i >= device_lmb_start) {
762 SpaprDrc *drc;
764 drc = spapr_drc_by_id(TYPE_SPAPR_DRC_LMB, i);
765 g_assert(drc);
767 dynamic_memory[0] = cpu_to_be32(addr >> 32);
768 dynamic_memory[1] = cpu_to_be32(addr & 0xffffffff);
769 dynamic_memory[2] = cpu_to_be32(spapr_drc_index(drc));
770 dynamic_memory[3] = cpu_to_be32(0); /* reserved */
771 dynamic_memory[4] = cpu_to_be32(spapr_pc_dimm_node(dimms, addr));
772 if (memory_region_present(get_system_memory(), addr)) {
773 dynamic_memory[5] = cpu_to_be32(SPAPR_LMB_FLAGS_ASSIGNED);
774 } else {
775 dynamic_memory[5] = cpu_to_be32(0);
777 } else {
779 * LMB information for RMA, boot time RAM and gap b/n RAM and
780 * device memory region -- all these are marked as reserved
781 * and as having no valid DRC.
783 dynamic_memory[0] = cpu_to_be32(addr >> 32);
784 dynamic_memory[1] = cpu_to_be32(addr & 0xffffffff);
785 dynamic_memory[2] = cpu_to_be32(0);
786 dynamic_memory[3] = cpu_to_be32(0); /* reserved */
787 dynamic_memory[4] = cpu_to_be32(-1);
788 dynamic_memory[5] = cpu_to_be32(SPAPR_LMB_FLAGS_RESERVED |
789 SPAPR_LMB_FLAGS_DRC_INVALID);
792 cur_index += SPAPR_DR_LMB_LIST_ENTRY_SIZE;
794 ret = fdt_setprop(fdt, offset, "ibm,dynamic-memory", int_buf, buf_len);
795 g_free(int_buf);
796 if (ret < 0) {
797 return -1;
799 return 0;
803 * Adds ibm,dynamic-reconfiguration-memory node.
804 * Refer to docs/specs/ppc-spapr-hotplug.txt for the documentation
805 * of this device tree node.
807 static int spapr_populate_drconf_memory(SpaprMachineState *spapr, void *fdt)
809 MachineState *machine = MACHINE(spapr);
810 int nb_numa_nodes = machine->numa_state->num_nodes;
811 int ret, i, offset;
812 uint64_t lmb_size = SPAPR_MEMORY_BLOCK_SIZE;
813 uint32_t prop_lmb_size[] = {0, cpu_to_be32(lmb_size)};
814 uint32_t *int_buf, *cur_index, buf_len;
815 int nr_nodes = nb_numa_nodes ? nb_numa_nodes : 1;
816 MemoryDeviceInfoList *dimms = NULL;
819 * Don't create the node if there is no device memory
821 if (machine->ram_size == machine->maxram_size) {
822 return 0;
825 offset = fdt_add_subnode(fdt, 0, "ibm,dynamic-reconfiguration-memory");
827 ret = fdt_setprop(fdt, offset, "ibm,lmb-size", prop_lmb_size,
828 sizeof(prop_lmb_size));
829 if (ret < 0) {
830 return ret;
833 ret = fdt_setprop_cell(fdt, offset, "ibm,memory-flags-mask", 0xff);
834 if (ret < 0) {
835 return ret;
838 ret = fdt_setprop_cell(fdt, offset, "ibm,memory-preservation-time", 0x0);
839 if (ret < 0) {
840 return ret;
843 /* ibm,dynamic-memory or ibm,dynamic-memory-v2 */
844 dimms = qmp_memory_device_list();
845 if (spapr_ovec_test(spapr->ov5_cas, OV5_DRMEM_V2)) {
846 ret = spapr_populate_drmem_v2(spapr, fdt, offset, dimms);
847 } else {
848 ret = spapr_populate_drmem_v1(spapr, fdt, offset, dimms);
850 qapi_free_MemoryDeviceInfoList(dimms);
852 if (ret < 0) {
853 return ret;
856 /* ibm,associativity-lookup-arrays */
857 buf_len = (nr_nodes * 4 + 2) * sizeof(uint32_t);
858 cur_index = int_buf = g_malloc0(buf_len);
859 int_buf[0] = cpu_to_be32(nr_nodes);
860 int_buf[1] = cpu_to_be32(4); /* Number of entries per associativity list */
861 cur_index += 2;
862 for (i = 0; i < nr_nodes; i++) {
863 uint32_t associativity[] = {
864 cpu_to_be32(0x0),
865 cpu_to_be32(0x0),
866 cpu_to_be32(0x0),
867 cpu_to_be32(i)
869 memcpy(cur_index, associativity, sizeof(associativity));
870 cur_index += 4;
872 ret = fdt_setprop(fdt, offset, "ibm,associativity-lookup-arrays", int_buf,
873 (cur_index - int_buf) * sizeof(uint32_t));
874 g_free(int_buf);
876 return ret;
879 static int spapr_dt_cas_updates(SpaprMachineState *spapr, void *fdt,
880 SpaprOptionVector *ov5_updates)
882 SpaprMachineClass *smc = SPAPR_MACHINE_GET_CLASS(spapr);
883 int ret = 0, offset;
885 /* Generate ibm,dynamic-reconfiguration-memory node if required */
886 if (spapr_ovec_test(ov5_updates, OV5_DRCONF_MEMORY)) {
887 g_assert(smc->dr_lmb_enabled);
888 ret = spapr_populate_drconf_memory(spapr, fdt);
889 if (ret) {
890 goto out;
894 offset = fdt_path_offset(fdt, "/chosen");
895 if (offset < 0) {
896 offset = fdt_add_subnode(fdt, 0, "chosen");
897 if (offset < 0) {
898 return offset;
901 ret = spapr_ovec_populate_dt(fdt, offset, spapr->ov5_cas,
902 "ibm,architecture-vec-5");
904 out:
905 return ret;
908 static bool spapr_hotplugged_dev_before_cas(void)
910 Object *drc_container, *obj;
911 ObjectProperty *prop;
912 ObjectPropertyIterator iter;
914 drc_container = container_get(object_get_root(), "/dr-connector");
915 object_property_iter_init(&iter, drc_container);
916 while ((prop = object_property_iter_next(&iter))) {
917 if (!strstart(prop->type, "link<", NULL)) {
918 continue;
920 obj = object_property_get_link(drc_container, prop->name, NULL);
921 if (spapr_drc_needed(obj)) {
922 return true;
925 return false;
928 static void *spapr_build_fdt(SpaprMachineState *spapr);
930 int spapr_h_cas_compose_response(SpaprMachineState *spapr,
931 target_ulong addr, target_ulong size,
932 SpaprOptionVector *ov5_updates)
934 void *fdt;
935 SpaprDeviceTreeUpdateHeader hdr = { .version_id = 1 };
937 if (spapr_hotplugged_dev_before_cas()) {
938 return 1;
941 if (size < sizeof(hdr) || size > FW_MAX_SIZE) {
942 error_report("SLOF provided an unexpected CAS buffer size "
943 TARGET_FMT_lu " (min: %zu, max: %u)",
944 size, sizeof(hdr), FW_MAX_SIZE);
945 exit(EXIT_FAILURE);
948 size -= sizeof(hdr);
950 fdt = spapr_build_fdt(spapr);
951 _FDT((fdt_pack(fdt)));
953 if (fdt_totalsize(fdt) + sizeof(hdr) > size) {
954 g_free(fdt);
955 trace_spapr_cas_failed(size);
956 return -1;
959 cpu_physical_memory_write(addr, &hdr, sizeof(hdr));
960 cpu_physical_memory_write(addr + sizeof(hdr), fdt, fdt_totalsize(fdt));
961 trace_spapr_cas_continue(fdt_totalsize(fdt) + sizeof(hdr));
963 g_free(spapr->fdt_blob);
964 spapr->fdt_size = fdt_totalsize(fdt);
965 spapr->fdt_initial_size = spapr->fdt_size;
966 spapr->fdt_blob = fdt;
968 return 0;
971 static void spapr_dt_rtas(SpaprMachineState *spapr, void *fdt)
973 MachineState *ms = MACHINE(spapr);
974 int rtas;
975 GString *hypertas = g_string_sized_new(256);
976 GString *qemu_hypertas = g_string_sized_new(256);
977 uint32_t refpoints[] = { cpu_to_be32(0x4), cpu_to_be32(0x4) };
978 uint64_t max_device_addr = MACHINE(spapr)->device_memory->base +
979 memory_region_size(&MACHINE(spapr)->device_memory->mr);
980 uint32_t lrdr_capacity[] = {
981 cpu_to_be32(max_device_addr >> 32),
982 cpu_to_be32(max_device_addr & 0xffffffff),
983 0, cpu_to_be32(SPAPR_MEMORY_BLOCK_SIZE),
984 cpu_to_be32(ms->smp.max_cpus / ms->smp.threads),
986 uint32_t maxdomain = cpu_to_be32(spapr->gpu_numa_id > 1 ? 1 : 0);
987 uint32_t maxdomains[] = {
988 cpu_to_be32(4),
989 maxdomain,
990 maxdomain,
991 maxdomain,
992 cpu_to_be32(spapr->gpu_numa_id),
995 _FDT(rtas = fdt_add_subnode(fdt, 0, "rtas"));
997 /* hypertas */
998 add_str(hypertas, "hcall-pft");
999 add_str(hypertas, "hcall-term");
1000 add_str(hypertas, "hcall-dabr");
1001 add_str(hypertas, "hcall-interrupt");
1002 add_str(hypertas, "hcall-tce");
1003 add_str(hypertas, "hcall-vio");
1004 add_str(hypertas, "hcall-splpar");
1005 add_str(hypertas, "hcall-join");
1006 add_str(hypertas, "hcall-bulk");
1007 add_str(hypertas, "hcall-set-mode");
1008 add_str(hypertas, "hcall-sprg0");
1009 add_str(hypertas, "hcall-copy");
1010 add_str(hypertas, "hcall-debug");
1011 add_str(hypertas, "hcall-vphn");
1012 add_str(qemu_hypertas, "hcall-memop1");
1014 if (!kvm_enabled() || kvmppc_spapr_use_multitce()) {
1015 add_str(hypertas, "hcall-multi-tce");
1018 if (spapr->resize_hpt != SPAPR_RESIZE_HPT_DISABLED) {
1019 add_str(hypertas, "hcall-hpt-resize");
1022 _FDT(fdt_setprop(fdt, rtas, "ibm,hypertas-functions",
1023 hypertas->str, hypertas->len));
1024 g_string_free(hypertas, TRUE);
1025 _FDT(fdt_setprop(fdt, rtas, "qemu,hypertas-functions",
1026 qemu_hypertas->str, qemu_hypertas->len));
1027 g_string_free(qemu_hypertas, TRUE);
1029 _FDT(fdt_setprop(fdt, rtas, "ibm,associativity-reference-points",
1030 refpoints, sizeof(refpoints)));
1032 _FDT(fdt_setprop(fdt, rtas, "ibm,max-associativity-domains",
1033 maxdomains, sizeof(maxdomains)));
1035 _FDT(fdt_setprop_cell(fdt, rtas, "rtas-error-log-max",
1036 RTAS_ERROR_LOG_MAX));
1037 _FDT(fdt_setprop_cell(fdt, rtas, "rtas-event-scan-rate",
1038 RTAS_EVENT_SCAN_RATE));
1040 g_assert(msi_nonbroken);
1041 _FDT(fdt_setprop(fdt, rtas, "ibm,change-msix-capable", NULL, 0));
1044 * According to PAPR, rtas ibm,os-term does not guarantee a return
1045 * back to the guest cpu.
1047 * While an additional ibm,extended-os-term property indicates
1048 * that rtas call return will always occur. Set this property.
1050 _FDT(fdt_setprop(fdt, rtas, "ibm,extended-os-term", NULL, 0));
1052 _FDT(fdt_setprop(fdt, rtas, "ibm,lrdr-capacity",
1053 lrdr_capacity, sizeof(lrdr_capacity)));
1055 spapr_dt_rtas_tokens(fdt, rtas);
1059 * Prepare ibm,arch-vec-5-platform-support, which indicates the MMU
1060 * and the XIVE features that the guest may request and thus the valid
1061 * values for bytes 23..26 of option vector 5:
1063 static void spapr_dt_ov5_platform_support(SpaprMachineState *spapr, void *fdt,
1064 int chosen)
1066 PowerPCCPU *first_ppc_cpu = POWERPC_CPU(first_cpu);
1068 char val[2 * 4] = {
1069 23, spapr->irq->ov5, /* Xive mode. */
1070 24, 0x00, /* Hash/Radix, filled in below. */
1071 25, 0x00, /* Hash options: Segment Tables == no, GTSE == no. */
1072 26, 0x40, /* Radix options: GTSE == yes. */
1075 if (!ppc_check_compat(first_ppc_cpu, CPU_POWERPC_LOGICAL_3_00, 0,
1076 first_ppc_cpu->compat_pvr)) {
1078 * If we're in a pre POWER9 compat mode then the guest should
1079 * do hash and use the legacy interrupt mode
1081 val[1] = 0x00; /* XICS */
1082 val[3] = 0x00; /* Hash */
1083 } else if (kvm_enabled()) {
1084 if (kvmppc_has_cap_mmu_radix() && kvmppc_has_cap_mmu_hash_v3()) {
1085 val[3] = 0x80; /* OV5_MMU_BOTH */
1086 } else if (kvmppc_has_cap_mmu_radix()) {
1087 val[3] = 0x40; /* OV5_MMU_RADIX_300 */
1088 } else {
1089 val[3] = 0x00; /* Hash */
1091 } else {
1092 /* V3 MMU supports both hash and radix in tcg (with dynamic switching) */
1093 val[3] = 0xC0;
1095 _FDT(fdt_setprop(fdt, chosen, "ibm,arch-vec-5-platform-support",
1096 val, sizeof(val)));
1099 static void spapr_dt_chosen(SpaprMachineState *spapr, void *fdt)
1101 MachineState *machine = MACHINE(spapr);
1102 SpaprMachineClass *smc = SPAPR_MACHINE_GET_CLASS(machine);
1103 int chosen;
1104 const char *boot_device = machine->boot_order;
1105 char *stdout_path = spapr_vio_stdout_path(spapr->vio_bus);
1106 size_t cb = 0;
1107 char *bootlist = get_boot_devices_list(&cb);
1109 _FDT(chosen = fdt_add_subnode(fdt, 0, "chosen"));
1111 if (machine->kernel_cmdline && machine->kernel_cmdline[0]) {
1112 _FDT(fdt_setprop_string(fdt, chosen, "bootargs",
1113 machine->kernel_cmdline));
1115 if (spapr->initrd_size) {
1116 _FDT(fdt_setprop_cell(fdt, chosen, "linux,initrd-start",
1117 spapr->initrd_base));
1118 _FDT(fdt_setprop_cell(fdt, chosen, "linux,initrd-end",
1119 spapr->initrd_base + spapr->initrd_size));
1122 if (spapr->kernel_size) {
1123 uint64_t kprop[2] = { cpu_to_be64(KERNEL_LOAD_ADDR),
1124 cpu_to_be64(spapr->kernel_size) };
1126 _FDT(fdt_setprop(fdt, chosen, "qemu,boot-kernel",
1127 &kprop, sizeof(kprop)));
1128 if (spapr->kernel_le) {
1129 _FDT(fdt_setprop(fdt, chosen, "qemu,boot-kernel-le", NULL, 0));
1132 if (boot_menu) {
1133 _FDT((fdt_setprop_cell(fdt, chosen, "qemu,boot-menu", boot_menu)));
1135 _FDT(fdt_setprop_cell(fdt, chosen, "qemu,graphic-width", graphic_width));
1136 _FDT(fdt_setprop_cell(fdt, chosen, "qemu,graphic-height", graphic_height));
1137 _FDT(fdt_setprop_cell(fdt, chosen, "qemu,graphic-depth", graphic_depth));
1139 if (cb && bootlist) {
1140 int i;
1142 for (i = 0; i < cb; i++) {
1143 if (bootlist[i] == '\n') {
1144 bootlist[i] = ' ';
1147 _FDT(fdt_setprop_string(fdt, chosen, "qemu,boot-list", bootlist));
1150 if (boot_device && strlen(boot_device)) {
1151 _FDT(fdt_setprop_string(fdt, chosen, "qemu,boot-device", boot_device));
1154 if (!spapr->has_graphics && stdout_path) {
1156 * "linux,stdout-path" and "stdout" properties are deprecated by linux
1157 * kernel. New platforms should only use the "stdout-path" property. Set
1158 * the new property and continue using older property to remain
1159 * compatible with the existing firmware.
1161 _FDT(fdt_setprop_string(fdt, chosen, "linux,stdout-path", stdout_path));
1162 _FDT(fdt_setprop_string(fdt, chosen, "stdout-path", stdout_path));
1165 /* We can deal with BAR reallocation just fine, advertise it to the guest */
1166 if (smc->linux_pci_probe) {
1167 _FDT(fdt_setprop_cell(fdt, chosen, "linux,pci-probe-only", 0));
1170 spapr_dt_ov5_platform_support(spapr, fdt, chosen);
1172 g_free(stdout_path);
1173 g_free(bootlist);
1176 static void spapr_dt_hypervisor(SpaprMachineState *spapr, void *fdt)
1178 /* The /hypervisor node isn't in PAPR - this is a hack to allow PR
1179 * KVM to work under pHyp with some guest co-operation */
1180 int hypervisor;
1181 uint8_t hypercall[16];
1183 _FDT(hypervisor = fdt_add_subnode(fdt, 0, "hypervisor"));
1184 /* indicate KVM hypercall interface */
1185 _FDT(fdt_setprop_string(fdt, hypervisor, "compatible", "linux,kvm"));
1186 if (kvmppc_has_cap_fixup_hcalls()) {
1188 * Older KVM versions with older guest kernels were broken
1189 * with the magic page, don't allow the guest to map it.
1191 if (!kvmppc_get_hypercall(first_cpu->env_ptr, hypercall,
1192 sizeof(hypercall))) {
1193 _FDT(fdt_setprop(fdt, hypervisor, "hcall-instructions",
1194 hypercall, sizeof(hypercall)));
1199 static void *spapr_build_fdt(SpaprMachineState *spapr)
1201 MachineState *machine = MACHINE(spapr);
1202 MachineClass *mc = MACHINE_GET_CLASS(machine);
1203 SpaprMachineClass *smc = SPAPR_MACHINE_GET_CLASS(machine);
1204 int ret;
1205 void *fdt;
1206 SpaprPhbState *phb;
1207 char *buf;
1209 fdt = g_malloc0(FDT_MAX_SIZE);
1210 _FDT((fdt_create_empty_tree(fdt, FDT_MAX_SIZE)));
1212 /* Root node */
1213 _FDT(fdt_setprop_string(fdt, 0, "device_type", "chrp"));
1214 _FDT(fdt_setprop_string(fdt, 0, "model", "IBM pSeries (emulated by qemu)"));
1215 _FDT(fdt_setprop_string(fdt, 0, "compatible", "qemu,pseries"));
1217 /* Guest UUID & Name*/
1218 buf = qemu_uuid_unparse_strdup(&qemu_uuid);
1219 _FDT(fdt_setprop_string(fdt, 0, "vm,uuid", buf));
1220 if (qemu_uuid_set) {
1221 _FDT(fdt_setprop_string(fdt, 0, "system-id", buf));
1223 g_free(buf);
1225 if (qemu_get_vm_name()) {
1226 _FDT(fdt_setprop_string(fdt, 0, "ibm,partition-name",
1227 qemu_get_vm_name()));
1230 /* Host Model & Serial Number */
1231 if (spapr->host_model) {
1232 _FDT(fdt_setprop_string(fdt, 0, "host-model", spapr->host_model));
1233 } else if (smc->broken_host_serial_model && kvmppc_get_host_model(&buf)) {
1234 _FDT(fdt_setprop_string(fdt, 0, "host-model", buf));
1235 g_free(buf);
1238 if (spapr->host_serial) {
1239 _FDT(fdt_setprop_string(fdt, 0, "host-serial", spapr->host_serial));
1240 } else if (smc->broken_host_serial_model && kvmppc_get_host_serial(&buf)) {
1241 _FDT(fdt_setprop_string(fdt, 0, "host-serial", buf));
1242 g_free(buf);
1245 _FDT(fdt_setprop_cell(fdt, 0, "#address-cells", 2));
1246 _FDT(fdt_setprop_cell(fdt, 0, "#size-cells", 2));
1248 /* /interrupt controller */
1249 spapr->irq->dt_populate(spapr, spapr_max_server_number(spapr), fdt,
1250 PHANDLE_INTC);
1252 ret = spapr_populate_memory(spapr, fdt);
1253 if (ret < 0) {
1254 error_report("couldn't setup memory nodes in fdt");
1255 exit(1);
1258 /* /vdevice */
1259 spapr_dt_vdevice(spapr->vio_bus, fdt);
1261 if (object_resolve_path_type("", TYPE_SPAPR_RNG, NULL)) {
1262 ret = spapr_rng_populate_dt(fdt);
1263 if (ret < 0) {
1264 error_report("could not set up rng device in the fdt");
1265 exit(1);
1269 QLIST_FOREACH(phb, &spapr->phbs, list) {
1270 ret = spapr_dt_phb(phb, PHANDLE_INTC, fdt, spapr->irq->nr_msis, NULL);
1271 if (ret < 0) {
1272 error_report("couldn't setup PCI devices in fdt");
1273 exit(1);
1277 /* cpus */
1278 spapr_populate_cpus_dt_node(fdt, spapr);
1280 if (smc->dr_lmb_enabled) {
1281 _FDT(spapr_dt_drc(fdt, 0, NULL, SPAPR_DR_CONNECTOR_TYPE_LMB));
1284 if (mc->has_hotpluggable_cpus) {
1285 int offset = fdt_path_offset(fdt, "/cpus");
1286 ret = spapr_dt_drc(fdt, offset, NULL, SPAPR_DR_CONNECTOR_TYPE_CPU);
1287 if (ret < 0) {
1288 error_report("Couldn't set up CPU DR device tree properties");
1289 exit(1);
1293 /* /event-sources */
1294 spapr_dt_events(spapr, fdt);
1296 /* /rtas */
1297 spapr_dt_rtas(spapr, fdt);
1299 /* /chosen */
1300 spapr_dt_chosen(spapr, fdt);
1302 /* /hypervisor */
1303 if (kvm_enabled()) {
1304 spapr_dt_hypervisor(spapr, fdt);
1307 /* Build memory reserve map */
1308 if (spapr->kernel_size) {
1309 _FDT((fdt_add_mem_rsv(fdt, KERNEL_LOAD_ADDR, spapr->kernel_size)));
1311 if (spapr->initrd_size) {
1312 _FDT((fdt_add_mem_rsv(fdt, spapr->initrd_base, spapr->initrd_size)));
1315 /* ibm,client-architecture-support updates */
1316 ret = spapr_dt_cas_updates(spapr, fdt, spapr->ov5_cas);
1317 if (ret < 0) {
1318 error_report("couldn't setup CAS properties fdt");
1319 exit(1);
1322 if (smc->dr_phb_enabled) {
1323 ret = spapr_dt_drc(fdt, 0, NULL, SPAPR_DR_CONNECTOR_TYPE_PHB);
1324 if (ret < 0) {
1325 error_report("Couldn't set up PHB DR device tree properties");
1326 exit(1);
1330 return fdt;
1333 static uint64_t translate_kernel_address(void *opaque, uint64_t addr)
1335 return (addr & 0x0fffffff) + KERNEL_LOAD_ADDR;
1338 static void emulate_spapr_hypercall(PPCVirtualHypervisor *vhyp,
1339 PowerPCCPU *cpu)
1341 CPUPPCState *env = &cpu->env;
1343 /* The TCG path should also be holding the BQL at this point */
1344 g_assert(qemu_mutex_iothread_locked());
1346 if (msr_pr) {
1347 hcall_dprintf("Hypercall made with MSR[PR]=1\n");
1348 env->gpr[3] = H_PRIVILEGE;
1349 } else {
1350 env->gpr[3] = spapr_hypercall(cpu, env->gpr[3], &env->gpr[4]);
1354 struct LPCRSyncState {
1355 target_ulong value;
1356 target_ulong mask;
1359 static void do_lpcr_sync(CPUState *cs, run_on_cpu_data arg)
1361 struct LPCRSyncState *s = arg.host_ptr;
1362 PowerPCCPU *cpu = POWERPC_CPU(cs);
1363 CPUPPCState *env = &cpu->env;
1364 target_ulong lpcr;
1366 cpu_synchronize_state(cs);
1367 lpcr = env->spr[SPR_LPCR];
1368 lpcr &= ~s->mask;
1369 lpcr |= s->value;
1370 ppc_store_lpcr(cpu, lpcr);
1373 void spapr_set_all_lpcrs(target_ulong value, target_ulong mask)
1375 CPUState *cs;
1376 struct LPCRSyncState s = {
1377 .value = value,
1378 .mask = mask
1380 CPU_FOREACH(cs) {
1381 run_on_cpu(cs, do_lpcr_sync, RUN_ON_CPU_HOST_PTR(&s));
1385 static void spapr_get_pate(PPCVirtualHypervisor *vhyp, ppc_v3_pate_t *entry)
1387 SpaprMachineState *spapr = SPAPR_MACHINE(vhyp);
1389 /* Copy PATE1:GR into PATE0:HR */
1390 entry->dw0 = spapr->patb_entry & PATE0_HR;
1391 entry->dw1 = spapr->patb_entry;
1394 #define HPTE(_table, _i) (void *)(((uint64_t *)(_table)) + ((_i) * 2))
1395 #define HPTE_VALID(_hpte) (tswap64(*((uint64_t *)(_hpte))) & HPTE64_V_VALID)
1396 #define HPTE_DIRTY(_hpte) (tswap64(*((uint64_t *)(_hpte))) & HPTE64_V_HPTE_DIRTY)
1397 #define CLEAN_HPTE(_hpte) ((*(uint64_t *)(_hpte)) &= tswap64(~HPTE64_V_HPTE_DIRTY))
1398 #define DIRTY_HPTE(_hpte) ((*(uint64_t *)(_hpte)) |= tswap64(HPTE64_V_HPTE_DIRTY))
1401 * Get the fd to access the kernel htab, re-opening it if necessary
1403 static int get_htab_fd(SpaprMachineState *spapr)
1405 Error *local_err = NULL;
1407 if (spapr->htab_fd >= 0) {
1408 return spapr->htab_fd;
1411 spapr->htab_fd = kvmppc_get_htab_fd(false, 0, &local_err);
1412 if (spapr->htab_fd < 0) {
1413 error_report_err(local_err);
1416 return spapr->htab_fd;
1419 void close_htab_fd(SpaprMachineState *spapr)
1421 if (spapr->htab_fd >= 0) {
1422 close(spapr->htab_fd);
1424 spapr->htab_fd = -1;
1427 static hwaddr spapr_hpt_mask(PPCVirtualHypervisor *vhyp)
1429 SpaprMachineState *spapr = SPAPR_MACHINE(vhyp);
1431 return HTAB_SIZE(spapr) / HASH_PTEG_SIZE_64 - 1;
1434 static target_ulong spapr_encode_hpt_for_kvm_pr(PPCVirtualHypervisor *vhyp)
1436 SpaprMachineState *spapr = SPAPR_MACHINE(vhyp);
1438 assert(kvm_enabled());
1440 if (!spapr->htab) {
1441 return 0;
1444 return (target_ulong)(uintptr_t)spapr->htab | (spapr->htab_shift - 18);
1447 static const ppc_hash_pte64_t *spapr_map_hptes(PPCVirtualHypervisor *vhyp,
1448 hwaddr ptex, int n)
1450 SpaprMachineState *spapr = SPAPR_MACHINE(vhyp);
1451 hwaddr pte_offset = ptex * HASH_PTE_SIZE_64;
1453 if (!spapr->htab) {
1455 * HTAB is controlled by KVM. Fetch into temporary buffer
1457 ppc_hash_pte64_t *hptes = g_malloc(n * HASH_PTE_SIZE_64);
1458 kvmppc_read_hptes(hptes, ptex, n);
1459 return hptes;
1463 * HTAB is controlled by QEMU. Just point to the internally
1464 * accessible PTEG.
1466 return (const ppc_hash_pte64_t *)(spapr->htab + pte_offset);
1469 static void spapr_unmap_hptes(PPCVirtualHypervisor *vhyp,
1470 const ppc_hash_pte64_t *hptes,
1471 hwaddr ptex, int n)
1473 SpaprMachineState *spapr = SPAPR_MACHINE(vhyp);
1475 if (!spapr->htab) {
1476 g_free((void *)hptes);
1479 /* Nothing to do for qemu managed HPT */
1482 void spapr_store_hpte(PowerPCCPU *cpu, hwaddr ptex,
1483 uint64_t pte0, uint64_t pte1)
1485 SpaprMachineState *spapr = SPAPR_MACHINE(cpu->vhyp);
1486 hwaddr offset = ptex * HASH_PTE_SIZE_64;
1488 if (!spapr->htab) {
1489 kvmppc_write_hpte(ptex, pte0, pte1);
1490 } else {
1491 if (pte0 & HPTE64_V_VALID) {
1492 stq_p(spapr->htab + offset + HASH_PTE_SIZE_64 / 2, pte1);
1494 * When setting valid, we write PTE1 first. This ensures
1495 * proper synchronization with the reading code in
1496 * ppc_hash64_pteg_search()
1498 smp_wmb();
1499 stq_p(spapr->htab + offset, pte0);
1500 } else {
1501 stq_p(spapr->htab + offset, pte0);
1503 * When clearing it we set PTE0 first. This ensures proper
1504 * synchronization with the reading code in
1505 * ppc_hash64_pteg_search()
1507 smp_wmb();
1508 stq_p(spapr->htab + offset + HASH_PTE_SIZE_64 / 2, pte1);
1513 static void spapr_hpte_set_c(PPCVirtualHypervisor *vhyp, hwaddr ptex,
1514 uint64_t pte1)
1516 hwaddr offset = ptex * HASH_PTE_SIZE_64 + 15;
1517 SpaprMachineState *spapr = SPAPR_MACHINE(vhyp);
1519 if (!spapr->htab) {
1520 /* There should always be a hash table when this is called */
1521 error_report("spapr_hpte_set_c called with no hash table !");
1522 return;
1525 /* The HW performs a non-atomic byte update */
1526 stb_p(spapr->htab + offset, (pte1 & 0xff) | 0x80);
1529 static void spapr_hpte_set_r(PPCVirtualHypervisor *vhyp, hwaddr ptex,
1530 uint64_t pte1)
1532 hwaddr offset = ptex * HASH_PTE_SIZE_64 + 14;
1533 SpaprMachineState *spapr = SPAPR_MACHINE(vhyp);
1535 if (!spapr->htab) {
1536 /* There should always be a hash table when this is called */
1537 error_report("spapr_hpte_set_r called with no hash table !");
1538 return;
1541 /* The HW performs a non-atomic byte update */
1542 stb_p(spapr->htab + offset, ((pte1 >> 8) & 0xff) | 0x01);
1545 int spapr_hpt_shift_for_ramsize(uint64_t ramsize)
1547 int shift;
1549 /* We aim for a hash table of size 1/128 the size of RAM (rounded
1550 * up). The PAPR recommendation is actually 1/64 of RAM size, but
1551 * that's much more than is needed for Linux guests */
1552 shift = ctz64(pow2ceil(ramsize)) - 7;
1553 shift = MAX(shift, 18); /* Minimum architected size */
1554 shift = MIN(shift, 46); /* Maximum architected size */
1555 return shift;
1558 void spapr_free_hpt(SpaprMachineState *spapr)
1560 g_free(spapr->htab);
1561 spapr->htab = NULL;
1562 spapr->htab_shift = 0;
1563 close_htab_fd(spapr);
1566 void spapr_reallocate_hpt(SpaprMachineState *spapr, int shift,
1567 Error **errp)
1569 long rc;
1571 /* Clean up any HPT info from a previous boot */
1572 spapr_free_hpt(spapr);
1574 rc = kvmppc_reset_htab(shift);
1575 if (rc < 0) {
1576 /* kernel-side HPT needed, but couldn't allocate one */
1577 error_setg_errno(errp, errno,
1578 "Failed to allocate KVM HPT of order %d (try smaller maxmem?)",
1579 shift);
1580 /* This is almost certainly fatal, but if the caller really
1581 * wants to carry on with shift == 0, it's welcome to try */
1582 } else if (rc > 0) {
1583 /* kernel-side HPT allocated */
1584 if (rc != shift) {
1585 error_setg(errp,
1586 "Requested order %d HPT, but kernel allocated order %ld (try smaller maxmem?)",
1587 shift, rc);
1590 spapr->htab_shift = shift;
1591 spapr->htab = NULL;
1592 } else {
1593 /* kernel-side HPT not needed, allocate in userspace instead */
1594 size_t size = 1ULL << shift;
1595 int i;
1597 spapr->htab = qemu_memalign(size, size);
1598 if (!spapr->htab) {
1599 error_setg_errno(errp, errno,
1600 "Could not allocate HPT of order %d", shift);
1601 return;
1604 memset(spapr->htab, 0, size);
1605 spapr->htab_shift = shift;
1607 for (i = 0; i < size / HASH_PTE_SIZE_64; i++) {
1608 DIRTY_HPTE(HPTE(spapr->htab, i));
1611 /* We're setting up a hash table, so that means we're not radix */
1612 spapr->patb_entry = 0;
1613 spapr_set_all_lpcrs(0, LPCR_HR | LPCR_UPRT);
1616 void spapr_setup_hpt_and_vrma(SpaprMachineState *spapr)
1618 int hpt_shift;
1620 if ((spapr->resize_hpt == SPAPR_RESIZE_HPT_DISABLED)
1621 || (spapr->cas_reboot
1622 && !spapr_ovec_test(spapr->ov5_cas, OV5_HPT_RESIZE))) {
1623 hpt_shift = spapr_hpt_shift_for_ramsize(MACHINE(spapr)->maxram_size);
1624 } else {
1625 uint64_t current_ram_size;
1627 current_ram_size = MACHINE(spapr)->ram_size + get_plugged_memory_size();
1628 hpt_shift = spapr_hpt_shift_for_ramsize(current_ram_size);
1630 spapr_reallocate_hpt(spapr, hpt_shift, &error_fatal);
1632 if (spapr->vrma_adjust) {
1633 spapr->rma_size = kvmppc_rma_size(spapr_node0_size(MACHINE(spapr)),
1634 spapr->htab_shift);
1638 static int spapr_reset_drcs(Object *child, void *opaque)
1640 SpaprDrc *drc =
1641 (SpaprDrc *) object_dynamic_cast(child,
1642 TYPE_SPAPR_DR_CONNECTOR);
1644 if (drc) {
1645 spapr_drc_reset(drc);
1648 return 0;
1651 static void spapr_machine_reset(MachineState *machine)
1653 SpaprMachineState *spapr = SPAPR_MACHINE(machine);
1654 PowerPCCPU *first_ppc_cpu;
1655 hwaddr fdt_addr;
1656 void *fdt;
1657 int rc;
1659 spapr_caps_apply(spapr);
1661 first_ppc_cpu = POWERPC_CPU(first_cpu);
1662 if (kvm_enabled() && kvmppc_has_cap_mmu_radix() &&
1663 ppc_type_check_compat(machine->cpu_type, CPU_POWERPC_LOGICAL_3_00, 0,
1664 spapr->max_compat_pvr)) {
1666 * If using KVM with radix mode available, VCPUs can be started
1667 * without a HPT because KVM will start them in radix mode.
1668 * Set the GR bit in PATE so that we know there is no HPT.
1670 spapr->patb_entry = PATE1_GR;
1671 spapr_set_all_lpcrs(LPCR_HR | LPCR_UPRT, LPCR_HR | LPCR_UPRT);
1672 } else {
1673 spapr_setup_hpt_and_vrma(spapr);
1676 qemu_devices_reset();
1679 * If this reset wasn't generated by CAS, we should reset our
1680 * negotiated options and start from scratch
1682 if (!spapr->cas_reboot) {
1683 spapr_ovec_cleanup(spapr->ov5_cas);
1684 spapr->ov5_cas = spapr_ovec_new();
1686 ppc_set_compat_all(spapr->max_compat_pvr, &error_fatal);
1690 * This is fixing some of the default configuration of the XIVE
1691 * devices. To be called after the reset of the machine devices.
1693 spapr_irq_reset(spapr, &error_fatal);
1696 * There is no CAS under qtest. Simulate one to please the code that
1697 * depends on spapr->ov5_cas. This is especially needed to test device
1698 * unplug, so we do that before resetting the DRCs.
1700 if (qtest_enabled()) {
1701 spapr_ovec_cleanup(spapr->ov5_cas);
1702 spapr->ov5_cas = spapr_ovec_clone(spapr->ov5);
1705 /* DRC reset may cause a device to be unplugged. This will cause troubles
1706 * if this device is used by another device (eg, a running vhost backend
1707 * will crash QEMU if the DIMM holding the vring goes away). To avoid such
1708 * situations, we reset DRCs after all devices have been reset.
1710 object_child_foreach_recursive(object_get_root(), spapr_reset_drcs, NULL);
1712 spapr_clear_pending_events(spapr);
1715 * We place the device tree and RTAS just below either the top of the RMA,
1716 * or just below 2GB, whichever is lower, so that it can be
1717 * processed with 32-bit real mode code if necessary
1719 fdt_addr = MIN(spapr->rma_size, RTAS_MAX_ADDR) - FDT_MAX_SIZE;
1721 fdt = spapr_build_fdt(spapr);
1723 rc = fdt_pack(fdt);
1725 /* Should only fail if we've built a corrupted tree */
1726 assert(rc == 0);
1728 if (fdt_totalsize(fdt) > FDT_MAX_SIZE) {
1729 error_report("FDT too big ! 0x%x bytes (max is 0x%x)",
1730 fdt_totalsize(fdt), FDT_MAX_SIZE);
1731 exit(1);
1734 /* Load the fdt */
1735 qemu_fdt_dumpdtb(fdt, fdt_totalsize(fdt));
1736 cpu_physical_memory_write(fdt_addr, fdt, fdt_totalsize(fdt));
1737 g_free(spapr->fdt_blob);
1738 spapr->fdt_size = fdt_totalsize(fdt);
1739 spapr->fdt_initial_size = spapr->fdt_size;
1740 spapr->fdt_blob = fdt;
1742 /* Set up the entry state */
1743 spapr_cpu_set_entry_state(first_ppc_cpu, SPAPR_ENTRY_POINT, fdt_addr);
1744 first_ppc_cpu->env.gpr[5] = 0;
1746 spapr->cas_reboot = false;
1749 static void spapr_create_nvram(SpaprMachineState *spapr)
1751 DeviceState *dev = qdev_create(&spapr->vio_bus->bus, "spapr-nvram");
1752 DriveInfo *dinfo = drive_get(IF_PFLASH, 0, 0);
1754 if (dinfo) {
1755 qdev_prop_set_drive(dev, "drive", blk_by_legacy_dinfo(dinfo),
1756 &error_fatal);
1759 qdev_init_nofail(dev);
1761 spapr->nvram = (struct SpaprNvram *)dev;
1764 static void spapr_rtc_create(SpaprMachineState *spapr)
1766 object_initialize_child(OBJECT(spapr), "rtc",
1767 &spapr->rtc, sizeof(spapr->rtc), TYPE_SPAPR_RTC,
1768 &error_fatal, NULL);
1769 object_property_set_bool(OBJECT(&spapr->rtc), true, "realized",
1770 &error_fatal);
1771 object_property_add_alias(OBJECT(spapr), "rtc-time", OBJECT(&spapr->rtc),
1772 "date", &error_fatal);
1775 /* Returns whether we want to use VGA or not */
1776 static bool spapr_vga_init(PCIBus *pci_bus, Error **errp)
1778 switch (vga_interface_type) {
1779 case VGA_NONE:
1780 return false;
1781 case VGA_DEVICE:
1782 return true;
1783 case VGA_STD:
1784 case VGA_VIRTIO:
1785 case VGA_CIRRUS:
1786 return pci_vga_init(pci_bus) != NULL;
1787 default:
1788 error_setg(errp,
1789 "Unsupported VGA mode, only -vga std or -vga virtio is supported");
1790 return false;
1794 static int spapr_pre_load(void *opaque)
1796 int rc;
1798 rc = spapr_caps_pre_load(opaque);
1799 if (rc) {
1800 return rc;
1803 return 0;
1806 static int spapr_post_load(void *opaque, int version_id)
1808 SpaprMachineState *spapr = (SpaprMachineState *)opaque;
1809 int err = 0;
1811 err = spapr_caps_post_migration(spapr);
1812 if (err) {
1813 return err;
1817 * In earlier versions, there was no separate qdev for the PAPR
1818 * RTC, so the RTC offset was stored directly in sPAPREnvironment.
1819 * So when migrating from those versions, poke the incoming offset
1820 * value into the RTC device
1822 if (version_id < 3) {
1823 err = spapr_rtc_import_offset(&spapr->rtc, spapr->rtc_offset);
1824 if (err) {
1825 return err;
1829 if (kvm_enabled() && spapr->patb_entry) {
1830 PowerPCCPU *cpu = POWERPC_CPU(first_cpu);
1831 bool radix = !!(spapr->patb_entry & PATE1_GR);
1832 bool gtse = !!(cpu->env.spr[SPR_LPCR] & LPCR_GTSE);
1835 * Update LPCR:HR and UPRT as they may not be set properly in
1836 * the stream
1838 spapr_set_all_lpcrs(radix ? (LPCR_HR | LPCR_UPRT) : 0,
1839 LPCR_HR | LPCR_UPRT);
1841 err = kvmppc_configure_v3_mmu(cpu, radix, gtse, spapr->patb_entry);
1842 if (err) {
1843 error_report("Process table config unsupported by the host");
1844 return -EINVAL;
1848 err = spapr_irq_post_load(spapr, version_id);
1849 if (err) {
1850 return err;
1853 return err;
1856 static int spapr_pre_save(void *opaque)
1858 int rc;
1860 rc = spapr_caps_pre_save(opaque);
1861 if (rc) {
1862 return rc;
1865 return 0;
1868 static bool version_before_3(void *opaque, int version_id)
1870 return version_id < 3;
1873 static bool spapr_pending_events_needed(void *opaque)
1875 SpaprMachineState *spapr = (SpaprMachineState *)opaque;
1876 return !QTAILQ_EMPTY(&spapr->pending_events);
1879 static const VMStateDescription vmstate_spapr_event_entry = {
1880 .name = "spapr_event_log_entry",
1881 .version_id = 1,
1882 .minimum_version_id = 1,
1883 .fields = (VMStateField[]) {
1884 VMSTATE_UINT32(summary, SpaprEventLogEntry),
1885 VMSTATE_UINT32(extended_length, SpaprEventLogEntry),
1886 VMSTATE_VBUFFER_ALLOC_UINT32(extended_log, SpaprEventLogEntry, 0,
1887 NULL, extended_length),
1888 VMSTATE_END_OF_LIST()
1892 static const VMStateDescription vmstate_spapr_pending_events = {
1893 .name = "spapr_pending_events",
1894 .version_id = 1,
1895 .minimum_version_id = 1,
1896 .needed = spapr_pending_events_needed,
1897 .fields = (VMStateField[]) {
1898 VMSTATE_QTAILQ_V(pending_events, SpaprMachineState, 1,
1899 vmstate_spapr_event_entry, SpaprEventLogEntry, next),
1900 VMSTATE_END_OF_LIST()
1904 static bool spapr_ov5_cas_needed(void *opaque)
1906 SpaprMachineState *spapr = opaque;
1907 SpaprOptionVector *ov5_mask = spapr_ovec_new();
1908 SpaprOptionVector *ov5_legacy = spapr_ovec_new();
1909 SpaprOptionVector *ov5_removed = spapr_ovec_new();
1910 bool cas_needed;
1912 /* Prior to the introduction of SpaprOptionVector, we had two option
1913 * vectors we dealt with: OV5_FORM1_AFFINITY, and OV5_DRCONF_MEMORY.
1914 * Both of these options encode machine topology into the device-tree
1915 * in such a way that the now-booted OS should still be able to interact
1916 * appropriately with QEMU regardless of what options were actually
1917 * negotiatied on the source side.
1919 * As such, we can avoid migrating the CAS-negotiated options if these
1920 * are the only options available on the current machine/platform.
1921 * Since these are the only options available for pseries-2.7 and
1922 * earlier, this allows us to maintain old->new/new->old migration
1923 * compatibility.
1925 * For QEMU 2.8+, there are additional CAS-negotiatable options available
1926 * via default pseries-2.8 machines and explicit command-line parameters.
1927 * Some of these options, like OV5_HP_EVT, *do* require QEMU to be aware
1928 * of the actual CAS-negotiated values to continue working properly. For
1929 * example, availability of memory unplug depends on knowing whether
1930 * OV5_HP_EVT was negotiated via CAS.
1932 * Thus, for any cases where the set of available CAS-negotiatable
1933 * options extends beyond OV5_FORM1_AFFINITY and OV5_DRCONF_MEMORY, we
1934 * include the CAS-negotiated options in the migration stream, unless
1935 * if they affect boot time behaviour only.
1937 spapr_ovec_set(ov5_mask, OV5_FORM1_AFFINITY);
1938 spapr_ovec_set(ov5_mask, OV5_DRCONF_MEMORY);
1939 spapr_ovec_set(ov5_mask, OV5_DRMEM_V2);
1941 /* spapr_ovec_diff returns true if bits were removed. we avoid using
1942 * the mask itself since in the future it's possible "legacy" bits may be
1943 * removed via machine options, which could generate a false positive
1944 * that breaks migration.
1946 spapr_ovec_intersect(ov5_legacy, spapr->ov5, ov5_mask);
1947 cas_needed = spapr_ovec_diff(ov5_removed, spapr->ov5, ov5_legacy);
1949 spapr_ovec_cleanup(ov5_mask);
1950 spapr_ovec_cleanup(ov5_legacy);
1951 spapr_ovec_cleanup(ov5_removed);
1953 return cas_needed;
1956 static const VMStateDescription vmstate_spapr_ov5_cas = {
1957 .name = "spapr_option_vector_ov5_cas",
1958 .version_id = 1,
1959 .minimum_version_id = 1,
1960 .needed = spapr_ov5_cas_needed,
1961 .fields = (VMStateField[]) {
1962 VMSTATE_STRUCT_POINTER_V(ov5_cas, SpaprMachineState, 1,
1963 vmstate_spapr_ovec, SpaprOptionVector),
1964 VMSTATE_END_OF_LIST()
1968 static bool spapr_patb_entry_needed(void *opaque)
1970 SpaprMachineState *spapr = opaque;
1972 return !!spapr->patb_entry;
1975 static const VMStateDescription vmstate_spapr_patb_entry = {
1976 .name = "spapr_patb_entry",
1977 .version_id = 1,
1978 .minimum_version_id = 1,
1979 .needed = spapr_patb_entry_needed,
1980 .fields = (VMStateField[]) {
1981 VMSTATE_UINT64(patb_entry, SpaprMachineState),
1982 VMSTATE_END_OF_LIST()
1986 static bool spapr_irq_map_needed(void *opaque)
1988 SpaprMachineState *spapr = opaque;
1990 return spapr->irq_map && !bitmap_empty(spapr->irq_map, spapr->irq_map_nr);
1993 static const VMStateDescription vmstate_spapr_irq_map = {
1994 .name = "spapr_irq_map",
1995 .version_id = 1,
1996 .minimum_version_id = 1,
1997 .needed = spapr_irq_map_needed,
1998 .fields = (VMStateField[]) {
1999 VMSTATE_BITMAP(irq_map, SpaprMachineState, 0, irq_map_nr),
2000 VMSTATE_END_OF_LIST()
2004 static bool spapr_dtb_needed(void *opaque)
2006 SpaprMachineClass *smc = SPAPR_MACHINE_GET_CLASS(opaque);
2008 return smc->update_dt_enabled;
2011 static int spapr_dtb_pre_load(void *opaque)
2013 SpaprMachineState *spapr = (SpaprMachineState *)opaque;
2015 g_free(spapr->fdt_blob);
2016 spapr->fdt_blob = NULL;
2017 spapr->fdt_size = 0;
2019 return 0;
2022 static const VMStateDescription vmstate_spapr_dtb = {
2023 .name = "spapr_dtb",
2024 .version_id = 1,
2025 .minimum_version_id = 1,
2026 .needed = spapr_dtb_needed,
2027 .pre_load = spapr_dtb_pre_load,
2028 .fields = (VMStateField[]) {
2029 VMSTATE_UINT32(fdt_initial_size, SpaprMachineState),
2030 VMSTATE_UINT32(fdt_size, SpaprMachineState),
2031 VMSTATE_VBUFFER_ALLOC_UINT32(fdt_blob, SpaprMachineState, 0, NULL,
2032 fdt_size),
2033 VMSTATE_END_OF_LIST()
2037 static const VMStateDescription vmstate_spapr = {
2038 .name = "spapr",
2039 .version_id = 3,
2040 .minimum_version_id = 1,
2041 .pre_load = spapr_pre_load,
2042 .post_load = spapr_post_load,
2043 .pre_save = spapr_pre_save,
2044 .fields = (VMStateField[]) {
2045 /* used to be @next_irq */
2046 VMSTATE_UNUSED_BUFFER(version_before_3, 0, 4),
2048 /* RTC offset */
2049 VMSTATE_UINT64_TEST(rtc_offset, SpaprMachineState, version_before_3),
2051 VMSTATE_PPC_TIMEBASE_V(tb, SpaprMachineState, 2),
2052 VMSTATE_END_OF_LIST()
2054 .subsections = (const VMStateDescription*[]) {
2055 &vmstate_spapr_ov5_cas,
2056 &vmstate_spapr_patb_entry,
2057 &vmstate_spapr_pending_events,
2058 &vmstate_spapr_cap_htm,
2059 &vmstate_spapr_cap_vsx,
2060 &vmstate_spapr_cap_dfp,
2061 &vmstate_spapr_cap_cfpc,
2062 &vmstate_spapr_cap_sbbc,
2063 &vmstate_spapr_cap_ibs,
2064 &vmstate_spapr_cap_hpt_maxpagesize,
2065 &vmstate_spapr_irq_map,
2066 &vmstate_spapr_cap_nested_kvm_hv,
2067 &vmstate_spapr_dtb,
2068 &vmstate_spapr_cap_large_decr,
2069 &vmstate_spapr_cap_ccf_assist,
2070 NULL
2074 static int htab_save_setup(QEMUFile *f, void *opaque)
2076 SpaprMachineState *spapr = opaque;
2078 /* "Iteration" header */
2079 if (!spapr->htab_shift) {
2080 qemu_put_be32(f, -1);
2081 } else {
2082 qemu_put_be32(f, spapr->htab_shift);
2085 if (spapr->htab) {
2086 spapr->htab_save_index = 0;
2087 spapr->htab_first_pass = true;
2088 } else {
2089 if (spapr->htab_shift) {
2090 assert(kvm_enabled());
2095 return 0;
2098 static void htab_save_chunk(QEMUFile *f, SpaprMachineState *spapr,
2099 int chunkstart, int n_valid, int n_invalid)
2101 qemu_put_be32(f, chunkstart);
2102 qemu_put_be16(f, n_valid);
2103 qemu_put_be16(f, n_invalid);
2104 qemu_put_buffer(f, HPTE(spapr->htab, chunkstart),
2105 HASH_PTE_SIZE_64 * n_valid);
2108 static void htab_save_end_marker(QEMUFile *f)
2110 qemu_put_be32(f, 0);
2111 qemu_put_be16(f, 0);
2112 qemu_put_be16(f, 0);
2115 static void htab_save_first_pass(QEMUFile *f, SpaprMachineState *spapr,
2116 int64_t max_ns)
2118 bool has_timeout = max_ns != -1;
2119 int htabslots = HTAB_SIZE(spapr) / HASH_PTE_SIZE_64;
2120 int index = spapr->htab_save_index;
2121 int64_t starttime = qemu_clock_get_ns(QEMU_CLOCK_REALTIME);
2123 assert(spapr->htab_first_pass);
2125 do {
2126 int chunkstart;
2128 /* Consume invalid HPTEs */
2129 while ((index < htabslots)
2130 && !HPTE_VALID(HPTE(spapr->htab, index))) {
2131 CLEAN_HPTE(HPTE(spapr->htab, index));
2132 index++;
2135 /* Consume valid HPTEs */
2136 chunkstart = index;
2137 while ((index < htabslots) && (index - chunkstart < USHRT_MAX)
2138 && HPTE_VALID(HPTE(spapr->htab, index))) {
2139 CLEAN_HPTE(HPTE(spapr->htab, index));
2140 index++;
2143 if (index > chunkstart) {
2144 int n_valid = index - chunkstart;
2146 htab_save_chunk(f, spapr, chunkstart, n_valid, 0);
2148 if (has_timeout &&
2149 (qemu_clock_get_ns(QEMU_CLOCK_REALTIME) - starttime) > max_ns) {
2150 break;
2153 } while ((index < htabslots) && !qemu_file_rate_limit(f));
2155 if (index >= htabslots) {
2156 assert(index == htabslots);
2157 index = 0;
2158 spapr->htab_first_pass = false;
2160 spapr->htab_save_index = index;
2163 static int htab_save_later_pass(QEMUFile *f, SpaprMachineState *spapr,
2164 int64_t max_ns)
2166 bool final = max_ns < 0;
2167 int htabslots = HTAB_SIZE(spapr) / HASH_PTE_SIZE_64;
2168 int examined = 0, sent = 0;
2169 int index = spapr->htab_save_index;
2170 int64_t starttime = qemu_clock_get_ns(QEMU_CLOCK_REALTIME);
2172 assert(!spapr->htab_first_pass);
2174 do {
2175 int chunkstart, invalidstart;
2177 /* Consume non-dirty HPTEs */
2178 while ((index < htabslots)
2179 && !HPTE_DIRTY(HPTE(spapr->htab, index))) {
2180 index++;
2181 examined++;
2184 chunkstart = index;
2185 /* Consume valid dirty HPTEs */
2186 while ((index < htabslots) && (index - chunkstart < USHRT_MAX)
2187 && HPTE_DIRTY(HPTE(spapr->htab, index))
2188 && HPTE_VALID(HPTE(spapr->htab, index))) {
2189 CLEAN_HPTE(HPTE(spapr->htab, index));
2190 index++;
2191 examined++;
2194 invalidstart = index;
2195 /* Consume invalid dirty HPTEs */
2196 while ((index < htabslots) && (index - invalidstart < USHRT_MAX)
2197 && HPTE_DIRTY(HPTE(spapr->htab, index))
2198 && !HPTE_VALID(HPTE(spapr->htab, index))) {
2199 CLEAN_HPTE(HPTE(spapr->htab, index));
2200 index++;
2201 examined++;
2204 if (index > chunkstart) {
2205 int n_valid = invalidstart - chunkstart;
2206 int n_invalid = index - invalidstart;
2208 htab_save_chunk(f, spapr, chunkstart, n_valid, n_invalid);
2209 sent += index - chunkstart;
2211 if (!final && (qemu_clock_get_ns(QEMU_CLOCK_REALTIME) - starttime) > max_ns) {
2212 break;
2216 if (examined >= htabslots) {
2217 break;
2220 if (index >= htabslots) {
2221 assert(index == htabslots);
2222 index = 0;
2224 } while ((examined < htabslots) && (!qemu_file_rate_limit(f) || final));
2226 if (index >= htabslots) {
2227 assert(index == htabslots);
2228 index = 0;
2231 spapr->htab_save_index = index;
2233 return (examined >= htabslots) && (sent == 0) ? 1 : 0;
2236 #define MAX_ITERATION_NS 5000000 /* 5 ms */
2237 #define MAX_KVM_BUF_SIZE 2048
2239 static int htab_save_iterate(QEMUFile *f, void *opaque)
2241 SpaprMachineState *spapr = opaque;
2242 int fd;
2243 int rc = 0;
2245 /* Iteration header */
2246 if (!spapr->htab_shift) {
2247 qemu_put_be32(f, -1);
2248 return 1;
2249 } else {
2250 qemu_put_be32(f, 0);
2253 if (!spapr->htab) {
2254 assert(kvm_enabled());
2256 fd = get_htab_fd(spapr);
2257 if (fd < 0) {
2258 return fd;
2261 rc = kvmppc_save_htab(f, fd, MAX_KVM_BUF_SIZE, MAX_ITERATION_NS);
2262 if (rc < 0) {
2263 return rc;
2265 } else if (spapr->htab_first_pass) {
2266 htab_save_first_pass(f, spapr, MAX_ITERATION_NS);
2267 } else {
2268 rc = htab_save_later_pass(f, spapr, MAX_ITERATION_NS);
2271 htab_save_end_marker(f);
2273 return rc;
2276 static int htab_save_complete(QEMUFile *f, void *opaque)
2278 SpaprMachineState *spapr = opaque;
2279 int fd;
2281 /* Iteration header */
2282 if (!spapr->htab_shift) {
2283 qemu_put_be32(f, -1);
2284 return 0;
2285 } else {
2286 qemu_put_be32(f, 0);
2289 if (!spapr->htab) {
2290 int rc;
2292 assert(kvm_enabled());
2294 fd = get_htab_fd(spapr);
2295 if (fd < 0) {
2296 return fd;
2299 rc = kvmppc_save_htab(f, fd, MAX_KVM_BUF_SIZE, -1);
2300 if (rc < 0) {
2301 return rc;
2303 } else {
2304 if (spapr->htab_first_pass) {
2305 htab_save_first_pass(f, spapr, -1);
2307 htab_save_later_pass(f, spapr, -1);
2310 /* End marker */
2311 htab_save_end_marker(f);
2313 return 0;
2316 static int htab_load(QEMUFile *f, void *opaque, int version_id)
2318 SpaprMachineState *spapr = opaque;
2319 uint32_t section_hdr;
2320 int fd = -1;
2321 Error *local_err = NULL;
2323 if (version_id < 1 || version_id > 1) {
2324 error_report("htab_load() bad version");
2325 return -EINVAL;
2328 section_hdr = qemu_get_be32(f);
2330 if (section_hdr == -1) {
2331 spapr_free_hpt(spapr);
2332 return 0;
2335 if (section_hdr) {
2336 /* First section gives the htab size */
2337 spapr_reallocate_hpt(spapr, section_hdr, &local_err);
2338 if (local_err) {
2339 error_report_err(local_err);
2340 return -EINVAL;
2342 return 0;
2345 if (!spapr->htab) {
2346 assert(kvm_enabled());
2348 fd = kvmppc_get_htab_fd(true, 0, &local_err);
2349 if (fd < 0) {
2350 error_report_err(local_err);
2351 return fd;
2355 while (true) {
2356 uint32_t index;
2357 uint16_t n_valid, n_invalid;
2359 index = qemu_get_be32(f);
2360 n_valid = qemu_get_be16(f);
2361 n_invalid = qemu_get_be16(f);
2363 if ((index == 0) && (n_valid == 0) && (n_invalid == 0)) {
2364 /* End of Stream */
2365 break;
2368 if ((index + n_valid + n_invalid) >
2369 (HTAB_SIZE(spapr) / HASH_PTE_SIZE_64)) {
2370 /* Bad index in stream */
2371 error_report(
2372 "htab_load() bad index %d (%hd+%hd entries) in htab stream (htab_shift=%d)",
2373 index, n_valid, n_invalid, spapr->htab_shift);
2374 return -EINVAL;
2377 if (spapr->htab) {
2378 if (n_valid) {
2379 qemu_get_buffer(f, HPTE(spapr->htab, index),
2380 HASH_PTE_SIZE_64 * n_valid);
2382 if (n_invalid) {
2383 memset(HPTE(spapr->htab, index + n_valid), 0,
2384 HASH_PTE_SIZE_64 * n_invalid);
2386 } else {
2387 int rc;
2389 assert(fd >= 0);
2391 rc = kvmppc_load_htab_chunk(f, fd, index, n_valid, n_invalid);
2392 if (rc < 0) {
2393 return rc;
2398 if (!spapr->htab) {
2399 assert(fd >= 0);
2400 close(fd);
2403 return 0;
2406 static void htab_save_cleanup(void *opaque)
2408 SpaprMachineState *spapr = opaque;
2410 close_htab_fd(spapr);
2413 static SaveVMHandlers savevm_htab_handlers = {
2414 .save_setup = htab_save_setup,
2415 .save_live_iterate = htab_save_iterate,
2416 .save_live_complete_precopy = htab_save_complete,
2417 .save_cleanup = htab_save_cleanup,
2418 .load_state = htab_load,
2421 static void spapr_boot_set(void *opaque, const char *boot_device,
2422 Error **errp)
2424 MachineState *machine = MACHINE(opaque);
2425 machine->boot_order = g_strdup(boot_device);
2428 static void spapr_create_lmb_dr_connectors(SpaprMachineState *spapr)
2430 MachineState *machine = MACHINE(spapr);
2431 uint64_t lmb_size = SPAPR_MEMORY_BLOCK_SIZE;
2432 uint32_t nr_lmbs = (machine->maxram_size - machine->ram_size)/lmb_size;
2433 int i;
2435 for (i = 0; i < nr_lmbs; i++) {
2436 uint64_t addr;
2438 addr = i * lmb_size + machine->device_memory->base;
2439 spapr_dr_connector_new(OBJECT(spapr), TYPE_SPAPR_DRC_LMB,
2440 addr / lmb_size);
2445 * If RAM size, maxmem size and individual node mem sizes aren't aligned
2446 * to SPAPR_MEMORY_BLOCK_SIZE(256MB), then refuse to start the guest
2447 * since we can't support such unaligned sizes with DRCONF_MEMORY.
2449 static void spapr_validate_node_memory(MachineState *machine, Error **errp)
2451 int i;
2453 if (machine->ram_size % SPAPR_MEMORY_BLOCK_SIZE) {
2454 error_setg(errp, "Memory size 0x" RAM_ADDR_FMT
2455 " is not aligned to %" PRIu64 " MiB",
2456 machine->ram_size,
2457 SPAPR_MEMORY_BLOCK_SIZE / MiB);
2458 return;
2461 if (machine->maxram_size % SPAPR_MEMORY_BLOCK_SIZE) {
2462 error_setg(errp, "Maximum memory size 0x" RAM_ADDR_FMT
2463 " is not aligned to %" PRIu64 " MiB",
2464 machine->ram_size,
2465 SPAPR_MEMORY_BLOCK_SIZE / MiB);
2466 return;
2469 for (i = 0; i < machine->numa_state->num_nodes; i++) {
2470 if (machine->numa_state->nodes[i].node_mem % SPAPR_MEMORY_BLOCK_SIZE) {
2471 error_setg(errp,
2472 "Node %d memory size 0x%" PRIx64
2473 " is not aligned to %" PRIu64 " MiB",
2474 i, machine->numa_state->nodes[i].node_mem,
2475 SPAPR_MEMORY_BLOCK_SIZE / MiB);
2476 return;
2481 /* find cpu slot in machine->possible_cpus by core_id */
2482 static CPUArchId *spapr_find_cpu_slot(MachineState *ms, uint32_t id, int *idx)
2484 int index = id / ms->smp.threads;
2486 if (index >= ms->possible_cpus->len) {
2487 return NULL;
2489 if (idx) {
2490 *idx = index;
2492 return &ms->possible_cpus->cpus[index];
2495 static void spapr_set_vsmt_mode(SpaprMachineState *spapr, Error **errp)
2497 MachineState *ms = MACHINE(spapr);
2498 Error *local_err = NULL;
2499 bool vsmt_user = !!spapr->vsmt;
2500 int kvm_smt = kvmppc_smt_threads();
2501 int ret;
2502 unsigned int smp_threads = ms->smp.threads;
2504 if (!kvm_enabled() && (smp_threads > 1)) {
2505 error_setg(&local_err, "TCG cannot support more than 1 thread/core "
2506 "on a pseries machine");
2507 goto out;
2509 if (!is_power_of_2(smp_threads)) {
2510 error_setg(&local_err, "Cannot support %d threads/core on a pseries "
2511 "machine because it must be a power of 2", smp_threads);
2512 goto out;
2515 /* Detemine the VSMT mode to use: */
2516 if (vsmt_user) {
2517 if (spapr->vsmt < smp_threads) {
2518 error_setg(&local_err, "Cannot support VSMT mode %d"
2519 " because it must be >= threads/core (%d)",
2520 spapr->vsmt, smp_threads);
2521 goto out;
2523 /* In this case, spapr->vsmt has been set by the command line */
2524 } else {
2526 * Default VSMT value is tricky, because we need it to be as
2527 * consistent as possible (for migration), but this requires
2528 * changing it for at least some existing cases. We pick 8 as
2529 * the value that we'd get with KVM on POWER8, the
2530 * overwhelmingly common case in production systems.
2532 spapr->vsmt = MAX(8, smp_threads);
2535 /* KVM: If necessary, set the SMT mode: */
2536 if (kvm_enabled() && (spapr->vsmt != kvm_smt)) {
2537 ret = kvmppc_set_smt_threads(spapr->vsmt);
2538 if (ret) {
2539 /* Looks like KVM isn't able to change VSMT mode */
2540 error_setg(&local_err,
2541 "Failed to set KVM's VSMT mode to %d (errno %d)",
2542 spapr->vsmt, ret);
2543 /* We can live with that if the default one is big enough
2544 * for the number of threads, and a submultiple of the one
2545 * we want. In this case we'll waste some vcpu ids, but
2546 * behaviour will be correct */
2547 if ((kvm_smt >= smp_threads) && ((spapr->vsmt % kvm_smt) == 0)) {
2548 warn_report_err(local_err);
2549 local_err = NULL;
2550 goto out;
2551 } else {
2552 if (!vsmt_user) {
2553 error_append_hint(&local_err,
2554 "On PPC, a VM with %d threads/core"
2555 " on a host with %d threads/core"
2556 " requires the use of VSMT mode %d.\n",
2557 smp_threads, kvm_smt, spapr->vsmt);
2559 kvmppc_hint_smt_possible(&local_err);
2560 goto out;
2564 /* else TCG: nothing to do currently */
2565 out:
2566 error_propagate(errp, local_err);
2569 static void spapr_init_cpus(SpaprMachineState *spapr)
2571 MachineState *machine = MACHINE(spapr);
2572 MachineClass *mc = MACHINE_GET_CLASS(machine);
2573 SpaprMachineClass *smc = SPAPR_MACHINE_GET_CLASS(machine);
2574 const char *type = spapr_get_cpu_core_type(machine->cpu_type);
2575 const CPUArchIdList *possible_cpus;
2576 unsigned int smp_cpus = machine->smp.cpus;
2577 unsigned int smp_threads = machine->smp.threads;
2578 unsigned int max_cpus = machine->smp.max_cpus;
2579 int boot_cores_nr = smp_cpus / smp_threads;
2580 int i;
2582 possible_cpus = mc->possible_cpu_arch_ids(machine);
2583 if (mc->has_hotpluggable_cpus) {
2584 if (smp_cpus % smp_threads) {
2585 error_report("smp_cpus (%u) must be multiple of threads (%u)",
2586 smp_cpus, smp_threads);
2587 exit(1);
2589 if (max_cpus % smp_threads) {
2590 error_report("max_cpus (%u) must be multiple of threads (%u)",
2591 max_cpus, smp_threads);
2592 exit(1);
2594 } else {
2595 if (max_cpus != smp_cpus) {
2596 error_report("This machine version does not support CPU hotplug");
2597 exit(1);
2599 boot_cores_nr = possible_cpus->len;
2602 if (smc->pre_2_10_has_unused_icps) {
2603 int i;
2605 for (i = 0; i < spapr_max_server_number(spapr); i++) {
2606 /* Dummy entries get deregistered when real ICPState objects
2607 * are registered during CPU core hotplug.
2609 pre_2_10_vmstate_register_dummy_icp(i);
2613 for (i = 0; i < possible_cpus->len; i++) {
2614 int core_id = i * smp_threads;
2616 if (mc->has_hotpluggable_cpus) {
2617 spapr_dr_connector_new(OBJECT(spapr), TYPE_SPAPR_DRC_CPU,
2618 spapr_vcpu_id(spapr, core_id));
2621 if (i < boot_cores_nr) {
2622 Object *core = object_new(type);
2623 int nr_threads = smp_threads;
2625 /* Handle the partially filled core for older machine types */
2626 if ((i + 1) * smp_threads >= smp_cpus) {
2627 nr_threads = smp_cpus - i * smp_threads;
2630 object_property_set_int(core, nr_threads, "nr-threads",
2631 &error_fatal);
2632 object_property_set_int(core, core_id, CPU_CORE_PROP_CORE_ID,
2633 &error_fatal);
2634 object_property_set_bool(core, true, "realized", &error_fatal);
2636 object_unref(core);
2641 static PCIHostState *spapr_create_default_phb(void)
2643 DeviceState *dev;
2645 dev = qdev_create(NULL, TYPE_SPAPR_PCI_HOST_BRIDGE);
2646 qdev_prop_set_uint32(dev, "index", 0);
2647 qdev_init_nofail(dev);
2649 return PCI_HOST_BRIDGE(dev);
2652 /* pSeries LPAR / sPAPR hardware init */
2653 static void spapr_machine_init(MachineState *machine)
2655 SpaprMachineState *spapr = SPAPR_MACHINE(machine);
2656 SpaprMachineClass *smc = SPAPR_MACHINE_GET_CLASS(machine);
2657 const char *kernel_filename = machine->kernel_filename;
2658 const char *initrd_filename = machine->initrd_filename;
2659 PCIHostState *phb;
2660 int i;
2661 MemoryRegion *sysmem = get_system_memory();
2662 MemoryRegion *ram = g_new(MemoryRegion, 1);
2663 hwaddr node0_size = spapr_node0_size(machine);
2664 long load_limit, fw_size;
2665 char *filename;
2666 Error *resize_hpt_err = NULL;
2668 msi_nonbroken = true;
2670 QLIST_INIT(&spapr->phbs);
2671 QTAILQ_INIT(&spapr->pending_dimm_unplugs);
2673 /* Determine capabilities to run with */
2674 spapr_caps_init(spapr);
2676 kvmppc_check_papr_resize_hpt(&resize_hpt_err);
2677 if (spapr->resize_hpt == SPAPR_RESIZE_HPT_DEFAULT) {
2679 * If the user explicitly requested a mode we should either
2680 * supply it, or fail completely (which we do below). But if
2681 * it's not set explicitly, we reset our mode to something
2682 * that works
2684 if (resize_hpt_err) {
2685 spapr->resize_hpt = SPAPR_RESIZE_HPT_DISABLED;
2686 error_free(resize_hpt_err);
2687 resize_hpt_err = NULL;
2688 } else {
2689 spapr->resize_hpt = smc->resize_hpt_default;
2693 assert(spapr->resize_hpt != SPAPR_RESIZE_HPT_DEFAULT);
2695 if ((spapr->resize_hpt != SPAPR_RESIZE_HPT_DISABLED) && resize_hpt_err) {
2697 * User requested HPT resize, but this host can't supply it. Bail out
2699 error_report_err(resize_hpt_err);
2700 exit(1);
2703 spapr->rma_size = node0_size;
2705 /* With KVM, we don't actually know whether KVM supports an
2706 * unbounded RMA (PR KVM) or is limited by the hash table size
2707 * (HV KVM using VRMA), so we always assume the latter
2709 * In that case, we also limit the initial allocations for RTAS
2710 * etc... to 256M since we have no way to know what the VRMA size
2711 * is going to be as it depends on the size of the hash table
2712 * which isn't determined yet.
2714 if (kvm_enabled()) {
2715 spapr->vrma_adjust = 1;
2716 spapr->rma_size = MIN(spapr->rma_size, 0x10000000);
2719 /* Actually we don't support unbounded RMA anymore since we added
2720 * proper emulation of HV mode. The max we can get is 16G which
2721 * also happens to be what we configure for PAPR mode so make sure
2722 * we don't do anything bigger than that
2724 spapr->rma_size = MIN(spapr->rma_size, 0x400000000ull);
2726 if (spapr->rma_size > node0_size) {
2727 error_report("Numa node 0 has to span the RMA (%#08"HWADDR_PRIx")",
2728 spapr->rma_size);
2729 exit(1);
2732 /* Setup a load limit for the ramdisk leaving room for SLOF and FDT */
2733 load_limit = MIN(spapr->rma_size, RTAS_MAX_ADDR) - FW_OVERHEAD;
2736 * VSMT must be set in order to be able to compute VCPU ids, ie to
2737 * call spapr_max_server_number() or spapr_vcpu_id().
2739 spapr_set_vsmt_mode(spapr, &error_fatal);
2741 /* Set up Interrupt Controller before we create the VCPUs */
2742 spapr_irq_init(spapr, &error_fatal);
2744 /* Set up containers for ibm,client-architecture-support negotiated options
2746 spapr->ov5 = spapr_ovec_new();
2747 spapr->ov5_cas = spapr_ovec_new();
2749 if (smc->dr_lmb_enabled) {
2750 spapr_ovec_set(spapr->ov5, OV5_DRCONF_MEMORY);
2751 spapr_validate_node_memory(machine, &error_fatal);
2754 spapr_ovec_set(spapr->ov5, OV5_FORM1_AFFINITY);
2756 /* advertise support for dedicated HP event source to guests */
2757 if (spapr->use_hotplug_event_source) {
2758 spapr_ovec_set(spapr->ov5, OV5_HP_EVT);
2761 /* advertise support for HPT resizing */
2762 if (spapr->resize_hpt != SPAPR_RESIZE_HPT_DISABLED) {
2763 spapr_ovec_set(spapr->ov5, OV5_HPT_RESIZE);
2766 /* advertise support for ibm,dyamic-memory-v2 */
2767 spapr_ovec_set(spapr->ov5, OV5_DRMEM_V2);
2769 /* advertise XIVE on POWER9 machines */
2770 if (spapr->irq->ov5 & (SPAPR_OV5_XIVE_EXPLOIT | SPAPR_OV5_XIVE_BOTH)) {
2771 spapr_ovec_set(spapr->ov5, OV5_XIVE_EXPLOIT);
2774 /* init CPUs */
2775 spapr_init_cpus(spapr);
2778 * check we don't have a memory-less/cpu-less NUMA node
2779 * Firmware relies on the existing memory/cpu topology to provide the
2780 * NUMA topology to the kernel.
2781 * And the linux kernel needs to know the NUMA topology at start
2782 * to be able to hotplug CPUs later.
2784 if (machine->numa_state->num_nodes) {
2785 for (i = 0; i < machine->numa_state->num_nodes; ++i) {
2786 /* check for memory-less node */
2787 if (machine->numa_state->nodes[i].node_mem == 0) {
2788 CPUState *cs;
2789 int found = 0;
2790 /* check for cpu-less node */
2791 CPU_FOREACH(cs) {
2792 PowerPCCPU *cpu = POWERPC_CPU(cs);
2793 if (cpu->node_id == i) {
2794 found = 1;
2795 break;
2798 /* memory-less and cpu-less node */
2799 if (!found) {
2800 error_report(
2801 "Memory-less/cpu-less nodes are not supported (node %d)",
2803 exit(1);
2811 * NVLink2-connected GPU RAM needs to be placed on a separate NUMA node.
2812 * We assign a new numa ID per GPU in spapr_pci_collect_nvgpu() which is
2813 * called from vPHB reset handler so we initialize the counter here.
2814 * If no NUMA is configured from the QEMU side, we start from 1 as GPU RAM
2815 * must be equally distant from any other node.
2816 * The final value of spapr->gpu_numa_id is going to be written to
2817 * max-associativity-domains in spapr_build_fdt().
2819 spapr->gpu_numa_id = MAX(1, machine->numa_state->num_nodes);
2821 if ((!kvm_enabled() || kvmppc_has_cap_mmu_radix()) &&
2822 ppc_type_check_compat(machine->cpu_type, CPU_POWERPC_LOGICAL_3_00, 0,
2823 spapr->max_compat_pvr)) {
2824 /* KVM and TCG always allow GTSE with radix... */
2825 spapr_ovec_set(spapr->ov5, OV5_MMU_RADIX_GTSE);
2827 /* ... but not with hash (currently). */
2829 if (kvm_enabled()) {
2830 /* Enable H_LOGICAL_CI_* so SLOF can talk to in-kernel devices */
2831 kvmppc_enable_logical_ci_hcalls();
2832 kvmppc_enable_set_mode_hcall();
2834 /* H_CLEAR_MOD/_REF are mandatory in PAPR, but off by default */
2835 kvmppc_enable_clear_ref_mod_hcalls();
2837 /* Enable H_PAGE_INIT */
2838 kvmppc_enable_h_page_init();
2841 /* allocate RAM */
2842 memory_region_allocate_system_memory(ram, NULL, "ppc_spapr.ram",
2843 machine->ram_size);
2844 memory_region_add_subregion(sysmem, 0, ram);
2846 /* always allocate the device memory information */
2847 machine->device_memory = g_malloc0(sizeof(*machine->device_memory));
2849 /* initialize hotplug memory address space */
2850 if (machine->ram_size < machine->maxram_size) {
2851 ram_addr_t device_mem_size = machine->maxram_size - machine->ram_size;
2853 * Limit the number of hotpluggable memory slots to half the number
2854 * slots that KVM supports, leaving the other half for PCI and other
2855 * devices. However ensure that number of slots doesn't drop below 32.
2857 int max_memslots = kvm_enabled() ? kvm_get_max_memslots() / 2 :
2858 SPAPR_MAX_RAM_SLOTS;
2860 if (max_memslots < SPAPR_MAX_RAM_SLOTS) {
2861 max_memslots = SPAPR_MAX_RAM_SLOTS;
2863 if (machine->ram_slots > max_memslots) {
2864 error_report("Specified number of memory slots %"
2865 PRIu64" exceeds max supported %d",
2866 machine->ram_slots, max_memslots);
2867 exit(1);
2870 machine->device_memory->base = ROUND_UP(machine->ram_size,
2871 SPAPR_DEVICE_MEM_ALIGN);
2872 memory_region_init(&machine->device_memory->mr, OBJECT(spapr),
2873 "device-memory", device_mem_size);
2874 memory_region_add_subregion(sysmem, machine->device_memory->base,
2875 &machine->device_memory->mr);
2878 if (smc->dr_lmb_enabled) {
2879 spapr_create_lmb_dr_connectors(spapr);
2882 /* Set up RTAS event infrastructure */
2883 spapr_events_init(spapr);
2885 /* Set up the RTC RTAS interfaces */
2886 spapr_rtc_create(spapr);
2888 /* Set up VIO bus */
2889 spapr->vio_bus = spapr_vio_bus_init();
2891 for (i = 0; i < serial_max_hds(); i++) {
2892 if (serial_hd(i)) {
2893 spapr_vty_create(spapr->vio_bus, serial_hd(i));
2897 /* We always have at least the nvram device on VIO */
2898 spapr_create_nvram(spapr);
2901 * Setup hotplug / dynamic-reconfiguration connectors. top-level
2902 * connectors (described in root DT node's "ibm,drc-types" property)
2903 * are pre-initialized here. additional child connectors (such as
2904 * connectors for a PHBs PCI slots) are added as needed during their
2905 * parent's realization.
2907 if (smc->dr_phb_enabled) {
2908 for (i = 0; i < SPAPR_MAX_PHBS; i++) {
2909 spapr_dr_connector_new(OBJECT(machine), TYPE_SPAPR_DRC_PHB, i);
2913 /* Set up PCI */
2914 spapr_pci_rtas_init();
2916 phb = spapr_create_default_phb();
2918 for (i = 0; i < nb_nics; i++) {
2919 NICInfo *nd = &nd_table[i];
2921 if (!nd->model) {
2922 nd->model = g_strdup("spapr-vlan");
2925 if (g_str_equal(nd->model, "spapr-vlan") ||
2926 g_str_equal(nd->model, "ibmveth")) {
2927 spapr_vlan_create(spapr->vio_bus, nd);
2928 } else {
2929 pci_nic_init_nofail(&nd_table[i], phb->bus, nd->model, NULL);
2933 for (i = 0; i <= drive_get_max_bus(IF_SCSI); i++) {
2934 spapr_vscsi_create(spapr->vio_bus);
2937 /* Graphics */
2938 if (spapr_vga_init(phb->bus, &error_fatal)) {
2939 spapr->has_graphics = true;
2940 machine->usb |= defaults_enabled() && !machine->usb_disabled;
2943 if (machine->usb) {
2944 if (smc->use_ohci_by_default) {
2945 pci_create_simple(phb->bus, -1, "pci-ohci");
2946 } else {
2947 pci_create_simple(phb->bus, -1, "nec-usb-xhci");
2950 if (spapr->has_graphics) {
2951 USBBus *usb_bus = usb_bus_find(-1);
2953 usb_create_simple(usb_bus, "usb-kbd");
2954 usb_create_simple(usb_bus, "usb-mouse");
2958 if (spapr->rma_size < (MIN_RMA_SLOF * MiB)) {
2959 error_report(
2960 "pSeries SLOF firmware requires >= %ldM guest RMA (Real Mode Area memory)",
2961 MIN_RMA_SLOF);
2962 exit(1);
2965 if (kernel_filename) {
2966 uint64_t lowaddr = 0;
2968 spapr->kernel_size = load_elf(kernel_filename, NULL,
2969 translate_kernel_address, NULL,
2970 NULL, &lowaddr, NULL, 1,
2971 PPC_ELF_MACHINE, 0, 0);
2972 if (spapr->kernel_size == ELF_LOAD_WRONG_ENDIAN) {
2973 spapr->kernel_size = load_elf(kernel_filename, NULL,
2974 translate_kernel_address, NULL, NULL,
2975 &lowaddr, NULL, 0, PPC_ELF_MACHINE,
2976 0, 0);
2977 spapr->kernel_le = spapr->kernel_size > 0;
2979 if (spapr->kernel_size < 0) {
2980 error_report("error loading %s: %s", kernel_filename,
2981 load_elf_strerror(spapr->kernel_size));
2982 exit(1);
2985 /* load initrd */
2986 if (initrd_filename) {
2987 /* Try to locate the initrd in the gap between the kernel
2988 * and the firmware. Add a bit of space just in case
2990 spapr->initrd_base = (KERNEL_LOAD_ADDR + spapr->kernel_size
2991 + 0x1ffff) & ~0xffff;
2992 spapr->initrd_size = load_image_targphys(initrd_filename,
2993 spapr->initrd_base,
2994 load_limit
2995 - spapr->initrd_base);
2996 if (spapr->initrd_size < 0) {
2997 error_report("could not load initial ram disk '%s'",
2998 initrd_filename);
2999 exit(1);
3004 if (bios_name == NULL) {
3005 bios_name = FW_FILE_NAME;
3007 filename = qemu_find_file(QEMU_FILE_TYPE_BIOS, bios_name);
3008 if (!filename) {
3009 error_report("Could not find LPAR firmware '%s'", bios_name);
3010 exit(1);
3012 fw_size = load_image_targphys(filename, 0, FW_MAX_SIZE);
3013 if (fw_size <= 0) {
3014 error_report("Could not load LPAR firmware '%s'", filename);
3015 exit(1);
3017 g_free(filename);
3019 /* FIXME: Should register things through the MachineState's qdev
3020 * interface, this is a legacy from the sPAPREnvironment structure
3021 * which predated MachineState but had a similar function */
3022 vmstate_register(NULL, 0, &vmstate_spapr, spapr);
3023 register_savevm_live("spapr/htab", -1, 1,
3024 &savevm_htab_handlers, spapr);
3026 qbus_set_hotplug_handler(sysbus_get_default(), OBJECT(machine),
3027 &error_fatal);
3029 qemu_register_boot_set(spapr_boot_set, spapr);
3032 * Nothing needs to be done to resume a suspended guest because
3033 * suspending does not change the machine state, so no need for
3034 * a ->wakeup method.
3036 qemu_register_wakeup_support();
3038 if (kvm_enabled()) {
3039 /* to stop and start vmclock */
3040 qemu_add_vm_change_state_handler(cpu_ppc_clock_vm_state_change,
3041 &spapr->tb);
3043 kvmppc_spapr_enable_inkernel_multitce();
3047 static int spapr_kvm_type(MachineState *machine, const char *vm_type)
3049 if (!vm_type) {
3050 return 0;
3053 if (!strcmp(vm_type, "HV")) {
3054 return 1;
3057 if (!strcmp(vm_type, "PR")) {
3058 return 2;
3061 error_report("Unknown kvm-type specified '%s'", vm_type);
3062 exit(1);
3066 * Implementation of an interface to adjust firmware path
3067 * for the bootindex property handling.
3069 static char *spapr_get_fw_dev_path(FWPathProvider *p, BusState *bus,
3070 DeviceState *dev)
3072 #define CAST(type, obj, name) \
3073 ((type *)object_dynamic_cast(OBJECT(obj), (name)))
3074 SCSIDevice *d = CAST(SCSIDevice, dev, TYPE_SCSI_DEVICE);
3075 SpaprPhbState *phb = CAST(SpaprPhbState, dev, TYPE_SPAPR_PCI_HOST_BRIDGE);
3076 VHostSCSICommon *vsc = CAST(VHostSCSICommon, dev, TYPE_VHOST_SCSI_COMMON);
3078 if (d) {
3079 void *spapr = CAST(void, bus->parent, "spapr-vscsi");
3080 VirtIOSCSI *virtio = CAST(VirtIOSCSI, bus->parent, TYPE_VIRTIO_SCSI);
3081 USBDevice *usb = CAST(USBDevice, bus->parent, TYPE_USB_DEVICE);
3083 if (spapr) {
3085 * Replace "channel@0/disk@0,0" with "disk@8000000000000000":
3086 * In the top 16 bits of the 64-bit LUN, we use SRP luns of the form
3087 * 0x8000 | (target << 8) | (bus << 5) | lun
3088 * (see the "Logical unit addressing format" table in SAM5)
3090 unsigned id = 0x8000 | (d->id << 8) | (d->channel << 5) | d->lun;
3091 return g_strdup_printf("%s@%"PRIX64, qdev_fw_name(dev),
3092 (uint64_t)id << 48);
3093 } else if (virtio) {
3095 * We use SRP luns of the form 01000000 | (target << 8) | lun
3096 * in the top 32 bits of the 64-bit LUN
3097 * Note: the quote above is from SLOF and it is wrong,
3098 * the actual binding is:
3099 * swap 0100 or 10 << or 20 << ( target lun-id -- srplun )
3101 unsigned id = 0x1000000 | (d->id << 16) | d->lun;
3102 if (d->lun >= 256) {
3103 /* Use the LUN "flat space addressing method" */
3104 id |= 0x4000;
3106 return g_strdup_printf("%s@%"PRIX64, qdev_fw_name(dev),
3107 (uint64_t)id << 32);
3108 } else if (usb) {
3110 * We use SRP luns of the form 01000000 | (usb-port << 16) | lun
3111 * in the top 32 bits of the 64-bit LUN
3113 unsigned usb_port = atoi(usb->port->path);
3114 unsigned id = 0x1000000 | (usb_port << 16) | d->lun;
3115 return g_strdup_printf("%s@%"PRIX64, qdev_fw_name(dev),
3116 (uint64_t)id << 32);
3121 * SLOF probes the USB devices, and if it recognizes that the device is a
3122 * storage device, it changes its name to "storage" instead of "usb-host",
3123 * and additionally adds a child node for the SCSI LUN, so the correct
3124 * boot path in SLOF is something like .../storage@1/disk@xxx" instead.
3126 if (strcmp("usb-host", qdev_fw_name(dev)) == 0) {
3127 USBDevice *usbdev = CAST(USBDevice, dev, TYPE_USB_DEVICE);
3128 if (usb_host_dev_is_scsi_storage(usbdev)) {
3129 return g_strdup_printf("storage@%s/disk", usbdev->port->path);
3133 if (phb) {
3134 /* Replace "pci" with "pci@800000020000000" */
3135 return g_strdup_printf("pci@%"PRIX64, phb->buid);
3138 if (vsc) {
3139 /* Same logic as virtio above */
3140 unsigned id = 0x1000000 | (vsc->target << 16) | vsc->lun;
3141 return g_strdup_printf("disk@%"PRIX64, (uint64_t)id << 32);
3144 if (g_str_equal("pci-bridge", qdev_fw_name(dev))) {
3145 /* SLOF uses "pci" instead of "pci-bridge" for PCI bridges */
3146 PCIDevice *pcidev = CAST(PCIDevice, dev, TYPE_PCI_DEVICE);
3147 return g_strdup_printf("pci@%x", PCI_SLOT(pcidev->devfn));
3150 return NULL;
3153 static char *spapr_get_kvm_type(Object *obj, Error **errp)
3155 SpaprMachineState *spapr = SPAPR_MACHINE(obj);
3157 return g_strdup(spapr->kvm_type);
3160 static void spapr_set_kvm_type(Object *obj, const char *value, Error **errp)
3162 SpaprMachineState *spapr = SPAPR_MACHINE(obj);
3164 g_free(spapr->kvm_type);
3165 spapr->kvm_type = g_strdup(value);
3168 static bool spapr_get_modern_hotplug_events(Object *obj, Error **errp)
3170 SpaprMachineState *spapr = SPAPR_MACHINE(obj);
3172 return spapr->use_hotplug_event_source;
3175 static void spapr_set_modern_hotplug_events(Object *obj, bool value,
3176 Error **errp)
3178 SpaprMachineState *spapr = SPAPR_MACHINE(obj);
3180 spapr->use_hotplug_event_source = value;
3183 static bool spapr_get_msix_emulation(Object *obj, Error **errp)
3185 return true;
3188 static char *spapr_get_resize_hpt(Object *obj, Error **errp)
3190 SpaprMachineState *spapr = SPAPR_MACHINE(obj);
3192 switch (spapr->resize_hpt) {
3193 case SPAPR_RESIZE_HPT_DEFAULT:
3194 return g_strdup("default");
3195 case SPAPR_RESIZE_HPT_DISABLED:
3196 return g_strdup("disabled");
3197 case SPAPR_RESIZE_HPT_ENABLED:
3198 return g_strdup("enabled");
3199 case SPAPR_RESIZE_HPT_REQUIRED:
3200 return g_strdup("required");
3202 g_assert_not_reached();
3205 static void spapr_set_resize_hpt(Object *obj, const char *value, Error **errp)
3207 SpaprMachineState *spapr = SPAPR_MACHINE(obj);
3209 if (strcmp(value, "default") == 0) {
3210 spapr->resize_hpt = SPAPR_RESIZE_HPT_DEFAULT;
3211 } else if (strcmp(value, "disabled") == 0) {
3212 spapr->resize_hpt = SPAPR_RESIZE_HPT_DISABLED;
3213 } else if (strcmp(value, "enabled") == 0) {
3214 spapr->resize_hpt = SPAPR_RESIZE_HPT_ENABLED;
3215 } else if (strcmp(value, "required") == 0) {
3216 spapr->resize_hpt = SPAPR_RESIZE_HPT_REQUIRED;
3217 } else {
3218 error_setg(errp, "Bad value for \"resize-hpt\" property");
3222 static void spapr_get_vsmt(Object *obj, Visitor *v, const char *name,
3223 void *opaque, Error **errp)
3225 visit_type_uint32(v, name, (uint32_t *)opaque, errp);
3228 static void spapr_set_vsmt(Object *obj, Visitor *v, const char *name,
3229 void *opaque, Error **errp)
3231 visit_type_uint32(v, name, (uint32_t *)opaque, errp);
3234 static char *spapr_get_ic_mode(Object *obj, Error **errp)
3236 SpaprMachineState *spapr = SPAPR_MACHINE(obj);
3238 if (spapr->irq == &spapr_irq_xics_legacy) {
3239 return g_strdup("legacy");
3240 } else if (spapr->irq == &spapr_irq_xics) {
3241 return g_strdup("xics");
3242 } else if (spapr->irq == &spapr_irq_xive) {
3243 return g_strdup("xive");
3244 } else if (spapr->irq == &spapr_irq_dual) {
3245 return g_strdup("dual");
3247 g_assert_not_reached();
3250 static void spapr_set_ic_mode(Object *obj, const char *value, Error **errp)
3252 SpaprMachineState *spapr = SPAPR_MACHINE(obj);
3254 if (SPAPR_MACHINE_GET_CLASS(spapr)->legacy_irq_allocation) {
3255 error_setg(errp, "This machine only uses the legacy XICS backend, don't pass ic-mode");
3256 return;
3259 /* The legacy IRQ backend can not be set */
3260 if (strcmp(value, "xics") == 0) {
3261 spapr->irq = &spapr_irq_xics;
3262 } else if (strcmp(value, "xive") == 0) {
3263 spapr->irq = &spapr_irq_xive;
3264 } else if (strcmp(value, "dual") == 0) {
3265 spapr->irq = &spapr_irq_dual;
3266 } else {
3267 error_setg(errp, "Bad value for \"ic-mode\" property");
3271 static char *spapr_get_host_model(Object *obj, Error **errp)
3273 SpaprMachineState *spapr = SPAPR_MACHINE(obj);
3275 return g_strdup(spapr->host_model);
3278 static void spapr_set_host_model(Object *obj, const char *value, Error **errp)
3280 SpaprMachineState *spapr = SPAPR_MACHINE(obj);
3282 g_free(spapr->host_model);
3283 spapr->host_model = g_strdup(value);
3286 static char *spapr_get_host_serial(Object *obj, Error **errp)
3288 SpaprMachineState *spapr = SPAPR_MACHINE(obj);
3290 return g_strdup(spapr->host_serial);
3293 static void spapr_set_host_serial(Object *obj, const char *value, Error **errp)
3295 SpaprMachineState *spapr = SPAPR_MACHINE(obj);
3297 g_free(spapr->host_serial);
3298 spapr->host_serial = g_strdup(value);
3301 static void spapr_instance_init(Object *obj)
3303 SpaprMachineState *spapr = SPAPR_MACHINE(obj);
3304 SpaprMachineClass *smc = SPAPR_MACHINE_GET_CLASS(spapr);
3306 spapr->htab_fd = -1;
3307 spapr->use_hotplug_event_source = true;
3308 object_property_add_str(obj, "kvm-type",
3309 spapr_get_kvm_type, spapr_set_kvm_type, NULL);
3310 object_property_set_description(obj, "kvm-type",
3311 "Specifies the KVM virtualization mode (HV, PR)",
3312 NULL);
3313 object_property_add_bool(obj, "modern-hotplug-events",
3314 spapr_get_modern_hotplug_events,
3315 spapr_set_modern_hotplug_events,
3316 NULL);
3317 object_property_set_description(obj, "modern-hotplug-events",
3318 "Use dedicated hotplug event mechanism in"
3319 " place of standard EPOW events when possible"
3320 " (required for memory hot-unplug support)",
3321 NULL);
3322 ppc_compat_add_property(obj, "max-cpu-compat", &spapr->max_compat_pvr,
3323 "Maximum permitted CPU compatibility mode",
3324 &error_fatal);
3326 object_property_add_str(obj, "resize-hpt",
3327 spapr_get_resize_hpt, spapr_set_resize_hpt, NULL);
3328 object_property_set_description(obj, "resize-hpt",
3329 "Resizing of the Hash Page Table (enabled, disabled, required)",
3330 NULL);
3331 object_property_add(obj, "vsmt", "uint32", spapr_get_vsmt,
3332 spapr_set_vsmt, NULL, &spapr->vsmt, &error_abort);
3333 object_property_set_description(obj, "vsmt",
3334 "Virtual SMT: KVM behaves as if this were"
3335 " the host's SMT mode", &error_abort);
3336 object_property_add_bool(obj, "vfio-no-msix-emulation",
3337 spapr_get_msix_emulation, NULL, NULL);
3339 /* The machine class defines the default interrupt controller mode */
3340 spapr->irq = smc->irq;
3341 object_property_add_str(obj, "ic-mode", spapr_get_ic_mode,
3342 spapr_set_ic_mode, NULL);
3343 object_property_set_description(obj, "ic-mode",
3344 "Specifies the interrupt controller mode (xics, xive, dual)",
3345 NULL);
3347 object_property_add_str(obj, "host-model",
3348 spapr_get_host_model, spapr_set_host_model,
3349 &error_abort);
3350 object_property_set_description(obj, "host-model",
3351 "Host model to advertise in guest device tree", &error_abort);
3352 object_property_add_str(obj, "host-serial",
3353 spapr_get_host_serial, spapr_set_host_serial,
3354 &error_abort);
3355 object_property_set_description(obj, "host-serial",
3356 "Host serial number to advertise in guest device tree", &error_abort);
3359 static void spapr_machine_finalizefn(Object *obj)
3361 SpaprMachineState *spapr = SPAPR_MACHINE(obj);
3363 g_free(spapr->kvm_type);
3366 void spapr_do_system_reset_on_cpu(CPUState *cs, run_on_cpu_data arg)
3368 cpu_synchronize_state(cs);
3369 ppc_cpu_do_system_reset(cs);
3372 static void spapr_nmi(NMIState *n, int cpu_index, Error **errp)
3374 CPUState *cs;
3376 CPU_FOREACH(cs) {
3377 async_run_on_cpu(cs, spapr_do_system_reset_on_cpu, RUN_ON_CPU_NULL);
3381 int spapr_lmb_dt_populate(SpaprDrc *drc, SpaprMachineState *spapr,
3382 void *fdt, int *fdt_start_offset, Error **errp)
3384 uint64_t addr;
3385 uint32_t node;
3387 addr = spapr_drc_index(drc) * SPAPR_MEMORY_BLOCK_SIZE;
3388 node = object_property_get_uint(OBJECT(drc->dev), PC_DIMM_NODE_PROP,
3389 &error_abort);
3390 *fdt_start_offset = spapr_populate_memory_node(fdt, node, addr,
3391 SPAPR_MEMORY_BLOCK_SIZE);
3392 return 0;
3395 static void spapr_add_lmbs(DeviceState *dev, uint64_t addr_start, uint64_t size,
3396 bool dedicated_hp_event_source, Error **errp)
3398 SpaprDrc *drc;
3399 uint32_t nr_lmbs = size/SPAPR_MEMORY_BLOCK_SIZE;
3400 int i;
3401 uint64_t addr = addr_start;
3402 bool hotplugged = spapr_drc_hotplugged(dev);
3403 Error *local_err = NULL;
3405 for (i = 0; i < nr_lmbs; i++) {
3406 drc = spapr_drc_by_id(TYPE_SPAPR_DRC_LMB,
3407 addr / SPAPR_MEMORY_BLOCK_SIZE);
3408 g_assert(drc);
3410 spapr_drc_attach(drc, dev, &local_err);
3411 if (local_err) {
3412 while (addr > addr_start) {
3413 addr -= SPAPR_MEMORY_BLOCK_SIZE;
3414 drc = spapr_drc_by_id(TYPE_SPAPR_DRC_LMB,
3415 addr / SPAPR_MEMORY_BLOCK_SIZE);
3416 spapr_drc_detach(drc);
3418 error_propagate(errp, local_err);
3419 return;
3421 if (!hotplugged) {
3422 spapr_drc_reset(drc);
3424 addr += SPAPR_MEMORY_BLOCK_SIZE;
3426 /* send hotplug notification to the
3427 * guest only in case of hotplugged memory
3429 if (hotplugged) {
3430 if (dedicated_hp_event_source) {
3431 drc = spapr_drc_by_id(TYPE_SPAPR_DRC_LMB,
3432 addr_start / SPAPR_MEMORY_BLOCK_SIZE);
3433 spapr_hotplug_req_add_by_count_indexed(SPAPR_DR_CONNECTOR_TYPE_LMB,
3434 nr_lmbs,
3435 spapr_drc_index(drc));
3436 } else {
3437 spapr_hotplug_req_add_by_count(SPAPR_DR_CONNECTOR_TYPE_LMB,
3438 nr_lmbs);
3443 static void spapr_memory_plug(HotplugHandler *hotplug_dev, DeviceState *dev,
3444 Error **errp)
3446 Error *local_err = NULL;
3447 SpaprMachineState *ms = SPAPR_MACHINE(hotplug_dev);
3448 PCDIMMDevice *dimm = PC_DIMM(dev);
3449 uint64_t size, addr;
3451 size = memory_device_get_region_size(MEMORY_DEVICE(dev), &error_abort);
3453 pc_dimm_plug(dimm, MACHINE(ms), &local_err);
3454 if (local_err) {
3455 goto out;
3458 addr = object_property_get_uint(OBJECT(dimm),
3459 PC_DIMM_ADDR_PROP, &local_err);
3460 if (local_err) {
3461 goto out_unplug;
3464 spapr_add_lmbs(dev, addr, size, spapr_ovec_test(ms->ov5_cas, OV5_HP_EVT),
3465 &local_err);
3466 if (local_err) {
3467 goto out_unplug;
3470 return;
3472 out_unplug:
3473 pc_dimm_unplug(dimm, MACHINE(ms));
3474 out:
3475 error_propagate(errp, local_err);
3478 static void spapr_memory_pre_plug(HotplugHandler *hotplug_dev, DeviceState *dev,
3479 Error **errp)
3481 const SpaprMachineClass *smc = SPAPR_MACHINE_GET_CLASS(hotplug_dev);
3482 SpaprMachineState *spapr = SPAPR_MACHINE(hotplug_dev);
3483 PCDIMMDevice *dimm = PC_DIMM(dev);
3484 Error *local_err = NULL;
3485 uint64_t size;
3486 Object *memdev;
3487 hwaddr pagesize;
3489 if (!smc->dr_lmb_enabled) {
3490 error_setg(errp, "Memory hotplug not supported for this machine");
3491 return;
3494 size = memory_device_get_region_size(MEMORY_DEVICE(dimm), &local_err);
3495 if (local_err) {
3496 error_propagate(errp, local_err);
3497 return;
3500 if (size % SPAPR_MEMORY_BLOCK_SIZE) {
3501 error_setg(errp, "Hotplugged memory size must be a multiple of "
3502 "%" PRIu64 " MB", SPAPR_MEMORY_BLOCK_SIZE / MiB);
3503 return;
3506 memdev = object_property_get_link(OBJECT(dimm), PC_DIMM_MEMDEV_PROP,
3507 &error_abort);
3508 pagesize = host_memory_backend_pagesize(MEMORY_BACKEND(memdev));
3509 spapr_check_pagesize(spapr, pagesize, &local_err);
3510 if (local_err) {
3511 error_propagate(errp, local_err);
3512 return;
3515 pc_dimm_pre_plug(dimm, MACHINE(hotplug_dev), NULL, errp);
3518 struct SpaprDimmState {
3519 PCDIMMDevice *dimm;
3520 uint32_t nr_lmbs;
3521 QTAILQ_ENTRY(SpaprDimmState) next;
3524 static SpaprDimmState *spapr_pending_dimm_unplugs_find(SpaprMachineState *s,
3525 PCDIMMDevice *dimm)
3527 SpaprDimmState *dimm_state = NULL;
3529 QTAILQ_FOREACH(dimm_state, &s->pending_dimm_unplugs, next) {
3530 if (dimm_state->dimm == dimm) {
3531 break;
3534 return dimm_state;
3537 static SpaprDimmState *spapr_pending_dimm_unplugs_add(SpaprMachineState *spapr,
3538 uint32_t nr_lmbs,
3539 PCDIMMDevice *dimm)
3541 SpaprDimmState *ds = NULL;
3544 * If this request is for a DIMM whose removal had failed earlier
3545 * (due to guest's refusal to remove the LMBs), we would have this
3546 * dimm already in the pending_dimm_unplugs list. In that
3547 * case don't add again.
3549 ds = spapr_pending_dimm_unplugs_find(spapr, dimm);
3550 if (!ds) {
3551 ds = g_malloc0(sizeof(SpaprDimmState));
3552 ds->nr_lmbs = nr_lmbs;
3553 ds->dimm = dimm;
3554 QTAILQ_INSERT_HEAD(&spapr->pending_dimm_unplugs, ds, next);
3556 return ds;
3559 static void spapr_pending_dimm_unplugs_remove(SpaprMachineState *spapr,
3560 SpaprDimmState *dimm_state)
3562 QTAILQ_REMOVE(&spapr->pending_dimm_unplugs, dimm_state, next);
3563 g_free(dimm_state);
3566 static SpaprDimmState *spapr_recover_pending_dimm_state(SpaprMachineState *ms,
3567 PCDIMMDevice *dimm)
3569 SpaprDrc *drc;
3570 uint64_t size = memory_device_get_region_size(MEMORY_DEVICE(dimm),
3571 &error_abort);
3572 uint32_t nr_lmbs = size / SPAPR_MEMORY_BLOCK_SIZE;
3573 uint32_t avail_lmbs = 0;
3574 uint64_t addr_start, addr;
3575 int i;
3577 addr_start = object_property_get_int(OBJECT(dimm), PC_DIMM_ADDR_PROP,
3578 &error_abort);
3580 addr = addr_start;
3581 for (i = 0; i < nr_lmbs; i++) {
3582 drc = spapr_drc_by_id(TYPE_SPAPR_DRC_LMB,
3583 addr / SPAPR_MEMORY_BLOCK_SIZE);
3584 g_assert(drc);
3585 if (drc->dev) {
3586 avail_lmbs++;
3588 addr += SPAPR_MEMORY_BLOCK_SIZE;
3591 return spapr_pending_dimm_unplugs_add(ms, avail_lmbs, dimm);
3594 /* Callback to be called during DRC release. */
3595 void spapr_lmb_release(DeviceState *dev)
3597 HotplugHandler *hotplug_ctrl = qdev_get_hotplug_handler(dev);
3598 SpaprMachineState *spapr = SPAPR_MACHINE(hotplug_ctrl);
3599 SpaprDimmState *ds = spapr_pending_dimm_unplugs_find(spapr, PC_DIMM(dev));
3601 /* This information will get lost if a migration occurs
3602 * during the unplug process. In this case recover it. */
3603 if (ds == NULL) {
3604 ds = spapr_recover_pending_dimm_state(spapr, PC_DIMM(dev));
3605 g_assert(ds);
3606 /* The DRC being examined by the caller at least must be counted */
3607 g_assert(ds->nr_lmbs);
3610 if (--ds->nr_lmbs) {
3611 return;
3615 * Now that all the LMBs have been removed by the guest, call the
3616 * unplug handler chain. This can never fail.
3618 hotplug_handler_unplug(hotplug_ctrl, dev, &error_abort);
3619 object_unparent(OBJECT(dev));
3622 static void spapr_memory_unplug(HotplugHandler *hotplug_dev, DeviceState *dev)
3624 SpaprMachineState *spapr = SPAPR_MACHINE(hotplug_dev);
3625 SpaprDimmState *ds = spapr_pending_dimm_unplugs_find(spapr, PC_DIMM(dev));
3627 pc_dimm_unplug(PC_DIMM(dev), MACHINE(hotplug_dev));
3628 object_property_set_bool(OBJECT(dev), false, "realized", NULL);
3629 spapr_pending_dimm_unplugs_remove(spapr, ds);
3632 static void spapr_memory_unplug_request(HotplugHandler *hotplug_dev,
3633 DeviceState *dev, Error **errp)
3635 SpaprMachineState *spapr = SPAPR_MACHINE(hotplug_dev);
3636 Error *local_err = NULL;
3637 PCDIMMDevice *dimm = PC_DIMM(dev);
3638 uint32_t nr_lmbs;
3639 uint64_t size, addr_start, addr;
3640 int i;
3641 SpaprDrc *drc;
3643 size = memory_device_get_region_size(MEMORY_DEVICE(dimm), &error_abort);
3644 nr_lmbs = size / SPAPR_MEMORY_BLOCK_SIZE;
3646 addr_start = object_property_get_uint(OBJECT(dimm), PC_DIMM_ADDR_PROP,
3647 &local_err);
3648 if (local_err) {
3649 goto out;
3653 * An existing pending dimm state for this DIMM means that there is an
3654 * unplug operation in progress, waiting for the spapr_lmb_release
3655 * callback to complete the job (BQL can't cover that far). In this case,
3656 * bail out to avoid detaching DRCs that were already released.
3658 if (spapr_pending_dimm_unplugs_find(spapr, dimm)) {
3659 error_setg(&local_err,
3660 "Memory unplug already in progress for device %s",
3661 dev->id);
3662 goto out;
3665 spapr_pending_dimm_unplugs_add(spapr, nr_lmbs, dimm);
3667 addr = addr_start;
3668 for (i = 0; i < nr_lmbs; i++) {
3669 drc = spapr_drc_by_id(TYPE_SPAPR_DRC_LMB,
3670 addr / SPAPR_MEMORY_BLOCK_SIZE);
3671 g_assert(drc);
3673 spapr_drc_detach(drc);
3674 addr += SPAPR_MEMORY_BLOCK_SIZE;
3677 drc = spapr_drc_by_id(TYPE_SPAPR_DRC_LMB,
3678 addr_start / SPAPR_MEMORY_BLOCK_SIZE);
3679 spapr_hotplug_req_remove_by_count_indexed(SPAPR_DR_CONNECTOR_TYPE_LMB,
3680 nr_lmbs, spapr_drc_index(drc));
3681 out:
3682 error_propagate(errp, local_err);
3685 /* Callback to be called during DRC release. */
3686 void spapr_core_release(DeviceState *dev)
3688 HotplugHandler *hotplug_ctrl = qdev_get_hotplug_handler(dev);
3690 /* Call the unplug handler chain. This can never fail. */
3691 hotplug_handler_unplug(hotplug_ctrl, dev, &error_abort);
3692 object_unparent(OBJECT(dev));
3695 static void spapr_core_unplug(HotplugHandler *hotplug_dev, DeviceState *dev)
3697 MachineState *ms = MACHINE(hotplug_dev);
3698 SpaprMachineClass *smc = SPAPR_MACHINE_GET_CLASS(ms);
3699 CPUCore *cc = CPU_CORE(dev);
3700 CPUArchId *core_slot = spapr_find_cpu_slot(ms, cc->core_id, NULL);
3702 if (smc->pre_2_10_has_unused_icps) {
3703 SpaprCpuCore *sc = SPAPR_CPU_CORE(OBJECT(dev));
3704 int i;
3706 for (i = 0; i < cc->nr_threads; i++) {
3707 CPUState *cs = CPU(sc->threads[i]);
3709 pre_2_10_vmstate_register_dummy_icp(cs->cpu_index);
3713 assert(core_slot);
3714 core_slot->cpu = NULL;
3715 object_property_set_bool(OBJECT(dev), false, "realized", NULL);
3718 static
3719 void spapr_core_unplug_request(HotplugHandler *hotplug_dev, DeviceState *dev,
3720 Error **errp)
3722 SpaprMachineState *spapr = SPAPR_MACHINE(OBJECT(hotplug_dev));
3723 int index;
3724 SpaprDrc *drc;
3725 CPUCore *cc = CPU_CORE(dev);
3727 if (!spapr_find_cpu_slot(MACHINE(hotplug_dev), cc->core_id, &index)) {
3728 error_setg(errp, "Unable to find CPU core with core-id: %d",
3729 cc->core_id);
3730 return;
3732 if (index == 0) {
3733 error_setg(errp, "Boot CPU core may not be unplugged");
3734 return;
3737 drc = spapr_drc_by_id(TYPE_SPAPR_DRC_CPU,
3738 spapr_vcpu_id(spapr, cc->core_id));
3739 g_assert(drc);
3741 spapr_drc_detach(drc);
3743 spapr_hotplug_req_remove_by_index(drc);
3746 int spapr_core_dt_populate(SpaprDrc *drc, SpaprMachineState *spapr,
3747 void *fdt, int *fdt_start_offset, Error **errp)
3749 SpaprCpuCore *core = SPAPR_CPU_CORE(drc->dev);
3750 CPUState *cs = CPU(core->threads[0]);
3751 PowerPCCPU *cpu = POWERPC_CPU(cs);
3752 DeviceClass *dc = DEVICE_GET_CLASS(cs);
3753 int id = spapr_get_vcpu_id(cpu);
3754 char *nodename;
3755 int offset;
3757 nodename = g_strdup_printf("%s@%x", dc->fw_name, id);
3758 offset = fdt_add_subnode(fdt, 0, nodename);
3759 g_free(nodename);
3761 spapr_populate_cpu_dt(cs, fdt, offset, spapr);
3763 *fdt_start_offset = offset;
3764 return 0;
3767 static void spapr_core_plug(HotplugHandler *hotplug_dev, DeviceState *dev,
3768 Error **errp)
3770 SpaprMachineState *spapr = SPAPR_MACHINE(OBJECT(hotplug_dev));
3771 MachineClass *mc = MACHINE_GET_CLASS(spapr);
3772 SpaprMachineClass *smc = SPAPR_MACHINE_CLASS(mc);
3773 SpaprCpuCore *core = SPAPR_CPU_CORE(OBJECT(dev));
3774 CPUCore *cc = CPU_CORE(dev);
3775 CPUState *cs;
3776 SpaprDrc *drc;
3777 Error *local_err = NULL;
3778 CPUArchId *core_slot;
3779 int index;
3780 bool hotplugged = spapr_drc_hotplugged(dev);
3781 int i;
3783 core_slot = spapr_find_cpu_slot(MACHINE(hotplug_dev), cc->core_id, &index);
3784 if (!core_slot) {
3785 error_setg(errp, "Unable to find CPU core with core-id: %d",
3786 cc->core_id);
3787 return;
3789 drc = spapr_drc_by_id(TYPE_SPAPR_DRC_CPU,
3790 spapr_vcpu_id(spapr, cc->core_id));
3792 g_assert(drc || !mc->has_hotpluggable_cpus);
3794 if (drc) {
3795 spapr_drc_attach(drc, dev, &local_err);
3796 if (local_err) {
3797 error_propagate(errp, local_err);
3798 return;
3801 if (hotplugged) {
3803 * Send hotplug notification interrupt to the guest only
3804 * in case of hotplugged CPUs.
3806 spapr_hotplug_req_add_by_index(drc);
3807 } else {
3808 spapr_drc_reset(drc);
3812 core_slot->cpu = OBJECT(dev);
3814 if (smc->pre_2_10_has_unused_icps) {
3815 for (i = 0; i < cc->nr_threads; i++) {
3816 cs = CPU(core->threads[i]);
3817 pre_2_10_vmstate_unregister_dummy_icp(cs->cpu_index);
3822 * Set compatibility mode to match the boot CPU, which was either set
3823 * by the machine reset code or by CAS.
3825 if (hotplugged) {
3826 for (i = 0; i < cc->nr_threads; i++) {
3827 ppc_set_compat(core->threads[i], POWERPC_CPU(first_cpu)->compat_pvr,
3828 &local_err);
3829 if (local_err) {
3830 error_propagate(errp, local_err);
3831 return;
3837 static void spapr_core_pre_plug(HotplugHandler *hotplug_dev, DeviceState *dev,
3838 Error **errp)
3840 MachineState *machine = MACHINE(OBJECT(hotplug_dev));
3841 MachineClass *mc = MACHINE_GET_CLASS(hotplug_dev);
3842 Error *local_err = NULL;
3843 CPUCore *cc = CPU_CORE(dev);
3844 const char *base_core_type = spapr_get_cpu_core_type(machine->cpu_type);
3845 const char *type = object_get_typename(OBJECT(dev));
3846 CPUArchId *core_slot;
3847 int index;
3848 unsigned int smp_threads = machine->smp.threads;
3850 if (dev->hotplugged && !mc->has_hotpluggable_cpus) {
3851 error_setg(&local_err, "CPU hotplug not supported for this machine");
3852 goto out;
3855 if (strcmp(base_core_type, type)) {
3856 error_setg(&local_err, "CPU core type should be %s", base_core_type);
3857 goto out;
3860 if (cc->core_id % smp_threads) {
3861 error_setg(&local_err, "invalid core id %d", cc->core_id);
3862 goto out;
3866 * In general we should have homogeneous threads-per-core, but old
3867 * (pre hotplug support) machine types allow the last core to have
3868 * reduced threads as a compatibility hack for when we allowed
3869 * total vcpus not a multiple of threads-per-core.
3871 if (mc->has_hotpluggable_cpus && (cc->nr_threads != smp_threads)) {
3872 error_setg(&local_err, "invalid nr-threads %d, must be %d",
3873 cc->nr_threads, smp_threads);
3874 goto out;
3877 core_slot = spapr_find_cpu_slot(MACHINE(hotplug_dev), cc->core_id, &index);
3878 if (!core_slot) {
3879 error_setg(&local_err, "core id %d out of range", cc->core_id);
3880 goto out;
3883 if (core_slot->cpu) {
3884 error_setg(&local_err, "core %d already populated", cc->core_id);
3885 goto out;
3888 numa_cpu_pre_plug(core_slot, dev, &local_err);
3890 out:
3891 error_propagate(errp, local_err);
3894 int spapr_phb_dt_populate(SpaprDrc *drc, SpaprMachineState *spapr,
3895 void *fdt, int *fdt_start_offset, Error **errp)
3897 SpaprPhbState *sphb = SPAPR_PCI_HOST_BRIDGE(drc->dev);
3898 int intc_phandle;
3900 intc_phandle = spapr_irq_get_phandle(spapr, spapr->fdt_blob, errp);
3901 if (intc_phandle <= 0) {
3902 return -1;
3905 if (spapr_dt_phb(sphb, intc_phandle, fdt, spapr->irq->nr_msis,
3906 fdt_start_offset)) {
3907 error_setg(errp, "unable to create FDT node for PHB %d", sphb->index);
3908 return -1;
3911 /* generally SLOF creates these, for hotplug it's up to QEMU */
3912 _FDT(fdt_setprop_string(fdt, *fdt_start_offset, "name", "pci"));
3914 return 0;
3917 static void spapr_phb_pre_plug(HotplugHandler *hotplug_dev, DeviceState *dev,
3918 Error **errp)
3920 SpaprMachineState *spapr = SPAPR_MACHINE(OBJECT(hotplug_dev));
3921 SpaprPhbState *sphb = SPAPR_PCI_HOST_BRIDGE(dev);
3922 SpaprMachineClass *smc = SPAPR_MACHINE_GET_CLASS(spapr);
3923 const unsigned windows_supported = spapr_phb_windows_supported(sphb);
3925 if (dev->hotplugged && !smc->dr_phb_enabled) {
3926 error_setg(errp, "PHB hotplug not supported for this machine");
3927 return;
3930 if (sphb->index == (uint32_t)-1) {
3931 error_setg(errp, "\"index\" for PAPR PHB is mandatory");
3932 return;
3936 * This will check that sphb->index doesn't exceed the maximum number of
3937 * PHBs for the current machine type.
3939 smc->phb_placement(spapr, sphb->index,
3940 &sphb->buid, &sphb->io_win_addr,
3941 &sphb->mem_win_addr, &sphb->mem64_win_addr,
3942 windows_supported, sphb->dma_liobn,
3943 &sphb->nv2_gpa_win_addr, &sphb->nv2_atsd_win_addr,
3944 errp);
3947 static void spapr_phb_plug(HotplugHandler *hotplug_dev, DeviceState *dev,
3948 Error **errp)
3950 SpaprMachineState *spapr = SPAPR_MACHINE(OBJECT(hotplug_dev));
3951 SpaprMachineClass *smc = SPAPR_MACHINE_GET_CLASS(spapr);
3952 SpaprPhbState *sphb = SPAPR_PCI_HOST_BRIDGE(dev);
3953 SpaprDrc *drc;
3954 bool hotplugged = spapr_drc_hotplugged(dev);
3955 Error *local_err = NULL;
3957 if (!smc->dr_phb_enabled) {
3958 return;
3961 drc = spapr_drc_by_id(TYPE_SPAPR_DRC_PHB, sphb->index);
3962 /* hotplug hooks should check it's enabled before getting this far */
3963 assert(drc);
3965 spapr_drc_attach(drc, DEVICE(dev), &local_err);
3966 if (local_err) {
3967 error_propagate(errp, local_err);
3968 return;
3971 if (hotplugged) {
3972 spapr_hotplug_req_add_by_index(drc);
3973 } else {
3974 spapr_drc_reset(drc);
3978 void spapr_phb_release(DeviceState *dev)
3980 HotplugHandler *hotplug_ctrl = qdev_get_hotplug_handler(dev);
3982 hotplug_handler_unplug(hotplug_ctrl, dev, &error_abort);
3983 object_unparent(OBJECT(dev));
3986 static void spapr_phb_unplug(HotplugHandler *hotplug_dev, DeviceState *dev)
3988 object_property_set_bool(OBJECT(dev), false, "realized", NULL);
3991 static void spapr_phb_unplug_request(HotplugHandler *hotplug_dev,
3992 DeviceState *dev, Error **errp)
3994 SpaprPhbState *sphb = SPAPR_PCI_HOST_BRIDGE(dev);
3995 SpaprDrc *drc;
3997 drc = spapr_drc_by_id(TYPE_SPAPR_DRC_PHB, sphb->index);
3998 assert(drc);
4000 if (!spapr_drc_unplug_requested(drc)) {
4001 spapr_drc_detach(drc);
4002 spapr_hotplug_req_remove_by_index(drc);
4006 static void spapr_tpm_proxy_plug(HotplugHandler *hotplug_dev, DeviceState *dev,
4007 Error **errp)
4009 SpaprMachineState *spapr = SPAPR_MACHINE(OBJECT(hotplug_dev));
4010 SpaprTpmProxy *tpm_proxy = SPAPR_TPM_PROXY(dev);
4012 if (spapr->tpm_proxy != NULL) {
4013 error_setg(errp, "Only one TPM proxy can be specified for this machine");
4014 return;
4017 spapr->tpm_proxy = tpm_proxy;
4020 static void spapr_tpm_proxy_unplug(HotplugHandler *hotplug_dev, DeviceState *dev)
4022 SpaprMachineState *spapr = SPAPR_MACHINE(OBJECT(hotplug_dev));
4024 object_property_set_bool(OBJECT(dev), false, "realized", NULL);
4025 object_unparent(OBJECT(dev));
4026 spapr->tpm_proxy = NULL;
4029 static void spapr_machine_device_plug(HotplugHandler *hotplug_dev,
4030 DeviceState *dev, Error **errp)
4032 if (object_dynamic_cast(OBJECT(dev), TYPE_PC_DIMM)) {
4033 spapr_memory_plug(hotplug_dev, dev, errp);
4034 } else if (object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_CPU_CORE)) {
4035 spapr_core_plug(hotplug_dev, dev, errp);
4036 } else if (object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_PCI_HOST_BRIDGE)) {
4037 spapr_phb_plug(hotplug_dev, dev, errp);
4038 } else if (object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_TPM_PROXY)) {
4039 spapr_tpm_proxy_plug(hotplug_dev, dev, errp);
4043 static void spapr_machine_device_unplug(HotplugHandler *hotplug_dev,
4044 DeviceState *dev, Error **errp)
4046 if (object_dynamic_cast(OBJECT(dev), TYPE_PC_DIMM)) {
4047 spapr_memory_unplug(hotplug_dev, dev);
4048 } else if (object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_CPU_CORE)) {
4049 spapr_core_unplug(hotplug_dev, dev);
4050 } else if (object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_PCI_HOST_BRIDGE)) {
4051 spapr_phb_unplug(hotplug_dev, dev);
4052 } else if (object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_TPM_PROXY)) {
4053 spapr_tpm_proxy_unplug(hotplug_dev, dev);
4057 static void spapr_machine_device_unplug_request(HotplugHandler *hotplug_dev,
4058 DeviceState *dev, Error **errp)
4060 SpaprMachineState *sms = SPAPR_MACHINE(OBJECT(hotplug_dev));
4061 MachineClass *mc = MACHINE_GET_CLASS(sms);
4062 SpaprMachineClass *smc = SPAPR_MACHINE_CLASS(mc);
4064 if (object_dynamic_cast(OBJECT(dev), TYPE_PC_DIMM)) {
4065 if (spapr_ovec_test(sms->ov5_cas, OV5_HP_EVT)) {
4066 spapr_memory_unplug_request(hotplug_dev, dev, errp);
4067 } else {
4068 /* NOTE: this means there is a window after guest reset, prior to
4069 * CAS negotiation, where unplug requests will fail due to the
4070 * capability not being detected yet. This is a bit different than
4071 * the case with PCI unplug, where the events will be queued and
4072 * eventually handled by the guest after boot
4074 error_setg(errp, "Memory hot unplug not supported for this guest");
4076 } else if (object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_CPU_CORE)) {
4077 if (!mc->has_hotpluggable_cpus) {
4078 error_setg(errp, "CPU hot unplug not supported on this machine");
4079 return;
4081 spapr_core_unplug_request(hotplug_dev, dev, errp);
4082 } else if (object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_PCI_HOST_BRIDGE)) {
4083 if (!smc->dr_phb_enabled) {
4084 error_setg(errp, "PHB hot unplug not supported on this machine");
4085 return;
4087 spapr_phb_unplug_request(hotplug_dev, dev, errp);
4088 } else if (object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_TPM_PROXY)) {
4089 spapr_tpm_proxy_unplug(hotplug_dev, dev);
4093 static void spapr_machine_device_pre_plug(HotplugHandler *hotplug_dev,
4094 DeviceState *dev, Error **errp)
4096 if (object_dynamic_cast(OBJECT(dev), TYPE_PC_DIMM)) {
4097 spapr_memory_pre_plug(hotplug_dev, dev, errp);
4098 } else if (object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_CPU_CORE)) {
4099 spapr_core_pre_plug(hotplug_dev, dev, errp);
4100 } else if (object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_PCI_HOST_BRIDGE)) {
4101 spapr_phb_pre_plug(hotplug_dev, dev, errp);
4105 static HotplugHandler *spapr_get_hotplug_handler(MachineState *machine,
4106 DeviceState *dev)
4108 if (object_dynamic_cast(OBJECT(dev), TYPE_PC_DIMM) ||
4109 object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_CPU_CORE) ||
4110 object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_PCI_HOST_BRIDGE) ||
4111 object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_TPM_PROXY)) {
4112 return HOTPLUG_HANDLER(machine);
4114 if (object_dynamic_cast(OBJECT(dev), TYPE_PCI_DEVICE)) {
4115 PCIDevice *pcidev = PCI_DEVICE(dev);
4116 PCIBus *root = pci_device_root_bus(pcidev);
4117 SpaprPhbState *phb =
4118 (SpaprPhbState *)object_dynamic_cast(OBJECT(BUS(root)->parent),
4119 TYPE_SPAPR_PCI_HOST_BRIDGE);
4121 if (phb) {
4122 return HOTPLUG_HANDLER(phb);
4125 return NULL;
4128 static CpuInstanceProperties
4129 spapr_cpu_index_to_props(MachineState *machine, unsigned cpu_index)
4131 CPUArchId *core_slot;
4132 MachineClass *mc = MACHINE_GET_CLASS(machine);
4134 /* make sure possible_cpu are intialized */
4135 mc->possible_cpu_arch_ids(machine);
4136 /* get CPU core slot containing thread that matches cpu_index */
4137 core_slot = spapr_find_cpu_slot(machine, cpu_index, NULL);
4138 assert(core_slot);
4139 return core_slot->props;
4142 static int64_t spapr_get_default_cpu_node_id(const MachineState *ms, int idx)
4144 return idx / ms->smp.cores % ms->numa_state->num_nodes;
4147 static const CPUArchIdList *spapr_possible_cpu_arch_ids(MachineState *machine)
4149 int i;
4150 unsigned int smp_threads = machine->smp.threads;
4151 unsigned int smp_cpus = machine->smp.cpus;
4152 const char *core_type;
4153 int spapr_max_cores = machine->smp.max_cpus / smp_threads;
4154 MachineClass *mc = MACHINE_GET_CLASS(machine);
4156 if (!mc->has_hotpluggable_cpus) {
4157 spapr_max_cores = QEMU_ALIGN_UP(smp_cpus, smp_threads) / smp_threads;
4159 if (machine->possible_cpus) {
4160 assert(machine->possible_cpus->len == spapr_max_cores);
4161 return machine->possible_cpus;
4164 core_type = spapr_get_cpu_core_type(machine->cpu_type);
4165 if (!core_type) {
4166 error_report("Unable to find sPAPR CPU Core definition");
4167 exit(1);
4170 machine->possible_cpus = g_malloc0(sizeof(CPUArchIdList) +
4171 sizeof(CPUArchId) * spapr_max_cores);
4172 machine->possible_cpus->len = spapr_max_cores;
4173 for (i = 0; i < machine->possible_cpus->len; i++) {
4174 int core_id = i * smp_threads;
4176 machine->possible_cpus->cpus[i].type = core_type;
4177 machine->possible_cpus->cpus[i].vcpus_count = smp_threads;
4178 machine->possible_cpus->cpus[i].arch_id = core_id;
4179 machine->possible_cpus->cpus[i].props.has_core_id = true;
4180 machine->possible_cpus->cpus[i].props.core_id = core_id;
4182 return machine->possible_cpus;
4185 static void spapr_phb_placement(SpaprMachineState *spapr, uint32_t index,
4186 uint64_t *buid, hwaddr *pio,
4187 hwaddr *mmio32, hwaddr *mmio64,
4188 unsigned n_dma, uint32_t *liobns,
4189 hwaddr *nv2gpa, hwaddr *nv2atsd, Error **errp)
4192 * New-style PHB window placement.
4194 * Goals: Gives large (1TiB), naturally aligned 64-bit MMIO window
4195 * for each PHB, in addition to 2GiB 32-bit MMIO and 64kiB PIO
4196 * windows.
4198 * Some guest kernels can't work with MMIO windows above 1<<46
4199 * (64TiB), so we place up to 31 PHBs in the area 32TiB..64TiB
4201 * 32TiB..(33TiB+1984kiB) contains the 64kiB PIO windows for each
4202 * PHB stacked together. (32TiB+2GiB)..(32TiB+64GiB) contains the
4203 * 2GiB 32-bit MMIO windows for each PHB. Then 33..64TiB has the
4204 * 1TiB 64-bit MMIO windows for each PHB.
4206 const uint64_t base_buid = 0x800000020000000ULL;
4207 int i;
4209 /* Sanity check natural alignments */
4210 QEMU_BUILD_BUG_ON((SPAPR_PCI_BASE % SPAPR_PCI_MEM64_WIN_SIZE) != 0);
4211 QEMU_BUILD_BUG_ON((SPAPR_PCI_LIMIT % SPAPR_PCI_MEM64_WIN_SIZE) != 0);
4212 QEMU_BUILD_BUG_ON((SPAPR_PCI_MEM64_WIN_SIZE % SPAPR_PCI_MEM32_WIN_SIZE) != 0);
4213 QEMU_BUILD_BUG_ON((SPAPR_PCI_MEM32_WIN_SIZE % SPAPR_PCI_IO_WIN_SIZE) != 0);
4214 /* Sanity check bounds */
4215 QEMU_BUILD_BUG_ON((SPAPR_MAX_PHBS * SPAPR_PCI_IO_WIN_SIZE) >
4216 SPAPR_PCI_MEM32_WIN_SIZE);
4217 QEMU_BUILD_BUG_ON((SPAPR_MAX_PHBS * SPAPR_PCI_MEM32_WIN_SIZE) >
4218 SPAPR_PCI_MEM64_WIN_SIZE);
4220 if (index >= SPAPR_MAX_PHBS) {
4221 error_setg(errp, "\"index\" for PAPR PHB is too large (max %llu)",
4222 SPAPR_MAX_PHBS - 1);
4223 return;
4226 *buid = base_buid + index;
4227 for (i = 0; i < n_dma; ++i) {
4228 liobns[i] = SPAPR_PCI_LIOBN(index, i);
4231 *pio = SPAPR_PCI_BASE + index * SPAPR_PCI_IO_WIN_SIZE;
4232 *mmio32 = SPAPR_PCI_BASE + (index + 1) * SPAPR_PCI_MEM32_WIN_SIZE;
4233 *mmio64 = SPAPR_PCI_BASE + (index + 1) * SPAPR_PCI_MEM64_WIN_SIZE;
4235 *nv2gpa = SPAPR_PCI_NV2RAM64_WIN_BASE + index * SPAPR_PCI_NV2RAM64_WIN_SIZE;
4236 *nv2atsd = SPAPR_PCI_NV2ATSD_WIN_BASE + index * SPAPR_PCI_NV2ATSD_WIN_SIZE;
4239 static ICSState *spapr_ics_get(XICSFabric *dev, int irq)
4241 SpaprMachineState *spapr = SPAPR_MACHINE(dev);
4243 return ics_valid_irq(spapr->ics, irq) ? spapr->ics : NULL;
4246 static void spapr_ics_resend(XICSFabric *dev)
4248 SpaprMachineState *spapr = SPAPR_MACHINE(dev);
4250 ics_resend(spapr->ics);
4253 static ICPState *spapr_icp_get(XICSFabric *xi, int vcpu_id)
4255 PowerPCCPU *cpu = spapr_find_cpu(vcpu_id);
4257 return cpu ? spapr_cpu_state(cpu)->icp : NULL;
4260 static void spapr_pic_print_info(InterruptStatsProvider *obj,
4261 Monitor *mon)
4263 SpaprMachineState *spapr = SPAPR_MACHINE(obj);
4265 spapr->irq->print_info(spapr, mon);
4266 monitor_printf(mon, "irqchip: %s\n",
4267 kvm_irqchip_in_kernel() ? "in-kernel" : "emulated");
4270 int spapr_get_vcpu_id(PowerPCCPU *cpu)
4272 return cpu->vcpu_id;
4275 void spapr_set_vcpu_id(PowerPCCPU *cpu, int cpu_index, Error **errp)
4277 SpaprMachineState *spapr = SPAPR_MACHINE(qdev_get_machine());
4278 MachineState *ms = MACHINE(spapr);
4279 int vcpu_id;
4281 vcpu_id = spapr_vcpu_id(spapr, cpu_index);
4283 if (kvm_enabled() && !kvm_vcpu_id_is_valid(vcpu_id)) {
4284 error_setg(errp, "Can't create CPU with id %d in KVM", vcpu_id);
4285 error_append_hint(errp, "Adjust the number of cpus to %d "
4286 "or try to raise the number of threads per core\n",
4287 vcpu_id * ms->smp.threads / spapr->vsmt);
4288 return;
4291 cpu->vcpu_id = vcpu_id;
4294 PowerPCCPU *spapr_find_cpu(int vcpu_id)
4296 CPUState *cs;
4298 CPU_FOREACH(cs) {
4299 PowerPCCPU *cpu = POWERPC_CPU(cs);
4301 if (spapr_get_vcpu_id(cpu) == vcpu_id) {
4302 return cpu;
4306 return NULL;
4309 static void spapr_cpu_exec_enter(PPCVirtualHypervisor *vhyp, PowerPCCPU *cpu)
4311 SpaprCpuState *spapr_cpu = spapr_cpu_state(cpu);
4313 /* These are only called by TCG, KVM maintains dispatch state */
4315 spapr_cpu->prod = false;
4316 if (spapr_cpu->vpa_addr) {
4317 CPUState *cs = CPU(cpu);
4318 uint32_t dispatch;
4320 dispatch = ldl_be_phys(cs->as,
4321 spapr_cpu->vpa_addr + VPA_DISPATCH_COUNTER);
4322 dispatch++;
4323 if ((dispatch & 1) != 0) {
4324 qemu_log_mask(LOG_GUEST_ERROR,
4325 "VPA: incorrect dispatch counter value for "
4326 "dispatched partition %u, correcting.\n", dispatch);
4327 dispatch++;
4329 stl_be_phys(cs->as,
4330 spapr_cpu->vpa_addr + VPA_DISPATCH_COUNTER, dispatch);
4334 static void spapr_cpu_exec_exit(PPCVirtualHypervisor *vhyp, PowerPCCPU *cpu)
4336 SpaprCpuState *spapr_cpu = spapr_cpu_state(cpu);
4338 if (spapr_cpu->vpa_addr) {
4339 CPUState *cs = CPU(cpu);
4340 uint32_t dispatch;
4342 dispatch = ldl_be_phys(cs->as,
4343 spapr_cpu->vpa_addr + VPA_DISPATCH_COUNTER);
4344 dispatch++;
4345 if ((dispatch & 1) != 1) {
4346 qemu_log_mask(LOG_GUEST_ERROR,
4347 "VPA: incorrect dispatch counter value for "
4348 "preempted partition %u, correcting.\n", dispatch);
4349 dispatch++;
4351 stl_be_phys(cs->as,
4352 spapr_cpu->vpa_addr + VPA_DISPATCH_COUNTER, dispatch);
4356 static void spapr_machine_class_init(ObjectClass *oc, void *data)
4358 MachineClass *mc = MACHINE_CLASS(oc);
4359 SpaprMachineClass *smc = SPAPR_MACHINE_CLASS(oc);
4360 FWPathProviderClass *fwc = FW_PATH_PROVIDER_CLASS(oc);
4361 NMIClass *nc = NMI_CLASS(oc);
4362 HotplugHandlerClass *hc = HOTPLUG_HANDLER_CLASS(oc);
4363 PPCVirtualHypervisorClass *vhc = PPC_VIRTUAL_HYPERVISOR_CLASS(oc);
4364 XICSFabricClass *xic = XICS_FABRIC_CLASS(oc);
4365 InterruptStatsProviderClass *ispc = INTERRUPT_STATS_PROVIDER_CLASS(oc);
4367 mc->desc = "pSeries Logical Partition (PAPR compliant)";
4368 mc->ignore_boot_device_suffixes = true;
4371 * We set up the default / latest behaviour here. The class_init
4372 * functions for the specific versioned machine types can override
4373 * these details for backwards compatibility
4375 mc->init = spapr_machine_init;
4376 mc->reset = spapr_machine_reset;
4377 mc->block_default_type = IF_SCSI;
4378 mc->max_cpus = 1024;
4379 mc->no_parallel = 1;
4380 mc->default_boot_order = "";
4381 mc->default_ram_size = 512 * MiB;
4382 mc->default_display = "std";
4383 mc->kvm_type = spapr_kvm_type;
4384 machine_class_allow_dynamic_sysbus_dev(mc, TYPE_SPAPR_PCI_HOST_BRIDGE);
4385 mc->pci_allow_0_address = true;
4386 assert(!mc->get_hotplug_handler);
4387 mc->get_hotplug_handler = spapr_get_hotplug_handler;
4388 hc->pre_plug = spapr_machine_device_pre_plug;
4389 hc->plug = spapr_machine_device_plug;
4390 mc->cpu_index_to_instance_props = spapr_cpu_index_to_props;
4391 mc->get_default_cpu_node_id = spapr_get_default_cpu_node_id;
4392 mc->possible_cpu_arch_ids = spapr_possible_cpu_arch_ids;
4393 hc->unplug_request = spapr_machine_device_unplug_request;
4394 hc->unplug = spapr_machine_device_unplug;
4396 smc->dr_lmb_enabled = true;
4397 smc->update_dt_enabled = true;
4398 mc->default_cpu_type = POWERPC_CPU_TYPE_NAME("power9_v2.0");
4399 mc->has_hotpluggable_cpus = true;
4400 smc->resize_hpt_default = SPAPR_RESIZE_HPT_ENABLED;
4401 fwc->get_dev_path = spapr_get_fw_dev_path;
4402 nc->nmi_monitor_handler = spapr_nmi;
4403 smc->phb_placement = spapr_phb_placement;
4404 vhc->hypercall = emulate_spapr_hypercall;
4405 vhc->hpt_mask = spapr_hpt_mask;
4406 vhc->map_hptes = spapr_map_hptes;
4407 vhc->unmap_hptes = spapr_unmap_hptes;
4408 vhc->hpte_set_c = spapr_hpte_set_c;
4409 vhc->hpte_set_r = spapr_hpte_set_r;
4410 vhc->get_pate = spapr_get_pate;
4411 vhc->encode_hpt_for_kvm_pr = spapr_encode_hpt_for_kvm_pr;
4412 vhc->cpu_exec_enter = spapr_cpu_exec_enter;
4413 vhc->cpu_exec_exit = spapr_cpu_exec_exit;
4414 xic->ics_get = spapr_ics_get;
4415 xic->ics_resend = spapr_ics_resend;
4416 xic->icp_get = spapr_icp_get;
4417 ispc->print_info = spapr_pic_print_info;
4418 /* Force NUMA node memory size to be a multiple of
4419 * SPAPR_MEMORY_BLOCK_SIZE (256M) since that's the granularity
4420 * in which LMBs are represented and hot-added
4422 mc->numa_mem_align_shift = 28;
4423 mc->numa_mem_supported = true;
4425 smc->default_caps.caps[SPAPR_CAP_HTM] = SPAPR_CAP_OFF;
4426 smc->default_caps.caps[SPAPR_CAP_VSX] = SPAPR_CAP_ON;
4427 smc->default_caps.caps[SPAPR_CAP_DFP] = SPAPR_CAP_ON;
4428 smc->default_caps.caps[SPAPR_CAP_CFPC] = SPAPR_CAP_WORKAROUND;
4429 smc->default_caps.caps[SPAPR_CAP_SBBC] = SPAPR_CAP_WORKAROUND;
4430 smc->default_caps.caps[SPAPR_CAP_IBS] = SPAPR_CAP_WORKAROUND;
4431 smc->default_caps.caps[SPAPR_CAP_HPT_MAXPAGESIZE] = 16; /* 64kiB */
4432 smc->default_caps.caps[SPAPR_CAP_NESTED_KVM_HV] = SPAPR_CAP_OFF;
4433 smc->default_caps.caps[SPAPR_CAP_LARGE_DECREMENTER] = SPAPR_CAP_ON;
4434 smc->default_caps.caps[SPAPR_CAP_CCF_ASSIST] = SPAPR_CAP_OFF;
4435 spapr_caps_add_properties(smc, &error_abort);
4436 smc->irq = &spapr_irq_dual;
4437 smc->dr_phb_enabled = true;
4438 smc->linux_pci_probe = true;
4441 static const TypeInfo spapr_machine_info = {
4442 .name = TYPE_SPAPR_MACHINE,
4443 .parent = TYPE_MACHINE,
4444 .abstract = true,
4445 .instance_size = sizeof(SpaprMachineState),
4446 .instance_init = spapr_instance_init,
4447 .instance_finalize = spapr_machine_finalizefn,
4448 .class_size = sizeof(SpaprMachineClass),
4449 .class_init = spapr_machine_class_init,
4450 .interfaces = (InterfaceInfo[]) {
4451 { TYPE_FW_PATH_PROVIDER },
4452 { TYPE_NMI },
4453 { TYPE_HOTPLUG_HANDLER },
4454 { TYPE_PPC_VIRTUAL_HYPERVISOR },
4455 { TYPE_XICS_FABRIC },
4456 { TYPE_INTERRUPT_STATS_PROVIDER },
4461 #define DEFINE_SPAPR_MACHINE(suffix, verstr, latest) \
4462 static void spapr_machine_##suffix##_class_init(ObjectClass *oc, \
4463 void *data) \
4465 MachineClass *mc = MACHINE_CLASS(oc); \
4466 spapr_machine_##suffix##_class_options(mc); \
4467 if (latest) { \
4468 mc->alias = "pseries"; \
4469 mc->is_default = 1; \
4472 static const TypeInfo spapr_machine_##suffix##_info = { \
4473 .name = MACHINE_TYPE_NAME("pseries-" verstr), \
4474 .parent = TYPE_SPAPR_MACHINE, \
4475 .class_init = spapr_machine_##suffix##_class_init, \
4476 }; \
4477 static void spapr_machine_register_##suffix(void) \
4479 type_register(&spapr_machine_##suffix##_info); \
4481 type_init(spapr_machine_register_##suffix)
4484 * pseries-4.2
4486 static void spapr_machine_4_2_class_options(MachineClass *mc)
4488 /* Defaults for the latest behaviour inherited from the base class */
4491 DEFINE_SPAPR_MACHINE(4_2, "4.2", true);
4494 * pseries-4.1
4496 static void spapr_machine_4_1_class_options(MachineClass *mc)
4498 SpaprMachineClass *smc = SPAPR_MACHINE_CLASS(mc);
4499 static GlobalProperty compat[] = {
4500 /* Only allow 4kiB and 64kiB IOMMU pagesizes */
4501 { TYPE_SPAPR_PCI_HOST_BRIDGE, "pgsz", "0x11000" },
4504 spapr_machine_4_2_class_options(mc);
4505 smc->linux_pci_probe = false;
4506 compat_props_add(mc->compat_props, hw_compat_4_1, hw_compat_4_1_len);
4507 compat_props_add(mc->compat_props, compat, G_N_ELEMENTS(compat));
4510 DEFINE_SPAPR_MACHINE(4_1, "4.1", false);
4513 * pseries-4.0
4515 static void phb_placement_4_0(SpaprMachineState *spapr, uint32_t index,
4516 uint64_t *buid, hwaddr *pio,
4517 hwaddr *mmio32, hwaddr *mmio64,
4518 unsigned n_dma, uint32_t *liobns,
4519 hwaddr *nv2gpa, hwaddr *nv2atsd, Error **errp)
4521 spapr_phb_placement(spapr, index, buid, pio, mmio32, mmio64, n_dma, liobns,
4522 nv2gpa, nv2atsd, errp);
4523 *nv2gpa = 0;
4524 *nv2atsd = 0;
4527 static void spapr_machine_4_0_class_options(MachineClass *mc)
4529 SpaprMachineClass *smc = SPAPR_MACHINE_CLASS(mc);
4531 spapr_machine_4_1_class_options(mc);
4532 compat_props_add(mc->compat_props, hw_compat_4_0, hw_compat_4_0_len);
4533 smc->phb_placement = phb_placement_4_0;
4534 smc->irq = &spapr_irq_xics;
4535 smc->pre_4_1_migration = true;
4538 DEFINE_SPAPR_MACHINE(4_0, "4.0", false);
4541 * pseries-3.1
4543 static void spapr_machine_3_1_class_options(MachineClass *mc)
4545 SpaprMachineClass *smc = SPAPR_MACHINE_CLASS(mc);
4547 spapr_machine_4_0_class_options(mc);
4548 compat_props_add(mc->compat_props, hw_compat_3_1, hw_compat_3_1_len);
4550 mc->default_cpu_type = POWERPC_CPU_TYPE_NAME("power8_v2.0");
4551 smc->update_dt_enabled = false;
4552 smc->dr_phb_enabled = false;
4553 smc->broken_host_serial_model = true;
4554 smc->default_caps.caps[SPAPR_CAP_CFPC] = SPAPR_CAP_BROKEN;
4555 smc->default_caps.caps[SPAPR_CAP_SBBC] = SPAPR_CAP_BROKEN;
4556 smc->default_caps.caps[SPAPR_CAP_IBS] = SPAPR_CAP_BROKEN;
4557 smc->default_caps.caps[SPAPR_CAP_LARGE_DECREMENTER] = SPAPR_CAP_OFF;
4560 DEFINE_SPAPR_MACHINE(3_1, "3.1", false);
4563 * pseries-3.0
4566 static void spapr_machine_3_0_class_options(MachineClass *mc)
4568 SpaprMachineClass *smc = SPAPR_MACHINE_CLASS(mc);
4570 spapr_machine_3_1_class_options(mc);
4571 compat_props_add(mc->compat_props, hw_compat_3_0, hw_compat_3_0_len);
4573 smc->legacy_irq_allocation = true;
4574 smc->irq = &spapr_irq_xics_legacy;
4577 DEFINE_SPAPR_MACHINE(3_0, "3.0", false);
4580 * pseries-2.12
4582 static void spapr_machine_2_12_class_options(MachineClass *mc)
4584 SpaprMachineClass *smc = SPAPR_MACHINE_CLASS(mc);
4585 static GlobalProperty compat[] = {
4586 { TYPE_POWERPC_CPU, "pre-3.0-migration", "on" },
4587 { TYPE_SPAPR_CPU_CORE, "pre-3.0-migration", "on" },
4590 spapr_machine_3_0_class_options(mc);
4591 compat_props_add(mc->compat_props, hw_compat_2_12, hw_compat_2_12_len);
4592 compat_props_add(mc->compat_props, compat, G_N_ELEMENTS(compat));
4594 /* We depend on kvm_enabled() to choose a default value for the
4595 * hpt-max-page-size capability. Of course we can't do it here
4596 * because this is too early and the HW accelerator isn't initialzed
4597 * yet. Postpone this to machine init (see default_caps_with_cpu()).
4599 smc->default_caps.caps[SPAPR_CAP_HPT_MAXPAGESIZE] = 0;
4602 DEFINE_SPAPR_MACHINE(2_12, "2.12", false);
4604 static void spapr_machine_2_12_sxxm_class_options(MachineClass *mc)
4606 SpaprMachineClass *smc = SPAPR_MACHINE_CLASS(mc);
4608 spapr_machine_2_12_class_options(mc);
4609 smc->default_caps.caps[SPAPR_CAP_CFPC] = SPAPR_CAP_WORKAROUND;
4610 smc->default_caps.caps[SPAPR_CAP_SBBC] = SPAPR_CAP_WORKAROUND;
4611 smc->default_caps.caps[SPAPR_CAP_IBS] = SPAPR_CAP_FIXED_CCD;
4614 DEFINE_SPAPR_MACHINE(2_12_sxxm, "2.12-sxxm", false);
4617 * pseries-2.11
4620 static void spapr_machine_2_11_class_options(MachineClass *mc)
4622 SpaprMachineClass *smc = SPAPR_MACHINE_CLASS(mc);
4624 spapr_machine_2_12_class_options(mc);
4625 smc->default_caps.caps[SPAPR_CAP_HTM] = SPAPR_CAP_ON;
4626 compat_props_add(mc->compat_props, hw_compat_2_11, hw_compat_2_11_len);
4629 DEFINE_SPAPR_MACHINE(2_11, "2.11", false);
4632 * pseries-2.10
4635 static void spapr_machine_2_10_class_options(MachineClass *mc)
4637 spapr_machine_2_11_class_options(mc);
4638 compat_props_add(mc->compat_props, hw_compat_2_10, hw_compat_2_10_len);
4641 DEFINE_SPAPR_MACHINE(2_10, "2.10", false);
4644 * pseries-2.9
4647 static void spapr_machine_2_9_class_options(MachineClass *mc)
4649 SpaprMachineClass *smc = SPAPR_MACHINE_CLASS(mc);
4650 static GlobalProperty compat[] = {
4651 { TYPE_POWERPC_CPU, "pre-2.10-migration", "on" },
4654 spapr_machine_2_10_class_options(mc);
4655 compat_props_add(mc->compat_props, hw_compat_2_9, hw_compat_2_9_len);
4656 compat_props_add(mc->compat_props, compat, G_N_ELEMENTS(compat));
4657 mc->numa_auto_assign_ram = numa_legacy_auto_assign_ram;
4658 smc->pre_2_10_has_unused_icps = true;
4659 smc->resize_hpt_default = SPAPR_RESIZE_HPT_DISABLED;
4662 DEFINE_SPAPR_MACHINE(2_9, "2.9", false);
4665 * pseries-2.8
4668 static void spapr_machine_2_8_class_options(MachineClass *mc)
4670 static GlobalProperty compat[] = {
4671 { TYPE_SPAPR_PCI_HOST_BRIDGE, "pcie-extended-configuration-space", "off" },
4674 spapr_machine_2_9_class_options(mc);
4675 compat_props_add(mc->compat_props, hw_compat_2_8, hw_compat_2_8_len);
4676 compat_props_add(mc->compat_props, compat, G_N_ELEMENTS(compat));
4677 mc->numa_mem_align_shift = 23;
4680 DEFINE_SPAPR_MACHINE(2_8, "2.8", false);
4683 * pseries-2.7
4686 static void phb_placement_2_7(SpaprMachineState *spapr, uint32_t index,
4687 uint64_t *buid, hwaddr *pio,
4688 hwaddr *mmio32, hwaddr *mmio64,
4689 unsigned n_dma, uint32_t *liobns,
4690 hwaddr *nv2gpa, hwaddr *nv2atsd, Error **errp)
4692 /* Legacy PHB placement for pseries-2.7 and earlier machine types */
4693 const uint64_t base_buid = 0x800000020000000ULL;
4694 const hwaddr phb_spacing = 0x1000000000ULL; /* 64 GiB */
4695 const hwaddr mmio_offset = 0xa0000000; /* 2 GiB + 512 MiB */
4696 const hwaddr pio_offset = 0x80000000; /* 2 GiB */
4697 const uint32_t max_index = 255;
4698 const hwaddr phb0_alignment = 0x10000000000ULL; /* 1 TiB */
4700 uint64_t ram_top = MACHINE(spapr)->ram_size;
4701 hwaddr phb0_base, phb_base;
4702 int i;
4704 /* Do we have device memory? */
4705 if (MACHINE(spapr)->maxram_size > ram_top) {
4706 /* Can't just use maxram_size, because there may be an
4707 * alignment gap between normal and device memory regions
4709 ram_top = MACHINE(spapr)->device_memory->base +
4710 memory_region_size(&MACHINE(spapr)->device_memory->mr);
4713 phb0_base = QEMU_ALIGN_UP(ram_top, phb0_alignment);
4715 if (index > max_index) {
4716 error_setg(errp, "\"index\" for PAPR PHB is too large (max %u)",
4717 max_index);
4718 return;
4721 *buid = base_buid + index;
4722 for (i = 0; i < n_dma; ++i) {
4723 liobns[i] = SPAPR_PCI_LIOBN(index, i);
4726 phb_base = phb0_base + index * phb_spacing;
4727 *pio = phb_base + pio_offset;
4728 *mmio32 = phb_base + mmio_offset;
4730 * We don't set the 64-bit MMIO window, relying on the PHB's
4731 * fallback behaviour of automatically splitting a large "32-bit"
4732 * window into contiguous 32-bit and 64-bit windows
4735 *nv2gpa = 0;
4736 *nv2atsd = 0;
4739 static void spapr_machine_2_7_class_options(MachineClass *mc)
4741 SpaprMachineClass *smc = SPAPR_MACHINE_CLASS(mc);
4742 static GlobalProperty compat[] = {
4743 { TYPE_SPAPR_PCI_HOST_BRIDGE, "mem_win_size", "0xf80000000", },
4744 { TYPE_SPAPR_PCI_HOST_BRIDGE, "mem64_win_size", "0", },
4745 { TYPE_POWERPC_CPU, "pre-2.8-migration", "on", },
4746 { TYPE_SPAPR_PCI_HOST_BRIDGE, "pre-2.8-migration", "on", },
4749 spapr_machine_2_8_class_options(mc);
4750 mc->default_cpu_type = POWERPC_CPU_TYPE_NAME("power7_v2.3");
4751 mc->default_machine_opts = "modern-hotplug-events=off";
4752 compat_props_add(mc->compat_props, hw_compat_2_7, hw_compat_2_7_len);
4753 compat_props_add(mc->compat_props, compat, G_N_ELEMENTS(compat));
4754 smc->phb_placement = phb_placement_2_7;
4757 DEFINE_SPAPR_MACHINE(2_7, "2.7", false);
4760 * pseries-2.6
4763 static void spapr_machine_2_6_class_options(MachineClass *mc)
4765 static GlobalProperty compat[] = {
4766 { TYPE_SPAPR_PCI_HOST_BRIDGE, "ddw", "off" },
4769 spapr_machine_2_7_class_options(mc);
4770 mc->has_hotpluggable_cpus = false;
4771 compat_props_add(mc->compat_props, hw_compat_2_6, hw_compat_2_6_len);
4772 compat_props_add(mc->compat_props, compat, G_N_ELEMENTS(compat));
4775 DEFINE_SPAPR_MACHINE(2_6, "2.6", false);
4778 * pseries-2.5
4781 static void spapr_machine_2_5_class_options(MachineClass *mc)
4783 SpaprMachineClass *smc = SPAPR_MACHINE_CLASS(mc);
4784 static GlobalProperty compat[] = {
4785 { "spapr-vlan", "use-rx-buffer-pools", "off" },
4788 spapr_machine_2_6_class_options(mc);
4789 smc->use_ohci_by_default = true;
4790 compat_props_add(mc->compat_props, hw_compat_2_5, hw_compat_2_5_len);
4791 compat_props_add(mc->compat_props, compat, G_N_ELEMENTS(compat));
4794 DEFINE_SPAPR_MACHINE(2_5, "2.5", false);
4797 * pseries-2.4
4800 static void spapr_machine_2_4_class_options(MachineClass *mc)
4802 SpaprMachineClass *smc = SPAPR_MACHINE_CLASS(mc);
4804 spapr_machine_2_5_class_options(mc);
4805 smc->dr_lmb_enabled = false;
4806 compat_props_add(mc->compat_props, hw_compat_2_4, hw_compat_2_4_len);
4809 DEFINE_SPAPR_MACHINE(2_4, "2.4", false);
4812 * pseries-2.3
4815 static void spapr_machine_2_3_class_options(MachineClass *mc)
4817 static GlobalProperty compat[] = {
4818 { "spapr-pci-host-bridge", "dynamic-reconfiguration", "off" },
4820 spapr_machine_2_4_class_options(mc);
4821 compat_props_add(mc->compat_props, hw_compat_2_3, hw_compat_2_3_len);
4822 compat_props_add(mc->compat_props, compat, G_N_ELEMENTS(compat));
4824 DEFINE_SPAPR_MACHINE(2_3, "2.3", false);
4827 * pseries-2.2
4830 static void spapr_machine_2_2_class_options(MachineClass *mc)
4832 static GlobalProperty compat[] = {
4833 { TYPE_SPAPR_PCI_HOST_BRIDGE, "mem_win_size", "0x20000000" },
4836 spapr_machine_2_3_class_options(mc);
4837 compat_props_add(mc->compat_props, hw_compat_2_2, hw_compat_2_2_len);
4838 compat_props_add(mc->compat_props, compat, G_N_ELEMENTS(compat));
4839 mc->default_machine_opts = "modern-hotplug-events=off,suppress-vmdesc=on";
4841 DEFINE_SPAPR_MACHINE(2_2, "2.2", false);
4844 * pseries-2.1
4847 static void spapr_machine_2_1_class_options(MachineClass *mc)
4849 spapr_machine_2_2_class_options(mc);
4850 compat_props_add(mc->compat_props, hw_compat_2_1, hw_compat_2_1_len);
4852 DEFINE_SPAPR_MACHINE(2_1, "2.1", false);
4854 static void spapr_machine_register_types(void)
4856 type_register_static(&spapr_machine_info);
4859 type_init(spapr_machine_register_types)